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ABSTRACT

Designing Flexible, Energy Efficient and Secure Wireless Solutions for the Internet
of Things

by

Yajing Chen

Chair: Trevor N. Mudge, Hun Seok Kim

The Internet of Things (IoT) is an emerging concept where ubiquitous physical objects

(things) consisting of sensor, transceiver, processing hardware and software are intercon-

nected via the Internet. The information collected by individual IoT nodes is shared among

other often heterogeneous devices and over the Internet.

This dissertation presents flexible, energy efficient and secure wireless solutions in the

IoT application domain. System design and architecture designs are discussed envisioning

a near-future world where wireless communication among heterogeneous IoT devices are

seamlessly enabled.

Firstly, an energy-autonomous wireless communication system for ultra-small, ultra-

low power IoT platforms is presented. To achieve orders of magnitude energy efficiency

improvement, a comprehensive system-level framework that jointly optimizes various sys-

tem parameters is developed. A new synchronization protocol and modulation schemes are

specified for energy-scarce ultra-small IoT nodes. The dynamic link adaptation is proposed

to guarantee the ultra-small node to always operate in the most energy efficiency mode,

given an operating scenario. The outcome is a truly energy-optimized wireless communi-

cation system to enable various new applications such as implanted smart-dust devices.

xi



Secondly, a configurable Software Defined Radio (SDR) baseband processor is de-

signed and shown to be an efficient platform on which to execute several IoT wireless

standards. It is a custom SIMD execution model coupled with a scalar unit and several

architectural optimizations: streaming registers, variable bitwidth, dedicated ALUs, and

an optimized reduction network. Voltage scaling and clock gating are employed to further

reduce the power, with a more than a 100% time margin reserved for reliable operation

in the near-threshold region. Two upper bound systems are evaluated. A comprehensive

power/area estimation indicates that the overhead of realizing SDR flexibility is insignifi-

cant. The benefit of baseband SDR is quantified and evaluated.

To further augment the benefits of a flexible baseband solution and to address the secu-

rity issue of IoT connectivity, a light-weight Galois Field (GF) processor is proposed. This

processor enables both energy-efficient block coding and symmetric/asymmetric cryptog-

raphy kernel processing for a wide range of GF sizes (2m, m = 2, 3, ..., 233) and arbi-

trary irreducible polynomials. Program directed connections among primitive GF arith-

metic units enable dynamically configured parallelism to efficiently perform either four-

way SIMD GF operations, including multiplicative inverse, or a long bit-width GF product

in a single cycle. This demonstrates the feasibility of a unified architecture to enable er-

ror correction coding flexibility and secure wireless communication in the low power IoT

domain.
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CHAPTER 1

Introduction

1.1 Internet of Things (IoT)

The Internet of Things (IoT) envisions a world where ubiquitous physical objects are IP
addressable, enabling various connectivity among things or everything, as well as active
interactions between things and human beings.

Emerging applications in various areas such as industry, smart home, transportation,
environment, health care are powered by IoT technologies as shown in Figure 1.1. For
example, cost control, production efficiency and process management are example appli-
cations in Industry IoT (IIoT). Smart home applications are typified by home automation
system, monitoring and security surveillance, and interactive voice system, etc. IoT solu-
tions for smart city involve a wide range of user cases, including traffic management, urban
security, waster management/distribution and so on. Many other areas such as logistics,
smart agriculture, health system, are developing rapidly as IoT technologies evolve.

The IoT market has experienced exponential growth throughout the past years. The
volume of things will be connecting to the Internet is going to exceed 50 billion [1] by
2020. The new IoT opportunities is estimated to power the industry with approximately
$400 billion dollars by 2020 as shown in Fig. 1.2 [1].

1.2 IoT Wireless Communications

Central to the IoT vision is wireless connectivity, which ultimately connects the isolated
physical objects together as well as enables data sharing, information exchanging and in-
teractions among things and humans, within the local network and over the Internet.

Similarly to other communication system, IoT wireless communications also consists
of multiple layers as shown in Fig. 1.3.
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Figure 1.1: IoT Application Areas

Figure 1.2: IoT brings the industry to over $400 billion [1]
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Figure 1.3: IoT communications stack.

The physical layer, also referred as the PHY layer or L1, is the lowest layer in the com-
munications stack. The physical layer is responsible for baseband signal processing, in-
cluding Modulation, synchronization, FIR, etc. On top of the physical layer, the link layer,
also referred as L2, provides several services including packet switching, hardware address-
ing, physical medium access control, security and forward error correction coding (FEC).
The main functionality provided by each layer (below the application layer), including the
Network layer, and the Transport layer are listed in the left column in Fig. 1.3. An adapta-
tion layer is necessary in between L2 and the traditional L3. IPv6 over Low power WPAN
(6lowpan) is a popular adaptation layer protocol. The adaptation layer is specially de-
signed to address the difference between low power IoT networks and traditional networks,
providing services such as packet fragmentation and reassembly, and header compression.
This dissertation focuses on system and architecture design for the physical layer, and low
level signal processing in L2. To be specific, the low level L2 processing includes forward
error correction coding and security schemes (including both data encryption/decryption
and authentication processing), which are tightly integrated with baseband processing in
the physical layer.
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Figure 1.4: Design Principle: Flexibility.

1.3 Design Principles

There are many standards that have already been proposed for IoT such as IEEE 802.15.4 [2],
IEEE 802.15.6 [3], and Bluetooth Low Energy (BLE) [4]. The rapid growth in IoT appli-
cations brings new demands on wireless communications. The standards are continuously
evolving to adopt new technologies. For example, Bluetooth 5.0 [5] released in December
last year has increased the maximum data rate of BLE from 1Mbps to 2Mbps. Two alterna-
tive PHYs have been added to the 802.15.4 standard in 2016—Ternary ASK (TASK) and
Rate-Switching GFSK (RS-GFSK). They are specified in 802.15.4q-2016 [6].

Besides updates to standards, new ones have been developed. For instances, cellular
IoT, typified by Narrow Band (NB)-IoT, having a single tone providing 20kbps and a mul-
tiple tone with a maximum data rate of 250kbps, have been proposed. In addition, Industrial
IoT (IIoT) standards, such as LoRA [7], have come into the picture. They operate at a very
low data rate (30-50kbps) but extend range to kilometers.

Today, although there are many different types of connectivity proposed for IoT, these
networks are often fragmented. Nodes with different physical layers are unable to directly
communicate with each other, because typically devices only have one single physical
implementation. In the near future, where a trillion of IoT devices communicating with
other heterogeneous devices should not be limited by one specific physical layer solution.
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Figure 1.5: IoT devices typically rely on limited energy sources.

Flexibility. Ideally, the IoT devices should have the flexibility, as shown in Fig. 1.4,
to support many standards, non-standard, and custom specified communications such as
millimeter scale IoT communications which will be elaborated later.

Energy Efficiency. Energy efficiency is always one of the most essential design consid-
erations because the power/energy sources of IoT devices are typically restricted. Example
energy sources are illustrated in Fig. 1.5. Most wearable devices are powered by battery,
but charging and replacing battery is costly or even infeasible. Energy harvesting is an-
other important energy source for IoT devices, for example, millimeter scale sensor node
relies on solar power harvesting. Inductive power suppliers involves wirelessly transferring
energy from one device (transmitter or charging station) to another (receiver or portable
device). RFID is a typical and a widely adopted use case of inductive coupling. The
implanted pacemaker in Fig. 1.5 is another inductive power example. Given the energy
limitation, designing an energy efficient solutions is often critical for IoT devices.

It is important to note that flexibility does not necessarily worsen energy efficiency. A
flexible wireless solution will add some complexity compared to a single ASIC solution,
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Figure 1.6: Design Principle: Security.

but the operating scenario is dynamic. The flexibility opens up the opportunity to achieve
better energy efficiency by selecting an energy optimized configuration point that may be
beyond the scope of existing standard modes. This dissertation explores the flexibility in
the physical layer, i.e. baseband processing, and error correction coding. The flexibil-
ity in baseband processing and information/error correction coding schemes allows the IoT
devices to dynamically change multiple system parameters, such as signal bandwidth, mod-
ulation parameters, and coding schemes, for different objectives such as higher data rate,
better energy efficiency and/or longer distance.

The area/system volume of the IoT devices is another important concern in order to
connect to the real world seamlessly and unnoticeably. The wireless flexibility should also
be achieved with small area and system volume. This dissertation analyzes the fundamen-
tal algorithm in the physical layer and low level signal processing in L2. We show that
flexibility can be addressed within a small area by designing architectures that efficiently
support basic common computations.

In some applications, such as biomedical implants, where extremely small dimensions
are required, none of the standard communications can be adopted and unique challenges
due to ultra-small system form factors are introduced. Chapter 2 details a system designed
for such ultra-small, ultra-low power wireless communications for IoT devices. Specialized
modulation schemes, synchronization protocols, and link adaptation schemes are proposed
to optimally utilize the scarce power/energy resources.

Security. For IoT communications, security is an important design consideration. IoT
communications, which exchange plaintext through a shared medium, is fundamental inse-
cure. Fig. 1.6 illustrates the security issues addressed in this dissertation. Firstly, a secure
connection needs to be established, typically via asymmetric cryptography process, which
has strong security but is very computationally intensive. Elliptic Curve Cryptography, as
a representative asymmetric cryptography, is widely utilized in the authentication process.
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Secondly, the message transmitted over the air needs to be secure, and symmetric cryp-
tography algorithms are usually implemented to encrypt/decrypt messages. They provide a
moderate security level with relaxed complexity. AES is one of the most popular symmetric
cryptography schemes, which is specified in many IoT standards.

In summary, flexibility, energy efficiency and security are essential design principles
in the areas of IoT wireless communications. In this dissertation, flexible, energy efficient
and secure IoT wireless solutions are presented via a comprehensive system and detailed
architecture design.

1.4 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, an energy-autonomous, self-contained
wireless communications system designed for ultra-small millimeter-scale, ultra-low power
IoT sensor node is presented. In such cases, none of the standard communications can be
applied and even convectional communications technique cannot be directly applied.

Chapter 3 and Chapter 4 focus on architecture design for standard compliant IoT plat-
forms. Chapter 3 describes a configurable SDR baseband processor. Several reasons, such
as multi-standard scenarios, on-the-fly updates, and graceful data rate/distance trade-offs,
can be handled easily by SDR as long as the overhead of SDR can be kept small compared
to overall system. We show this is the case for our processor in this chapter. Better en-
ergy efficiency can be achieved by operating the SDR at an energy optimal configurations
which can be beyond the standard for existing physical layer protocols. Chapter 4 further
augments this benefit from baseband flexibility by introducing information coding flexibil-
ity in IoT communications. As mentioned in the previous section, in addition to energy
efficiency and flexibility, security is also one of the most critical challenges posed for IoT
wireless connectivity. The Galois Field (GF) processor proposed in Chapter 4 addresses the
security challenges with a unified architecture to perform not only error correction coding
but also popular cryptography functions in a finite GF for both data encryption/decryption
and authentication processes.

Finally, Chapter 5 provides concluding remarks.
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CHAPTER 2

Energy-Autonomous Wireless Communication
for Millimeter-Scale

Internet-of-Things Sensor Nodes

This chapter presents an energy-autonomous wireless communication system for ultra-
small Internet-of-Things (IoT) platforms. In the proposed system, all necessary compo-
nents including the battery, energy-harvesting solar cells, and the RF antenna are fully inte-
grated within a millimeter-scale form-factor. Designing an energy-optimized wireless com-
munication system for such a miniaturized platform is challenging because of unique sys-
tem constraints imposed by the ultra-small system dimension. The proposed system targets
orders of magnitude improvement in wireless communication energy efficiency through a
comprehensive system-level analysis that jointly optimizes various system parameters such
as node dimension, modulation scheme, synchronization protocol, RF/analog/digital cir-
cuit specifications, carrier frequency, and miniaturized 3D antenna efficiency. We propose
a new protocol and modulation schemes that are specifically designed for energy-scarce
ultra-small IoT nodes. These new schemes exploit abundant signal processing resources
on gateway devices to simplify design for energy-scarce ultra-small sensor nodes. The
proposed dynamic link adaptation guarantees that the ultra-small IoT node always oper-
ates in the most energy efficient mode for a given operating scenario. The outcome is a
truly energy-optimized wireless communication system to enable various classes of new
applications such as implanted smart-dust devices.

2.1 Introduction

Ultra-small Internet-of-Things (IoT) sensor nodes with perpetual energy harvesting have
come into reality empowered by very-large-scale system integrated (VLSI) circuit innova-
tions [8] – [9] and fabrication technology improvement. Leading into the realistic world of
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2mm

Figure 2.1: Millimeter-scale Michigan Micro Mote (M3), pressure sensing system (left)
and imaging system (right)

‘smart dust’ [8] – [10], ultra-small (specifically in millimeter-scale) IoT platforms present
a wide range of new applications such as biomedical implant [11] [12], security/safety
surveillance, infrastructure monitoring [13] [14], and smart building [15], which are all
extremely platform size sensitive.

We envision a millimeter-scale general purpose computing platform (Fig. 2.1) [8] – [9]
that is small enough to be seamlessly integrated into the real world without being noticed.
Recent research in VLSI circuits demonstrate that realizing such an ultra-small system is
indeed feasible by integrating a rechargeable battery, a solar energy harvester layer, vari-
ous sensor (temperature, pressure, imager) layers, and a general purpose processor layer;
all within a millimeter-scale form-factor (see Fig. 2.1). The extremely small form-factor
of these systems imposes a critical challenge in system power and energy management.
As battery replacement is practically infeasible, these systems target energy-autonomous
operation, employing a millimeter-scale rechargeable thin-film battery that is continually
trickle charged by harvested ambient (e.g., solar) energy [8] – [9].

In millimeter-scale IoT platforms, wireless communication is the dominant factor in
overall power/energy consumption [8] – [9] [16] – [17].

The power breakdown of the millimeter-scale, energy-autonomous Michigan Micro
Mote (M3) sensor node (Fig. 2.1) [8] – [9] reveals that wireless communication consumes
more than 65% of the overall power budget even with aggressive duty cycling. Therefore,
enabling energy optimized wireless communication is the most critical issue in prolonging
the lifespan of energy-constrained ultra-small IoT platforms and realizing perpetual device
operation only powered by energy harvesting.

In this chapter, we present a truly energy-autonomous, fully self-contained wireless
communication system that optimally utilizes the scarce energy/power resources available
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in ultra-small scale IoT platforms. To achieve this goal, a cross-layer system-level op-
timization framework is proposed to jointly optimize various system parameters such as
modulation scheme, synchronization protocol, RF/analog/digital circuit specifications, data
rate, carrier frequency, miniaturized 3D antenna efficiency, etc. The proposed optimizations
will be performed under stringent system constraints that are unique to millimeter-scale
energy-harvesting IoT platforms. Given a millimeter-scale IoT node dimension, we seek
to explore the rich tradeoff space between the miniaturized 3D antenna size, battery capac-
ity, and the energy reservoir capacitor size to achieve the maximum energy efficiency for
wireless communication.

We assume that each ultra-small IoT node is paired with a gateway such as a smart-
phone or an WiFi access point. Direct communication among ultra-small IoT sensor nodes
is not the focus of this work. Since the energy/power efficiency of the gateway device
is not a primary concern, it is reasonable to assume that the gateway is equipped with
abundant resources for advanced signal processing. Exploiting this asymmetry, this work
will investigate an energy-optimized communication system for a power-constrained IoT
sensor node with very dissimilar transmitter and receiver configurations. The proposed
system will demonstrate that powerful signal processing at the gateway can mitigate cir-
cuit impairments on the ultra-low power (ULP, < 100µW ) sensor node. Hence, the circuit
specification on the sensor node can be significantly relaxed for better energy efficiency,
benefiting from the gateway signal processing. A new synchronization protocol is inves-
tigated to improve the sensor node receiver energy efficiency by utilizing accurate timing
and frequency offset estimation attainable on the gateway. This synchronization scheme
eliminates the need for a power-demanding phase-lock-loop (PLL) circuit and an external
frequency reference crystal for the millimeter-scale sensor node wireless transceiver.

Conventional modulation schemes, such as on-off-keying (OOK) and binary frequency
shift keying (FSK), widely used in prior ULP transceiver works [18] [9] are far from op-
timal for the proposed system since these conventional simplistic modulation schemes
lack the ability to dynamically adapt to various operating scenarios. We propose a new
modulation-coding scheme that is specifically designed for millimeter-scale IoT sensor
nodes to expand their connectivity in an energy-efficient way. In addition, we will show
that gateway guided link adaptation provides an order(s)-of-magnitude improvement in
data rate and/or link distance by automatically adjusting the modulation-coding scheme
and other modulation parameters on-the-fly for the millimeter-scale IoT sensor node.

This chapter is organized as follows. Section 2.2 discusses the energy-autonomous
millimeter-scale communication system design considerations. A new synchronization
protocol is discussed in Section 2.3. Section 2.4 provides mathematical models of the
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Figure 2.2: Millimeter-scale stacked system diagram (up-right) and 3D magnetic antenna
prototype (up-left). The flow of energy-autonomous operations.

modulation scheme, coding, synchronization, energy consumption, and data rate of the
proposed system. In Section 2.5, we mathematically define the dynamic link adaptation
problem for various objective functions, and quantify the optimum results and the impact
of different system configurations. Section 2.6 concludes this chapter.

2.2 System Design

In this section, we will introduce system constraints of the energy-autonomous millimeter-
scale communication system. The proposed system design is driven by the objective of
achieving the maximum energy efficiency, longest link distance, and/or highest data rate.
Critical system design decisions such as the antenna type and modulation scheme will be
justified in this section.

2.2.1 Millimeter-Scale Wireless Communication System Constraints

The proposed energy-autonomous wireless system configuration is depicted in Fig. 2.2. A
cubic shape form-factor is considered to minimize the system volume and to constrain the
length of the largest dimension. The transceiver circuits, thin-film battery, and other dis-
crete components including the energy reservoir capacitor (Cres) are sandwiched between
the solar energy harvester panel and the millimeter-scale 3D antenna. A stacked layer ap-
proach introduced in [8] – [9] shall be applied to integrate multiple functional layers such
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as a processor layer and sensor layers on top of each other with minimal area overhead.
The millimeter-scale dimension (largest dimension is less than 5mm) imposes several

unique constraints for energy-autonomous wireless systems. For example, the peak current
of a millimeter-scale thin film battery cannot exceed ≈ 100µA [8] – [9] because of the
internal battery resistance. We utilize a discrete ≤ 1µF capacitor (see Fig. 2.2) as the
energy reservoir (or energy buffer) to address the mismatch between the instantaneous peak
power requirement for transceiver operation and the peak battery current limitation. The
impact of this energy reservoir capacitor will be analyzed in Section IV.C. The solar energy
harvesting layer is exposed on one side of the stack as shown in Fig. 2.2. It is reasonable
to expect 10s of µW power harvesting per mm2 [8] – [9] [19] from the state-of-the-art
millimeter-scale solar cells and energy harvesting IC. The rechargeable thin-film battery
and the energy reservoir capacitor are constantly trickle charged by the harvested solar
energy. Energy-autonomous operation is satisfied when the average power consumption
for wireless communication is contained below the harvested power level, while the energy
reservoir capacitor buffers the instantaneous peak power demand.

2.2.2 Millimeter-Scale 3D Antenna Modeling and Design

As the proposed system has unconventionally small dimensions, analyzing the antenna
efficiency is a necessary step to design an optimized communication system. In particular,
we compare two possible options—electric and magnetic dipoles—for millimeter-scale 3D
antenna design, and model their efficiency as a function of system dimension and carrier
frequency. The goal of this analysis is to determine the optimal antenna topology and
operating carrier frequency for millimeter-scale wireless systems.

Electrically-small antennas radiate as electric and/or magnetic dipoles. The equiva-
lent circuit of a small dipole antenna comprises radiation resistance (Rrad), loss resistance
(Rloss), and capacitance (for electric dipole) / inductance (for magnetic dipole), as tabu-
lated in Table 2.1 [20] [21]. Small ‘electric’ dipoles (straight wires) have capacitive input
impedances and relatively high radiation efficiencies (ηe). On the contrary, small ‘mag-
netic’ dipoles (circular loops) have inductive input impedances, and theory indicates much
lower radiation efficiencies (ηm); e.g., ηe = 0.62 � ηm = 0.01 for millimeter scale anten-
nas with rant = 2.5mm, lant = 5mm, and carrier frequency fc = 1GHz.

In the proposed system, a series lumped element will be used to make each of the two
dipoles resonant. We will not concern ourselves with matching the antenna to a specific
impedance because, for a narrowband system, inter-symbol interference from impedance
mismatched RF reflection is a secondary concern. Capacitive (inductive) nature of an elec-
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Table 2.1: Antenna Characteristics and Efficiency Modeling

Electric Dipole Magnetic Dipole
Constants, Assumptions k: wave number, c: the speed of light

dw = 0.2mm:wire diameter
µ0: permeability of free space

ρ = 17.2nΩ/m: resistivity of copper wire
Antenna Dimension lant: length of the dipole rant: radius of the loop

Radiation Resistance, Rrad 20
(
klant

2

)2
20π2(krant)

4

Loss Resistance, Rloss
lant

2πdw

√
kcµ0ρ

2
2rant

dw

√
kcµ0ρ

2

Capacitance / Inductance Ce = lant

240Ω c(ln( lant
dw

)−1)
Lm = µ0rant

(
ln
(

16rant

dw

)
− 2
)

Radiation Efficiency ηe = Rrad

Rrad+Rloss
ηm = Rrad

Rrad+Rloss

Rad. eff. Inc. lumped comp. loss η̂e = Rrad

Rrad+Rloss+RLe
η̂m = Rrad

Rrad+Rloss+RCm

tric (magnetic) dipole antenna requires lumped inductor (capacitor) to make the antenna
resonate. Since lumped capacitors exhibit much higher quality factor than inductors, the
antenna efficiency, ηe and ηm, of the electric and magnetic dipole antenna should be reeval-
uated considering realistic quality factors of lumped series capacitors and inductors.

The required inductance for an electric dipole is Le = 1/(ω2Ce) whereas a magnetic
dipole resonates with a series capacitance Cm = 1/(ω2Lm), where ω is the angular fre-
quency. It is reasonable to assume that the quality factor of the inductor and capacitor is
QLe = (ωLe)/RLe = 50 and QCm = 1/(ωCmRCm) = 250, respectively. These values
are typical among surface mount inductors and capacitors in the carrier frequency range of
interest, fc < 6GHz.

The radiation efficiency for electric and magnetic dipoles is a function of antenna di-
mension and carrier frequency as shown in Table 2.1 and Fig. 2.3. Considering the realistic
quality factor of lumped elements, magnetic dipoles can lead to higher overall radiation ef-
ficiencies in millimeter-scale designs outperforming electric dipoles (η̂m > η̂e) as shown in
Fig. 2.3 bottom, given fc ≤ 5GHz. Notice the opposite is true (ηm � ηe) if quality factors
of lumped elements were ideal (Fig. 2.3 top). Based on this observation, we propose to use
magnetic dipole antennas for millimeter-scale communication systems.

Fig. 2.2 (on the right) shows the prototype design of the millimeter-scale 3D antenna,
which can be manufactured using a multi-layer printed circuit board. For various dimen-
sions, the simulated radiation efficiency of the magnetic antenna prototype is provided in
Table 2.2 with 1GHz carrier frequency setting. The ‘effective’ antenna radius in Table 2.2
corresponds to the radius rant in the theoretical model in Table 2.1 that provides the same
radiation efficiency as the 3D magnetic antenna prototype. For the remainder of this chap-
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Figure 2.3: Radiation Efficiency of Electric and Magnetic Dipoles

Table 2.2: Simulated 3D magnetic antenna efficiency

Ant. Dimension Simulated Rad. Eff. Effective Radius
(L×W ×H in mm) η̂m (%) rant in mm

2× 2× 1 0.037 0.93
3× 3× 2 0.290 1.46
4× 4× 2 0.527 1.79
5× 5× 2 0.834 2.09

ter, we use the effective antenna radius to represent the dimension of the antenna assuming
the efficiency η̂m predicted by Table 2.1.

It is worth noting that although the millimeter-scale magnetic dipole is more efficient
than the electric dipole counterpart, its efficiency η̂m is still very poor (< 1% for 1GHz

operation as shown in Table 2.2) compared to conventional communication systems with
centimeter-scale antennas. The modulation-coding scheme proposed in later sections is
carefully designed to address this challenge, and to eventually achieve > 15m distance
links for the proposed millimeter-scale system.

2.2.3 Carrier Frequency Selection

The optimal carrier frequency of the proposed system is determined to maximize the signal-
to-noise ratio (SNR). Carrier frequency selection affects pathloss of the signal as well as the
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antenna efficiency given the millimeter-scale dimension. The RF circuit power efficiency
is also affected by the carrier frequency selection.

We consider indoor wireless channel environments including one layer of wall/floor that
blocks the line-of-sight (i.e., non-LOS) between the gateway and the sensor node. While
a higher carrier frequency is preferred for higher antenna efficiency given a millimeter-
scale antenna size (see Fig. 2.3), a lower frequency significantly reduces the pathloss of
the signal in line-of-sight as well as the loss from wall/floor penetration. Therefore, the
optimal carrier frequency selection needs to strike the balance in this non-trivial tradeoff.
For analysis, we use the modified ITU indoor average power propagation loss model [22]
given by (2.1).

L(fc, d) = 20log10

(
4πfc
c

)
+ 30log10(d) + FL(fc)− ηsensor − ηgateway [in dB] (2.1)

In (2.1), c is the speed of light and ηsensor (in dB) is the antenna efficiency of the 3D
millimeter-scale antenna discussed in Section II.B. The gateway antenna dimension is not
our primary concern, and we assume the gateway antenna efficiency ηgateway is 3dB (half
directional antenna). The term 30log10(d) dictates the pathloss (using 3.0 exponent instead
of 2.0 in the theoretical free-space pathloss) as a function of distance d. FL(fc) is the
additional pathloss due to one layer of floor/wall penetration that is optionally applied to
non-LOS scenarios. The original ITU model [22] suggests FL = 9dB, 14dB and 16dB

for 915MHz, 2.4GHz, and 5.2GHz, respectively. We modified this term to be linear with
carrier frequency as FL(fc) = 4 × (fc in GHz) + 7 in dB based on the measurement
results from [23] – [24] (averaged in log domain). For line-of-sight (LOS) scenarios, we
make FL(fc) = 0. Fig. 2.4 shows the propagation model (2.1) evaluation in both LOS
and non-LOS scenarios for various antenna dimension constraints and carrier frequency
selections. It is worth noting that, considering both pathloss and antenna efficiency, ≈
1GHz operation is optimal in the non-LOS scenario when the antenna dimension is limited
to ≈ 2mm. It is because additional pathloss (including wall penetration) penalty offsets
the higher antenna efficiency at higher frequencies. Meanwhile, for LOS operation, high
frequency (≥ 5GHz) operation is desired to minimize the overall propagation loss. The
impact of carrier frequency selection on the millimeter-scale communication system energy
efficiency, data rate, and link distance will be quantified in Section IV.C.
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Figure 2.4: Overall propagation loss for NLOS and LOS including pathloss and antenna
gain as a function of fc given distance d = 1m

2.2.4 Modulation Scheme

A conventional wireless transmitter uses a phase-locked loop (PLL) for carrier frequency
synthesis to support coherent modulation and/or sub-channel tuning for non-coherent mod-
ulation. The power consumption of a conventional PLL architecture with the state-of-the-
art technology is around 1 − 10mW [25] – [26]. This much power overhead is unaccept-
able for power-constrained millimeter-scale sensor nodes where sustained battery power
(and harvested power) is limited to 100s of µW . Furthermore, a PLL typically requires
an external crystal oscillator as the phase reference. The commercial crystal has a volume
larger than 1.6×1.0×0.5mm3 [27], increasing overhead on the overall system dimension.

The proposed system integrates the RF transceiver with a high quality factor (≈ 250)
magnetic antenna as described in Section II.B. Replacing a conventional PLL, we propose
a ‘power oscillator’ that injects power into the antenna resonating at a target carrier fre-
quency with a tunable capacitor bank [18][28]. Such implementation has advantages of
lower cost, inherent frequency generation, high transmit efficiency (≈ 30%), and inher-
ent antenna matching. A conventional power amplifier is unnecessary for the proposed
architecture. The downside of the power oscillator architecture is that it only allows non-
coherent modulation schemes.

Note that the transmit efficiency of the proposed power oscillator architecture is max-
imized at a certain (100s of µA) bias current given ≈ 4V power supply [18][28]. This
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current consumption is much lower than that of a conventional architecture with a PLL and
power amplifier, but it still exceeds the range of the peak battery current of the proposed
millimeter-scale system. This implies that transmitting a continuous signal at a reason-
able transmit power efficiency is infeasible when the current is directly drawn from the
millimeter-scale thin-film battery [8]–[9].

Circumventing this issue, we employ a sparse pulse based non-coherent modulation
scheme. In the proposed scheme, the transmit pulse energy on the sensor node is drawn
from the energy reservoir capacitor, not directly from the battery. This capacitor is trickle
charged by the peak-current limited millimeter-scale thin-film battery while the battery is
constantly recharged by the harvested solar energy. This particular power management
architecture implies that pulses cannot be repeated until the trickle charging time of the
reservoir capacitor, Tcharge, is elapsed between pulses. This Tcharge time is regarded as the
‘forced idle time’ in our modulation scheme.

Exploiting this inherent pulse sparsity, we propose M-ary pulse position modulation
(PPM) [29] [30] as the sensor node transmission scheme. In a conventional system, M-
ary PPM has been investigated with the purpose of enhancing energy efficiency (a single
pulse can contain multiple information bits) [29]. The drawback of M-PPM in a conven-
tional system is its lower bandwidth efficiency as the symbol duration is proportional to M
whereas the number of bits per symbol is a function of log2(M). On the contrary, in our
proposed millimeter-scale system, the recharging time of the capacitor is inevitable and
usually much longer than the pulse duration. Thus, the symbol duration is dominated by
Tcharge if M is in a reasonable range (≤ 64) as depicted in Fig. 2.5. The forced idle time,
Tcharge, motivates the usage of M > 2 to enable higher energy efficiency and to increase the
symbol rate at the same time.

Figure 2.5: N-repetition M-PPM modulation illustration. N=2, 4-PPM example.

The M-PPM symbol error rate is governed by the energy transmitted in a symbol. Since
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the proposed system draws energy from the reservoir capacitor, its capacitance limits the
maximum energy per pulse constraining the maximum distance. Addressing this issue, we
allow N-repetition of pulses to represent a symbol (each pulse is separated by at least Tcharge,
see Fig. 2.5) to expand the link distance beyond the limit of the reservoir capacitance at the
potential cost of degraded data throughput.

For the proposed modulation scheme, the bandwidth efficiency penalty of M-PPM over
binary-PPM is relatively insignificant because of inherent sparsity. Thus, we utilize numer-
ous possible pulse positions in the sparse transmit signal to absorb convolutional coding
redundancy. In Section III and IV, we exploit the sparsity of the modulated signal either 1)
to convey multiple information bits per pulse to maximize energy efficiency (and/or data
rate) in a short distance link or, 2) to maximize coding gain for longer distance communica-
tion. The adaptive N-repetition M-PPM scheme combined with variable rate convolutional
coding is a powerful technique to realize an optimized communication link addressing dif-
ferent use-case scenarios and link objectives. Section IV provides in-depth discussion on
distance-energy efficiency tradeoffs with the proposed dynamic N-repetition M-PPM mod-
ulation scheme with a variable rate convolutional code.

2.2.5 Gateway Guided Synchronization and Link Adaptation

We assume that each ultra-small IoT node is paired with a gateway device such as a smart-
phone or an access point. Direct communication among ultra-small IoT nodes is not the
focus of this work. Since the energy/power efficiency of the gateway is not a primary
concern, it is reasonable to assume that the gateway is equipped with powerful signal pro-
cessing while the sensor node is extremely power constrained. Exploiting this asymmetry
leads toward very dissimilar transmitter and receiver configurations for a millimeter-scale
sensor node.

The PLL-free crystal-less RF transceiver discussed in Section II.D is a key enabler to
achieve ultra-small integration for an energy-autonomous ULP sensor node. However, it
imposes a new challenge in frequency predictability. To address this issue, we propose a
gateway assisted synchronization protocol that is initiated by sensor node transmission. In
the proposed protocol, the gateway estimates the RF carrier frequency offset (CFO) and
the baseband sampling frequency offset (SFO) between the gateway and the sensor node
via multi-hypotheses correlations. Once the gateway identifies CFO and SFO, it sends
a customized packet that ‘pre-compensates’ carrier and baseband frequency offsets for a
particular sensor node. This gateway-assisted synchronization allows PLL-free crystal-less
sensor node implementation, enabling ultra-low power and ultra-small system integration.
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It also eliminates the need for timing and frequency synchronization at the millimeter-scale
sensor node, which is often the most power-dominant processing in conventional wireless
receiver baseband.

The proposed protocol works in the following procedure (illustrated in Fig. 2.6):
1) The sensor node initiates the communication by sending a set of sparse pulses,

Synch HDR, with a pre-defined (node ID dependent) pseudo-random interval.
2) Gateway is always listening and it detects the Synch HDR via the multi-hypotheses

correlation (algorithm in Section III.B) covering all possible ranges of the CFO and SFO.
The instantaneous SNR is obtained based on the peak correlation value. The CFO and SFO
are estimated at the gateway as a result of Synch HDR detection.

3) After transmitting the Synch HDR, the sensor node enters the receive mode. Demod-
ulation at the sensor node starts at a predefined delay (turnaround time, Tturn), calculated
using the sensor node baseband clock (implemented without PLL and crystal reference;
see [31] for an example). At the sensor node, the correlation process searching for the
symbol boundary is unnecessary if the symbol from the gateway arrives at the precise tim-
ing.

4) Gateway calculates the turnaround time using the estimated SFO to synchronize
with the sensor node. It also adjusts carrier frequency fc, based on the CFO estimation. In
parallel, gateway solves the link adaptation problem (Section IV) to identify modulation
parameters for the sensor node to maximize an objective function (data rate or energy
efficiency) given the instantaneous SNR. Gateway sends the message to the sensor node
at the exact symbol boundary that the sensor node is expecting. The message contains a
command to select the optimal operating mode for the sensor node.

5) The sensor node sends more messages using the optimal mode dictated by the gate-
way.

Dynamic modulation parameters such as the pulse width, coding rate, and modula-
tion size (M) for M-PPM allow the proposed system exploiting the rich tradeoff space
to maximize a specific objective function such as the data rate and/or link distance. The
mathematical formulation and analysis of the link adaptation will be discussed in Section
IV.

In this work, we assume the sensor node is the main source of the wireless commu-
nication data traffic. Typical messages from the gateway to the sensor node are assumed
to be short commands that are less bandwidth demanding. This is a valid assumption for
majority of IoT applications where distributed sensor nodes collect various sensing data
including audio/image.

Therefore, our link adaptation strategy with dynamic sparse M-PPM modulation is only
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Figure 2.6: Gateway guided synchronization and link adaptation

applied to sensor node transmission. The gateway transmit signal, on the other hand, uses a
simple static modulation scheme such as on-off-keying (OOK). Note that the gateway trans-
mit signal does not have to be sparse. In the proposed scheme, the gateway adjusts its trans-
mit power so that a certain minimum signal sensitivity level at the sensor node receiver op-
erating with 10s of µW power budget (sustainable with thin-film battery power) is always
satisfied. The comprehensive survey on the state-of-the-art ultra-low power (< 100µW )
OOK receiver designs [32] suggests that this scheme is certainly feasible especially when
the baseband processing is greatly simplified by the proposed gateway-guided synchroniza-
tion. Thus, our proposed scheme focuses on the sensor node transmission, assuming the
other direction (gateway transmission - sensor node reception) does not limit the system
performance.
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2.3 System Modeling

2.3.1 Sensor Node Transmission Signal Modeling

The proposed modulation and coding scheme for sensor node transmission is depicted in
Fig. 2.7. The information bit stream is fed into a multi-rate convolutional code encoder,
then mapped into M-PPM pulse signals. The M-PPM pulse is optionally repeated N times,
and pulse shaping is performed with tunable pulse width (Tpulse).

Figure 2.7: Baseband Processing at Sensor Node

Figure 2.8: ν = 3, Cr = 1/3 coding example. M-PPM size is tightly coupled with Cr.
M = 21/Cr = 8 PPM is used.

In the proposed modulation and coding scheme, the M-PPM modulation is tightly cou-
pled with convolutional encoding. The modulation-coding rate (Cr) is dynamically cho-
sen from the set; Cr ∈ {..., 3, 2, 1, 1

2
, 1

3
, 1

4
, ...}. Convolutional encoding is bypassed when

Cr ≥ 1, and higher data rate is achieved by using M = 2Cr to carry Cr information bits
per symbol. On the other hand, when convolutional encoding is enabled (Cr < 1), M is
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chosen to be 21/Cr to convey 1/Cr coded bits and, equivalently, one information bit per M-
PPM symbol. M and Cr satisfy the relationship (2.2). In fact, the usage of Cr < 1

2
coding

rate is motivated by the sparsity of the transmit signal, where numerous pulse positions are
available without a significant data rate penalty.

M =

{
2Cr Cr ≥ 1

2
1
Cr Cr < 1

(2.2)

cj =

{
[bjCr ... , b(j+1)Cr−1]T Cr ≥ 1

G(σj, bj, Cr) Cr < 1
(2.3)

We denote the j-th output from the encoder as cj, a vector of size log2M×1, given input
bit stream (b0, b1, ...). G(σj, bj, Cr) is the convolutional code generator function that pro-
duces an 1/Cr × 1 output vector per single input bit bj given the convolutional code trellis
state σj . The trellis state is updated by σj =

∑ν−1
l=1 bj−l2

l−1 where ν is the code constraint
length. We use convolutional code generator functions specified in [33] for various coding
rate Cr and ν. Note that each cj vector is mapped to a single M-PPM symbol regardless of
Cr. The mapping between the M-PPM symbol indexmj ∈ {0, 1, ...,M−1} and cj is given
by mj = cj

Tp where p = [2log2M−1, ..., 21, 20]T is the M-PPM position mapping vector.
Fig. 2.8 shows an example of ν = 3 convolutional coding with Cr = 1/3, M = 21/Cr = 8

PPM.
When the energy per pulse is limited by the capacity of the energy reservoir, we increase

the symbol energy by N repetition of M-PPM pulses. The n-th repeated pulse position of
the j-th symbol is denoted by τp(j, n) (2.4).

τp(j, n) = Tpulsemj + (j − 1)Tsym + (n− 1)Tidle, n = 1, ..., N (2.4)

In (2.4), Tsym is the symbol duration that consists of N pulses. Tpulse is the pulse width,
which can be dynamically configured as a result of link adaptation discussed in Section
IV. Tidle = max {Tcharge, MTpulse} is the forced idle time between pulse repetition deter-
mined by the maximum of the energy reservoir capacitor charging time Tcharge and the
non-overlapping spacing for M-PPM MTpulse. In case the system’s thin-film battery cur-
rent is very limited, the charging time dominates Tidle = Tcharge �MTpulse for a reasonable
M (≤ 64). The symbol duration of an N repetition M-PPM symbol is obtained by (2.5).
Given a pulse shape function p(t) with support [0,Tpulse], the sensor node transmit signal is
represented by (2.6), where ∗ stands for convolution and δ(x) is the Dirac-Delta function.

Tsym = MTpulse + (N − 1)Tidle + Tcharge (2.5)
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s(t) = p(t) ∗
∑
j

N∑
n=1

δ(t− τp(j, n)) (2.6)

2.3.2 Synchronization at Gateway

Waiting for Synch HDR that initiates the communication, the gateway is always listen-
ing. The proposed Synch HDR detection process at the gateway provides reliable timing
and frequency offset synchronization, which is critical to enable PLL-less crystal-free im-
plementation for the millimeter-scale sensor node. The gateway employs non-coherent
demodulation and synchronization that is based on received sample power. Coherent de-
modulation is infeasible because the sensor node cannot maintain phase coherency without
a PLL.

Figure 2.9: Synchronization datapath at the gateway for carrier frequency offset and sam-
pling frequency offset estimation

Fig. 2.9 depicts the Synch HDR detection process at the gateway with carrier frequency
offset (CFO) and sampling frequency offset (SFO) estimation. The hCFO and hSFO are the
number of hypotheses for discretized CFO and SFO respectively. During Synch HDR
detection, the incoming baseband ADC samples are mixed with various CFO hypothe-
ses (f (1)

CFO, f
(2)
CFO, ..., f

(hCFO)
CFO ). Each CFO mixer output is low-pass filtered, power con-

verted, and then convoluted with a matched filter (MF). The instantaneous maximum out-
put, pmax(t) is selected among hCFO MF outputs until the Synch HDR is detected. Each
maximum ouput is associated with a specific CFO hypothesis, fmaxCFO(t), at time instance t.

This instantaneous maximum output signal pmax(t) is then correlated with hSFO im-
pulse sequences. The j-th correlation sequence

∑Np

n=1 δ(t − τ
(j)
n ) has pulse positions τ (j)

n ,
n = 1, 2, ..., Np that are determined by the predefined pulse interval in the Synch HDR
that is adjusted according to the j-th SFO hypothesis. Np is the number of pulses in a
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Synch HDR. The Synch HDR is successfully detected when the maximum from multi-
ple hypotheses correlations exceeds a certain threshold. Consequently, the SFO estimate
f̂SFO is obtained by a particular SFO hypothesis that maximizes the correlation as in (2.7).
In addition, the CFO estimate f̂CFO is computed by (2.7), taking the average of fmaxCFO(t)

sampled at the pulse positions given by SFO estimation.

f̂SFO = argmax
j=1,...,hSFO

∫ Np∑
n−1

pmax(t)δ(t+ τ (j)
n )dt, f̂CFO =

1

Np

Np∑
n=1

fmaxCFO(τ (∗)
n ) (2.7)

Figure 2.10: Performance of CFO estimation (left) and SFO estimation (right)

The left plot in Fig. 2.10 shows the performance of this CFO estimation scheme. 0.6dB
performance degradation is observed from the ideal (no CFO) case when CFO is set to
500ppm (= 500kHz at fc = 1GHz, simulated with Cr = 1, and N = 1). Once the
Synch HDR is detected, the mixing path that corresponds to f̂CFO remains active while all
other mixers are disabled. The matched filter output pmax(t) is resampled using the SFO
estimate f̂SFO.

After successful Synch HDR detection, multiple hypotheses correlations to evaluate
(2.7) remain active during the data modulation process tracking the residual SFO that
might affect the system performance. Since pmax(t) is resampled with f̂SFO, the SFO
hypotheses (f (1)

SFO, f
(2)
SFO, ..., f

(hSFO)
SFO ) can now be readjusted with finer granularity. As data

pulse demodulation continues, expected pulse positions τ (j)
n that originally all belong to

Synch HDR are sequentially replaced by detected data pulse positions for the residual off-
set tracking in a decision feedback fashion. The oldest pulse position in the hypothesis is
replaced by the latest detected pulse position, and the f̂SFO tracking continues until the end
of the packet.

The right plot in Fig. 2.10 shows the simulation performance of the proposed SFO
estimation and tracking algorithm. The simulation results confirm that performance degra-
dation due to SFO is limited to an acceptable range (< 1dB SNR loss) when ≤ 2000ppm
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(0.2%) SFO is tested. This SFO requirement is very reasonable for ultra-low power (<
1µW ) clock design [31] that does not require a reference crystal. Based on the synchro-
nization algorithm performance shown in Fig. 2.10, we argue that the proposed scheme
mitigates CFO and SFO well, and the impact of residual CFO and SFO is insignificant.
Hence, we will assume perfect gateway guided synchronization for the remaining sections
of the chapter.

2.3.3 Demodulation Performance Modeling

In this section, we derive analytical packet error rate performance expressions for the pro-
posed modulation-coding scheme.

2.3.3.1 Uncoded (Cr ≥ 1) cases

We employ a non-coherent energy detector at the receiver (i.e., gateway) to demodulate
the N-repetition M-PPM signal transmitted from the sensor node. A channel with complex
additive white Gaussian noise CN (0, N0) is assumed throughout the performance analysis.
An N × 1 vector r denotes the set of matched filter outputs sampled at the correct N pulse
positions for a N-repetition M-PPM symbol. Similarly, let e be an N × 1 vector, the set
of matched filter outputs sampled at incorrect symbol pulse positions. The pulse energy is
normalized to one without loss of generality throughout the analysis. Therefore, the symbol
is correctly detected when ‖r‖2 > ‖e‖2 , for all e’s that correspond to M − 1 possible error
positions. Assuming all symbols are equally probable, the probability of correct symbol
detection Pc is given by (2.8) where P{} denotes probability. Note that Xr = ‖r‖2

N0/2
is a

non-centralized chi-square distributed random variable with a degree of freedom 2N and
non-centralized parameter s = N

N0/2
. Xe = ‖e‖2

N0/2
is centralized chi-square distributed with

a degree of freedom 2N .

Pc(N,M,N0) = (P {Xr > Xe})M−1 (2.8)

Since Xe has an even degree of freedom, it has a closed-form expression cdf [34]. The
analytical expression of Xr’s pdf is available in [30]. Therefore, Pc can be rewritten as
(2.9) where SNR = 1

N0
, s = 2N · SNR and IN−1 is the modified Bessel function of the

first kind.

Pc(N,M,SNR) =

∫ ∞
0

(
1− e−

x
2

N−1∑
j=0

1

j!

(x
2

)j)M−1

1

2

( x
s2

)N−1
2
e−

s2+x
2 IN−1(s

√
x)dx

(2.9)
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When convolutional encoding is unused (Cr ≥ 1), the number of symbols in a packet
containing L information bits is L/Cr. Using (2.9), the PER is obtained by (2.10).

PER = 1− Pc(N,M,SNR)L/Cr (2.10)

2.3.3.2 Convolution Coded (Cr < 1) Cases

When convolutional coding is enabled (Cr < 1), the non-coherent energy detection is
performed along with the optimal maximum likelihood sequence estimation (MLSE) [34]
at the gateway. Unlike a conventional soft-input Viterbi decoding where the log likelihood
ratio is used as the branch metric [35], the matched filter output power sampled at the
expected pulse position is directly used as the branch metric in our scheme. The likelihood
of each symbol sequence is represented by accumulated branch metric (i.e., the integrated
pulse energy) along the trellis transition path. At each trellis state of MLSE, the branch
with the maximum accumulated branch metric (or the maximum integrated pulse energy)
is selected updating the accumulated metric for each state.

To arrive at an analytical expression of the convolution coded packet error rate, we use
the union bound (2.11), which provides a strict but tight upper bound of the actual PER
[34]. The trellis length L of MLSE is equal to number of information bits (convolutional
code input) in our modulation-coding scheme when Cr < 1. Without loss of generality, we
assume the correct MLSE sequence corresponds to the all zero input sequence for our PER
analysis.

PER ≤ 1−

(
L∏
l=1

l∏
k=1

(1− Pe,pair(l, k,N))A(l,k)

)L

= 1−

(
L∏
l=1

l∏
k=1

(1− Pc (Nk, 1/Cr, N0))A(l,k)

)L

(2.11)
In (2.11), A(l, k) is the number of ‘length-l distance-k simple error’ events that di-

verge from the all-zero sequence from the beginning of the trellis and merge (for the first
time) to the all-zero sequence after l branch transitions. A length-l, distance-k simple error
event has k different pulse positions from the all-zero sequence over l trellis transitions.
Pe,pair(l, k,N) is the probability of the pairwise error event, which occurs when the all-
zero sequence has a less accumulated branch metric than a length-l distance-k simple error
given N repetition modulation and noise power of N0. In fact, it is straightforward to show
that Pe,pair(l, k,N) = Pc(Nk, 1/Cr, N0) using (2.9) when M = 21/Cr and Cr ∈ {1

2
, 1

3
, ...}.

Note that A(l, k) is dictated by the convolutional code generator function G(σj, bj, Cr) as
well as the M-PPM encoding. We empirically evaluate A(l, k) for all convolutional codes
considered in this work.
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Fig. 2.11 shows side-by-side comparisons between simulated PER and analysis results
given by (2.9) and (2.11) for various uncoded (Cr ≥ 1) and coded (Cr < 1) cases. The
packet length L is 128 bits for all cases. The average pulse SNR (on x-axis of Fig. 2.11)
is 1/N0 assuming normalized pulse energy. The uncoded PER analysis exactly matches
with the simulation (with triangle dot), while the union bound of the coded PER (2.11) is
proven to be tight for all coded cases (simulation results with circle dot). Hence, for the
remaining sections, we use the union bound (2.11) with equality to represent the PER when
convolutional coding is enabled. As Fig. 2.11 shows, the proposed modulation-coding
scheme enables the system operating at low SNRs (≈ 0dB per pulse) when Cr ≤ 1/2

convolutional coding is combined with N ≥ 1 repetition.

Figure 2.11: Performance of modulation-coding scheme. Analysis for uncoded cases.
Tight union bound for coded cases.

2.3.4 Data Rate and Energy Efficiency Modeling

The data rate of the proposed system is defined by the number information bits transmit-
ted per unit time. The proposed system supports a wide range of data rates by changing
modulation-coding parameters; N , Cr, and Tpulse dynamically. The number of information
bits contained in a symbol is dCre. That is, a single symbol conveys a single information
bit when the convolutional coding is enabled (Cr < 1). Without error correction coding,
on the other hand, Cr(≥ 1) bits are transmitted per symbol using M = 2Cr PPM. Using
(2.5) for the symbol duration, the system data rate R is obtained by (2.12). Recall that
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Tidle = max(MTpulse, Tcharge) and Tcharge is a function of Tpulse given battery current limi-
tation. M is a function of Cr as given in (2.2). Therefore, the data rate R of the system is
fully determined by three modulation-coding parameters; N , Cr, and Tpulse.

R =
dCre
Tsym

=
dCre

MTpulse + (N − 1)Tidle + Tcharge
(2.12)

Achieving the maximum energy efficiency is one of the primary objectives of the pro-
posed link adaptation system. The energy per information bit for millimeter-scale sensor
node transmission has the expression (2.13).

Eb =
Energy per symbol

Number of info bits per symbol
=
PcktN Tpulse

dCre
=
PTXN Tpulse

ηcktdCre
(2.13)

In (2.13), Pckt is the constant power consumption of the ‘power oscillator’ circuit pro-
posed in section II.D. Recall that the efficiency of the circuit is maximized at a certain con-
stant bias condition. We assume the efficiency ηckt = 0.15 is achieved when Pckt = 3.5mW

using an architecture similar to [28]. While a constant transmit power level PTX = ηcktPckt

is delivered to the antenna maintaining the maximum circuit efficiency, we adjust Tpulse(i.e.,
signal bandwidth) and/or Cr for link adaptation in various SNR conditions. Note that the
transmitter consumes near zero power during the idle time (Tcharge and Tidle) between pulses
when only the ULP oscillator [31] is active to control the N-repetition M-PPM pulse timing.

2.4 System Optimization and Link Adaptation

In this section, we will formulate link adaptation optimization problems for the proposed
energy-aware ultra-small IoT communication system. We first introduce system constraints
of the millimeter-scale sensor node, and then formulate formal link adaptation optimization
problems for 1) the maximum link distance, 2) the maximum data rate, and 3) the maximum
energy efficiency objective functions.

The design parameters and system constants for a realistic millimeter-scale sensor node
communication system are specified in Table 2.3. These constants are used throughout the
system link adaptation study, unless specified otherwise. The proposed system employs
three modulation-coding parameters that can be dynamically adjusted for link adaptation;
Cr, N , and Tpulse. These are discrete variables as shown in Table 2.3. All other parameters
such as Tcharge, Tidle, Eb are all implicitly specified by the selection of Cr, N , and Tpulse.

Since the pulse energy is drawn from the capacitor, the energy per pulse is limited by
the energy stored in the reservoir capacitor Cres. The upper bound on the pulse width, Tpulse,
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Table 2.3: System Design Parameters, Constants and Adaptive Modulation-Coding Param-
eters

System Design Parameters Values
Antenna Dimension, rant 1.5mm

Carrier Frequency, fc 1GHz
Reservoir Capacitor, Cres 150nF

Battery Current, Ibat 30µA
Circuit Operating Condition Vmin = 2.6V , VDD = 3.6V ,

Pckt = 3.5mW , ηckt = 0.15

Target PER, PERtarget (Packet Length=128bit) 10−3

Target Data Rate, Rtarget 10kbit/s
Adaptive Modulation-Coding Parameters Values

Coding Rate Cr
{

1
6
, 1

5
, 1

4
, ..., 1, 2, ..., 8

}
Pulse Repetition N {1, 2, ..., 16}

Pulse Width Tpulse in µs {0.05, 0.1, 0.2, 0.4, ..., 51.2, 102.4, ...}

is obtained by (2.14) where Vmin is the minimum voltage required for transmitter circuit
functionality. The recharging time Tcharge (2.15) is required between pulses to restore charge
in the reservoir capacitor.

Tpulse ≤
Energy in reservoir cap

2Pckt
=
Cres(VDD

2 − Vmin2)

2Pckt
(2.14)

Tcharge(Cres, Tpulse) =
Cres(VDD −

√
VDD

2 − 2PcktTpulse

Cres
)

Ibat
(2.15)

In Section III.C, the packet error rate of the proposed system was analyzed as a function
of the pulse SNR. Given a transmit pulse width Tpulse, the pulse SNR at the gateway can be
obtained by (2.16), where NFgateway is the noise figure of the gateway receiver.

SNR(Tpulse, d) = 10log10(PTXN Tpulse)−N0 − L(d, fc)−NFgateway [in dB] (2.16)

The inverse function of the PER expression (2.10) and (2.11) is difficult to obtain.
Therefore, to satisfy a certain PER performance requirement PERtarget, we numerically
evaluate PER expressions (2.10)(2.11) and identify the target SNR, SNRtarget(N, Tpulse, Cr)

as a function of N, Tpulse and Cr, given PERtarget. This mapping can be obtained off-
line and stored in the gateway memory for real-time link adaptation. For all feasible link
adaptation solutions, SNR(Tpulse, d) ≥ SNRtarget(N, Tpulse, Cr) has to be satisfied.

The constraint for the target data rate, Rtarget shall be given as (2.17). Note that M and
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Tidle are determined by Cr and Tpulse, respectively.

R(N, Tpulse, Cr) =
dCre

M Tpulse + (N − 1)Tidle + Tcharge
≥ Rtarget (2.17)

In the proposed system, the Synch HDR (in Fig. 2.9) that initiates the communication
between the sensor node and the gateway is designed for the worst case distance. Once
the gateway receives this Synch HDR, it analyzes the correlation output and estimates the
channel state information such as the link distance d to evaluate the instantaneous SNR
(2.16). The gateway then solves the link adaptation problem for a given objective function,
and notifies the sensor node the optimum mode selection result.

2.4.1 Maximum Distance Objective

The maximum link distance between the millimeter-scale sensor node and the gateway
is obtained by solving the optimization problem (2.18) for dynamic modulation-coding
parameters N, Tpulse and Cr. Quantifying the solution of this link adaptation problem is
essential to verify system feasibility for a target application scenario.

Maximize: d (2.18)

Subject to: Tpulse ≤
Cres(VDD

2 − Vmin2)

2Pckt

Tc(Cres, Tpulse) =

Cres

(
VDD −

√
V 2
DD −

2PcktTpulse

Cres

)
Ibat

dCre
M Tpulse + (N − 1)Tidle + Tcharge

≥ Rtarget

SNR(Tpulse, d) ≥ SNRtarget(N, Tpulse, Cr)

Fig. 2.12 shows the optimization result for the maximum link distance when the target
minimum data rate Rtarget ranges from 102 to 106 bit/s. The target PER is set to 10−3 with
packet length of 128 bits. In Fig. 2.12 on the left, x-axis is the variable target data rate
and y-axis is the maximum link distance attainable by operating the system at the optimal
N , Tpulse, and Cr. The result is shown for the NLOS where one layer of wall penetration
loss is considered using (2.1) in computing SNR. The solid black line on Fig. 2.12 left
is the distance that can be supported by a static scheme using N = 1, Cr = 1 (binary
PPM without coding), and Tpulse = 1µs. The data rate of this static scheme is fixed to
29 kbit/s while it can operate up to 3.4m distance in the NLOS scenario. For a slightly
higher (31 kbit/s) data rate, the optimization result indicates 60% (2m) distance gain over

30



this particular static scheme by operating with N = 1, Cr = 1/3, and Tpulse = 0.8µs. In
this data point (Rtarget = 30kbit/s), the optimal Cr = 1/3 is lower than the static scheme
coding rate (Cr = 1) but data rate degradation is avoided using a shorter pulse width (thus
shorter Tcharge), while the longer distance is achieved by the error correction coding. The
optimal link adaptation result demonstrates graceful tradeoffs in link distance vs. data rate
as Fig. 2.12 (left) shows. For the proposed millimeter-scale system, the optimal distance
ranges from 1m to > 30m when the target data rate is set to 106 and 102 respectively in the
NLOS scenario.

Figure 2.12: Maximum distance objective link adaptation result

Fig. 2.12 (right) depicts the optimal mode (N,Cr, Tpulse) selection results for the maxi-
mum distance objective link adaptation. Note that we consider discretized Tpulse ∈ {0.05, 0.1, 0.2, ...}µs
to render more realistic hardware implementation. When the target data rate is low, longer
pulse widths and smaller coding rates are preferred to maximize the distance. But it is worth
noting non-monotonic behavior in selection of Cr when the system is allowed to adjust N
and Tpulse optimally. When the target data rate is high (> 500kbit/s), uncoded (Cr ≥ 1)

M-PPM modulation is selected as the optimal. To maximize the link distance, the optimal
system often selects N > 1 in addition to convolutional coding, while the optimal Tpulse

monotonically decreases in general to meet a higher data rate target.
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2.4.2 Maximum Data Rate and Energy Efficiency Objectives

The link adaptation problem for the maximum data rate is formulated as (2.19), where the
objective is to maximize the data rate R given a link distance target dtarget.

Maximize: R =
dCre

M Tpulse + (N − 1)Tidle + Tcharge
(2.19)

Subject to: Tpulse ≤
Cres(VDD

2 − Vmin2)

2Pckt
SNR(Tpulse, dtarget) ≥ SNRtarget(N, Tpulse, Cr)

Tc(Cres, Tpulse) =

Cres

(
VDD −

√
V 2
DD −

2PcktTpulse

Cres

)
Ibat

Similarly, the link adaptation for the maximum energy efficiency has the form of (2.20),
where the energy per information bit is minimized for a given link distance target dtarget

satisfying the minimum data rate constraint Rtarget.

Minimize: Eb =
PTXN Tpulse

ηcktdCre
(2.20)

Subject to: Tpulse ≤
Cres(VDD

2 − Vmin2)

2Pckt

Tc(Cres, Tpulse) =

Cres

(
VDD −

√
V 2
DD −

2PcktTpulse

Cres

)
Ibat

dCre
M Tpulse + (N − 1)Tidle + Tcharge

≥ Rtarget

SNR(Tpulse, d) ≥ SNRtarget(N, Tpulse, Cr)

The optimization results for the maximum data rate and energy efficiency are shown
in Fig. 2.13 and Fig. 2.14 respectively. The results correspond to the NLOS scenario.
Again, the solid black line on Fig. 2.13 and Fig. 2.14 (on the left) corresponds to a static
scheme that uses N = 1, Cr = 1, and Tpulse = 1µs. Unlike this static scheme, the
proposed system can provide graceful tradeoffs in the data rate (or energy efficiency) as
a function of link distance when the optimal mode is selected by the proposed gateway
guided link adaptation strategy. Up to two orders of magnitudes optimal data rate variation
is observed when the distance changes from 0.1 to 31m. For a target data rate of 10 kbit/s,
the proposed millimeter-scale system achieves the optimal energy efficiency in the range
of 0.01− 5.5nJ /bit depending on the operating link distance.

From the maximum energy efficiency link adaptation result, Fig. 2.14, one can compute
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Figure 2.13: Maximum data rate objective link adaptation result

Figure 2.14: Maximum energy efficiency objective link adaptation result

the ‘sustainable data rate’. To make the data rate sustainable, the energy consumption for
communication has to be below the harvested energy level in average. The state-of-the-art
solar energy harvester [19] reports Pharvest ≈ 1µW harvested power per mm2 solar panel
area. The ‘sustainable data rate’ is computed by Pharvest/E

∗
b bit/s where E∗b is the optimal

energy efficiency per information bit obtained by solving (2.20). Any instantaneous data
rate higher than the ‘sustainable data rate’ would deplete the energy from the battery and
thus require duty-cycled operation. Results in Fig. 2.14 and Pharvest = 5µW (5mm2 solar
pannel area) indicate the sustainable data rate is about 7.1 kbit/s for a 4m distance link in a
NLOS scenario.

Fig. 2.13 and Fig. 2.14 (on the right) plot the best mode selection (Cr
∗, N∗, and T ∗pulse)

results for the maximum data rate and energy efficiency objectives respectively in the
NLOS scenario. Notice non-monotonic behavior in the optimal Cr selection. The max-
imum data rate objective results show that N > 1 repetition of shorter pulses are advan-
tageous to increase the data rate. On the other hand, N > 1 is rarely selected for the
maximum energy efficiency objective. It indicates, for the same total energy per symbol,
continuous energy draw (i.e., a single long pulse) is more energy efficiency than short pulse
repetition for non-coherent communication.

33



2.4.3 Impact of System Parameters

In this section, we look into system parameters that need to be optimized at the system
design time. Four system parameters are analyzed; the antenna size (rant), carrier frequency
(fc), battery current (Ibat), and reservoir capacitor size (Cres). Since these parameters are
not adjustable for dynamic link adaptation, a special attention has to be paid to specify
these parameters considering their impact on overall system performance. For this study,
modulation-coding parameters (Cr, N, and Tpulse) are dynamically adapted for the optimal
performance. All other parameters are set to default values specified in Table 2.3, unless
specified otherwise.

The antenna size is the most critical system parameter that dominates the overall system
volume (see Fig. 2.2). Smaller antenna sizes are certainly attractive to keep the system
volume minimized. However, the radiation efficiency rapidly drops (see Fig. 2.3) as the
millimeter-scale antenna size decreases. The left plot in Fig. 2.15 shows that rant = 1, 1.5,

and 2mm antennas can provide the maximum distance of 21.4, 31.3 and 41m respectively
for the target data rate of 100 bits/s in a NLOS scenario with link adaptation when all other
parameters are fixed as in Table 2.3. The right plot in Fig. 2.15 also confirms that increasing
the antenna size is an obvious way to significantly improve the energy efficiency.

Figure 2.15: Impact of antenna size on maximum distance (left) and maximum energy
efficiency (right) objectives

The carrier frequency (fc) affects the system performance via the antenna efficiency
as well as wall penetration/pathloss characteristic. The impact of the carrier frequency in
LOS and NLOS settings highly depends on how the wall penetration/pathloss is modeled.
Fig. 2.16 shows the maximum distance link adaptation results obtained from different car-
rier frequency settings in both LOS and NLOS settings using our model (2.1). It implies
that ≥ 5GHz operation is preferred if the application mostly targets LOS scenarios. For
NLOS indoor operation that follows our propagation loss model, 1GHz operation outper-
forms higher carrier frequency options, although the millimeter-scale antenna efficiency at
1GHz is very poor (< 1%, see Fig. 2.3).
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Figure 2.16: Impact of carrier frequency on maximum distance objective (left:LOS,
right:NLOS)

In the proposed system, the thin film battery continually charges the reservoir capaci-
tor. The battery current determines the recharging time Tcharge via (2.15). A larger battery
typically has a lower internal resistance, thus allows a higher battery current. Since Tcharge

is reduced with a higher battery current, higher energy per pulse can be drawn from the
capacitor to increase the link distance while maintaining the same data rate. For a given
link distance target, the link adaptation strategy can utilize the additional battery current
to reduce the energy per data bit. The impact of various battery current levels is shown in
Fig. 2.17.

Figure 2.17: Impact of battery current on maximum distance (left) and maximum data rate
(right) objectives

Finally, we inspect the impact of the reservoir capacitor, the energy buffer to power
transceiver circuits during active short pulse transmission. Fig. 2.18 shows the impact of
increasing the capacitor size Cres. For a short distance, the link adaptation system selects
shorter pulses to maximize data rate, satisfying the SNR requirement only using partial
energy stored in Cres. In this case, the capacitor size is not limiting the system performance.
The larger capacitor starts to make difference for long distance operations (> 16m) when
target data rate is low (e.g., 100s bit/s). For this case, a larger Cres enables higher energy
per pulse, thus realizes a higher SNR. Given a constant Ibat, depleting more energy from
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a larger capacitor would result in a longer charging time Tcharge, potentially lowering the
data rate if the link adaptation was disabled. In fact, the optimal link adaptation improves
the overall data rate as shown in the right plot on Fig. 2.18 by applying higher coding rate
utilizing the increased energy per pulse from a larger capacitor.

Figure 2.18: Impact of reservoir capacitor on maximum distance (left) and maximum data
rate (right) objectives

In summary, for the maximum utilization of the millimeter-scale system dimension,
the system designer must quantify the impact of each design parameter and purposefully
determine the size of the antenna, battery, and energy reservoir capacitor along with the
trasceiver/sensor/processor integrated circuits to be integrated in a ultra-small form-factor
(Fig. 2.2). When the overall system dimension is fixed, increasing the size of one compo-
nent would inevitably limit the size of the other. The link adaptation optimization frame-
work and its results shown in this section provide a guideline for the designer to foresee
the impact of critical design parameters in realizing a highly energy-optimized wireless
communication system with a millimeter-scale form-factor constraint.

2.5 Demo System

The semi-realtime demo system is set as shown in Fig. 2.19. The gateway is demoed by
a laptop connecting to an USRP. The millimeter sensor node transmits the packet with a
pre-known synchronization header following by unkown data. The gateway is always on
to listen to the packet and decode the unknown data.

The upper signal in Fig. 2.20 is the raw signal captured in the USRP frontend, and
it is deeply hidden in the noise. The lower signal illustrates the synchronization result.
The gateway identifies the synchronization header successfully and they are highlighted by
green circles.

Fig. 2.21 illustrates the synchronization process in a detailed way. Similar to Fig. 2.20,
the blue stem is the raw signal received and the red stem shows the matched filter outputs
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Figure 2.19: The demo system setting.

Figure 2.20: The packet is deeply hidden in the noisy raw received signal (upper). The
packet is still recognized by the gateway and the packet header is highlighted by green
circles (lower).

with synchronization header highlighted in green circles. The bottom left figure reveals the
peak correlation value across time hypotheses (only part of the time hypotheses are shown)
at the peak frequency hypothesis. The bottom right figure shows the peak correlation value
occurs at 39th candidates across all frequency hypotheses at the peak time hypothesis.
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Figure 2.21: A detailed illustration of synchronization result.

2.6 Conclusion

In this work, an energy-autonomous, self-contained wireless communications system that
optimally utilizes the scarce energy/power resource in an ultra-small millimeter-scale sen-
sor node is presented. A cross-layer system-level optimization framework is proposed to
jointly optimize various system parameters including modulation, coding scheme, syn-
chronization protocol, RF/analog/digital circuit specifications, data rate, carrier frequency,
antenna efficiency, etc. Based on the comprehensive system model, the dynamic link adap-
tation problems are formulated to maximize transmission distance, throughput, and energy
efficiency for various operating scenarios. The simulation results of the link adaptation
protocol show the significant benefit of dynamically adapting to optimum system param-
eters. The impact of pre-silicon system parameters including antenna dimension, carrier
frequency, battery current, and reservoir capacitor size is presented to guide system design-
ers toward the energy-optimized communication system for ultra-small IoT sensor nodes.
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CHAPTER 3

A Low Power Software-Defined-Radio Baseband
Processor for the Internet of Things

In this work, we define a configurable Software Defined Radio (SDR) baseband proces-
sor design for the Internet of Things (IoT). We analyzed the fundamental algorithms in
communications systems on IoT devices to enable a microarchitecture design that supports
many IoT standards and custom nonstandard communications. Based on this analysis, we
propose a custom SIMD execution model coupled with a scalar unit. We introduce several
architectural optimizations to this design: streaming registers, variable bit width datapath,
dedicated ALUs for critical kernels, and an optimized flexible reduction network. We em-
ploy voltage scaling and clock gating to further reduce the power, while more than a 100%
time margin has been reserved for reliable operation in the near-threshold region. Together
our architectural enhancements lead to a 71× power reduction compared to a classic gen-
eral purpose SDR SIMD architecture.

Our IoT SDR datapath has sub-mW power consumption based on SPICE simulation,
and is placed and routed to fit within an area of 0.074mm2 in a 28nm process. We im-
plemented several essential elementary signal processing kernels and combined them to
demonstrate two end-to-end upper bound systems, 802.15.4-OQPSK and Bluetooth Low
Energy. Our full SDR baseband system consists of a config- urable SIMD with a con-
trol plane MCU and memory. For comparison, the best commercial wireless transceiver
consumes 23.8mW for the entire wireless system (digital/RF/ analog). We show that our
digital system power is below 2mW, in other words only 8% of the total system power. The
wireless system is dominated by RF/analog power comsumption, thus the price of flexibil-
ity that SDR affords is small. We believe this work is unique in demonstrating the value of
baseband SDR in the low power IoT domain.
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Figure 3.1: The Application Domain of the IoT SDR. IoT standards support either long
distance or high data rate to limit power consumption. An IoT SDR can be software defined
to operate at points in the region under the red line.

3.1 Introduction

The Internet of Things (IoT) [36] is an emerging concept which envisions that physical
objects or “things” comprised of digital hardware, software, and sensors are connected to
the Internet. It allows, among other things, remote data collection from sensors, remote
management, and automatic data and control between devices. The IoT concept has been
placed third among top ten strategic technology in the past year [37]. And the number of
“things” that will be connecting to the Internet will exceed PCs and smartphones [38].

Central to this vision is wireless connectivity because it may often be the case that con-
necting them to LANs is infeasible. Furthermore, many of these devices will depend on
batteries and/or local sources of energy such as solar power. As such the wireless connec-
tivity should not add unnecessarily to the overall power consumption.

Several wireless standards have been proposed for the IoT communications. Figure 3.1
identifies four of the most popular. A common issue is the trade-off between distance and
data rate because of the need to limit power consumption. Different standards are designed
for different operating scenarios, as Figure 3.1 shows.
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3.1.1 SDR is Promising for IoT Applications

Software-Defined Radio (SDR), in which the communications algorithms are executed on
a programmable platform rather than a traditional ASIC solution, is promising for IoT
devices for several reasons.

Multi-Standard Scenario. The market for the IoT is full of different standards; some
very popular standards are shown in Figure 3.1. IEEE 802.15.4 [2] is a standard for low-
cost, Low Rate Wireless Personal Area Networks (LR-WPAN), which is the basis of many
existing IoT upper layer protocols such as 6LoWPAN, ZigBee, ISA100 and so on. It is
widely used in wireless sensor network applications, providing comparatively long distance
transmission and robust communications.

Bluetooth [4] is another popular standards series for personal area networks, and is tar-
geted for high data rates over short range. Bluetooth is widely adopted in mobile devices.
ANT [39] is a short range wireless protocol, providing low data rates (constant 1Mbps).
The ANT radio transceiver is a proprietary specification used mainly for sports equipment.
Finally, IEEE 802.15.6 [3] Wireless Body Area Network (WBAN) is a standard that sup-
ports communications for low power devices such as healthcare equipment that are near or
inside the human body.

Besides the most popular standards listed in Figure 3.1, there are many other less pop-
ular wireless technologies that are suitable for other IoT scenarios, making it more and
more challenging to choose one wireless connectivity technology over another for a given
IoT application [40]. Ideally, the IoT devices should have the ability to support multiple
standards— SDR enables this. In fact, if multiple standards require multiple ASICs, the
solution can be extremely area inefficient. Finally, the processor can be programmed to
operate as both a receiver and a transmitter.

SDR supports on-the-fly updates to standards. Any change can be achieved via
software/firmware download to meet the particular demand of the specific IoT application.
This feature becomes more interesting in the IoT domain because standards change within
a relative small performance region in terms of data rate and distance. In contrast to the
standards evolution in wide-band communications, such as LTE, there is little data rate or
distance difference for IoT standards from generation to generation. An SDR architecture,
which has the scalability to achieve the performance upper bound, will be able to capture
standard updates on the same hardware platform while saving a lot effort compared to ASIC
design and fabrication.

SDR enables graceful data rate/distance trade-offs. In addition to supporting stan-
dards updates, by allowing nonstandard protocols on the baseband processing, an SDR
architecture will bring more degrees of freedom in the space of data rate, distance and en-
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ergy efficiency. By dynamically changing configurations, signal bandwidth and modulation
parameters on the SDR platform, the IoT devices can adjust data rate to extend operating
distance with the same power budget or achieve higher energy efficiency when operating
scenario requires shorter distance and/or lower data rate that are defined in a particular
wireless standard.This also allows adaptation to changes in channel conditions.

The overhead of SDR can be kept small in the IoT domain. Typically, the power
consumption of the entire digital module is small compared to the RF/analog power in IoT
devices. Meanwhile, power reduction for RF and analog is much harder because a power-
demaning amplifier operating at RF carrier frequencies (typically in GHz) is necessary
to overcome the over-the-air signal power loss that follows an inverse square law, and RF
frequency local oscillator consumes significant power regardless of the modulation scheme.
The fact that the RF/analog dominates actually exposes a great opportunity for SDR as long
as an SDR solution still remains a fairly small percentage compared to the RF/analog. As
we will show, the cost of our proposed solution stays within a minor portion (8%) of the
overall power budget when including RF and analog portions.

3.1.2 Feasibility of SDR in the IoT Domain

Several observations from IoT communications expose the possibility to support SDR with
little overhead.

Similar Datapaths for Different Standards. Key functions are very similar in mul-
tiple standards. For example, Bluetooth [4], ANT [39] and 802.15.4g FSK-SUN [41] all
employ FSK modulation. 802.15.6WBAN [3] and 802.15.4-OQPSK [2] are both based on
quadrature linear modulations. A very similar datapath can be applied in many different
standards.

Key Kernels Share Computation Patterns. There are some computationally inten-
sive baseband processing kernels in a radio transceiver, such as Synchronization and Finite
Impulse Response (FIR) filters, that every communications system needs to include. These
kernels have very similar computation patterns, which parallelize in a straightforward man-
ner. These common kernels allow the development of a general and computationally effi-
cient SDR processor for low power IoT applications.

Key Kernels Dominate the Power. Since there are key kernels that dominate the power
in the communications datapath, the tight power budgets can be met by focusing on these
kernels on an SDR platform.
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3.1.3 Design Challenges and Contributions

The challenges of designing a configurable IoT SDR processor that supports multiple stan-
dard and nonstandard communications are the strict power and area constraints. The IoT
devices are, and will be, in small, power limited everyday objects. To keep enough flexi-
bility while maintaining the power/area of SDR in a small region compared to the whole
system is the key challenge.

In this chapter, we present the IoT SDR architecture, consisting of a custom Single In-
struction Multiple Data (SIMD) Unit and a Scalar Unit. Several low power techniques have
been employed so as to meet the tight power budget and area constraints. The contributions
of this work are:

1. Identifying common computation patterns in IoT wireless standards and analyzing
them for parallelism and bit precision.

2. Designing a low power architecture that achieves ASIC comparable SIMD efficiency
for dominant kernels, in which its bit width is configurable (to as small as 4 bits) throughout
the SIMD datapath, complex/real dedicated ALUs, and reduction networks. It also supports
configurable streaming registers.

3. Optimizing the design by exploring the system trade-offs in area and power with
accurate post-layout analysis that considers low power techniques such as voltage scaling
and clock gating.

4. Fully evaluating the architecture by examing elementary signal processing kernels,
and combining these kernels to build two representative upper-bound end-to-end standards,
specifically 802.15.4-OQPSK and Bluetooth Low Energy, suitable for exploring the design
of an SDR processor.

We demonstrate baseband SDR is possible even in a low power IoT domain.

3.2 Baseband Processing of IoT Communications

The baseband processing at the receiver is more complicated than at the transmitter [42]
for two reasons: the uncertainty of the packet arrival time and symbol boundary; and the
noise introduced by the channel. Accounting for this requires extra computation steps to
be performed. For this reason, we limit a discussion to the receiving functions, because
in a configurable setting the transmitter just requires us to execute a subset of the receiver
communications kernels.

At the receiver, the FIR filters and the Synchronization are the most computationally
intensive kernels. And Figure 3.2 illustrates a general communications system.
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Figure 3.2: Baseband Processing of an IoT Communications System. The receiver
is more complicated than the transmitter. It adds a Low Pass Filter, Matched Filter and
Synchronization which are computationally intensive.

3.2.1 FIR Filter Computation Characteristics

There are two basic FIR filters in IoT communications systems shown in Figure 3.2: a
Low Pass Filter (LPF) and Matched Filter. The Low Pass Filter (or channel selection filter)
needs to be applied to remove out-of-band noise and adjacent channel interferences, and
to avoid aliasing. Rate conversion, discussed in Section 2.4, is used to down convert the
signal from the ADC output rate to the target over-sampling rate, discussed in Section 2.3.
The Match Filter is used to maximize the Signal-to-Noise Ratio (SNR). The computation
of the FIR is a convolution as shown in eq. (1). The length of the filter is indicated by L
and c[j] is the j-th coefficient of the FIR filter. The value of c[j] is typically a real number
whereas r is typical a complex number.

y[i] =
L−1∑
j=0

r[i+ j]c[j] (3.1)

An illustration of FIR filters are shown in Figure 3.3. Three observations can be made
from eq. 3.1. First, the computation is streaming in nature. Second, the multiplications
can be vectorized. Finally, a vector reduction unit is needed to compute the summation
efficiently.
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Figure 3.3: FIR filter Characteristics.

3.2.2 Synchronization Computation Characteristics

The major task of Synchronization is to find the beginning of the packet in the received
signal. The Data-Aided method [43] is widely used in this process for many communica-
tions standards. A known signal is used as a reference or pilot signal in the header of each
transmitted packet. The receiver correlates the known signal pattern with the incoming
data, and measures the difference as shown in eq. 3.2.

τ = argmint
∥∥r[t]− p∥∥ (3.2)

where r[t] = [r[t], r[t+ 1], ..., r[t+ P − 1]] p = [p0, p1, p2, ..., pP−1]

The received vector at time t is r[t], and p is the reference signal vector. P is the vector
length. Eq. 3.2 can also be reduced to eq. 3.3, where p∗j is the conjugate of pj .

τ = argmaxt

∣∣∣∣∣
P−1∑
j=0

r[t+ j]p∗j

∣∣∣∣∣ (3.3)

Eq. 3.3 is the well-known Maximum Likelihood (ML) timing estimation [44]. Eq. 3.2
can be written as eq. 3.4 when both r[t] and p are real-number vectors.

τ = argm
t
in|r[t]− p| = argmint

P−1∑
j=0

|r[t+ j]− pj| (3.4)

The “max” (or “min”) operation does not need to be triggered until the correlation value
is above an empirical threshold to save unnecessary computation. The correlation in eq. 3.3
and eq. 3.4 is the computationally intensive operation since τ needs to be reevaluated for
every incoming sample.

An illustration of synchronization is shown in Figure 3.4.Similarly to FIR filters, both
eq. 3.3 and eq. 3.4 are streaming in nature, vectorizable, and require a reduction operation.
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Figure 3.4: Synchronization Characteristics.

In addition, max and min operations are required which can be handled in a non-vector
unit.

3.2.3 Over-Sampling Rate

The FIR and Synchronization kernels are computationally intensive because they over-
sample. The over-sampling is required to accurately estimate timing and provide maximum
SNR. The over-sampling rate is usually 4× higher than the data symbol rate. Take as an
example Classic Bluetooth running at 1Mbps. The signal is modulated and up-sampled to
4MSPS (Mega Samples Per Second) before it is converted to an analog waveform. At the
receiver, the FIR filters are always active at 4MSPS as long as the IoT node is in receiving
mode. The Synchronization is also run at the over-sampling rate of 4MSPS until the start
of the packet is correctly found. After the synchronization is acquired, the demodulation
process can be run at the sample rate of 1MSPS. This explains the reason that FIR and
Synchronization are the computationally intensive operations. This also indicates that the
main architectural datapath be able of producing results at the over-sampling rate.

3.2.4 Rate Conversion

The ADC output rate is typically higher than the over-sampling rate because using low
Intermediate Frequency (IF) architectures to avoid the analog circuit flicker noise around
DC and high-order channel selection filter in the analog domain is area/power inefficient.
Therefore, rate conversion is introduced to down-convert from the high ADC output rate
to the over-sampling rate. The other purpose of rate conversion is to support various sig-
nal bandwidth options on-the-fly. The lower the bandwidth, the smaller the integrated
noise power. Hence, we can achieve longer communications distance with lower data rates
(smaller bandwidth). The LPF and rate conversion in Figure 3.2 can be merged into one
step by employing Streaming Registers, discussed in Section 3.2.1. In this way, the com-
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putation for those outputs that will be discarded by rate conversion can be avoided. Thus,
the LPF and Match Filter are run at the over-sampling rate.

3.2.5 Criticality of Synchronization

The transmission pattern of the IoT devices magnifies the overhead of the synchronization.
Small IoT devices often wake up periodically to transmit or receive a small amount of data
and return to sleep mode in order to save power [45]. Every time the node needs to receive
data, synchronization is required. Even when the node wakes up to transmit data, it has
to wait to receive an ACK, which keeps the Synchronization kernel busy until the ACK
occurs. Moreover, the computation effect of the synchronization cannot be amortized since
the length of a data packet, which is defined in the standards, is fairly small.

3.2.6 Communications Datapath Bit Width

We conduct system simulations with different bit width datapaths. The influence of bit
width is shown in Figure 3.5. The communication performance measurement on the verti-
cal axis is Bit Error Rate (BER). BER measures the difference between the information bit
sequence at the transmitter and the recovered bit sequence at the receiver; for this exper-
iment on the 802.15.4-OQPSK system, at least 104 error bits are collected for each point
in Figure 3.5. The horizontal axis is SNR, which indicates the relative ratio between use-
ful signal power and noise power. Given the maximum packet length of 802.15.4 is 133
Bytes [2], a target BER of 10−4 will result in 0.1 packet error rate. Therefore we choose
10−4 as a comparison point.

The middle and bottom curves in Figure 3.5 indicate that 8-bit communications datap-
ath (middle) can capture almost the same precision as the floating point datapath (bottom).
The 2-bit Maximum Likelihood (ML) synchronization estimator (top), as described by
eq. 3.3, in which only the sign information of complex value is kept, is also implemented
and compared with the full 8-bit ML synchronization estimator. The difference is less than
1dB, indicating that it is sufficient to achieve target communication performance.

3.2.7 Signal Processing Characteristics and Design Implication

To conclude the above discussion, the baseband processing of IoT communications has the
the following characteristics: (a) Dominant kernels are all vector operations with different
vector sizes followed by a reduction network; (b) Data comes in streaming fashion; (c) The
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Figure 3.5: Signal-to-Noise Ratio (SNR) vs Bit Error Rate (BER) for Different Bit
Width Implementation. The 8-bit communications datapath captures almost the same
precision as the floating point datapath does. The 2-bit Synchronization estimator is suffi-
cient to achieve the target BER.

datapath can be reduced to very small bit widths without sacrificing appreciable perfor-
mance; (d) Although kernels are running at the over-sampling rate, the required frequency
is still low (a few MHz) due to the low target data rate of IoT communications.

In the next section, we provide the design of an IoT SDR baseband processor, detail
the architectural supports and optimizations to achieve flexibility and to achieve close to
ASIC efficiency for critical kernels. We will show in Section 4.3 that the computationally
intensive kernels can be efficiently mapped onto this architecture while the non-critical
kernels can also be mapped easily.
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3.3 The IoT SDR Architecture

In this section, we will present the design of our IoT SDR architecture. The architec-
ture relies on novel structures—streaming registers, an optimized flexible bitwidth vector
unit that supports both real and complex numbers, a multi-output reduction network, and
a scalar unit—along with several effective techniques such as voltage scaling and clock
gating to achieve a low power configurable solution.

Figure 3.6: IoT SDR System Architecture. The IoT SDR is controlled by an MCU; data
is shared by the MCU and IoT SDR via memory.
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Figure 3.7: The Microarchitecture of the IoT SDR Datapath. An IoT SDR datapath
comprises one Scalar Unit and one SIMD Unit consisting of Streaming Registers, a Reg-
ister File, SIMD-ALUs and an Adder Tree.

3.3.1 System Architecture

The system architecture is presented in Figure 3.6. The IoT SDR datapath is directed
by a programmable Micro Controller Unit (MCU). The MCU controls the Direct Memory
Access (DMA) to copy the configurations for the SDR datapath from memory via the MCU
system bus. Data communication between the MCU and the SDR datapath is through
memory. Within the SDR datapath, data communication is handled by a bypass network to
avoid unnecessary memory accesses.

Other than configuring the SDR datapath to do computationally intensive kernels, the
MCU is also responsible for control-related computations such as the max and min opera-
tion in eq. 3.3 and eq. 3.4 of the synchronization stage.

3.3.2 Microarchitecture

The microarchitecture of this IoT SDR datapath is illustrated in Figure 3.7. There are two
computational units: the SIMD Unit and the Scalar Unit.
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3.3.2.1 SIMD Unit

The SIMD Unit is responsible for computationally intensive vector and reduction opera-
tions. There are a total of 32 lanes in this SIMD Unit, which can be grouped into four
bundles of eight lanes for small vector size operations. In this case, the 32 lanes are per-
forming the same function, but can provide four outputs simultaneously. Each lane of the
SIMD Unit takes two 16-bit operands. A flexible bit-width is supported in this design.
Depending on the operand bit width, the vector size supported in one SIMD Unit is set
accordingly. For example, when the operand is 8 bits, the maximum vector size is 64.
When the operand is 16 bits, the maximum vector size is 32. The configurable SIMD lanes
and variable bitwidth is illustrated in Figure 3.8. The design of the four important compo-
nents: Streaming Registers, Register File, SIMD-ALU and Adder-Tree will be detailed in
the following paragraphs.

The Streaming Registers are deployed to match the streaming nature of the incoming
data. The vector computation in the SIMD Unit will load only one new incoming data and
reuse the data from previous cycles, as expressed in eq. 3.1, eq. 3.3 and eq. 3.4.

The Streaming Registers can be configured as one 512-bit, two 256-bit or four 128-bit
streaming registers to handle vector computations of varying length. Specifically, seven dif-
ferent streaming bit widths (0/8/16/24/32/48/64 bits) are supported. The microarchitecture
of Streaming Registers is presented in Figure 3.9.

As we mentioned in Section 2.4, the low pass filter and rate conversion can be com-
puted with only one configuration. Consider the down-sampling and low pass filtering as a
typical utilization example. Suppose the down sampling factor is 2 with 8bits/sample. By
setting the streaming bit width to 16 bits, and configuring the SIMD-ALU and Adder Tree
for a filtering functionality, the output of the SIMD Unit is exactly the down-sampled and
low pass filtered value. The seven streaming-widths enable 0/1/2/3/4/6/8 down-sample fac-
tors for 8bits/sample while also enabling 0/1/2/4 factors for 16bits/sample. Down-sampling
factors larger than eight are not supported because the number of filter taps is constrained
by the total lane size. Larger down-sample factors with a small number of taps will re-
sult in a poor low pass frequency response for anti-aliasing or out-of-band noise filtering.
However, we can still realize a larger down-sampling factor filter by cascading multiple
FIRs (e.g. 16=4×4). Moreover, fractional resampling (1.0 < down-sampling < 2.0) can
also be realized by bypassing the outputs from the SIMD Unit to the Scalar Unit for further
processing.

When an IDLE configuration is fed into the SIMD Unit, a 0-bit streaming width is set,
and the value for the streaming registers will be held, as shown in Figure 3.10. During an
IDLE configuration, neither the streaming registers nor the regular register file has switch-
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Figure 3.8: Both lanes and bitwidth are configurable in SIMD unit.
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Figure 3.9: Streaming Registers Microarchitecture

ing activity, resulting in a nearly zero switching activity in the SIMD ALU and Adder Tree.
The zero-width streaming IDLE minimizes the idle power significantly.

The streaming registers in this design are distinguished from earlier machines that have
streaming data features [46][47] Our streaming registers are explicitly configured to pro-
vide data directly to ALUs with configurable bit precisions and vector sizes. With this
novel structure, this architecture can support propriety but non-standard data rates, which
enables graceful data rate and distance trade-off.

The IoT baseband datapath reduces the power by 10.4× compared to the same datapath
without Streaming Registers. This is due to the increased memory bandwidth and higher
frequency required to meet the response time. This faster frequency ultimately limits the
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Figure 3.10: A 0-streaming bit width is set by an IDLE configuration. During the IDLE
configuration, the value for streaming registers will be held. Neither the streaming registers
nor RF has switching activity, force all following combinational logic in a nearly zero
switching activity.

voltage scaling level.
The Register File (RF) is implemented as an 8-entry 16-bit register for each lane. The

RF is typically used to hold constants such as coefficients for filters. Eight entries mean at
most eight different constant settings can be stored. To support the entire application, only
four or five constants settings are needed. The necessary coefficients will be loaded into the
RF at initialization. This strategy significantly reduces the re-configuring overhead when
the SIMD Unit is time multiplexed by several kernels. Coefficients changing due to kernel
switching can be easily realized by changing the source operand’s register index.

The SIMD-ALU supports different bit width operations and several dedicated ALUs
to accelerate computationally intensive kernels such as Synchronization. The SIMD-ALU
will determine from the configurations whether to operate on two 8-bit real values, one 8-
bit complex value, or two 4-bit complex values. As we mentioned in Section 2.6, reduced
bit width computation is sufficient to achieve the target performance in terms of BER.
The 4-bit operations are also handled within the 8-bit architectural datapath, improving
throughput by 2× with minimal area overhead.

Rather than regular ALU operations, dedicated merged configurations called “4-bit
complex multiplication and add” and “subtract and add” as well as complex multiplica-
tion are specialized to accelerate the correlation operations in Synchronization. Without
dedicated synchronization ALUs, each lane will save 44% of hardware, However, the sys-
tem has to run at a higher frequency with larger memory bandwidth to support the same
computation. The resulting system consumes 4.7× more power than our proposed solution.

In order to reduce the computational pressure on the first level of the Adder Tree, we
evaluate the truncation bits in the ALU. Each lane will take two 16-bit operands and provide
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Figure 3.11: The optimized multi-level adder tree supports various vector size, parallel
local outputs, and optimized complex summation. We interleaved the operands on the very
first layer to avoid extra MUX in the beginning levels.

a total of 20 bits of output. This 20-bit output could be either two 10-bit or one 20-bit value.
The Multi-Level Output Adder Tree, as illustrated in Figure 3.11, is the reduction

unit that is introduced to accelerate large summations. More features are used compared to
previous adder-trees [48]. Our design is optimized to support flexible vector sizes, parallel
local sum outputs and complex number summations. One, two, or four complex or real
outputs can be supported by the Multi-Level Output Adder Tree.

In order to support the complex summation with the least number of multiplexers, we
interleave the operands for the first layer adder, resulting in the top half of lanes adding
the real part and the bottom half of lanes adding the imaginary part. Thus, if the input is
complex, the result is selected from the second-to-last level outputs. If the input is real, the
result is selected from the last level outputs.

Variable Bit-Width minimizes the power consumption and maximizes SIMD utiliza-
tion. And we use an improved datapath where its bit width is configurable throughout the
entire SIMD datapath. According to the analysis in Section 2.6, the reduced bit datapath
is also able to satisfy the communications requirement. Therefore, bit widths as small as
4 bit—suitable for IoT—is supported and it results in more than a 1.46× power reduction
compared to an 8 bit only SIMD Unit.
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3.3.2.2 Scalar Unit

The Scalar Unit is responsible for scalar computations. Bypassing from the SIMD Unit to
the Scalar Unit is supported to avoid unnecessary memory accesses. According to use-case
analysis, two dedicated ALUs are used in the Scalar Unit shown in Figure 3.7. The Com-
plex Phase Converter [49] is used to convert between complex domain and phase domain
while the Magnitude unit is used to extract the magnitude of a complex number. These are
very common computations in communications systems and can be clock-gated when not
required.

3.3.2.3 Low Power Techniques

To meet the tight power budget, we fully utilize the IoT communications characteristics
discussed in Section 2. Several techniques are employed to reduce the power consumption
of the proposed IoT SDR datapath. The power reduction of each technique is detailed in
Section 5.1 and 5.3.

Voltage Scaling is applied to the entire IoT SDR datapath to reduce the power con-
sumption. The streaming data rate is slow in typical IoT applications, resulting in sce-
narios in which the required frequency of the IoT SDR datapath is low even if it is fully
time-multiplexed. This observation exposes a huge time margin for voltage scaling. Fur-
thermore, in order to voltage scale this design as a single voltage domain, we optimize
some sub-designs, such as the Complex Phase Converter, to ensure timing closure.

Clock Gating is applied when some part or the entire IoT SDR datapath will not be
utilized for a large time window.

The IDLE configuration is used when the IoT SDR datapath is not used for a small
time window. As we mentioned in Section 3.2.1, we specialize this design to force the
IDLE configuration to eliminate almost all switching activity, resulting in significant power
savings.

3.4 Evaluation Method

3.4.1 Signal Processing Kernels

We examined elementary signal processing kernels and combined them to support differ-
ent end-to-end systems. As we discussed in Section 1.2, kernel functions are very sim-
ilar in multiple standards. By changing the vector sizes and kernel parameters, ANT
and 802.15.4g FSK-SUN can be supported using a similar datapath as Bluetooth Low
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Energy (BLE). 802.15.6WBAN, based on Differential Phase Shift Keying (DPSK), has
a similar datapath to 802.15.4-OQPSK.

3.4.2 Two Upper Bound Applications

802.15.4-OQPSK and BLE were selected as two upper bound systems to evaluate the IoT
SDR architecture, because their bandwidths are highest and they are widely used. Because
these two applications represent the upper-bound of computational complexity, it is suffi-
cient to show that the SDR system can achieve many points with lower complexity, under
the curve in Figure 3.1. 802.15.4-OQPSK represents standards based on quadrature lin-
ear modulation schemes while BLE demonstrates filtered Frequency-Shift Keying (FSK)
based schemes. We built the end-to-end system for each, which includes a transmitter,
channel, and receiver, in MATLAB to validate the communications datapath and to evalu-
ate the BER. The receiver baseband processing, a combination of hand-coded kernels, was
mapped onto the IoT SDR datapath.

802.15.4-OQPSK is the physical layer, defined in the standard, with a maximum data
rate of 250kbps (2M signal bandwidth due to spreading spectrum). The modulation scheme
is Offset-Quadrature Phase Shift Keying (OQPSK) [50]. The phase of the signal is var-
ied to carry different information; however, OQPSK has continuous phase which yields
much lower amplitude fluctuation. The most computationally intensive kernels, including
Rate Conversion & Low Pass Filter (LPF), Match Filter and Synchronization of 802.15.4-
OQPSK, are all in the complex domain [51]. The communications datapath of 802.15.4-
OQPSK receiver is shown in Figure 3.12. The re-sampler is a scalar computation that
converts the over-sampling rate to the symbol rate after the correct synchronization in-
formation is acquired. The de-spread is a vector operation that correlates the incoming
symbol with candidate symbols. The IoT SDR frequency selection and system mapping
will be discussed in Section 6.1.

Bluetooth Low Energy (BLE), also marketed as Bluetooth Smart, is designed for low
power devices. The digital baseband processing of BLE is the same as Classic Bluetooth
and Bluetooth Enhanced Data Rate (EDR). The communications datapath of a BLE re-
ceiver is shown in Figure 3.13. This communications datapath is for the maximum BLE
data rate of 1Mbps which is also the data rate that Classic Bluetooth supports. The modula-
tion scheme of BLE, Classic Bluetooth and Bluetooth EDR is Gaussian Frequency Shifting
Keying (GFSK) [50], in which the information is carried in the frequency domain, mean-
ing that the parts of the most computationally intensive kernels are working in the real
domain [52].The over-sampling rate of Bluetooth at 1Mbps is 4M real samples per second.
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Figure 3.12: 802.15.4-OQPSK Receiver Communications Datapath. The modulation
scheme is Offset-Quadrature Phase Shift Keying. The over-sampling rate is 8MSPS.

The fact that BLE operates in the 8-bit real domain while 802.15.4 operates in the 4-bit
complex domain illustrates the benefit that our multi-level output adder tree and flexible
SIMD-ALU design are able to compute both protocols efficiently on the same underlying
hardware.

Figure 3.13: BLE Receiver Communications Datapath. The modulation scheme is
GFSK.The over-sampling rate is 4MSPS

3.4.3 Mapping Representative Applications to IoT SDR Architecture

In this section, we present the methods used to map the receiver communications datapaths
of 802.15.4-OQPSK and BLE onto the IoT SDR datapath. Table 3.1 lists the computa-
tional characteristics of each kernel in the receiver communications datapaths of 802.15.4-
OQPSK and BLE.
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Table 3.1: Computational Characteristics and Kernel Mappings for the two full re-
ceiver systems.

Kernel
Name

Vector
Size

Data
Type

Output
Rate

Mapping
Unit

802.15.4 OQPSK
Rate Conversion&LPF

(down sample by 2) 32
8-bit/samp
complex

8MSPS

SIMD
Unit

Matched
Filter 8

8-bit/samp
complex

SIMD
Unit

Synchronization* 128
4-bit/samp
complex

SIMD Unit (4b-comp-mult)
Scalar Unit (magnitude)

Re-sample NaN
8-bit/samp
complex 2MSPS Scalar Unit

De-spread 32 8-bit/samp real 1MSPS SIMD Unit
BLE

Rate Conversion&LPF
(down sample by 4) 32

8-bit/samp
complex

4MSPS

SIMD Unit

Complex to Freq NaN
8-bit/samp
complex

Scalar Unit
(Complex to Phase)

Matched Filter 16 8-bit/samp real SIMD Unit

Synchronization* 128 8-bit/samp real
SIMD Unit (subabs)

Scalar Unit (magnitude)
Re-sample NaN 8-bit/samp real

1MSPS
Scalar Unit

Symbol detection NaN 8-bit/samp real Scalar Unit
*Synchronization has a longer vector size with 8b/samp that cannot be fit into
the 32-lane, 16-bit SIMD Units. We break the computation into two steps,
so either two SIMD Units or one SIMD Unit time-multiplexing by two steps
can complete the computation of Synchronization.
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3.4.4 Power and Area Estimation Methodology

The methodology to estimate the power and area of the IoT SDR design is presented in
Figure 3.14.

Figure 3.14: Power and Area Estimation Method.

The RTL-level specification Verilog and the testbench, along with noisy modulated
data, are used to verify the correctness and estimate the power of the IoT SDR architecture.
The worst case delay is acquired from PrimeTime/Power, and the design is placed and
routed to obtain the layout for area estimation.

The noisy modulated data is generated as the input to the testbench. First, the in-
formation sequence is generated randomly as the input of the 802.15.4-OQPSK or BLE
transmitter which is defined in the specifications [2][4]. Second, to simulate the received
data sequence, a noisy channel is applied to the modulated data and the output is used as
the input of the testbench so as to capture the realistic circuits switching activities.

The IoT SDR design is synthesized in a 28nm technology. The synthesized netlist and
the switching activity are used in the Prime Time/Power and SPICE simulations to further
estimate the power and the critical path delay. The switching activity captured in this
process is close to that obtained with a realistic communication system. As a result, the
power and the critical path delay at nominal voltage from Prime Time/Power is realistic.

The same set of noisy modulated data is also fed into the MATLAB full system simu-
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lation. The output of the IoT SDR testbench is recorded and compared with the full system
result to ensure the functional correctness of the IoT SDR design.

SPICE simulation is conducted to estimate the power and the critical path delay for
the voltage scaling. The design is placed and routed using Cadence Encounter in a 28nm
technology. The area estimation is based on the final layout.

Figure 3.15: Voltage Scaling Trend of Representative Circuits. Voltage Scaling is used
to meet the power constraint. The Voltage Scaling Ratio is acquired from SPICE.

3.5 Experimental Results

In this section, the power and area results are presented. As we discussed in Section 2.5,
the Synchronization overhead cannot be ignored. In this work, the peak power of the
Synchronization mode is used to characterize the IoT SDR architecture.

3.5.1 Power with Voltage Scaling

We conducted SPICE simulation to get the voltage scaling ratio of this 28nm technology
on the representative circuits, and we applied these results to the rest of the datapath.
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First, we choose two representative circuits: the OneLane submodule in the SIMD Unit
and the Complex Phase Converter submodule in the Scalar Unit to represent the entire
design. Second, as shown in Figure 3.15, both SPICE simulation and PrimeTime/Power
simulation are applied to the representative circuits at 1V/0.9V/0.8V. Figure 3.15 indicates
that the two simulation methods give the same trends on dynamic power over this voltage
range. Therefore, we can reliably use the SPICE simulation trends at lower voltage range
and apply it to the entire SIMD Unit. Similarly the leakage power and circuits delay also
track closely. The same analysis is performed on the Complex Phase Converter submodule
and applied to the entire Scalar Unit. Figure 3.16 shows voltage scaling trend of the entire
IoT SDR baseband datapath, in terms of energy/cycle and critical path delay.

Figure 3.16: Voltage Scaling Trend of the IoT SDR baseband datapath. A more than
100% margin is reserved at each operating points for reliable operation.

Based on the different frequency requirements, we select different operating voltages.
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For example, the datapath running at 32MHz operates at 0.5V, the datapath running at
20MHz operates at 0.45V, and below 20MHz the datapath operates at 0.4V. We stop scaling
at 0.4V as the threshold voltage for this technology is 0.3V, and the system performance is
known to degrade significantly below the threshold voltage [53].

To ensure reliable operations at low voltages, we reserve a more than 100% time margin
for critical paths at each operating frequency. Former fabricated chips in 28nm [54] indi-
cate this margin is large enough for reliable functionality. This time margin is equivalent
a 50mV voltage margin, largely exceeds the 17mV voltage margin in the near-threshold
region suggested by Seo, S. et al. [55] for wide SIMD processors.

The SRAM and MCU are operated at nominal voltage.

3.5.2 Power Breakdown

Figure 3.17 reveals the power breakdown of the IoT SDR datapath. The SIMD-ALU and
Register File dominate the power consumption at around 50% and 30%, respectively, at all
frequency settings.

Figure 3.17: Power Breakdown. The SIMD-ALU and Register File dominate the power
at all frequency settings.

In order to provide the same throughput, more IoT SDR datapaths are required if they
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are running at a lower frequency. This is illustrated in Figure 3.17 by stacking two SDR
datapaths at 20MHz, and four at 10MHz. The total heights of the stacked datapaths rep-
resent approximately the same total throughput. There is neglectable difference in power
for the IoT SDR datapath. However, the total system power varies from different system
configurations due to memory traffic differences, which will be discussed in Section 6.1.

The energy efficiency for each operating configuration in Figure 3.17 is more than
10Top/J, which is very efficient and comparable to former ASIC designs in 28nm [54].

3.5.3 Power for Different Kernels

We analyze the power for four different operations for the SDR datapath. They are “FIR”,
which does filtering operations such as LPF and matched filter, “SYNCH”, which does the
correlation between known signal with receive data, “IDLE” and “Clock Gating”.

Figure 3.18: Kernel Based Power Consumption.

Figure 3.18 reveals the differences in power when the IoT SDR datapath is running in
each of these operations. “FIR” and “SYNCH” are fed with noisy modulated data in the
receiver communications datapath, the power difference between “FIR” and “SYNCH” is
due to the specific switching activities for each kernel. As we mentioned in the Section
3.2.1, the IDLE configuration forces most of the combinational logic to a non-switching
state because the Streaming Register adopts a 0-bit streaming width, resulting in a 3.3×
total power savings. Clock-Gating can reduce the power by 9.1×. However, clock-gating
will be used only in a large window of idle time due to the delay overhead of clock-gating;
for a small idle time window, the IDLE will be applied to save power.
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3.5.4 Area

The layout of the IoT SDR datapath is shown in Figure 3.19. Its area is 0.074mm2.

Figure 3.19: Layout

3.6 System Level Trade-off

In this section, the system level architecture of implementing the two full receiver systems,
802.15.4-OQPSK and BLE, onto the IoT SDR architecture is presented.

3.6.1 System Configurations

We evaluate three methods to handle all the kernels for two full receiver systems in real-
time: time-multiplexing, duplication of the IoT SDR datapaths, or a combination of the
two.

Time-Multiplexing. The IoT SDR datapath requires running at a higher frequency
than the over-sampling rate in order to time multiplex across multiple kernels. The re-
quired frequency, as listed in Table 3.2, depends on the number of shared kernels and their
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Table 3.2: System Mapping.

1× IoT SDR 2× IoT SDR 4× IoT SDR
Time Multiplexing No Time Multiplexing

IoT SDR Datapth
Time Multiplexing by

Rate Conversion & LPF.
Matched Filter,

Synchronization-Step0,
Synchronization-Step1

IoT SDR Datapath 0
Time Multiplexing by

Rate Conversion & LPF,
Matched Filter

IoT SDR Datapath 0
Rate Conversion & LPF

IoT SDR Datapath 1
Matched Filter

IoT SDR Datapath 1
Time Multiplexing by

Synchronization-Step0,
Synchronization-Step1

IoT SDR Datapath 2
Synchronization-Step0
IoT SDR Datapath 3

Synchronization-Step1

Freq >8M + 8M/4 +
2×8M **

Freq0>8M+8M/4 **
Freq1>8M+8M **

Freq0>8M **
Freq1>8M/4 **
Freq2>8M **
Freq3>8M **

1× IoT SDR Datapath
@Freq = 32MHz ***

2× IoT SDR Datapath
@Freq = 20MHz ***

4× IoT SDR Datapath
@Freq = 10MHz ***

** For 802.15.4-OQPSK, Over-Sampling Rate=8MSPS
For BLE, Over-Sampling Rate = 4MSPS
*** Frequency margin has been applied.

computational demands. By adopting time-multiplexing, the incoming data is processed in
blocks, which results in greater memory traffic. A larger block size requires more memory
but less kernel switching. However, the block size is limited by the delay requirements of
the different IoT communications standards. For the two demonstrated systems, the tight-
est turnaround time constraints are 1.92ms for 802.15.4 and 0.31ms for Bluetooth [56]. For
the system configurations in Table 3.3, we choose 0.1ms as the block size time in order to
meet the aforementioned timing constraints.

Duplication. In this method, the IoT SDR datapaths are duplicated and dedicated to
different kernels. Inter-core buf- fers are added to avoid unnecessary memory accesses. For
the method, “4× IoT SDR Datapath” in Table 3.2, each datapath is statically scheduled and
dedicated to handle one kernel. In this configuration, streaming data is processed sample
by sample. Hence, the SDR datapath can run at a frequency close to the over-sampling
rate. After the synchronization mode, the SDR datapaths, which were dedicated to do
synchronization, can be either scheduled to handle other vector computations or can be
clock gated in the case of no active tasks.

Combining Time-Multiplexing and Duplication. In Table 3.2, the “2× IoT SDR
Datapath” represents the combination of time-multiplexing and duplication. The SDR dat-
apaths are duplicated and also time multiplexed by two tasks. Since each SDR datapath is
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Table 3.3: Receiver System Configurations. MCU and Memory operate at nominal
voltage.

Configuration
802.15.4
OQPSK

SDR IoT Datapath
MCU

Memory

Frequency
Supply
Voltage Size

Supply
Voltage

1× SDR
IoT Datapath 32MHz 0.5V Frequency:

96MHz
Supply
Voltage:

0.9V

16KByte
0.9V2× SDR

IoT Datapath 20MHz 0.45V

4× SDR
IoT Datapath 10MHz * 0.4V 8KByte

BLE SDR IoT Datapath
MCU

Memory

Frequency
Supply
Voltage Size

Supply
Voltage

1× SDR
IoT Datapath 20MHz 0.45V Frequency:

96MHz
Supply
Voltage:

0.9V

16KByte
0.9V2× SDR

IoT Datapath 10MHz
0.4V

4× SDR
IoT Datapath 5MHz * 8KByte

* Frequency(IoT Datapath) must be greater than Sample Frequency
** No memory for IoT Datapath, memory is only for M0+
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shared by fewer tasks compared to the single time-multiplexing datapath, the SDR datapath
is able to run at a lower frequency. It is possible to scale down to a lower voltage. Since
the streaming data is processed block by block, support from memory is still necessary.

However, “2× IoT SDR Datapath” listed in Table 3.2 is not the only mapping policy.
For example, we can also dedicate the first SDR datapath to “Rate conversion&LPF” while
the second SDR datapath running at 20MHz can still handle the other three kernels. In this
mapping, there is no need to buffer the raw ADC outputs. This can bring a big saving in
terms of memory if the ADC output rate is much higher than the over-sampling rate.

For the system configuration with duplicated IoT SDR datapaths, an inter-core buffer
between the IoT SDR datapaths is added to pass values between kernels. The memory
interface and inter-core buffer overhead is fairly small on top of the stacked datapaths in
Figure 3.17. The memory interface is less 1% in all three mapping policies and the inter-
core buffer takes less than 3% in combination and duplication methods. Because the nature
of the incoming data is streaming, both the memory access and intermediate buffering fall
into a very fixed pattern. The IoT SDR datapath only writes correlation results from the
synchronization kernel to the memory and does not read values. The rest of the memory is
used almost exclusively by the MCU.

So far, we have described the design of only the IoT SDR datapath. In the following
paragraph, we explore other components, particularly the MCU and the memory.

For the memory, we use a 45nm SRAM compiler. The area of the memory is scaled
down to the equivalent size in a 28nm technology according to results of Wu et al. [57],
while the power of the memory is scaled down to the equivalent value in a 28nm pro-
cess [57]. We run the memory at the nominal voltage to avoid any reliability issues [58].

An ARM M0+ running at 96MHz is chosen as the MCU to support the two system
benchmarks. The ARM M0+ is responsible for configuring and scheduling the IoT SDR
datapath and handling control-related computations. The power and area of the ARM M0+
is derived from [59] and scales from 40nm to 28nm according to [60]. As shown in Ta-
ble 3.3, only the IoT SDR datapaths are scaled down to a low voltage, the MCU and mem-
ory operate at their nominal voltage. The MCU is a hard macro which we cannot perform
timing closure on at lower voltages.

3.6.2 System Power and Area

The total system power and area are listed in Table 3.4. The power in this table is obtained
by assuming the system is running in synchronization+FIR mode, which is the peak power
mode of the system.
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Table 3.4: System Power and Area

802.15.4
OQPSK

1× IoT SDR 2× IoT SDR 4× IoT SDR
Power
(mW)

Area
(mm2)

Power
(mW)

Area
(mm2)

Power
(mW)

Area
(mm2)

IoT SDR
Datapath 0.801 0.074 0.825 0.149 0.820 0.298

MEM 0.925 0.024 0.690 0.024 0.308 0.014
MCU 0.265 0.003 0.265 0.003 0.265 0.003
Total 1.991 0.101 1.780 0.176 1.393 0.315

BLE 1× IoT SDR 2× IoT SDR 4× IoT SDR
Power
(mW)

Area
(mm2)

Power
(mW)

Area
(mm2)

Power
(mW)

Area
(mm2)

IoT SDR
Datapath 0.417 0.074 0.413 0.149 0.487 0.298

MEM 0.690 0.024 0.494 0.024 0.236 0.024
MCU 0.265 0.003 0.265 0.003 0.265 0.003
Total 1.372 0.101 1.172 0.176 0.988 0.315

Figure 3.20 illustrates the power/area trade-off for three system configurations. The
system power and area are presented for 802.15.4-OQPSK. The analysis also holds for
BLE. Considering the scheduling flexibility, the ability to react to complicated practical
scenarios such as the high ADC output case discussed in Section 6.1 and the scalability to
handle future higher data rate applications, the duplication methods, “2× IoT SDR Datap-
ath” and “4× IoT SDR Datapath” expose more flexibility and scalability, with the penalty
of area.

3.6.3 System Discussion

The proposed IoT SDR baseband system demonstrates a power consumption less than
2mW for two upper bound applications at every configuration, with the combination of
all architectural enhancements and low power techniques. As detailed in Section 3.2, the
main architectural enhancements—streaming registers, dedicated complex/real ALUs as
well as ultra small 4-bit operations—contribute in power reduction of 10.4×, 4.7× and
1.46× individually, resulting in a total of a 71× difference. Without these architectural
enhancements, the SDR baseband processor power consumption will grow up to more than
140mW, which is unacceptable for IoT devices.

Our proposed IoT SDR system, which can support many standard or nonstandard IoT
communications, is compared with the best commercial solution, Nordic nRF8001 [61].
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Figure 3.20: System Power and Area Trade-offs.

Nordic is a highly integrated single-chip Bluetooth Smart Connectivity IC including RF/analog
and digital modules. Its power consumption is 23.8mW. The peak power of our config-
urable digital system is at most 8.4% of their total power. To our knowledge there is no
reference that explicitly breaks out the power consumption for the digital portion of IoT
radio devices. Prototypes, typified by [62][63][64], focus on RF/analog and only include
small portion of digital baseband processing. Sensor network research [65][66][67] targets
for topics such as network layer processing, even they measure the power/energy consump-
tion of the sensor nodes, utilizing commercial transceivers.

3.7 Related Work

Previous SDR work, such as SODA [68], AnySP [69] and Ardbeg [70], have focused on
wireless standards for mobile handheld platforms, typically LTE type wide bandwidth com-
munications with hundreds of mW power budget. Our solution differs in that we look at IoT
scale devices, which have two orders of magnitude smaller power constraints. In the IoT
space, we identify a different solution. Specifically, our MCU directed baseband proces-
sor uses variable bit precision and dedicated complex/real ALUs, a more flexible reduction
network, and streaming registers to marshal incoming data. We explored the low sampling
rate of IoT communication by employing voltage scaling to reduce the power consumption
while maintain more than 100% time margin to ensure reliability.

Our configurable baseband processor, which is controlled by an MCU, is closer to an

70



ASIC than other SDR designs such as SODA. In this study, we show that the SIMD model
can be power scaled to sub mW (with system power less than 2mW). We believe this
unique work is pioneering in demonstrating baseband SDR is possible even in a low power
IoT domain.

3.8 Conclusion

In this chapter, we present a configurable SDR baseband architecture for IoT devices. Sev-
eral reasons such as the multi-standard scenario in the IoT application domain presents a
promising future for SDR. Our IoT SDR baseband processor supports flexible bit-width,
vector-reduction operations and efficient streaming computation, while reducing power
consumption by employing several techniques such as voltage scaling and clock gating.
This combination enables a 71× power reduction over a more general purpose SDR de-
sign.

A comprehensive evaluation on power and area is conducted. The single IoT SDR
datapath is placed and routed to fit an area of 0.074mm2 within mW power consumption.
Two representative upper bound systems, 802.15.4-OQPSK and BLE, are mapped on this
IoT SDR architecture. The total system power and area trade-off is investigated. The peak
power of this proposed digital baseband systems including baseband datapath, MCU and
memory, is at most 1.99mW for 802.15.4-OQPSK and 1.37mW for BLE within an area of
0.101mm2 in 28nm technology.
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CHAPTER 4

A Programmable Galois Field Processor
for the Internet of Things

This work investigates the feasibility of a unified processor architecture to enable error
coding flexibility and secure communication in low power Internet of Things (IoT) wire-
less networks. Error coding flexibility for wireless communication allows IoT applications
to exploit the large tradeoff space in data rate, link distance and energy-efficiency. As a
solution, we present a light-weight Galois Field (GF) processor to enable energy-efficient
block coding and symmetric/asymmetric cryptography kernel processing for a wide range
of GF sizes (2m, m = 2, 3, ..., 233) and arbitrary irreducible polynomials. Program di-
rected connections among primitive GF arithmetic units enable dynamically configured
parallelism to efficiently perform either four-way SIMD 5- to 8-bit GF operations, includ-
ing multiplicative inverse, or a long bit-width (e.g., 32-bit) GF product in a single cycle. To
illustrate our ideas, we synthesized our GF processor in a 28nm technology. Compared to
a baseline software implementation optimized for a general purpose ARM M0+ processor,
our processor exhibits a 5 − 20× speedup for a range of error correction codes and sym-
metric/asymmetric cryptography applications. Additionally, our proposed GF processor
consumes 431µW at 0.9V and 100MHz, and achieves 35.5pJ/b energy efficiency while
executing AES operations at 12.2Mbps. We achieve this within an area of 0.01mm2.

4.1 Introduction

Envision the future Internet of Things. We envision a future world with a Trillion of
IoT devices communicating with other (often heterogeneous) devices. The devices can
be configured to address many standards, non-standard, custom specified communication
schemes for various use-case scenarios. The communication between things will be en-
abled at anytime, anywhere among anything, from the Internet of Things (IoT) toward
Internet of Everything (IoE).
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Today, IoT networks are often fragmented, having nodes with different physical layer
protocols such as Bluetooth Low Energy (BLE) [4] or IEEE802.15.4 [2]. In the future,
direct connectivity should no longer be limited by a single protocol or one specific physical
layer ASIC.

The value of flexible baseband processing has been demonstrated in previous works [68,
70, 71]. By dynamically changing configurations (signal bandwidth, modulation parame-
ters, etc.) on the Software-Define Radio (SDR) platform, IoT devices can adjust the data
rate to extend the operating distance with the same power budget. SDR can enable higher
energy efficiency when the operating scenarios require shorter distance and/or lower data
rates than that are defined in a particular wireless standard. Rapid innovation is enabled by
the nature of SDR as new communication modulation schemes and protocols can be easily
adopted with a simple software update. Enhanced spectral efficiency can be achieved via
dynamic adaptations in frequency planning, pulse shaping, and bandwidth allocation.

Flexible radio solution is realizable without increasing the overall power consump-
tion [71]. In fact, better energy efficiency can be achieved via operating the SDR at an
energy-optimal configuration that might be outside the scope of a specific physical layer
protocol [72, 73]. In this chapter, we augment the benefit obtained from SDR baseband
signal processing flexibility by also adding flexibility to the information / error-correction
coding in IoT communication.

4.1.1 Error Correction Coding Flexibility

Error correction coding is a very effective way to enhance reliability in IoT communica-
tions. The optimal energy efficiency, data rate, and link distance tradeoff can be obtained
by adjusting the error correction coding rate and/or the information encoding schemes.
There are many error corrections codes that have been proposed for low power wireless.
Today, each physical layer protocol specifies an error correction scheme that is optimized
for a representative scenario (combination of packet length, data rate and link distance).
For example, Bose-Chaudhuri-Hocquenghem (BCH) coding is the error correction coding
method used in Body Area Networks [3], that allows 2 or 3-bit error correction in a 63-bit
codeword. Reed Solomon (RS) codes also have been proposed for low power communi-
cation because they work within the hardware complexity restrictions for Low Data Rate
Wireless Personal Networks (LDR WPAN) [74, 75].

A single fixed error correction code is suboptimal, given that baseband processing is
migrating towards a more versatile SDR with flexible data rates, bandwidths and modu-
lation schemes to satisfy heterogeneous IoT operating scenarios. The information coding
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flexibility, therefore, plays an important role in data-rate, distance, and energy-efficiency
tradeoffs for IoT communications. Ideally, flexible coding should support a broad class
of parameterized coding schemes for various standards or non-standard communications
to adapt to different channel conditions. A low rate encoding with strong error correction
capability should be applied in a noisy channel, while in a clean channel we should be able
to pack more information bits in a code word. A flexible coding scheme should also be able
to address different error patterns, for example, be robust enough to handle both uniformly
distributed and burst bit errors. Unlike convolutional, turbo, LDPC and polar codes that
are widely used in high performance broadband access, low power IoT communications,
with relatively low data rates and short packet lengths, do not employ a long codeword.
In this work, we address a broad class of Galois Field (GF) based block coding schemes
with a short (< 100s bits) codeword as they are more common for low power IoT wireless
connectivity. By varying codeword length n, information length k and GF size (2m), vari-
ous block codes are supported that can optimally adapt to different channel conditions and
application scenarios.

4.1.2 Cryptography

While the proposed flexible error correction coding schemes provide robustness against
noise and interference, IoT wireless communication that exchanges a plaintext through a
shared medium is fundamentally insecure to malicious attacks that eavesdrop and imper-
sonate in the middle of the network. Our proposed GF processor addresses the security
aspect of the IoT communication by providing a unified architecture to perform not only
error correction coding but also popular cryptography kernel functions computed in a finite
GF.

Asymmetric Cryptography. Asymmetric cryptography such as Elliptic Curve Cryp-
tography1 [76], is widely employed in an authentication process to exchange a shared pri-
vate key. However, because of its extremely large GF (e.g., 2233), ECCl complexity is
orders of magnitude higher than that of the symmetric cryptography process. Although,
the asymmetric cryptography process is called only once when a new secure session is es-
tablished, ECCl software implementation to perform long bit length GF operations is very
inefficient and typically incurs excessive latency when realized on a low power general
purpose processors (analysis provided in Section 4.3.3.4). Because it is used infrequently,
the area of an ECCl solution is more critical than its energy efficiency provided it meets
the latency requirement. Our proposed GF processor architecture provides an area efficient

1In this chapter, we use ECCl to refer Elliptic Curve Cryptography and ECCr to refer Error Correction
Code.
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solution for ECC without incurring a significant overhead to the baseline architecture in
order to support both ECCr and ECCl.

Symmetric Cryptography. Once a secure session is established through an ECCl

based key exchange process, symmetric cryptography using a shared private key is applied
on a packet-by-packet basis to encrypt / decrypt a plaintext / ciphertext message pair. A
widely used method for symmetric cryptography is the Advanced Encryption Standard
(AES). Unlike asymmetric cryptography ECCl, throughput of the symmetric cryptography
should be matched to the data rate of the underlying physical layer.

Traditionally, the coding and security modules are implemented as dedicated acceler-
ators [77, 78, 79] because they are computationally intensive and do not efficiently map
onto a general purpose processor architecture. Moreover, due to lack of programmability
in the legacy physical layer, coding flexibility has not been widely explored. With the move
towards SDR, this opens a new research possibility on microarchitectures to enable coding
flexibility and to inherently address the security aspect of IoT connectivity as well.

4.1.3 Feasibility to Address Coding Flexibility and Cryptography on
the Same Piece of Hardware

Coding flexibility allows IoT applications to exploit the large tradeoff space in data rate,
link distance and energy-efficiency. However, realizing coding flexibility on a general pur-
pose processor is too inefficient, and it easily leads to 100× worse energy efficiency com-
pared to dedicated hardware accelerators, offsetting the benefit of flexible coding. On the
other hand, employing multiple dedicated accelerators is expensive in terms of design ef-
fort and production cost. Addressing this challenge, we propose a unified architecture that
is area- and energy-efficient to support not only flexible information coding but also secure
wireless communication via asymmetric and symmetric cryptography.

To demonstrate feasibility of the proposed solution, we first briefly describe the data-
path involved in example error correction coding and cryptography processes. Fig. 4.1(a)
show the datapath of the binary BCH code [80, 81], which has three coding parameters
(n, k, t); n represents the codeword bit length, k represents the information bit length and
t indicates the number of bit errors correctable within a codeword. A binary BCH code
(n, k, t) is constructed from a Galois field GF(2m), where n = 2m. The decoding datapath
of binary BCH consists of four kernels. The first kernel – Syndrome Calculation – evalu-
ate the received codeword. Non-zero syndromes indicate that errors exist in the received
codeword. The kernel – Closed Form ELP [82] – solves the coefficients of the error locator
polynomial. Finally, the Chien search finds the roots of the error locator polynomial, and
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Figure 4.1: Dataflow for ECCr, AES, and ECCl. They share the same underlying GF
arithmetic operations.

the roots reveal the error locations. Bit errors at these locations are corrected via GF ad-
ditions. The BCH code is favored by many low power devices [83, 84, 85] for its concise
decoding process and effectiveness in correcting uniformly distributed random errors.

Reed Solomon (RS) codes [80, 86] also have (n, k, t) parameters and operate on GF(2m),
where n = 2m. Unlike binary BCH, in an RS code, n is the number of symbols in a code-
word, where each symbol hasm bits. k and t are the number of information symbols and the
number of correctable error symbols in a codeword, respectively. The decoding datapath
is very similar to binary BCH. The Berlekamp-Massey-Algorithm(BMA) is a generalized
method to solve the coefficients of the error location polynomial. RS decoding requires
an additional kernel—Forney Algorithm—to evaluate the actual m-bit error values after
the error symbols are located via the Chien search algorithm. RS codes are suitable for
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correcting multiple-burst bit errors (up to m error bits within a symbol). A generalized RS
decoder datapath is shown in Fig. 4.1(b).

A variety of BCH and RS codes can be created with different coding rates (k/n), GF
sizes (2m) and the error correcting ability represented by the parameter t. As Fig. 4.1(a)
and (b) indicates, BCH and RS codes share an identical datapath at a high level. One of
technical challenges involved in flexible block coding is efficient handling of various GF
sizes (2m) and irreducible polynomials associated with each GF [87]. Dedicated hardware
accelerators address this issue by designing a hard-wired GF arithmetic unit that is specific
to a given GF size and an irreducible polynomial pair.

The datapaths of AES and ECCl shown in Fig. 4.1(c) and (d) respectively, which are
distinct from that of the error correction codes. Our proposed architecture exploits the fact
that each step involved in AES and ECCl can be converted to equivalent finite Galois field
arithmetic operations. For example, the S-box operation in AES is equivalent to GF(28)
inverse operation [88]. Similarly, the point addition operation in ECCl can be mapped to a
series of GF multiplications, additions, and division in GF(2m), where typically m > 100.

Fig. 4.1(c) illustrates the AES encryption datapath for a single round of processing.
Different key lengths (128, 192 or 256-bit) determine the number of rounds for a single
encryption. Decryption is very similar to encryption except that the kernels process in a
reverse direction with different constants to implement inverse.

The ECCl datapath is shown in Fig. 4.1(d). The key operation in ECCl is scalar multi-
plication (kP ) performed on an elliptic curve [89, 90], where k is the scalar and P (xp, yp)

is a point on the elliptic curve. The scalar multiplication is further decomposed into two
operations–point addition (P1+P2) and point doubling (2P ). Both point addition and point
doubling are computed via several GF multiplication, square and multiplicative inverse op-
erations. Depending on the ratio between multiplication and multiplicative inverse, trans-
forming points to a different coordinate (e.g., the projective coordinate) may be necessary
to reduce the complexity.

We make an important observation that all coding and cryptography processes under
consideration (binary BCH, RS, AES and ECCl) were derived from GF mathematics, there-
fore they share the same underlying operations. However, their GF sizes and irreducible
polynomials can be very different. Addressing this challenge leads to our proposed GF
processor architecture described in Section 4.2. We propose to implement the Galois field
arithmetic unit as a dedicated GF functional unit of the proposed processor to provide effi-
cient computation of complicated GF operations.
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4.1.4 Contribution

To address generality in both coding and cryptography, we need to support arithmetic flex-
ibility in different bit-widths and arbitrary irreducible polynomials associated with each
Galois field. Meanwhile, the cost of arithmetic flexibility needs to be affordable because
IoT devices are limited by strict power budget and area constraints. The contributions of
this work are summarized as follows:

• We analyze several error correction coding schemes and cryptography kernels to
identify the shared fundamental operations.

• We propose a flexible bit-width Galois field arithmetic unit consisting of two types
of primitive arithmetic units: multiplication and square.

• These primitives are combined to support single cycle complicated instructions: mul-
tiplicative inverses and long bit-width GF products using 32-bit segmentation.

• We exploit the parallelism in coding and cryptography datapaths, and employ (con-
figurable) four-way 8-bit SIMD operations to improve performance and functional
unit reuse. The SIMD computation datapath is shared among the multiplicative in-
verse and long bit-width GF product instructions.

• We illustrate how to efficiently handle extremely long bit-width (> 100bit) multipli-
cation by iteratively using the SIMD-optimized single-cycle 32-bit products.

• The GF arithmetic unit is integrated into a two-stage in-order processor. Several
coding kernels and cryptography kernels are evaluated using the proposed processor
architecture.

We demonstrate the feasibility of a unified processor architecture to enable coding flex-
ibility and secure communication in low power IoT wireless networks. The proposed pro-
cessor enhances wireless communication energy-efficiency by adapting the coding scheme
to various noise/interference conditions. At the same time, secure communication is real-
ized via symmetric and asymmetric cryptography processes that are also efficiently imple-
mented on the proposed processor.
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4.2 The Programmable Light Weight Galois Field Proces-
sor

4.2.1 Processor Architecture

Figure 4.2: Proposed Galois Field Processor

The system architecture of the programmable Galois field processor is illustrated in
Fig. 4.2. Control related computation, integer arithmetic operations and memory operations
are conducted by regular functional units. Rather than implementing the full instruction set
of a Cortex M0+, we profile the workloads and identify the subset of control instructions,
integer arithmetic operations and memory operations needed. We only implement this
subset to conserve area. We use a 32-bit datapath, and 16 entry 32-bit register file. We
add a Galois field arithmetic unit and associated instructions to optimize GF operations.
All SIMD GF instructions, including multiplication, square/power, multiplicative inverse,
and a 32-bit partial product are single cycle instructions. Arbitrary irreducible polynomials
with degree smaller or equal to 8-bit are supported with the dedicated configuration register
(inside the GF Arithmetic Unit). The microarchitecture of GF arithmetic unit is discussed
in section 4.2.2 - 4.2.4.

4.2.1.1 Instruction Set Architecture

Our instruction set architecture (ISA) is a combination of GF instructions and a subset of
Cortex M0+ instructions, which conduct all non-GF instructions including control-related,
memory and integer arithmetic operations. The GF instructions have a 26-bit format, con-
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Table 4.1: Galois Field Instructions.

Category Format Description Operations
SIMD Instr.

Each RF holds
four 8-bit GF
values. All

operations are
in GF filed.

gfMult simd Rs1,Rs2, Rd Multiplication Rs1

⊗
Rs2 → Rd

gfMultInv simd Rs, Rd
Multiplication

inverse R−1
s → Rd

gfSq simd Rs, Rd Square R2
s → Rd

gfPower simd Rs1,Rs2, Rd Power RRs2
s1 → Rd

gfAdd simd Rs1,Rs2, Rd Addition Rs1

⊕
Rs2 → Rd

Partial Product gf32bMult Rs1,Rs2, Rh
d ,Rl

d

32-bit carryfree
multiplier Rs1 ×Rs2 → (Rh

d , R
l
d)

Configuration gfConfig #Address
Load 56-bit coef. to
field config. register

∗(Address)→ Rconfig

sisting of a 10-bit opcode and a 16-bit register field. Their operation is illustrated in Ta-
ble 4.1. The GF arithmetic instructions support a complete set of GF arithmetic operations.

4.2.2 The Galois Field Arithmetic Unit

In this design, we restrict our design to a binary Galois field (2m), where m is the bit width
to represent an element in the Galois field. In this arithmetic, m-bit inputs produce m-
bit output without a carry. Addition and subtraction are identical; they are implemented
via bitwise exclusive-OR. Multiplication is performed as multiplication modulo an irre-
ducible polynomial. Since a GF(2m) can have many irreducible polynomials, the selection
of the irreducible polynomial will affect the multiplication/multiplicative inverse opera-
tions. Flexibility in GF arithmetic implies that we need to address various bit-widths and
different irreducible polynomials.

4.2.3 Design Challenges

In this section, we identify design challenges that are specific for a flexible Galois Field
arithmetic unit.

Most of the error correction codes and AES only require small bit-widths to represent
a GF element, specifically m ≤ 8 as shown on the left side of Fig. 4.3. In contrast, asym-
metric cryptography, ECCl on the right side of Fig. 4.3, requires very long bit-width fields.
Several standard binary curves are recommended for ECCl [91, 92], the smallest being 113
bits and the largest being 571 bits. Although these two requirements differ widely in bit
width range, we show that they can be implemented efficiently with the same underlying
hardware.
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Challenges arise because of the fact that, in contrast to integer arithmetic operations, a
smaller GF bit-width (m ≤ 8) operation cannot directly use a larger GF bit-width datapath
by simply setting the most significant bits to zeros. Galois fields with distinct sizes have
completely different irreducible polynomials in terms of both degrees and coefficients. Set-
ting the most significant bits to zeros does not work even if the smaller bit-width irreducible
polynomial may be a subset of the larger bit widths irreducible polynomial. For example,
BCH(31,26,1) on GF(25) is a subset of RS(255,239,8) on GF(28), as shown in Fig. 4.3.
However, even in such cases, setting the most significant 3 bits to zero will not work be-
cause Galois field requires a polynomial modulo operation. Fig.4.5 (b) will illustrate this
with an example.

Even the same bit-width datapaths cannot directly share the same multiplication and
multiplicative inverse units. For example, RS(255,239,8) and AES both in GF(28) cannot
use the same multiplication and multiplicative inverse units becasue of the different coeffi-
cients in their irreducible polynomials. All in all, specific hardware has to be designed to
support variable bit-width GF operations.

Figure 4.3: GF Arithmetic Design Challenge. To support a wide range of bitwidths and
arbitrary polynomials.

81



4.2.4 The GF Arithmetic Unit Microarchitecture

The Galois field arithmetic unit microarchitecture is illustrated in Figure 4.4. It is com-
posed of several basic units, including 16 8-bit GF multiplication units and 28 8-bit GF
square units. It also includes one dedicated configuration register to support arbitrary irre-
ducible polynomial and control logic to selectively connect basic units to execute different
instructions.

Figure 4.4: Galois Field Arithmetic Unit. It supports SIMD instructions: multiplication,
square, and multiplicative inverse, as well as 32-bit partial products. It has a dedicated
configuration register shared among the ALUs. The pipeline register is shared between GF
arithmetic units and the regular arithmetic logic units.

4.2.4.1 Primitive Units

In this design, we employ two primitive computation units: multiplication and square.
Multiplication. We employ the compact GF multiplier method introduced in [93]. It

decomposes multiplication into a carryless multiplier and a polynomial reduction module.
The multiplier first computes a (2m − 1) bit full product in GF(2) from two m-bit inputs,
Fig. 4.5 illustrates this. The polynomial reduction module performs modulo(c, r), where
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Figure 4.5: GF Multiplication Unit. Illustrating regular multiplication, smaller bitwidth
multiplication and squaring.

c is the carryless multiplier output and r is the vector representation of the irreducible
polynomial.

The polynomial reduction module is implemented as a linear transformation by im-
plementing a GF(2) matrix vector multiplication. The reduction is done using a reduction
matrix (P), which is derived by a transformation of the irreducible polynomial (r→ P), and
can be determined a priori. The reduction matrix is programmable by writing the values of
P to the dedicated configuration register.

The default Galois field operation in our datapath is GF(28)–an 8-bit datapath. The
polynomial reduction circuits include an 8-by-7 matrix and a reduction vector of 7-bits as
outlined by the green dashed box. The remaining vector shown by the red dashed box fills
out the datapath bit width.

We deploy a new method, which selectively maps the full product c to the polynomial
reduction module based on a GF size dependent pattern. The bit-width signal from the
configuration register directs the mapping circuit to split the full product c into the reduction
vector (green dash box in Fig. 4.5) and the remaining vector (red dashed box in Fig. 4.5).

The example of operating on a smaller bitwidth is illustrated in 4.5 (b). This is done
by first setting the most significant bits to zeros and then changing the mapping of c to
the polynomial reduction step. The mapping of c depends on the GF size, with each size
having a unique mapping. As mentioned in Section 4.2.3, if only the significant bits were
set to zero without updating the mapping, the c2 bit in the partial product would be mapped
to the wrong position. Our hardware contains a configuration register which specifies how
the mapping of partial products to the polynomial reduction should occur, enabling us to
support smaller bit-widths. As a result, we reuse the same size computation resource in the
polynomial reduction module. The control overhead to support 5-, 6-, and 7-bit using the
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Table 4.2: Resource Comparison for Different Multiplication Methods

Systolic This work
Polynomial

Modulo Bit-pipelined
Single Step

Linear Transform

Comb.
AND 2m2 2m2 −m
XOR 2m2 2m2 − 3m+ 1

FF
opa (m− 1)m Pure

combinational
logic

opb (m− 1)m/2
intermediate (m− 1)m

Total area* 16.5m2 − 10m 6.5m2 − 7.75m
Configuration Datapath (shared by multiple ALUs)

FF p or S m m(m− 1)
*AND : MUX : XOR : FF = 1 : 2.25 : 2.25 : 4

in a 28nm technology

8-bit computation unit is small: 8% of the entire arithmetic units.
Our method is in contrast to prior approaches for supporting smaller bit-widths [93, 94],

which instead increase the programmable part of the reduction matrix-vector operation.
An increased size of the reduction matrix would require more computation resources. To
support 5-, 6-, and 7-bit multiplication, one option [94] is to add a 5-by-3 matrix vector
operation, incurring more than 26% additional hardware overhead. The other option [93] is
to include a triangular matrix, which requires more control when mapping the full product
to the linear transformation and several additional computations.

We compare our implementation with another configurable GF multiplication — the
popular systolic solution [95, 96, 97]. The multiplication resource comparison with a LSB
method in [95] is shown in Table. 4.2.

The difference in combinational logic between the two methods is small, because it is
determined mostly by the computational complexity. The systolic method processes one
bit polynomial multiplication and reduction at a time. To achieve the same throughput,
one sample per cycle, a bit-level pipeline method is required, which results in a very short
critical path at the cost of significantly more area and power. As we target the IoT appli-
cation domain which does not require a very high throughput, our proposed design is a
preferred choice. We support long bit-width products (> 8-bits) by connecting multiple
basic multiplication units together. This will be elaborated on in Section 4.2.4.3.

Square. The square operation is the other basic unit in our GF arithmetic unit. Al-
though it is a specialized multiplication, we still implement it as a separate unit for two rea-
sons. Firstly, square is much simpler than multiplication in Galois field. Mathematically,
the full product of a square only spreads the input and inserts zeros in the odd positions as
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Table 4.3: Comparison between Multiplication and Square

28nm GF mult GF square
m=5,6,7,8 ; arbitrary polynomial
# of cells 263 73

Area (um2) 199.59 63.48
Critical Path (ns) 0.4 0.2

Configuration of GF Arithmetic Unit
# of primitive arithmetic units 16 28

shown in Fig. 4.5(c). Thus, a square operation only needs a polynomial reduction module.
The hardware comparison between multiplication and square is illustrated in Table 4.3.
Secondly, square is a heavily utilized operation to realize the complicated multiplicative
inverse instruction. We will elaborate on this in Section 4.2.4.3.

4.2.4.2 Centralized Dedicated Configuration Register

We employ a dedicated centralized configuration register to support various bit-widths and
arbitrary polynomials. It is set via a special configuration instruction when a Galois field is
decided. Since it is shared among all arithmetic units, the overhead of supporting variable
bit-widths and arbitrary polynomials are amortized.

The centralized configuration register is also used in data-gating almost half of the
combinational logic when the 32-bit partial product instruction is executed, resulting in a
33% power reduction.

4.2.4.3 Complicated Instructions

Complicated instructions such as multiplicative inverse, 32-bit partial product, and SIMD
instructions are realized by different connections among the primitive units in the intercon-
nect fabric shown in Figure 4.4. Computation units are reused among different instructions,
reducing area overhead.

Multiplicative Inverse. In Galois field, multiplicative inverse can be computed by
α−1 = α(2m−2), where α is an element in GF(28). This can lead to a large power depending
onm. To reduce the number of power computations involved in this process, the Itoh-Tsujii
algorithm (ITA) is employed [98]. The multiplicative inverse instruction is implemented by
connecting a series of multiplications and squares. Four multiplications and seven squares
are concatenated to realize one 8-bit multiplicative inverse. Fig. 4.6 presents an example for
multiplicative inverse in GF(24). Multiplicative inverse over GF(23) is realized by muxing
out the A6 power.
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Figure 4.6: Multiplicative Inverse. Interconnecting primitive units to perform the multi-
plicative inverse.

We also considered other systolic methods [99, 100, 101], based on Euclid Algorithms
(EA), which implement multiplicative inverse at a higher throughput. The hardware re-
source comparison between EA [100] and our method is illustrated in Table. 4.4. We
implemented the ITA method for two reasons: first, we are not targeting a high throughput
application domain; second, the ITA method can use existing multiplication/square hard-
ware, requiring no extra area.

Single Cycle 32-bit Partial Product. A single cycle 32-bit partial product utilizes all
16 of the 8-bit GF multiplication units and a simple GF(2) addition (exclusive-OR). An
example of 16-bit partial product is illustrated in Fig. 4.7. Very long bit width (¿100bit) GF
multiplication benefits from this single cycle 32-bit partial product by iteratively using this
product and performing a reduction step on the CPU. An example of efficiently supporting
GF(2233) multiplication is detailed in Section 4.3.3.4.

SIMD Instruction. We support SIMD instructions for multiplicative inverse (Fig-
ure 4.6), multiplication and square (Figure 4.8). Since there are 28 square units, the even-
power instructions can be carried out in SIMD fashion with a few muxes, as shown in
Figure 4.8 (top). We implement a four-lane 8-bit SIMD datapath for two reasons. First,
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Table 4.4: Resource Comparison for Different Multiplicative Inverse Methods

Systolic Euclidean
Algorithm (pipelined)

This work
ITA

Comb.
m(6m+ 3)XOR+
m(6m+ 7)AND+
m(6m+ 5)MUX

(15m2 − 11m)AND+
(15m2 − 13m+ 4)XOR

FF m(6m+ 4) No need
Total

area* ** 57m2 48.75m2

Configuration Datapath (shared by multiple ALUs)
FF m m(m− 1)

* AND : MUX : XOR : FF = 1 : 2.25 : 2.25 : 4
in a 28nm technology

** only m2 item is considered,
which overestimate the area of our work

Figure 4.7: 16-bit Partial Product Example.The 32-bit case follows an analogous intercon-
nection of primitive units.

there is limited parallelism in the applications, which will be discussed in Section 4.3.1.
Second, we want to match the number of 8-bit GF multiplier involved in a 32-bit partial
product and a SIMD multiplicative inverse. Both a 32-bit partial product and a four-way
8-bit SIMD multiplicative inverse can be realized with 16 8-bit full multipliers. Hence, a
majority of the computation resources are reused by different instructions.

Data Gating of Idle GF Arithmetic Unit. The Galois field arithmetic unit is not
always active. The GF instructions are interleaved with other instructions such as integer
arithmetic and control instructions. Therefore, data gating is applied on the Galois field
arithmetic unit by feeding zeros as default inputs, so the updating on the pipeline register
will not incur switching activities in the GF arithmetic unit, resulting in a 77% dynamic
power savings.
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Figure 4.8: 2-way SIMD GF Multiplication and Square/Power Example. The 4-way case
follows an analogous interconnection of primitive units.

4.3 Evaluation

4.3.1 Application Kernels

Table 4.5 illustrates the kernels we are evaluating for both cryptography and coding applications–
here coding refers to the decoding process, while encoding is also feasible with the pro-
posed architecture. We select the most common algorithms that works for all different
types of RS/BCH codes. Even without any modification, the coding algorithms and AES
reveal some degrees of parallelism [86]. We employ a four way SIMD to take advantage of
this.

4.3.2 Kernel Mapping

Kernel mapping is performed by converting each step in ECCr, AES, and ECCl to a series
of GF arithmetic operations and datapath control instructions.

The rest of this subsection is an example for syndrome calculation in the RS/BCH
decoder datapath. This is the first and the only kernel that cannot be avoided in the decoding
datapath. Because the decision whether to perform the rest of the decoding datapath relies
on the value of syndromes. If syndromes are all zero, this indicates that no error occurred
and the decoding will terminate.
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Table 4.6: Syndrome Computation Comparison between Embedded GPP and Our Archi-
tecture

General Purpose Processor This work
For j = 1,2,...,N

sumIdx = BIN2Idx[sum]
sumIdx = (sumIdx+ i)%fieldsize
sum = Idx2BIN [sumIdx]

⊕
Rj

sum = sum
⊗

αi

sum = sum
⊕

Rj

As illustrated in Table 4.5, there are 2t independent syndromes to compute for t-bit
error correction. Syndrome computation is parallelized in a straightforward manner. Each
syndrome Si is typically computed using Horner’s rule via the recursive calculation in the
form of Si,j = Si,j−1α

i + Rn−j for j = 1, 2, ..., n where Si,j is the computed syndrome
after j−rounds of recursion, α is a primitive element in Galois field, and Rn−j is the re-
ceived symbol in the codeword. Si = Si,n holds when n is the number of symbols in a
codeword. The inner loop for syndrome calculation requires one GF multiplication and
one GF addition. On a general purpose processor, the multiplication is typically optimized
by performing the calculation in the log domain [102] that requires table lookup operations,
as shown in left side of Table 4.6. With our architecture, the GF operations will directly
call the corresponding instruction, as shown in the right side of Table 4.6.

The left column of Table 4.6 indicates that each inner loop of syndrome calculation
involves one integer, one modulo, one bitwise exclusive-OR, and two multi-cycle table
lookup operations. In contrast, in our architecture, the inner loop involves just two single
cycle GF operations.

Because the inner loop computation on our architecture avoids table lookup operations,
we also achieve reduced data memory footprint. Furthermore, because we have less vari-
ables required for each inner loop, our register files have less pressure. Finally, the 2t

syndrome computations can be vectorized in a straightforward manner, as discussed in the
beginning of this section. The cumulative effect of these improvements results in an over
20× speedup.

4.3.3 Performance

4.3.3.1 Methodology

The baseline for our evaluation is obtained by running the kernels from Table 4.5 in Keil
uVision 5, an ARM integrated development environment. It includes both a compiler and
cycle accurate simulator. The target platform is a Cortex M0+, a two-stage in-order proces-
sor [59]. We are able observe the assembly code in the simulator. To obtain performance
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results for our architecture, we take the assembly code that performs a Galois field opera-
tion, for example the left column in Table 4.6, and replace it by our GF instructions. The
control code and other non-GF arithmetic operations are kept the same. The reduced reg-
ister pressure allows us to hold more data elements in the unoccupied registers. The cycles
to compute each GF instruction using our architecture are deterministic and added to the
simulated runtime.

4.3.3.2 BCH/RS Decoder

We implemented a decoder consisting of syndrome calculation, Berlekamp-Massey-algorithm
(BMA), Chien search and Forney’s algorithm. The baseline implementation on the M0+ is
optimized by conducting GF multiplication/ multiplicative inverse in the log domain [102].

On our architecture, we do not need to operate in the log domain because all GF oper-
ations are directly performed on the GF arithmetic unit. A binary BCH (31,11,5) decoder
is realized by combining the first three kernels and setting n = 31, k = 11, and t = 5

in the algorithm. An RS (255,239,8) decoder is realized by utilizing all four kernels (syn-
drome calculation, BMA, Chien search, Forney’s algorithm) and setting the parameters to
n = 255, k = 239, and t = 8. The speedup is shown in Fig. 4.9.

Figure 4.9: ECCr Decoder Speedup over M0+. Specifically comparing against RS on
GF(256) and BCH on GF(32).

Computation dominant kernels, such as syndrome calculation, are very efficient on the
proposed architecture. RS(255, 239, 8) has a better speedup compared to BCH(31,11,5)
because RS(t = 8) has 16 independent syndromes, a perfect match for our 4-way SIMD,
while BCH(t = 5), with 10 independent syndromes, looses two lanes in the last round.

BMA experiences the least speedup because it is an iterative algorithm with limited
parallelism in the inner loop. In this evaluation, we only exploit the most straightforward
parallelism in computing several intermediate t-degree polynomial coefficients. As dis-
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cussed in Table 4.5, Chien search has many independent elements to evaluate. But for
each element, the computation complexity is proportional to the degree t. Comparing it to
the complexity n(> t) of syndrome computation, the control overhead of Chien search is
larger.

Forney’s algorithm for RS codes has over a 10× speedup. Forney’s algorithm evalu-
ates each error location using the GF multiplicative inverse and multiplication operations,
which all map to single cycle operations on our architecture. We are able to calculate four
independent errors in parallel.

The overall speedup for RS is more than 10×, which is better than the binary BCH
decoder speedup. Forney’s algorithm is not required in the binary BCH decoder because
the error is binary. However, the binary BCH exposes another level of parallelism—inter-
codeword parallelism. This happens because it creates numerous shorter codewords in one
packet. Potentially, the inter-codeword parallelism embedded in binary BCH could lead to
a higher performance gain if we had attempted to optimize for it.

4.3.3.3 Symmetric Cryptography: AES

Figure 4.10: AES Speedup over M0+

Several open source benchmarks for AES [103] [104] [105] are compared. The imple-
mentation in [103] achieves the best performance on the baseline ARM M0+ platform.

Across all the kernels, S-Box and MixCol/invMixCol show the best speedup. Tradi-
tionally, S-Box is implemented as a table lookup operation while in our architecture it is
realized directly with the multiplicative inverse operation. Similarly, MixCol/invMixCol in
our architecture are also realized directly by performing inner products with Galois field
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arithmetic. The MixCol and invMixCol can use the same code but with different coeffi-
cients.

We profiled these open source benchmarks, and observed that MixCol/invMixCol is the
hotspot. The selected baseline benchmark on the ARM M0+ obtains the best performance
mostly because of good MixCol/invMixCol optimization. MixCol shows good optimiza-
tion because the coefficients for MixCol are 0x02, 0x03, 0x01, and 0x01. GF multiplication
with these values can be optimized into a few exclusive-ORs and shifts. While for invMix-
Col, the coefficients are 0x11, 0x13, 0x09, and 0x14. As a result, the data dependent
optimizations on the ARM M0+ are not as efficient as MixCol. Our system obtains a more
than a 10× speedup on MixCol, and, because our system is agnostic to the values of the
coefficients, we achieve an even higher 20× speedup on invMixCol kernel. Overall, gains
of more than 5× for encryption and more than 10× for decryption are achieved, mostly
from improvements in MixCol/invMixCol and S-Box.

4.3.3.4 Asymmetric Cryptography

Multiplication/Square on GF(2233). Long bit width(e.g. 233-bit) GF multiplication and
square are two essential operations for ECCl. The literature states that GF multiplication
typically accounts for most of the execution time [106], approximately 80% [107, 108].
We utilize the same ITA method described in Section 4.2.4.3 to realize the multiplicative
inverse operation. We hand-code these operations on GF(2233) with a NIST Koblitz curve
x233 + x74 + 1 [92].

The multiplication on GF(2233) is achieved by performing two steps. First, the full
partial product of two 233-bit inputs (8 words with 32bits/word) is computed and stored
back to memory (16 words) after this procedure.

Figure 4.11: Rearrange the partial product into the reduction vector and the remaining
vector.
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Table 4.7: Operation Cycle Count Breakdown of ECCl Multiplication and Square on
GF(2233) over NIST Koblitz Curve x233 + x74 + 1

Operation LD ST
GF 32b
Partial

Porduct
ALUs

Total
cycle

233-bit multiplication
Full Product 72 71 64 112 462
Rearrange 8 29 45

Polynomial
Reduction 8 8 60 92

Total Operation 88 79 64 201
Total Cycle 334 64 201 599

233-bit square
High Full Product

& Rearrange 5 2 5 30 49

Low Full Product
& Reduction 5 8 3 58 87

Total Operation 10 10 8 88
Total Cycle 40 8 88 136

*ALUs includes bitwise ops such as AND,SHIFT,XOR.
**GF addition is identical to BITXOR, sorted in ALUs.

***LD/ST has 2-cycle; other operations are all single cycle

94



Table 4.8: ECCl GF Multiplication/Squaring on Different Platforms

Erdem [110] Clercq [109] This work

Platform ARM7TDMI Cortex M0+
2-stage pipeline
in-order proc.
with GF unit

GF(*) 2228 2256 2233

Mult. 4359 5398 3672 599
Square 348 389 395 136

The second step is to perform the polynomial reduction on the partial product in the
CPU. We rearrange the partial product into the reduction vector and the remaining vector.
We place the lowest 233 bits (c0-c232) into the first 8 words of memory and pad it with 23
zeros. The remaining bits (c233-c464) are padded with 24 zeros to create the reduction vector
in the last 8 words of memory. This rearrangement processing is illustrated in Figure 4.11.
The polynomial reduction operates on one 32-bit word at a time with only a few shift and
exclusive-OR operations. The cycle breakdown of a 233-bit multiplication for ECCl is
illustrated in Table 4.7.

The square operation follows the same procedure as multiplication. We also lever-
age the simple structure of the square discussed in Section 4.2.4.1. Only 8 32-bit partial
products are necessary to achieve a square partial product. Memory operations to store
intermediate results are largely avoided. We interleave the full partial product operations
and then rearrange results together for square. The cycle breakdown of a 233-bit square
operation is presented in Table 4.7.

Table 4.8 illustrates the performance comparison to other works. We achieve a 6.1×
speedup on multiplication and a 2.9× speedup on squaring for the same GF(2233) field.
Typical software optimizations involve pre-computed tables in memory, incurring a large
storage overhead, which is undesirable for low power devices. For example, at least 4KB
table storage is required in [109]. In our implementation, table storage is entirely avoided.
We observe that on our platform, the memory operations also dominate. However, we take
the most straightforward method to implement the algorithms without significant effort on
software optimization. In fact, the methods illustrated in [109], which optimize to avoid
memory accesses, will be able to be applied on top of our architecture. We provide architec-
tural augmentation on the arithmetic level for Galois field operations, which is orthogonal
to register scheduling optimizations or other pure software optimizations.

GF(2233) Multiplication with Karatsuba Software optimization. Karatsuba algo-
rithm [111] is a software optimization to compute the product of two large numbers. Sup-
pose A,B are w-bit numbers, C = A×B is the target product. Ah, Al, Bh, Bl are w/2-bit
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Table 4.9: Operation Breakdown Comparison between direct product and Karatsuba opti-
mization of a full multiplier of two 2233 numbers.

MEM GF
mult

regular
ALUs

Total
LD ST

233-bit mult
Op

Count

Direct
(Original) 72 71 64 112 –

Karatsuba
-opt 40 35 48 104 –

233-bit mult
Cycle
Count

Direct
(Original)

286 64 112 462

Karatsuba
-opt

150 48 104 302

numbers. Ah, Bh are the high w/2-bit of A,B and Al, Bl are the low w/2-bit of A,B, i.e.,
A = Ah2

w/2 +Al andB = Bh2
w/2 +Bl. In contrast to the direct product method, which re-

quires four w/2-bit multiplications (AhBh, AhBl, AlBh, AlBl) and four w/2-bit additions,
the Karatsuba algorithm employs three w/2-bit multiplications and six w/2-bit additions:
C = a2w + e2w/2 + d, where a = AhBh, d = AlBl, e = (Ah +Al)(Bh +Bl)− a− d. The
three multiplications compute a, d, and e respectively. The Karatsuba algorithms can be re-
cursively called by further breaking the multiplication into w/4, w/8, ..., etc. Performance
will benefit when the cost of one multiplication is greater than the cost of two additions. In
this work, we employ a two-level Karatsuba algorithm to perform the product of two 2233

numbers. The operations breakdown of this two-level Karatsuba optimization is illustrated
in Table 4.9. The same method shown in Table 4.7 for polynomial reduction is applied.
Adding the 137 cycles of a polynomial reduction, the Karatsuba optimized GF (2233) mul-
tiplication obtains a speedup of 1.4× comparing to the direct method on our architecture,
and a speedup of 8.4× compared to the baseline implementation.

Point Addition/Point Doubling. We implemented point addition and point doubling
on projective coordinates [90]. They require only GF multiplication, square and addition
operations. However, translating points from affine coordinates, in which coordinates di-
rectly map to a point on an elliptic curve, to projective coordinates, requires the GF inverse
operation. This translation is called once per scalar multiplication.

The cycle counts to perform point addition/point doubling and multiplicative inverse
are given in Table 4.10. The comparison point, Clercq [109, 108] in Table 4.10, is im-
plemented on an ARM M0+ platform. Our architecture with the direct product method
achieves a 5.1× improvement for point addition, and a 3.5× improvement for GF(2233)
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Table 4.10: Cycle Counts of ECCl Point Addition/Point Doubling

NIST Koblitz Curve-K233 Clercq This Work This Work
[109, 108] direct product Karatsuba-opt

Level 1

Multiplication 3672 599 439
Multiplication
Precompute 675 – –

Addition 68 66 66
Square 395 136 136

Level 2
Point Addition 34,426 6,742 5,302
Point Doubling Not reported 3,499 2,859

Level 2 Inverse 139,000 39,972 38,372

multiplicative inverse. Our architecture with the Karatsuba software optimization achieves
a 6.5× improvement for point addition, and a 3.6× improvement for GF(2233) multiplica-
tive inverse.

Scalar Multiplication and ECCl Applications. Scalar multiplication on an elliptic
curve is the operation of adding a point on the elliptic curve to itself repeatedly, i.e. kP =

P+P+P+...+P for a scalar k and a point P = (Px, Py) on the elliptic curve. We employ
the double-and-add method to implement scalar multiplication. For example, k = 15, kP
is computed as 15P = 2[2(2P + P ) + P ] + P , which requires 3 Point Additions and 3
Point Doublings.

The Elliptic Curve Diffie Hellman (ECDH) key exchange protocol [112] is illustrated
in Figure 4.12. Alice has her own private key da (a scalar) and public key Qa (a point on
an elliptic curve). Meanwhile, Bob has his own private key db (a scalar) and public key Qb

(a point on an elliptic curve). A public key Q equals to dG, where d is the private key (the
scalar) and G is a base point on the elliptic curve, which is known to both parties. Firstly,
Alice and Bob will send their public key to each other. Once Alice received Bob’s public
key Qb, she will compute the shared key by performing one scalar multiplication daQb.
Similarly, Bob will perform the scalar multiplication dbQa. The coordinates of daQb and
dbQa are identical because daQb = dadbG = dbdaG = dbQa, and this is the shared secret
between Alice and Bob. Typically, the x-coordinate is used as the shared key for future
data encryption/decryption with a symmetric cryptography method. For example, the x-
coordinate can be used as a private key in AES. Alice and Bob’s public keys—Qa, Qb—are
transmitted as plaintext without any encryption, so the public keys can be acquired by
anyone who is listening on the channel. However, without knowing Alice’s and Bob’s
private key, the people in-the-middle need to solve a discrete logarithm problem to obtain
the shared secret between Alice and Bob.
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Figure 4.12: ECDH key exchange protocol is dominated by one scalar multiplications.

The control operations to execute this ECDH protocol are negligible compared to the
workload to compute a scalar multiplication. On the standard GF (2233) Koblitz curve and
assuming a 112-bit level security (the highest bit of the scalar k is one and the remaining
112 bits consist of 56 zeros and 56 ones), the supporting functions, including two multi-
plicative inverses to perform coordinate projection, consume 157,442 cycles. The 56 Point
Additions and 112 Point Doublings take 617,120 cycles to perform. Running at 100MHz,
our GF processor takes 7.75ms for one scalar multiplication and the ECDH key exchange
protocol finishes within 8ms.

4.3.4 Power and Area

We implement the RTL-level design of our Galois field arithmetic unit and the two-stage
in-order processor. The design is synthesized in a 28nm technology. Prime-Time/Power is
used to estimate critical path delay and power consumption, respectively. The instruction
sequences contain both program control instructions (from the ARM compiler) and hand-
coded GF instructions. Data inputs are random generated. The switching activity is dumped
from the testbench and fed into Prime-Time/Power to generate a power/time estimation
using the synthesized netlist.
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Table 4.11: Power and Area of the Galois Field Arithmetic Unit

m=5,6,7,8; arbitrary polynomial
Configuration of GF Arithmetic Unit

28nm GF mult GF sq Inst. Control
# of primitive unit 16 28 –
Single primitive
unit area (um2) 199.59 63.48 –

Total Area
(um2)

3193 1777 1005
5760

Critical path (ns) 2.91ns @ GF multiplicative inverse

Table 4.12: Proposed GF Processor Characteristics

28nm @0.9V 100MHz Gate count
Area

(um2)
Power
(uW)

2-stage
Processor

Shell

Comb. 3482 2258
Register File 694 2254

Total 4176 4512 279
GF Arithmetic Unit 7494 5760 152

Design total 11670 10272 431

4.3.4.1 Galois Field Arithmetic Unit

The 16 GF multiplier has 3193um2 area, 28 GF square has 1777um2 area, the design total
area is 5760um2. The critical path is 2.91ns, which happens at GF multiplicative inverse.
The results are illustrated in Table 4.11.

The results indicate that our Galois field arithmetic unit is compact, less than 6000µm2,
and fast enough, with a critical path of 3ns, to support applications in the IoT domain. We
believe this Galois field arithmetic unit is a basic building block that can be integrated into
many embedded processors as a hardware accelerator.

4.3.4.2 The Galois Field Processor

As an example, we integrate the GF arithmetic unit into a two stage in-order general pur-
pose processor with a 16-entry 32-bit register file. The total area is 10,272µm2 and con-
sumes 431 µW at nominal voltage 0.9V while running AES at 100MHz. The GF processor
can run at a maximum clock upto 300MHz, which is more than enough for the low power,
low bandwidth IoT application domain that we considered in this work. Thus a deeper
pipeline, which can provide more throughput with a higher frequency and consumes more
energy per instruction, wasn’t considered as our control logic architecture.
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We conduct SPICE simulation on this technology and apply voltage scaling optimiza-
tions to our design. The results show that the design can be voltage scaled down to 0.7V
for a target frequency of 100MHz. When scaling, we leave a more than 50% time margin
to account for increased variability at lower voltages. This time margin is more than that
of previously fabricated designs in 28nm [113] that employ voltage scaling. At 0.7V, the
GF arithmetic unit consumes 75µW, and the processor consumes 231µW in total. Voltage
scaling will improve our energy efficiency by 1.86×.

Figure 4.13: Layout. The area is 10,272um2.

Scaling the GF processor. Our preferred design has 16 GF MULT units and 28 GF SQ
units. The four-way SIMD multiplicative inverse and 32-bit partial product both require
16 GF MULT units for single cycle operations. 28 GF SQ units are needed to support
a single cycle SIMD multiplicative inverse. More mult units would benefit elliptic curve
cryptography applications, but result in more idle hardware for error correction codes due
to limited parallelism. Thus this configuration provides a reasonable area/efficiency trade-
off points considering across the applications. Different configurations of primitive units
as well as the general purpose control logic units can be re-evaluated. For example, the IoT
device may operate as a controller node in local networks and may need to authenticate
with several end nodes, then the elliptic curve cryptography applications are more likely to
be performed within tighter latency. In this application scenario, increasing RF entries and
GF primitive units will improve the performance of ECCl applications. Table 4.13 illus-
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Table 4.13: ECCl applications performance with different system configurations.

Current Double RF Double alu/RF
4-way 32-bit Datapath 2x 4-way 32-bit

# of primitive units/RF entry
GF mult 16 16 32
GF sq 28 28 56

RF 16’ 32-bit 32’ 32-bit 32’ 32-bit
Total Area

(µm2) 9586
11,838

23.5% more
16,830

76% more
233-bit
Mult

439 cyc
8.4×

300 cyc
12.2×

194 cyc
20×

233-bit
Square

136 cyc
2.9×

128 cyc
3.1×

96 cyc
4.1×

Point
Addition

5302 cyc
6.5×

4019 cyc
8.6×

2909 cyc
11.8×

Point
Doubling 2,895 cyc 2,263 cyc 1,667 cyc

233-bit
MultInv

38,372 cyc
3.6×

35,126 cyc
4×

26,642 cyc
5.2×

112-bit security
Scalar Mult. 775k cyc 639k cyc 484k cyc

trates the performance comparison among different system configurations. The doubling
RF entries configuration speedup the scalar multiplication by 20% with 23% area overhead
while the configuration doubling both ALU and RF entries speedup the scalar multiplica-
tion by 60% with 75% area overhead. The proposed GF processor can be scaled to other
system configurations if the target application areas migrate.

4.3.5 Comparison to ASICs

Comparing to AES. Compared to the smallest AES ASIC from Intel [114], our Galois field
arithmetic unit, which supports both encryption and decryption, is smaller than the total
area of the encryption and decryption datapath combined, as illustrated in Table 4.14. With
63.5% additional area in total, our processor can support not only the different modes of
AES, but also various error correction codes and efficient arithmetic support for asymmetric
cryptography–ECCl.

On the other hand, programmable solutions are known to consume more power than
their ASIC counterpart. Our design consumes 6× more energy per bit compared to the
most energy efficient compact AES ASIC design [115]. For systems that are extremely
power constrained (i.e., 100s of µW ), the ASIC remains a more suitable choice. How-
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Table 4.14: Area Comparison with Smallest AES ASIC

Area (um2)
Scaled to

28nm

Intel [114]
Encryption Decryption Total

2800 3482 6282
This
work

GF arithmetic unit Total
5760 10272

Table 4.15: Comparison with the Most Energy Efficiency Compact AES ASIC

Scaled to 28nm
0.9V 100MHz

Power
(uW)

Throughput
(Mbps)

Energy Efficiency
(pJ/b)

Zhang [115] 236 38 6.21
This work 431 12.2 35.5

ever, if the system needs flexibility, than our design remains a better choice than using the
CPU to support that flexibility. To achieve flexibility with an ASIC would require placing
multiple ASIC’s on the die, consuming area and increasing cost. Moreover, our solution
allows flexible coding and cryptography algorithms to be updated. So for flexible designs
concerned with area constraints, our design is preferred.

We do not present any other complete energy efficiency and area comparison at the
application level. Other coding and asymmetric cryptography ASIC solutions [77, 78, 79,
116] include implementations with very different features that are either not reported or
ambiguous. However, this does not affect the conclusion that a multiple ASIC solution will
consume more area than our solution, given the smallest AES [114] is over 60% of our
total area.

Comparison to GF Multiplier ASIC. The work in [117] presents a single cycle 64-bit
Galois field multiplier for on-die acceleration of public key encryption for a high through-
put processor. After scaling it down to 28nm, this GF multiplier accelerator consumes 1.25
mW at 0.9V and 100 MHz, while our GF processor including both arithmetic unit and con-
trol logic consumes 0.43 mW under the same condition. The area of our GF processor is
77% of this 64-bit GF multiplier accelerator. In addition, our solution can be programmed
to support smaller bit-width operations, which are critical for flexible coding support. Our
proposed processor consumes 4× energy per 64b multiplication operation partially due to
the register file and control overhead and to the extra cycles for accumulation.

In summary, comparing to ASIC solutions, we provide programmability to support
various algorithms in different applications. The unified underlying datapath allows us to
address the flexibility within a very small area. The efficient arithmetic support maintains
the cost of this flexibility within an affordable region for an IoT device.
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4.4 Related Works

In previous works, flexible designs were only employed within a particular application (RS,
AES, or ECCl), and not optimized to support functionality across the entire GF application
space. Previous work [96][97] focused on binary Galois field arithmetic optimizations for
very long bit widths, targeting for only the ECCl domain. Moreover, they focus on achiev-
ing very high throughput, which is different from the IoT space that this work focuses on.
Previous works, typified by [118], propose configurable and high throughput solutions for
symmetric cryptographic algorithms with efficient table lookup support. [119] addresses
both AES and ECCl in the same processor. In their work, AES and ECCl have an individual
computation datapath, while the control and memory are shared among two cryptographic
methods. This is different from our implementation, where AES and ECCl utilize the same
computation datapath by sharing small bit-width SIMD operations and long bit-width op-
erations. Compared to the work of [120, 121, 122], which supports RS coding with various
parameters, we can perform not only RS codes but also other coding schemes in Galois
fields. The work in [123] presents optimization for ECCl on both binary and prime do-
main, but only on large bitwidths. The low power IoT devices typically prefer binary Ga-
lois Field due to its neat implementation, thus we don’t consider to support a prime Galois
Field. However, we are not just designing in the large GF for ECCl applications. We design
for a broader application domain that includes both small and large bitwidth for both ECCl,
ECCr, and AES applications.

4.5 Conclusion

In this work, we presented a light-weight Galois field processor, providing efficient support
for both flexible information coding and secure connectivity on IoT devices. We described
the design challenges and proposed a flexible bitwidth Galois field arithmetic unit com-
posed of two types of primitive units. Complicated instructions, including multiplicative
inverse and long bit-width partial product were supported by selectively connecting these
primitive units. Configurable SIMD instructions were implemented to exploit the paral-
lelism in coding and cryptography. The arithmetic unit was integrated into a two-stage
in-order processor. Several coding and symmetric/asymmetric cryptography kernels were
mapped onto our architecture, exhibiting a 5 − 20× speedup across kernels. We demon-
strated the effectiveness of our GF processor by synthesizing it in a 28nm technology,
where it consumed just 431µW at 0.9V and 100MHz, while only requiring a place/route
area of 0.0103 mm2.
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Finally, we demonstrated the feasibility of a unified architecture to enable coding flex-
ibility and secure wireless communication in the low power IoT domain. The energy ef-
ficiency of IoT wireless communication can be enhanced by enabling dynamic adaptation
to the error coding schemes in various channel conditions on the proposed architecture.
Meanwhile, secure communication was realized via efficient support for both asymmetric
and symmetric cryptography on the same hardware platform.
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CHAPTER 5

Conclusions

As the number of IoT devices increases rapidly and many billions of devices communicate
with each other and connect to the Internet, wireless communications will play a critical
part. This dissertation investigated both the system design and architecture design for flex-
ible, energy efficient and secure wireless communications solutions for two categories of
IoT devices: ultra-small millimeter-scale IoT nodes and standard compliant IoT devices.

For the ultra-small millimeter-scale IoT nodes, on which none of the standard com-
munications can be supported, conventional communication technology cannot be applied
directly. Our solution was an energy-autonomous, self-contained wireless communica-
tions system design, presented in Chapter 2, to optimally utilize the scarce energy/power
resources. In Chapter 2, the unique millimeter-scale communication system design con-
siderations were discussed at first. Then a new synchronization protocol was proposed
by exploiting the system asymmetry between sensor nodes and the gate-way, and a new
modulation scheme was specialized for the ultra-small IoT nodes. The detailed mathe-
matical models of modulation, coding, synchronization, energy consumption and data rate
of the proposed system were presented. The dynamic link adaptation problem for vari-
ous objective functions were formulated mathematically. The simulations were conducted
to quantify the optimum results, and the impact of different system configurations were
analyzed to guide system designers toward the energy optimized communication system
for ultra-small IoT sensor nodes. In a system where all components including the battery,
energy-harvesting cells, the RF antenna, reservoir capacitors, transceiver circuits, etc, are
integrated within a millimeter-scale form factor, we show an energy optimized wireless
communication system design can obtain orders of magnitude improvements in wireless
communication energy efficiency.

The focus of the remaining chapters of this dissertation was on standard compliant
wireless communications in the IoT application domain. Two architectural designs were
presented: the IoT SDR baseband processor and the Galois field processor.
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The IoT SDR architecture was proposed as a programmable and low power solution for
baseband processing in Chapter 3. The fundamental algorithms in communications sys-
tems on IoT devices were analyzed and then used to define a microarchitecture design that
supports many IoT standards and custom nonstandard communications. The solution that
resulted was a custom SIMD execution machine coupled with a scalar unit. Several archi-
tectural optimizations were introduced including efficient streaming computation, flexible
bit-width, optimized vector reduction operations as well as low power techniques such as
voltage scaling and clock gating. A comprehensive evaluation on power and area was con-
ducted. The single IoT SDR datapath is placed and routed to fit an area of 0.074mm2 with
a sub-mW power consumption in a 28nm technology. Two representative upper bound sys-
tems, 802.15.4-OQPSK and BLE were mapped onto the IoT SDR architecture. The peak
power of the proposed full baseband system is below 2mW , which is only 8% of the total
system power, demonstrating the value of baseband SDR in the low power IoT domain.

The light-weight Galois field processor in Chapter 4 was presented to provide efficient
support for both flexible information coding and secure connectivity on IoT devices. Sev-
eral error correction codes and cryptography kernels were analyzed to identify the shared
fundamental operations and the design challenges. A flexible bitwidth GF arithmetic unit
composed of two types of primitive units—multiplication and square—were proposed. The
single cycle complex instructions that include multiplicative inverses and 32-bit GF product
are implemented by different connections of primitive units. These configurable four-way
8-bit SIMD instructions were employed to exploit the parallelism in coding and cryptog-
raphy datapaths. The extremely long bit-width (> 100bit) multiplication was efficiently
handled by iteratively utilizing a single-cycle 32-bit multiplier. The GF arithmetic unit is
integrated into a two-stage in-order processor. This GF processor exhibits a 5-20× speedup
across a range of error correction codes and symmetric/asymmetric cryptography applica-
tions. This GF processor consumes 431uW at 0.9V , 100MHz while running AES at
12.2Mbps in a 28nm process within an area of 0.01mm2. Thus, the feasibility of a uni-
fied processor architecture to enable coding flexibility and secure communication in low
power IoT wireless was demonstrated. By adapting the coding parameters for various
noise/interference conditions, the energy efficiency of IoT wireless communications can be
enhanced. Meanwhile, both symmetric and asymmetric cryptography processing can be
efficiently supported on the same underline hardware.

A wireless system architecture combining both an SDR baseband processor and a light
weight Galois field processor is able to: 1) address many standard and nonstandard commu-
nications; 2) capture standard evolution by software updating; and 3) obtain better energy
efficiency by dynamically adapting system configurations, such as data rate, modulation
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schemes, and coding parameters, to different operating scenarios. At the same time, se-
curity aspect of IoT communications can be realized by efficient implementation of both
symmetric and asymmetric cryptography applications on the same GF processor.

In conclusion, designing flexible, energy efficient and secure wireless communications
solutions are essential in the area of IoT applications.
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