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ABSTRACT 

Synaptic connections are fundamental units of neuronal communication in the brain. 

They are composed of precisely opposed pre- and postsynaptic specializations, and these 

structures are dynamically regulated to adapt to changing needs of neuronal circuits. While 

mechanisms that regulate the postsynaptic composition of synapses are highly studied, less is 

known about presynaptic regulation. Within presynaptic terminals, synapse assembly requires 

the formation of active zones (AZs) and synaptic vesicle (SV) release machinery at synapses. An 

important role in presynaptic assembly has been assigned to a kinesin-3 family member, Unc-

104/Imac/KIF1A. Unc-104/Imac/KIF1A is required for the delivery of synaptic components and 

SVs to nascent synapses. However, its distinct synaptic phenotype from other kinesins and the 

complexity of the phenotype is not well understood. 

This thesis work describes how the synaptic defects of Drosophila unc-104 mutants can 

be rescued by inhibiting the Wallenda (Wnd)/DLK MAP kinase signaling pathway. This 

pathway has been previously identified as a regulator of axonal damage signaling and 

presynaptic terminal morphology. The accessible genetic tools in Drosophila (reviewed in 

Chapter II) allow for characterization of the mechanistic relationship between Wnd/DLK and 

Unc-104. Wnd/DLK signaling becomes activated in unc-104 mutants, and inhibits synapse 

formation independently of Unc-104’s transport functions by controlling the levels and timing of 

the expression of AZ and SV components (Chapter III). In order to understand the activation 
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mechanism of Wnd signaling, multiple possibilities have been examined (Chapter IV). 

Cumulative findings lead to a model that accumulated presynaptic proteins in the cell body of 

unc-104 mutants triggers the Wnd signaling pathway, which then down-regulates presynaptic 

protein levels. In this fashion Wnd signaling may function as a stress response pathway that 

regulates the expression level of synaptic proteins according to their ability to be transported in 

axons. This model also raises an interesting possibility that DLK activation may contribute to 

synapse malfunction and loss in the aged or diseased nervous system. 
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CHAPTER I. INTRODUCTION 

1.1 Presynaptic development is regulated via highly orchestrated mechanisms including 

trafficking: 

The nervous system enables an animal to control its body and respond to environmental 

stimuli. These functions rely on the brain’s structural and functional units: neurons and the 

connections they make with each other. These connections, called synapses, are locations where 

two cells meet and are determined by the specific organization of molecules within each cell at 

the sites of contact. Machinery to promote release of a neurotransmitter signal must be organized 

on the presynaptic side, while machinery to detect the signal must be organized on the 

postsynaptic side. Synapses form during development, are dynamically regulated during 

developmental processes of circuit refinement and can also be modulated and reorganized in the 

adult nervous system. Synapse formation and its regulation are critical for the function and 

maintenance of neuronal circuits, and hence is important for nearly every function of brain, 

including sensory processing, motor output and memory formation. Mis-regulated assembly or 

disassembly of synapses has been implicated in autism, schizophrenia and mental retardation and 

in neurodegenerative diseases, including Alzheimer’s disease and ALS (Henstridge et al., 2016; 

Volk et al., 2015). 

1.1.1 The structure and dynamics of presynaptic and postsynaptic specializations are critical for 

synaptic release 
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At most synapses, chemical signals called neurotransmitters are packaged within synaptic 

vesicles (SVs), which can be released as individual units when the nerve fires an action potential. 

Neurotransmitters then cross the space between the pre and post-synaptic membranes, called the 

synaptic cleft. The receptors on the postsynaptic membrane bind neurotransmitters and gate a 

wide range of signals in the post-synaptic cell, depending on the receptor type. To enable this 

neurotransmission, the molecular composition is distinct across the synaptic cleft.  On the 

presynaptic side, transmitter release requires SV fusion which is mediated by the SV release 

machinery, containing SNAp REceptors (SNAREs), which brings SVs close to the plasma 

membrane, and Synatotagmin1, which senses the calcium influx from an action potential and 

promotes membrane fusion. Prior to SV fusion, SV docking and priming is required to locate 

SVs in close proximity to sites of release and is mediated by SNAREs and a specialized 

structure, known as the active zone (AZ) (Rizo and Xu, 2015; Südhof, 2012). On the 

postsynaptic side neurotransmitter receptors cluster at electron dense Postsynaptic densities 

(PSDs). PSDs also contains a number of cytoplasmic signaling molecules that act downstream to 

receptors and scaffolding proteins that stabilize and organize receptors and signaling molecules 

(Sheng and Kim, 2011). Consistent with functional coupling, AZs and PSDs are always closely 

opposed to each other in mature and healthy synapses.  

The composition and structure of PSDs is dynamically regulated during development and 

activity-dependent synaptic changes. During synaptogenesis in mammalian organisms, the 

expression of many PSD proteins increase (Petralia et al., 2005; Sans et al., 2000) and GluN2B 

glutamate receptors are replaced with GluN2A glutamate receptors in a controlled manner in 

many different types of synapse (Matta et al., 2011; Sans et al., 2000; Yoshii et al., 2003). In 

adult nervous system, PSDs undergo constant molecular remodeling through regulated AMPA 
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glutamate receptor trafficking, scaffolding protein modification and degradation, and 

cytoskeleton reorganization (Sheng and Kim, 2011; Shepherd and Huganir, 2007). This 

remodeling is more dramatic upon activity and underlies activity-dependent change of synaptic 

strength, found in long-term potentiation (LTP) or long-term depression (LTD) (Inoue and 

Okabe, 2003). While the composition and regulation of PSDs have been highly studied, the 

mechanisms that regulate the assembly and disassembly of presynaptic structure are still poorly 

understood. 

The AZ localize in close proximity to the SV release machinery and facilitates SV 

docking and priming, recruitment of voltage gated calcium channel (VGCC) and specifies 

locations for precisely opposed pre- and postsynaptic specializations. Under Electron 

Microscopy (EM), an AZ appears as electron-dense structure and is surrounded by numerous 

SVs. AZs in different synapse types have different morphologies, ranging from a ‘disc’ in the 

vertebrate central nervous system, a ‘string’ in the vertebrate neuromuscular junction (NMJ), to a 

‘ribbon’ in the vertebrate retina and cochlear hair cells. At the Drosophila NMJ it appears 

universally as a ‘T’ bar. The AZ contains multiple molecules and its core components are 

conserved across animal kingdom. These include Rim, Rim-binding protein, ELKS, Liprin-a and 

Unc-13 (Südhof, 2012). These core components interact with additional components at synapses, 

including SNAREs (SV fusion machinery), VGCC (calcium influx upon action potential), Syd-1 

(regulating synapse assembly) and Piccolo and Bassoon (SV recruitment).  

The precise structure and mechanism of assembly for AZs is still poorly understood and 

is the subject of current investigation (Petzoldt and Sigrist, 2014). The current model is that cell 

adhesion molecules (CAMs) from both pre- and post-synaptic compartments arrive first and 

define the location of the synapse through their transynaptic interaction. This is followed by the 
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arrival of postsynaptic receptors and AZ organizers, Liprin-α and SYD-1. Brp/ELKS, a major 

structural component of the AZ is recruited later (Figure 1.1). This model is based on evidence 

from super resolution imaging and functional analysis carried mostly at the Drosophila NMJ 

(Fouquet et al., 2009; Kaufmann et al., 2002; Zhen and Jin, 1999). Rim, Rim binding protein and 

Unc-13 are important for synaptic transmission and AZ function, but AZs can nevertheless form 

in their absence (Aravamudan et al., 1999; Graf et al., 2012; Jung et al., 2015; Koushika et al., 

2001; Liu et al., 2011; Richmond et al., 1999). Two isoforms of Unc-13 were found in 

Drosophila and are recruited by Liprin-α and Brp separately (Böhme et al., 2016). The assembly 

steps for Rim and Rim-binding protein are not clear, except Rim-binding protein tightly 

associates with Brp (Siebert et al., 2015). 

After the core of AZs is in place, the release machinery components, including VGCC 

and target-SNAREs (t-SNAREs), need to localize to AZs (Gasparini et al., 2001; Kasai et al., 

2012; Li et al., 2007). While the VGCC is likely recruited by Brp/ELKS and Rim binding 

protein, t-SNAREs distribute broadly on the axon membrane (Südhof and Rothman, 2009) and 

whether an AZ recruitment mechanism exists for t-SNAREs is not clear. As the synapse 

maturates, it is not clear whether presynaptic structure and composition undergoes changes, 

comparable to postsynaptic remodeling (McMahon and Díaz, 2011). The presynaptic 

compartment forms a button-like bouton, which enlarges in size and become filled with SVs. 

While presynaptic boutons at CNS synapses are thought to contain one site of release and one 

AZ, the boutons at the larval NMJ grow to contain multiple AZs and form multiple synaptic 

contacts. This structure of the bouton is likely coupled to the process of synapse formation since 

mutations that disrupt the normal morphology of boutons commonly cause significant 

impairments to synaptic transmission (Menon et al., 2013). 



5 
 

 

1.1.2 Control of presynaptic assembly 

To tune its function within a circuit, a neuron tightly controls the number and structure of 

synapses. On the presynaptic side, there are three main features that a neuron can modulate to 

regulate the number and structure of its presynaptic contacts. It can modulate (1) the assembly of 

the AZs and SV release machinery from individual components; (2) the expression of 

components that are needed for AZs and SV release machinery; and (3) the transport and 

localization of these components to presumptive or existing synapses. Notably, compared to the 

long-lasting neuron, the presynaptic proteins are ultimately degraded. The half-life of most 

presynaptic proteins examined thus far (including ELKS, Synaptotagmin1 and SNAREs) is at the 

range of days or weeks (Rosenberg et al., 2014). Thus a continuous replenishment of the 

presynaptic proteins to the AZs and SV release machinery through (1) to (3) are also critical for 

the maintenance of synaptic structure and function in the course of a neuron’s life. 

Though little is known on (1-3), some recent studies are beginning to reveal new 

information. Much of these recent development comes from studies using the Drosophila NMJ. 

The accessible genetic and molecular tools in Drosophila (see Chapter II) and the amenability of 

the larval NMJ to visualization are great advantages that allow this synapse to serve as a ‘model 

synapse’. In addition, the Drosophila genome contains only a single copy of most AZ genes, 

compared to 3 to 4 paralogs for each AZ core component in mice (Südhof, 2012). Here I 

summarize our current understanding of the three processes (1-3) in synapse regulation. 

In regulating the assembly of AZs and synapses, Liprin-α, SYD-1 and Rab3 play 

important roles. Liprin-α and SYD-1 interact with each other and function closely in organizing 

AZ morphology (Dai et al., 2006; Kaufmann et al., 2002; Owald et al., 2010, 2012; Spangler et 
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al., 2013; Zhen and Jin, 1999). They appear at nascent synapses before the arrival of other AZ 

components and hence initiate important steps in AZ assembly (Fouquet et al., 2009; Owald et 

al., 2010). Interestingly, the loss of Syd-1 or Liprin-α leads to aberrant localization of synaptic 

material in axons or presynaptic specializations in dendrites (Hallam et al., 2002; Li et al., 2014), 

reflecting their roles in determining AZ localization. Rab3 was originally identified as a SV 

protein, and interacts with Rim (Rab3-interacting molecule) to prime SVs for release (Fischer 

von Mollard et al., 1990; Wang et al., 1997). Later, an additional role was identified for 

Drosophila Rab3 in regulating the initiation step of AZ assembly: mutations in rab3 and its 

regulators have reduced numbers of AZs and these AZs grow to an abnormal size (Bae et al., 

2016; Graf et al., 2009).  

 Whether and how the expression of presynaptic proteins is regulated in synapse 

formation is not clear. But an increasing amount of evidence suggests the existence of expression 

regulation. Work from Drosophila has revealed dynamic expression profiles of many presynaptic 

genes during development, with their peak expression coinciding with the timing of synapse 

formation during embryo and pupal stages (Graveley et al., 2011). In a ribosomal profiling study 

in Drosophila photoreceptor neurons, the translation of many presynaptic protein is regulated 

specifically at the onset of synaptogenesis (Zhang et al., 2016). Studies using Drosophila visual 

system also suggest a dynamic change of presynaptic proteins in adults: the expression of Brp 

displays circadian changes at the neuropils of Drosophila lamina (Górska-Andrzejak et al., 2013) 

and the expression of Brp, Liprin-α and Rim binding protein, but not SYD-1 and VGCC, is 

reduced upon increased synaptic activity (Sugie et al., 2015). This reduction of presynaptic 

expression may be mediated by targeted degradation at synapses, which has been shown as an 

effective pathway to regulate synapse function (Speese et al., 2003; Waites et al., 2013; Yao et 
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al., 2007). Though the importance of these expression change is unclear, it is interesting to note 

that the expression of Dscam, a cell adhesion molecule, regulates the morphology of presynaptic 

terminals in Drosophila larval sensory neurons (Kim et al., 2013). Aberrant expression of 

presynaptic proteins are also implicated in neuronal pathology (Beneyto et al., 2007; Jang et al., 

2014; Moechars et al., 2006). 

Another important, but poorly understood process that is crucial for synapse formation is 

the trafficking of presynaptic components. Presynaptic proteins are generally thought to be 

synthesized in the cell body and trafficked to synapses via the fast axonal transport machinery. 

The transport of vesicle-associated proteins are the best studied. SVs carry vSNARE proteins 

(such as Synaptotagmin and Synapsin) and transporters of neurotransmitter (such as the 

Vesicular Glutamate transporter (VGlut)).  Dense core vesicles (DCVs), which are named based 

on their distinct electron-dense appearance by EM, are known to contain neuropeptides and 

likely heterogeneous and diverse according to content. One type of DCVs carries the AZ 

components Piccolo and Bassoon and thus are named Piccolo Bassoon transport vesicles (PTVs). 

PTVs (as characterized in culture hippocampal neurons) are found to have a uniform size of 80 

nm and associate with other AZ regulators or components including Unc-18, Rab3, SNAREs 

(Syntaxin and Snap25) (Shapira et al., 2003; Zhai et al., 2001). Based on quantitative 

comparisons of immunostaining for Rim, Piccolo and Bassoon associated with PTVs versus 

AZs, a ‘unitary’ model was proposed that two or three PTVs could fuse to form a complete AZ. 

Other studies suggest ‘co-transport’ of PTVs and SVs, based on nearby localization of their 

associated proteins under light microscopy and EM in cultured hippocampal neurons (Ahmari et 

al., 2000; Tao-Cheng, 2007). These studies propose that AZ components are pre-assembled on 

vesicles before they arrive at synapses. This ‘preassembling’ theory likely requires a selective 
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mechanism by which AZ components are sorted and enriched on PTVs. Where and how this 

occurs is currently unknown. It is also worth noting that no PTV has been found in invertebrates 

and there is no direct invertebrate homologue of Piccolo and Bassoon, even though AZ 

components and SVs are found co-transported frequently in C. elegans (Wu et al., 2013). In 

Drosophila, the AZ component Fife has been identified as a hybrid molecule of Piccolo and 

Rim-like protein, though the sequence similarity is not high (Bruckner et al., 2012). Whether a 

Fife-associated vesicle or a PTV-equivalent vesicle exists in invertebrates remains unidentified. 

The trafficking of synaptic components to synapses requires exiting the cell body into 

axons, anterograde transport through axons and cessation of transport at an appropriate synaptic 

destination. Very little is known for how each of these events is regulated for different synaptic 

cargos. Despite emerging evidence of a cargo sorting mechanism (Kuijpers et al., 2016; Maeder 

et al., 2014), it is not clear how synaptic proteins are packaged into or with vesicles especially 

considering many presynaptic proteins including AZ components are not transmembrane 

proteins. Presumably, proteins and vesicle precursor cargos are then guided into axon and 

shipped along axon via kinesin-driven transport on microtubules. However which of the many 

kinesin family members are involved in different stages of transport is unclear and a basic 

assignment of roles for individual kinesins to cargos has yet to be clearly laid out. Finally, the 

presynaptic proteins needs to disassociate from kinesins at the proper synaptic location and a 

small G protein, ARL-8 is proposed to promote this process by inhibiting the binding between 

cargos and the kinesin (Wu et al., 2013). How ARL-8 is regulated and whether other regulators 

are involved remains unclear. 

 

1.1.3 Unc-104/Imac/KIF1A is essential to synapse formation 
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An important role in transporting many presynaptic components has been assigned to a 

kinesin-3 family member, Unc-104/Imac/KIF1A. Mutations in this gene leads to severe synaptic 

defects in C. elegans, D. melanogaster and mice. These defects include a profound depletion of 

AZs, SVs and DCVs from synapses and severely impaired synaptic transmission (Barkus et al., 

2008; Gong et al., 1999; Otsuka et al., 1991; Pack-Chung et al., 2007; Yonekawa, 1998). These 

defects are also accompanied by a substantial accumulation of vesicles and synaptic proteins in 

the cell body. Thus, despite limited biochemical evidence, it has been interpreted that Unc-104 

directly transports presynaptic components in axons. Studies in both Drosophila and C. elegans 

suggest that Unc-104 is not required for the initial localization of AZs to presynaptic terminals 

(Hall and Hedgecock, 1991; Pack-Chung et al., 2007), however unc-104-null mutants fail to add 

additional AZs during the expansion of the developing Neuromuscular Junction (NMJ) terminal. 

It is therefore possible that Unc-104 regulates AZ localization and assembly through an indirect 

mechanism. Besides its role in early development, Unc-104 has been recently shown to be 

important for synaptogenesis in learning progress and synapse integrity in aging (Kondo et al., 

2012; Li et al., 2016). 

A separate kinesin family member, Kinesin-1, is also functionally implicated in the 

transport of SVs and AZ components. However, mutations that disrupt kinesin-1 function, 

exhibit distinct phenotypes from unc-104 mutants: SV associated proteins and AZ components 

accumulate aberrantly in axons (Gindhart et al., 1998; Kurd and Saxton, 1996; Siebert et al., 

2015). In contrast, the accumulation in unc-104 mutants are restricted to cell bodies and not 

axons (Otsuka et al., 1991; Pack-Chung et al., 2007; Yonekawa, 1998). Whether and how 

kinesin-1 and Unc-104/Imac/KIF1A coordinate with each other is unclear. Studies of motor 
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modification and adaptor choice would likely shed lights on these questions (Hirokawa et al., 

2009). 

The origin of my thesis work began with a surprising observation that many of the 

synaptic defects observed in unc-104 mutants could be rescued by mutations that disrupt 

signaling by the Wallenda/DLK MAP kinase. The initial observation was first made by Yao 

Zhang in Tobias Rasse’s at the University of Tubingin. After confirming the rescue with further 

characterization, my goal was to understand the relationship between Unc-104 and Wallenda. 

This work results in a better understanding of Unc-104’s function and reveals a role for 

Wallenda pathway in regulating synaptic structure and function. 

 

1.2 Wallenda/DLK regulates responses to axonal injury response and morphology of the 

presynaptic terminal 

Wallenda (Wnd)/DLK is a MAPK kinase kinase kinase, hence an upstream regulator of 

MAP kinase signaling. A kinase signaling cascade, comprised of Wnd, Mek4 (MAPKK) and 

JNK or p38 (MAPK) has been characterized in both vertebrates and invertebrates to regulate 

nuclear events in response to axonal injury. Conserved across species, Wnd/DLK function is 

critical for the ability of injured axons to initiate new axon growth (axon regeneration) 

(Hammarlund et al., 2009; Shin et al., 2012; Watkins et al., 2013; Xiong et al., 2010). Besides its 

critical role in axon regeneration, Wnd/DLK promotes axon degeneration and cell death in 

mammals (Miller et al., 2009; Pozniak et al., 2013; Watkins et al., 2013; Xiong and Collins, 

2012; Xiong et al., 2012). (For more details, see Chapter II) 

 Prior to its discovery as a regulator of axonal injury responses, Wnd/DLK was 

previously known to play a role in restraining synapse development. In Drosophila larval 
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motoneurons, Wnd levels are normally restrained by an E3 ubiquitin ligase (Hiw), and loss of 

this regulation activates Wnd signaling, which leads to a dramatic overgrowth of presynaptic 

terminals, featured by a >5 fold increase in the number of boutons and synaptic branches at every 

NMJ terminal. This overgrowth occurs with a decrease of bouton size and SV markers per NMJ 

(Collins et al., 2006). Similar overgrowth of presynaptic terminals was also observed in sensory 

neurons (Kim et al., 2013). Consistently, the loss of function (LOF) Wnd mutations cause bigger 

boutons at the NMJ (Klinedinst et al., 2013). Downstream signaling components including Jun 

N-terminal Kinase (JNK) and transcription factor Fos, are important mediators of these 

presynaptic terminal phenotypes. However the mechanism(s) that Wnd pathway employs to 

regulate bouton/NMJ morphology are not clear. It was also not addressed in Drosophila whether 

presynaptic assembly of AZs is affected by Wnd signaling. 

In C. elegans, misregulation of Wnd’s homologue Dlk-1 also leads to defects in synapse 

morphology, however the manifestation of the defect is slightly different from Drosophila. In 

GABAergic motoneurons, overexpression of DLK-1 or mutation in the ubiquitin ligase rpm-1 

leads to a reduced number of SVs at individual synapse and an abnormal distribution of AZs at 

individual synapses: some synapses contain 2-3 AZs instead of a single AZ (Nakata et al., 2005; 

Yan et al., 2009). Distinct from bouton-localized synapses in vertebrates and Drosophila, C. 

elegans form most synapses uniformly along axons (White et al., 1986). This uniformity is 

disrupted when DLK-1 is activated (Nakata et al., 2005), suggesting Dlk-1’s role in organizing 

synapses. Over-expression of Dlk-1is proposed to activate the downstream MAPK p38, which in 

turn enhances the mRNA stability of a transcriptional factor (cebp-1) (Yan et al., 2009). Thus far 

it is not clear how cebp-1 regulates the synapse distribution and SV level. Interestingly, some 

evidence suggests that activated Dlk-1 causes aberrant accumulation of postsynaptic glutamate 
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receptors (Park et al., 2009), however it is not known whether these postsynaptic defects have 

anything to do with the presynaptic defects. 

Given the importance of DLK at presynaptic terminal, it is tightly controlled in neurons. 

Pam/Highwire/Rpm-1 (PHR) is proposed to regulate Wnd/DLK through protein turnover. In phr 

mutants Wnd/DLK signaling is highly activated and accounts for most rpm-1-induced synaptic 

defects (except for a reduction of quantal content) (Collins et al., 2006; Nakata et al., 2005). In 

hiw mutants Wnd protein becomes enriched at the presynaptic axon terminals. This suggest that 

PHR may down-regulate Wnd at synapses, and this is consistent with localization of Rpm-1 and 

Dlk-1 at C. elegans synapses (Nakata et al., 2005; Zhen et al., 2000). PHR functions within an 

SCF complex with other components of ubiquitin ligase machinery, including FSN-1 (Liao et al., 

2004; Saiga et al., 2009; Wu et al., 2007). However it is still not entirely clear whether it 

regulates Wnd/DLK via direct ubiquitination. One study provided some biochemical evidence 

that the RING domain within Rpm-1 could stimulate ubiquitination of Dlk-1 in HEK cells, but 

important controls are missing from the experiment (Nakata et al., 2005). Interestingly, a recent 

study found that cAMP effector kinase increases the stability of Wnd/DLK (Hao et al., 2016). 

Given that PHR contains a domain that can function as an inhibitor of adenylate cyclase in vitro 

(Pierre et al., 2004; Scholich et al., 2001), an indirect mechanism via cAMP is possible (Hao et 

al., 2016). In addition, another study found that rpm-1 interacts with a phosphatase to 

dephosphorylate dlk-1 (Baker et al., 2014).  

My early observations that mutations that disrupt axonal transport (including unc-104 

mutants) activates a reporter of Wnd signaling drew my desire to understand the potential 

mechanism. My work has led me to a model for Wnd signaling that explains the synaptic defects 

in unc-104 mutants and the genetic interactions between Unc-104 and Wnd. In this model, Wnd 
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signaling is activated by the accumulation of presynaptic proteins due to defective transport 

caused by the loss of unc-104 and in turn downregulates synapse formation by inhibiting the 

expression of presynaptic proteins. Thus, I propose that Wnd regulates a negative feedback 

mechanism to match the expression of presynaptic proteins to their transport capacity.  
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Figure 1.1: Overview of synaptic assembly, adapted from (Petzoldt and Sigrist, 2014) 
Cell adhesion molecules (CAMs) define the location of synapses through interaction between 
pre- and postsynaptic counterparts. NRX/NLG are Synaptic-specific CAMs and are identified 
critical for synapse assembly. SYD-2 (Liprin-α)/SYD-1 complex is recruited by NRX/NLG and 
then initiate the assembly of AZs by recruiting AZ components including Brp/ELKS, VGCCs 
and RIM. AZs dock and prime SVs and SV release machinery mediates calcium-dependent SV 
fusion during synaptic transmission. 
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Figure 1.2: Model for the molecular mechanisms underlying synaptic defects when Unc-104’s 
function is reduced. 
The formation of synapses require the synthesis of presynaptic components (including AZ 
components (purple) and SV components (green)) and the delivery of them through axonal 
transport to proper locations in synaptic terminals. While the delivery of SV components solely 
relies on Unc-104 (black), the delivery of AZ components likely involves another kinesin (grey). 
When Unc-104’s function is impaired/reduced, its capacity to transport SV components 
decreases, resulting in accumulation of presynaptic components in cell bodies. The increase of 
presynaptic proteins in cell bodies activates Wnd pathway, which initiates a signaling cascade to 
turn down the expression of presynaptic components. This directly reduces the amount of 
presynaptic components that are recruited by SVs (empty circle) and DCVs (grey circle) for 
transport. The defective transport and reduced presynaptic components together lead to 
insufficient material for synapse development and maintenance, and eventually manifests 
reduced number of synapses and mismatched pre- and postsynaptic structures. 
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CHAPTER II 

MECHANISMS OF AXONAL DEGENERATION AND REGENERATION: 

LESSONS LEARNED FROM INVERTEBRATES 

2.1 Introduction: 

Neurons and the connections that they make with each other typically need to persist for 

an animal’s entire life, even in the face of injury. How do nervous systems, including our own, 

cope with and respond to damage? It would be ideal if we simply could regenerate the damaged 

part, like a planarian which can regenerate an entire head de novo (Owlarn & Bartscherer, 2016). 

However most nervous systems across the animal kingdom lack such capacity. Instead, many 

nervous systems do their best to repair damaged axons and synapses. And in many cases of adult 

nervous systems, damaged axons and synapses are simply lost.  

Axons are thought to be particularly vulnerable components of neuronal circuitry. They 

are often exceptionally long: human motoneuron axons can reach lengths over 10,000 times the 

diameter of their cell body and even in small invertebrates such as Drosophila an axon can be 

200 times the cell body diameter. Such length can be a vulnerability: a problem occurring 

anywhere along the axon’s length could result in lost ability to communicate with downstream 

cells. Furthermore, because axons connect to distant sites, it can be difficult to re-establish lost 

connections, especially in the adult nervous system. During development, axonal growth to 

specific targets is directed via a series of growth promoting and guidance cues (Tessier-Lavigne 
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& Goodman, 1996). Many of these cues are only transiently present during nervous system 

development, and are largely absent in the adult system. 

In this chapter we review some important factors that mediate neuronal responses to 

axonal damage. We will emphasize here what has been learned from research using invertebrate 

model organisms (especially Drosophila and C. elegans), which has directed exciting discoveries 

of mechanisms that are conserved across the animal kingdom.  

2.2. Overview of Acute and Chronic models of axonal damage 

The response(s) that neurons make to axonal damage or stress can vary according to the 

types of damage and neuron type (Figure 2.1, and Table 2.1). However a simple determinant for 

classification is the duration of the harmful stimulus: acute (short term, cartooned in Figure 

2.1A-C) verses chronic (long term, cartooned in Figure 2.1D-E).  

Acute axon injuries can be induced experimentally by directly transecting or crushing 

nerves, or by micro-surgical cutting of individual axons using a high-energy laser. After such an 

injury, repair may be possible if the part of the axon that remains attached to cell body (the 

proximal ‘stump’) can grow again. The ability of an injured axon to re-initiate new axonal 

growth and eventually reconnect to its target (Figure 2.1Bi and Ci) is commonly termed axon 

‘regeneration’. Axon regeneration has been documented and studied in many invertebrate 

models, including cockroach, crickets, crayfish, squid, Aplysia, Great pond snail, earthworm, 

leech and more recently C. elegans and fruit flies (Table 2.1).  Is the ability to regenerate axons 

universal for invertebrate neurons? Probably not, since failures have also been documented 

(Ayaz et al., 2008; Song et al., 2012; Z. Wu et al., 2007). It is interesting that some of these 

failures occur after injuries in the Central Nervous System (CNS) (Ayaz et al., 2008; Song et al., 

2012), where stalled regeneration (Figure 2.1Bii), followed by degeneration of the proximal 
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stump (Figure 2.1Ciii) have been described. In the mammalian CNS, the failure to regenerate 

damaged axons is a major clinical impediment to recovery after brain and spinal cord injuries, 

hence the possibility that some aspects of this failure is shared with invertebrates, where it can be 

studied in a simple model system, is interesting and potentially exciting.  

While the proximal stump can either regenerate or fail to regenerate, the common fate of 

the ‘distal stump’, which is no longer connected to the cell body, is to degenerate (Figure 

2.1Biii). Most Drosophila neurons behave similarly to mammalian neurons by initiating axonal 

degeneration quite rapidly (within a day) after injury. This fast process, in theory, may allow for 

a ‘replacement’ by new growth from a regenerating ‘proximal stump’ (Figure 2.1Ci). However 

an injured ‘distal stump’ has been observed in some invertebrate animals (crayfish and leech) to 

persist for months after injury with no signs of degeneration (Frank, Jansen, & Rinvik, 1975; 

Hoy, Bittner, & Kennedy, 1967). In these cases, as well as in C. elegans, a process of re-fusion 

between the two separated stumps (Figure 2.1Cii) has been observed (Birse & Bittner, 1976; 

Hall, 1921; Hoy et al., 1967; Muller & Carbonetto, 1979; Neumann, Nguyen, Hall, Ben-Yakar, 

& Hilliard, 2011). Whether the repair is achieved by replacement (in Figure 2.1Ci) or fusion 

(Figure 2.1Cii), the two processes of axonal degeneration and regeneration need to be 

coordinated.  

Axonal damage can also occur in other scenarios of injury and stress which we define 

here as ‘chronic injuries’. These scenarios include prolonged presence of a neurotoxin (such as 

taxol and colchicine, which induce axonal loss), or the presence of a mutation which induces a 

persistent ‘stress’ to the integrity and function of the axon (Figure 2.1D). Mutations that are 

known to cause axonal and/or synaptic loss are often associated with inherited neurodegenerative 

disorders in humans (Saxena & Caroni, 2007). One such example are mutations in SOD1 gene 
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that cause degeneration of human motoneuron axons in patients affiliated with familial ALS 

(Fischer et al., 2004). In these cases, loss of synapses (Figure 2.1Ei) and/or axons (Figure 2.1Eii) 

is thought to precede the death of the neurons.  

A unifying feature of both acute and chronic models of axonal damage is the impairment 

of intracellular transport processes within axons. The transport of organelles and proteins in 

axons relies upon the action of motor proteins, which physically carry their cargo by walking 

upon microtubule tracts. In acute axonal injuries, the delivery of molecules from the cell body to 

the distal axon is irreversibly blocked due to the fact that they are no longer physically 

connected. In chronic models, although the connection remains, the process of axonal transport is 

also thought to be persistently impaired (Figure 2.1D). This has been shown by altered 

movement of fluorescently tagged organelles such as mitochondria or synaptic vesicle 

precursors, or by accumulations of organelles in axons or cell bodies (Millecamps & Julien, 

2013). Mutations that disrupt the cytoskeleton, comprised of the microtubule tracts and 

associated molecules, often lead to degeneration of axons and/or synapses (Bounoutas et al., 

2011; Pielage, Fetter, & Davis, 2005; M. K. E. Schaefer et al., 2007).  

In contrast to acute injuries that completely disconnect cell bodies with their synaptic 

targets, neurons in a chronic injury condition have the chance to try to adapt to the stress and 

make their axons more resilient to degeneration (Figure 2.1Eiii). While adaptive changes and 

mechanisms are still very poorly characterized, they may potentially entail an induced expression 

of chaperones and transport of additional cytoskeletal components into axons. Depending upon 

the severity and duration of the stress, this response may or may not be enough to maintain the 

axon and/or to prevent cell death. 
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The processes of degeneration, regeneration, and adaptation are all interesting from the 

perspective of human health. The mechanisms that neurons engage to either delay or accelerate 

axonal and synaptic loss and repair after injury could be valuable therapeutic targets for 

treatment of traumatic injuries as well as neuropathies and even potentially neurodegenerative 

diseases in which axonal loss occurs. 

2.3. Axon and Synapse loss 

The process of axonal degeneration after acute injury (Figure 2.1Biii) is highly 

stereotyped and is termed Wallerian Degeneration (WD), based on its first description by 

Augustus Waller in 1851. For a period of time after injury (termed the ‘lag phase’) the distal 

stump of the axon remains intact and is able to propagate action potentials (Beirowski et al., 

2005; Lubińska, 1977). In most cases, the lag phase is then followed by a rapid fragmentation 

phase, in which the axon breaks into many individual pieces, which are then phagocytosed by 

glia and immune cells (Bhatheja & Field, 2006). WD likely entails a cell autonomous chain of 

events that occur within the distal axon itself, hence can be considered as a ‘self-destruction’ 

pathway, akin to apoptosis. However WD appears to involve a molecular pathway that is quite 

distinct from apoptosis (Deckwerth & Johnson, 1994; Finn et al., 2000). The pathway itself and 

its molecular players are still at the early phases of being described, and studies in the 

invertebrate model organism Drosophila have led the way in this exciting area of study. 

In Drosophila, multiple approaches for inducing axonal injury and studying WD have 

now been described (Table 2.1; also see (Fang & Bonini, 2012)). Combined with the powerful 

genetics of this model organism, such approaches provide an ideal vehicle to uncover vital 

molecular mediators of the WD pathway.  Many of the injury approaches (such as cutting an 

antenna or a wing) are simple to carry out, enabling genetic screens to identify molecules whose 
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function is required for degeneration to occur.  For some of the approaches (including laser-

directed transection and nerve crush injuries in peripheral neurons of larvae which are 

semitransparent) the process of WD is amenable to detailed study of the cellular changes during 

the course of WD, including changes in intracellular calcium, mitochondria and cytoskeleton. 

Here we briefly highlight some of the discoveries made in Drosophila that have strongly 

influenced our understanding of WD.  

2.3.1 Central molecular regulators of WD 

(a) Sarm 

A heroic large-scale genetic mosaic screen in Drosophila led to the discovery of dSarm 

(Drosophila Sterile alpha and HEAT/Armadillo motif containing), as a critical molecular player 

in WD (Osterloh et al., 2012).  Neurons that are mutant in Sarm fail to degenerate distal axons 

after axonal injury. This role for Sarm role in promoting degeneration was then shown to be 

conserved in mammals and in C. elegans (Osterloh et al., 2012; Vérièpe, Fossouo, & Parker, 

2015). Although dSarm has been previously implicated in innate immunity and neuronal 

development (C.-Y. Chen, Lin, Chang, Jiang, & Hsueh, 2011; Chuang & Bargmann, 2005; 

Couillault et al., 2004; Liberati et al., 2004), a role in axonal degeneration would have never 

been guessed, highlighting the importance of forward genetic approaches. With Sarm’s central 

role in degeneration revealed, current work is now focused upon its mechanism. Domain analysis 

suggests that dimerization of Sarm’s TIR domains is sufficient to activate WD in uninjured 

axons and this activation leads to a rapid rundown of intracellular metabolites NAD+ and ATP 

(Gerdts, Brace, Sasaki, DiAntonio, & Milbrandt, 2015; Summers, Gibson, DiAntonio, & 

Milbrandt, 2016). Much work remains to be done to understand the molecular events that lead to 

the activation of Sarm and its downstream actions.  
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(b) Nmnat 

In contrast to the unanticipated discovery of Sarm, a potential role for Nicotinamide 

mononucleotide adenylyl transferase enzyme (Nmnat) had been suspected for years, ever since a 

gain-of-function mutation in the Nmnat1 enzyme was fortuitously discovered in the background 

of a mouse strain. WD fails to occur in these mutant mice, and this effect can be recapitulated in 

Drosophila neurons, by over-expressing the Nmnat enzyme (MacDonald et al., 2006).  

Loss-of-function studies in both Drosophila and mice suggest that endogenous versions 

of Nmnat enzymes in healthy neurons play a protective role to inhibit degeneration (Fang & 

Bonini, 2012; Gilley & Coleman, 2010; Hicks et al., 2012; Rallis, Lu, & Ng, 2013; Sasaki, 

Margolin, Borgo, Havranek, & Milbrandt, 2015; Wen, Parrish, He, Zhai, & Kim, 2011; Zhai et 

al., 2006). In many of these studies, depletion of Nmnat function leads to spontaneous axonal 

degeneration even in the absence of injury. To explain these observations, it has been proposed 

that Nmnat is an axonal ‘survival’ factor. Drosophila Nmnat and mammalian Nmnat2 are 

continuously transported into distal axons, where the protein is then rapidly turned over (Gilley 

and Coleman, 2010; Milde et al., 2013; Xiong et al., 2012; Figure 2.2).  Once disconnected from 

the cell body, the distal stump loses the supply of Nmnat from the cell body and its essential but 

still poorly understood survival function, which leads to the initiation of degeneration. 

What exactly the Nmnat enzymes do to maintain axon integrity is still not clear, and this 

is the subject of much investigation and discussion (Ali, Li-Kroeger, Bellen, Zhai, & Lu, 2013). 

It is clear that Nmnat enzymes need to localize in the cytosol (Figure 2.2A) and they become 

more potent at protecting axons from degeneration when they are targeted to axons (Avery, 

Sheehan, Kerr, Wang, & Freeman, 2009; Beirowski et al., 2009; Sasaki, Vohra, Baloh, & 

Milbrandt, 2009). The enzymatic activity for NAD+ synthesis also appears to be important 
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(Araki, Sasaki, & Milbrandt, 2004; Jia et al., 2007; Sasaki, Vohra, Lund, & Milbrandt, 2009). In 

line with this, a recent study has linked Sarm’s role in degeneration to a rapid rundown in NAD+ 

(Gerdts et al., 2015). However whether inhibiting NAD rundown is a direct action of the Nmnat 

enzymes has been difficult to address, and some studies have linked other metabolites on the 

NAD biosynthesis pathway with axonal degeneration (Conforti, Gilley, & Coleman, 2014).  

A quite different idea is that Nmnat performs an additional function that is separate from 

NAD+ synthesis, by acting as a molecular chaperone, akin to the function of heat shock proteins 

(Ali et al., 2013). This idea builds upon observations that Nmnat transgenes that are non-

functional for NAD synthesis activity can still have protective effects when over-expressed in 

Drosophila neurons (Zhai et al., 2006, 2008). Further, endogenous Nmnat isoforms become 

upregulated in several models of protein-folding disorders, and in these cases Nmnat protein is 

observed to co-localize with protein aggregates. In addition, Nmnat can facilitate the folding of 

denatured luciferase in vitro, possibly via its ATPase domain (Ali et al., 2016; Ali, McCormack, 

Darrand, & Zhai, 2011; Ali, Ruan, & Zhai, 2012; Zhai et al., 2008). While it is challenging to 

nail down a chaperone function in vivo, the idea remains attractive since other known 

chaperones (such as TBCE, CSP and Hsp70) are required for continued axon and synapse 

integrity (Fernández-Chacón et al., 2004; Rallis et al., 2013; M. K. E. Schaefer et al., 2007). 

(c) Potential Sarm and Nmnat independent pathways  

While axonal degeneration usually initiates within hours of injury in Drosophila and 

mammalian neurons, crayfish and leech axons have been observed to persist for months after 

injury (Ballinger & Bittner, 1980; Frank et al., 1975; Hoy et al., 1967). This implies the existence 

of mechanisms that has been adopted by some animals to maintain the integrity of distal ‘stump’ 

and/or inhibit degeneration. Do these axons fail to activate Sarm? If so, how and why is this 
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change achieved in these neurons? Or are there additional pathways involved. Interestingly, a 

recent study has documented WD in C. elegans which occurs independently of any manipulation 

to TIR-1, the C. elegans homologue of Sarm, or Nmnat (Nichols et al., 2016). This suggests that 

Sarm/TIR-1 may not universally promote degeneration in all neuron types, or may be utilized to 

different degrees in different contexts. A revisit to old observations of axonal degeneration in 

non-model organisms with contemporary techniques may help to reveal the origin and evolution 

of the degeneration program. 

2.3.2 Adaptive mechanisms to chronic stress 

Similarly to WD after injury, chronic stressors (such as cytoskeletal toxins and/or 

mutations) can also cause axonal degeneration (Figure 2.1D and Eii). Since in most cases 

degeneration is inhibited by manipulations that increase Nmnat activity, it is thought that 

degeneration in these models shares a common underlying mechanism with WD (Coleman & 

Freeman, 2010). However neurons in different injury models exhibit various tolerances to 

chronic stressors (Conforti et al., 2014). We posit that some of these differences are determined 

by whether the cell is able to make an adaptive response to delay the degeneration process 

(Figure 2.1Eiii). 

Some recent studies in Drosophila suggest that nuclear signaling pathways may become 

engaged in response to chronic stress and damage with an output that serves to enhance and/or 

maintain axon integrity. An important example is the upregulation of Nmnat expression and 

alternative splicing of Nmnat isoforms, which has been observed in response to proteotoxic 

stress, heat shock stress and hypoxia (Ali et al., 2011; Ruan, Zhu, Li, Brazill, & Zhai, 2015; Zhai 

et al., 2008). An additional pathway, discussed further in part III, is the DLK signaling pathway, 

which becomes activated in injured axons. In Drosophila motoneuron axons, this pathway 
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induces cellular changes that delay the process of WD, such that an axon that has been injured 

once becomes more resilient to degeneration after a second injury  (Xiong & Collins, 2012). The 

manifestation of this protective response only occurs for the proximal stump but not the distal 

stump, likely because the process involves the expression and transport of new molecules into 

axons.  

It is interesting that both Nmnat and the DLK kinase share commonalities in their 

regulatory mechanisms. First, both are transported in axons and associated with Golgi-derived 

vesicles (Figure 2.2A). Palmitoylation allows for this localization and is required for the rapid 

turnover of Nmnat (Milde, Gilley, & Coleman, 2013) and the function of DLK (Holland et al., 

2015) in mammalian neurons. While this has yet to be tested in invertebrate neurons, Drosophila 

Nmnat and DLK proteins contain palmitoylation consensus sequences. Second, the protein 

turnover of both Nmnat and DLK are regulated by a conserved ubiquitin ligase complex, whose 

signature component is a highly conserved PHR protein, named Highwire (Hiw) in Drosophila, 

RPM-1 in C. elegans and PAM in mice (Babetto, Beirowski, Russler, Milbrandt, & DiAntonio, 

2013; Brace, Wu, Valakh, & DiAntonio, 2014; Collins, Wairkar, Johnson, & DiAntonio, 2006; 

Nakata et al., 2005; C. Wu, Daniels, & DiAntonio, 2007; Xiong et al., 2010, 2012). Hiw 

therefore becomes an intriguing regulator (and is perhaps a coordinator) of adaptive responses to 

axonal damage (Figure 2.2).   

Finally, it is interesting to consider that many chronic paradigms of axonal injury can 

originate or manifest at presynaptic terminals. Several mutations that disrupt synaptic structure 

lead to axon and/or synapse degeneration (Burgoyne & Morgan, 2011; Fernández-Chacón et al., 

2004; Pielage et al., 2005; Wishart et al., 2012). Also, in many neuropathies, the most terminal 

connections of the axon are lost first, suggesting a ‘dying back’ mechanism, which may be 
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initiated by a toxic stimulus at the synapse (Yaron & Schuldiner, 2016). Since it has been 

suggested that a degeneration program may be initiated and/or restrained at synapses (Figure 

2.1Ei), the Hiw ubiquitin ligase complex gains even further cache, since Hiw and its homologues 

are known to localize to presynaptic terminals (A. M. Schaefer, Hadwiger, & Nonet, 2000; Wan 

et al., 2000; Zhen, Huang, Bamber, & Jin, 2000), and can inhibit synaptic degeneration in at least 

one chronic paradigm (Massaro, Pielage, & Davis, 2009). 

2.4. Axon and synapse repair 

For a damaged axon to grow (or re-grow) it needs to have a growth cone (Ertürk, Hellal, 

Enes, & Bradke, 2007; Tom, Steinmetz, Miller, Doller, & Silver, 2004). Many early studies in 

cultured neurons from Aplysia and cockroach (whose giant axons are very amenable to imaging 

and recording after injury in culture) have helped to describe cellular events that direct a 

transformation of a severed axonal stump into a growth cone: calcium influx triggered by the 

injury itself directs axon membrane resealing at the injury site (Davenport & Kater, 1992; M E 

Spira, Benbassat, & Dormann, 1993; Strautman, Cork, & Robinson, 1990; Yawo & Kuno, 1985; 

Ziv & Spira, 1995) and activation of local calcium-regulated proteases, which promote 

reconstructuring of neurofilaments and microtubules close to the stump ending (Gitler & Spira, 

1998, 2002; Micha E. Spira, Oren, Dormann, & Gitler, 2003). These events ultimately lead to the 

formation of a growth cone that has dynamic lamelopodia and filopodia (Baas & Heidemann, 

1986; Ertürk et al., 2007; Hellal et al., 2011; A. W. Schaefer et al., 2008). 

The ability of the growth cone to direct new axonal growth is associated with 

transcriptional and translational changes in the cell body. These changes are induced by signaling 

pathways that become activated in injured axons, and this ‘injury signaling’ appears to be 

mediated, at least in part, by molecules which are physically transported in axons (Hanz & 
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Fainzilber, 2006). Early studies in Aplysia led to the identification of several proteins that are 

retrogradely transported specifically in injured neurons (Ambron, Schmied, Huang, & Smedman, 

1992; R Schmied, Huang, Zhang, Ambron, & Ambron, 1993; Robert Schmied & Ambron, 1997; 

Y. J. Sung, Povelones, & Ambron, 2001; Y.-J. Sung, Walters, & Ambron, 2004; Zhang, 

Ambron, Mason, & Erskine, 2000). These findings inspired later studies in mammalian 

peripheral sciatic nerves, which have revealed critical components of “retrograde signaling” 

(Ben-Yaakov et al., 2012; Lindwall & Kanje, 2005; Perlson et al., 2005).  

Upon this foundation of knowledge from Aplysia and other invertebrate studies (Table 

2.1), our understanding of molecular pathways underlying regeneration was brought to an 

exciting new level in studies using C. elegans and Drosophila, which have enabled genetic 

screens and genetic dissection of pathways required for axonal growth after injury. (Detailed 

review can be found in (Byrne & Hammarlund, 2016; Hammarlund & Jin, 2014)). We’ll focus 

our discussion on what is perhaps the most important discovery, the elucidation of the 

DLK/Wallenda signaling pathway which detects and initiates responses to axonal damage.  

2.4.1 DLK/Wallenda is essential for axonal regeneration 

A role for the DLK kinase in axonal regeneration was first identified in a cleverly-

designed genetic screen in C. elegans (Hammarlund, Jorgensen, & Bastiani, 2007). The screen 

was built upon the observation that axons in β-spectrin mutant break spontaneously, however in 

response form new growth cones. Hammarlund and colleagues screened for mutants that failed 

to do so, and identified a signaling cascade governed by DLK kinase, which is essential for the 

transformation of axonal breaks into new growth cones. Importantly, dlk mutants have no 

obvious phenotype in axonal outgrowth during development (Collins et al., 2006; Miller et al., 
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2009; Nakata et al., 2005). These findings suggest that DLK carries out a specific post-

developmental role in regulating responses to axonal injury. 

Several points emphasize the importance of DLK as a central player in regulating the 

ability of injured axons to regenerate. First, the requirement for DLK in axonal regeneration 

appears conserved across multiple neuron types in C. elegans, Drosophila, and also in 

mammalian PNS neurons which regenerate (Pinan-Lucarre et al., 2012; Shin et al., 2012; Xiong 

et al., 2010; Yan, Wu, Chisholm, & Jin, 2009). Second, DLK functions as an upstream regulator 

of a MAP Kinase signaling cascade. A number of observations suggest that it is transported in 

axons and becomes acutely activated after axonal damage. Activated DLK or its downstream 

targets give rise to retrograde signaling to initiate a nuclear response , hence DLK appears to 

function as a regulator of signaling molecules that are retrogradely transported in axons 

(Bounoutas et al., 2011; Shin et al., 2012; Watkins et al., 2013; Xiong et al., 2010; Yan et al., 

2009). In mammalian neurons DLK has also been implicated in other processes that seem to be 

quite distinct from axonal regeneration: DLK promotes neuronal death after nerve growth factor 

withdrawal (Ghosh et al., 2011), and death after axonal injury in the CNS (Retinal ganglion cell) 

(Fernandes, Harder, John, Shrager, & Libby, 2014; Watkins et al., 2013; Welsbie et al., 2013), 

and in models for excitotoxicity (Pozniak et al., 2013). A shared component of all of these 

processes that activate DLK is the presence of stress and/or damage to the axon/synapse. The 

current unified view in the field is that DLK functions as a ‘sensor’ of axonal damage, with the 

downstream consequences of its activation varying depending upon context. 

The amenability of Drosophila and C. elegans to combining mutagenesis and genetic 

interaction analysis has provided insight into the cellular pathways and processes that appear to 

regulate DLK’s signaling functions in neurons. In C. elegans, a mechanism for direct regulation 
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by intracellular calcium has been described (Yan & Jin, 2012): an isoform of DLK binds to and 

inhibits the full-length form of DLK, and this inhibitory binding is released in conditions that 

elevate intracellular calcium. However, the sequences that mediate these interactions are not 

conserved in mammalian or Drosophila DLK, so there are likely additional important 

mechanisms for its regulation. Indeed a recent study has identified the cAMP effector kinase 

PKA as an important upstream activator of DLK in Drosophila and mammalian neurons (Hao et 

al., 2016).  

Interestingly, studies in all model organisms have noted DLK’s relationship with 

microtubules and the actin cytoskeleton. Induced cytoskeletal stresses, such as treatment with 

taxol or cholchicine, or mutations in cytoskeletal components (tubulin) or regulators 

(microtubule associated protein), lead to changes of structure and expression in neurons. 

Interestingly, many of these changes are suppressed when DLK is mutated (Bounoutas et al., 

2011; C.-H. Chen, Lee, Liao, Liu, & Pan, 2014; Marcette, Chen, & Nonet, 2014; Richardson et 

al., 2014; Valakh, Walker, Skeath, & DiAntonio, 2013). These findings imply that DLK acts 

downstream to these manipulations to the cytoskeleton, and indeed, DLK signaling becomes 

activated in mammalian neurons that are treated with cytoskeletal destabilizing agents (Valakh, 

Frey, Babetto, Walker, & DiAntonio, 2015; Valakh et al., 2013). Complementary to this point, it 

appears that a downstream effect of DLK signaling is the induction of alterations in cytoskeleton 

organization (Eto, Kawauchi, Osawa, Tabata, & Nakajima, 2010; Feltrin et al., 2012; Hendricks 

& Jesuthasan, 2009; Klinedinst, Wang, Xiong, Haenfler, & Collins, 2013; Lewcock, Genoud, 

Lettieri, & Pfaff, 2007) and tubulin expression (Nadeau, Hein, Fernandes, Peterson, & Miller, 

2005). These findings place DLK as both a sensor and effector to regulate cytoskeleton 

dynamics.  



30 
 

2.4.2 Is regeneration ‘programmed’? 

During development axons respond to specifically placed cues to direct their growth 

correctly, often over a long path that involves many intermediate targets, to find their appropriate 

synaptic targets. Is the same developmental process re-engaged for regeneration? The answer is 

likely both Yes and No. Extracellular factors are important for both development and 

regeneration. However, in mammalian PNS regeneration, where motor neurons can reinnervate 

their targets accurately after crush (Nguyen, Sanes, & Lichtman, 2002), nerve growth factors are 

released by Schwann cells and microphages rather than targets which are the main source during 

development. Schwann cell ‘tubes’ can physically confines axon outgrowth during regeneration, 

but not during development (Bhatheja & Field, 2006; Scheib & Höke, 2013). In invertebrates, 

little is known on the mechanism governing path-finding and reinnervation, though reconnection 

to original targets after axon injury has been observed in many species including cockroaches, 

crickets, leech, crayfish, Aplysia and snails (Allison & Benjamin, 1985; Benjamin & Allison, 

1985; Bodenstein, 1957; Case, 1957; Edwards & Sahota, 1967; Hoy et al., 1967; Muller & 

Carbonetto, 1979). However in instances where regeneration has been studied on a molecular 

level (in C. elegans and Drosophila) pathways that are distinctly required for regeneration and 

not for development have been most notable and well characterized. These include the 

DLK/Wallenda and PTEN/PI3K signaling pathways. In C. elegans, DLK is dispensable for axon 

outgrowth during development (Hammarlund, Nix, Hauth, Jorgensen, & Bastiani, 2009). 

Likewise, in the Drosophila mushroom body, neither PI3K nor DLK are required for axon 

outgrowth during development (Marmor-Kollet & Schuldiner, 2016). On the other hand, unc-

40/DCC is required for axon initial outgrowth during development (Chan et al., 1996; Keino-

Masu et al., 1996), but not axon regeneration (Gabel, Antonie, Chuang, Samuel, & Chang, 
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2008). These “regeneration-specific” pathways suggest that axon outgrowth and innervation after 

injury is intrinsically and uniquely programmed.  

The functional endpoint for axonal regeneration is to re-establish a functional circuit. 

Unless re-fusion occurs (as in Figure 2.1Cii) this requires a newly formed axon to re-form lost 

synaptic contacts (Figure 2.1Ci). While mechanisms that promote the growth of injured axons 

have been the topic of much investigation, there are very few studies to characterize whether and 

how synapses can be formed by regenerating axons. Studies of mammalian NMJ regeneration 

have provided insights into roles of extracellular matrix proteins (Skouras, Ozsoy, Sarikcioglu, & 

Angelov, 2011). But little is known about the intracellular pathways in neurons that promote 

regeneration of synapses. Synapse regeneration may share similarities in ‘programming’ with 

axon regeneration, with mechanisms that are both shared and distinct from developmental 

pathways. The field simply needs more studies and more information on this topic.  Invertebrate 

model systems, in which functional regeneration can occur (which can result in readily screen-

able behavioral phenotypes) have important contributions to make for these important future 

questions. 
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Figure 2.1: Axon regeneration and degeneration in response to acute and chronic injuries 
(A) Acute injuries physically break axons into two parts: a proximal stump which remains 
connected to the cell body and a distal stump which has lost this connection. In many cases the 
distal stump has presynaptic terminals (cartooned as button shaped boutons) that are made non-
functional by the injury. (B) In response to acute injuries, the proximal stump either (i) succeeds 
or (ii) fails to form a new growth cone, and the distal axon either (iii) degenerates or (iv) stays 
intact. Responses vary in different injury models (Table 2.1), however in most cases, outcomes 
(i) and (iii) occur. (C) Ultimate outcomes of the injury responses include (i) new growth (in 
green) from the proximal stump to replace the lost distal stump. Alternatively some invertebrate 
neurons have been observed to undergo (ii) fusion of the two stumps, which requires less new 
growth from the proximal stump and the ability of the distal stump to remain intact until it can be 
reconnected. (iii) Failure to regenerate axons, followed by degeneration is another outcome for 
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some neuronal injuries. (D) Chronic injuries include long-term forms of stress that neurons may 
experience in their axons or synaptic terminals as the result of a genetic mutation or an 
environmental condition. Such stresses can include perturbations that impair mitochondrial 
function, organization of the cytoskeleton, long distance transport of proteins and organelles in 
axons, and impairments to synaptic transmission. (E) Responses to chronic injuries include 
degeneration of (i) synaptic terminals or (ii) entire axons and even cell death. However (iii) 
neurons may also initiate stress response pathways which may allow for an enhanced resiliency 
to degeneration. This likely involves transcriptional and translational events in the cell body and 
transport of newly synthesized proteins into axons (hence the green nucleus and red cytosol). 
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Figure 2.2: Molecular mechanisms during axon and synapse regeneration and 
degeneration 
(A) In uninjured neurons, several critical factors for regeneration or degeneration are present in 
axon and synapses. These include Nmnat (orange circle) and DLK (blue circle) which are 
transported (associated with vesicles) in axons, and which are also turned over in axons, most 
likely in distal axon and synaptic locations by the Hiw ubiquitin ligase complex (gray squares). 
(B) Upon injury, the DLK kinase becomes activated, and in the proximal stump can signal 
retrogradely to the cell body to initiate a transcriptional response (green nucleus). Retrograde 
signaling by DLK and other factors (indicated with stars (Rishal & Fainzilber, 2014)) are 
required  for later axon regrowth. In the distal stump, ‘survival’ factors such as Nmnat become 
depleted because their turnover continues while the supply of new molecules from the cell body 
is cut off. Sarm (triangle) becomes activated in the injured distal stump, and promotes a rapid 
rundown in intracellular NAD+ and ultimately axonal degeneration. 
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Table 2.1 Axon response to acute injury in different models
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CHAPTER III 

THE WALLENDA/DLK MAP KINASE SIGNALING CASCADE 

RESTRAINS THE EXPRESSION OF PRE-SYNAPTIC PROTEINS 

ACCORDING TO THEIR TRANSPORT BY THE KINESIN-3 MOTOR 

UNC-104/IMAC 

3.1 Abstract 

Synapse development requires the assembly of presynaptic active zones (AZs) and localization 

of synaptic vesicles (SVs). A kinesin-3 family member, Unc-104/Imac/KIF1A, is required for 

the delivery of synaptic components and SVs to nascent synapses. We found that the synaptic 

defects of Drosophila unc-104 mutants could be rescued by inhibiting the Wallenda (Wnd)/DLK 

MAP kinase signaling pathway, which was previously identified as a regulator of axonal damage 

signaling. Wnd/DLK signaling becomes activated in unc-104 mutants, and inhibits synapse 

formation independently of Unc-104’s transport functions by controlling the levels and timing of 

expression of AZ and SV components.  Our findings indicate that Wnd becomes activated when 

presynaptic proteins accumulate within cell bodies, and thereby regulates a stress response 

pathway to fine-tune the expression level of presynaptic proteins according to the neuron’s 

capacity to transport them.  
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3.2 Introduction 

Synapse development and plasticity involve highly orchestrated trafficking events in both 

pre and postsynaptic cells. In contrast to the postsynaptic receptors, whose trafficking and 

organization has been studied extensively in many different synapse types (Choquet and Triller, 

2013), much less is known about the mechanisms that regulate the assembly and maturation of 

the neurotransmitter release machinery in the presynaptic neuron.  This machinery includes the 

active zone (AZ), an electron-dense complex of structural proteins that scaffold both calcium 

channels and synaptic vesicles (SV) for the coordination of calcium-regulated exocytosis 

(Südhof, 2012). The protein components of the AZ are synthesized in cell bodies and trafficked 

together in association with vesicles (known as piccolo-bassoon transport vesicles (PTVs)) 

(Ahmari et al., 2000; Maas et al., 2012; Shapira et al., 2003). Likewise, synaptic vesicle 

precursors (SVPs) are also synthesized in cell bodies, and carried by kinesin motors to synapses 

(Hall and Hedgecock, 1991; Okada et al., 1995). Regulation of presynaptic assembly and 

maturation likely involves a global coordination of the synthesis and transport of both AZ and 

SV components. However the mechanisms that regulate these important steps in synapse 

development are poorly understood. 

A critical role in synapse development has been assigned to the kinesin-3 family of motor 

proteins (Hall and Hedgecock, 1991; Kern et al., 2013; Niwa et al., 2016; Pack-Chung et al., 

2007; Yonekawa, 1998). Mutations in the orthologous gene originally referred to as unc-104 in 

C. elegans, imac in Drosophila and Kif1a in mammals cause severe defects in synaptogenesis: 

synaptic boutons fail to form, SVs and AZ components fail to localize to nascent synapses, and 

concomitantly, SV and AZ associated proteins accumulate in the cell body. It is therefore 

broadly accepted that the protein encoded by this gene (which is now referred to as unc-104 in 
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both flies and worms) promotes presynaptic assembly by physically delivering presynaptic 

components to their destinations in the synaptic terminal (Goldstein et al., 2008). However, 

while there is biochemical evidence that KIF1A is a major carrier of SV precursors (Okada et al., 

1995), there is very little evidence that KIF1A or Unc-104 directly carries AZ components. 

Studies in both Drosophila and C. elegans suggest that Unc-104 is not required for the initial 

localization of AZs to presynaptic terminals (Hall and Hedgecock, 1991; Pack-Chung et al., 

2007), however unc-104-null mutants fail to add additional AZs during the expansion of the 

developing Neuromuscular Junction (NMJ) terminal. It is therefore possible that Unc-104 

regulates AZ localization and assembly through an indirect mechanism.  

Here we identified the Wnd/DLK kinase as a critical mediator of presynaptic assembly 

defects in unc-104 mutants. This MAP kinase has recently received intense interest for its roles 

in regulating both regenerative and degenerative responses to axonal damage in vertebrate and 

invertebrate neurons (Gerdts et al., 2016; Tedeschi and Bradke, 2013).  We find that Wnd/DLK 

signaling pathway is activated in unc-104 mutants, and, mutations in wnd rescue the presynaptic 

assembly defects in unc-104 mutants, yet do so without suppressing the defects in transport. 

Instead, suppression occurs by rescuing the levels of AZ and SV protein components, which are 

reduced in unc-104 mutants. Our findings delineate a new role for the Wnd/DLK pathway in 

restraining the expression of key presynaptic proteins needed for AZ assembly and bouton 

maturation. We propose that the Wnd pathway functions to calibrate the expression of abundant 

presynaptic proteins according to their ability to be transported, which can play an adaptive role 

to stresses that disrupt intracellular transport. 
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3.3 Methods 

Drosophila Stocks 

The following strains were used in this study: Canton-S, hiwΔN (Wu et al., 2005), wnd1, wnd3, 

wnddfED228(Collins et al., 2006), UAS-wndkinase dead-GFP(Xiong et al., 2010), MiMIC-wnd-GFP 

(Venken et al., 2011), unc-104O3.1, unc-104P350 (Barkus et al., 2008), unc-104bris (Medina et al., 

2006), unc-104d11204 (Thibault et al., 2004), unc-10452 (Pack-Chung et al., 2007); UAS-

cacophony-GFP(Kawasaki et al., 2004), OK6-Gal4 (Aberle et al., 2002), OK319-Gal4, OK371-

Gal4(Mahr and Aberle, 2006), m12-Gal4(Ritzenthaler et al., 2000), Bg380-Gal4(Budnik et al., 

1996),elav-Gal4C155(Lin and Goodman, 1994), UAS-FosDN (Eresh et al., 1997), UAS-bskDN 

(Weber et al., 2000),khc8, khc27(Brendza et al., 1999), khck13314( Spradling et al., 1999), Liprin-

αF3ex15, Liprin-αR60(Kaufmann et al., 2002), UAS-VGlut-GFP, UAS-VGlutA470V-GFP (Grygoruk 

et al., 2010), UAS-Brp-GFP (Bloomington (BL) 36291 and 36292), UAS-SytI-GFP (BL6925 

and 6926), UAS-liprin-α-GFP(Fouquet et al., 2009), Rab3rup(Graf et al., 2009), UAS-YFP-Rab3, 

UAS-YFP-Rab3Q80L, UAS-YFP-Rab3T35N(Zhang et al., 2007), uas-mcd8-ChRFP (Schnorrer, 

2009.5.11), puc-lacZE69(Martín-Blanco et al., 1998), vglut promoter-DsRed (gifts from Daniels 

and Diantonio), RNAi lines: moody RNAi (control), Octβ2R RNAi (vdrc 104524, control), unc-

104 RNAi (vdrc 23465, I and TRiP BL43264, II), wnd RNAi (vdrc 103410 and vdrc 26910), 

Rab3 RNAi (TRiP BL31691 and BL34655), UAS-Dcr2 was a gift from Stephan Thor 

(Linköping Université, Linköping Sweden). Flies were raised at 25 ͦC or 29 ͦC (as indicated for 

certain RNAi knock-down) on standard yeast-glucose media (Backhaus et al. 1984). 

To generate vglut-DsRed reporter flies, genomic sequence spanning 5.3 upstream of the ATG 

start codon for vglut (CG9887) was cloned into a plasmid derived from pCaSpeR-AUG-bGal 
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(Thummel et al., 1988), in which lacZ was replaced with DsRed.T4-NLS(Barolo et al., 2004) 

coding sequence, such that the expressed DsRed would concentrate in the nucleus. 

Animal lethality, motility and size measurement 

To determine the timing of lethality during larva stages, we measured the animal width of the 

latest stage before death. Crosses were set with at least 30 males and 30 females. 8-9 days later 

around 100 3rd instar offspring larvae of indicated genotype were selected and transferred to 

grape plates. The largest width of surviving 3rd instar larvae was determined as following: the 20 

largest ones were selected among nearly 80 animals and each animal was pinned at head and tail 

to ensure its body was straight; then the body width was measured with a ruler under a dissecting 

microscope.   

To determine puparium lethality (survival to adulthood), 60 offspring 3rd instar larvae of 

indicated genotype were transferred to grape plates and raised in 29 ͦC to increase RNAi knock-

down efficiency. The number of adults emerging out of pupae was counted over the next 14 

days. Adults with anterior half of their body (head, thorax and foreleg) out of pupae, but with the 

posterior half body (abdomen and posterior 4 legs) stuck in pupae were considered as halfway 

emerging adults. UAS-RNAi lines were driven by OK371-Gal4.  UAS-Octβ2R RNAi and UAS-

moody RNAi were used as a controls for UAS dosage, as expression of these 2 RNAi lines did 

not result in any phenotypes in neurons. The survival rate was measured as the number of 

emerged or halfway emerged adults divided by the total number of larvae. 

To determine the motility, 10 3rd instar larvae of indicated genotype were selected and put on 

grape plates 1 hour to adapt before recording. A 2-minute video recording was made at 30 

frames per second. For each larva, the distance and time traveled after it was released in a new 
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plate and before it reached the plate walls was measured with the MB-Ruler (Markus Bader). A 

marker point in the middle of movement was only applied if the larva moved 45 degree away 

from the current direction and 2-5 marker points were set to determine the path. A total of 60 

larvae were recorded and analyzed for each genotype.  

Axonal regeneration 

The nerve crush assay was carried out as described (Xiong et al., 2010), and animals were fixed 

either 9 or 18 hours after the injury. Axonal regeneration was quantified by measuring the 

number of injured axons that contained more than 5 branches at 9 hours, and the length of the 

longest branch at 18 hours.  

Immunocytochemistry  

Third-instar larvae were dissected in ice-cold PBS, then fixed in 4% formaldehyde (FA) in 

PBS/HL3 solution for 3 minutes for Cac-GFP, 10 minutes for Brp and GluRIII/GluRIIC staining 

or 20 minutes for other antibody staining, followed by blocking in PBS with 0.1% Triton (PBT) 

containing 5% Normal Goat Serum (NGS) block for 30 minutes.  

Embryos were dissected, fixed and stained as described in (Featherstone et al., 2009; Lee et al., 

2009). In brief, embryos were collected for 30-60 minutes on Molasses plates and kept in 18 ͦC 

(for stage 14 to 16) or 25 ͦC (for stage 17) overnight. Early-stage embryos (14-16) were 

dechorionated, sorted (based on GFP), staged (based on gut morphology (Hartenstein, 1993)) 

and dissected (tungsten needles) on negatively charged slides. Stage 17 embryos (20-21 hours 

AEL) were dissected with Vet glue (Vetbond) in PBS (PH=7.3) on Sylgard-coated coverslips. 



43 
 

Bouin’s fixation for 5 minutes was used for all antibodies staining but Synapsin staining (4% 

PFA for 25 minutes). The examined unc-104-null alleles include P350/P350 and 52/52. 

Primary antibody and secondary antibody incubations were conducted in PBT containing 5% 

NGS at 4°C overnight and at room temperature for 2 hours, respectively, with three 10-minute 

washes in PBT after each antibody incubation. The following primary antibodies and dilutions 

were used: ms anti-Brp (NC82, Developmental Studies Hybridoma Bank (DSHB)), 1:200; ms 

anti-Synapsin (3C11, DSHB), 1:50; ms anti-CSP-1 (ab49, DSHB), 1:100; ms anti-DLG(4F3, 

DSHB), 1:1000; Rb anti-GluRIII (gift from Diantonio lab), 1:2500; Rb anti-SytI (gifts from 

Noreen Reist, (Mackler et al., 2002)), 1:400; Rb anti-Unc-104(imac, gift from Tom Schwarz), 

1:500; ms anti-lac-Z (40-1a, DSHB), 1:100; Rb anti-Phospho-Smad1/5 (Cell signaling),1:100; 

Rb anti-DsRed (Clontech), 1:1000; Rat anti-elav (7E8A10, DSHB), 1:50; A488 rabbit anti-GFP 

(Invitrogen), 1:1000 and Alexa488/cy3/Alexa647 conjugated Goat anti-HRP (Jackson 

ImmunoResearch), 1:300. Rabbit anti-VGlut (gift from Diantonio lab), 1:10000, staining was 

carried as described in (Daniels et al., 2008). For secondary antibodies we used Cy3- or A488-

conjugated goat anti-rabbit or anti-mouse 1:1000 (Invitrogen). 

Imaging and analysis 

Confocal images were collected as described in (Füger et al., 2012; Xiong et al., 2010). Similar 

settings were used to collect all compared genotypes and conditions. 

The identification and quantification of the % unopposed PSD was based on manual counts of 

the total number of individual GluRIII-labeled puncta (on either muscle 4 or 26/27/29, where 

indicated), scored for the presence or absence of an apposing AZ component (Brp or Liprin-α-

GFP). To affirm that AZ components were indeed completely absent, confocal settings and 
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brightness levels were optimized for the weakest signals in unc-104 mutants. Since the same 

settings were used for all genotypes some pixels for AZ components were necessarily over-

exposed in the wt controls. For measurements of intensity levels, using Volocity software, only 

raw images acquired together using the same confocal settings were compared. At least 8 

animals and 12 NMJs were examined per genotype. To measure VGlut and Brp levels in axons 

and NMJs, we used staining for HRP (which labels neuronal membrane) to define the region of 

interest. For cell bodies, we selected the signal above a specified threshold. To estimate the total 

VGlut or Brp level within a single motoneuron (Figure 3.12), we summed measurements of: (a) 

total intensity for individual cell bodies (located in the dorsal midline of the ventral nerve cord), 

(b) total intensity for individual NMJ nerve terminals at muscle 4, and (c) estimated total 

intensity within a motoneuron axon, calculated from mean intensity in axonal segments, based 

on the assumption of 32 motoneuron axons per nerve and an average axon length of 1mm. 

When imaging nerve cord, we used 0.8 μm step size for the z-stack and focused on the posterior 

and central nerve cord, corresponding to A4-A8. When imaging axons or the NMJ, we used 0.4 

μm step size for z-stacks. Axonal segments were imaged 900μm away from the nerve cord. NMJ 

images were collected at segment A3 for muscle 4 or (when using the m12Gal4 driver) for 

muscle 26, 27 and 29, which are innervated by the MNSNc neuron. puc-lacZ level was measured 

within the nucleus region for motoneurons, selected by P-smad staining in the dorsal regions of 

A4-A8 in the ventral nerve cord. 

For live imaging analysis of GFP-wnd-KD transport, 3rd instar larvae were dissected in the center 

of a circle reinforcement label (Avery) in HL3 solution (Stewart et al., 1994) with 0.45 mM 

calcium. Larvae were pinned at the head, tail and 2 lower corners, the pins were then pushed into 

sylgard so that the coverslip could lie directly on top of the reinforcement label (and the larva), 
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and excess HL3 solution was removed before imaging on an inverted microscope. Images were 

collected at 0.3 Hz for 5 minutes at 40x magnification in segmental nerves at a location 900μm 

distal to the nerve cord. The images were then processed in imageJ with a kymograph plugin 

(Jens Rietdorf and Arne Seitz) and further analyzed in MATLAB with a program written to 

determine vesicle segmental speed and duration (described in (Ghannad-Rezaie et al., 2012)). 

Western Blot 

25-30 3rd brains were collected in PBS and homogenized for each sample. The following 

antibodies and dilutions were used: rb anti-Wnd 4-3 (Collins et al., 2006) 1:700; rb anti-VGlut 

((Daniels et al., 2008), 1:10000; ms anti-Brp (NC82), 1:100; ms anti-β-tubulin (1E7, DSHB), 

1:1000; and rb anti-unc-104 (Gift from Tom Schwarz lab), 1:500. The blots were probed with 

HRP conjugated secondary antibodies: Gt at-ms and Gt at-rb at the dilution of (1:5000) and 

imaged with either film or an Odyssey CLx imager (LI-COR). 

Real-time PCR 

30 third-instar larvae brains were collected and homogenized in Trizol (Invitrogen) and the total 

RNA was extracted using PicoPure RNA Isolation kit (KIT0204, ThermoFisher). Samples were 

then treated with DNase (Invitrogen). The First-strand cDNA was synthesized with VILO kit 

(Life technologies). 5-10ng of cDNA was used per RT-PCR reaction for all test samples. A 

standard curve was established for all primer sets, and analysis was restricted to primers and 

samples that yielded an R2 of least 0.99. The Pfaffl method was used to calculate the mRNA 

expression level of a gene in experimental samples relative to that in control sample (wild type), 

using RP49 and α-Tub84B as endogenous reference genes. Expression levels were averaged for 

at least 2 biological replicates. Primers were chosen from FlyPrimerBank (Hu et al., 2013), and 
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the optimal primer concentration was determined for the lowest dimer formation and high 

amplicon yield. The following primers were used:  

rp49, For: GCCCAAGGGTATCGACAACA, Rev: GCGCTTGTTCGATCCGTAAC.  

α-tub84B, For: GATCGTGTCCTCGATTACCGC, Rev: GGGAAGTGAATACGTGGGTAGG.  

brp, For: GCAGTCCATACTACCGCGAC, Rev: TTGGATAGTCCATGGCATGGG.  

vglut, For: CCTTCGGCATGAGGTGCAATA, Rev: CGAGTCCACATGGCTCTCC.  

liprin-α, For: CCTTTTGGAACGTGACGAGGA, Rev: ACCAAGCACTCCAGATGTTCG.  

cacophony, For: TTCGGGCGCACTGCATAAG, Rev: GGTGGCCTTTTCCAGGATGT. 

Electrophysiology 

Third instar larvae were dissected within 3 minutes in HL3 solution containing 0.65 mM 

Calcium at 22°C. Muscle 6 at segment A3 was located by the use of an OLYMPUS BX51WI 

scope with a 10x water objective and then recorded intracellularly with an electrode made of 

thick wall glass (1.2mmx0.69mm) pulled by SUTTER PULLER P-97.  Amplifier GeneClamp 

500B and digitizer Digidata 1440A were used. The recording was only used if the resting 

potential was negative to -60mV and muscle resistance was > 5mΩ. A GRASS S48 

STIMULATOR was used to obtain a large range of stimulation voltage range (1-70V). We 

noticed that hiw mutants and unc-104 mutants required a higher stimulus to recruit the 2nd axon 

that intervenes Muscle 6 (10-40V were required in hiw and unc-104 mutants, as opposed to 2-8V 

in wild type). To ensure that we could always recruit both axons, for each muscle we tested a 

range of stimulation voltage (1-70V) to find the threshold which triggered the largest response 
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within the testing range.  A stimulus slightly larger than this threshold was then used at a 

frequency of 0.2Hz and duration of 1ms for EJP measurements. Axon Laboratory software was 

used for acquisition and the Mini Analysis program (Synaptosoft Inc) was used for analysis of 

mEJP frequency and amplitude (Parameters for Mini Analysis were set as: 0.2 (threshold) and 1 

(area threshold)). 35 individual EJP traces and a 45s-long mEJP trace per muscle were analyzed 

for at least 15 muscles per genotype. Quantal content was corrected for non-linear summation 

using the revised Martin correction factor as described in (Kim et al., 2009; Morgan and Curran, 

1991). 

Data analysis 

Data was analyzed by either Student’s t-test (two groups) or one-way ANOVA followed 

by Tukey test (multiple groups). p values smaller than 0.05 were considered statistically 

significant. All p values are indicated as * p < 0.05, ** p < 0.01, and *** p < 0.001 and **** 

p<0.0001. Data are presented as mean ± SEM.  

 

3.4 Results 

The Wnd signaling pathway mediates presynaptic assembly defects in unc-104 

mutants 

Mutations in Drosophila unc-104 lead to striking impairments in the synapse structure 

and function at the NMJ (Pack-Chung et al., 2007; Kern et al., 2013; Zhang et. al. 2016; Zhang et 

al., unpublished data and Figures 3.1 and 3.3).  Surprisingly, we found that the structural and 

functional synaptic defects caused by severely hypomorphic mutations in unc-104 could be 
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rescued to near completion by mutations in wnd (Figure 3.1 and 3.3).  The defects that could be 

rescued include: (1) a reduction in the localization of AZ components at NMJ terminals. Up to 

50% of synapses (identified by postsynaptic GluRIII clusters) in unc-104 mutants appear to lack 

presynaptic AZs, based on the absence of multiple presynaptic AZ components (including the 

cytomatrix component Brp/ELK/CAST (Figure 3.1A and E), Liprin-α (Figure 3.1B and 3.2A) 

and voltage gated calcium channel Cacophony (Cac) (Figure 3.2E)). Brp intensity was also 

reduced within synapses that contained presynaptic components (Figure 3.1D and 3.2C), and 

across NMJ terminals (Figure 3.1D and F). Wnd mutants also suppressed (2) reduced levels of 

SV associated proteins, such as the vesicular glutamate transporter VGlut, across NMJ terminals 

(Figure 3.1C and F); (3) aberrant bouton morphology (Figure 3.1C and D); (4) impaired synaptic 

transmission (Figure 3.3 and 3.2H) including reduced quantal content and strongly reduced mini 

frequency; (5) defects in larval motility (Figure 3.2I, partial rescue); and (6) lethality at late 3rd 

instar and pupal stages (Figure 3.1G and 3.2F, partial rescue).  Throughout all results, we noticed 

similar rescue effects for two different unc-104-hypomorphic alleles (bris and O3.1), which were 

tested as trans-heterozygotes over different unc-104-null alleles (P350 and d11204). Likewise, 

different wnd alleles (1 and 3) and RNAi knockdown of unc-104 or wnd (Figure 3.1 and 3.2, and 

data not shown), led to similar suppression. Results using RNAi knock-down (Figure 3.1B, G 

and 3.2A, B, F and I), including use of a single-neuron Gal4 driver (Figure 3.2G) indicate that 

both Unc-104 and Wnd function cell-autonomously for the synaptic phenotypes.  Altogether, 

these observations reveal a critical role for Wnd in regulating the presynaptic assembly defects, 

transmission failures and lethality of unc-104 mutants. 

In axonal regeneration and synaptic overgrowth, Wnd has been shown to act in a 

signaling pathway consisting of a cascade of MAP kinases and transcription factors (Tedeschi 
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and Bradke, 2013). We found that inhibition of the downstream MAPK JNK (Bsk) and Fos 

transcription factor, via expression of dominant-negative (DN) isoforms in neurons, could rescue 

the assembly defect for release machinery components Brp and Cac (Figure 3.1E, 3.2D and E). 

These results imply that a signaling pathway consisting of Wnd, JNK and Fos inhibits 

presynaptic assembly, in a cell-autonomous manner, in unc-104 mutants. 

 

The Wnd signaling pathway is restrained by Unc-104 

To assess whether Wnd signaling is activated in unc-104 mutants, we utilized a 

transcriptional reporter of JNK signaling, the puckered (puc)-lacZ enhancer trap (Martín-Blanco 

et al., 1998), which has been previously shown to report Wnd signaling activity in motoneurons 

(Xiong et al., 2010). Reduction of unc-104 expression by RNAi in motoneurons (using 2 

independent RNAi lines) led to a significant increase in puc-lacZ expression (3-5 fold, depending 

on the RNAi line). This increase was abolished when wnd was concomitantly knocked-down by 

RNAi (Figure 3.4A and B), hence reflects activation of a Wnd-mediated nuclear signaling 

cascade.  

When the Wnd signaling pathway is activated in motoneurons, nerve terminals undergo 

overgrowth characterized by more boutons and longer branches at the NMJ (Collins et al., 2006). 

Similar overgrowth was reported in unc-104 mutants (Kern et al., 2013). We found that 

inhibition of Wnd, JNK or Fos in presynaptic motoneurons could all suppress the overgrowth 

defect in unc-104 mutants (insets in Figure 3.1C and D; Figure 3.5A and B). This further implies 

that the Wnd signaling pathway is activated in unc-104 mutants. 
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Previous studies have shown that activation of Wnd/DLK signaling enhances the ability 

of axons to initiate regenerative axonal growth after injury (Hammarlund et al., 2009; Shin et al., 

2012; Xiong et al., 2010; Yan et al., 2009). Consistent with these findings, we found that unc-

104 mutants showed an enhanced axonal regeneration response compared to wild type animals. 

By 9 hours after nerve crush injury, axons in wild type animal initiate new growth via short 

filopodia-like branches from the proximal axonal stump. At 18 hours, a few branches are 

stabilized and grow either towards the distal axon or the cell body (Figure 3.4C).  In comparison, 

unc-104 mutants showed a marked increase in new axonal branches at 9 hours (Figure 3.4C and 

D), and at 18 hours these new axonal branches showed similar stabilization but extended nearly 

twice as far as wild type axons (Figure 3.4C and E). We observed similar enhancement of 

regeneration cell autonomously when unc-104 expression was reduced by RNAi (Figure 3.4E). 

These observations imply a non-intuitive role for the Unc-104 motor in restricting the ability of 

axons to regenerate by inhibiting Wnd signaling. 

Previous studies have suggested links between JNK signaling and the regulation of 

axonal transport (Verhey and Hammond, 2009). It is therefore interesting that other mutations 

that disrupt axonal transport, including mutations which inhibit kinesin-1, dynein and dynactin 

did not significantly affect the expression of puc-lacZ ((Figure 3.4B) and (Xiong et al., 2010)). 

This specificity suggests a unique functional interdependence between Wnd and the Unc-104 

kinesin. 

 

Wnd is mis-localized to the cell body in unc-104 mutants 
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Wnd and its DLK homologues in mammals and C. elegans are known to be highly 

regulated at the protein level (Feoktistov et al., 2016; Hao et al., 2016; Huntwork-Rodriguez et 

al., 2013) which includes regulation by a highly conserved ubiquitin ligase domain protein 

Hiw/Rpm-1/Phr1 (Babetto et al., 2013; Collins et al., 2006; Nakata et al., 2005; Xiong et al., 

2010). In contrast, mutations in unc-104 did not lead to a detectable increase in global levels of 

endogenous Wnd protein (Figure 3.5H), or in synaptic Wnd protein level (Figure 3.5D and G). 

However, using a MiMIC-wnd-GFP line (Venken et al., 2011), in which a GFP tag is inserted via 

an exon trap within the wnd genomic locus (Figure 3.5C), and a UAS-GFP-wndkd (kinase dead 

Wnd) transgenic line, we observed that unc-104 mutations caused an increase in the level of 

Wnd protein in motoneuron cell bodies (Figure 3.4F-I) and axons (Figure 3.5E and F). We 

considered the possibility that Unc-104 directly transports Wnd-associated vesicles. However, 

we observed no impairment of Wnd’s transport in unc-104 mutants (Figure 3.6A-D), and no co-

localization for Wnd and Unc-104 (Figure 4.1), so we interpret that Wnd is unlikely to be a 

direct cargo of Unc-104.  

 

Wnd inhibits presynaptic assembly independently of Liprin-α and Rab3  

We then considered the possibility that Unc-104 regulates Wnd signaling indirectly via 

the transport of another cargo.  We focused upon two previously identified cargos/adaptors of 

Unc-104 with known roles in presynaptic assembly: Liprin-α (Shin et al., 2003) and Rab3-GEF 

(Niwa et al., 2008). Liprin-α is recruited to the AZ at early stages of synapse assembly and is 

required for normal morphology of the presynaptic terminal (Südhof, 2012). Rab3-GEF and its 

target, the small GTPase Rab3 plays an important role in regulating presynaptic assembly in 
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Drosophila (Graf et al., 2009).  Moreover, ectopic overexpression of Rab3 can ameliorate some 

of the synaptic defects caused by impaired Unc-104 function (Zhang et al., 2016).  We observed 

that liprin-α mutant NMJs contain a large portion of unopposed GluRIII-labeled PSDs, 

resembling the defects in unc-104 mutants (Figure 3.7A). Similar defects were reported for rab3 

and rab3-gef mutants (Bae et al., 2016; Graf et al., 2009). However, in contrast to unc-104, the 

liprin-α and rab3 synaptic defects were not suppressed by mutations in wnd (Figure 3.7A-C). 

Furthermore, the increased Brp intensity per AZ and reduced AZ number due to liprin-α and 

rab3 mutations was not suppressed by wnd mutations (Figure 3.7A, B and D). This suggests that 

Liprin-α and Rab3 regulate presynaptic assembly via pathways that are either independent or 

downstream of Wnd. In addition, the puc-lacZ transcriptional reporter for Wnd/JNK signaling 

was only slightly activated in liprin-α and rab3-gef/rab3 mutants, far less than the activation by 

unc-104 knock-down (Figure 3.7E). Collectively, these data indicate that Rab3 and Liprin-α are 

not responsible for Wnd activation in motoneurons.  

 

Activation of the Wnd signaling pathway in neurons is sufficient to impair 

presynaptic assembly and synaptic transmission 

If activated Wnd signaling is responsible for the synaptic defects in unc-104 mutants, 

then ectopic activation of Wnd should mimic the unc-104 mutant phenotype. Indeed, expression 

of wnd alone in motoneurons resulted in a cell-autonomous presynaptic defects that are 

comparable to unc-104 mutants: many synapses lacked Brp (Figure 3.8A and C), and synapses 

that contained Brp had reduced Brp intensity (Figure 3.8B), which resulted in a global 70% 
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reduction in Brp intensity across the entire NMJ terminal (Figure 3.8B). VGlut intensity within 

NMJ terminals was also reduced (Collins et al., 2006). 

Hiw is a negative regulator of the Wnd protein (Collins et al., 2006; Nakata et al., 2005) 

and  hiw mutants displayed strikingly similar presynaptic defects to unc-104 mutants, all of 

which were suppressed in hiw;wnd double mutants (Figure 3.9) . These included 60% of 

synapses lacking AZ proteins, Brp, Liprin-α and Cac (Figure 3.9A, B and D), a reduction of total 

Brp intensity at individual synapses and across the NMJ terminal (Figure 3.8G and 3.9C), and, as 

previously reported, overgrowth of synaptic boutons, decreased VGlut levels, and impaired 

spontaneous synaptic transmission (Collins et al., 2006; Nakata et al., 2005). We also observed 

that both hiw and unc-104 mutant nerves showed reduced excitability, requiring a higher 

stimulus to evoke a synaptic response. In addition, we found that the activation of Wnd accounts 

for a significant portion of the reduced quantal content observed in hiw mutants (Figure 3.8D-F 

and 3.9E-G). This result differed from a previous study which found that Wnd did not affect 

quantal content in hiw mutants(Collins et al., 2006), and may be related to different alleles used. 

(We used null alleles (wnd3/3 and wnd3/Df), while the previous study used an allele that may be 

hypomorphic (wnd1)). Taken together, these observations indicate that activation of the Wnd 

signaling pathway leads to significant presynaptic defects in synaptic structure and synaptic 

transmission.  

 

Wnd inhibits synapse assembly independently of cargo transport downstream of 

Unc-104 
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The above findings indicate that Wnd signaling is regulated by Unc-104, and that loss of 

this regulation is sufficient to impair synapse formation. However a recent study has suggested 

an opposite relationship, that Unc104 may be regulated by Wnd/JNK signaling (Voelzmann et 

al., 2016). To more firmly understand the relationship of Unc-104 and Wnd, we tested whether 

wnd mutations could suppress the synaptic and/or transport defects of unc-104 null mutants 

during the earliest stages of synaptic formation.  

Consistent with previous studies (Pack-Chung et al., 2007), homozygous null mutants of 

unc-104 failed to form NMJ synapses and died at the late embryonic stage (stage 17). The 

nascent presynaptic terminal had very few AZs, and failed to form mature synaptic boutons.  In 

unc-104null;wnd3/3 double mutants, the bouton morphology defects and the AZ defects were 

suppressed (Figure 3.10A and C), with an increase in the number of Brp puncta (Figure 3.10D) 

and total intensity of Brp at NMJ terminals (Figure 3.10E). While the unc-104null;wnd3/3 mutants 

still failed to hatch and died at the late embryonic stage, we noticed a modest rescue of muscle 

contraction when the mutant were assisted out of their vitelline membrane (Figure 3.11D), 

consistent with the rescue of synaptic defects.  

               Despite the pronounced rescue of presynaptic structure, and in contrast with the strong 

suppression of unc-104 hypomorphic mutants (Figures 3.1 and 3.3), wnd mutations failed to 

rescue the defective localization of SV components in unc-104null mutants (Figure 3.10). VGlut, 

synaptotagmin-I (sytI) and CSP (cysteine string protein) were almost completely depleted from 

NMJ and accumulated at the cell body, and this defect persisted in unc-104null;wnd double 

mutants (Figure 3.10B, C and E, 3.11C, 3.12A, 3.13A and B). In contrast to the complete failure 

of wnd mutants to rescue SV protein localization, the localization of synapsin, which can 
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associate with SVs and AZs in a regulated (non-obligate) manner (Baitinger and Willard, 1987; 

Easley-Neal et al., 2013), was weakly suppressed (Figure 3.10E and 3.11A).  

 Taken together, the genetic interactions with Wnd allow us to parse the synaptic 

phenotypes of unc-104 mutants into two separable mechanisms (Figure 3.14H). The first is a 

consequence of Unc-104’s direct role in transporting SV components to synaptic terminals, and 

the second comes from the activation of Wnd signaling when unc-104’s function is lost. 

 

Wnd regulates the expression level of presynaptic proteins downstream of Unc-104  

Consistent with the interpretation that Unc-104 is an important transporter of pre-synaptic 

proteins, reductions in synaptic localization of Brp, VGlut, and other synaptic proteins in unc-

104 mutants are accompanied by an accumulation of these proteins in cell bodies (Hall and 

Hedgecock, 1991; Pack-Chung et al., 2007). We noticed that this accumulation was enhanced in 

unc-104;wnd double mutants (Fig.7A). This suggests that the Wnd pathway may inhibit synapse 

assembly by restraining total levels of presynaptic proteins in motoneurons. Since motoneurons 

represent only a small component of the Drosophila nervous system, we carried out quantitative 

immunohistochemistry to compare total protein levels in motoneuron cell body, axonal and 

synaptic compartments (described further in Methods). In both unc-104-null (stage 17 embryos, 

Figure 3.12A-B, and 3.13A-B) and hypomorphic (3rd instar larvae, Figure 3.12C-E) mutants, we 

observed reductions in intensity of SytI, VGlut, CSP and Brp. In all cases this reduction was 

largely suppressed in unc-104;wnd double mutants. The increased intensity of synaptic proteins 

was restricted to cell bodies in unc-104null;wnd double mutants (Figure 3.12A, 3.13A and B), but 

appeared in axons and synaptic terminals in the unc-104hypomorph;wnd double mutants (Figure 
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3.12E, 3.1F and 3.13I), likely the result of residual Unc-104 transport function in the 

hypomorphic mutants. 

These observations build a model that Wnd signaling, which becomes activated in unc-

104 mutants, inhibits synapse assembly by down-regulating the expression of multiple pre-

synaptic proteins. In support of this, unc-104 mutations led to decreased expression of a vglut-

DsRed transcriptional reporter in motoneurons, in a Wnd-dependent manner (Figure 3.12C, G 

and 3.13H).  We also detected changes in total mRNA levels for Brp, VGlut and Cac in unc-

104;wnd double mutants via RT-PCR (Figure 3.13G), suggesting possible transcriptional 

regulation of multiple presynaptic genes. Neuronal genes and proteins, including Elav (Figure 

3.13F) and Liprin-α (Figure 3.13G), and general synaptic markers, including HRP (Figure 

3.13D) and GluRIII (Figure 3.13E), appeared unaffected by Wnd. 

 

Wnd restrains the expression of presynaptic proteins at early stages of 

synaptogenesis 

Since the expression of presynaptic proteins is critical for the development, function and 

plasticity of synapses, we asked whether Wnd regulates the expression of presynaptic proteins in 

a developmental context. Since unrestrained Wnd signaling in unc-104 mutants inhibits 

presynaptic assembly during early stages of NMJ development (Figure 3.10), we investigated the 

phenotype of wnd-null mutants in embryos during stages of axonal outgrowth and synapse 

formation (stages 14 through 17). We observed a modest but statistically significant role for Wnd 

in restricting pre-synaptic protein expression in early developmental stages. For VGlut, the 

differences between wild type and wnd mutant were observed only in motoneuron cell bodies in 
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early stage 15 embryos (Figure 3.14A-C). We note this is the time point at which VGlut protein 

first becomes expressed in motoneurons, which precedes the time of its delivery to presynaptic 

terminals (Figure 3.14C, D and 3.15A), and coincides with the time at which most motoneuron 

axons are first reaching their target muscles (Johansen et al., 1989). SytI intensity was also 

increased in wnd mutants at early (stage 16, Figure 3.14E-F and 3.15B) but not late (3rd instar 

larvae, Figure 3.15C) time points. In contrast, we observed no significant increase in Synapsin 

intensity during early development and a modest but significant decrease in Brp at stage 16 

(Figure 3.15A, D and E). However we noted that Brp, VGlut (Horiuchi et al., 2007), Syt1 and 

Synapsin (Figure 3.15F) showed elevated intensity in axons of wnd mutants. These early and 

transient changes of in wnd mutants suggest that Wnd may be required for refining the timing 

and/or degree of expression of presynaptic proteins at specific developmental stages. 

 

Wnd signaling is sensitive to misregulated presynaptic proteins 

Across our cumulative observations, we noticed an interesting correlation between the 

function of Wnd and the appearance of presynaptic proteins localized in motoneuron cell bodies.  

During development, the role of Wnd in restraining VGlut was most significant immediately 

after the onset of VGlut expression and before its transport to synaptic terminals (Figure 3.14B-

D). In unc-104 mutants, the highly elevated function of Wnd to restrain the expression of 

presynaptic components coincided with their accumulation in cell bodies (Figure 3.12A and 

3.13B). We propose that Wnd signaling controls the expression of abundant presynaptic proteins 

to levels appropriate for their transportation (Figure 3.14H).  



58 
 

This model predicts that Wnd signaling, which is highly restrained in wild type uninjured 

neurons, would become activated when the levels of presynaptic proteins are in excess. We 

therefore tested whether ectopic over-expression of SV or AZ component proteins had any effect 

upon Wnd signaling in uninjured neurons. Each of the three proteins tested, Brp, SytI and VGlut, 

caused a significant induction of the puc-lacZ reporter (Figure 3.14G), while over-expression of 

other proteins (Luciferase (Figure 3.14G) and membrane localized GFP (Figure 3.4B)), had no 

effect. In order to determine whether this is due to altered synaptic activity, we over-expressed a 

non-functional VGlut transgene, VGlutA470V, which has no effect upon synaptic physiology 

(Daniels et al., 2011). This mutated VGlut caused a similar induction in puc-lacZ expression 

(Figure 3.14G). These results, taken together with the cell autonomous nature of Wnd activation 

in unc-104 mutants (Figure 3.4A), suggest that Wnd signaling is sensitive to a trafficking aspect 

of misregulated presynaptic proteins.  

 

3.5 Discussion 

Synaptic defects in unc-104 mutants are caused by activation of the Wnd/DLK 

signaling pathway independently of impaired cargo transport. 

The kinesin-3 family member Unc-104/Imac/KIF1A is known to be an important 

mediator of presynaptic assembly: mutations in unc-104 and its homologues inhibit the 

localization of SV and AZ precursors to nascent synapses, causing profound defects in synapse 

development and function (Barkus et al., 2008; Hall and Hedgecock, 1991; Kern et al., 2013; Li 

et al., 2016; Niwa et al., 2016; Otsuka et al., 1991; Pack-Chung et al., 2007; Yonekawa, 1998; 

Zhang et al., 2016). While these synaptic defects have been considered logical outcomes of 
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defective transport, we found that major aspects, including impaired AZ addition and maturation 

of synaptic boutons, are not mediated by a direct transport role for the Unc-104 protein. Rather, 

the unc-104null;wnd double mutants reveal separable functions for Unc-104: (1) Transport of 

SVPs to synaptic terminals is likely a direct function, since it persists in unc-104null;wnd double 

mutants, and is consistent with previous biochemical data. (2) Localization of AZs is unlikely to 

be a direct transport role, but is instead mediated by the Wnd/DLK signaling pathway, which 

becomes activated when Unc-104 function is impaired (Figure 3.14H). 

With the knowledge that the Wnd/DLK signaling pathway is activated in unc-104 

mutants, it is now worth considering whether it contributes to other phenotypes previously 

described for Unc-104 and its homologues in other species. These include impaired dendritic 

branching (Kern et al., 2013), increased microtubule dynamics (Chen et al., 2012), failed 

neuronal remodeling (Park et al., 2011), which may be related to Wnd/DLK’s ability to alter 

microtubule growth (Hirai et al., 2011; Lewcock et al., 2007), neuronal remodeling (Kurup et al., 

2015; Marcette et al., 2014) and dendrite growth (Wang et al., 2013).  Unc-104/Kif1a mutants 

also show accelerated motor circuit dysfunction in aging animals (Li et al., 2016), impaired 

BDNF-stimulated synaptogenesis (Kondo et al., 2012) and neuronal death (Yonekawa, 1998). 

These phenotypes may also be facilitated by activation of DLK, which impairs synaptic 

development and function (this study and Nakata et al., 2005), and has also been shown to 

mediate neuronal death in some contexts (Chen et al., 2008; Pozniak et al., 2013; Welsbie et al., 

2013). Human mutations in KIF1A have been associated with hereditary spastic paraplegia 

(SPG30) (Fink, 2013), and hereditary sensory and autonomic neuropathy type IIC (HSN2C) 

(Rivire et al., 2011). The possibility that DLK activation mediates deleterious aspects of these 

disease pathologies becomes an interesting future question. 
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Wnd/DLK pathway is sensitive to defects in Unc-104-mediated transport 

How does the Wnd pathway become activated in unc-104 mutants? The mechanism(s) 

that lead to activation of Wnd and its DLK homologues are of general interest for their roles in 

axonal regeneration as well as degeneration and neuronal death. In addition to axonal injury 

(Watkins et al., 2013; Welsbie et al., 2013; Xiong et al., 2010), disruption of microtubule and/or 

actin/cortical cytoskeleton can lead to activation of DLK (Valakh et al., 2013, 2015). Moreover, 

many studies have noted a role for DLK signaling in mediating structural changes in neurons 

downstream of manipulations that disrupt cytoskeleton (Bounoutas et al., 2011; Marcette et al., 

2014; Massaro et al., 2009). Since the cytoskeleton is a closely functioning partner of all motor 

proteins, and is also implicitly affected by axonal injury, it is possible that these manipulations 

share a similar underlying mechanism with that of unc-104 mutations.  While disruption of 

cytoskeleton should impair transport by many motor proteins, mutations that impair kinesin-1 

and dynein do not lead to activation of Wnd (Figure 3.4 and (Xiong et al., 2010)). This 

specificity suggests that disruption of Unc-104 mediated transport, potentially via 

mislocalization of Unc-104’s cargo, mediates Wnd/DLK’s activation after cytoskeletal 

disruption and potentially after axonal injury. 

This line of reasoning leads to further consideration of Unc-104’s cargo. Our live 

imaging data do not support a simple model that Wnd is a cargo of Unc-104 (Figure 3.6). Known 

cargo of Unc-104 are important for the assembly and function of synapses (Goldstein et al., 

2008), so does Wnd activation occur in response to an impairment in synaptic assembly or 

function? We think this is unlikely, since mutations in rab3-gef, liprin-α (Figure 3.7E) and vglut 
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(data not shown), which impair presynaptic assembly and function, do not cause activation of 

Wnd (Figure 3.7E).  

Instead, we note an intriguing correlation between the localization and abundance of 

presynaptic proteins with Wnd’s activation: Wnd signaling becomes activated in unc-104 

mutants, which accumulate presynaptic proteins in the neuronal cell body. We noticed a similar 

role for endogenous Wnd in wild type neurons during the onset of embryonic NMJ development.  

These stages correspond to the onset of synaptic protein expression, before substantial transport 

to synaptic terminals, hence represent a time in which levels are high in the cell body. Consistent 

with the idea that Wnd signaling is sensitive to mislocalized presynaptic proteins, ectopic 

overexpression of several different presynaptic proteins caused an elevation in Wnd signaling in 

uninjured neurons (Figure 3.14G). These observations suggest a model that accumulations of 

presynaptic proteins, as a feature of aberrant cargo transport, are ‘sensed’ by Wnd signaling 

(Figure 3.14H).  

 

Wnd/DLK signaling restrains the expression of presynaptic proteins: mechanism 

and relevance. 

While previous studies in C. elegans (Nakata et al., 2005; Yan et al., 2009) have 

suggested that DLK activation may impair synaptic development (altering the size and spacing 

of active zones), the regulation of total levels of presynaptic proteins and the relationship with 

Unc-104 provides a new view into Wnd/DLK’s function and mechanism.  In addition to VGlut, 

SytI, CSP-1, Brp, Liprin-α and Cac, we suspect that Wnd inhibits the expression of a larger 

cohort of presynaptic proteins. Regulation of multiple targets required for synapse development 
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can explain the severe defects in unc-104-hypomorph mutants, and the dramatic suppression by 

disruption of the Wnd pathway (Figure 3.1 and 3.3). In support of this idea, presynaptic defects 

in unc-104-hypomorph mutants can be partially rescued by overexpressing Brp (Kern et al., 

2013) or Rab3 (Zhang et al., 2016).   

It is interesting to consider that the targets of Wnd regulation are also abundant 

presynaptic proteins, and are thought to be major cargo for axonal transport.  Down-regulation of 

these proteins in response to defects in their transport or after axonal damage may comprise an 

adaptive  response mechanism to prevent unwanted buildup or wasted cellular resources. This 

role of Wnd, together with its “sensing” role, likely serves as a mechanism to prevent cargo 

buildup in unc-104 mutants (Figure 3.14H).  

How does Wnd signaling regulate presynaptic proteins?  The regulation of the vglut-

promoter-DsRed reporter suggests the involvement of transcriptional regulation (Figure 3.12F-

G), and we also noticed increased levels of Brp, VGlut and Cac transcripts in unc-104;wnd 

double mutants (Figure 3.13G). We are limited in our ability to detect total changes in mRNA 

and protein levels from whole nerve cord preparations by the fact that the Wnd signaling 

pathway may not be acting in all cell types. It is also possible that additional post-transcriptional 

mechanisms, such as regulation of protein stability or translation, factor into the regulation of 

presynaptic proteins by Wnd. 

Many previous studies have reported links between JNK signaling and kinesin-driven 

transport (Verhey and Hammond, 2009), with some observations suggesting that JNK signaling 

may directly regulate the function of kinesin-1, modulating its cargo binding, affinity for 

microtubules and its processivity (Fu and Holzbaur, 2013; Horiuchi et al., 2007; Morfini et al., 
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2006; Stagi et al., 2006; Sun et al., 2011). Our finding of a separate role for JNK signaling in 

regulating the abundance of transported cargo adds a new layer of complexity to interpreting 

phenotypes of axonal transport defects. A commonly described defect is the presence of 

accumulations of cargo within axons, referred to as ‘traffic jams’. These defects have been noted 

for many different mutations, including kinesin-1 and dynein subunits (Gindhart et al., 1998; 

Kurd and Saxton, 1996; Martin et al., 1999), and also in mutants for wnd and other members of 

JNK signaling pathways (Bowman et al., 2000; Horiuchi et al., 2005, 2007). Does a failure to 

regulate excess protein cargo contribute to the presence of the jams? Intriguingly, unc-104 

mutations do not cause ‘traffic jams’ in axons, but instead leads to accumulate of synaptic 

proteins in cell bodies, which correlates with the activation of Wnd signaling.  

Finally, it is interesting to compare Wnd’s role in fine-tuning levels of presynaptic 

proteins with previously identified roles for DLK in promoting cell death (Chen et al., 2008; 

Huntwork-Rodriguez et al., 2013; Pozniak et al., 2013; Watkins et al., 2013; Welsbie et al., 

2013). While Kif1a mutant mice show early signs of neuronal death and degeneration, which 

may potentially be mediated by activation of DLK, unc-104 mutants in C. elegans and 

Drosophila lack hallmarks of cell death and synaptic degeneration (Hall and Hedgecock, 1991; 

Kern et al., 2013; Pack-Chung et al., 2007).  In analogy with other stress response pathways, 

regulation of presynaptic proteins may comprise a first order response that facilitates adaptation 

to stress, while cell death can be used as the more extreme response of ‘last resort’.  Inhibition of 

synaptic proteins is, alone, a pathology that becomes relevant for long term maintenance of 

synapses and their function over time, since synthesis and transport of new synaptic proteins 

likely needs to occur throughout the long lifespan of a neuron. Interestingly, previous studies 

have linked activation of JNK signaling to synapse loss in aged animals (Ma et al., 2014; Sclip et 
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al., 2014; Voelzmann et al., 2016). Exciting future work lies ahead to further understand DLK’s 

activation and its consequences in different models of neuronal injury, disease, and aging. 
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3.6 Figures
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Figure 3.1: Wnd signaling pathway is required for the presynaptic assembly defect in unc-104 
mutant NMJs. 
(A-D)  Representative confocal images of third instar larval neuromuscular junctions (NMJ) at 
muscle 4. Postsynaptic densities (PSDs) identified by GluRIII staining (Green) that lacked 
apposing AZ components Brp (magenta in A), or Liprin-α (magenta in B) are highlighted by 
arrowheads. Note that when determining the absence of AZ, the pixel saturation threshold was 
reduced to reveal any AZ of weak signal. (This resulted in saturation of certain pixels in wt 
controls. For more details, see Experimental Procedures.) 
(A) Alignment of postsynaptic GluRIII (green) with presynaptic AZ component Brp (magenta) 
in Canton-S (wt), unc-104bris/P350, unc-104bris/P350;wnd3/3 and wnd3/3. Unc-104P350 is a null allele. 
(B) Alignment of postsynaptic GluRIII (green) with presynaptic AZ component Liprin-α 
(magenta). Liprin-α-GFP was driven by rab7 promoter and UAS-unc-104 RNAi and UAS-wnd 
RNAi were driven by neuronal elav-Gal4.  
(C-D) VGlut (C) and Brp (D) distribution at one NMJ terminal at Muscle 4. The motoneuron 
membrane was labeled by HRP (inset).  
(E) The percentage of unopposed GluRIII-labeled PSDs from 1A, 3.2C and D. The unopposed 
PSDs were defined by the GluRIII-labeled PSDs that lacked any trace of the presynaptic AZ 
protein Brp.  
(F) Quantification of the total intensity of VGlut (C) and Brp (D) immunostaining within the 
entire synaptic NMJ terminal at the muscle 4, normalized to that in wild type animals. 
(G) Percentage survival of larvae to adulthood. For details, see Supplemental Experimental 
Procedures. 
All data are represented as mean ± SEM; At least 8 animals and 12 NMJs were examined per 
genotype; **** P<0.0001, *** P<0.001, ** P<0.01, *P<0.05. Scale bar, 5μm (A-B) and 20μm 
(C-D). For additional data, see Figure 3.2. 
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Figure 3.2: The Wnd signaling cascade is required in neurons for unc-104 mutant’s defects in 
presynaptic assembly, animal growth, quantal content and mEJP amplitude, (related to Figures 
3.1 and 3.3). 
(A) The percentage of unopposed PSDs, defined by the absence of presynaptic Liprin-α-GFP at 
synapses labeled by GluRIII, increased when unc-104 was knocked down in motoneurons, using 
the Rab7 promoter driver. This defect was suppressed when wnd was knocked down at the same 
time. 
(B) Showing the cell autonomy of the unc-104 synaptic defect and the role of Wnd, the 
percentage of unopposed PSDs, defined by the absence of BRP at synapses labeled by GluRIII,  
was rescued when Wnd was neuronally knocked down by RNAi together with unc-104 (2 
independent RNAi lines: vdrc 23465, I and TRiP BL43264, II) or unc-104-hypomorph mutants. 
All UAS-RNAi were driven by Bg380-Gal4. UAS-Dicer was co-expressed to enhance RNAi 
efficiency with unc-104RNAi II. 
(C) Total Brp intensity at individual synapses was reduced in unc-104bris/P350-hypomorph mutants 
and restored in unc-104bris/P350;wnd3/3 double mutants. 
(D-E) Representative confocal images of NMJ synapses labeled with Brp (D) and the L-type 
calcium channel Cacophony (cac)-GFP (E). Inhibition of JNK/bsk (D) or Fos (E) via expression 
of a Dominant Negative (DN) transgene rescued the synaptic apposition defect of unc-104 
mutants. (D): Control (OK319-Gal4), bskDN (OK319-Gal4; UAS-bskDN), unc-104bris (OK319-
Gal4, unc104bris/d11204) and unc-104bris; bskDN (OK319-Gal4, unc104bris/d11204; UAS-bskDN). (E): 
Control (OK319-Gal4; UAS-cac-GFP), unc-104bris (OK319-Gal4, unc104bris/d11204; UAS-cac-
GFP) and unc-104bris; fosDN (OK319-Gal4, unc104bris/d11204; UAS-bskDN, UAS-cac-GFP). 
GluRIII-labeled PSDs that lack apposing AZs (Cac-GFP or Brp) are highlighted by arrowheads. 
unc104d11204 is a null allele. 
(F) The largest body width measured in surviving 3rd instar larvae, as described in Supplemental 
Experimental Procedures, was reduced in unc-104 mutants and restored when wnd was 
neuronally knocked down. UAS-wndRNAi expression was driven by Bg380-Gal4 together with 
UAS-Dicer2.  
(G) Knockdown of unc-104 causes cell autonomous defects in presynaptic assembly. Two 
different Gal4 drivers were used to express unc-104 RNAi, either specifically in SNc neurons, 
which innervate muscle 26, 27 and 29 (m12-gal4) or all motoneurons (OK6-Gal4). Knockdown 
in SNc neurons caused synaptic assembly defects on innervated muscles (quantified for muscle 
27) but not other muscles (quantified for muscle 4).  
(H) Distribution of mEJP amplitudes in unc-104 mutants fit with log Gaussian. The center 
amplitude was determined by the peak of curve: wild type (0.80 mV), unc104bris/P350 (0.61 mV), 
unc104bris/P350; wnd3/3 (0.95mV) and wnd3/3 (0.76 mV). Note that both the center amplitude and 
the amplitude distribution were restored in double mutants. 
(I) Motility of 3rd instar larvae was defective when unc-104 was knocked down, but was 
significantly rescued when wnd concomitantly inhibited by co-expression of UAS-wnd-RNAi 
but not a control RNAi. UAS-RNAi were driven by OK371-Gal4 (See Supplemental 
Experimental Procedures, below). 
All data are represented as mean ± SEM; N.S., not significant; **** P<0.0001, *** P<0.001, ** 
P<0.01,*P<0.05; Tukey test for multiple comparison; Scale bar, 5μm. 
 



69 
 

 
Figure 3.3: The synaptic transmission defect in unc-104 mutants is suppressed by wnd mutations 
(A and B)  Representative electrophysiological traces of (A) Evoked Excitatory Junctional 
Potentials (EJP) and (B) miniature Excitatory Junctional Potentials (mEJP) recorded from 
muscle 6 of third instar larvae  
(C-F) Quantification of (C) the average EJP, (D) average mEJP, (E) average mEJP frequency 
and (F) average quantal content (corrected for nonlinear summation). 
All data are represented as mean ± SEM; N.S., not significant; **** P<0.0001, *** P<0.001; 
Tukey test for multiple comparison. For additional data, see Figure 3.2. 
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Figure 3.4: The Wnd signaling pathway is activated in unc-104 mutants 
(A) Expression of the puc-lacZ reporter for Wnd/JNK signaling was induced in unc-104 mutants. 
Nuclear lacZ (green), expressed from the puckered promoter, was evaluated in motoneuron 
nuclei marked by Phospho-SMAD staining. UAS-RNAi lines (including UAS-moody RNAi as a 
control) were driven by BG380-Gal4.  
(B) Quantification of puc-lacZ expression from (A) showing a Wnd-dependent regulation. UAS-
mcd8-ChRFP was used as a control for dosage of UAS lines. Unc-104 RNAi II was accompanied 
with Dicer2 expression to facilitate the knock-down.  
(C) Regenerative axonal sprouting of m12-Gal4, UAS-mcd8-GFP labeled axons 10 minutes, 9 
hours or 18 hours after nerve crush from wt and unc-104O3.1/P350 mutant animals. Asterisk (*) 
indicates the injury site and arrow indicates the direction of the cell body. 
(D) 9 hours after injury, the percentage of axons with more than 5 branches per nerve were 
enhanced in unc-104 mutants.   
(E) The axon regeneration was enhanced in unc-104 mutants, measured by the length of the 
longest branch per nerve at 18 hours after injury. 2 independent unc-104 RNAi lines and control 
RNAi (moody-RNAi) were driven by m12-Gal4. 
 (F) Endogenously tagged Wnd protein (MiMIC-wnd-GFP) increased in motoneuron cell bodies 
of unc-104O3.1/P350mutants, compared to that of wild type. Two representative cell bodies are 
marked by green circles. 
(G) Ectopically expressed GFP-wndkinase dead increased in cell bodies of MNSNc motoneurons, 
compared to that of wild type. A representative cell body is marked by a green circle. 
(H-I) Quantification of GFP signal intensity from (F) and (G) in cell bodies. 
All data are represented as mean ± SEM; N.S., not significant; **** P<0.0001, *** 
P<0.001,*P<0.05, Tukey test for multiple comparison; Scale bar, 20μm. For additional data, see 
Figure 3.5 and 3.6. 
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Figure 3.5: The Wnd signaling pathway was activated in unc-104 mutants, in a different manner 
than that in hiw mutants, (related to Figure 3.4).  
(A) Presynaptic bouton morphology and branching at the NMJ, viewed via immunostaining for 
HRP (which labels axonal membrane) at muscle 4. The presynaptic arbor was over-branched in 
unc-104 bris mutants, and this was rescued in unc-104bris;wnd1/3 double mutants. 
(B) The total NMJ length (from the most proximal to the most distal bouton of the presynaptic 
nerve terminal at muscle 4, labeled via anti-HRP staining) was increased in unc-104 mutants, and 
this increase was suppressed with mutations that inhibit the Wnd pathway. UAS-bskDN and UAS-
fosDN were driven by elav-Gal4 and unc-104bris/bris; wnd1/3 were used. 
(C-D) Characterization of the MiMIC-wnd-GFP as a tag for endogenous Wnd. 
(C) Western blot with anti-Wnd antibody for larval brain extracts from wnd3/Df, wt, wnd+/Df and 
wndMiMIC-gfp/Df animals. Endogenous Wnd protein runs at approximately 130kDa, while the 
MiMIC-Wnd-GFP fusion protein can be detected at an appropriately larger molecular weight 
(160kDa) for the GFP-fusion, confirming the expression and stability of the fusion protein. 
(D) MiMIC-wnd-GFP in neuropil was enhanced in hiw mutants, but not control or unc-104 
mutants. This also indicates that the MiMIC-wnd-GFP is, like endogenous Wnd (Collins et al., 
2006), subject to regulation by Hiw.  
(E) Axonal MiMIC-wnd-GFP within larval segmental nerves (containing motoneuron axons) 
was enriched in unc-104 mutants. Neuronal membrane (green) was identified via anti-HRP 
staining. 
(F) Quantification of MiMIC-wnd-GFP signal intensity from axons in segmental nerves, shown 
in (E). 
(G) Total intensity of UAS-GFP-wndkd (driven by m12--Gal4) divided by the total NMJ terminal 
area at muscles 26, 27 and 29.  
(H) Representative Western blot of larval whole brain extracts for endogenous Wnd and β-
tubulin, and quantification of Wnd levels normalized to β-tubulin band intensity (n≥3). Mutants 
examined include unc-104bris/P350; wnd3/3 and hiwΔN. 
All data are represented as mean ± SEM; N.S., not significant, *** P<0.001, **P<0.01, *P<0.05, 
Tukey test for multiple comparison; Scale bar, 20μm. 
 



74 
 

 
Figure 3.6: Wnd transport was not impaired in unc-104 mutants, (related to Figure 3.4).  
 (A) Kymograph of GFP-wndKD particle movement in SNc motoneuron axons (using the m12-
Gal4 driver). Axons were imaged 900 μm distal to cell bodies at 0.3 Hz for 5 minutes in wild 
type and unc-104O3.1/P350 mutant animals. Anterograde particles (which were more abundant in 
unc-104 mutants) moved from left to right. 
(B-D) Measurement of GFP-wndKD particle movement by (B) the distribution of particles across 
retrograde, anterograde and immotile categories, (C) velocity, and (D) scatter plot showing both 
duration (y-axis) and velocity (x-axis) of all anterograde and retrograde particles. In unc-104 
mutants anterogradely-moving particles are more abundant and move in longer duration at higher 
velocity. 
All data are represented as mean ± SEM; N.S., not significant, *** P<0.001, **P<0.01, *P<0.05, 
Tukey test for multiple comparison.  
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Figure 3.7: Liprin-α and Rab3 control presynaptic assembly independently of Wnd 
(A-B) Representative images of presynaptic Brp and postsynaptic GluRIII from (A) liprin-α and 
liprin-α ;wnd and (B) rab3 and rab3;wnd. Unopposed GluRIII-labeled PSDs are highlighted by 
arrowheads. 
(C) Percentage of unopposed GluRIII-labeled PSDs from (A) and (B) 
(D) The evaluation of BRP at present AZ by the intensity per AZ and the number per NMJ. 
Increased Brp intensity of individual AZ and reduced Brp number per NMJ in either liprin-α or 
rab3 mutants were not suppressed by wnd mutations. 
(E) puc-lacZ intensity in liprin-αand rab3 mutants and rab3-GEF knock-down, normalized to 
wild type and controlRNAi (moody-RNAi). 
All data are represented as mean ± SEM; N.S., not significant, **** P<0.0001, *** P<0.001, * 
P<0.05; Tukey test for multiple comparison; Scale bar 5μm.  
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Figure 3.8: Over-active Wnd signaling is sufficient to induce defects in presynaptic assembly 
and transmission 
(A) Representative images of MNSNc synapses at muscle 26, 27 and 29 with Brp and GluRIII 
staining. GluRIII-labeled PSDs that lack opposed AZs (highlighted by arrowheads) increased 
when Wnd was over-expressed. Similar defects were observed using a pan-motoneuron driver 
(OK6-Gal4), and in driver line specific to the MNSNc motoneuron (m12-Gal4), indicating the 
cell autonomy of Wnd’s effect upon synapse assembly. 
(B) Brp protein intensity at individual synapses and across entire NMJ terminals (at muscle 4) 
was reduced when Wnd was over-expressed in motoneurons (using the OK6-Gal4 driver). 
(C) The percentage of unopposed GluRIII-labeled PSDs at the MNSNc NMJ terminals in hiwΔN, 
unc-104O3.1/P350 and when UAS-wnd was over-expressed using either pan-motoneuron driver 
(OK6-Gal4) or a driver specific to MNSNc motoneurons (m12-Gal4). 
(D-E) Representative electrophysiological traces of (D) EJP and (E) mEJP on muscle 6 of third 
instar larvae in wild type, hiwΔN and hiwΔN;;wnd3/deficiency. 
(F) Average quantal content (corrected for nonlinear summation) reduced significantly due to 
activation of Wnd in hiw mutants.  
(G) The total amount of Brp intensity across NMJ synaptic terminals was inhibited by over-
activation of Wnd in hiw mutants. 
All data are represented as mean ± SEM; N.S., not significant, **** P<0.0001, *** P<0.001, ** 
P<0.01, *P<0.05, Tukey test for multiple comparison; Scale bar, 2μm. For additional data, see 
Figure 3.9. 
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Figure 3.9: Wnd activation inhibits presynaptic assembly, (related to Figure 3.8). 
(A) Representative images of presynaptic Brp (magenta) and postsynaptic GluRIII (green) from 
wild type, hiwΔN and hiwΔN;;wnd3/Df.  GluRIII-labeled PSDs that lack opposed AZs are 
highlighted by arrowheads. 
(B) Quantification of (B) the percentage of unopposed GluRIII-labeled PSDs, normalized to wt. 
(C) The total intensity of Brp measured at individual synapses was reduced hiw mutants, and this 
reduction required wnd.  
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(D) Triple labeling of Brp (red), GluRIII (blue) and either Liprin-α-GFP or Cacophony-GFP 
(green) from wild type and hiwΔN. The co-localization of three markers resulted in white while 
“half synapses” resulted in blue only, highlighted with arrowheads. Notice the co-disappearance 
of all presynaptic markers in hiw mutants. 
(E-G) Electrophysiology recordings from NMJs at muscle 6. Quantification of the (E) average 
EJP, (F) average mEJP and (G) average mEJP frequency. 
All data are represented as mean ± SEM; **** P<0.0001, *** P<0.001, ** P<0.01, *P<0.05; 
Tukey test for multiple comparison, Scale bar, (A) 5μm and (D) 2μm 
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Figure 3.10. Synaptic bouton and AZ formation but not SV transport defects in unc-104null 
mutants are rescued by mutations in wnd  
(A-C) Representative images of ISNb NMJ terminals at muscle 6/7/12/13 at embryonic stage 17 
(20-21 hours AEL). The examined unc-104null alleles include P350/P350 and 52/52.  
(A) In unc-104null mutants, boutons (identified by HRP staining) failed to form, and AZs (Brp) 
failed to localize to NMJ. Both of the defects were largely suppressed in unc-104null;wnd  double 
mutants. 
(B) Presynaptic vesicle proteins VGlut and SytI failed to localize to presynaptic terminals (NMJ) 
in both unc-104 and unc-104; wnd mutants. NMJ membrane was labeled by HRP (inset) 
(C) The percentage of NMJs with boutons reduced in unc-104null mutants and largely restored in 
unc-104null;wnd3/3 double mutants. 
(D) The number of AZs (identified by Brp) formed at a NMJ was strongly reduced in unc-104null 
mutants, but was largely restored in unc-104; wnd double mutants. 
(E) The intensity of Brp, Synapsin, VGlut and SytI at NMJ terminals was reduced in unc-104 
mutants. In unc-104;wnd double mutants, Brp intensity was largely restored and Synapsin was 
mildly restored. No significant suppression was observed for VGlut and SytI. 
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All data are represented as mean ± SEM; At least 9 animals and 20 NMJs were examined per 
genotype; **** P<0.0001, *P<0.05; Tukey test for multiple comparison; Scale bar, 10 μm. For 
additional data, see Figure 3.11. 
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Figure 3.11: Transport defects of presynaptic vesicle proteins largely persisted in unc-
104null;wnd mutants, (related to Figure 3.10). 
 (A-B) Representative images of ISNb NMJs at muscle 6, 7, 12 and 13 at embryonic stage 17 (21 
hours AEL). In unc-104null mutants, presynaptic vesicle proteins (A) Synapsin and (B) CSP 
failed to localize to NMJ. Synapsin localization was mildly suppressed in unc-104null;wnd 
mutants, while CSP was not.  
(C) The total intensity of CSP measured at NMJ terminals (shown in B) were reduced in unc-104 
mutants and in unc-104;wnd double mutants. 
(D) Transient rescue of muscle contraction defects in early embryos. Embryos with visible 
muscle contraction were scored immediately after dissection from the vitelline membrane at 
stage 17 (20-21 AEL). Contractions were mostly absent in unc-104 mutants however were 
present in unc-104; wnd double mutants. The degree of contraction in double mutants was less 
robust than wildtype and was transient – animal were still within 3 minutes.  
All data are represented as mean ± SEM; At least 4 animals and 10 NMJs were examined per 
genotype; **** P<0.0001, *P<0.05; Tukey test for multiple comparison; Scale bar, 10 μm.  
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Figure 3.12: Wnd restrains total levels of presynaptic components downstream of Unc-104. 
(A-B) SytI and VGlut immunostaining in stage 17 embryonic nerve cord (20-21 AEL) in unc-
104null mutants. Quantification in (B) shows an increase in total intensity in unc-104null;wnd 
double mutants. Increased staining is noted in the cell body region (A, and Figure 3.15A). 
Additional data is shown in Figure 3.15B.  
(C-D) In unc-104bris/P350 (hypmorph); wnd double mutants, increased intensity of VGlut (C) and Brp 
(D) is observed in motoneuron cell bodies of 3rd instar larvae (see also Figure 3.15). In each 
image, two groups of motoneuron cell bodies were shown with their nuclei identified by Elav 
staining (blue in C). 
(E) Estimates of the total intensity of VGlut and Brp (described in methods), showing the relative 
percentage from each compartment (cell body (gray), axons (light gray) and synaptic terminals 
(black)). 
(F)  The expression of vglut promoter-DsRed reporter was down-regulated via Wnd when unc-
104 is knocked-down. (H) Quantification of vglut-DsRed intensity in (H) is normalized to 
controlRNAi. UAS-RNAi lines were driven by OK6-Gal4. 
All data are represented as mean ± SEM; **** P<0.0001, *** P<0.001, ** P<0.01, *P<0.05, 
Tukey test for multiple comparison; Scale bar, 20μm. For additional data, see Figure 3.13. 
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Figure 3.13: In unc-104 mutants, a specific cohort of synaptic proteins were down-regulated by 
Wnd, (related to Figure 3.12). 
(A) Schematic cartoon showing the locations of motoneuron cell bodies (within one segment, 
denoted by dotted lines) and Neuropil (green) in the nerve cord at embryonic stage 17.  
(B) Immunostaining for Brp, CSP and Synapsin in the nerve cord at embryonic stage 17 (20-21 
AEL). In unc-104 mutants, Brp, CSP and Synapsin protein accumulated in cell bodies and their 
total protein levels were slightly reduced. Both the accumulation and the total levels were 
enhanced in unc-104; wnd double mutants.  
(C) Representative Western blot of 30 larval brains for VGlut and β-tubulin from wild type (wt), 
unc-104bris/P350, wnd3/3 and unc-104bris/P350;wnd3/3. 
 (D-E) Quantification of (D) mean HRP intensity measured in segmental nerve axons and (E) the 
total GluRIII levels of individual NMJ terminals (at muscle 4) from wild type (wt), 
unc104bris/P350, wnd3/3 and unc104bris/P350; wnd3/3. Note that HRP intensity was reduced in a Wnd-
independent manner. 
(F) Quantification of nuclear Elav levels in animals carrying UAS-RNAi lines driven by OK371-
Gal4 
(G) Relative mRNA levels measured by quantitative RT-PCR for Brp, VGlut, Cacophony and 
Liprin-α from whole larval brains. Similar results were observed with both Tubulin and RP49 as 
normalization controls, so the mean fold change using both is reported. Note mRNA level of 
Brp, VGlut and Cac, but not Liprin-α, increased in unc104; wnd double mutants.  
(H) Validation that the vglut-DsRed (magenta) reporter is accurately expressed in cells that 
express VGlut protein, detected by anti-VGlut antibody staining (green). 
(I) Quantification of total intensity measurements for VGlut and Brp in motoneuron cell bodies, 
normalized to wild type. 
All data are represented as mean ± SEM; N.S., not significant, **** P<0.0001, *** P<0.001, * 
P<0.05, Tukey test for multiple comparison; Scale bar, 20μm. 
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Figure 3.14: Wnd’s role in synapse development. 
(A) Schematic cartoon of the embryonic nerve cord showing the neuropil (the location of 
neurites and developing synapses in the CNS) and motoneuron cell bodies in 2 segments at late 
embryonic stages (15 to 16).  
(B) Representative images of VGlut (white, bottom row) expression in motoneuron cell bodies of 
wild type and wnd-null mutants (wnd3/Df) at embryonic stage early 15, late 15 and 16. 
Analogous segments are identified by neuropil HRP staining (top row). 
(C-D) Quantification of VGlut intensity in (C) motoneuron cell bodies and (D) NMJ presynaptic 
terminals for wt and wnd-null mutants at different embryonic stages and in 3rd instar larvae. 
VGlut expression first appears in cell bodies at embryonic stage 15 (C), corresponding with the 
onset of NMJ synaptogenesis, but does not appear at NMJ terminals until stage 16 (D). As the 
NMJ matures and expands throughout development, VGlut intensity, which is predominantly 
localized to NMJ terminals, continues to increase (note the logarithmic scale). Quantification (D) 
is normalized to intensity at stage 16. 
(E-F) SytI intensity is elevated in wnd-null mutants at embryonic stage 16. (E) Representative 
images of SytI immunostaining in CNS neuropil. Additional images for quantification in (F) are 
shown in Figure 3.15C. 
(G) Ectopic over-expression of presynaptic components (Brp, SytI, VGlut and VGlutA470V) led to 
increase of Wnd-JNK signaling reporter, puckered-lacZ. Pan neuronal Gal4 (bg380) was used to 
drive their expression. 
(H) Model for the relationship between Wnd/DLK signaling and Kinesin-3-mediated transport. 
In purple, the kinesin-3 family motor protein Unc-104/Imac plays an important role in synaptic 
assembly by carrying synaptic vesicle precursors to nascent synapses. It also plays indirect roles 
in synaptic assembly via the Wnd/DLK signaling pathway, which becomes activated when Unc-
104-mediated transport is impaired. Wnd/DLK activation also becomes activated after axonal 
injury, and is previously known for roles in promoting axonal regeneration, and also in cell death 
in some models of axonal stress. Here we have found that Wnd restrains the expression of 
presynaptic proteins to prevent their excess build-up when Unc-104 function is inhibited.  
All data were represented as mean ± SEM; **** P<0.0001, ** P<0.01, *P<0.05, Tukey test for 
multiple comparison; Scale bar, 20μm (B and E). For additional data, see Figure 3.15. 
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Figure 3.15: Wnd’s role in synapse development, (related to Figure 3.14). 
(A) VGlut (second row) and Brp (third row) expression at ISNb NMJs for wild type and wnd 
null mutants at embryonic stage 15, 16 and 17. Top row shows the NMJ morphology at each 
stage based on staining with HRP which reveals the axonal and nerve terminal membrane. 
(B) SytI intensity, detected at NMJ terminals at embryonic stage 16, was increased in wnd 
mutants compared to wt. 
(C) SytI intensity, detected at NMJ terminals (M4) was similar between wt and wnd mutants in 
3rd instar larvae. 
(D) Quantification of Brp total intensity at ISNb NMJ terminals in wt and wnd mutants. A mild 
decrease was observed at this stage 16 in wnd mutants. 
(E) Total intensity of Synapsin detected in Neuropil and in NMJ terminals was similar between 
wt and wnd mutants at embryonic stage 16. 
(F) Synapsin and Syt1 intensity within segmental nerves (containing motoneuron axons) are 
increased in wnd mutants (3rd instar larvae). 
All data are represented as mean ± SEM; N.S., not significant, * P<0.05, Tukey test for multiple 
comparison; Scale bar, 10μm (A, B, C and F). 
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CHAPTER IV 

INVESTIGATING MECHANISMS THAT MEDIATE THE ACTIVATION OF 

WALLENDA/DLK SIGNALING IN UNC-104 MUTANTS 

The loss of presynaptic AZs and SVs from individual synapses, when Wnd signaling is 

activated or unc-104 is mutated, is unique. Importantly, the activation of Wnd signaling is only 

observed in unc-104 mutants, but not kinesin-1 or dynein mutants. This suggests a specific 

relationship between the activation of Wnd signaling and the loss of Unc-104 function. To gain 

an understanding of this relationship I have considered several different hypotheses and in this 

chapter I report my findings in evaluating them. I considered: first (in section 4.1) whether Wnd 

is a direct cargo of Unc-104; then (in section 4.2) whether dysfunctional synapses in unc-104 

mutants lead to activation of Wnd signaling; then (in section 4.3) whether the accumulated cargo 

in the cell body contributes to the activation; lastly (in section 4.4) whether defective autophagy 

plays a role in activating Wnd signaling. 

 

4.1 Is Wnd a direct cargo of Unc-104? 

Wnd and its DLK homologues localize to axons and this appears critical for their 

signaling function. It has been shown that at least a population of Wnd is actively transported in 

vesicles anterogradely and retrogradely in axons (Holland et al., 2015; Xiong et al., 2010). The 

retrograde transport machinery is required for the activation of Wnd/DLK’s downstream targets 

in response to injury (Holland et al., 2015; Shin et al., 2012; Watkins et al., 2013; Xiong et al., 
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2010). DLK localize to vesicles via palmitoylation and this likely also occurs for Wnd via a 

conserved consensus palmitoylation motif (Holland et al., 2015). It remains unclear what motor 

is responsible for transport of Wnd/DLK-associated vesicles and whether this transport may be 

regulated as part of injury signaling.  

The increased levels of Wnd protein in the cell bodies observed in unc-104 mutants 

(Figure 3.4) suggests that Wnd’s transport may be influenced by Unc-104. However, the 

examination of GFP-Wndkd transport in axons showed no obvious impairment (Figure 3.6). 

These results suggest that either Wnd is not a cargo of Unc-104, or Wnd is transported by 

multiple motors including Unc-104.  

To further test the cargo possibility I examine the co-localization and co-transport of 

Wnd and Unc-104 in vivo. Unc-104 movement had not been examined in Drosophila and the 

imaging turns out to be challenging. Most studies (including mine) are carried out with 

exogenously expressed fluorescent protein-tagged Unc-104 and a large pool of the expressed 

protein is cytosolic, which mask the signals from Unc-104 that moves along with vesicles 

(Figure 4.1A). Unc-104’s movement has previously been successfully examined in cultured 

neurons (Hung and Coleman, 2016; Lee et al., 2003). In vivo it has been documented in two 

studies in C. elegans via direct live-imaging, despite its high cytosolic signal. However the two 

studies generated very distinct histograms of Unc-104’s transport velocities (Wagner et al., 2009; 

Zhou et al., 2001). For example, Unc-104’s greatest velocity is 0.8~1 μm/s in one study 

compared to 0.2~0.4 μm/s in the other. This difference could be due to the difficulty in 

accurately identifying moving Unc-104-associated particles from cytosolic pool of Unc-104. 

Another study in C. elegans  reported this problem on cytosolic signal and could not conclude on 

Unc-104’s velocity based on live imaging data (Klopfenstein and Vale, 2004). Therefore, the live 
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imaging of Unc-104 has not been well established because of the high background signal. In 

order to solve it, I decided to locally photobleach Unc-104-mCherry fluorescence to reduce 

background from the cytosolic pool, before acquiring images of its movement. 

In order to do live imaging of the Drosophila larval nervous system, I developed a simple 

set-up that exposes the nervous system, including axons, to light microscopy while keeping 

larvae fully immersed in physiological solutions, such as HL3 or PBS buffer, which is tightly 

sealed in between coverslip and dissection plate. It allows for live imaging with inverted 

microscope for up to 1 hour. In this set-up I was able to observe robust fast transport of Wnd 

vesicles at single-axon resolution, labeled by GFP conjugated to a kinase dead version of Wnd 

(Figure 4.1A and B). For Unc-104, without photobleaching, only a few occasional particles were 

observed, and these particles did not cotransport with Wnd-GFP; however Unc-104-mCherry 

particles were still difficult to distinguish from the fluctuations in the background signal (Figure 

4.1C). Interestingly, a strong signal comes from retrograde transport of Unc-104, which may 

imply the existence of a particle with multiple motors attached (Figure 4.1A and B). This 

retrograde ‘bulk’ may potentially serve to recycle Unc-104 motors after they reach the distal end.  

Within 10 seconds after photobleaching a 170 um length of the segmental nerve, Unc-

104-mcherry particles could be spotted entering the photobleached area in the anterograde 

direction. However these particles were rarely spotted in consecutive frames and instead 

disappeared within three frames (Figure 4.1D), likely due to photobleaching and/or 

overwhelmingly high background signal from the cytosolic pool. With the caveats that very few 

transport particles were spotted, no obvious colocalization was observed with Wnd-GFP (Figure 

4.1D). 
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Given the challenge in doing live imaging of Unc-104, I also carried out further genetic 

analysis to test the cargo hypothesis. If Wnd is a direct cargo of Unc-104, then over-expression 

of Unc-104 might alter Wnd signaling. A previous study in C. elegans  has described a gain-of-

function mutation in unc-104 which appears to enhance its transport and cargo binding, and 

affect synapse distribution (Niwa et al., 2015; Zheng et al., 2014). Over-expression of wild type 

Unc-104 behaves similarly to gain-of-function mutation to suppress synaptic defects caused by 

mutations in its adaptor Liprin-α (Zheng et al., 2014). After driving over-expression of Unc-104 

in all neurons I observed no changes in expression from the puc-lacZ reporter, including in 

animals after axonal injury, which induces endogenous Wnd signaling (Figure 4.2A). 

Furthermore, overexpression of Unc-104 caused no changes to the number of Brp-marked AZs 

(Figure 4.2C) and no changes in the levels of VGlut and Brp measured at NMJ synapses (Figure 

4.2B and D). These negative observations suggest that Wnd signaling is unlikely to be directly 

inhibited by Unc-104. 

From my observations thus far, I cannot rule out some remaining possibilities for a direct 

relationship between Unc-104 and Wnd. For example, (a) Wnd may be transported by a small 

population of Unc-104 motors, which falls below the limits of my detection in live imaging; (b) 

Unc-104 may function near the cell body to transport Wnd before its entry into axons, rather than 

in the axon shaft where my imaging focused; or (c) Unc-104 transports Wnd at an early stage of 

development, that was not detected in my experiments. These possibilities are in line with our 

current understanding of motors, which is that a cargo is bound by multiple motors and motor-

cargo binding is dynamically regulated (Hirokawa et al., 2009). Future work to carry out live 

imaging of Wnd-GFP in embryos of unc-104-null mutants could further address these 

possibilities. 
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4.2 Does synapse dysfunction activate Wnd signaling? 

If Wnd is not itself a direct cargo of Unc-104, the next logical possibility is that one of 

Unc-104’s cargo functions to regulate Wnd pathway. Previous work has suggested that DCVs 

and SVs are major cargo of Unc-104. In the unc-104 mutants, these vesicles and associated 

proteins are depleted from synapses and accumulate in the cell body (Gong et al., 1999; Hall and 

Hedgecock, 1991; Pack-Chung et al., 2007; Yonekawa, 1998). Hence there are two simultaneous 

defects in these unc-104 cargo: depletion from synapses and accumulations in the cell body. We 

endeavored to tease apart which (synaptic depletion or cell body accumulation) was responsible 

for the activation of the Wnd pathway. 

The depletion of DCVs and SVs and their associated proteins from synapses in unc-104 

mutants directly impair exocytosis of these vesicles, So the synaptic transmission in unc-104 

mutants is severely weakened (Figure 3.3). It is known that vesicle release from synapses is 

critical for synaptic morphology and structure: SV release is important for synaptic homeostasis 

and maintenance (Verhage et al., 2000); DCVs upon fusion at synapses release neuropeptides, 

many of which have been shown to be important for synapse growth (Chen and Ganetzky, 2012; 

Nässel and Winther, 2010); Octopamine, a neurotransmitter carried in DCVs, influences synapse 

formation (Koon et al., 2011); Neuropeptides and morphogens such as BDNF are also 

transported in the form of DCVs (Dieni et al., 2012). From these possible cargo, both cell-

autonomous and non-cell-autonomous mechanisms can be envisioned for their roles in synapse 

formation. To test whether disruption of synaptic release mediates the activation of Wnd 

signaling in unc-104 mutants, I attempted to specifically impair DCV and SV release. 
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4.2.1 SV release impairment did not activate Wnd activation 

Since Drosophila motoneurons are mostly glutamatergic, I first examined the mutants of 

vesicular glutamate transporter (vglut). These mutants are semi-lethal and a few animals that 

survive to 3rd instar larva stage, show reduced mEJP frequency and EJP amplitude (Daniels et al., 

2006). I found that vglut mutants or knock-down showed no change of expression of puc-lacZ 

(Figure 4.3A), which faithfully reports Wnd signaling (Xiong et al., 2010), contrasting its 

dramatic upregulation in unc-104 mutants. In a different approach to silence synaptic 

transmission, Tetanus Toxin Light Chain (TeTxLC), which cleaves synaptobrevin (v-SNARE) 

and inhibit SV exocytosis, was expressed in all motoneurons. Again no change to the puc-lacZ 

expression was observed (Figure 4.3A).These suggest that reduced synaptic transmission (both 

spontaneous and evoked release) in unc-104 mutants is unlikely the cause of Wnd pathway 

activation. 

4.2.2 Octopaminergic signaling did not mediate Wnd signaling activation 

Octopamine, which is close to mammalian norepinephrine, is also released by a few 

motoneurons in Drosophila. It exhibits autoregulatory and paracrine control of NMJ growth 

(Koon et al., 2011). This makes it an interesting target since Wnd/DLK pathway also acts to 

regulate NMJ morphology (Collins et al., 2006). A straightforward model would be that 

octopaminergic signaling inhibits Wnd signaling and its loss in unc-104 mutants activates Wnd 

signaling. In order to mimic this downregulation, I expressed neuronal RNAi to knock down the 

octopamine synthesis enzyme (tyrosine beta-hydroxylase (tbh)) and two receptors (Octβ1R and 

Octβ2R), all of which were shown to play important roles in NMJ growth (Koon et al., 2011). 

No activation of Wnd pathway using puc-lacZ reporter was observed (Figure 4.3B). A noticeable 
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reduction of puc-lacZ expression was observed when tbh was knock-down, but this was non-

motoneuron specific, and distinctly from Unc-104 (Figure 4.3.B). 

 Another possibility is that the failed delivery of octopamine to synapses activates, 

instead of inhibits, its receptors. If so, one would predict that the knock-down of these receptors 

in unc-104 mutant would suppress the activation of Wnd. However, I observed no obvious 

reduction of the Wnd signaling (Figure 4.3C). Furthermore, the synaptic assembly defects 

evaluated by the number of unapposed PSDs was also not affected (Figure 4.3D and E). 

Altogether these suggest that Octopaminergic transmission does not mediate the activation of 

Wnd pathway in unc-104 mutants. 

 

4.2.3 Accumulation, rather than release impairment of DCVs/neuropeptides, activates Wnd 

signaling 

Neuropeptides from DCVs are another potential candidate for Wnd activation. An early 

observation I made hints that Wnd is more enriched in terminals (Type III) that are positive for 

neuropeptide storage and release. Further, when Unc-104 is overexpressed, it only appears in 

Type III terminals, but not others, suggesting a likely more important role for Unc-104 in 

peptidergic neurons (Figure 4.4). I therefore hypothesized that lack of neuropeptide release leads 

to synaptic defects in unc-104 mutants.  

To directly test whether the impaired release of neuropeptides are linked to Wnd 

activation and synaptic defects, I investigated a role for the Calcium activated protein for 

secretion (CAPS), which is required for regulated release of DCVs. CAPS has a conserved 

sequence and functions in Bilateria with homologues Unc-31 in C. elegans  and Calcium-

dependent secretion activator (Cadps) in mammals. CAPS and its homologues facilitate the 
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release of DCVs at synapses and mutations in caps and its homologues lead to impaired release 

of DCVs, which is often accompanied by impaired SV release (Ann et al., 1997; Berwin et al., 

1998; Grishanin et al., 2004; Liu et al., 2008; Renden et al., 2001; Tandon et al., 1998). In my 

findings, knocking down of caps in neurons leads to phenotypes that are strikingly similar to 

unc-104 mutants: defects in synapse apposition, Brp intensity at NMJ and activation of puc-lacZ 

expression (Figure 4.5A-C). Moreover, the puc-lacZ activation was inhibited by wnd knock-

down (Figure 4.5A), suggesting that Wnd signaling is activated when caps function is disrupted. 

Furthermore, axon regeneration was substantially enhanced when caps was knocked down, with 

many injured axons regenerating and growing a much further distance than wild type (Figure 

4.5D and E), indicating an activation of Wnd signaling.  

These results are particularly interesting, however I noticed that these phenotypes are 

cell-autonomous, because knock-down of CAPS in single motoneuron led to synaptic defects 

(Figure 4.5B) and enhanced axon regeneration (Figure 4.5D). This cell-autonomy suggests that 

either neuropeptide release is important for regulating Wnd signaling through autocrine manner, 

or neuropeptide release does not directly affect the Wnd signaling. 

To further determine the role of neuropeptide release in synaptic defects of unc-104 

mutants, I sought to examine whether knocking down unc-104 specifically in neuropeptidergic 

neurons, which should impair neuropeptide release in these neurons, can cause synaptic defects. 

The knock-down was driven by 3 neuropeptidergic Gal4, C929 (most peptidergic neurons) 

(Hewes et al., 2003; Vömel and Wegener, 2008), CCAP (a subset of peptidergic neurons) 

(Dewey et al., 2004; Hewes et al., 2003; Vömel and Wegener, 2007) and Bursicon (a subset of 

peptidergic neurons) (Dewey et al., 2004; Lee et al., 2013; Peabody et al., 2008). Notably, both 

CCAP and Bursicon drives expression in Type III peptidergic motoneurons (Loveall and 
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Deitcher, 2010). In summary of results, examining two separate muscle regions, including one 

that is innervated by Type III peptidergic motoneurons, I did not observe any obvious synaptic 

defects in these conditions (Figure 4.6A and B). In contrast, single motoneuron knock-down of 

unc-104 is sufficient to cause synaptic defects (Figure 3.2). These results suggest that loss of 

unc-104 in peptidergic neurons alone is not sufficient to induce synaptic defects. A caveat of 

these experiments is that the knock-down of unc-104 by RNAi may not be efficient if these 

Gal4s are not strong enough, however these Gal4 have shown prominent expression in other 

studies and accumulation of presynaptic proteins in cell body was observed in these conditions 

(not shown), indicating an at least partial loss of Unc-104 function.  

Since neuropeptide release impairment by caps mutations is unlikely to be the cause of 

Wnd signaling activation and synaptic defects, it raises the possibility that other roles of CAPS 

may be in play. In fact, some recent studies show a role for CAPS in trafficking and Golgi 

morphology (Sadakata et al., 2013, 2010). In caps knock-down neurons, I noticed that Brp 

accumulated in the cell body (Figure 4.5F), in a similar way as in unc-104 mutants. These 

accumulations of presynaptic proteins in the cell body of caps and unc-104 mutants may affect 

the function of the secretory pathway, including the ER and Golgi and a defect in the secretory 

pathway may trigger a response. Interestingly, I found that in both caps and unc-104 mutants, 

Phosphorylated eukaryotic initiation factor 2 α (P-eIF2α), which is highly elevated in scenarios 

of ER stress, is dramatically upregulated (Figure 4.7A). This suggests an association of cellular 

stress with loss of unc-104 and caps. This led me to consider the possibility that presynaptic 

protein accumulation in the cell body leads to the activation of Wnd signaling. 
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4.3 Does the accumulation of presynaptic proteins induce UPR and activate Wnd signaling 

in unc-104 mutants? 

As mentioned above, a significant elevation of P-eIF2α was observed in unc-104 mutants 

globally in the Nervous System, including motoneurons and sensory neurons (Figure 4.7A and 

B), which exhibit synaptic defects. eIF2α is essential for translation and upon ER stress can be 

phosphorylated at Serine 51 (S51) (Pakos-Zebrucka et al., 2016). P-eIF2α disrupts the ternary 

complex that is required for initiating translation, thus inhibiting global translation process. The 

RNA and the translation initiation components that remains associated with transcripts are then 

routed to form stress granules (Bellato and Hajj, 2016; Buchan and Parker, 2009). eIF2α 

phosphorylation can occur as a consequence of ER stress, as one arm of an unfolded protein 

response (UPR) pathway. Interestingly, the P-eIF2α observed in unc-104 mutants appears to 

colocalize well with accumulated Brp in cell body in both motoneurons and sensory neurons 

(Figure 4.7C). This raises the possibility that accumulated Brp in unc-104 mutants resides in 

association with P-eIF2α-containing stress granules. I also observed in unc-104 mutants that 

some of these Brp puncta are located in close proximity to puncta containing Wnd (labeled by 

endogenous tagging by MiMIC, Figure 4.7D). Does this location relationship have anything to 

do with the activation of Wnd signaling? These observations suggest a possible role for P-eIF2α 

and UPR in activating Wnd signaling. 

In order to examine the role of P-eIF2α in Unc-104 mutants and activation of Wnd 

signaling, I first tested the involvement of UPR and whether UPR activation could activate Wnd 

signaling; then I tested roles of kinases that phosphorylate eIF2α. 
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4.3.1 P-eIF2α but not IRE1 is induced in unc-104 mutants 

The UPR is induced by ER stress and entails three branches: PERK/P-eIF2α, IRE1/XBP1 

and ATF6 (Gardner et al., 2013). If P-eIF2α is induced in unc-104 mutants via accumulated 

presynaptic proteins in the ER, then other branches of the ER stress response are likely activated 

as well. Since it is unclear whether the ATF6 pathway is conserved in Drosophila (Ryoo, 2015), 

I set out to examine the IRE1 branch. The IRE1 branch, upon ER stress, is able to activate JNK 

signaling via the TNF-receptor-associated factor (TRAF) (Urano, 2000), making it an interesting 

candidate. Unfolded proteins in the ER induce IRE1, which induces alternative splicing of XBP-

1. This event can be detected using a reporter which contains a GFP tag in the intron region, 

which, upon IRE1-induced alternative splicing, can be incorporated into the mature mRNA, 

allowing for expression of XBP1-GFP (Ryoo et al., 2007; Sone et al., 2013). XBP1-GFP and P-

eIF2α are two common markers for UPR. In contrast to P-eIF2α, I saw no significant increase of 

XBP1-GFP expression in unc-104 mutant larval motoneurons (Figure 4.8A). This suggests that 

the IRE1 branch is not activated by unc-104 mutants while the P-eIF2α is. In line with the lack of 

IRE1 activation, the elevated puc-lacZ expression in unc-104 mutants was not suppressed when 

TRAF1/4 or TRAF2/6 was knocked down in neurons (Figure 4.8B). No suppression of synaptic 

apposition defects in unc-104 mutants was observed for knock-down of TRAF1/4 (Figure 4.8C). 

It is currently unknown whether one branch of UPR can be activated independently from the 

others during ER stress. But it is known that P-eIF2α can be induced by a range of signal besides 

ER stress (Pakos-Zebrucka et al., 2016). 
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4.3.2 UPR induction mildly activates Wnd signaling 

I also examined whether the Wnd pathway becomes activated when the UPR is induced 

via several known approaches. Most assays for the UPR to date have been carried out in cultured 

cells following drug treatment. Some studies in Drosophila neurons in vivo center on responses 

to overexpressing mutated proteins (e.g. rhodopsin-1) in Drosophila photoreceptors, or 

overexpressing disease associated protein, such as TDP-43, which is associated with ALS (Kim 

et al., 2013; Ryoo, 2015). TDP-43 overexpression exhibits an elevation of P-eIF2α (Kim et al., 

2013). I over-expressed TDP-43 or its mutated form in all neurons and observed a mild increase 

of puc-lacZ expression (Figure 4.9A). In contrast, over-expression of mutated rhodopsin-1 

(G69D) in all neurons did not cause synaptic defects (Figure 4.9B). These mixed results may 

reflect differences in the extent that different UPR pathways are activated in these still poorly 

characterized models. Notably rhodopsin-1 (G69D) overexpression has been found to activate 

the IRE1/XBP1 branch (Ryoo et al., 2007) and I found no elevation of P-eIF2α (Figure 4.9C). 

Though further characterization is needed, these results imply that a potential P-eIF2α specific 

mechanism may partly contributes to the activation of Wnd activation. 

Compared to in vivo assays, pharmacological UPR-induction assays in vitro are better 

characterized. Three common inducers can effectively induce a UPR in vitro: DTT (a reducing 

agent that inhibits disulfide bond formation, resulting in misfolded proteins), tunicamycin (an 

inhibitor of N-linked glycosylation, causing accumulation of unfolded glycoproteins in the ER) 

and thapsigargin (an inhibitor for ER calcium pumps, which is critical for Calcium-dependent 

ER chaperones) (Oslowski and Urano, 2011). I first tested whether a 4-hour incubation of larval 

brains with each of these agents was sufficient to induce P-eIF2α and found, except in a few 

neurons, no obvious increase of XBP1-GFP in motoneurons (Figure 4.9D). I noticed that the 
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simple incubation of dissected brains in solution triggers XBP1-GFP to relocalize from the 

nucleus to cell body, suggesting a XBP1 response to the incubation procedure. 

In an alternative approach, DTT was fed to the animal from embryo to 3rd instar larvae 

for a duration of 6 days at a series of concentrations (0, 50uM, 500uM, 5mM, 50mM). In contrast 

to one study that shows elevation of XBP-1 (Debattisti et al., 2014), none of these concentrations 

significantly induce formation of P-eIF2α puncta (5mM was shown as an example, Figure 4.9E). 

None of these manipulations induced puc-lacZ (5mM was shown as an example, Figure 4.9E). 

 

4.3.3 eIF2α phosphorylation kinases PERK, unlikely contributed to synaptic defects in unc-104 

mutants 

Since several pieces of evidence emphasize the role of P-eIF2α, I then considered 

whether upstream kinases of eIF2α play a role in the unc-104 mutant phenotypes. PERK 

mediates phosphorylation of eIF2α during ER stress. Knock-down of PERK in neurons did not 

suppress the synaptic defects in unc-104 mutants (Figure 4.10A). However, these manipulations 

failed to reduce the elevated P-eIF2α staining that occurs in unc-104 mutants (Figure 4.10B), 

raising the possibility that other kinases may mediate the phosphorylation. Three additional 

kinases were found in mammals with the capability to phosphorylate eIF2α in other scenarios, 

such as amino acid deprivation (Ryoo, 2015). Whether these kinases are involved in Wnd 

activation and synaptic defects in unc-104 mutants could be a subject of future investigation.  

 

4.3.4 Promoting ER protein degradation did not suppress defects in unc-104 mutants 

If the accumulation of presynaptic proteins mediates Wnd signaling activation and 

synaptic defects in unc-104 mutants, promoting their degradation might relieve the stress and 
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rescue the phenotypes in unc-104 mutants. During the UPR, HRD1, (an E3 ubiquitin ligase for 

ER associated Degradation (ERAD)), functions in the removal and degradation of unfolded 

proteins from the ER. HRD1 overexpression has been used to successfully reduce ER stress and 

ER stress-associated neurodegeneration in the Drosophila retina (Kang and Ryoo, 2009). I found 

that over-expression of HRD1 in neurons did not rescue the synaptic apposition defects, reduced 

Brp intensity at NMJ, or the activation of Wnd pathway in unc-104 mutants (Figure 4.11A-C). 

Therefore, overexpression of HRD1 (which should promote ERAD) did not suppress phenotypes 

of unc-104 mutants. 

 However when I examined P-eIF2α as a control for its effects, I observed that HRD1 

overexpression caused a surprising enhancement of P-eIF2α rather than the expected reduction 

(Figure 4.11D). These confusing results could be due to the current lack of knowledge of how 

HRD-1 functions in these Drosophila assays and whether it interacts with other UPR components. 

From cultured cell assays, it is noted that overactive ERAD can lose its selectivity in substrate 

degradation via currently unknown mechanisms (Ruggiano et al., 2014). More importantly, the 

observation that no synaptic defects are observed when P-eIF2α is elevated by HRD-1 uncouples 

P-eIF2α induction and synaptic defects. Together with the mild effect on Wnd signaling by TDP-

43 overexpression, I suspect that P-eIF2α elevation is not a major mediator of Wnd signaling 

activation and synaptic defects in unc-104 mutants. 

 

4.4 Does defective autophagy mediate the Wnd signaling activation in unc-104 mutants? 

The accumulation of presynaptic proteins in cell bodies of unc-104 mutants may reflects= 

a defective degradation system. A recent study suggests that Unc-104 is important for 

autophagosome formation at presynaptic terminals (Stavoe et al., 2016). Mutations in unc-104 

lead to reduced number of autophagosome in neurites. This study and others have also linked 
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autophagy to synapse function (Binotti et al., 2014; Hernandez et al., 2012; Shen and Ganetzky, 

2009; Torres and Sulzer, 2012). One study proposes that autophagy regulates synapse 

morphology via Highwire, a potent regulator of Wnd/DLK (Shen and Ganetzky, 2009). I 

therefore further probed the role of autophagy in unc-104 mutant phenotypes and Wnd activation. 

To test whether defective autophagy mediates the activation of Wnd pathway, I sought to 

impair autophagy function. Autophagy entails a series of highly orchestrated events, facilitated 

by a number of molecules. Atg1, Atg13, FIP200 and other autophagy components forms a 

complex that is required for autophagy initiation. Upon initiation, a phagophore forms, which 

later expands and matures into an autophagosome, which then fuses with a lysosome to form an 

autolysosome, in which protein and organelle degradation takes place. Atg7 is required for 

phagophore expansion(Ariosa and Klionsky, 2016; Stanley et al., 2014). In order to disrupt 

autophagy in neurons, I knocked down Atg1, Atg13, FIP200 and Atg7, all of which are known to 

play important roles in autophagosome formation. Atg1 knock-down leads to an elevation of 

puc-lacZ expression, which is mediated by Wnd (Figure 4.12A). This is interesting, especially 

considering that the loss of atg1 in Drosophila exhibits synaptic apposition defects that resemble 

unc-104 mutants (Wairkar et al., 2009). In contrast, knock-down of the other components (Atg13, 

FIP200 and Atg7) did not lead to change of puc-lacZ expression (Figure 4.12A).  

To confirm that my experimental manipulations indeed caused impairments to autophagy 

in Drosophila neurons, I used an Atg8 reporter to examine autophagosome/autolysosome 

formation. Atg8 is an LC3 homologue which is an integral component of the autophagosome 

membrane. The reporter contains a dual fluorescent tag of both GFP and mCherry. In 

autolysosomes, the GFP signal becomes quenched by the acidic environment. This reporter has 

been used to monitor autophagy induction and flux (Devorkin and Gorski, 2014). In the 
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Drosophila nervous system, many Atg8-positive puncta can be found in CNS and PNS cell body 

and nerves (Figure 4.12B-D). These puncta are mostly red, indicating a fully formed 

autolysosome. When FIP200 was knocked down, there are still number of Atg8-positive puncta 

across the nervous system; however, most of them are both red and green (Figure 4.12C and D), 

suggesting frequent presence of immature autophagosome or phagophore likely due to defective 

autophagy. This suggests that autophagy is indeed impaired by FIP200 knock-down. 

Though further studies are needed to rule out the involvement of autophagy, my results 

suggests an alternative role of Atg1 in Wnd signaling activation. Besides autophagy, Atg1 has 

been implicated in trafficking in neurons. Work from C. elegans  and Drosophila has identified 

multiple non-autophagic substrates of Atg1 and its homologues, and these substrates are all 

linked to kinesins (Joo et al., 2016; Lai and Garriga, 2004; Levy-Strumpf and Culotti, 2007; 

Toda et al., 2008; Watari-Goshima et al., 2007). Among them, unc-76 binds to SV protein, 

Synaptotagmin-1 and, together with Atg1 regulates SV transport along axons (Toda et al., 2008). 

Interestingly, a recent study found that ULK1/2, the mammalian homologue of Atg1, regulates 

ER-to-Golgi trafficking, independently from autophagy. The loss of ulk1/2 also activates the 

UPR (Joo et al., 2016). Possibly, the role of Atg1 in intracellular trafficking may crosstalk to 

Unc-104 or its cargos and the loss of them leads to similar defects. A specific model for my 

cumulative observations is that ER/Golgi malfunction caused by the loss of Atg1, caps or 

possibly unc-104 accounts for the activation of Wnd signaling and its associated synaptic defects. 

Given Atg1’s connection to kinesins, it would be future interest to study whether it interacts with 

Unc-104. 
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4.5 Figures
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Figure 4.1: Live imaging of Unc-104-mCherry and GFP-Wndkd in Drosophila larval axons 
(A, C and D) Stack of representative confocal images of Unc-104-mCherry and GFP-Wndkd 
acquired at a frequency of 0.25Hz in SNc motoneuron axons (using the m12-Gal4 driver) 
(A) Without photobleaching, most Unc-104-mCherry reside in diffuse cytosolic pool. 
Retrogradely transported Unc-104-mCherry with strong fluorescence was occasionally observed 
(purple arrowheads). GFP-Wndkd (blue arrowheads) moves in both directions and do not 
colocalize with Unc-104-mCherry. 
(B) Kymograph of GFP-wndKD and Unc-104-mCherry particle movement. Axons were imaged 
900 μm distal to cell bodies at 0.25 Hz for 2-3 minutes. Anterograde particles moved from left to 
right. 
(C) Rare identification of Unc-104-mCherry anterograde-moving particles that appear in a few 
frames and disappear. Note GFP-Wndkd (blue arrowheads) do not colocalize with Unc-104-
mCherry. 
(D) After photobleaching a region of 150 um long, a few anterograde-moving particles enters the 
region, but no colocalization with GFP-Wndkd was observed, 
Scale bar, 30μm (A, C and D) and 20μm (B) 
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Figure 4.2 Overexpression of Unc-104 does not alter puc-lacZ expression and the intensity of 
Brp and VGlut at NMJ terminals.  
(A) Expression of the puc-lacZ reporter for Wnd/JNK signaling was not affected by 
overexpression of two independent alleles of wild type Unc-104. Upon injury, puc-lacZ is 
elevated similarly between control and Unc-104 overexpression. Over expression were driven by 
elav-Gal4. 
(B) VGlut (green) and Brp (red) distribution at one NMJ terminal at Muscle 12 in wild type and 
Unc-104 overexpression animals. The motoneuron membrane was labeled by HRP (Blue).  
(C) Quantification of the total number of Brp-containing AZ puncta within the entire synaptic 
NMJ terminal at the Muscle 4. 
(D) Quantification of the total intensity of VGlut and Brp immunostaining within the entire 
synaptic NMJ terminal at the Muscle 4, normalized to that in wild type animals. 
All data are represented as mean ± SEM; N.S., not significant, Tukey test for multiple 
comparison; Scale bar, 30μm. 
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Figure 4.3 Impaired glutamatergic and octopaminergic release does not mediates Wnd signaling 
activation and synaptic apposition defects in unc-104 mutants 
(A) Quantification of puc-lacZ expression when SV release is impaired by: mutants vglut1/+, 
vglut1/vglut2, when vglut is knocked down in all neurons (bg380Gal4) and when TeTxLC is 
expressed in motoneurons (ok6Gal4). No significant difference between these conditions and 
control.  
(B) The puc-lacZ expression was not enhanced when Octopaminergic signaling is disrupted by 
knock-down of Octβ1R, Octβ2R and tbh by RNAi. A reduction was found when tbh was knock-
down in all neurons but not only motoneurons. 
(C) The elevated puc-lacZ expression in unc-104 mutants was not suppressed when 
Octopaminergic signaling is disrupted by knock-down of Octβ1R and Octβ2R by RNAi. 
(D) The percentage of unopposed GluRIII-labeled PSDs from E. The unopposed PSDs were 
defined by the GluRIII-labeled PSDs that lacked any trace of the presynaptic AZ protein Brp. 
Note the apposition defects due to loss of unc-104 was not suppressed by the knock-down of 
Octβ2R. 
(E) Representative confocal images of third instar larval neuromuscular junctions (NMJ) at 
muscle 4, when Unc-104 and Octβ2R are knocked down. Postsynaptic densities (PSDs) 
identified by GluRIII staining (Green) that lacked apposing AZ components Brp (red) are 
highlighted by arrowheads.  
All data are represented as mean ± SEM; N.S., not significant; ** P<0.01, Tukey test for 
multiple comparison; Scale bar, 5μm.  
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Figure 4.4 The localization of exogenously expressed HA-Unc-104 
(A) Representative images showing HA-Unc-104 (red) localized to motoneuron cell body, when 
driven by elav-Gal4 (pan-neuronal). HRP (blue) labels neuronal membrane. 
(B-C) Representative images showing lack of localization of HA-Unc-104 (red) to Type I and 
Type II NMJ terminals at (B) Muscle 4 and (C) Muscle 6/7. Type I and Type II terminals 
contains glutamatergic synapses. 
(D) HA-Unc-104 (red) preferentially localizes to Type III terminals, which are peptidergic 
motoneurons. Note the lack of staining in Type I and Type II terminals 
Scale bar, 30μm. 
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Figure 4.5 knock-down of caps leads to synaptic defects and enhanced Wnd signaling, 
resembling unc-104 mutants. 
(A) Knock-down of caps by RNAi led to increase of Wnd-JNK signaling reporter, puckered-lacZ, 
in a Wnd-dependent manner. Pan neuronal Gal4 (bg380) was used to drive RNAi expression. 
(B) Knockdown of caps causes cell autonomous defects in presynaptic assembly. Two different 
Gal4 drivers were used to express caps RNAi, either specifically in SNc neurons, which 
innervate muscle 26, 27 and 29 (m12-gal4, mononeuronal) or all motoneurons (bg380-Gal4). 
Knockdown in all neurons impaired presynaptic assembly on muscle 4 while knock-down in 
SNc neurons caused mild but significant synaptic assembly defects on muscle 27. 
(C) Brp protein intensity at individual synapses and across entire NMJ terminals (at muscle 4) 
was reduced when caps was knocked down in motoneurons (using the bg380-Gal4 driver). 
(D) Regenerative axonal sprouting of m12-Gal4, UAS-mcd8-GFP labeled axons 24 hours after 
nerve crush from wt and caps knock-down animals. Asterisk (*) indicates the injury site and 
arrow indicates the direction of the cell body. Note when caps was knocked down, the 
regenerated neurites (neurite tips are labeled with purple arrowheads) reach passing the injury 
site, to nearby distal axons (proximal ends are labeled with blue arrowheads). 
(E) The axon regeneration was enhanced when caps was knocked down, measured by the length 
of the longest branch per nerve at 24 hours after injury. RNAi was driven by m12-Gal4. 
(F) Brp (red) accumulated in motoneuron cell bodies cell autonomously when caps was knocked 
down using m12-Gal4. Motoneuron cell bodies were labeled by mcd8-gfp. 
All data are represented as mean ± SEM; At least 5 animals and 10 NMJs were examined per 
genotype; *** P<0.001; N.S. not significant. Scale bar, 5μm  
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Figure 4.6 the loss of unc-104 in peptidergic neurons alone is not sufficient to impair 
presynaptic assembly 
The percentage of unopposed GluRIII-labeled PSDs was not altered when unc-104 was knocked-
down in most peptidergic neurons (c929) or a subset of peptidergic neurons (Bursicon-Gal4 and 
CCAP-Gal4) on (A) muscle 4 or (B) muscle 12. In contrast a significant portion of unopposed 
PSDs was found on the same muscles when Unc-104 was knocked down in all motoneurons 
(ok6-Gal4). The unopposed PSDs were defined by the GluRIII-labeled PSDs that lacked any 
trace of the presynaptic AZ protein Brp.  
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Figure 4.7 P-eIF2α is highly elevated when unc-104 or caps is lost 
(A) Representative images of P-eIF2α (green) staining in nerve cord with motoneurons in the 
middle. Compared to low and diffused P-eIF2α staining in control animal, a formation and 
elevation of P-eIF2α puncta was observed in unc-104 mutants and when caps was knocked down. 
Neuronal nuclei is labeled in red. 
(B) Representative images of P-eIF2α staining in sensory neuron. A formation of P-eIF2α puncta 
was observed when caps was knocked down. Neuronal nuclei is labeled in red. 
(C) P-eIF2α (green) puncta colocalize nicely with Brp (red) puncta in cell bodies of motoneurons 
and sensory neurons in unc-104; wnd mutant animals. No P-eIF2α puncta was found in axons. 
(D) Some endogenously tagged Wnd protein (MiMIC-wnd-GFP) was found to localize in close 
proximity to Brp puncta in cell bodies of motoneurons in unc-104; MiMIC-GFP-Wnd/wnd 
animals. The close positions are emphasized by arrowheads. 
Scale bar 30um (A) and 10 um (C and D) 
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Figure 4.8 IRE branch of UPR is not activated in unc-104 mutants 
(A) Representative images of XBP1-GFP expressed in all neurons, driven by bg380-Gal4. A few 
examples of motoneuron-localized XBP1-GFP are circled. There is no obvious change of XBP1-
GFP level between control and unc-104 knockdown and unc-104; wnd knockdown. 
(B) The elevated puc-lacZ expression in unc-104 knock-down was not suppressed by additional 
knock-down of traf1/4 or traf2/6 in all neurons. 
(C) The increased percentage of unopposed GluRIII-labeled PSDs in unc-104 knock-down was 
not suppressed by additional knock-down of traf1/4 in all neurons. 
All data are represented as mean ± SEM; At least 5 animals were examined per genotype; *** 
P<0.001; N.S. not significant. Scale bar, 30μm  
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Figure 4.9 The overexpression of TDP43 mildly activates puc-lacZ expression 
(A) The overexpression of TDP43 or its mutated form TDP43m337v in all neurons (bg380-gal4) 
mildly but significantly elevated puc-lacZ expression 
(B) The percentage of unopposed GluRIII-labeled PSDs remained unchanged when Rh1G69D was 
overexpressed in all neurons. 
(C) Representative images of P-eIF2α (white) staining in motoneurons when mcd8RFP or 
Rh1G69D is overexpressed.  
(D) Representative images of XBP1-GFP expressed in all neurons, driven by bg380-Gal4, when 
incubated with different UPR inducers for 4 hours. These include: vehicle, 50ug/ml Tunicamycin, 
5mMDTT and 50uM Thapsigargin. No elevation of XBP1-GFP was observed. 
(E) Representative images of P-eIF2α (green, left panel) and puc-lacZ (white, right panel) 
staining in nerve cord with motoneurons in the middle. No significant difference was observed 
between control animals and animals fed with 5mM DTT for a period of 6 days. Neuronal nuclei 
was labeled in red. 
All data are represented as mean ± SEM; At least 5 animals were examined per genotype; * 
P<0.05; N.S. not significant. Scale bar, 30μm  
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Figure 4.10 PERK does not mediate the P-eIF2α elevation and synaptic defects in unc-104 
mutants 
(A) The increased percentage of unopposed GluRIII-labeled PSDs due to loss of unc-104 was 
not suppressed when perk was knocked down in motoneurons (D42-Gal4) 
(B) Representative images of P-eIF2α (green) staining in nerve cord with motoneurons in the 
middle. Compared to low and diffused P-eIF2α staining in control animal, a formation and 
elevation of P-eIF2α puncta was observed when unc-104 was knocked down, and additional 
knock-down of perk did not reduce P-eIF2α. Neuronal nuclei is labeled in red. 
All data are represented as mean ± SEM; At least 5 animals were examined per genotype; *** 
P<0.001; N.S. not significant. Scale bar, 30μm  
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Figure 4.11 Promoting ER protein degradation did not suppress defects in unc-104 mutants  
(A) Knock-down of unc-104 by RNAi led to an increase of Wnd-JNK signaling reporter, 
puckered-lacZ. This increase was not suppressed by overexpressiong of HRD1 in all neurons 
(bg-380). 
(B) RNAi knockdown of unc-104 caused defects in presynaptic assembly and this was not 
suppressed by overexpression of HRD1. Two different RNAi lines was tested under bg-380 gal4 
driver. 
(C) Brp protein intensity across entire NMJ terminals (at muscle 4) was reduced when unc-104 
was knocked down in all neurons (using the bg380-Gal4 driver), which was not suppressed by 
overexpression of HRD-1 
(D) Representative images of P-eIF2α (green) staining in motoneurons. The formation and 
elevation of P-eIF2α puncta when unc-104 was knocked down, was much further elevated when 
HRD1 was overexpressed. Note the overexpression of HRD1 itself elevates P-eIF2α level 
dramatically. Neuronal nuclei is labeled in red. 
All data are represented as mean ± SEM; At least 5 animals were examined per genotype; *** 
P<0.001; ** P<0.01; N.S. not significant. Scale bar, 30μm  
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Figure 4.12 the loss of Atg1, but not FIP200, Atg13 and atg7, activates Wnd signaling 
(A) Knock-down of atg1 by RNAi led to increase of Wnd-JNK signaling reporter, puckered-lacZ, 
in a Wnd-dependent manner. In contrast, knock-down of fip200 and atg13 by RNAI or mutations 
in atg7 did not induce puc-lacZ expressiong. Pan neuronal Gal4 (bg380) was used to drive RNAi 
expression. 
(B-D) Representative images of GFP-mcherry-Atg8 in nervous system of 3rd instar Drosophila 
larvae. In control animals, GFP signal was quenched and Atg8 could be recognized as individual 
red puncta (presumably autolysosomes) in cell bodies of motoneurons and sensory neurons and 
axons. When fip200 was knocked down in all neurons, the GFP signal appears in most red-
puncta in the cell bodies of neurons and disappear from axons. 
All data are represented as mean ± SEM; At least 5 animals were examined per genotype; *** 
P<0.001; N.S. not significant. Scale bar, 30μm  
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CHAPTER V. DISCUSSION AND FUTURE DIRECTIONS 

5.1 Drosophila kinesin-3 Unc-104/Imac is critical for transport of several SV associated 

proteins, but not the AZ components Brp/ELKS 

We found that mutations in unc-104 have two distinct defects: defects in the transport of 

Unc-104’s presumptive cargo and reduced expression levels of presynaptic proteins. Both 

defects contribute to the defects in synaptic structure and function observed in unc-104 mutants. 

Knock-down of wnd suppresses the defects in total levels of SV associated proteins, but not the 

defects in their localization/transport. It is noteworthy than many structural components of AZs, 

such as Brp/ELKS, can still be delivered to axon terminals in unc-104;wnd double. This suggests 

that Unc-104 does not directly transport or deliver the AZ core material. This finding raises 

further questions about how AZ components are transported and delivered to nascent synapses. 

Previous studies have not identified a direct motor for AZ components. Because dense 

core vesicle (DCV) transport requires Unc-104 and a type of DCV, the Piccolo-Bassoon 

transport vesicle (PTV), carries AZ components including Piccolo and Bassoon (Shapira et al., 

2003), Unc-104 has been a natural suspect for transporting AZ components. This possibility was 

also supported by the impaired AZ assembly in unc-104/imac/kif1a mutants. However, in both 

Drosophila and C. elegans unc-104/imac-null mutants, the initial AZ formation seems normal 

but the addition of AZs fails as the presynaptic terminals expand, suggesting the existence of 

alternative motors. Thus despite a number of observations comprising indirect evidence, no 



126 
 

direct evidence has shown Unc-104 as a motor of AZ components and the complex phenotypes 

in unc-104 mutants cannot be explained by a simple motor-cargo relationship. 

 

Transport of AZ core components 

Despite its delivery to synapses, Brp/ELKS, like SV proteins, accumulates in the cell 

body in unc-104; wnd mutants, indicating some degree of defect in transport. This contrasts with 

the transport defects observed in kinesin-1 mutants, where Brp accumulates in axons, rather than 

cell bodies (Siebert et al., 2015). This suggests at least two critical steps for Brp/ELKS transport: 

entry from cell bodies into axons and localization to synapses from axons. A model based on 

such notions is that Unc-104 is critical for the movement of Brp or Brp associated vesicles out of 

cell body compartment while kinesin-1 is important for their transport to  axon terminals. An 

increasing amount of evidence emphasizes a critical role of a ‘checkpoint’ near the axon hillock 

region for axon entry and suggests this ‘checkpoint’ favors certain motors over others (Maeder et 

al., 2014). This notion of a ‘checkpoint’ may serve to assign the different transport function for 

Unc-104 and kinesin-1. While live imaging of Brp/ELKS has been carried out in synapses, live 

imaging of its entry into axons and its movement in axons have not been well-documented and 

might shed light on the ‘multiple motors’ model for Brp/ELKS. 

Though our results favor a model that Unc-104 does not directly carry Brp or its 

associated vesicles in axons, these genetic results could be interpreted differently by a more 

complex model in which Unc-104 carries Brp and its associated vesicles in axons and its absence 

makes it possible for a motor switch that is normally inhibited by the Wnd/JNK signaling 

pathway. Though this model bears several assumptions that are not yet known, it is in 

accordance with the previously known connections between JNK signaling and kinesin-1(Fu and 
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Holzbaur, 2013; Horiuchi et al., 2007; Morfini et al., 2006; Stagi et al., 2006; Sun et al., 2011). 

In order to test this model and distinguish different interpretations from the genetic evidence, the 

live imaging discussed previously would be useful, when combined with comparisons of 

transport parameters of Brp between wild type and unc-104;wnd double mutants. 

A recent study showed that Rim-binding protein moves together with Brp/ELKS (Siebert 

et al., 2015). This study found that JNK Interacting Protein 1 (JIP1), which was known to 

interact with Kinesin light chain (KLC) (Verhey et al., 2001), is needed for proper localization of 

Brp and Rim binding protein to synapses. It raises the possibility that Brp and Rim-binding 

proteins are both transported by Kinesin-1, at least for its localization to synapses. Besides Brp, 

kinesin-1 mutants displayed a similar axonal accumulation phenotype for SV as well (Gindhart et 

al., 1998; Kurd and Saxton, 1996). These phenotypes suggest a seemingly universal role for 

Kinesin-1 in delivering presynaptic proteins from axons to synapses. However, since kinesin-1 

mutants result in axon swellings (while unc-104 mutants do not), the transport defects should be 

cautiously interpreted to avoid confounding motor-cargo relationship with a general traffic jam. 

This also raises the question of the nature of the axonal ‘accumulation’ of presynaptic proteins in 

kinesin-1 or jip1 mutants. Interestingly, a similar ‘accumulation’ was also observed in wnd 

mutants (Horiuchi et al., 2007). Is Wnd inhibited in kinesin-1 mutants and mediating the 

formation of accumulations by saturating the presynaptic protein transport/localization? This 

alternative model would be an interesting subject of future investigation. 

If Brp/ELKS and Rim binding protein are transported by a different kinesin than Unc-104, 

it raises a further question on how other AZ core components (Rim, Liprin-α and Unc-13) are 

transported. Characterization of these proteins’ transport in unc-104 mutants and unc-104; wnd 

double mutants could aid in addressing whether Unc-104 is involved. Previous studies suggest 
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Liprin-α as an adaptor that closely interacts with Unc-104 in transporting cargos (Hsu et al., 2011; 

Miller et al., 2005; Shin et al., 2003; Wagner et al., 2009). Our data showed the loss of Liprin-α 

from synapses in unc-104 mutants. But the results that Liprin-a can be rescued by wnd mutations, 

suggest the possibility that other kinesins also contribute to Liprin-α’s transport. Further 

examination of the rescue in unc-104 null mutants would help clarify this idea. Previous live 

imaging studies suggests that Liprin-α arrives at AZ prior to Brp/ELKS (Fouquet et al., 2009). 

This suggests Liprin-α and Brp is possibly transported by different kinesin motors.  

Rim is associated with PTVs, together with Unc-13 (Shapira et al., 2003). Though one 

biochemical study found association between KIF1A and Rim (Shin et al., 2003), other evidence 

suggests Kif5b (Kinesin-1) transports PTVs. The loss of either kif5b or syntabulin, a KIF5B 

binding adaptor, dampens PTV transport in mammals (Cai et al., 2007; Su et al., 2004). No 

homologue of syntabulin was found in Drosophila and C. elegans, so either a different adaptor is 

used or this transport is not conserved in invertebrates.  

 

Local translation of presynaptic proteins 

It currently remains possible that besides being transported from cell bodies, AZ proteins 

could be synthesized locally. In contrast to well-studied local translation in postsynaptic 

compartments (Bramham, 2008; Buffington et al., 2014; Waung and Huber, 2009), local 

translation in presynaptic compartment is not well understood. Several studies suggest that 

mRNA associated proteins localize to the presynaptic compartment, including ribosomal protein 

S6 kinase (Cheng et al., 2011) and mRNA splicing factor SRPK79D (Graveley, 2000) . These 

studies also found that these mRNA-associated proteins are important for Brp-containing AZ 

formation, however it is not clear whether this function involves regulation. If Brp/ELKS is 
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locally translated, then it remains to be determined how its mRNA is delivered to presynaptic 

locations.  

 

5.2 Wnd restrains the expression of presynaptic proteins 

The restraint on expression of several presynaptic proteins provided insights into the 

mechanism of how Wnd regulates synaptic structure, function and possibly presynaptic terminal 

morphology that has been described previously. Our investigation into the unopposed PSDs 

further suggests a presynaptic-specific regulation by Wnd/DLK, which is distinct from 

Wnd/DLK’s role in regulating postsynaptic receptors localization (Park et al., 2009). In addition, 

we found that endogenous Wnd/DLK restrains the expression of VGlut and Synaptotagmin I in 

early development. We showed that several components of synapses, Brp/ELKS, VGluT, Syt I 

and CSP are susceptible to Wnd’s regulation, while Synapsin and Syntaxin are not. A more 

extensive delineation of all the targets of Wnd’s regulation is needed.  

 

Wnd’s role in regulating transcription, translation and protein degradation 

The restraint on presynaptic proteins by Wnd/DLK signaling likely involves 

transcriptional and translational mechanisms. The regulation of the VGlut promoter strongly 

supports a transcriptional regulation mechanism, which is line with the involvement of the 

Transcription factor Fos. Altered level of transcripts for Cac, Brp were also observed in unc-104 

wnd double mutants. However, the rab7 promoter driven Liprin-α expression regulated by Wnd 

suggests a possible regulation at posttranscriptional level because the promoter activity of rab7, 

which regulates endosome maturation and trafficking, is unlikely affected by the Wnd/DLK 

pathway. In addition, the expression of several presynaptic proteins was reduced in unc-104 
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mutants in spite of their normal level of transcripts, indicating potential posttranscriptional 

regulation. The surprising colocalization of accumulated Brp and P-eIF2α suggest a possible 

translation repression mechanism. P-eIF2α is found in stress granules, which are known to store 

mRNAs that are prevented from translation. It remains unclear whether other presynaptic 

proteins are also accumulated at P-eIF2α containing stress granule and the significance of this 

association. 

A translation activation mechanism was proposed previously for the regulation of Dscam 

by Wnd (Kim et al., 2013). The overexpression of Wnd leads to an increase in Dscam protein 

levels and Dscam’s 3’UTR is required for this regulation. A study in C. elegans has also 

suggested that Wnd/DLK regulates the expression of a downstream transcription factor cebp-1, 

via its 3’UTR (Yan et al., 2009). Protein turnover is another possible mechanism that could 

affect the expression of presynaptic proteins, considering the excessive presynaptic proteins 

accumulated in unc-104;wnd double mutants; whether Wnd activation can affect the stability of 

ectopically expressed presynaptic proteins is an important possibility that still needs to be tested.  

 

Wnd/DLK’s role in different neuronal cell types 

Wnd’s role in unc-104 mutants was largely characterized and analyzed in motor neurons 

and NMJs. Meanwhile we observed the accumulation of presynaptic proteins broadly in nervous 

system that include other neuronal types in central nervous system and peripheral sensory 

neurons. This suggests a more wide ranging effect of unc-104 defects, but whether and to what 

extent Wnd restrains presynaptic protein expression in other neurons remains to be addressed. In 

our experiments, Wnd activation seemed to occur specifically in motoneurons in unc-104 

mutants (data not shown). This is in agreement with no change of total Wnd shown by western 
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blot of the whole brain while a dramatic increase of Wnd was observed in motoneurons. Whether 

this is due to unique features of motoneurons (terminal size, glutamatergic transmission or 

synaptic connectivity to muscle) is currently unknown. One study has shown that the Highwire-

Wnd pathway is important in synaptic targeting of photoreceptors (Feoktistov et al., 2016), 

indicating an important role for Wnd in histaminergic neurons (photoreceptors release histamine). 

DLK’s role revealed in C. elegans mostly come from studies in GABAergic motoneurons, and 

the synapse assembly of cholinergic neurons was less sensitive to DLK signaling activation 

(Nakata et al., 2005). Thus Wnd’s role to restrain presynaptic proteins may be conserved across 

neuronal types, but the extent may vary depending on the neuronal types. Understanding the 

roles of Wnd in different neuronal types could reveal uncharacterized cellular components that 

modulates and respond to Wnd signaling. In our findings, Wnd exerts a strong inhibition on 

VGlut expression, raising the question whether this regulation occurs for transporters found in 

other neuronal types, including Vesicular monoamine Transporter (VMAT), Vesicular GABA 

Transporter (VGAT), and Vesicular Acetylcholine Transporter (VAChT). 

 

Differential regulation of AZ assembly by Wnd/DLK 

The ‘salt and pepper’ pattern of apposition defects when Wnd signaling pathway is 

activated suggests that some AZs may be more susceptible to Wnd signaling than others. While 

this could be due to randomness, it is possible that this is caused by a selective mechanism that 

targets some AZs or synapses versus others. The first step to addressing this possibility would be 

to characterize the difference between intact synapses and impaired synapses when Wnd 

signaling is activated. Interestingly, our physiology results have shown strong impairment of 

mini frequency, compared to mild defect in EJP. This provides a clue that Wnd signaling may 
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potentially target spontaneous release. The inhibition of VGlut expression by Wnd provides a 

potential mechanism since vglut mutations impair spontaneous release (Daniels et al., 2006). It 

has been shown that spontaneous release sites and evoked release sites are distinctly separated 

(Melom et al., 2013; Peled et al., 2014). So maybe AZ assembly at spontaneous release sites are 

particularly sensitive to Wnd signaling. Thus further characterization of the differences between 

intact and impaired synapses could reveal important clues on the regulation mechanism by Wnd. 

 

Wnd/DLK’s role in regulating presynaptic proteins may affect axonal injury response 

The Wnd pathway can be activated by axonal injury, and Wnd activation initiate a series 

of downstream event to promote axon regeneration (Tedeschi and Bradke, 2013). Based on our 

findings, the presynaptic proteins are likely also downregulated after injury due to activation of 

Wnd signaling. It makes sense for neurons at this state to make proteins important for 

regenerating axons rather than forming and maintaining synapses. This downregulation of 

presynaptic proteins could avoid premature synapse formation at inappropriate locations, and 

redistribute resource (such as transport capacity by kinesins) in neurons to promote axon growth. 

It is also worth noting that among synaptic proteins, VGCC and its regulators has proven to play 

inhibitory roles in axon growth and they are found to be downregulated after injury (Enes et al., 

2010; Tedeschi et al., 2016). Whether this regulation is mediated by the Wnd pathway is 

currently unclear. It raises the possibility that some presynaptic proteins may inhibit axon growth 

and downregulation of them after injury via the activation of Wnd signaling is required to release 

their inhibition on axon growth. 
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Wnd/DLK’s role in regulating presynaptic proteins may be implicated in Wnd/DLK-mediated 

degeneration 

Wnd pathway is also implicated in axonal degeneration. This includes injury-induced 

degeneration, apoptosis-associated degeneration and developmental axon pruning (Geden and 

Deshmukh, 2016). In some models for neurodegenerative disease (Glaucoma and Parkinson 

disease), DLK inhibition delays apoptosis and neurodegeneration (Chen et al., 2008; Ghosh et al., 

2011; Watkins et al., 2013). However, it is not known whether the impaired synapse structure 

and function, which are often found in these disease scenarios, is mediated by Wnd/DLK. 

Further understanding the role of Wnd/DLK in these models with the emphasis on synapse 

assembly and disassembly is a relevant and interesting future direction. 

 



134 
 

 

 

 

 

REFERENCES 
Aberle, H., Haghighi, A.P., Fetter, R.D., McCabe, B.D., Magalhães, T.R., and Goodman, C.S. 
(2002). Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in 
Drosophila. Neuron 33, 545–558. 

Ahmari, S.E., Buchanan, J., and Smith, S.J. (2000). Assembly of presynaptic active zones from 
cytoplasmic transport packets. Nat. Neurosci. 3, 445–451. 

Ainger, K., Avossa, D., Morgan, F., Hill, S.J., Barry, C., Barbarese, E., and Carson, J.H. (1993). 
Transport and localization of exogenous myelin basic protein mRNA microinjected into 
oligodendrocytes. J. Cell Biol. 123, 431–441. 

Ali, Y.O., McCormack, R., Darrand, A., and Zhai, R.G. (2011). Nicotinamide Mononucleotide 
Adenylyltransferase Is a Stress Response Protein Regulated by the Heat Shock Factor/Hypoxia-
inducible Factor 1α Pathway. J. Biol. Chem. 286, 19089–19099. 

Ali, Y.O., Ruan, K., and Zhai, R.G. (2012). NMNAT suppresses tau-induced neurodegeneration 
by promoting clearance of hyperphosphorylated tau oligomers in a Drosophila model of 
tauopathy. Hum. Mol. Genet. 21, 237–250. 

Ali, Y.O., Li-Kroeger, D., Bellen, H.J., Zhai, R.G., and Lu, H.C. (2013). NMNATs, 
evolutionarily conserved neuronal maintenance factors. Trends Neurosci. 36, 632–640. 

Ali, Y.O., Allen, H.M., Yu, L., Li-Kroeger, D., Bakhshizadehmahmoudi, D., Hatcher, A., 
McCabe, C., Xu, J., Bjorklund, N., Taglialatela, G., et al. (2016). NMNAT2:HSP90 Complex 
Mediates Proteostasis in Proteinopathies. PLoS Biol. 14, e1002472. 

Allison, P., and Benjamin, P.R. (1985). Anatomical Studies of Central Regeneration of an 
Identified Molluscan Interneuron. Proc. R. Soc. B Biol. Sci. 226, 135–157. 

Ambron, R.T., Schmied, R., Huang, C.C., and Smedman, M. (1992). A signal sequence mediates 
the retrograde transport of proteins from the axon periphery to the cell body and then into the 
nucleus. J. Neurosci. 12, 2813–2818. 

Ann, K., Kowalchyk, J.A., Loyet, K.M., and Martin, T.F.J. (1997). Novel Ca2+-binding protein 
(CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J. Biol. Chem. 272, 19637–
19640. 

Araki, T., Sasaki, Y., and Milbrandt, J. (2004). Increased nuclear NAD biosynthesis and SIRT1 
activation prevent axonal degeneration. Science 305, 1010–1013. 

Aravamudan, B., Fergestad, T., Davis, W.S., Rodesch, C.K., Broadie, K., Aravamudan, B., 
Fergestad, T., Davis, W.S., and Rodesch, C.K. (1999). Drosophila UNC-13 is essential for 
synaptic transmission. Nat. Neurosci. 2, 965–971. 

Ariosa, A.R., and Klionsky, D.J. (2016). Autophagy core machinery: overcoming spatial barriers 
in neurons. J. Mol. Med. 94, 1217–1227. 

Avery, M.A., Sheehan, A.E., Kerr, K.S., Wang, J., and Freeman, M.R. (2009). Wld S requires 



135 
 

Nmnat1 enzymatic activity and N16-VCP interactions to suppress Wallerian degeneration. J. 
Cell Biol. 184, 501–513. 

Ayaz, D., Leyssen, M., Koch, M., Yan, J., Sheeba, V., Fogle, K.J., Holmes, T.C., and Hassan, B. 
a (2008). Axonal injury and regeneration in the adult brain of Drosophila. J. Neurosci. 28, 6010–
6021. 

Baas, P.W., and Heidemann, S.R. (1986). Microtubule reassembly from nucleating fragments 
during the regrowth of amputated neurites. J. Cell Biol. 103, 917–927. 

Babetto, E., Beirowski, B., Russler, E., Milbrandt, J., and DiAntonio, A. (2013). The Phr1 
Ubiquitin Ligase Promotes Injury-Induced Axon Self-Destruction. Cell Rep. 3, 1422–1429. 

Bae, H., Chen, S., Roche, J.P., Ai, M., Wu, C., Diantonio, A., and Graf, E.R. (2016). Rab3-GEF 
Controls Active Zone Development at the Drosophila Neuromuscular Junction. eNeuro 3. 

Baitinger, C., and Willard, M. (1987). Axonal transport of synapsin I-like proteins in rabbit 
retinal ganglion cells. J. Neurosci. 7, 3723–3735. 

Baker, S.T., Opperman, K.J., Tulgren, E.D., Turgeon, S.M., Bienvenut, W., and Grill, B. (2014). 
RPM-1 Uses Both Ubiquitin Ligase and Phosphatase-Based Mechanisms to Regulate DLK-1 
during Neuronal Development. PLoS Genet. 10. 

Ballinger, M.L., and Bittner, G.D. (1980). Ultrastructural studies of severed medial giant and 
other CNS axons in crayfish. Cell Tissue Res. 208, 123–133. 

Barkus, R. V, Klyachko, O., Horiuchi, D., Dickson, B.J., and Saxton, W.M. (2008). 
Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates 
retrograde transport of neuropeptides. Mol. Biol. Cell 19, 274–283. 

Barolo, S., Castro, B., and Posakony, J.W. (2004). New Drosophila transgenic reporters: 
Insulated P-element vectors expressing fast-maturing RFP. Biotechniques 36, 436–442. 

Beirowski, B., Adalbert, R., Wagner, D., Grumme, D.S., Addicks, K., Ribchester, R.R., and 
Coleman, M.P. (2005). The progressive nature of Wallerian degeneration in wild-type and slow 
Wallerian degeneration (WldS) nerves. BMC Neurosci. 6, 6. 

Beirowski, B., Babetto, E., Gilley, J., Mazzola, F., Conforti, L., Janeckova, L., Magni, G., 
Ribchester, R.R., and Coleman, M.P. (2009). Non-nuclear Wld(S) determines its neuroprotective 
efficacy for axons and synapses in vivo. J. Neurosci. 29, 653–668. 

Bellato, H.M., and Hajj, G.N.M. (2016). Translational control by eIF2α in neurons: Beyond the 
stress response. Cytoskeleton 73, 551–565. 

Beneyto, M., Kristiansen, L. V, Oni-Orisan, A., McCullumsmith, R.E., and Meador-Woodruff, 
J.H. (2007). Abnormal glutamate receptor expression in the medial temporal lobe in 
schizophrenia and mood disorders. Neuropsychopharmacology 32, 1888–1902. 

Benjamin, P.R., and Allison, P. (1985). Regeneration of Excitatory, Inhibitory and Biphasic 
Synaptic Connections Made by a Snail Giant Interneuron. Proc. R. Soc. B Biol. Sci. 226, 159–
176. 

Ben-Yaakov, K., Dagan, S.Y., Segal-Ruder, Y., Shalem, O., Vuppalanchi, D., Willis, D.E., 
Yudin, D., Rishal, I., Rother, F., Bader, M., et al. (2012). Axonal transcription factors signal 
retrogradely in lesioned peripheral nerve. EMBO J. 31, 1350–1363. 

Berwin, B., Floor, E., and Martin, T.F.J. (1998). CAPS (mammalian UNC-31) protein localizes 
to membranes involved in dense-core vesicle exocytosis. Neuron 21, 137–145. 



136 
 

Bhatheja, K., and Field, J. (2006). Schwann cells: Origins and role in axonal maintenance and 
regeneration. Int. J. Biochem. Cell Biol. 38, 1995–1999. 

Binotti, B., Pavlos, N.J., Riedel, D., Wenzel, D., Vorbrüggen, G., Schalk, A.M., Kühnel, K., 
Boyken, J., Erck, C., Martens, H., et al. (2014). The GTPase RaB26 links synaptic vesicles to the 
autophagy pathway. Elife 2015, 1–23. 

Birse, S.C., and Bittner, G.D. (1976). Regeneration of giant axons in earthworms. Brain Res. 
113, 575–581. 

Bodenstein, D. (1957). Studies on nerve regeneration in Periplaneta americana. J. Exp. Zool. 
136, 89–115. 

Böhme, M.A., Beis, C., Reddy-Alla, S., Reynolds, E., Mampell, M.M., Grasskamp, A.T., 
Lützkendorf, J., Bergeron, D.D., Driller, J.H., Babikir, H., et al. (2016). Active zone scaffolds 
differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling. Nat. 
Neurosci. 

Bounoutas, A., Kratz, J., Emtage, L., Ma, C., Nguyen, K.C., and Chalfie, M. (2011). Microtubule 
depolymerization in Caenorhabditis elegans touch receptor neurons reduces gene expression 
through a p38 MAPK pathway. Proc. Natl. Acad. Sci. U. S. A. 108, 3982–3987. 

Bowman,  a B., Kamal,  a, Ritchings, B.W., Philp,  a V, McGrail, M., Gindhart, J.G., and 
Goldstein, L.S. (2000). Kinesin-dependent axonal transport is mediated by the sunday driver 
(SYD) protein. Cell 103, 583–594. 

Brace, E.J., Wu, C., Valakh, V., and DiAntonio, A. (2014). SkpA restrains synaptic terminal 
growth during development and promotes axonal degeneration following injury. J. Neurosci. 34, 
8398–8410. 

Bramham, C.R. (2008). Local protein synthesis, actin dynamics, and LTP consolidation. Curr. 
Opin. Neurobiol. 18, 524–531. 

Brendza, K.M., Rese, D.J., Gilbert, S.P., and Saxton, W.M. (1999). Lethal kinesin mutations 
reveal amino acids important for ATPase activation and structural coupling. J. Biol. Chem. 274, 
31506–31514. 

Bruckner, J.J., Gratz, S.J., Slind, J.K., Geske, R.R., Cummings, A.M., Galindo, S.E., Donohue, 
L.K., and O’Connor-Giles, K.M. (2012). Fife, a Drosophila Piccolo-RIM homolog, promotes 
active zone organization and neurotransmitter release. J. Neurosci. 32, 17048–17058. 

Buchan, J.R., and Parker, R. (2009). Eukaryotic Stress Granules: The Ins and Outs of 
Translation. Mol. Cell 36, 932–941. 

Budnik, V., Koh, Y.H., Guan, B., Hartmann, B., Hough, C., Woods, D., and Gorczyca, M. 
(1996). Regulation of synapse structure and function by the Drosophila tumor suppressor gene 
dlg. Neuron 17, 627–640. 

Buffington, S. a, Huang, W., and Costa-Mattioli, M. (2014). Translational Control in Synaptic 
Plasticity and Cognitive Dysfunction. Annu. Rev. Neurosci. 37, 17–38. 

Burgoyne, R.D., and Morgan, A. (2011). Chaperoning the SNAREs: a role in preventing 
neurodegeneration? Nat. Cell Biol. 13, 8–9. 

Byrne, A.B., and Hammarlund, M. (2016). Axon regeneration in C. elegans: Worming our way 
to mechanisms of axon regeneration. Exp. Neurol. 

Cai, Q., Pan, P.-Y.P.-Y., and Sheng, Z.-H. (2007). Syntabulin-kinesin-1 family member 5B-



137 
 

mediated axonal transport contributes to activity-dependent presynaptic assembly. J. Neurosci. 
27, 7284–7296. 

Case, J.F. (1957). The median nerves and cockroach spiracular function. J. Insect Physiol. 1, 85–
94. 

Chan, S.S.Y., Zheng, H., Su, M.W., Wilk, R., Killeen, M.T., Hedgecock, E.M., and Culotti, J.G. 
(1996). UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in 
motile cells responding to UNC-6 netrin cues. Cell 87, 187–195. 

Chen, X., and Ganetzky, B. (2012). A neuropeptide signaling pathway regulates synaptic growth 
in Drosophila. J. Cell Biol. 196, 529–543. 

Chen, C.-H., Lee, A., Liao, C.-P., Liu, Y.-W., and Pan, C.-L. (2014). RHGF-1/PDZ-RhoGEF 
and retrograde DLK-1 signaling drive neuronal remodeling on microtubule disassembly. Proc. 
Natl. Acad. Sci. U. S. A. 111, 16568–16573. 

Chen, C.-Y., Lin, C.-W., Chang, C.-Y., Jiang, S.-T., and Hsueh, Y.-P. (2011). Sarm1, a negative 
regulator of innate immunity, interacts with syndecan-2 and regulates neuronal morphology. J. 
Cell Biol. 193, 769–784. 

Chen, L., Stone, M.C., Tao, J., and Rolls, M.M. (2012). Axon injury and stress trigger a 
microtubule-based neuroprotective pathway. Proc. Natl. Acad. Sci. U. S. A. 109, 11842–11847. 

Chen, X., Rzhetskaya, M., Kareva, T., Bland, R., During, M.J., Tank, A.W., Kholodilov, N., and 
Burke, R.E. (2008). Antiapoptotic and trophic effects of dominant-negative forms of dual leucine 
zipper kinase in dopamine neurons of the substantia nigra in vivo. J. Neurosci. 28, 672–680. 

Cheng, L., Locke, C., and Davis, G.W. (2011). S6 kinase localizes to the presynaptic active zone 
and functions with PDK1 to control synapse development. J. Cell Biol. 194, 921–935. 

Choquet, D., and Triller, A. (2013). The Dynamic Synapse. Neuron 80, 691–703. 

Chuang, C.-F., and Bargmann, C.I. (2005). A Toll-interleukin 1 repeat protein at the synapse 
specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev. 
19, 270–281. 

Coleman, M.P., and Freeman, M.R. (2010). Wallerian degeneration, wld(s), and nmnat. Annu. 
Rev. Neurosci. 33, 245–267. 

Collins, C.A., Wairkar, Y.P., Johnson, S.L., and DiAntonio, A. (2006). Highwire Restrains 
Synaptic Growth by Attenuating a MAP Kinase Signal. Neuron 51, 57–69. 

Conforti, L., Gilley, J., and Coleman, M.P. (2014). Wallerian degeneration: an emerging axon 
death pathway linking injury and disease. Nat. Rev. Neurosci. 15, 394–409. 

Couillault, C., Pujol, N., Reboul, J., Sabatier, L., Guichou, J.-F., Kohara, Y., and Ewbank, J.J. 
(2004). TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR 
domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5, 488–494. 

Dai, Y., Taru, H., Deken, S.L., Grill, B., Ackley, B., Nonet, M.L., and Jin, Y. (2006). SYD-2 
Liprin-alpha organizes presynaptic active zone formation through ELKS. Nat Neurosci 9, 1479–
1487. 

Daniels, R.W., Collins, C.A., Chen, K., Gelfand, M. V., Featherstone, D.E., and DiAntonio, A. 
(2006). A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 49, 
11–16. 

Daniels, R.W., Gelfand, M. V., Collins, C.A., and DiAntonio, A. (2008). Visualizing 



138 
 

glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J. Comp. Neurol. 
508, 131–152. 

Davenport, R.W., and Kater, S.B. (1992). Local increases in intracellular calcium elicit local 
filopodial responses in helisoma neuronal growth cages. Neuron 9, 405–416. 

Debattisti, V., Pendin, D., Ziviani, E., Daga, A., and Scorrano, L. (2014). Reduction of 
endoplasmic reticulum stress attenuates the defects caused by Drosophila mitofusin depletion. J. 
Cell Biol. 204, 303–312. 

Deckwerth, T.L., and Johnson, E.M. (1994). Neurites can remain viable after destruction of the 
neuronal soma by programmed cell death (apoptosis). Dev. Biol. 165, 63–72. 

Devorkin, L., and Gorski, S.M. (2014). Monitoring autophagy in drosophila using fluorescent 
reporters in the UAS-GAL4 system. Cold Spring Harb. Protoc. 2014, 967–972. 

Dewey, E.M., McNabb, S.L., Ewer, J., Kuo, G.R., Takanishi, C.L., Truman, J.W., and Honegger, 
H.W. (2004). Identification of the gene encoding bursicon, an insect neuropeptide responsible for 
cuticle sclerotization and wing spreading. Curr. Biol. 14, 1208–1213. 

Dieni, S., Matsumoto, T., Dekkers, M., Rauskolb, S., Ionescu, M.S., Deogracias, R., 
Gundelfinger, E.D., Kojima, M., Nestel, S., Frotscher, M., et al. (2012). BDNF and its pro-
peptide are stored in presynaptic dense core vesicles in brain neurons. J. Cell Biol. 196, 775–788. 

Easley-Neal, C., Fierro, J., Buchanan, J., and Washbourne, P. (2013). Late Recruitment of 
Synapsin to Nascent Synapses Is Regulated by Cdk5. Cell Rep. 3, 1199–1212. 

Edwards, J.S., and Sahota, T.S. (1967). Regeneration of a sensory system: the formation of 
central connections by normal and transplanted cerci of the house cricket Acheta domesticus. J. 
Exp. Zool. 166, 387–395. 

Enes, J., Langwieser, N., Ruschel, J., Carballosa-Gonzalez, M.M., Klug, A., Traut, M.H., Ylera, 
B., Tahirovic, S., Hofmann, F., Stein, V., et al. (2010). Electrical activity suppresses axon growth 
through Cav1.2 channels in adult primary sensory neurons. Curr. Biol. 20, 1154–1164. 

Eresh, S., Riese, J., Jackson, D.B., Bohmann, D., and Bienz, M. (1997). A CREB-binding site as 
a target for decapentaplegic signalling during Drosophila endoderm induction. EMBO J. 16, 
2014–2022. 

Ertürk, A., Hellal, F., Enes, J., and Bradke, F. (2007). Disorganized microtubules underlie the 
formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 27, 9169–9180. 

Eto, K., Kawauchi, T., Osawa, M., Tabata, H., and Nakajima, K. (2010). Role of dual leucine 
zipper-bearing kinase (DLK/MUK/ZPK) in axonal growth. Neurosci. Res. 66, 37–45. 

Fang, Y., and Bonini, N.M. (2012). Axon Degeneration and Regeneration: Insights from 
Drosophila Models of Nerve Injury. Annu. Rev. Cell Dev. Biol. 28, 575–597. 

Featherstone, D.E., Chen, K., and Broadie, K. (2009). Harvesting and preparing Drosophila 
embryos for electrophysiological recording and other procedures. J. Vis. Exp. 3–5. 

Feltrin, D., Fusco, L., Witte, H., Moretti, F., Martin, K., Letzelter, M., Fluri, E., Scheiffele, P., 
and Pertz, O. (2012). Growth Cone MKK7 mRNA Targeting Regulates MAP1b-Dependent 
Microtubule Bundling to Control Neurite Elongation. PLoS Biol. 10. 

Feoktistov, A.I., Herman, T.G., Baker, S.T., Opperman, K.J., Tulgren, E.D., Turgeon, S.M., 
Bienvenut, W., Grill, B., Bearce, E.A., Erdogan, B., et al. (2016). Wallenda/DLK protein levels 
are temporally downregulated by Tramtrack69 to allow R7 growth cones to become stationary 



139 
 

boutons. Development 143, 2983–2993. 

Fernandes, K.A., Harder, J.M., John, S.W., Shrager, P., and Libby, R.T. (2014). DLK-dependent 
signaling is important for somal but not axonal degeneration of retinal ganglion cells following 
axonal injury. Neurobiol. Dis. 69, 108–116. 

Fernández-Chacón, R., Wölfel, M., Nishimune, H., Tabares, L., Schmitz, F., Castellano-Muñoz, 
M., Rosenmund, C., Montesinos, M.L., Sanes, J.R., Schneggenburger, R., et al. (2004). The 
synaptic vesicle protein CSPα prevents presynaptic degeneration. Neuron 42, 237–251. 

Fink, J.K. (2013). Hereditary spastic paraplegia: clinico-pathologic features and emerging 
molecular mechanisms. Acta Neuropathol. 126, 307–328. 

Finn, J.T., Weil, M., Archer, F., Siman, R., Srinivasan, A., and Raff, M.C. (2000). Evidence that 
Wallerian degeneration and localized axon degeneration induced by local neurotrophin 
deprivation do not involve caspases. J. Neurosci. 20, 1333–1341. 

Fischer, L.R., Culver, D.G., Tennant, P., Davis, A.A., Wang, M., Castellano-Sanchez, A., Khan, 
J., Polak, M.A., and Glass, J.D. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: 
Evidence in mice and man. Exp. Neurol. 185, 232–240. 

Fischer von Mollard, G., Mignery, G.A., Baumert, M., Perin, M.S., Hanson, T.J., Burger, P.M., 
Jahn, R., and Südhof, T.C. (1990). rab3 is a small GTP-binding protein exclusively localized to 
synaptic vesicles. Proc. Natl. Acad. Sci. U. S. A. 87, 1988–1992. 

Fouquet, W., Owald, D., Wichmann, C., Mertel, S., Depner, H., Dyba, M., Hallermann, S., 
Kittel, R.J., Eimer, S., and Sigrist, S.J. (2009). Maturation of active zone assembly by Drosophila 
Bruchpilot. J. Cell Biol. 186, 129–145. 

Frank, E., Jansen, J.K., and Rinvik, E. (1975). A multisomatic axon in the central nervous system 
of the leech. J. Comp. Neurol. 159, 1–13. 

Fu, M.M., and Holzbaur, E.L.F. (2013). JIP1 regulates the directionality of APP axonal transport 
by coordinating kinesin and dynein motors. J. Cell Biol. 202, 495–508. 

Füger, P., Sreekumar, V., Schüle, R., Kern, J. V., Stanchev, D.T., Schneider, C.D., Karle, K.N., 
Daub, K.J., Siegert, V.K., Flötenmeyer, M., et al. (2012). Spastic paraplegia mutation N256S in 
the neuronal microtubule motor KIF5A disrupts axonal transport in a Drosophila HSP model. 
PLoS Genet. 8, e1003066. 

Gabel, C. V, Antonie, F., Chuang, C.F., Samuel, A.D.T., and Chang, C. (2008). Distinct cellular 
and molecular mechanisms mediate initial axon development and adult-stage axon regeneration 
in C. elegans. Development 135, 1129–1136. 

Gardner, B.M., Pincus, D., Gotthardt, K., Gallagher, C.M., and Walter, P. (2013). Endoplasmic 
reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5. 

Gasparini, S., Kasyanov,  a M., Pietrobon, D., Voronin, L.L., and Cherubini, E. (2001). 
Presynaptic R-type calcium channels contribute to fast excitatory synaptic transmission in the rat 
hippocampus. J. Neurosci. 21, 8715–8721. 

Geden, M.J., and Deshmukh, M. (2016). Axon degeneration: Context defines distinct pathways. 
Curr. Opin. Neurobiol. 39, 108–115. 

Gerdts, J., Brace, E.J., Sasaki, Y., DiAntonio, A., and Milbrandt, J. (2015). SARM1 activation 
triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457. 

Gerdts, J., Summers, D.W., Milbrandt, J., and DiAntonio, A. (2016). Axon Self-Destruction: 



140 
 

New Links among SARM1, MAPKs, and NAD+ Metabolism. Neuron 89, 449–460. 

Ghannad-Rezaie, M., Wang, X., Mishra, B., Collins, C., and Chronis, N. (2012). Microfluidic 
chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLoS One 
7, e29869. 

Ghosh, A.S., Wang, B., Pozniak, C.D., Chen, M., Watts, R.J., and Lewcock, J.W. (2011). DLK 
induces developmental neuronal degeneration via selective regulation of proapoptotic JNK 
activity. J. Cell Biol. 194, 751–764. 

Gilley, J., and Coleman, M.P. (2010). Endogenous Nmnat2 Is an Essential Survival Factor for 
Maintenance of Healthy Axons. PLoS Biol. 8. 

Gindhart, J.G., Desai, C.J., Beushausen, S., Zinn, K., and Goldstein, L.S.B. (1998). Kinesin light 
chains are essential for axonal transport in Drosophila. J. Cell Biol. 141, 443–454. 

Gitler, D., and Spira, M.E. (1998). Real time imaging of calcium-induced localized proteolytic 
activity after axotomy and its relation to growth cone formation. Neuron 20, 1123–1135. 

Gitler, D., and Spira, M.E. (2002). Short window of opportunity for calpain induced growth cone 
formation after axotomy of Aplysia neurons. J. Neurobiol. 52, 267–279. 

Goldstein, A.Y.N., Wang, X., and Schwarz, T.L. (2008). Axonal transport and the delivery of 
pre-synaptic components. Curr. Opin. Neurobiol. 18, 495–503. 

Gong, T.W., Winnicki, R.S., Kohrman, D.C., and Lomax, M.I. (1999). A novel mouse kinesin of 
the UNC-104/KIF1 subfamily encoded by the Kif1b gene. Gene 239, 117–127. 

Górska-Andrzejak, J., Makuch, R., Stefan, J., Görlich, A., Semik, D., and Pyza, E. (2013). 
Circadian expression of the presynaptic active zone protein bruchpilot in the lamina of 
Drosophila melanogaster. Dev. Neurobiol. 73, 14–26. 

Graf, E.R., Daniels, R.W., Burgess, R.W., Schwarz, T.L., and DiAntonio, A. (2009). Rab3 
dynamically controls protein composition at active zones. Neuron 64, 663–677. 

Graf, E.R., Valakh, V., Wright, C.M., Wu, C., Liu, Z., Zhang, Y.Q., and DiAntonio, A. (2012). 
RIM promotes calcium channel accumulation at active zones of the Drosophila neuromuscular 
junction. J. Neurosci. 32, 16586–16596. 

Graveley, B.R., Brooks, A.N., Carlson, J.W., Duff, M.O., Landolin, J.M., Yang, L., Artieri, C.G., 
van Baren, M.J., Boley, N., Booth, B.W., et al. (2011). The developmental transcriptome of 
Drosophila melanogaster. Nature 471, 473–479. 

Grishanin, R.N., Kowalchyk, J.A., Klenchin, V.A., Ann, K., Earles, C.A., Chapman, E.R., 
Gerona, R.R.L., and Martin, T.F.J. (2004). CAPS acts at a prefusion step in dense-core vesicle 
exocytosis as a PIP2 binding protein. Neuron 43, 551–562. 

Grygoruk, A., Fei, H., Daniels, R.W., Miller, B.R., DiAntonio, A., and Krantz, D.E. (2010). A 
tyrosine-based motif localizes a Drosophila vesicular transporter to synaptic vesicles in vivo. J. 
Biol. Chem. 285, 6867–6878. 

Hall, A.R. (1921). Regeneration in the annelid nerve cord. J. Comp. Neurol. 33, 163–191. 

Hall, D.H., and Hedgecock, E.M. (1991). Kinesin-related gene unc-104 is required for axonal 
transport of synaptic vesicles in C. elegans. Cell 65, 837–847. 

Hallam, S.J., Goncharov, A., McEwen, J., Baran, R., and Jin, Y. (2002). SYD-1, a presynaptic 
protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nat. 
Neurosci. 5, 1137–1146. 



141 
 

Hammarlund, M., and Jin, Y. (2014). Axon regeneration in C. elegans. Curr. Opin. Neurobiol. 
27, 199–207. 

Hammarlund, M., Jorgensen, E.M., and Bastiani, M.J. (2007). Axons break in animals 
lacking ??-spectrin. J. Cell Biol. 176, 269–275. 

Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M., and Bastiani, M. (2009). Axon 
regeneration requires a conserved MAP kinase pathway. Science 323, 802–806. 

Hanz, S., and Fainzilber, M. (2006). Retrograde signaling in injured nerve--the axon reaction 
revisited. J. Neurochem. 99, 13–19. 

Hao, Y., Frey, E., Yoon, C., Wong, H., Nestorovski, D., Holzman, L.B., Giger, R.J., DiAntonio, 
A., and Collins, C. (2016). An evolutionarily conserved mechanism for cAMP elicited axonal 
regeneration involves direct activation of the dual leucine zipper kinase DLK. Elife 5. 

Hartenstein, V. (1993). Atlas of  Drosophila  Development. Atlas  Drosoph.  Dev. 1–57. 

Hellal, F., Hurtado, A., Ruschel, J., Flynn, K.C., Laskowski, C.J., Umlauf, M., Kapitein, L.C., 
Strikis, D., Lemmon, V., Bixby, J., et al. (2011). Microtubule stabilization reduces scarring and 
causes axon regeneration after spinal cord injury. Science (80-. ). 331, 928–931. 

Hendricks, M., and Jesuthasan, S. (2009). PHR regulates growth cone pausing at intermediate 
targets through microtubule disassembly. J. Neurosci. 29, 6593–6598. 

Henstridge, C.M., Pickett, E., and Spires-Jones, T.L. (2016). Synaptic pathology: A shared 
mechanism in neurological disease. Ageing Res. Rev. 28, 72–84. 

Hernandez, D., Torres, C.A., Setlik, W., Cebrián, C., Mosharov, E. V., Tang, G., Cheng, H.C., 
Kholodilov, N., Yarygina, O., Burke, R.E., et al. (2012). Regulation of Presynaptic 
Neurotransmission by Macroautophagy. Neuron 74, 277–284. 

Hewes, R.S., Park, D., Gauthier, S. a, Schaefer, A.M., and Taghert, P.H. (2003). The bHLH 
protein Dimmed controls neuroendocrine cell differentiation in Drosophila. Development 130, 
1771–1781. 

Hicks, A.N., Lorenzetti, D., Gilley, J., Lu, B., Andersson, K.E., Miligan, C., Overbeek, P.A., 
Oppenheim, R., and Bishop, C.E. (2012). Nicotinamide Mononucleotide Adenylyltransferase 2 
(Nmnat2) Regulates Axon Integrity in the Mouse Embryo. PLoS One 7. 

Hirai, S., Banba, Y., Satake, T., and Ohno, S. (2011). Axon formation in neocortical neurons 
depends on stage-specific regulation of microtubule stability by the dual leucine zipper kinase-c-
Jun N-terminal kinase pathway. J. Neurosci. 31, 6468–6480. 

Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins 
and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696. 

Holland, S.M., Collura, K.M., Ketschek, A., Noma, K., Ferguson, T.A., Jin, Y., Gallo, G., and 
Thomas, G.M. (2015). Palmitoylation controls DLK localization, interactions and activity to 
ensure effective axonal injury signaling. Proc. Natl. Acad. Sci. 201514123. 

Horiuchi, D., Barkus, R. V, Pilling, A.D., Gassman, A., and Saxton, W.M. (2005). APLIP1, a 
kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and 
mitochondria in Drosophila. Curr. Biol. 15, 2137–2141. 

Horiuchi, D., Collins, C.A., Bhat, P., Barkus, R. V., Diantonio, A., and Saxton, W.M. (2007). 
Control of a kinesin-cargo linkage mechanism by JNK pathway kinases. Curr. Biol. 17, 1313–
1317. 



142 
 

Hoy, R.R., Bittner, G.D., and Kennedy, D. (1967). Regeneration in Crustacean Motoneurons: 
Evidence for Axonal Fusion. Science (80-. ). 156, 251–252. 

Hsu, C.C., Moncaleano, J.D., and Wagner, O.I. (2011). Sub-cellular distribution of UNC-
104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-
2(Liprin-alpha) in C. elegans neurons. Neuroscience 176, 39–52. 

Hu, Y., Sopko, R., Foos, M., Kelley, C., Flockhart, I., Ammeux, N., Wang, X., Perkins, L., 
Perrimon, N., and Mohr, S.E. (2013). FlyPrimerBank: an online database for Drosophila 
melanogaster gene expression analysis and knockdown evaluation of RNAi reagents. G3 
(Bethesda). 3, 1607–1616. 

Hung, C.O.Y., and Coleman, M.P. (2016). KIF1A mediates axonal transport of BACE1 and 
identification of independently moving cargoes in living SCG neurons. Traffic 17, 1155–1167. 

Huntwork-Rodriguez, S., Wang, B., Watkins, T., Ghosh, A.S., Pozniak, C.D., Bustos, D., 
Newton, K., Kirkpatrick, D.S., and Lewcock, J.W. (2013). JNK-mediated phosphorylation of 
DLK suppresses its ubiquitination to promote neuronal apoptosis. J. Cell Biol. 202, 747–763. 

Inoue, A., and Okabe, S. (2003). The dynamic organization of postsynaptic proteins: 
Translocating molecules regulate synaptic function. Curr. Opin. Neurobiol. 13, 332–340. 

Jang, B.G., In, S., Choi, B., and Kim, M.-J. (2014). Beta-amyloid oligomers induce early loss of 
presynaptic proteins in primary neurons by caspase-dependent and proteasome-dependent 
mechanisms. Neuroreport 25, 1281–1288. 

Jia, H., Yan, T., Feng, Y., Zeng, C., Shi, X., and Zhai, Q. (2007). Identification of a critical site 
in Wlds: Essential for Nmnat enzyme activity and axon-protective function. Neurosci. Lett. 413, 
46–51. 

Johansen, J., Halpern, M.E., and Keshishian, H. (1989). Axonal guidance and the development 
of muscle fiber-specific innervation in Drosophila embryos. J. Neurosci. 9, 4318–4332. 

Johnson, E.L., Fetter, R.D., and Davis, G.W. (2009). Negative regulation of active zone 
assembly by a newly identified SR protein kinase. PLoS Biol. 7. 

Joo, J.H., Wang, B., Frankel, E., Ge, L., Xu, L., Iyengar, R., Li-Harms, X., Wright, C., Shaw, 
T.I., Lindsten, T., et al. (2016). The Noncanonical Role of ULK/ATG1 in ER-to-Golgi 
Trafficking Is Essential for Cellular Homeostasis. Mol. Cell 62, 491–506. 

Jung, S., Oshima-Takago, T., Chakrabarti, R., Wong, A.B., Jing, Z., Yamanbaeva, G., Picher, 
M.M., Wojcik, S.M., Göttfert, F., Predoehl, F., et al. (2015). Rab3-interacting molecules 2α and 
2β promote the abundance of voltage-gated Ca V 1.3 Ca 2+ channels at hair cell active zones. 
Proc. Natl. Acad. Sci. 112, 201417207. 

Kanai, Y., Dohmae, N., and Hirokawa, N. (2004). Kinesin transports RNA: Isolation and 
characterization of an RNA-transporting granule. Neuron 43, 513–525. 

Kasai, H., Takahashi, N., and Tokumaru, H. (2012). Distinct Initial SNARE Configurations 
Underlying the Diversity of Exocytosis. Physiol. Rev. 92, 1915–1964. 

Kaufmann, N., DeProto, J., Ranjan, R., Wan, H., and Van Vactor, D. (2002). Drosophila liprin-α 
and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34, 27–38. 

Kawasaki, F., Zou, B., Xu, X., and Ordway, R.W. (2004). Active zone localization of 
presynaptic calcium channels encoded by the cacophony locus of Drosophila. J. Neurosci. 24, 
282–285. 



143 
 

Keino-Masu, K., Masu, M., Hinck, L., Leonardo, E.D., Chan, S.S.Y., Culotti, J.G., and Tessier-
Lavigne, M. (1996). Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 
175–185. 

Kern, J. V, Zhang, Y. V, Kramer, S., Brenman, J.E., and Rasse, T.M. (2013). The kinesin-3, unc-
104 regulates dendrite morphogenesis and synaptic development in Drosophila. Genetics 195, 
59–72. 

Kiebler, M.A., and Bassell, G.J. (2006). Neuronal RNA Granules: Movers and Makers. Neuron 
51, 685–690. 

Kim, H.-J., Raphael, A.R., LaDow, E.S., McGurk, L., Weber, R.A., Trojanowski, J.Q., Lee, 
V.M.-Y., Finkbeiner, S., Gitler, A.D., and Bonini, N.M. (2013a). Therapeutic modulation of 
eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. 
Nat. Genet. 46, 152–160. 

Kim, J.H., Wang, X., Coolon, R., and Ye, B. (2013b). Dscam Expression Levels Determine 
Presynaptic Arbor Sizes in Drosophila Sensory Neurons. Neuron 78, 827–838. 

Kim, S.M., Kumar, V., Lin, Y.-Q., Karunanithi, S., and Ramaswami, M. (2009). Fos and Jun 
potentiate individual release sites and mobilize the reserve synaptic vesicle pool at the 
Drosophila larval motor synapse. Proc. Natl. Acad. Sci. U. S. A. 106, 4000–4005. 

Klinedinst, S., Wang, X., Xiong, X., Haenfler, J.M., and Collins, C.A. (2013). Independent 
pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, 
and injury signaling. J. Neurosci. 33, 12764–12778. 

Klopfenstein, D.R., and Vale, R.D. (2004). The lipid binding pleckstrin homology domain in 
UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol. 
Biol. Cell 15, 3729–3739. 

Kondo, M., Takei, Y., and Hirokawa, N. (2012). Motor protein KIF1A is essential for 
hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron 73, 
743–757. 

Koon, A.C., Ashley, J., Barria, R., DasGupta, S., Brain, R., Waddell, S., Alkema, M.J., and 
Budnik, V. (2011). Autoregulatory and paracrine control of synaptic and behavioral plasticity by 
octopaminergic signaling. Nat. Neurosci. 14, 190–199. 

Koushika, S.P., Richmond, J.E., Hadwiger, G., Weimer, R.M., Jorgensen, E.M., and Nonet, M.L. 
(2001). A post-docking role for active zone protein Rim. Nat Neurosci 4, 997–1005. 

Kuijpers, M., van de Willige, D., Freal, A., Chazeau, A., Franker, M.A., Hofenk, J., Rodrigues, 
R.J.C., Kapitein, L.C., Akhmanova, A., Jaarsma, D., et al. (2016). Dynein Regulator NDEL1 
Controls Polarized Cargo Transport at the Axon Initial Segment. Neuron 89, 461–471. 

Kurd, D.D., and Saxton, W.M. (1996). Kinesin mutations cause motor neuron disease 
phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144, 1075–1085. 

Kurup, N., Yan, D., Goncharov, A., and Jin, Y. (2015). Dynamic microtubules drive circuit 
rewiring in the absence of neurite remodeling. Curr. Biol. 25, 1594–1605. 

Lai, T., and Garriga, G. (2004). The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to 
regulate axon outgrowth in C. elegans. Development 131, 5991–6000. 

Lee, G.G., Kikuno, K., Nair, S., and Park, J.H. (2013). Mechanisms of postecdysis-associated 
programmed cell death of peptidergic neurons in drosophila melanogaster. J. Comp. Neurol. 521, 



144 
 

3972–3991. 

Lee, H.-K.P., Wright, A.P., and Zinn, K. (2009). Live dissection of Drosophila embryos: 
streamlined methods for screening mutant collections by antibody staining. J. Vis. Exp. e1647. 

Lee, J.R., Shin, H., Ko, J., Choi, J., Lee, H., and Kim, E. (2003). Characterization of the 
movement of the kinesin motor KIF1A in living cultured neurons. J. Biol. Chem. 278, 2624–
2629. 

Levy-Strumpf, N., and Culotti, J.G. (2007). VAB-8, UNC-73 and MIG-2 regulate axon polarity 
and cell migration functions of UNC-40 in C. elegans. Nat. Neurosci. 10, 161–168. 

Lewcock, J.W., Genoud, N., Lettieri, K., and Pfaff, S.L. (2007). The Ubiquitin Ligase Phr1 
Regulates Axon Outgrowth through Modulation of Microtubule Dynamics. Neuron 56, 604–620. 

Li, L., Bischofberger, J., and Jonas, P. (2007). Differential gating and recruitment of P/Q-, N-, 
and R-type Ca2+ channels in hippocampal mossy fiber boutons. J. Neurosci. 27, 13420–13429. 

Li, L., Tian, X., Zhu, M., Bulgari, D., Böhme, M.A., Goettfert, F., Wichmann, C., Sigrist, S.J., 
Levitan, E.S., and Wu, C. (2014). Drosophila Syd-1, liprin-α, and protein phosphatase 2A B’ 
subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials 
in distal axons. J. Neurosci. 34, 8474–8487. 

Li, L.B., Lei, H., Arey, R.N., Li, P., Liu, J., Murphy, C.T., Xu, X.Z.S., and Shen, K. (2016). The 
Neuronal Kinesin UNC-104/KIF1A is a Key Regulator of Synaptic Aging and Insulin Signaling-
Regulated Memory. Curr. Biol. 26, 605–615. 

Liao, E.H., Hung, W., Abrams, B., and Zhen, M. (2004). An SCF-like ubiquitin ligase complex 
that controls presynaptic differentiation. Nature 430, 345–350. 

Liberati, N.T., Fitzgerald, K. a, Kim, D.H., Feinbaum, R., Golenbock, D.T., and Ausubel, F.M. 
(2004). Requirement for a conserved Toll/interleukin-1 resistance domain protein in the 
Caenorhabditis elegans immune response. Proc. Natl. Acad. Sci. U. S. A. 101, 6593–6598. 

Lin, D.M., and Goodman, C.S. (1994). Ectopic and increased expression of Fasciclin II alters 
motoneuron growth cone guidance. Neuron 13, 507–523. 

Lindwall, C., and Kanje, M. (2005). Retrograde axonal transport of JNK signaling molecules 
influence injury induced nuclear changes in p-c-Jun and ATF3 in adult rat sensory neurons. Mol. 
Cell. Neurosci. 29, 269–282. 

Liu, K.S.Y., Siebert, M., Mertel, S., Knoche, E., Wegener, S., Wichmann, C., Matkovic, T., 
Muhammad, K., Depner, H., Mettke, C., et al. (2011). RIM-binding protein, a central part of the 
active zone, is essential for neurotransmitter release. Science (80-. ). 334, 1565–1569. 

Liu, Y., Schirra, C., Stevens, D.R., Matti, U., Speidel, D., Hof, D., Bruns, D., Brose, N., and 
Rettig, J. (2008). CAPS facilitates filling of the rapidly releasable pool of large dense-core 
vesicles. J. Neurosci. 28, 5594–5601. 

Loveall, B.J., and Deitcher, D.L. (2010). The essential role of bursicon during Drosophila 
development. BMC Dev. Biol. 10, 92. 

Lubińska, L. (1977). Early course of wallerian degeneration in myelinated fibres of the rat 
phrenic nerve. Brain Res. 130, 47–63. 

Lyons, D. a, Naylor, S.G., Scholze, A., and Talbot, W.S. (2009). Kif1b is essential for mRNA 
localization in oligodendrocytes and development of myelinated axons. Nat. Genet. 41, 854–858. 

Ma, Q.-L., Zuo, X., Yang, F., Ubeda, O.J., Gant, D.J., Alaverdyan, M., Kiosea, N.C., Nazari, S., 



145 
 

Chen, P.P., Nothias, F., et al. (2014). Loss of MAP function leads to hippocampal synapse loss 
and deficits in the Morris Water Maze with aging. J. Neurosci. 34, 7124–7136. 

Maas, C., Torres, V.I., Altrock, W.D., Leal-Ortiz, S., Wagh, D., Terry-Lorenzo, R.T., Fejtova, 
A., Gundelfinger, E.D., Ziv, N.E., and Garner, C.C. (2012). Formation of Golgi-Derived Active 
Zone Precursor Vesicles. J. Neurosci. 32, 11095–11108. 

MacDonald, J.M., Beach, M.G., Porpiglia, E., Sheehan, A.E., Watts, R.J., and Freeman, M.R. 
(2006). The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of 
severed axons. Neuron 50, 869–881. 

Mackler, J.M., Drummond, J. a, Loewen, C. a, Robinson, I.M., and Reist, N.E. (2002). The 
C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. 
Nature 418, 340–344. 

Maeder, C.I., Shen, K., and Hoogenraad, C.C. (2014). Axon and dendritic trafficking. Curr. 
Opin. Neurobiol. 27, 165–170. 

Mahr, A., and Aberle, H. (2006). The expression pattern of the Drosophila vesicular glutamate 
transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr. 
Patterns 6, 299–309. 

Marcette, J.D., Chen, J.J., and Nonet, M.L. (2014). The Caenorhabditis elegans microtubule 
minus-end binding homolog PTRN-1 stabilizes synapses and neurites. Elife 3, e01637. 

Marmor-Kollet, N., and Schuldiner, O. (2016). Contrasting developmental axon regrowth and 
neurite sprouting of Drosophila mushroom body neurons reveals shared and unique molecular 
mechanisms. Dev. Neurobiol. 76, 262–276. 

Martin, M., Iyadurai, S.J., Gassman, A., Gindhart, J.G., Hays, T.S., and Saxton, W.M. (1999). 
Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast 
axonal transport. Mol. Biol. Cell 10, 3717–3728. 

Martín-Blanco, E., Gampel, A., Ring, J., Virdee, K., Kirov, N., Tolkovsky, A.M., and Martinez-
Arias, A. (1998). puckered encodes a phosphatase that mediates a feedback loop regulating JNK 
activity during dorsal closure in Drosophila. Genes Dev. 12, 557–670. 

Massaro, C.M., Pielage, J., and Davis, G.W. (2009). Molecular mechanisms that enhance 
synapse stability despite persistent disruption of the spectrin/ankyrin/microtubule cytoskeleton. J. 
Cell Biol. 187, 101–117. 

Matta, J.A., Ashby, M.C., Sanz-Clemente, A., Roche, K.W., and Isaac, J.T.R. (2011). MGluR5 
and NMDA Receptors Drive the Experience- and Activity-Dependent NMDA Receptor NR2B to 
NR2A Subunit Switch. Neuron 70, 339–351. 

McMahon, S.A., and Díaz, E. (2011). Mechanisms of excitatory synapse maturation by trans-
synaptic organizing complexes. Curr. Opin. Neurobiol. 21, 221–227. 

Medina, P.M.B., Swick, L.L., Andersen, R., Blalock, Z., and Brenman, J.E. (2006). A novel 
forward genetic screen for identifying mutations affecting larval neuronal dendrite development 
in Drosophila melanogaster. Genetics 172, 2325–2335. 

Menon, K.P., Carrillo, R.A., and Zinn, K. (2013). Development and plasticity of the Drosophila 
larval neuromuscular junction. Wiley Interdiscip. Rev. Dev. Biol. 2, 647–670. 

Milde, S., Gilley, J., and Coleman, M.P. (2013). Subcellular Localization Determines the 
Stability and Axon Protective Capacity of Axon Survival Factor Nmnat2. PLoS Biol. 11. 



146 
 

Millecamps, S., and Julien, J.-P. (2013). Axonal transport deficits and neurodegenerative 
diseases. Nat. Rev. Neurosci. 14, 161–176. 

Miller, B.R., Press, C., Daniels, R.W., Sasaki, Y., Milbrandt, J., and DiAntonio, A. (2009). A 
dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. 
Nat. Neurosci. 12, 387–389. 

Miller, K.E., DeProto, J., Kaufmann, N., Patel, B.N., Duckworth, A., and Van Vactor, D. (2005). 
Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles. 
Curr. Biol. 15, 684–689. 

Moechars, D., Weston, M.C., Leo, S., Callaerts-Végh, Z., Goris, I., Daneels, G., Buist, A., Cik, 
M., van der Spek, P., Kass, S., et al. (2006). Vesicular glutamate transporter VGLUT2 
expression levels control quantal size and neuropathic pain. J. Neurosci. 26, 12055–12066. 

Morfini, G., Pigino, G., Szebenyi, G., You, Y., Pollema, S., and Brady, S.T. (2006). JNK 
mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal 
transport. Nat. Neurosci. 9, 907–916. 

Morgan, J.I., and Curran, T. (1991). Stimulus-transcription coupling in the nervous system: 
involvement of the inducible proto-oncogenes fos and jun. Annu. Rev. Neurosci. 14, 421–451. 

Muller, K.J., and Carbonetto, S. (1979). The morphological and physiological properties of a 
regenerating synapse in the C.N.S. of the leech. J. Comp. Neurol. 185, 485–516. 

Nadeau, S., Hein, P., Fernandes, K.J.L., Peterson, A.C., and Miller, F.D. (2005). A 
transcriptional role for C/EBP β in the neuronal response to axonal injury. Mol. Cell. Neurosci. 
29, 525–535. 

Nakata, K., Abrams, B., Grill, B., Goncharov, A., Huang, X., Chisholm, A.D., and Jin, Y. 
(2005). Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is 
required for presynaptic development. Cell 120, 407–420. 

Nässel, D.R., and Winther, Å.M.E. (2010). Drosophila neuropeptides in regulation of physiology 
and behavior. Prog. Neurobiol. 92, 42–104. 

Neumann, B., Nguyen, K.C.Q., Hall, D.H., Ben-Yakar, A., and Hilliard, M.A. (2011). Axonal 
regeneration proceeds through specific axonal fusion in transected C. elegans neurons. Dev. Dyn. 
240, 1365–1372. 

Nguyen, Q.T., Sanes, J.R., and Lichtman, J.W. (2002). Pre-existing pathways promote precise 
projection patterns. Nat. Neurosci. 5, 861–867. 

Nichols, A.L.A., Meelkop, E., Linton, C., Giordano-Santini, R., Sullivan, R.K., Donato, A., 
Nolan, C., Hall, D.H., Xue, D., Neumann, B., et al. (2016). The Apoptotic Engulfment 
Machinery Regulates Axonal Degeneration in C. elegans Neurons. Cell Rep. 14, 1673–1683. 

Niwa, S., Tanaka, Y., and Hirokawa, N. (2008). KIF1Bbeta- and KIF1A-mediated axonal 
transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through 
DENN/MADD. Nat. Cell Biol. 10, 1269–1279. 

Niwa, S., Lipton, D.M.M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H., and Shen, K. (2015). 
Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of 
Synapses. Cell Rep. 

Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., and Hirokawa, N. (1995). The neuron-specific 
kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal 



147 
 

transport of synaptic vesicle precursors. Cell 81, 769–780. 

Oslowski, C.M., and Urano, F. (2011). Measuring ER stress and the unfolded protein response 
using mammalian tissue culture system. Methods Enzymol. 490, 71–92. 

Osterloh, J.M., Yang, J., Rooney, T.M., Fox,  a. N., Adalbert, R., Powell, E.H., Sheehan,  a. E., 
Avery, M. a., Hackett, R., Logan, M. a., et al. (2012). dSarm/Sarm1 Is Required for Activation of 
an Injury-Induced Axon Death Pathway. Science (80-. ). 337, 481–484. 

Otsuka, A.J., Jeyaprakash, A., Garcia-Anoveros, J., Tang, L.Z., Fisk, G., Hartshorne, T., Franco, 
R., and Born, T. (1991). The C. elegans unc-104 gene encodes a putative kinesin heavy chain-
like protein. Neuron 6, 113–122. 

Owald, D., Fouquet, W., Schmidt, M., Wichmann, C., Mertel, S., Depner, H., Christiansen, F., 
Zube, C., Quentin, C., Körner, J., et al. (2010). A Syd-1 homologue regulates pre- and 
postsynaptic maturation in Drosophila. J. Cell Biol. 188, 565–579. 

Owald, D., Khorramshahi, O., Gupta, V.K., Banovic, D., Depner, H., Fouquet, W., Wichmann, 
C., Mertel, S., Eimer, S., Reynolds, E., et al. (2012). Cooperation of Syd-1 with Neurexin 
synchronizes pre- with postsynaptic assembly. Nat. Neurosci. 15, 1219–1226. 

Owlarn, S., and Bartscherer, K. (2016). Go ahead, grow a head! A planarian’s guide to anterior 
regeneration. Regeneration 3, 139–155. 

Pack-Chung, E., Kurshan, P.T., Dickman, D.K., and Schwarz, T.L. (2007). A Drosophila kinesin 
required for synaptic bouton formation and synaptic vesicle transport. Nat. Neurosci. 10, 980–
989. 

Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., Gorman, A.M., Ron, D., 
Harding, H., Zhang, Y., Zeng, H., et al. (2016). The integrated stress response. EMBO Rep. 17, 
1374–1395. 

Park, E.C., Glodowski, D.R., and Rongo, C. (2009). The ubiquitin ligase RPM-1 and the p38 
MAPK PMK-3 regulate AMPA receptor trafficking. PLoS One 4. 

Park, M., Watanabe, S., Poon, V.Y.N., Ou, C.-Y., Jorgensen, E.M., and Shen, K. (2011). CYY-
1/cyclin Y and CDK-5 differentially regulate synapse elimination and formation for rewiring 
neural circuits. Neuron 70, 742–757. 

Peabody, N.C., Diao, F., Luan, H., Wang, H., Dewey, E.M., Honegger, H.-W., and White, B.H. 
(2008). Bursicon functions within the Drosophila CNS to modulate wing expansion behavior, 
hormone secretion, and cell death. J. Neurosci. 28, 14379–14391. 

Perlson, E., Hanz, S., Ben-Yaakov, K., Segal-Ruder, Y., Seger, R., and Fainzilber, M. (2005). 
Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 
45, 715–726. 

Petralia, R.S., Sans, N., Wang, Y.X., and Wenthold, R.J. (2005). Ontogeny of postsynaptic 
density proteins at glutamatergic synapses. Mol. Cell. Neurosci. 29, 436–452. 

Petzoldt, A.G., and Sigrist, S.J. (2014a). Synaptogenesis. Curr. Biol. 24, R1076–R1080. 

Petzoldt, A.G., and Sigrist, S.J. (2014b). Synaptogenesis. Curr. Biol. 24, R1076–R1080. 

Pielage, J., Fetter, R.D., and Davis, G.W. (2005). Presynaptic spectrin is essential for synapse 
stabilization. Curr. Biol. 15, 918–928. 

Pierre, S.C., Häusler, J., Birod, K., Geisslinger, G., and Scholich, K. (2004). PAM mediates 
sustained inhibition of cAMP signaling by sphingosine-1-phosphate. EMBO J. 23, 3031–3040. 



148 
 

Pinan-Lucarre, B., Gabel, C. V., Reina, C.P., Hulme, S.E., Shevkoplyas, S.S., Slone, R.D., Xue, 
J., Qiao, Y., Weisberg, S., Roodhouse, K., et al. (2012). The core apoptotic executioner proteins 
CED-3 and CED-4 promote initiation of neuronal regeneration in caenorhabditis elegans. PLoS 
Biol. 10. 

Pozniak, C.D., Sengupta Ghosh, A., Gogineni, A., Hanson, J.E., Lee, S.-H., Larson, J.L., 
Solanoy, H., Bustos, D., Li, H., Ngu, H., et al. (2013). Dual leucine zipper kinase is required for 
excitotoxicity-induced neuronal degeneration. J. Exp. Med. 210, 2553–2567. 

Rallis, A., Lu, B., and Ng, J. (2013). Molecular chaperones protect against JNK- and Nmnat-
regulated axon degeneration in Drosophila. J. Cell Sci. 126, 838–849. 

Renden, R., Berwin, B., Davis, W., Ann, K., Chin, C.T., Kreber, R., Ganetzky, B., Martin, T.F.J., 
and Broadie, K. (2001). Drosophila CAPS is an essential gene that regulates dense-core vesicle 
release and synaptic vesicle fusion. Neuron 31, 421–437. 

Richardson, C.E., Spilker, K.A., Cueva, J.G., Perrino, J., Goodman, M.B., and Shen, K. (2014). 
PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function 
in Caenorhabditis elegans neurons. Elife 3, e01498. 

Richmond, J.E., Davis, W.S., and Jorgensen, E.M. (1999). UNC-13 is required for synaptic 
vesicle fusion in C. elegans. Nat. Neurosci. 2, 959–964. 

Rishal, I., and Fainzilber, M. (2014). Axon-soma communication in neuronal injury. Nat Rev 
Neurosci 15, 32–42. 

Ritzenthaler, S., Suzuki, E., and Chiba, A. (2000). Postsynaptic filopodia in muscle cells interact 
with innervating motoneuron axons. Nat. Neurosci. 3, 1012–1017. 

Rivire, J.B., Ramalingam, S., Lavastre, V., Shekarabi, M., Holbert, S., Lafontaine, J., Srour, M., 
Merner, N., Rochefort, D., Hince, P., et al. (2011). KIF1A, an axonal transporter of synaptic 
vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am. J. Hum. Genet. 
89, 219–301. 

Rizo, J., and Xu, J. (2015). The Synaptic Vesicle Release Machinery. Annu. Rev. Biophys. 44, 
339–367. 

Rosenberg, T., Gal-Ben-Ari, S., Dieterich, D.C., Kreutz, M.R., Ziv, N.E., Gundelfinger, E.D., 
and Rosenblum, K. (2014). The roles of protein expression in synaptic plasticity and memory 
consolidation. Front. Mol. Neurosci. 7, 86. 

Ruan, K., Zhu, Y., Li, C., Brazill, J.M., and Zhai, R.G. (2015). Alternative splicing of Drosophila 
Nmnat functions as a switch to enhance neuroprotection under stress. Nat. Commun. 6, 10057. 

Ruggiano, A., Foresti, O., and Carvalho, P. (2014). Quality control: ER-associated degradation: 
protein quality control and beyond. J. Cell Biol. 204, 869–879. 

Ryoo, H.D. (2015). Drosophila as a model for unfolded protein response research. BMB Rep. 48, 
445–453. 

Ryoo, H.D., Domingos, P.M., Kang, M.-J., and Steller, H. (2007). Unfolded protein response in 
a Drosophila model for retinal degeneration. EMBO J. 26, 242–252. 

Sadakata, T., Shinoda, Y., Sekine, Y., Saruta, C., Itakura, M., Takahashi, M., and Furuichi, T. 
(2010). Interaction of Calcium-dependent Activator Protein for Secretion 1 (CAPS1) with the 
class II ADP-ribosylation factor small GTPases is required for dense-core vesicle trafficking in 
the trans-Golgi network. J. Biol. Chem. 285, 38710–38719. 



149 
 

Sadakata, T., Kakegawa, W., Shinoda, Y., Hosono, M., Katoh-Semba, R., Sekine, Y., Sato, Y., 
Tanaka, M., Iwasato, T., Itohara, S., et al. (2013). CAPS1 Deficiency Perturbs Dense-Core 
Vesicle Trafficking and Golgi Structure and Reduces Presynaptic Release Probability in the 
Mouse Brain. J. Neurosci. 33, 17326–17334. 

Saiga, T., Fukuda, T., Matsumoto, M., Tada, H., Okano, H.J., Okano, H., and Nakayama, K.I. 
(2009). Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal 
development. Mol. Cell. Biol. 29, 3529–3543. 

Sans, N., Petralia, R.S., Wang, Y.X., Blahos, J., Hell, J.W., and Wenthold, R.J. (2000). A 
developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. 
Neurosci. 20, 1260–1271. 

Sasaki, Y., Vohra, B.P.S., Baloh, R.H., and Milbrandt, J. (2009a). Transgenic mice expressing 
the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J. Neurosci. 29, 6526–
6534. 

Sasaki, Y., Vohra, B.P.S., Lund, F.E., and Milbrandt, J. (2009b). Nicotinamide mononucleotide 
adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased 
levels of neuronal nicotinamide adenine dinucleotide. J. Neurosci. 29, 5525–5535. 

Sasaki, Y., Margolin, Z., Borgo, B., Havranek, J.J., and Milbrandt, J. (2015). Characterization of 
Leber congenital amaurosis-associated NMNAT1 mutants. J. Biol. Chem. 290, 17228–17238. 

Saxena, S., and Caroni, P. (2007). Mechanisms of axon degeneration: From development to 
disease. Prog. Neurobiol. 83, 174–191. 

Schaefer, A.M., Hadwiger, G.D., and Nonet, M.L. (2000). rpm-1, A Conserved Neuronal Gene 
that Regulates Targeting and Synaptogenesis in C. elegans. Neuron 26, 345–356. 

Schaefer, A.W., Schoonderwoert, V.T.G., Ji, L., Mederios, N., Danuser, G., and Forscher, P. 
(2008). Coordination of Actin Filament and Microtubule Dynamics during Neurite Outgrowth. 
Dev. Cell 15, 146–162. 

Schaefer, M.K.E., Schmalbruch, H., Buhler, E., Lopez, C., Martin, N., Guénet, J.-L., and Haase, 
G. (2007). Progressive motor neuronopathy: a critical role of the tubulin chaperone TBCE in 
axonal tubulin routing from the Golgi apparatus. J. Neurosci. 27, 8779–8789. 

Scheib, J., and Höke, A. (2013). Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 9, 
668–676. 

Schmied, R., and Ambron, R.T. (1997). A nuclear localization signal targets proteins to the 
retrograde transport system, thereby evading uptake into organelles in aplysia axons. J. 
Neurobiol. 33, 151–160. 

Schmied, R., Huang, C.C., Zhang, X.P., Ambron, D. a, and Ambron, R.T. (1993). Endogenous 
axoplasmic proteins and proteins containing nuclear localization signal sequences use the 
retrograde axonal transport/nuclear import pathway in Aplysia neurons. J. Neurosci. 13, 4064–
4071. 

Scholich, K., Pierre, S., and Patel, T.B. (2001). Protein Associated with Myc (PAM) Is a Potent 
Inhibitor of Adenylyl Cyclases. J. Biol. Chem. 276, 47583–47589. 

Sclip, A., Tozzi, A., Abaza, A., Cardinetti, D., Colombo, I., Calabresi, P., Salmona, M., Welker, 
E., and Borsello, T. (2014). c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic 
dysfunction in vivo. Cell Death Dis. 5, e1019. 



150 
 

Shapira, M., Zhai, R.G., Dresbach, T., Bresler, T., Torres, V.I., Gundelfinger, E.D., Ziv, N.E., 
and Garner, C.C. (2003). Unitary assembly of presynaptic active zones from Piccolo-Bassoon 
transport vesicles. Neuron 38, 237–252. 

Shen, W., and Ganetzky, B. (2009). Autophagy promotes synapse development in Drosophila. J. 
Cell Biol. 187, 71–79. 

Sheng, M., and Kim, E. (2011). The postsynaptic organization of synapses. Cold Spring Harb. 
Perspect. Biol. 3. 

Shepherd, J.D., and Huganir, R.L. (2007). The cell biology of synaptic plasticity: AMPA 
receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643. 

Shin, H., Wyszynski, M., Huh, K.-H.H., Valtschanoff, J.G., Lee, J.-R.R., Ko, J., Streuli, M., 
Weinberg, R.J., Sheng, M., and Kim, E. (2003). Association of the kinesin motor KIF1A with 
the multimodular protein liprin-?? J. Biol. Chem. 278, 11393–11401. 

Shin, J.E., Cho, Y., Beirowski, B., Milbrandt, J., Cavalli, V., and DiAntonio, A. (2012). Dual 
Leucine Zipper Kinase Is Required for Retrograde Injury Signaling and Axonal Regeneration. 
Neuron 74, 1015–1022. 

Siebert, M., Bohme, M.A., Driller, J.H., Babikir, H., Mampell, M.M., Rey, U., Ramesh, N., 
Matkovic, T., Holton, N., Reddy-Alla, S., et al. (2015). A high affinity RIM-binding 
protein/Aplip1 interaction prevents the formation of ectopic axonal active zones. Elife 4. 

Skouras, E., Ozsoy, U., Sarikcioglu, L., and Angelov, D.N. (2011). Intrinsic and therapeutic 
factors determining the recovery of motor function after peripheral nerve transection. Ann. Anat. 
193, 286–303. 

Sone, M., Zeng, X., Larese, J., and Ryoo, H.D. (2013). A modified UPR stress sensing system 
reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila 
development. Cell Stress Chaperones 18, 307–319. 

Song, Y., Ori-McKenney, K.M., Zheng, Y., Han, C., Jan, L.Y., and Jan, Y.N. (2012). 
Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway 
involving Pten and microRNA bantam. Genes Dev. 26, 1612–1625. 

Spangler, S.A., Schmitz, S.K., Kevenaar, J.T., De Graaff, E., De Wit, H., Demmers, J., Toonen, 
R.F., and Hoogenraad, C.C. (2013). Liprin-??2 promotes the presynaptic recruitment and 
turnover of RIM1/CASK to facilitate synaptic transmission. J. Cell Biol. 201, 915–928. 

Speese, S.D., Trotta, N., Rodesch, C.K., Aravamudan, B., and Broadie, K. (2003). The ubiquitin 
proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr. 
Biol. 13, 899–910. 

Spira, M.E., Benbassat, D., and Dormann,  a (1993). Resealing of the proximal and distal cut 
ends of transected axons: electrophysiological and ultrastructural analysis. J. Neurobiol. 24, 300–
316. 

Spira, M.E., Oren, R., Dormann, A., and Gitler, D. (2003). Critical calpain-dependent 
ultrastructural alterations underlie the transformation of an axonal segment into a growth cone 
after axotomy of cultured Aplysia neurons. J. Comp. Neurol. 457, 293–312. 

Spradling, A.C., Stern, D., Beaton, A., Rhem, E.J., Laverty, T., Mozden, N., Misra, S., and 
Rubin, G.M. (1999). The Berkeley Drosophila Genome Project gene disruption project: Single P-
element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177. 



151 
 

Stagi, M., Gorlovoy, P., Larionov, S., Takahashi, K., and Neumann, H. (2006). Unloading 
kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase 
pathway. FASEB J. 20, 2573–2575. 

Stanley, R.E., Ragusa, M.J., and Hurley, J.H. (2014). The beginning of the end: how scaffolds 
nucleate autophagosome biogenesis. Trends Cell Biol. 24, 73–81. 

Stavoe, A.K.H., Hill, S.E., Hall, D.H., and Colón-Ramos, D.A. (2016). KIF1A/UNC-104 
Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. Dev. Cell 38, 
171–185. 

Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J., and Wu, C.-F. (1994). Improved stability of 
Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. 
Comp. Physiol. A 175, 179–191. 

Strautman, A.F., Cork, R.J., and Robinson, K.R. (1990). The distribution of free calcium in 
transected spinal axons and its modulation by applied electrical fields. J. Neurosci. 10, 3564–
3575. 

Su, Q., Cai, Q., Gerwin, C., Smith, C.L., and Sheng, Z.-H. (2004). Syntabulin is a microtubule-
associated protein implicated in syntaxin transport in neurons. Nat. Cell Biol. 6, 941–953. 

Südhof, T.C. (2012). The presynaptic active zone. Neuron 75, 11–25. 

Südhof, T.C., and Rothman, J.E. (2009). Membrane fusion: grappling with SNARE and SM 
proteins. Science 323, 474–477. 

Sugie, A., Hakeda-Suzuki, S., Suzuki, E., Silies, M., Shimozono, M., Möhl, C., Suzuki, T., and 
Tavosanis, G. (2015). Molecular Remodeling of the Presynaptic Active Zone of Drosophila 
Photoreceptors via Activity-Dependent Feedback. Neuron 86, 711–726. 

Summers, D.W., Gibson, D.A., DiAntonio, A., and Milbrandt, J. (2016). SARM1-specific motifs 
in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc. Natl. 
Acad. Sci. U. S. A. 201601506. 

Sun, F., Zhu, C., Dixit, R., and Cavalli, V. (2011). Sunday Driver/JIP3 binds kinesin heavy chain 
directly and enhances its motility. EMBO J. 30, 3416–3429. 

Sung, Y.J., Povelones, M., and Ambron, R.T. (2001). Risk-1: A novel MAPK homologue in 
axoplasm that is activated and retrogradely transported after nerve injury. J. Neurobiol. 47, 67–
79. 

Sung, Y.-J., Walters, E.T., and Ambron, R.T. (2004). A neuronal isoform of protein kinase G 
couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term 
hyperexcitability in Aplysia sensory neurons. J. Neurosci. 24, 7583–7595. 

Tandon, A., Bannykh, S., Kowalchyk, J.A., Banerjee, A., Martin, T.F.J., and Balch, W.E. (1998). 
Differential regulation of exocytosis by calcium and CAPS in semi- intact synaptosomes. Neuron 
21, 147–154. 

Tao-Cheng, J.H. (2007). Ultrastructural localization of active zone and synaptic vesicle proteins 
in a preassembled multi-vesicle transport aggregate. Neuroscience 150, 575–584. 

Tedeschi, A., and Bradke, F. (2013). The DLK signalling pathway--a double-edged sword in 
neural development and regeneration. EMBO Rep. 14, 605–614. 

Tedeschi, A., Dupraz, S., Laskowski, C.J., Xue, J., Ulas, T., Beyer, M., Schultze, J.L., and 
Bradke, F. (2016). The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration 



152 
 

in the Adult CNS. Neuron 92, 419–434. 

Tessier-Lavigne, M., and Goodman, C.S. (1996). The Molecular Biology of Axon Guidance. 
Science (80-. ). 274, 1123–1133. 

Thibault, S.T., Singer, M.A., Miyazaki, W.Y., Milash, B., Dompe, N.A., Singh, C.M., Buchholz, 
R., Demsky, M., Fawcett, R., Francis-Lang, H.L., et al. (2004). A complementary transposon 
tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287. 

Thummel, C.S., Boulet, A.M., and Lipshitz, H.D. (1988). Vectors for Drosophila P-element-
mediated transformation and tissue culture transfection. Gene 74, 445–456. 

Toda, H., Mochizuki, H., Flores, R., Josowitz, R., Krasieva, T.B., LaMorte, V.J., Suzuki, E., 
Gindhart, J.G., Furukubo-Tokunaga, K., and Tomoda, T. (2008). UNC-51/ATG1 kinase 
regulates axonal transport by mediating motor-cargo assembly. Genes Dev. 22, 3292–3307. 

Tom, V.J., Steinmetz, M.P., Miller, J.H., Doller, C.M., and Silver, J. (2004). Studies on the 
development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in 
an in vitro model of the glial scar and after spinal cord injury. J. Neurosci. 24, 6531–6539. 

Torres, C.A., and Sulzer, D. (2012). Macroautophagy can press a brake on presynaptic 
neurotransmission. Autophagy 8, 1540–1541. 

Urano, F. (2000). Coupling of Stress in the ER to Activation of JNK Protein Kinases by 
Transmembrane Protein Kinase IRE1. Science (80-. ). 287, 664–666. 

Valakh, V., Walker, L.J., Skeath, J.B., and DiAntonio, A. (2013). Loss of the spectraplakin short 
stop activates the DLK injury response pathway in Drosophila. J. Neurosci. 33, 17863–17873. 

Valakh, V., Frey, E., Babetto, E., Walker, L.J., and DiAntonio, A. (2015). Cytoskeletal 
disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a 
preconditioning injury. Neurobiol. Dis. 77, 13–25. 

Venken, K.J.T., Schulze, K.L., Haelterman, N.A., Pan, H., He, Y., Evans-Holm, M., Carlson, 
J.W., Levis, R.W., Spradling, A.C., Hoskins, R.A., et al. (2011). MiMIC: a highly versatile 
transposon insertion resource for engineering Drosophila melanogaster genes. Nat. Methods 8, 
737–743. 

Verhage, M., Maia, A.S., Plomp, J.J., Brussaard, A.B., Heeroma, J.H., Vermeer, H., Toonen, 
R.F., Hammer, R.E., van den Berg, T.K., Missler, M., et al. (2000). Synaptic assembly of the 
brain in the absence of neurotransmitter secretion. Science (80-. ). 287, 864–869. 

Verhey, K.J., and Hammond, J.W. (2009). Traffic control: regulation of kinesin motors. Nat. 
Rev. Mol. Cell Biol. 10, 765–777. 

Verhey, K.J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B.J., Rapoport, T.A., and Margolis, B. 
(2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling 
molecules. J. Cell Biol. 152, 959–970. 

Vérièpe, J., Fossouo, L., and Parker, J.A. (2015). Neurodegeneration in C. elegans models of 
ALS requires TIR-1/Sarm1 immune pathway activation in neurons. Nat. Commun. 6, 7319. 

Voelzmann, A., Okenve-Ramos, P., Qu, Y., Chojnowska-Monga, M., Del Caño-Espinel, M., 
Prokop, A., and Sanchez-Soriano, N. (2016). Tau and spectraplakins promote synapse formation 
and maintenance through Jun kinase and neuronal trafficking. Elife 5. 

Volk, L., Chiu, S.-L., Sharma, K., and Huganir, R.L. (2015). Glutamate Synapses in Human 
Cognitive Disorders. Annu. Rev. Neurosci. 38, 127–149. 



153 
 

Vömel, M., and Wegener, C. (2007). Neurotransmitter-induced changes in the intracellular 
calcium concentration suggest a differential central modulation of CCAP neuron subsets in 
Drosophila. Dev. Neurobiol. 67, 792–808. 

Vömel, M., and Wegener, C. (2008). Neuroarchitecture of aminergic systems in the larval 
ventral ganglion of Drosophila melanogaster. PLoS One 3. 

Wagner, O.I., Esposito, A., Köhler, B., Chen, C.-W.W., Shen, C.-P.P., Wu, G.-H.H., Butkevich, 
E., Mandalapu, S., Wenzel, D., Wouters, F.S., et al. (2009). Synaptic scaffolding protein SYD-2 
clusters and activates kinesin-3 UNC-104 in C. elegans. Proc. Natl. Acad. Sci. U. S. A. 106, 
19605–19610. 

Wairkar, Y.P., Toda, H., Mochizuki, H., Furukubo-Tokunaga, K., Tomoda, T., and Diantonio, A. 
(2009). Unc-51 controls active zone density and protein composition by downregulating ERK 
signaling. J. Neurosci. 29, 517–528. 

Waites, C.L., Leal-Ortiz, S. a, Okerlund, N., Dalke, H., Fejtova, A., Altrock, W.D., 
Gundelfinger, E.D., and Garner, C.C. (2013). Bassoon and Piccolo maintain synapse integrity by 
regulating protein ubiquitination and degradation. EMBO J. 32, 954–969. 

Wan, H.I., DiAntonio, A., Fetter, R.D., Bergstrom, K., Strauss, R., and Goodman, C.S. (2000). 
Highwire Regulates Synaptic Growth in Drosophila. Neuron 26, 313–329. 

Wang, X., Kim, J.H., Bazzi, M., Robinson, S., Collins, C.A., and Ye, B. (2013). Bimodal 
Control of Dendritic and Axonal Growth by the Dual Leucine Zipper Kinase Pathway. PLoS 
Biol. 11. 

Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K., and Südhof, T.C. (1997). Rim is a putative 
Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598. 

Watari-Goshima, N., Ogura, K.-I., Wolf, F.W., Goshima, Y., and Garriga, G. (2007). C. elegans 
VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations. Nat. 
Neurosci. 10, 169–176. 

Watkins, T.A., Wang, B., Huntwork-Rodriguez, S., Yang, J., Jiang, Z., Eastham-Anderson, J., 
Modrusan, Z., Kaminker, J.S., Tessier-Lavigne, M., and Lewcock, J.W. (2013). DLK initiates a 
transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc. 
Natl. Acad. Sci. U. S. A. 110, 4039–4044. 

Waung, M.W., and Huber, K.M. (2009). Protein translation in synaptic plasticity: mGluR-LTD, 
Fragile X. Curr. Opin. Neurobiol. 19, 319–326. 

Weber, U., Paricio, N., and Mlodzik, M. (2000). Jun mediates Frizzled-induced R3/R4 cell fate 
distinction and planar polarity determination in the Drosophila eye. Development 127, 3619–
3629. 

Welsbie, D.S., Yang, Z., Ge, Y., Mitchell, K.L., Zhou, X., Martin, S.E., Berlinicke, C.A., 
Hackler, L., Fuller, J., Fu, J., et al. (2013). Functional genomic screening identifies dual leucine 
zipper kinase as a key mediator of retinal ganglion cell death. Proc. Natl. Acad. Sci. U. S. A. 
110, 4045–4050. 

Wen, Y., Parrish, J.Z., He, R., Zhai, R.G., and Kim, M.D. (2011). Nmnat exerts neuroprotective 
effects in dendrites and axons. Mol. Cell. Neurosci. 48, 1–8. 

White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous 
system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. London 314, 1–340. 



154 
 

Wishart, T.M., Rooney, T.M., Lamont, D.J., Wright, A.K., Morton, A.J., Jackson, M., Freeman, 
M.R., and Gillingwater, T.H. (2012). Combining Comparative Proteomics and Molecular 
Genetics Uncovers Regulators of Synaptic and Axonal Stability and Degeneration In Vivo. PLoS 
Genet. 8. 

Wu, C., Wairkar, Y.P., Collins, C.A., and DiAntonio, A. (2005). Highwire function at the 
Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J. Neurosci. 
25, 9557–9566. 

Wu, C., Daniels, R.W., and DiAntonio, A. (2007a). DFsn collaborates with Highwire to down-
regulate the Wallenda/DLK kinase and restrain synaptic terminal growth. Neural Dev. 2, 16. 

Wu, Y., Huo, L., Maeder, C., Feng, W., and Shen, K. (2013). The Balance between Capture and 
Dissociation of Presynaptic Proteins Controls the Spatial Distribution of Synapses. Neuron 78, 
994–1011. 

Wu, Z., Ghosh-Roy, A., Yanik, M.F., Zhang, J.Z., Jin, Y., and Chisholm, A.D. (2007b). 
Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and 
synaptic branching. Proc. Natl. Acad. Sci. U. S. A. 104, 15132–15137. 

Xiong, X., and Collins, C.A. (2012). A Conditioning Lesion Protects Axons from Degeneration 
via the Wallenda/DLK MAP Kinase Signaling Cascade. J. Neurosci. 32, 610–615. 

Xiong, X., Wang, X., Ewanek, R., Bhat, P., DiAntonio, A., and Collins, C.A. (2010). Protein 
turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J. Cell 
Biol. 191, 211–223. 

Xiong, X., Hao, Y., Sun, K., Li, J., Li, X., Mishra, B., Soppina, P., Wu, C., Hume, R.I., and 
Collins, C. a. (2012). The Highwire Ubiquitin Ligase Promotes Axonal Degeneration by Tuning 
Levels of Nmnat Protein. PLoS Biol. 10, 1–18. 

Yan, D., and Jin, Y. (2012). Regulation of DLK-1 Kinase Activity by Calcium-Mediated 
Dissociation from an Inhibitory Isoform. Neuron 76, 534–548. 

Yan, D., Wu, Z., Chisholm, A.D., and Jin, Y. (2009). The DLK-1 Kinase Promotes mRNA 
Stability and Local Translation in C. elegans Synapses and Axon Regeneration. Cell 138, 1005–
1018. 

Yao, I., Takagi, H., Ageta, H., Kahyo, T., Sato, S., Hatanaka, K., Fukuda, Y., Chiba, T., Morone, 
N., Yuasa, S., et al. (2007). SCRAPPER-Dependent Ubiquitination of Active Zone Protein RIM1 
Regulates Synaptic Vesicle Release. Cell 130, 943–957. 

Yaron, A., and Schuldiner, O. (2016). Common and Divergent Mechanisms in Developmental 
Neuronal Remodeling and Dying Back Neurodegeneration. Curr. Biol. 26, R628–R639. 

Yawo, H., and Kuno, M. (1985). Calcium dependence of membrane sealing at the cut end of the 
cockroach giant axon. J. Neurosci. 5, 1626–1632. 

Yonekawa, Y. (1998). Defect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death 
in KIF1A Motor Protein-deficient Mice. J. Cell Biol. 141, 431–441. 

Yoshii, A., Sheng, M.H., and Constantine-Paton, M. (2003). Eye opening induces a rapid 
dendritic localization of PSD-95 in central visual neurons. Proc. Natl. Acad. Sci. U. S. A. 100, 
1334–1339. 

Zhai, R.G., Vardinon-Friedman, H., Cases-Langhoff, C., Becker, B., Gundelfinger, E.D., Ziv, 
N.E., and Garner, C.C. (2001). Assembling the presynaptic active zone: A characterization of an 



155 
 

active zone precursor vesicle. Neuron 29, 131–143. 

Zhai, R.G., Cao, Y., Hiesinger, P.R., Zhou, Y., Mehta, S.Q., Schulze, K.L., Verstreken, P., and 
Bellen, H.J. (2006). Drosophila NMNAT maintains neural integrity independent of its NAD 
synthesis activity. PLoS Biol. 4, e416. 

Zhai, R.G., Zhang, F., Hiesinger, P.R., Cao, Y., Haueter, C.M., and Bellen, H.J. (2008). NAD 
synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature 452, 887–
891. 

Zhang, J., Schulze, K.L., Robin Hiesinger, P., Suyama, K., Wang, S., Fish, M., Acar, M., 
Hoskins, R.A., Bellen, H.J., and Scott, M.P. (2007). Thirty-one flavors of Drosophila Rab 
proteins. Genetics 176, 1307–1322. 

Zhang, K.X., Tan, L., Pellegrini, M., Zipursky, S.L., and McEwen, J.M. (2016a). Rapid Changes 
in the Translatome during the Conversion of Growth Cones to Synaptic Terminals. Cell Rep. 14, 
1258–1271. 

Zhang, X.P., Ambron, R.T., Mason, C., and Erskine, L. (2000). Positive injury signals induce 
growth and prolong survival in Aplysia neurons. J. Neurobiol. 45, 84–94. 

Zhang, Y. V., Hannan, S.B., Stapper, Z.A., Kern, J. V., Jahn, T.R., and Rasse, T.M. (2016b). The 
Drosophila KIF1A Homolog unc-104 Is Important for Site-Specific Synapse Maturation. Front. 
Cell. Neurosci. 10, 207. 

Zhen, M., and Jin, Y. (1999). The liprin protein SYD-2 regulates the differentiation of 
presynaptic termini in C. elegans. Nature 401, 371–375. 

Zhen, M., Huang, X., Bamber, B., and Jin, Y. (2000). Regulation of presynaptic terminal 
organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 
finger domain. Neuron 26, 331–343. 

Zheng, Q., Ahlawat, S., Schaefer, A., Mahoney, T., Koushika, S.P., and Nonet, M.L. (2014). The 
Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport. PLoS Genet. 
10. 

Zhou, H.M., Brust-Mascher, I., and Scholey, J.M. (2001). Direct visualization of the movement 
of the monomeric axonal transport motor UNC-104 along neuronal processes in living 
Caenorhabditis elegans. J. Neurosci. 21, 3749–3755. 

Ziv, N.E., and Spira, M.E. (1995). Axotomy induces a transient and localized elevation of the 
free intracellular calcium concentration to the millimolar range. J. Neurophysiol. 74, 2625–2637. 

 


	frontpage
	Secondary parts
	Chapter I
	Chapter II
	Chapter III
	Chapter IV
	Chapter VDiscussion
	References

