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3.7 CPS example. Bias of Ȳ from joint data. . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Root mean square error per unit cost (RMSE PUC) by sampling design at phase IV. . . 119
4.2 Efficacy and efficiency ratio of BSS-Z and F at phase IV. . . . . . . . . . . . . . . . . 122
4.3 GREG estimates for 1) bias per unit cost (Bias.PUC), 2) standard error per unit cost

(SE.PUC), and 3) 95% coverage rates by sampling design at phase IV. . . . . . . . . . 125
4.4 Benchmarked multiple imputation estimates for 1) bias per unit cost (Bias.PUC), 2)

standard error per unit cost (SE.PUC), and 3) 95% coverage rates by sampling design
at phase IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 BSS-Z design GREG and B-MI estimates for 1) bias per unit cost (Bias.PUC), 2)
standard error per unit cost (SE.PUC), and 3) 95% coverage rates at phase IV. . . . . . 131

vi



LIST OF TABLES

2.1 Multivariate normal data. Average response rates from 100 simulations. . . . . . . . . 33
2.2 Multivariate normal data. Average Hellinger’s distance from 100 simulations. . . . . . 43
2.3 NHIS and BRFSS data. Comparison of summary statistics between the Benchmark

and focal surveys (MCAR nonresponse model). . . . . . . . . . . . . . . . . . . . . . 51
2.4 NHIS and BRFSS data. Comparison of summary statistics between the Benchmark

and focal surveys (MAR nonresponse model). . . . . . . . . . . . . . . . . . . . . . . 52
2.5 NHIS and BRFSS data. Comparison of summary statistics between the Benchmark

and focal surveys (MNARX nonresponse model). . . . . . . . . . . . . . . . . . . . . 53
2.6 NHIS and BRFSS data. Comparison of summary statistics between the Benchmark

and focal surveys (MNARY nonresponse model). . . . . . . . . . . . . . . . . . . . . 54
2.7 NHIS and BRFSS data. Average Hellinger’s distance from 100 simulations. . . . . . . 55

3.1 Difference of ρz,x between DR and DB. . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 Difference of ρy,x between DC and DB. . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3 Difference of ρy,x between DJ and population true value. . . . . . . . . . . . . . . . . 87
3.4 Percent bias on M1, M2, and M3 for joint data. . . . . . . . . . . . . . . . . . . . . . 89
3.5 CPS example. Population coefficients that created Y. . . . . . . . . . . . . . . . . . . 93
3.6 CPS example. Population R2 between Y and X and Z variables. . . . . . . . . . . . . 93
3.7 CPS example. Bias of E1, E1, E1 for respondent, completed and joint data. . . . . . . 97

vii



ABSTRACT

Traditional survey design draws a representative sample and implements post-survey weighting

adjustments to compensate for nonresponse. When survey participation decline renders respon-

dents nonrepresentative, the effectiveness of post-survey weighting adjustment becomes uncertain.

Recent developments to improve respondent representativeness via adaptive data collection design

have delivered promising results on bias reduction.

This dissertation develops a new adaptive design to improve survey data quality, by capital-

izing on a benchmark data which captures the target population. The basic idea is to adaptively

draw samples that lead to representative respondents; and to compensate for nonrespondents by

benchmarked imputation procedures. Respondent representativeness is enhanced by the sampling

procedure as opposed to data collection, eliminating costs of nonresponse follow-up and inferential

complexity due to varying data collection protocols.

The new adaptive design consists of benchmarked sequential sampling (BSS) and benchmarked

multiple imputation (B-MI) procedures. The new design first improves respondent representative-

ness by BSS, which conforms either the frame variables alone (BSS-Z) or both frame and survey

covariate information (BSS-X) to those of the benchmark. With improved respondent represen-

tativeness, the benchmarked multiple imputation recovers the population information, leading to

better quality survey estimates that are less susceptible to the unknown nonresponse pattern. This

design applies to surveys with rich micro-level auxiliary data and surveys that use respondents of

other surveys as sampling frame.

The BSS-Z method is demonstrated using the National Health Interview Survey and Behavior

Risk Factor Surveillance System; the BSS-X and the benchmarked MI methods are demonstrated

using the American Community Survey, the Current Population Survey, and the Census Planning

Database.

An evaluation is done between the new design of adaptive sampling and imputation and the

traditional design of fixed sampling and weighting (generalized regression estimator). To assess

viii



respondent representativeness, data from the new design is compared to those of the benchmark

in marginal, conditional, and descriptive statistics. To assess the quality of the survey inference, a

sample mean is calculated along with its root mean square error (RMSE), bias and coverage rate.

To assess whether a design is of better value, a cost-effectiveness measure is derived from RMSE

and a new cost model.
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CHAPTER 1

Introduction

Current survey practices are unsustainable, in part attributable to participation problems and cost

inflation. Declining survey participation exacerbates the concern over nonresponse bias and the

effectiveness of the traditional inferential paradigm. Strategies that aim at reducing nonresponse

bias and increasing respondent representativeness often involve extensive nonresponse follow-up

and prudent weighting adjustments, where the former demands higher costs and latter requires the

missing at random assumption.

To improve respondent representativeness and to minimize nonresponse bias, multiple actions

are often taken. Three common strategies are: 1) increasing the overall survey response rate,

2) improving respondent representativeness by adaptive data collection methods, and 3) applying

post-survey weighting adjustments.

Each of the current strategies in nonresponse bias reduction has limitations that may leave this

bias unchecked and/or increase the cost with uncertain benefits to survey inference. For example,

increasing the overall survey response rate does not necessarily reduce nonresponse bias due to

differential responses among subgroups of interest (Groves, 2006). Improving respondent repre-

sentativeness by adaptive data collection methods increases cost and complicates the inferential

process (Brick, 2013). Post survey weighting adjustments reduce nonresponse bias if nonresponse

is missing at random (MAR) and good weighting variables exist (Lundström and Särndal, 1999).

To improve survey inference this dissertation proposes an alternative inferential paradigm that
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shares the principle of research on combining survey data (Schenker, et. al., 2002; Schenker

and Parker, 2003; Parker, et. al., 2004; Schenker and Raghunathan, 2007; Raghunathan, et. al.,

2007; Schenker, et. al., 2010). The implementation of the paradigm necessitates a survey with

multi-phase setting (see section 1.1 for details), permitting adaptive and sequential improvement

of survey inferences at each phase (Groves and Heeringa, 2006). The approach utilizes high qual-

ity micro-level auxiliary data (a survey or census), in a multi-phase survey setting, to sequen-

tially guide the sampling design and post survey adjustments of a focal survey. We termed the

micro-level auxiliary data the “benchmark”, which serves as a surrogate for the unobserved target

population. At each sampling phase, the nonrespondents render the responding sample nonrep-

resentative and the sample is drawn to rebalance the distribution of the respondent data and the

benchmark. Appending the respondent data to the benchmark, unit nonresponse is then mimicking

the monotone item nonresponse and is replaced with benchmarked multiply imputed data. Infer-

ences are obtained by applying standard combining rules to the multiply imputed data (Rubin,

1983). Survey estimates are greatly enhanced because both sampling and imputation are guided

by the benchmark, resulting in survey estimates that are less susceptible to bias due to unknown

nonresponse patterns.

The existing methods in combining survey data focus on improving survey inference after

survey completion, for example, Schenker and Raghunathan (2007) mentioned (1) combining es-

timates from a survey of households and a survey of nursing homes to extend coverage (Schenker,

et. al., 2002); (2) using information from an interview survey to bridge the transition in race

reporting in the United States census (Schenker and Parker, 2003); (3) combining information

from an examination survey and an interview survey to improve on analyses of self-reported data

(Schenker, Raghunathan, and Bondarenko, 2010); and (4) combining information from multiple

interview surveys to enhance small-area estimation (Raghunathan, et. al., 2007, Dong, Elliott, and

Raghunathan, 2014).

Instead of repairing after survey completion, improving inferences during survey data collec-
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tion has gained growing interest, evidenced by ample articles in responsive design and adaptive

data collection design in recent years. The term responsive design, first introduced by Groves and

Heeringa (2006), refers to a survey design strategy that is implemented in phases. At each sequen-

tial phase of a responsive design, sample design features and survey procedures are modified with

the aim of minimizing cost and errors for the final survey product. Adaptive data collection design

improves survey inferences by implementing a tailored data collection strategy to nonresponse

follow-up. However, varying strategies on data collection influence response propensity, compli-

cate the inferential process, and incur higher cost. Adaptive adjustment at the sampling stage may

be ideally suited for improving survey inferences during survey implementation while overcoming

the limitations of adaptive data collection on inferential complexity and cost issues.

The proposed paradigm capitalizes on the benchmark data, including a sampling and an im-

putation step, where each step implements a widely used methodological technique that originally

was applied to other statistical problems. The sampling step builds on the propensity score method

that, first proposed by Rosenbaum and Rubin (1983), is widely used for observational studies to

adjust for selection bias. The imputation step recovers nonrespondent and population informa-

tion by multiple imputation (MI) using the Multivariate Imputation by Chained Equation (MICE)

(van Buuren and Groothuis-Oudshoorn, 2011). The MICE algorithm, first proposed by Kennickell

(1991), have enjoyed popularity in recent years in dealing with complex missing data problems.

MICE algorithm have appeared in the literature time and again with a variety of names, including

fully conditional specification (FCS) (van Buuren, 2007) and sequential regression multivariate

imputation (SRMI) (Raghunathan et. al., 2001).

Finally, adaptive sampling improves respondent representativeness by over-sampling subjects

with lower response propensity which induces higher costs. Some speculate that not only the

reduced nonresponse bias is at the expense of higher cost but also that the bias could have been

adjusted by traditional weighting methods. We evaluate the cost and error of the proposed strategy

as compared to the conventional practices.
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In this dissertation, I develop an alternative inferential paradigm to adjust for unit nonresponse.

Through effective use of the auxiliary data, the benchmark, the objectives of this dissertation are:

• Chapter 2: to develop a new adaptive sampling method to improve respondent representa-

tiveness.

• Chapter 3: to further extend the adaptive sampling and to develop a new estimation strategy

to improve survey inference.

• Chapter 4: to evaluate the new method based on cost and error criteria.

1.1 Background and Significance

The diminishing survey participation has reached the juncture that threatens the validity of weight-

ing adjustments. The increasing difficulties in measuring a diverse society coupled with the in-

creasing cost of conducting the same surveys motivate a major paradigm change in the survey

field. One promising path forward is to combine different data sources and capitalize on the div-

idends of auxiliary data. Recent development on utilization of auxiliary data in adaptive tailoring

of data collection protocols to nonresponse follow-up shows promising results in nonresponse bias

reduction.

The premise of nonresponse bias reduction through adaptive data collection design is built

upon enhancing respondent representativeness. One opportunity in enhancing respondent repre-

sentativeness resides at the sampling stages for a survey with sequential replicate phases. The data

collection for many contemporary surveys such as the National Health Interview Survey (NHIS), is

organized into sequential phases. New replicates (e.g. monthly or quarterly samples) of the prob-

ability sample are introduced at the beginning of each sequential phase. These surveys therefore

subdivide the total sample into separate replicates so that each replicate is a representative sample

4



of the target population of interest. These sequential, ”multi-phase” sample surveys have a number

of advantages, including flexibility for controlling total sample size and cost.

Traditionally, in a multi-phase survey the sampling design – its stratification, sample allocation

and sample size – does not change substantially from one phase to the next (we term this conven-

tional approach a fixed sampling design). We propose a sampling design that aims to sequentially

align respondent data distributions with the population during survey data collection, which pro-

vides an opportunity to minimize the differences between respondent and population distributions.

Such a design strategy is particularly useful in the context of a multi-phase survey where the data

collection is often organized into several discrete phases. As successive phases of data collection

are rolled out, characteristics of the respondent pool sequentially conform to known population

characteristics. There are practical limits to the number of such phases that are feasible to em-

ploy in actual survey data collection. This dissertation presents examples in which the full data

collection is implemented in four successive phases, corresponding to four quarters of a year.

Adaptive design strategies targeting nonresponse bias reduction during survey design and data

collection have been investigated in a number of prior studies. These strategies include, but are not

limited to, 1) using auxiliary and contextual data available from both respondents and nonrespon-

dents to estimate response propensity for sample cases to guide nonresponse follow-up strategies;

2) assigning a tailored protocol to cases with low predicted response propensity in an effort to in-

crease respondent representativeness; and 3) altering design parameters to oversample subgroups

of interest. Among these strategies, the overall response rate for the focal survey is increased by

case prioritization where cases with low predicted response propensity or low predicted contact

probability receive different protocols.

Although the objective of these studies is nonresponse bias reduction, strategies designed to

achieve this goal are often ad hoc in nature. For example, the adaptive design for the Community

Advantage Panel Survey (Peytchev, et. al., 2010) implemented a revised sample allocation, after a

high imbalance in the male/female distribution for several phases of data collection was observed.
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The decision to adjust the sampling rate for males was based on expert judgment that further data

collection would not correct the observed trend to gender imbalance in the final observed sample.

Several Norwegian surveys also implemented adaptive design where the primary objective

of reducing potential nonresponse bias is achieved by improving respondent representativeness

(Lagerstrom, et. al. 2010). In these surveys, respondent representativeness is evaluated by Rep-

resentativeness indicators, namely, R-indexes and partial R-indexes (Schouten, et. al., 2009;

Schouten, et. al., 2011; Schouten, et. al. 2007). R-indicators use propensity methods to eval-

uate the representativeness of the achieved respondent sample with respect to auxiliary variables

that are available from external sources for both respondents and nonrespondents. R-indicators

are used as a monitoring device to identify characteristics of the underrepresented subjects and to

optimize the field data collection strategies.

For example, R-indicators were computed once a week in the 2006 pilot of the Level of Living

Survey (LLS) test group. While monitoring LLS field work, the conditional partial-R indicator in-

dicated an under-representation of younger age group (under 35 years), triggering an intervention

at day 18 to prioritize young adults in the computer-assisted telephone interview (CATI) call sched-

ule and to focus on mobile phone numbers (due to the hypothesis of higher response propensity on

mobile phone by young adults). At day 24, a second intervention was triggered by the partial-R

indicator to prioritize previous panel refusers. These interventions had a positive effect on the rep-

resentativeness of the respondents when compared to the LLS control group, which implemented

a traditional fixed design.

The major differences between the proposed adaptive sampling and other adaptive/responsive

design described in recent literature are focus on two aspects: First, our adaptation is at the sam-

pling design stage instead of at the data collection and nonresponse follow-up stage. Second, we

balance respondent distributions with those of a benchmark instead of the selected sample.

For the first aspect, adaptive design or responsive design requires continually monitoring the

data collection process and deploying alternative data collection protocols tailored to specific non-
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respondents (Groves and Heeringa, 2006; Schouten, et. al., 2009; Schouten, et. al., 2011; Peytchev,

et. al., 2010; Schouten, et. al., 2013). Respondent representativeness was evaluated by Represen-

tativeness indicators (Schouten, et. al., 2007; Schouten, et. al., 2009; Schouten, et. al., 2011).

With different data collection protocols applied to different sample units, the estimation of re-

sponse propensity and the nonresponse weighting adjustments require more understanding of the

effects of data collection efforts on biases. Brick (2013) provides discussion and examples of the

connection between data collection and nonresponse adjustments. The proposed adaptive sam-

pling improves respondent representativeness at the sampling stage while keeping data collection

protocols unified, resulting in more robust survey estimates.

For the second aspect, we incorporated a benchmark study that resembles the characteristics of

the target population. The idea of incorporating one survey to improve analysis of another survey

has been reported in other contexts (Schenker, et. al., 2007; Raghunathan, et. al., 2007; Schenker,

et. al., 2009). Yet in previous research on combining surveys, the goal was to improve analysis

and estimation after the fact, as opposed to guiding sampling design to obtain a representative

respondent set. Our method improves respondent set representativeness through introducing of an

external benchmark data source, which allows our design strategy to focus directly on respondent

composition with respect to the target population. In addition, this strategy provides a statistics-

based method for modifying sampling inclusion probabilities for sample replicates introduced at

the successive stages of data collection. The strategy leads to the joint distribution for variables in

the focal survey respondent sample converging in expectation to that of the chosen benchmark.

1.2 Benchmarked Sequential Sampling and Benchmarked Mul-

tiple Imputation Approach

The proposal is to use high quality micro-level auxiliary data to guide the sampling and imputation

of a focal survey. For the micro-level auxiliary data, we consider those that 1) are available before
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survey implementation and 2) capture the information on the target population of interest. We term

such auxiliary data as a “Benchmark” where it shares some frame variables and survey covariates

with the focal survey. In a multi-phase survey setting, the benchmark-calibrated samplings sequen-

tially improve the respondent representativeness. With improved respondent representativeness,

the benchmark-calibrated imputation recovers the population information. The survey inference is

derived from the joint dataset, which encompasses respondent data, imputed nonrespondent data

and the benchmark data.

Chapter 2 presents a new adaptive sampling method that sequentially conforms the focal sur-

vey frame variables to those of the benchmark. At any given phase, auxiliary variables shared

between the focal survey sample frame and a benchmark data source are used to estimate the

propensity of being in the benchmark. The adaptive sampling rate is derived from the estimated

propensity scores for the subsequent phases to restore balance between the eventual respondents

and the benchmark. As this procedure is repeated, the distribution of respondent propensity scores

converges to that of the benchmark, improving sample balance for not only the auxiliary variables

included in the propensity score model but also survey variables of interest that are correlated with

the auxiliary variables. The strategy is evaluated by applying various nonresponse mechanisms

to data with different strengths of association between auxiliary variables and survey variables.

This sampling strategy is illustrated via both a simulated multivariate normal dataset and data from

two large government surveys (National Health Interview Survey, NHIS, and Behavior Risk Factor

Surveillance System, BRFSS).

Chapter 3 extends the adaptive sampling method from the previous chapter to conform both

sample frame variables and survey covariates of the focal survey to those of the benchmark. We

describe a benchmark-driven mitigation and imputation (M&I) strategy, in the context of a multi-

phase survey, that sequentially guides the sampling and estimation to improve survey inferences

regardless of nonresponse mechanism. The M&I strategy employs a high quality benchmark to 1)

(mitigate) rectify undesirable nonresponse patterns through a calibrated sequential sampling de-
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sign; and 2) (impute) recover population information through calibrated Multivariate Imputation

by Chained Equations (MICE), consequently achieving less biased survey estimates. The perfor-

mance of the M&I strategy is evaluated by simulation experiments to mimic adaptive design under

various nonresponse mechanisms, including missing not at random (MNAR). We report on the

preservation of marginal and joint distributions for population estimates of three sampling designs

from respondent data, completed data, and joint data. An illustration using data from the American

Community Survey (ACS) and the Current Population Survey (CPS) is also presented.

Chapter 4 assesses the cost-effectiveness (efficacy), a function of cost and root mean square

error (RMSE), for weighted and imputed estimates of a sample mean. A subject-level cost model

is developed that is generalizable across survey designs. We present two post-survey adjustment

methods: 1) benchmarked multiple imputation (B-MI) and 2) a conventional weighting strategy

using generalized regression estimator (GREG). Benchmarked multiple imputation is the proposed

alternative strategy in post-survey adjustment that is analogous to the current practice of post-

survey weighting adjustments. A simulation study is conducted to evaluate the cost and error

implications when the missing at random (MAR) assumption does and does not hold (i.e. missing

not at random, MNAR).

Chapter 5 concludes the dissertation with discussion and suggests some future research.

1.3 Benefits and Potential Impacts

This research has several potential impacts. The most important impact is the potential of generat-

ing better inferences that are less susceptible to an unknown nonresponse mechanism. The quality

of the survey inferences through the implementation of traditional survey design and post survey

adjustment relies on the missing at random assumption. With high levels of nonresponse, the plau-

sibility of the MAR assumption diminishes. Although adaptive data collection design may reduce

nonresponse bias, it also increases survey cost with uncertain benefit for reducing survey errors.
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Adaptive sampling design and benchmarked imputation offer an alternative approach to enhance

survey inferences that minimizes nonresponse bias independent of nonresponse mechanism.

This research also provides a viable path forward in survey practice. By taking advantage of

external data sources, the proposed approach improves respondent representativeness and achieves

better cost-effectiveness without complicating field administration and inferential process. Prior

studies in combining surveys have shown the benefit of enhanced survey estimates in reducing

both sampling and non-sampling errors at the data analysis stage. This dissertation demonstrates

a proactive approach to enhance survey estimates during survey implementation. With advances

in technology, computation, and availability of electronic survey data and other data sources, im-

proving survey inferences without increasing cost by effective use of auxiliary data is a feasible

and sensible strategy.

The dual difficulties in survey participation and fiscal distress challenge the conventional survey

inferential paradigam. When survey participation reaches the point that threatens validity of the

MAR assumption, applying the fixed sampling design and drawing a design-based representative

probability sample is no longer practical. The sampling methods proposed in this dissertation are

flexible enough to accommodate various nonresponse mechanisms. The sampling phases could

be expanded or halted, and therefore the multi-phase setting is flexible enough to accommodate

unforeseen challenges in survey budget and administration resources. These procedures may be

adopted by any multi-phase survey when appropriate benchmark data are available.

The benchmarked multiple imputation can be easily applied by the current computation soft-

ware. Although the proposed imputation approach aims at compensating for unit nonresponse,

item nonresponse can also be predicted simultaneously. This study may also stimulate a shift in

how external data sources are utilized and how nonresponse is addressed in survey practice.
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CHAPTER 2

Improving Respondent Representativeness Using

External Micro-level Benchmark Data

Increasing unit nonresponse in surveys may render the observed data unrepresentative of the pop-

ulation, leading to biased inference. A standard practice is to use weighting as post survey adjust-

ments for nonresponse bias which involve implicit or explicit assumptions concerning the missing

data mechanism. Other common strategies include improvements in data collection methods aimed

at increasing overall response rates or respondent representativeness. This chapter describes a new

adaptive sampling strategy that uses external micro-level “benchmark” data for the survey popu-

lation in a multi-phase survey to achieve improved representation in the respondent sample. At

any given phase, auxiliary variables shared between the focal survey and a benchmark data source

are used to estimate the propensity of being in the benchmark. The adaptive sampling rate for the

subsequent phases is derived from the estimated propensity scores to restore balance between the

eventual respondents and the benchmark. As this procedure is repeated, the distribution of respon-

dent propensity scores converges to that of the benchmark, improving sample balance for not only

the auxiliary variables included in the propensity score model but also survey variables of interest

that are correlated with the auxiliary variables. This sampling strategy is illustrated via both a sim-

ulated multivariate normal dataset and data from two large government surveys (National Health

Interview Survey, NHIS, and Behavior Risk Factor Surveillance System, BRFSS). The strategy is
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evaluated by various nonresponse mechanisms applied to data with different strength of association

between auxiliary variables and survey variables.

2.1 Introduction

Increasing unit nonresponse in surveys may render the observed data unrepresentative of the pop-

ulation, calling into question the validity of survey inferences due to the potential for nonresponse

bias, especially if response propensity is related to the variables of interest (Little and Vartivarian,

2005; Tourangeau, et. al., 2013).The seriousness of the nonresponse was illustrated by the Pew

Research Center in 2012 that reported an average 9% response rate (or 91% nonresponse rate) for

a typical telephone random digit dial (RDD) survey (Kohut, et. al., 2012). Three common strate-

gies, applied simultaneously at times, that aim to reduce nonresponse bias are 1) increasing the

overall survey response rate 2) improving respondent representativeness by tailoring data collec-

tion methods, and 3) applying post-survey nonresponse weighting adjustments. However, research

shown that for strategy 1 – there is a lack of consistent association between the overall response

rate and nonresponse bias (Groves, 2008; Bootsma, 2002; Barclay, 2002; Groves, 2000; Keeter,

2000; Curtin, 2000; Merkle, 2002; Groves, 2006b); for strategy 2 – tailored data collection alters

response propensity, complicating nonresponse adjustments (Olsen and Groves, 2012; Schouten,

et. al., 2011; Brick, 2013); for strategy 3 – unverifiable missing at random (MAR) assumption

underminds the effectiveness of weighting adjustments (Brick and Kalton, 1996).

This study describes an alternative bias reduction strategy – adaptive sampling design, that in-

corporates an external micro-level “benchmark” data set to improve respondent representativeness

in a new multi-phase survey (the focal survey). For the micro-level benchmark data, we consider

those that 1) are available before survey implementation and 2) capture the information of the tar-

get population of interest. The benchmark could be a high quality survey or administrative data

(see Section 2.2 for more details). Hence, surveys with linked administrative/census data and sur-
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veys using other survey respondents as the sampling frame are ideal candidates for this sampling

design. The success of the proposed sampling design on bias reduction depends on the orrelations

among auxiliary variables, survey covariates, and survey outcome variables.

Adaptive sampling here refers to a sampling strategy that aims to align respondent data distribu-

tions with the population using a dynamic sampling strategy. The representativeness of the respon-

dents is enhanced across the phases by a targeted probability sampling strategy that is guided by

sampling rates derived from propensity scores. Propensity scores provide a scalar summary which

could potentially be based on extensive covariate information. These propensity scores express

the propensity of the benchmark membership, instead of the propensity of respondent membership

used in the standard nonresponse weighting adjustments. The ratio of the empirical propensity

score densities of the focal and benchmark surveys guides sampling decisions for the upcoming

phase. As the phases progress, the distribution of respondent propensity scores converges to that

of the benchmark data, establishing sample balance for the benchmark characteristics included in

the propensity score model.

The adaptive sampling strategy is particularly useful in the context of a multi-phase survey

where the sampling decision is organized into several discrete phases so that characteristics of

the respondent pool can be matched to known population characteristics as successive phases of

the sampling design are rolled out. The proposed adaptive sampling shares the same goal of im-

proving respondent representativeness as with the “adaptive design” and “responsive design”, yet

differs fundamentally from their focus in data collection approaches (Groves and Heeringa, 2006;

Schouten, et. al., 2009). Three key components that distinguish our study from that of prior work

are 1) the incorporation of a benchmark survey, 2) the adaptive nature of the sampling design (as

opposed to adaptive nature of data collection), and 3) the propensities of the benchmark member-

ship (as opposed to the propensities of the response).

For the first component, we incorporate a benchmark data set that resembles the characteristics

of the target population. The idea of incorporating one survey to improve analysis of another
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survey has been reported in other contexts (Schenker and Raghunathan, 2007; Raghunathan, et.

al., 2007; Schenker, et. al., 2009). Yet in previous research on combining surveys, the goal is to

improve analysis and estimation after the fact, as opposed to guiding sampling design to obtain a

representative respondent set.

For the second component, the proposed adaptive sampling improves respondent representa-

tiveness at the sampling stage while keeping data collection protocols unified, resulting in more

robust survey estimates. The major issue with the adaptive data collection design is that, with

different data collection protocols applied to different sample units, the estimation of response

propensity and the nonresponse weighting adjustments require more understanding about the ef-

fects of data collection efforts on biases. Brick (2013) gives detailed discussions and examples of

the connection between data collection and nonresponse adjustments. The advantages of proposed

adaptive sampling over the adaptive data collection are further discussed in Section 1.1.

In our proposed method, the key element in improving respondent representativeness is there-

fore to balance multivariate distributions between respondents and the benchmark population. A

natural way to balance the multivariate distributions for the focal sample and the benchmark is to

balance propensity score distributions (Rosenbaum and Rubin, 1983; DAgostino, 1998). When us-

ing propensity scores to design an observational study, the goal is to match ’treated subjects’ with

’control subjects’ having similar measured covariates, minimizing noncomparability in the treated

and control subjects and increasing the precision for estimating the ’treatment effect’ (Rubin, 2002;

Rubin, 2007; Austin, 2009; Hahn, et. al., 2011). This approach, however, is not a good fit with

survey design for two reasons: 1) a priori matching of nonrespondents with comparable replace-

ment subjects is not feasible since final response status for sample elements is not known prior to

the survey; and 2) advance information required to assign matched substitutions to each eventual

nonrespondent case is limited. Hence, the unfolding nature of the nonresponse problem as the

survey data collection progresses undermines the utility of a standard propensity score matching

approach that could be implemented in advance of actually conducting the survey.
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Instead, in our application we model the “benchmark membership”. Sampling units in the focal

survey and benchmark with equal (or nearly equal) propensity scores will tend to have the same (or

nearly the same) distributions on covariates included in the propensity score model (Rosenbaum

and Rubin, 1985). Therefore, a respondent pool that has a propensity score distribution that is

equal to that of the benchmark will also tend to have the same distributions on the covariates

used to derive the propensity scores. Furthermore, benchmarking to the target population using

propensity scores preserves the multivariate structure in terms of balance between the benchmark

and focal surveys. Such a multivariate balance provides a more representative respondent pool

for the focal survey with respect to both the marginal and joint distributions. More importantly,

researchers have shown that the remaining bias after standard post-survey weighting adjustments

could be further reduced had the original respondent sample been more representative (Särndal and

Lundquist, 2014).

Traditional sampling strategies, labelled the “fixed sampling design” herein, in which a proba-

bility sampling design is kept stationary across data collection phases is a standard practice. With

fixed sampling, the departure of respondent composition from the target population often remains

as the data collection phases progress. For example, Figure 2.1 illustrates the estimates of the

propensity score densities using selected variables from the 2009 NHIS and 2009 BRFSS pub-

licly available micro-data. One can clearly see that the distributional differences of the NHIS (as

Benchmark) and the BRFSS (as the respondents of the focal survey) persisted as the data collec-

tion progressed from Phase 1 to Phase 4. Without mid-survey intervention on sampling design, the

resulting deviation of focal survey respondents from the target population continues at each data

collection phase. The proposed strategy is illustrated via simulation studies which compare the

representativeness of the respondents from adaptive sampling and fixed sampling designs under

various nonresponse mechanisms.

In Section 2.2, we describe our proposed method, first presenting a simple univariate example

to demonstrate the principle of our method and then formally presenting the algorithm required to
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Figure 2.1: Observed BRFSS 2009 under fixed sampling design.
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Estimated propensities of being in the benchmark (NHIS) of observed BRFSS 2009 under fixed sampling
design where the solid line shows 2009 NHIS data and the dash-line shows the 2009 BRFSS. The similar
patterns across phases indicates that, without mid-survey intervention, the nonresponse mechanism stays
similar at each phase.

adjust focal survey sampling rates at each successive sampling phase to match the benchmark data

set. Section 2.3 illustrates by means of a simulation study how the proposed adaptive sampling

can improve the respondent representativeness under various degrees of explanatory power of the

frame/auxiliary variables and various nonresponse scenarios. Section 2.4 illustrates an application

example using data from 2009 BRFSS and 2009 NHIS where the BRFSS and NHIS data are

combined to form a finite population. In Section 2.5 we conclude with some discussion of strengths

and limitations of the proposed strategy along with areas for future research.

2.2 Methods

2.2.1 Data structure

Figure 2.2 illustrates the concept of our method. In the figure, shaded cells indicate available

data; superscripts denote the data collection phases and subscripts indicate respondent (R), nonre-

spondent (NR), and benchmark (B) data. In our strategy for balancing respondent distributions,

candidate data consists of focal survey variables of interest (Y ), demographic and background vari-

ables (X) measured in the survey and benchmark data, and auxiliary and contextual data available
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from frame and external sources (Z). Currently, adaptive data collection strategies exclusively fo-

cus on using data that are available for both respondents and nonrespondents, i.e. ZR and ZNR.

Alternatively, our method extends the representativeness of the respondent set through introduction

of an external benchmark data source, denoted ZB, XB and YB which allows our design strategy

to focus directly on respondent composition with respect to the target population.

In addition, our strategy provides a statistically-based method for modifying sampling inclusion

probabilities for sample replicates introduced at the successive sampling phases such that the joint

distribution for Y , X and Z in the focal survey respondent sample converges in expectation to

that of the chosen benchmark; that is, f(YR, XR, ZR) ≈ f(YB, XB, ZB), where f(.) denotes a

density function. A simulation study in Section 2.3 illustrates that this goal can be achieved when

P (XR, ZR) ≈ P (XB, ZB) and P (ZR) ≈ P (ZB), where P (.) denotes the propensity density

function, which can be obtained by benchmarking ZR to ZB through adaptive sampling.

Figure 2.2: Data available for benchmarked sequential sampling design
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Y denotes survey outcome variables, X denotes survey covariates, Z denotes frame and auxiliary
variables that are available for both respondents and nonrespondents before data collection. B
denotes benchmark, R denotes respondent, NR denotes nonrespondent. Superscript specifies the
sampling phases. Shaded cells indicate available data, and nonshaded-area represents no data.
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2.2.2 The Benchmarked Sequential Sampling Design

The proposed adaptive sampling strategy modifies the sampling probabilities at sequential stages in

a focal survey with respect to a chosen benchmark to improve respondent representativeness. The

respondent representativeness is defined as the similarity between the respondent and the bench-

mark propensity distributions (P (YR,XR,ZR) ≈ P (YB,XB,ZB)), where the propensity scores

are estimated by modeling the benchmark membership (benchmark vs. focal survey), as opposed

to the response membership (respondent vs. nonrespondent). Note that the proposed sampling

design applies to the survey before data collection, hence response indicator is not relevant. The

implementation of this strategy necessitates a focal survey with these elements: 1) the focal sur-

vey has a sequential sampling design; 2) the target population for the focal survey is captured in

a population dataset (e.g. census) or a benchmark survey where micro-level information is avail-

able; and 3) the focal survey and the benchmark survey share some covariates (X) and auxiliary

variables (Z). Note, Y is most likely not in the benchmark, otherwise there is no need to conduct

the focal survey.

An example pair of benchmark and focal survey is the American Community Survey (ACS)

and the National Health Interview Survey (NHIS). NHIS has a sequential sampling design where

the annual sample is divided into four calendar quarters, and the sample of each calendar quarter

is a probability sample of the target population. ACS captures the target population of the NHIS

which is the U.S. resident civilian noninstitutionalized population. ACS and NHIS share common

covariates (X) such as the demographic and socio-economic variables. ACS and NHIS, both are

address-based household surveys sponsored by U.S. government, sharing the same frame – U.S.

Census Master Address File (Z). Another example pair of benchmark and focal survey is NHIS

and BRFSS. BRFSS sample could be assigned to sequential sampling phases that is similar to

the NHIS – where sampling is implemented quarterly. NHIS and BRFSS share demographic and

socio-economic variables (X) as well as contextual information which includes variables listed in

the Census Planning Database (PDB) such as census block level race distribution, age distribution,
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and gender ratio, etc. More details on the NHIS and BRFSS are described in Section 2.4.

Suppose no prior information on nonresponse patterns exist, the initial sample (phase I) of fo-

cal survey is drawn with a conventional fixed sampling design and the adaptive sampling starts

at phase II. The phase I respondent data are compared to the data from the benchmark to evalu-

ate the respondent representativeness. Note that the adaptive sampling also applies at phase I to

surveys with prior nonresponse information. While nonrepresentativeness exists, subjects that are

underrepresented in the focal survey respondent distribution with respect to Z will be sampled

at a higher rate at the next phase of sampling design, whereas subjects that are overrepresented

will be sampled in a lower rate. The derivation of the adaptive sampling rate builds upon bench-

marking the respondent data at each sampling phase, using propensity scores and their empirical

density function. To keep things simple, we assume that sample units are selected by simple ran-

dom sampling (s.r.s). However, the points made here also apply in general to surveys with more

complex designs, with more complicated technical details. As with any finite population survey,

the proposed sampling strategy applies to the sampling frame without replacement.

Using simulated data we show how the objective of arriving at P (YR,XR,ZR) ≈ P (YB,XB,ZB)

can be achieved by the proposed benchmarked sequential sampling strategy. The strategy is derived

using only the auxiliary variables (Z) since X and Y are not available at the sampling stage. We il-

lustrate via simulation that P (YR,XR,ZR) ≈ P (YB,XB,ZB) when P (XR,ZR) ≈ P (XB,ZB),

and which in turn can be obtained when P (ZR) ≈ P (ZB). P (ZR) ≈ P (ZB) is the direct re-

sult of the proposed sampling design. The simulation studies evaluate various correlation struc-

tures among Y , X and Z and how these structures affect the convergence of P (YR,XR,ZR) to

P (YB,XB,ZB) under different missing data mechanisms.

More specifically, Figure 2.3 depicts the conceptual framework of the sampling population at

each phase for a four-phase survey. The goal for the cumulative focal survey respondents propen-

sity distribution approximating that of the population is achieved by sequential nature of the bench-

marked sequential sampling, which can be described as (assuming benchmarked sampling starts at
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phase II),

• at phase I: sampling goal is P (Z(1)) = P (ZB), while obtaining P (Z
(1)
R ) 6= P (ZB).

• at phase II: sampling goal is Q(Z(2)) = P (ZB), with objective of P (Z
(2)
R |Z

(1)
R ) approaching

P (ZB).

• at phase III: sampling goal is Q(Z(3)) = P (ZB) with objective of P (Z
(3)
R |Z

(1)
R ,Z

(2)
R ) further

approaching P (ZB).

• at phase IV: sampling goal is Q(Z(4)) = P (ZB) with objective of P (Z
(4)
R |Z

(1)
R ,Z

(2)
R ,Z

(3)
R ) ≈

P (ZB).

where Q(.)(k) denotes density function for cumulative data from phase 1 to phase k. Suppose

Q(Z
(4)
R ) ≈ P (ZB), then Q(X

(4)
R |Z

(4)
R )Q(Z

(4)
R ) ≈ P (XB|ZB)P (ZB). That is, Q(X

(4)
R ,Z

(4)
R ) ≈

P (XB,ZB). When X and Z correlate with Y , Q(Y
(4)
R |X

(4)
R ,Z

(4)
R ) ≈ P (YB|XB,ZB), although

YB is likely not available in the benchmark.

With regard to the selection of Z variables, the rule of thumb is similar to the variable selection

for regression analysis. We recommend choosing Z variables that are correlated with Y and/or

X. Any types of Z variable and any number of Z variables work well. Although the inclusion

of nuisance Z variables may not help with nonresponse bias reduction, it does not hurt either. It

would be comparable to what a weighting adjustment could achieve using these Z variables.

The proposed strategy calls for a sequential sampling design where each sampling phase con-

sists of a probability sample representing the target population. Aside from its flexibility of imple-

menting benchmarked sampling to improve respondent representativeness, such a sampling design

has many administrative advantages. For example, the design of sequential sampling phases where

each phase represents the target population allows both the reduction or expansion of the survey

phases should availability of funding and other resources change.
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Figure 2.3: Proposed adaptive sampling design.
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Benchmarked sequential sampling is applied to the next phase sample using previously
non-sampled units. Note: S = sampled, NS = not-sampled, B = Benchmark, R= respondents, NR
= nonrespondents, n = sample size. Superscript specifies the phases.
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2.2.3 Illustrative Example with One Auxiliary Variable

Before the formal derivation of the method, we present a simple hypothetical example of a survey

on school teachers and educators in which the auxiliary variable on the frame is gender (Z). Vari-

ables collected in the survey are education (X) and personal income (Y ) where personal income is

the survey outcome of interest.

The goal of the hypothetical survey is to estimate average personal income overall, and income

by education and gender. Ideally, one would like to obtain a respondent pool where the joint distri-

bution of income, education and gender agrees or nearly agrees with that of the population. At the

sampling design stage, however, only gender information is available. Income and education are

available only on respondents and only after survey data is collected. Since there is information in

gender about income and education, this example shows that a representative respondent pool with

respect to gender will improve the representativeness of the joint distribution on gender, education

and income. With respect to the proposed sampling design, the goal at each phase is to rebalance

the gender distribtion of the respondent pool with respect to that of the benchmark.

Suppose there are equal numbers of females and males in the target population of interest

(which is captured in the benchmark), and we plan two phases of data collection with 100 subjects

for each phase. An initial simple random sample (s.r.s.) of size 100 is selected and fielded. We

obtain 60 respondents, of whom 38 (63%) are female and 22 (37%) are male. In the second phase

of sampling to rebalance the respondent sample we must undersample females and oversample

males, so that the gender distribution in the accumulated respondents and in the target population

agree.

To write out the above problem algebraically, consider the aim of obtaining 50% females in the

final sample. The target female percentage of 50% is achieved by combining the female percentage

from the first phase respondents, 0.6× 0.63, and the second phase female sample, 0.4× F , where

F represents the desired female proportion for the second phase sample. We can write
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0.4× F + 0.6× 0.63 = 0.5 (2.1)

where F = (0.5− 0.6× 0.63)/0.4 = 0.305.

Using mathematical notation to rewrite formula (2.1), we have

(1− π)× P (Z|sample) + π × PR(Z) = PB(Z) (2.2)

where Z denotes gender, P (·) denotes probability distribution, and π denotes the proportion of

sample subjects who responded at the first phase of data collection. PR(Z) denotes the gender

distribution of the first phase respondents, and PB(Z) denotes the benchmark gender distribution.

P (Z|sample), the desired female distribution F in (2.1), is now the desired gender distribution

for subjects being selected in the second phase sample. Since PR(Z), PB(Z), and π are known,

P (Z|sample) can be computed from (2.2). We obtain P (Z|sample) = (PB(Z)−π×PR(Z))/(1−

π).

However, what we really want to know is how to select additional sample cases that would most

likely result in the desired P (Z|sample). In other words, we actually want to know P (sample|Z),

the sampling rate conditioning on the gender distribution. The association between P (sample|Z)

and P (Z|sample) can be expressed as

P (sample|Z) =
P (Z|sample)P (sample)

P (Z)
(2.3)

where P (Z) is the population Z distribution. Putting formulas (2.2) and (2.3) together, we obtain

P (sample|Z) =
PB(Z)− π × PR(Z)

(1− π)

P (sample)

P (Z)

= {PB(Z)

P (Z)
− π × PR(Z)

P (Z)
}P (sample)

(1− π)

(2.4)

In this one auxiliary variable example, π = 0.6, PR(Z) = 0.63, and PB(Z) = 0.5. Hence,
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assuming PB(Z) = P (Z), P (sample|Z) = [1 − 0.6 × (0.63/0.5)] × P (sample)/0.4, where

P (sample) can be computed using the fact that P (sample|Z) is a probability and bounded by 0

and 1.

A caveat is that samples selected by P (sample|Z) in equation (2.4) will suffer nonresponse.

Therefore P (Z|sample) in formula (2.2) can be derived to take into account anticipated nonre-

sponse. The anticipated nonresponse rate is estimated by the nonresponse rate observed in the

previous phases. Sampling with nonresponse adjusted P (Z|sample) will further improve the re-

spondent representativeness when nonresponse rate remains similar across data collection phases,

such as the example in Section 2.1 for NHIS and BRFSS.

In practice, imposing differential sampling rates in different domains (e.g. gender by educa-

tion) is feasible with a frame that is a rich administrative data source. In situations where frame

information and external data source are limited, the goal of targeted sampling rates can be ac-

complished by strategies such as screening (Botman and Moriarity, 2000) or prediction of sample

characteristics.

2.2.4 Computing the Sampling Rate in Successive Sampling Phases

More formally, suppose there are k sampling phases, where k = 1, . . . , K. Rewrite equation (2.2)

for Z, a vector of covariates, and generalize to k phases, we have

(1− π(k))× P (k+1)(Z|sample) + π(k) ×Q(k)(Z) = PB(Z) (2.5)

whereQ(k)(Z) is the cumulative respondent Z distribution obtained up to the kth phase, P (k+1)(Z|sample)

is the Z distribution desired for the (k + 1)th phase, and π(k) denotes the cumulative sample pro-

portion at the kth phase. For example, suppose the cumulative respondent size at phase k is nk

and the cumulative sample size at phase k is Nk. Then for phase k we have π(k) = nk/Nk and

1− π(k) = 1− nk/Nk
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Again, the goal is to derive P (k+1)(sample|Z), the sampling probability of (k + 1)th phase

conditioning on Z. The derivation is similar to the univariate case in equation (2.4). Using Bayes

formula (2.3) and P (k+1)(Z|sample) from equation (2.5), equation (2.4) can be rewritten as

P (k+1)(sample|Z) = { PB(Z)

P (k)(Z)
− π(k)Q

(k)(Z)

P (k)(Z)
}P

(k)(sample)

1− π(k)

∝ PB(Z)

P (k)(Z)
− π(k) × Q(k)(Z)

P (k)(Z)

(2.6)

Using the sampling rate in (2.6), the (k + 1)th phase attempts to correct for the imbalance

between the benchmark and the focal survey with respect to the Z distribution. This procedure is

repeated for the remainingK−k phases until the distribution of Z from the cumulative respondents

matches that of the benchmark, and a pool of more representative respondents is obtained. That is,

Q(k)(Z) ≈ PB(Z).

However, sampling with P (sample|Z) in equation (2.6) may not achieve balance at one round

of data collection, even with a 100% response rate. Consider denoting A = PB(Z)
P (Z)

− π × Q(Z)
P (Z)

,

A may take negative values and values larger than one. Note that phase indicator k is omitted for

simplicity. We know that P (sample|Z) is bounded by (0, 1). That is, when A is negative, we set

P (sample|Z) = 0; when A > 1, we set P (sample|Z) = 1. Either condition causes the truncation

of P (sample|Z). With the characteristic of truncation at 0 and 1, sampling with P (sample|Z)

requires more than one round of data collection to achieve balance.

There are two special cases for P (sample|Z). The first one is that when the focal sample

distribution approximates the benchmark population, PB(Z) = P (Z), and equation (2.6) can be

simplified as

P (k+1)(sample|Z) ∝ 1− π(k) × Q(k)(Z)

PB(Z)
(2.7)

That is, the sampling rate for the (k+ 1)th phase conditioning on Z depends on the ratio of the kth

phase cumulative respondent Z distribution and the benchmark Z distribution. The second special
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case is that if PB(Z) ≈ Q(k)(Z) and PB(Z) 6= P (k)(Z), equation (2.6) can be simplified as

P (k+1)(sample|Z) ∝ PB(Z)

P (k)(Z)
(2.8)

That is, if respondents reach representativeness but one wanted to continue growing the sample

size with additional replicates, the (relative) sampling rate becomes PB(Z)

P (k)(Z)
.

As we have mentioned in Section 2.2.3, a sample selected based on P (sample|Z) will suffer

nonresponse, hence nonresponse adjusted equation (2.6) can further improve the respondent rep-

resentativeness when the nonresponse pattern remains similar across data collection phases. Let φ

denote the response probability, nonresponse adjusted (2.6) can be written as

P (k+1)sample|Z) ∝ 1

φ
{ PB(Z)

P (k)(Z)
− π(k) × Q(k)(Z)

P (k)(Z)
} (2.9)

Similar nonresponse adjustment applies to equations (2.7) and (2.8).

2.2.5 Estimating the Sampling Rate with the Propensity Score

When Z is univariate, estimating PB(Z)/P (k)(Z) and Q(k)(Z)/P (k)(Z) is straightforward as illus-

trated in Section 2.2.3. However, in most situations Z is a vector consisting of many covariates

(multivariate). For example, covariates listed in Table 2.6 are common Z in typical household

surveys, with both continuous and categorical variables. The joint distribution of continuous and

categorical variables is complex to specify and difficult to estimate. Z may also include both main

effects (i.e. marginal distributions) and interactions (i.e. conditional distributions) which further

complicate the estimation. One strategy to reduce the multivariate distribution of Z to a scalar is

the propensity score method (Rosenbaum and Rubin, 1983; DAgostino, 1998).

The propensity score methods, proposed by Rosenbaum and Rubin (1983), model “treatment

group” membership with baseline covariates. The treated and untreated subjects with the same

propensity score have similar joint distributions of observed baseline covariates. In our applica-
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tion, we model the “benchmark membership” using covariates common to the benchmark and the

focal survey. The propensity score of interest is the probability of benchmark survey membership

conditional on covariates in the model.

The propensity score is defined as e(z) = P (T = 1|z), where T is an indicator variable,

representing survey membership. T = 1 for benchmark survey and T = 0 otherwise. Auxiliary

variables (Z) common to both surveys are included in the propensity model. The propensity scores

are estimated by the simple logistic model, logit(e(z)) = β0 + β
′
z for the merged data set of size

NB+NR, whereNB denotes the benchmark sample size andNR denote the cumulative focal survey

respondent size up until phase k. The empirical density functions of the predicted propensity

scores are then derived for both the benchmark survey cases and the focal survey respondents. The

estimated propensity score density functions then serve as the basis for modifying the sampling

rates. Therefore, if we consider Q(k)(Z) to be the propensity score density of the focal survey

cumulative respondents up until phase k, and PB(Z) to be the propensity score density of the

target population, then PB(Z)/P (k)(Z) andQ(k)(Z)/P (k)(Z) become the ratios of propensity score

density which greatly simplified the computation of these density ratios.

2.2.6 Assessing the Representativeness of the Respondents

A representative sample can be regarded as a random sample from the underlying target distribution

f(Z,X,Y). A representative respondent pool should reproduce and preserve the variable associ-

ations and distributions in the target population as captured by the benchmark survey. Therefore,

after each data collection, there is an interest to measure respondent representativeness compared

to the benchmark.

The concept of “representativeness” is similar to the concept of a balanced sample. In the sur-

vey context, a balanced sample is defined as a sample satisfying the property of Ū = ū where U

denotes a population quantity and u denotes the sample quantity (Royall and Herson, et. al., 1973;

Hansen, et. al., 1983; Särndal, 2011). In this study, we follow the terminology used in the propen-
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sity score literature for observational studies, the “balance” implies the similarities between two

density distributions. In other words, the balance here is defined as the equivalence of the bench-

mark survey and the focal survey with respect to the multivariate distribution of covariates, which

is expressed as PB(Y,X,Z) = P (Y,X,Z). A high degree of balance suggests that the sample

composition of the two surveys is similar, conditioning on the covariates used in the propensity

score models.

Several balance diagnostics methods have been proposed for the assessment of the adequacy

of propensity score matching (Austin, 2009). These diagnostic methods were developed for use in

observational studies to detect the distributional differences between treatment groups with regard

to baseline covariates after the application of propensity score matching. Conveniently, these meth-

ods can also be adopted to assess the balance between a benchmark survey and the focal survey

after each iteration of the adaptive sampling procedure. Specifically, we use the non-parametric

density estimates as the balance diagnostic measure.

The non-parametric density estimates computed using the empirical propensity scores for the

benchmark and the focal survey can be compared by the Hellinger’s distance function. This

distance quantifies the similarity between the two probability distributions. Therefore, a large

Hellinger’s distance in propensity score densities between the benchmark and the focal survey

suggests the dissimilarity in the covariate distributions of the two surveys. Let PB(Z) and P (Z)

denote the empirical propensity score probability density functions for the benchmark and the fo-

cal survey, respectively, where Z denotes variables in the propensity score model. The Hellinger’s

distance function is written as

H2 =
1

2

∫ (√
PB(Z)−

√
P (Z)

)2

dZ (2.10)
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2.3 Simulation Study

This study proposes adaptive sampling rates over multiple phases of replicate sample selection that

are computed with P (Z), PB(Z) and Q(Z) to improve the representativeness of the PR(Z,X),

where Z represents variables available on the sampling frame, and Z is correlated with X and Y.

Specifically, we demonstrate the utility of the proposed sampling rate in a sequential approach to

achieve a respondent pool that better resembles the benchmark with respect to the propensity score

distribution.

Data from the representative respondents obtained via sampling that utilizes propensity scores

preserves the relation between variables. We show that, when compared to the respondent data

from a fixed sampling plan, the respondents from adaptive sampling achieve greater similarity to

the benchmark data on 1) the marginal distributions of P (X), P (Y ), P (Z,X) and P (Z, Y ), 2)

the correlation structure of (Z,X, Y ), and 3) the joint distributions P (Z,X, Y ). The simulation

experiment validates the marginal representativeness by reporting on the means and standard devi-

ations of the individual variables, validates the preservation of correlation structure by reporting on

the variance and covariance estimates, and validates the joint distribution P (Z,X, Y ) by graphing

the corresponding empirical propensity score densities and reporting on the Hellinger’s distance

between the densities.

2.3.1 Simulation Setup

Let (Z,X, Y ) be multivariate normally distributed variables with the joint distribution

(Z,X, Y ) ∼ N3(0,Σ), and (2.11)
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Σ =


1 cov(Z,X) cov(Z, Y )

cov(Z,X) 1 0.707

cov(Z, Y ) 0.707 1


where cov(Z,X) and cov(Z, Y ) are varied in this simulation study to examine the effects of Z

with different explanatory power on X and on Y . From the data model of (2.11) we simulate a

finite population of size NPOP = 500, 000. From this finite population, a simple random sample

without replacement (srswor) of size NB = 25, 000 is drawn to serve as the benchmark survey and

the remaining 475, 000 units serve as the sampling frame for the focal surveys. From this sampling

frame, two concurrent focal surveys are simulated, one using the adaptive sampling design and

the other a fixed sampling design. For both focal surveys, the first phase is a srswor of size 1, 000

(n(1) = 1, 000). The two focal surveys share the same first phase sample and respondents. The two

surveys start their corresponding sampling design from the second phase.

The first phase sampling strategy, a srswor of size 1, 000, is repeated for the second through

fourth phases for the fixed sampling design. For the adaptive sampling design, sample allocation

for each phase uses equation (2.9) and the phase samples are of size n(k) = 1, 200 for the kth data

collection phase, where k = 2, . . . , 4.

The simulation study can be described as a 2× 2× 4 factorial design. The factors are:

Factor A: cov(Z,X): high vs low

Factor B: cov(Z, Y ): high vs low

Factor C: Four nonresponse mechanisms based on the response models described below.

The cov(Z,X) equals the correlation of (Z,X), denoted as ρZ,X , since var(Z) and var(X) are

set to be one. Among factors A and B, a high correlation of two variables is set to be ρ = 0.894

(i.e. R2 = 0.8) and a low correlation is ρ = 0.447 (i.e. R2 = 0.2, where R2 is the coefficient
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of determination in linear regression). The correlation between X and Y is held to be constant

across simulations with ρX,Y = 0.707 (i.e. R2(X, Y ) = 0.5). The combination scenario of a low

correlation in Factor A and a high correlation in Factor B is labeled “LH” herein. Similarly the

other three scenarios of Factors A and B are labeled “LL”, “HL” and “HH”.

For Factor C, the nonresponse mechanisms, we simulate response status < by drawing from

Bernoulli random variables with e(z, x, y) = Pr(< = 1|z, x, y) computed from four different

response models:

1. logit(e(z, x, y)) = Bernoulli(0.5). (MCAR)

2. logit(e(z, x, y)) = 0.0002 + 0.8z. (MAR)

3. logit(e(z, x, y)) = 0.00001 + 0.31z + 0.61x. (MNARX)

4. logit(e(z, x, y)) = 0.00004 + 0.19z + 0.38x+ 0.38y. (MNARY )

where < = 1 if subject responded, 0 otherwise. Each of these models generate an average of 50%

response rate. For model 1, the response probability is independent of (Y, Z,X). For model 2, the

response probability depends on Z alone. For model 3 the response probability depends on both Z

and X . For model 4, the response probability depends on (Y, Z,X).

With the finite population, the procedure of a) drawing a benchmark, b) forming a sampling

frame, and c) simulating two concurrent focal surveys, is carried out 100 times (trials) for each

of the 16 simulation scenarios. For each trial, the following quantities are computed: (a) the

means and standard deviations of Y , X , and Z, (b) estimated variance-covariance matrix among

cumulative respondents, (c) propensity score density obtained by three models: model of Z alone,

model with (X,Z), and model with (Y,X,Z), and (d) Hellinger’s distance on propensity score

densities estimated for Benchmark and the focal survey. For each simulation scenario, we report

the average of quantities (a), (b), and (d) from the 100 trials. For (c), the propensity score density

plots from one of the 100 simulations are presented.
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2.3.2 Simulation Results

The average response rates for each simulation scenario is shown in Table 2.1. The underlying

population has a response rate of 50%. When a representative sample is drawn, we expect to

see the average response rate of 50%, which is the case for the fixed design (F in Table 2.1).

For adaptive sampling, we over sample the under-represented subjects (who have lower response

propensity) and under sample the over-represented subjects (who have higher response propensity),

the response rate is expected to be lower than 50% (A in Table 2.1). As we see in Table 2.1, the

adaptive design has response rates around 40%.

For the representativeness on marginal distributions, Figure 2.4(c) shows the boxplots of the

means for individual variables under various scenarios for the MNARY nonresponse model, where

columns titled ’LL’, ’LH’, ’HL’ and ’HH’ represent the strength of correlation between (Z,X) and

(Z, Y ), respectively. The x-axis of each boxplot shows the four phases and the y-axis shows the

mean differences from the benchmark. A horizontal zero-line aids the visual comparison to the

desired representativeness, a zero difference from the benchmark. The boxplots summarize means

of 100 trials from the adaptive sampling design and the red-dots show the average of the 100 means

from fixed sampling design. For each simulation scenario summarized in the figure, the adaptive

design brings the respondent pool closer to the benchmark than that of the fixed design, indicating

that the respondent representativeness improves at each successive sampling phase. Similar results

are found for MAR and MNARX nonresponse models (see Figures 2.4(a) and 2.4(b)).

To show the preservation of correlation structure among representative respondents, the results

for estimated parameters in the variance-covariance matrix for adaptive sampling and fixed sam-

pling are shown in Figure 2.5. Panels of the figure show nonresponse models, and columns show

simulation scenarios in Factor A and Factor B. For each figure, the x-axis indicates the parame-

ters where 1 = variance of Z, 2 = variance of X, 3 = variance of Y, 4 = covariance of (Z,X), 5 =

covariance of (Z,Y), and 6 = covariance of (X,Y). The y-axis represent the departure of estimated

parameter values from the benchmark values. A horizontal zero line aids the visual comparison.
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Table 2.1: Multivariate normal data. Average response rates from 100 simulations.

Factor A B NR model Design1 Phase 1 Phase 2 Phase 3 Phase 4

LL MAR A 50.0 40.9 41.8 42.5
F 50.0 49.8 49.9 50.1

MNARX A 50.1 41.5 42.5 43.1
F 50.1 49.8 50.1 50.0

MNARY A 50.0 42.0 42.7 43.0
F 50.0 50.0 50.0 50.0

LH MAR A 49.9 41.2 42.0 42.6
F 49.9 50.1 50.4 50.1

MNARX A 50.0 41.5 42.6 43.0
F 50.0 50.2 50.0 50.2

MNARY A 49.9 41.4 42.0 42.6
F 49.9 50.0 49.9 50.0

HL MAR A 49.9 40.6 41.9 42.5
F 49.9 50.1 50.4 49.9

MNARX A 50.2 41.3 41.8 42.4
F 50.2 50.0 50.0 50.1

MNARY A 50.2 41.6 42.1 42.7
F 50.2 50.0 49.9 50.0

HH MAR A 49.8 41.2 42.0 42.5
F 49.8 50.1 49.9 50.0

MNARX A 50.3 41.2 41.9 42.3
F 50.3 50.1 50.1 49.9

MNARY A 49.7 41.0 42.1 42.3
F 49.7 50.0 50.0 50.2

1 F: Fixed design; A: Adaptive design.
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The boxplots summarize values from the adaptive sampling approach and red-dots are average

values from fixed sampling.

From Figure 2.5 we see that, for all simulation scenarios, the red dots (the mean of parame-

ter estimates from the fixed sampling) fall either on the margin or outside of the boxplots, away

from the zero line. Adaptive sampling estimates (the boxplots) are more similar to those of the

benchmark, reflecting a respondent pool that is more representative compared to that of the fixed

sampling design. In summary, the respondent pool from the adaptive sampling maintains a corre-

lation structure among (Z,X, Y ) that is closer to the correlation structure of the benchmark than

the respondent pool from the fixed sampling design.

To show the preservation on joint distribution, Figure 2.6 illustrates the empirical density of

propensity score distribution from benchmark membership model that includes Z, X , and Y as

covariates. Figures 2.6 (a), (b), (c), and (d) show the four simulation scenarios of LL, LH, HL,

and HH, respectively. Within each figure, e.g., Figure 2.6(a), the row panels show various non-

response models while the column panels show the sampling phases. For example, the first row

panel in Figure 2.6(a) illustrates that the propensity score distribution of the benchmark and the

adaptive sampling focal survey converges with each sampling phase, indicating that the adaptive

sampling adjustments successfully improve the joint distribution of respondent representativeness

in the focal survey after each sampling phase. Similar results are seen in Figures 2.6(b), (c), and

(d).

To quantify the respondent representativeness seen in Figure 2.6, we compute the Hellinger’s

distance. As expected, the improvement in global representativeness can be seen in the decreas-

ing values of the Hellinger’s distance (H ) (0.162, 0.062, 0.033, and 0.020) following each of the

four phases of adaptive sampling. Table 2.2 listed average Hellinger’s distance from 100 simula-

ton for the benchmark membership propensity score model of (Z,X, Y ). The numbers shown are

the Hellinger’s distance between PB(Y,X,Z) and PA(Y,X,Z) and Hellinger’s distance between

PB(Y,X,Z) and PF (Y,X,Z). In all simulaton scenarios, the propensity score density (model-
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ing benchmark membership) from adaptive sampling design converges to that of the Benchmark,

achieving the goal of PB(Y,X,Z) ∼ PA(Y,X,Z), as the sampling phases progress. Other (bench-

mark membership) propensity score models, that is, PB(X,Z) and PA(X,Z) and PB(Z) and

PA(Z), show similar results (data not shown).

Figure 2.4: Multivariate normal data. Boxplots on means of Z, X, and Y from adaptive sampling.

(a) MAR nonresponse model
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(b) MNARX nonresponse model
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(c) MNARY nonresponse model.
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Figure 2.5: Multivariate normal data. Boxplots on components of variance-covariance matrix for (Z,X,Y)
for adaptive sampling for cumulative respondents.
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Figure 2.6: Multivariate normal data. Propensity score density plots on benchmark membership propensity
score model with variables (Y,X,Z).
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Each row panel shows different nonresponse models and each column panel shows sampling phases. x-axis
represents propensity scores in logit scale.
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(b) Scenario LH
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represents propensity scores in logit scale.
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(c) Scenario HL
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Each row panel shows different nonresponse models and each column panel shows sampling phases. x-axis
represents propensity scores in logit scale.

41



(d) Scenario HH
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Each row panel shows different nonresponse models and each column panel shows sampling phases. x-axis
represents propensity scores in logit scale.

2.4 Illustration with NHIS and BRFSS Data

We now demonstrate the proposed approach using data from two large scale surveys, NHIS and

BRFSS. The NHIS is a face-to-face cross-sectional survey that monitors trends in illness and dis-

ability of the civilian, non-institutionalized, household population of the United States. The BRFSS

is an on-going telephone health survey where data are collected monthly by each of 50 States and

the District of Columbia. Both the NHIS and the BRFSS are multi-purpose health surveys that

share many health related questions in common. However, researchers have reported discrepan-

cies on survey estimates between BRFSS and NHIS, partially as a result of data collection modes

(Fahimi, et. al., 2008; Nelson, et. al., 2003).
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Table 2.2: Multivariate normal data. Average Hellinger’s distance from 100 simulations.

Factor A B NR model Design1 Phase 1 Phase 2 Phase 3 Phase 4

LL MAR A 19.2 3.7 1.9 1.5
F 19.2 18.2 17.9 17.5

MNARX A 18.9 4.5 2.5 2.0
F 18.9 17.9 17.8 17.6

MNARY A 19.7 4.9 2.8 2.3
F 19.7 18.5 18.3 18.0

LH MAR A 19.1 3.5 1.8 1.4
F 19.1 18.5 18.2 17.9

MNARX A 19.0 4.3 2.5 1.9
F 19.0 17.8 17.7 17.4

MNARY A 20.0 4.6 2.5 1.9
F 20.0 18.9 18.4 18.1

HL MAR A 19.7 3.8 2.0 1.5
F 19.7 18.5 18.1 17.9

MNARX A 19.2 3.9 2.1 1.6
F 19.2 18.3 18.0 17.7

MNARY A 19.3 4.4 2.6 2.0
F 19.3 18.5 18.3 18.1

HH MAR A 19.3 3.6 1.8 1.4
F 19.3 18.4 18.0 17.7

MNARX A 18.7 3.7 1.9 1.5
F 18.7 17.8 17.6 17.4

MNARY A 19.0 3.8 2.0 1.6
F 19.0 18.0 17.9 17.7

Note: Values are multiplied by 1000.
1 F: Fixed design; A: Adaptive design.
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A more costly face-to-face survey mode is found to produce better data quality by some re-

searchers(Jordan, et. al., 1980, Locander and Burton, 1976). The telephone mode BRFSS bears

the problem of informative nonresponse that threaten the validity of survey estimates. Thus, the

BRFSS could potentially benefit from an adaptive sampling design using NHIS as a benchmark to

improve respondent representativeness. This would not only reduce the bias and variance of the

survey estimates, but it can also be more cost-efficient in the sense that using a smaller face-to-face

survey (e.g NHIS) to improve the respondent representativeness of a much larger telephone survey

(e.g BRFSS).

The NHIS and BRFSS are one of the main motivating cases for the proposed adaptive sampling

design. This is because many large government surveys like BRFSS are collected and processed in

waves during the year and many government surveys use the same or similar sampling frame. With

temporal phases of survey data collection, e.g., quarterly, it is natural to think about intervening

in the sampling design over the annual data collection period. The simulation findings from the

previous section provide evidence of promising results. We now investigate the utility of proposed

method in real survey data with complex and high dimensional structure.

For illustration, NHIS 2009 and BRFSS 2009 publicly available micro-data files were com-

bined to form a finite target population. Note, in practice one would use 2008 NHIS as the Bench-

mark to implement the adaptive design for the 2009 BRFSS survey. Subjects from the two surveys

are assumed to be mutually exclusive. The data included subjects residing in U.S. 50 states and

District of Columbia (D.C.). Subjects who are less than 18 years old and subjects with item miss-

ingness on age, sex, and race were excluded. The target population consists of NPOP = 445, 965

subjects.

As in the previous simulation we create the response indicator < for the focal surveys by draw-

ing from Bernoulli random variables derived under four nonresponse models: 1)< ∼ Bernoulli(0.5),

2) < ∼ (Z), 3) < ∼ (Z,X), and 4) < ∼ (Z,X,Y). The details of four nonresponse models of the

focal surveys are listed below:
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1. logit(e(z,x,y)) = Bernoulli(0.5).

2. logit(e(z,x,y)) = 0.217 + 0.7z1 + 0.7z2 + 0.7z3 + 0.7z4 + 0.7z5.

3. logit(e(z,x,y)) = 0.173 + 0.68z1 + 0.68z2 + 0.68z3 + 0.68z4 + 0.68z5− 0.34x1− 0.34x2.

4. logit(e(z,x,y)) = 0.147 + 0.57z1 + 0.57z2 + 0.57z3 + 0.57z4 + 0.57z5−0.29x1−0.29x2 +

0.29y1 + 0.29y2 + 0.29y3 + 0.29y4 + 0.29y5 + 0.29y6.

where Z variables are Z1 geographic region, Z2 age, Z3 sex, Z4 hispanic origin, and Z5 race; X

variables are X1 marital status and X2 education; Y variables are Y1 heart attack, Y2 stroke, Y3

hypertension, Y4 diabetes, Y5 health insurance coverage, and Y6 general health. The Z variables

are chosen because they are typical of many household and social surveys and are often used in the

weighting procedures. Each of the four nonresponse models have an average response rate of 50%.

However, note that models 3 and 4 are examples of nonignorable nonresponse. The nonresponse

models are assumed to be stable across sampling phases. This is a reasonable assumption since

this is what was observed in BRFSS (recall Figure 2.1 in Section 2.1). In addition, the correlation

structure of (Z,X,Y) variables from the NHIS and the BRFSS is assumed to be similar to that

encountered in surveys with a similar target population.

From the constructed finite population we draw a srswor benchmark of size NB = 22, 299 (i.e.

5% of the NPOP ) and the remaining 423, 666 subjects serves as the sampling frame. We construct

in parallel two simulated focal surveys, one with the adaptive sampling design and the other with

the fixed sampling design. The two focal surveys share the same phase I data which is a srswor of

size 1, 000. The focal survey with fixed sampling design repeats the same srswor sample of size

1, 000 for phases 2, 3, and 4 whereas the focal survey with adaptive sampling starts from phase 2

using the adaptive sampling rate as described in equation (2.9) with sample size of n(k) = 1, 200,

where k = 2, . . . , 4.

The procedure of drawing a benchmark and sampling four phases of two concurrent focal

surveys are repeated 100 times for each nonresponse models. Our adaptive sampling procedure will

45



be judged as effective if the resemblance of the PR(Z) and PB(Z) imply PR(Z,X) ≈ PB(Z,X)

and PR(Z,X,Y) ≈ PB(Z,X,Y) in the focal survey with adaptive sampling design. We report

the average of 100 runs on the marginal distributions of each variables, the estimates of covariance

structure, and the joint distributions of (Z,X,Y).

2.4.1 Application Results

Table 2.6 shows the convergence of the marginal distribution on individual Z, X, and Y variables

for nonresponse model 4. The first column shows the population values, the second column shows

the average of benchmark values from 100 trials, the third column shows the average of the mean

values from phase 1 respondents, the fourth to sixth columns show the mean of adaptive design

respondents from phase 2 to phase 4 (each phase includes respondents from previous phases),

and the last two columns show the differences between benchmark and accumulated focal survey

respondent data from adaptive design and from fixed design, respectively.

The table shows that, as expected, the average benchmark values (column 2) are similar to

those of the population values (column 1). As each phase of data accumulated, we see an overall

progressive improvement for the adaptive sampling design on the distributions of variables with

respect to the benchmark. The last columns of Table 2.6 lists differences of focal surveys from the

benchmark for the adaptive design and fixed design. As expected, the total absolute differences are

larger for the fixed design than for the adaptive design for all variables. These results indicate that

the covariate distributions from adaptive design resemble more closely to those of the benchmark

than those of the fixed design. These results also indicate that, when Z is associated with X

and Y, improving respondent representativeness with respect to frame and auxiliary variables

(Z) also improves the representativeness of the survey covariates (X) and survey outcome (Y)

variables. Similar findings are seen for nonresponse models 2 and 3, as shown in Tables 2.4 and

2.5, repsectively. Table 2.3 illustrates the results from nonresponse model 1. As expected, the

average values of all variables from each phase remain similar across phases, reflecting a missing
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completely at random nonresponse scenario.

In Figure 2.7 we compare the respondent representativeness of fixed and adaptive sampling

design in a multivariate fashion, via estimated propensity score densities from benchmark mem-

bership propensity score model, in short, “propensity score model” unless otherwise noted. The

figure consists of four columns representing each of the four sampling replicates, and three pan-

els representing three nonresponse models. Figure 2.7(a) shows the adaptive sampling propensity

score model of the Z variables, Figure 2.7(b) shows the model of the X and Z variables, and Figure

2.7(c) shows the model of the Y, X and Z. The goal is to show that the P (ZR) ∼ P (ZB) facilitates

P (XR,ZR) ∼ P (XB,ZB), which in turn facilitates P (YR,XR,ZR) ∼ P (YB,XB,ZB).

The figure shows the results from nonresponse models 2,3 and 4, which clearly illustrates

the convergence of propensity score density from adaptive sampling to that of the benchmark

as the sampling phases progress whereas the fixed sampling distribution maintains similar shapes

across phases. The patterns of convergence in adaptive sampling design are similar across different

propensity score models representing the convergence of P (Z), of P (X,Z), and of P (Y,X,Z),

respectively. Hellinger’s distance decreases from 0.059 at phase 1 to 0.004 in phase 4 for adap-

tive design (Y,X,Z) nonresponse model 4. Other nonresponse models have similar levels of

decreasing values on Hellinger’s distance. Table 2.7 shows the average Hellinger’s distance from

100 simulation runs for all four nonresponse models. The Hellinger’s distance for fixed design

remains at the 0.059 to 0.046 level across phases reflecting the lack of improvement on respondent

representativeness.

The findings from the univariate representativeness assessment in Table 2.6 echo that of the

multivariate in Figure 2.7. That is, the overall representativeness assessment in Figure 2.7 shows

that the propensity score density distribution from the adaptive sampling design converges to that

of the benchmark at each sequence of data collection, regardless of nonresponse scenarios. The

convergence in P (ZR) ∼ P (ZB) assists in P (XR,ZR) ∼ P (XB,ZB), which in term improves

P (YR,XR,ZR) ∼ P (YB,XB,ZB). The results in Table 2.6 demonstrate that the representa-
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tiveness as measured by the propensity score density implies the representativeness in individual

components in the propensity score model.

Figure 2.7: NHIS and BRFSS data. Propensity score density plots.

(a) Propensity score density P (Z).
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Each row panel shows different nonresponse models. Each column panel shows sampling phases.
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(b) Propensity score density P (Z,X)
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(c) Propensity score density P (Z,X,Y).
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Each row panel shows different nonresponse models. Each column panel shows sampling phases.

2.5 Discussion

This study examines the effectiveness of an adaptive sampling design using benchmarked sequen-

tial sampling method for improving respondent representativeness. Respondent representativeness

at each phase is assessed by sequentially comparing the current respondent pool to an external

micro-level benchmark in terms of distributions of subject characteristics. The multivariate na-

ture of subject characteristics is summarized and simplified by propensity scores, and the sampling

probabilities for the subsequent stages are defined as to maximize the balance based on the propen-

sity score. This adaptive sampling design is studied using a simulated covariance structure (mul-

tivariate normal distribution) and observed covariance structure (NHIS and BRFSS micro-level
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Table 2.3: NHIS and BRFSS data. Comparison of summary statistics between the Benchmark and
focal surveys (MCAR nonresponse model).

Fixed Adaptive Adaptive Adaptive Adaptive Fixed
Variable Values Pop Bench1 Sampling Sampling Sampling Sampling Design Design

Values Average Phase 1 Phase 2 Phase 32 Phase 4 Std Diff3 Std Diff3

(%) (%)

Z-variables

Region Northeast 18.27 18.27 18.40 18.30 18.10 18.20 -0.38 1.26
Midwest 24.05 24.06 24.20 24.20 24.20 24.20 0.58 0.17
South 31.75 31.74 31.80 31.70 31.80 31.80 0.19 -0.13
West 25.94 25.92 25.60 25.80 25.80 25.90 -0.08 -0.46

Age (in years) 55.34 55.33 55.21 55.27 55.36 55.41 0.16 -0.07
Gender Male 38.41 38.44 38.30 38.30 38.30 38.30 -0.36 -0.36
Hispanic Yes 6.60 6.60 6.70 6.60 6.50 6.40 -3.03 0.00
Race White only 83.77 83.76 83.80 83.90 84.00 84.10 0.41 0.05

Black only 8.64 8.65 8.70 8.70 8.70 8.60 -0.58 0.58
AIAN4 1.59 1.59 1.50 1.60 1.50 1.50 -5.66 0.63
Asian only 2.00 1.99 2.00 1.90 1.90 1.90 -4.50 0.50
Other race 2.17 2.17 2.10 2.10 2.10 2.10 -3.23 -3.23
Multiracial 1.83 1.83 1.80 1.70 1.70 1.70 -7.10 -1.64

X-variables

Marital Married 55.71 55.67 55.30 55.70 55.70 55.70 0.05 -0.13
Status Widowed 13.84 13.83 13.80 13.80 13.80 13.90 0.51 -0.22

Divorced 13.65 13.68 13.90 13.60 13.70 13.70 0.15 0.88
Separated 2.08 2.08 2.10 2.10 2.10 2.10 0.96 0.96
Never 14.08 14.10 14.30 14.20 14.10 14.00 -0.71 0.71
Unknown 0.64 0.64 0.70 0.60 0.60 0.60 -6.25 -6.25

Education ≤ Kindergarten 0.14 0.15 0.20 0.20 0.10 0.10 -35.7 35.7
Grade 1-8 3.22 3.23 3.20 3.30 3.20 3.20 -0.93 2.17
Grade 9-11 6.37 6.38 6.40 6.20 6.20 6.30 -1.26 0.31
G12/GED 29.88 29.86 29.70 29.80 29.90 29.90 0.13 -0.54
College 1-3 yrs 27.13 27.12 27.30 27.30 27.20 27.20 0.29 0.29
College ≥4 yrs 33.26 33.27 33.20 33.30 33.40 33.30 0.09 -0.21

Y-variables

HeartAttack (%) Yes 5.74 5.74 5.60 5.60 5.60 5.60 -2.43 -0.70
Strokes (%) Yes 3.92 3.93 3.90 4.00 3.90 3.90 -0.77 -0.77
Hypertension (%) Yes 38.42 38.42 37.90 38.30 38.30 38.40 -0.05 -0.31
Diabetes (%) Yes 11.90 11.91 11.70 11.80 11.80 11.90 -0.08 -0.08
Health Yes 89.28 89.28 89.30 89.30 89.30 89.30 0.02 -0.09
Coverage (%)
General Excellent 18.58 18.57 18.60 18.60 18.60 18.60 0.16 0.16
Health (%) Very Good 32.05 32.05 32.30 32.30 32.30 32.20 0.47 -0.16

Good 30.45 30.47 30.30 30.20 30.30 30.30 -0.56 0.10
Fair 13.22 13.21 13.10 13.20 13.20 13.20 -0.08 -0.08
Poor 5.70 5.70 5.70 5.70 5.70 5.70 0.00 0.00

1 Bench: Benchmark. 2 Phase 2 represents cumulative data, including data from both phase 1 and 2. Similarly, phase
3 and phase 4 columns reflect cumulative data up to the corresponding phases. 3 Percent absolute differences
comparing phase 4 (overall sample) to benchmark. 4 AIAN : American Indian or Alaska Natives.

51



Table 2.4: NHIS and BRFSS data. Comparison of summary statistics between the Benchmark and
focal surveys (MAR nonresponse model).

Fixed Adaptive Adaptive Adaptive Adaptive Fixed
Variable Values Pop Bench1 Sampling Sampling Sampling Sampling Design Design

Values Average Phase 1 Phase 2 Phase 32 Phase 4 std Diff3 Std Diff3

(%) (%)

Z-variables

Region Northeast 18.27 18.27 9.50 13.40 15.20 16.10 -11.88 -48.00
Midwest 24.05 24.06 25.20 24.70 24.40 24.30 1.00 5.99
South 31.75 31.74 35.40 33.60 32.90 32.60 2.71 10.27
West 25.94 25.92 29.90 28.20 27.40 26.90 3.78 15.73

Age (in years) 55.34 55.33 57.89 56.76 56.22 55.94 1.10 4.64
Gender Male 38.41 38.44 49.40 43.90 41.40 40.30 4.84 29.05
Hispanic Yes 6.60 6.60 11.80 9.40 8.30 7.70 16.67 75.76
Race White only 83.77 83.76 70.80 77.00 79.90 81.30 -2.94 -15.23

Black only 8.64 8.65 14.10 11.40 10.10 9.50 9.84 61.92
AIAN4 1.59 1.59 3.30 2.50 2.20 2.00 25.79 101.26
Asian only 2.00 1.99 3.80 2.90 2.60 2.40 20.50 95.5
Other race 2.17 2.17 4.30 3.40 2.90 2.70 24.42 98.16
Multiracial 1.83 1.83 3.60 2.80 2.40 2.20 20.22 96.72

X-variables

Marital Married 55.71 55.67 53.60 54.40 54.90 55.10 -1.02 -3.54
Status Widowed 13.84 13.83 15.40 14.70 14.40 14.20 2.67 12.07

Divorced 13.65 13.68 13.80 13.80 13.70 13.80 0.88 0.15
Separated 2.08 2.08 2.50 2.30 2.20 2.20 5.77 15.38
Never 14.08 14.10 14.00 14.00 14.10 14.00 -0.71 -0.71
Unknown 0.64 0.64 0.60 0.70 0.70 0.70 9.38 9.38

Education ≤ Kindergarten 0.14 0.15 0.20 0.20 0.20 0.20 35.71 35.71
Grade 1-8 3.22 3.23 4.60 4.00 3.60 3.50 8.39 42.55
Grade 9-11 6.37 6.38 7.60 7.00 6.70 6.60 3.45 20.72
G12/GED 29.88 29.86 30.50 30.20 30.10 30.00 0.47 2.14
College 1-3 yrs 27.13 27.12 26.50 26.90 27.00 27.10 -0.07 -3.39
College ≥4 yrs 33.26 33.27 30.60 31.70 32.30 32.60 -2.01 -7.43

Y-variables

HeartAttack (%) Yes 5.74 5.74 7.20 6.50 6.20 6.10 6.27 25.44
Strokes (%) Yes 3.92 3.93 4.70 4.40 4.20 4.10 4.34 19.64
Hypertension (%) Yes 38.42 38.42 42.90 40.90 40.00 39.50 2.81 11.92
Diabetes (%) Yes 11.90 11.91 14.20 13.20 12.70 12.50 4.96 19.24
Health Yes 89.28 89.28 88.30 88.70 88.90 89.00 -0.31 -0.99
Coverage (%)
General Excellent 18.58 18.57 16.50 17.40 18.00 18.10 -2.53 -11.68
Health (%) Very Good 32.05 32.05 29.70 30.80 31.30 31.60 -1.40 -8.58

Good 30.45 30.47 32.10 31.30 30.90 30.70 0.76 6.67
Fair 13.22 13.21 15.20 14.40 13.90 13.70 3.71 15.05
Poor 5.70 5.70 6.50 6.10 5.90 5.90 3.51 15.79

1 Bench: Benchmark. 2 Phase 2 represents cumulative data, including data from both phase 1 and 2. Similarly, phase
3 and phase 4 columns reflect cumulative data up to the corresponding phases. 3 Percent absolute differences
comparing phase 4 (overall sample) to benchmark. 4 AIAN : American Indian or Alaska Natives.
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Table 2.5: NHIS and BRFSS data. Comparison of summary statistics between the Benchmark and
focal surveys (MNARX nonresponse model).

Fixed Adaptive Adaptive Adaptive Adaptive Fixed
Variable Values Pop Bench1 Sampling Sampling Sampling Sampling Design Design

Values Average Phase 1 Phase 2 Phase 32 Phase 4 Std Diff3 Std Diff3

(%) (%)

Z-variables

Region Northeast 18.27 18.27 9.80 13.80 15.50 16.50 -9.69 -46.36
Midwest 24.05 24.06 25.60 24.90 24.60 24.40 1.41 6.82
South 31.75 31.74 34.30 32.80 32.30 32.10 1.13 8.06
West 25.94 25.92 30.30 28.60 27.60 27.10 4.55 16.50

Age (in years) 55.34 55.33 57.55 56.56 56.13 55.91 1.05 3.76
Gender Male 38.41 38.44 50.40 44.60 42.00 40.60 5.62 30.88
Hispanic Yes 6.60 6.60 11.10 9.00 8.10 7.50 13.64 68.18
Race White only 83.77 83.76 72.40 77.60 80.10 81.40 -2.82 -13.56

Black only 8.64 8.65 12.80 10.80 9.90 9.40 8.68 46.88
AIAN4 1.59 1.59 3.20 2.50 2.10 1.90 1.95 94.97
Asian only 2.00 1.99 3.90 3.00 2.60 2.40 20.50 95.50
Other race 2.17 2.17 4.20 3.30 2.80 2.60 19.82 98.16
Multiracial 1.83 1.83 3.50 2.80 2.40 2.20 20.22 96.72

X-variables

Marital Married 55.71 55.67 63.10 61.20 60.10 59.50 6.87 13.52
Status Widowed 13.84 13.83 12.60 12.90 13.10 13.10 -5.27 -10.33

Divorced 13.65 13.68 11.40 12.00 12.50 12.80 -6.45 -17.44
Separated 2.08 2.08 1.20 1.30 1.40 1.50 -27.88 -37.50
Never 14.08 14.10 11.60 12.40 12.80 13.00 -7.81 -17.05
Unknown 0.64 0.64 0.10 0.20 0.20 0.20 -68.75 -84.38

Education ≤ Kindergarten 0.14 0.15 0.30 0.20 0.20 0.20 35.71 35.71
Grade 1-8 3.22 3.23 3.30 3.20 3.00 3.00 -7.14 5.28
Grade 9-11 6.37 6.38 6.20 6.00 5.90 5.90 -7.54 -4.40
G12/GED 29.88 29.86 30.90 30.40 30.40 30.40 1.81 3.15
College 1-3 yrs 27.13 27.12 26.40 26.70 26.80 26.90 -0.81 -2.29
College ≥ 4 yrs 33.26 33.27 33.00 33.50 33.60 33.70 1.29 -0.81

Y-variables

HeartAttack (%) Yes 5.74 5.74 7.00 6.30 6.10 6.00 4.53 20.21
Strokes (%) Yes 3.92 3.93 4.40 4.10 4.00 4.00 1.79 9.44
Hypertension (%) Yes 38.42 38.42 41.30 39.80 39.20 38.90 1.25 8.02
Diabetes (%) Yes 11.90 11.91 13.60 12.80 12.50 12.20 2.44 15.04
Health Yes 89.28 89.28 89.10 89.40 89.40 89.40 0.13 -0.31
Coverage (%)
General Excellent 18.58 18.57 17.30 18.10 18.30 18.60 0.16 -7.37
Health (%) Very Good 32.05 32.05 30.50 31.10 31.50 31.60 -1.40 -4.21

Good 30.45 30.47 32.10 31.50 31.20 31.00 1.74 4.70
Fair 13.22 13.21 14.20 13.60 13.40 13.20 -0.08 7.49
Poor 5.70 5.70 5.90 5.70 5.70 5.60 -1.75 5.26

1 Bench: Benchmark. 2 Phase 2 represents cumulative data, including data from both phase 1 and 2. Similarly, phase
3 and phase 4 columns reflect cumulative data up to the corresponding phases. 3 Percent absolute differences
comparing phase 4 (overall sample) to benchmark. 4 AIAN : American Indian or Alaska Natives.
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Table 2.6: NHIS and BRFSS data. Comparison of summary statistics between the Benchmark and
focal surveys (MNARY nonresponse model).

Fixed Adaptive Adaptive Adaptive Adaptive Fixed
Variable Values Pop Bench1 Sampling Sampling Sampling Sampling Design Design

Values Average Phase 1 Phase 2 Phase 32 Phase 4 Std Diff3 Std Diff3

(%) (%)

Z-variables

Region Northeast 18.3 18.3 11.3 14.5 15.8 16.6 -9.3 -38.8
Midwest 24.0 24.1 25.6 24.8 24.5 24.3 0.8 5.4
South 31.7 31.7 34.1 32.9 32.5 32.2 1.6 8.5
West 25.9 25.9 29.1 27.8 27.2 26.8 3.5 12.0

Age (in years) 55.3 55.3 59.0 57.4 56.6 56.2 1.5 6.8
Gender Male 38.4 38.4 47.9 43.9 41.7 40.6 5.7 25.0
Hispanic Yes 6.6 6.6 10.3 8.8 8.1 7.6 15.2 56.1
Race White only 83.8 83.8 73.4 78.0 80.1 81.4 -2.9 -12.3

Black only 8.6 8.7 12.1 10.5 9.8 9.4 8.1 39.5
AIAN4 1.6 1.6 3.2 2.5 2.2 2.0 25.0 87.5
Asian only 2.0 2.0 3.8 3.0 2.6 2.4 20.0 90.0
Other race 2.2 2.2 4.2 3.4 2.9 2.7 22.7 90.9
Multiracial 1.8 1.8 3.3 2.7 2.3 2.1 16.7 88.9

X-variables

Marital Married 55.7 55.7 60.5 59.7 59.1 58.7 5.3 8.6
Status Widowed 13.8 13.8 14.9 14.2 13.8 13.7 -0.7 8.7

Divorced 13.6 13.7 12.1 12.4 12.7 12.8 -6.6 -11.8
Separated 2.1 2.1 1.4 1.5 1.6 1.6 -23.8 -33.3
Never 14.1 14.1 11.0 12.1 12.6 13.0 -7.8 -22.7
Unknown 0.6 0.6 0.1 0.2 0.2 0.2 -66.7 -83.3

Education ≤ Kindergarten 0.1 0.1 0.2 0.2 0.2 0.2 100.0 100.0
Grade 1-8 3.2 3.2 3.8 3.4 3.3 3.2 0.0 18.8
Grade 9-11 6.4 6.4 6.6 6.3 6.2 6.2 -3.1 4.7
G12/GED 29.9 29.9 32.1 31.2 30.8 30.6 2.3 6.4
College 1-3 yrs 27.1 27.1 26.7 26.9 27.1 27.1 0.0 -1.9
College ≥4 yrs 33.3 33.3 30.7 31.9 32.5 32.8 -1.5 -7.2

Y-variables

HeartAttack (%) Yes 5.7 5.7 10.0 8.4 7.6 7.2 26.3 73.7
Strokes (%) Yes 3.9 3.9 6.8 5.7 5.2 4.9 25.6 74.4
Hypertension (%) Yes 38.4 38.4 49.9 45.8 43.6 42.4 10.4 30.0
Diabetes (%) Yes 11.9 11.9 18.3 16.0 14.8 14.1 18.5 53.8
Health Yes 89.3 89.3 92.2 91.5 91.2 90.9 1.8 3.1
Coverage (%)
General Excellent 18.6 18.6 12.1 14.1 15.3 16.0 -14.0 -35.5
Health (%) Very Good 32.1 32.0 30.0 31.1 31.6 31.9 -0.3 -6.9

Good 30.5 30.5 32.7 32.0 31.5 31.2 2.3 7.5
Fair 13.2 13.2 17.0 15.5 14.8 14.4 9.1 29.6
Poor 5.7 5.7 8.3 7.3 6.8 6.5 14.0 43.9

1 Bench: Benchmark. 2 Phase 2 represents cumulative data, including data from both phase 1 and 2. Similarly, phase
3 and phase 4 columns reflect cumulative data up to the corresponding phases. 3 Percent absolute differences
comparing phase 4 (overall sample) to benchmark. 4 AIAN : American Indian or Alaska Natives.
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Table 2.7: NHIS and BRFSS data. Average Hellinger’s distance from 100 simulations.

Nonresponse model Design1 Phase 1 Phase 2 Phase 3 Phase 4

MCAR A 11.1 3.8 2.4 1.8
F 11.1 4.5 2.9 2.1

MAR A 49.6 9.0 3.9 2.5
F 49.6 42.3 40.3 39.6

MNARX A 52.9 11.6 5.6 3.8
F 52.9 45.3 42.7 41.4

MNARY A 59.0 13.0 6.2 4.1
F 59.0 50.3 47.4 46.3

Note: Values shown are multiplied by 1000.
1 F: Fixed design; A: Adaptive design.

data). In both implementations, the adaptive design shows its capacity to obtain a more represen-

tative respondent pool.

There are several reasons why achieving a representative respondent pool is appealing. First,

a representative respondent pool allows one to perform simple analysis with limited correction for

nonresponse adjustment. Second, survey estimates for a representative respondent pool are usually

more robust to departures from the assumed form of the underlying nonresponse mechanism than

survey estimates on weighting over an ordinary respondent pool, primarily because of reduced

reliance on the model extrapolations. Third, even if the assumption for the nonresponse mechanism

underlying a statistical adjustment is correct, the variance of the survey estimates will be lower in

the representative respondent pool than in an ordinary respondent pool.

The goal of obtaining representative respondents is the same for the proposed adaptive sam-

pling design and other adaptive designs published in recent literature (see Section 1.1). Three major

aspects distinguish the proposed adaptive design and other adaptive design. First, other adaptive

designs are adaptive in “data collection” strategy whereas the proposed strategy focuses on being

adaptive in sampling design. Second, other adaptive designs emphasize the balance of respondents

with respect to the selected sample, whereas the proposed strategy proposes to “balance” to the

benchmark, a surrogate of the target population. Third, other adaptive designs use ad hoc sampling
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strategy at nonresponse follow-up to ’fix’ the imbalance after the fact, which becomes increasingly

complex with the increase in the number of covariates to balance, whereas under the proposed

strategy it is relatively easy to incorporate both main effects and interactions even if numerous

covariates are added to the balancing task. The simulation examples demonstrated the simplicity

of deriving the adaptive sampling rate needed to achieve agreement with the target population.

Our strategy was superior in two ways: 1) easy to implement and less sensitive to the number of

covariates for balancing and 2) survey respondents become more representative of the target pop-

ulation in a multivariate fashion which preserves the variance-covariance structure of the sample

composition.

One may question the need to improve respondent representativeness since nonresponse weight-

ing adjustments correct for nonresponse bias. However, standard nonresponse adjustments exclu-

sively focus on the use of auxiliary information which is often limited and might not be informative

for nonresponse bias reduction. Suppose the missing at random assumption holds and rich aux-

iliary information are available for both respondents and nonrespondents, weighting adjustments

still suffer two disadvantages. First, weighting adjustments designed to attenuate nonresponse bias

could increase the variances of the estimates (Little and Vartivarian, 2005). Second, the magni-

tude of the nonresponse adjustment could be dampened by further weighting adjustments which

are performed to ensure that the distribution of sample characteristics conforms to those of the

target population (Little and Vartivarian, 2003). The proposed adaptive sampling strategy offers

an alternative solution to solely relying on weighting to reduce nonresponse bias. The proposed

strategy decreases the nonresponse bias by first improving the respondent representativeness and

consequently minimizing corrective weighting adjustments, increasing the precision of the survey

estimates.

Several limitations may render the proposed strategy ill-favored. In terms of weighting versus

adaptive sampling, post-survey weighting is applicable to any survey design whereas the adaptive

sampling requires a 1) multi-phase design to allow the incremental adjustments and 2) micro-level
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benchmark data that captures the target population of interest. The inherent property of the strategy

suggests that the bias reduction is only as good as the benchmark data available. In addition, it

may not be common to have auxiliary variables Z that are related to survey variables Y, in such

case the bias reduction effect relies on the correlation of (Z,X) and (X, Y ). Without them, there

are no bias reductions. With respect to the cost, the proposed design may increase survey cost

if contacting a new subject costs more than recontacting a nonrespondent when the probabilities

of getting a response are the same. The proposed design also requires covariate information on

nonrespondents at each phase, which may not be available for some populations.
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CHAPTER 3

Benchmarked Sequential Sampling and

Benchmarked Multiple Imputation

Current solutions for unit nonresponse focus on improving nonresponse follow-up and enhanc-

ing post-survey weighting adjustment. We propose an alternative inferential paradigm to adjust

for unit nonresponse using micro-level auxiliary data that captures the same features of the tar-

get population, referred to as “benchmark” hereafter. We describe a benchmark-driven mitigation

and imputation (M&I) strategy, in the context of a multi-sampling survey, that sequentially guides

the sampling and estimation to improve survey inferences regardless of the nonresponse mecha-

nism. The M&I strategy employs a high quality benchmark to 1) (mitigate) rectify undesirable

nonresponse patterns through a calibrated sequential sampling design; and 2) (impute) recover

population information through calibrated multivariate imputation by chained equations (MICE),

thus achieving less biased survey estimates. The performance of the M&I strategy will be evalu-

ated by simulation experiments to mimic adaptive design under various nonresponse mechanisms

including missing not at random (MNAR). An illustration using data from the American Commu-

nity Survey (ACS) and the Current Population Survey (CPS) is also presented. We report on the

preservation of marginal and joint distribution for population estimates of three sampling designs

from respondent data, completed data(respondent and imputed nonrespondent data), and joint data

(completed data and benchmark data).
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3.1 Introduction

This study discusses methods applicable to surveys with rich micro-level auxiliary data, such as

establishment and recurrent surveys and surveys that use other survey respondents as a sampling

frame. For the micro-level auxiliary data, we consider those that 1) are available before survey im-

plementation and 2) captures the information on the target population. We term such auxiliary data

as a “Benchmark”. We propose a benchmarked sequential sampling and benchmarked imputation

strategy to amplify the dividends of the auxiliary data and minimize the bias of unit nonresponse,

including missingness not at random (MNAR) (Little and Rubin, 2002).

Unit nonresponse is traditionally managed by the post-survey adjustments to the weights for

the respondents. Sample weighting adjustments conforming the respondent data to sample totals,

such as weighting class adjustments and response propensity weighting, were shown to reduce the

bias of the estimated mean (Little, 1986; Bethlehem, 1988; Kalton and Maligalig, 1991). Popu-

lation weighting adjustments conforming the respondent data to population totals, such as post-

stratification and calibration weighting, were reported to reduce nonresponse bias and variance, as

well as bias due to incomplete coverage (Deville and Särndal, 1992; Lundström and Särndal, 1999;

Särndal and Lundström, 2005).

In practice, variance can be managed and measured reasonably well. The reason is that inflated

variance due to unit nonresponse is primarily the consequences of smaller than anticipated sample

size and increased variation of the survey weights (Brick, 2013). Sample size could be expanded.

Effective variance reduction can be achieved by prudent weighting and weight trimming meth-

ods. Conversely, the reduction of bias through weighting methods requires the missing at random

(MAR) assumption and good weighting variables, though promising theoretically, remain illusive

in practice. Statements such as “... bias is very difficult to measure” (Brick and Jones, 2008) and

“...bias is the dominant component of the nonresponse-related error in the estimates” (Brick, 2013)

made it clear that it was the nonresponse bias that captivated survey researchers.
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Aside from the validity of the MAR assumption, the concerns over the effectiveness of weight-

ing strategy on bias reduction exacerbated over rapidly falling response rates. For instance, survey

practitioners are calibrating the current norm of 9–20% respondents in random digit dial surveys

to represent the entire sample, instead of calibrating historically 80–90+% of respondents. The

growing interest in mitigating nonresponse bias before weighting adjustments is evident, espe-

cially from the ample articles in recent years on adaptive design and related topics (Groves and

Heeringa, 2006; Wagner, 2008; Schouten et. al., 2009, 2011, 2013). The premise of adaptive de-

sign at curtailing nonresponse bias is that representative respondents result in less biased estimates

(Schouten et. al., 2016; Särndal and Lundquist, 2014). These adaptive strategies are guided by

auxiliary data to assess respondent representativeness, to target nonrespondents of interest, and to

optimize resources on nonresponse follow-up. The improvement in respondent representativeness

is achieved by intervening in data collection adaptively, implemented during nonresponse follow-

up. (Wagner, 2008; Schouten et al., 2009, 2011, 2013, Särndal and Lundquist, 2014).

While improved respondent representativeness may reduce bias, doing so by varying strate-

gies on data collection complicates the inferential process. This is because response propensity

is dynamic and depends not only on auxiliary variables but also on data collection strategies.

Researchers have shown that response propensity of a sampled unit changes as the data collec-

tion protocol changes (Schouten et al. 2011; Olsen and Groves, 2012; Brick, 2013). Therefore,

maintaining a standardized data collection protocol has at least two advantages: the ease of field

administration and the ease of inferential process. Instead of adaptive data collection, the adaptive

sampling design as proposed in Chapter 2 provides an opportunity to improve respondent represen-

tativeness while maintaining a standardized data collection protocol on all subjects, and therefore

a coherent inferential process.

The adaptive sampling method described in Chapter 2 aims at benchmarking frame variables

(denoted by Z) from the sample respondents (R) to those of the benchmark (B), obtaining fR(Z) ≈

fB(Z). Amending results from chapter 2, we propose to match not only the frame variables but
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also the survey covariates (denoted by X). Similar to Chapter 2, the proposed design requires

a multi-phase survey setting in which replicates of the full sample are sequentially introduced at

each sampling phase. The X information needed at the sampling stage is predicted using models

fitted to Z on the frame and the respondent data from previous phases. Following the sampling,

we propose using benchmarked multivariate imputation by chained equations (MICE) to adjust for

unit nonresponse (see Section 3.2.4 for more details).

Traditionally, imputation has been the standard procedure used to compensate for item nonre-

sponse (Brick and Jones, 2008; Brick, 2013; Brick and Kalton, 1996). There is relatively little pub-

lished research on imputation for unit nonresponse. An exception is by Rässler and Schnell (2004)

who suggest that multiple imputation is a superior strategy than post-survey weighting adjustment

for nonresponse bias correction. Imputation as an alternative for unit nonresponse adjustment has

been primarily explored by researchers with a model-based perspective (Gelman, 2007; Little and

Rubin, 2013). Their principal argument is based on the preposition that effective bias reduction

can only be achieved by modeling survey outcome variables (Greenlees, et al., 1982; Beaumont,

2000). In our strategy, by combining the benchmark and the respondent set, unit nonresponse

mimics a special case of item nonresponse and, as a result, warrants the imputation strategy (see

Section 3.2.1 and figure 3.1 for more details), fulfilling the modeling perspective on bias reduction.

The key component, the benchmark data, is used to calibrate both the sampling and imputation

in a sequence of sampling-imputation procedures. Through iterative benchmarking, the population

structure approximated by benchmark is incorporated into sampling to restore balance between the

respondent and the benchmark (mitigation step), attenuating the undesirable nonresponse pattern.

Similarly, the population structure is embedded in the imputation models derived from iterative

model fitting using combined data from benchmark and the respondent (imputation step), enhanc-

ing results from the sampling procedure. By integrating sampling and imputation to adjust for

unit nonresponse, we show that this inferential paradigm better preserves population distribution

and reduces nonresponse bias, especially for MNAR mechanisms. This unit nonresponse study
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is set apart from other survey design and weighting literature through the preservation of joint

distribution and the bias reduction at both design and estimation stages.

The performance of the M&I strategy will be evaluated by simulation experiments to mimic

adaptive design under various nonresponse mechanisms, including “missing not at random” (MNAR).

Survey estimates from a focal survey are compared to those derived from the benchmark. The de-

cision to stop the M&I procedure is based on marginal and conditional distributions of survey data

as well as on objectives of the survey. An application to the Current Population Survey (CPS) and

the American Community Survey (ACS) data will serve to illustrate how the proposed strategy is

likely to perform in practice.

In Section 3.2, we define notation and describe the rationale and methods for the proposed

strategy. Section 3.3 demonstrates the proposed strategy by presenting a simulation study, its

design and setup, using multivariate normal data with one covariate (X), one survey outcome

(Y ) and one frame variable (Z). Section 3.4 gives the results of the application using CPS and

ACS data. In Section 3.5 we conclude with some discussion of strengths, limitations, and the

applicability of the proposed strategy.

3.2 Method

In a multi-phase survey design, our adaptive strategy uses benchmarked sequential sampling and

imputation to improve survey estimates under unit nonresponse. At each phase, benchmarked se-

quential sampling derives the sampling probability with an objective of achieving P (XR,ZR) ≈

P (XB,ZB), mitigating the nonresponse pattern to improve respondent representativeness. An

improved respondent pool from the sampling step prepares the way for benchmarked multiple im-

putation to recover population information. After each mitigation-and-imputation cycle, we eval-

uate marginal and conditional distributions of survey variables to assess resemblance between the

benchmark (DB), the respondent set (DR), and the completed sample (DR ∪ D̂NR). The increased
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similarity of marginal and conditional distributions towards those of the benchmark produces better

survey estimates, especially for MNAR unit nonresponse. Before discussing the steps necessary to

implement the adaptive design, we discuss the pivotal role of a benchmark in our strategy.

3.2.1 The Benchmark Data

The “benchmark” here is defined as a micro-level auxiliary data that captures the characteristics

of the target population, that is f(YB,XB,ZB) ≈ f(Ypop,Xpop,Zpop). For example, if the U.S.

non-institutionalized household civilian population is the target, the ACS publicly-available micro-

data may serve as the benchmark. The current convention in this situation is to use the marginal

or cross-classified counts of selected ACS variables as the control totals for calibration weighting

adjustment (Valliant, et.al., 2013).

In calibration weighting adjustment, the control totals guide the survey weights to conform the

weighted respondent data to the population counts. In comparison, the proposed strategy uses the

benchmark to guide the sampling and imputation so as to conform the respondent data (DR) and

completed data (DC = DR

⋃
D̂NR) to the population. While similar in principle, the proposed

method capitalizes on the micro-level data in the benchmark to recover population multivariate

structure among covariates in the focal survey.

Figure 3.1 illustrates the conceptual data structure available in a hypothetical two-phase survey,

where we show the benchmark data set DB, the focal survey respondent sets D(1)
R and D(2)

R , and

the nonrespondent sets D(1)
NR and D(2)

NR. Note, the superscript denotes the sampling phases. The

shaded areas represent data available before imputation and the blank areas represent missing data

to be imputed. In the proposed method, benchmark and the focal survey share some X and Z,

whereas Y is available for respondents and usually not available in the benchmark. This data

structure mimics a special case of monotone item nonresponse, leading to a natural consideration

to imputation strategy.

“Frame variables” (Z) in this study is a label for any auxiliary data that are available before
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data collection and serves as information for sampling purposes. This could include information

frequently found on the sampling frame, administrative records, paradata, and geographic contex-

tual data, etc. Our strategy requires overlapping frame variables between the benchmark survey

and the focal survey. The label of “benchmark” and ”frame data” depends on the function of the

auxiliary information which can be distinguished and visualized based on their roles in the data

shown in Figure 3.1.

Figure 3.1: Data available for M&I strategy
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3.2.2 Mitigating Step: Benchmarked Sequential Sampling

Chapter 2 proposed a benchmarked sequential sampling method, BSS-Z, to improve respondent

representativeness by using the frame variables. In a multi-phase survey setting, the frame variables

Z are used to derive sampling probabilities to sequentially achieve P (ZR) ≈ P (ZB). Extending

the BSS-Z method, we now derive sampling probabilities at each phase using (Z, X̂). The new
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method aims at obtaining P (XR,ZR) ≈ P (XB,ZB) after several sampling phases. The sampling

probabilities are adjusted at each sampling phase to restore the resemblance between benchmark

and cumulative respondents with respect to Z and X. Through iterative benchmarking, this dy-

namic sampling strategy mitigates undesirable nonresponse patterns when Z and X correlate with

Y. We termed this new approach the BSS-X method.

To illustrate the main idea of benchmarked sequential sampling, suppose one wants to conduct

a four-phase focal survey (k = 1, . . . , 4) and no prior information is available on nonresponse

patterns. The phase I sample follows a fixed probability sampling design such that the sample

is drawn to be representative of the benchmark (i.e. the surrogate of the target population of

interest). While phase I nonresponse mechanism renders phase I respondent non-representative,

our goal is to restore the resemblance between the benchmark and the cumulative respondents at

each successive phase with respect to P (Z,X). This goal at phase k can be written as

π(k) × P (k)(Z,X|sample) + (1− π(k))×Q(k−1)
R (Z,X) = PB(Z,X) (3.1)

where Q(k−1)
R (Z,X) denotes the distribution of (Z,X) from cumulative respondents up to phase

(k − 1). Let π(k) = n(k)/Nk where n(k) is the sample size for phase k and Nk is the cumulative

sample size up to phase k. Then π(k) denotes the proportion of the new subjects we expect to inter-

view in phase k, and hence 1 − π(k) is the proportion of cumulative responding subjects obtained

up to phase k.

By combining (3.1) with the Bayes formula (2.3), the sampling rate for phase k is derived as

P (k)(sample|Z,X) = {PB(Z,X)

P (Z,X)
− (1− π(k))

Q
(k−1)
R (Z,X)

P (Z,X)
}P

(k)(sample)

π(k)
(3.2)

where P (Z,X) denotes the distribution of (Z,X). Equation (3.2) is a direct extension from equa-

tion (2.6) in Chapter 2.
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Estimating PB(.)/P (.) and QR(.)/P (.) are straightforward in a univariate case where the co-

variate of interest on the sampling frame could be age, gender or race, etc. For a multivariate situa-

tion like PB(Z,X)/P (Z,X), Similar to Chapter 2, we use propensity scores in place of PB(Z,X)

and P (Z,X). The propensity scores are estimated by combining (Z,X) data from the benchmark

and the focal survey respondents, and modeling the probability of survey membership T (T = 1

for benchmark, and T = 0 otherwise) using the logistic regression. The estimated propensity

score, that is, the predicted probability of “being in the benchmark survey”, replaces PB(Z,X) in

formula (3.2), leading to a much simplified computation for P (k)(sample|Z,X).

The propensity score densities of the benchmark and focal surveys are estimated with a non-

parametric density function, and consequently the P (k)(sample|Z,X) from (3.2) are computed,

where P (k)(sample|Z,X) is the sampling probability for the sampling units with characteristics of

(Z,X) at phase k. For phase k+1, the propensity score model is refit using respondent information

accumulated up to phase k, and the P (k+1)(sample|Z,X) is updated accordingly. This implies

that subjects with the same (Z,X) characteristics may have different sampling probability at each

phase.

However, X is not available on the sampling frame and therefore is unknown before data collec-

tion occurs. We predict X
(k)
s through MICE using data Z

(k)
s , (ZB,XB) and cumulative (ZR,XR)

up to phase (k − 1), where s = R ∪ NR. The average of imputed X replaces X in equation

(3.2) for the sampling purpose. After data collection, the observed X replaces the predicted X for

inferences of DR.

3.2.3 Imputation Step: Benchmarked Multiple Imputation

Despite results at the mitigating step, the ultimate goal is to recover population information through

accurate estimation. Our imputation strategy appends benchmark data to the respondent data (as

shown in figure 3.1) which situates the unit nonresponse to mimic the item nonresponse. This set up

serves as our imputation strategy for unit nonresponse, and the completed data (DC = DR∪ D̂NR)
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are calibrated to the benchmark such that

P (ŶB|XB,ZB) ≈ P (YR, ŶNR|XR, X̂NR,ZR, ẐNR).

The quality of imputed values can be evaluated by comparing the inferences from the benchmark

data and the completed focal survey data.

Note that the equation above has ẐNR implying imputed ZNR. This is because in the bench-

marked sequential sampling design nonrespondents are those oversampled subjects with under-

represented characteristics from previous phases. When combining observed ZR with ZNR, the

marginal distribution of Z deviates from that of the benchmark, causing skewed results of Y and

X from imputation. Therefore, instead of keeping observed values of ZNR from the sampling

frame, we impute them.

We implement the multivariate imputation by chained equations (MICE) to predict the non-

respondent values (van Buuren, 2007; Raghunathan, et. al. 2001). The MICE is an iterative

regression prediction process that cycles through each variable with missing values, and models

each variable conditional on others. MICE fits each variable with separate models and can han-

dle complexities such as bounds or survey skip patterns, hence provides more accurate predicted

values, resulting in better survey estimates (Raghunathan, et. al. 2001; White, et. al., 2011).

The imputations themselves are predicted values from these regression models, and the predicted

values are draws from the posterior predictive distributions obtained using Gibbs sampling (van

Buuren, et. al. 2011). For example, variable types from ACS and CPS include continuous, binary,

unordered categorical, and ordered categorical. Some of these variables have bounds and restric-

tions. MICE procedure imputes these variables using models appropriate to the variable type (e.g.

linear regression for continuous variables) and handles special conditions accordingly.

Stuart, et al., (2009) gave the following clear and brief summary on the MICE procedures:

1. The variable with the least missingness (var 1) is imputed conditional on all variables with
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no missingness.

2. The variable with the second least missingness is then imputed conditional on the variables

with no missing values and var 1, and so on.

3. After all the variables have been cycled through in this way (one iteration), there are no

longer any missing values in the data (one imputed data set).

4. Steps 1 to 3 is then repeated using this data set with no missing values.

The imputation literature recommends including variables in the imputation model that are pre-

dictive of the unknown values and that will be used in the subsequent analysis, especially variables

that are likely to be associated with the variables that need to be predicted (White, et. al. 2011;

Azur et. al. 2011). Furthermore, studies have recommended establishing an imputation model that

is more general than the analysis model, which can be achieved by including additional auxiliary

variables that will not be used in the analysis but that can improve the predictions (Collins et al,

2001; Schafer, 2003). When more predictors are included in the prediction model, it is more plau-

sible that unknown depends only on observed characteristics and not on those that are missing,

and the MAR assumption becomes more tenable (Raghunathan, et. al. 2001). Detail descriptions

on practical implementation of MICE for issues such as number of imputation, models forms,

variables to include, et. al. can be found in White, et. al., (2011).

The main difference distinguishing the imputation in this study and the imputation for a conven-

tional missing data problem is that, in this study, the goodness of fit and diagnostics of imputation

models can be evaluated by direct comparison of the marginal and conditional distributions of X

and Z variables for the imputed data and the benchmark data. Well imputed X and Z enhance

the imputation of Y, when X and Z carry information on Y. By calibrating completed data to

match that of the population we reduce nonresponse bias even if nonrespondents are missing not

at random.
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3.2.4 Adaptive Design

Suppose there is an ongoing multi-phase focal survey implementing the M&I strategy, the goal

is to decide if further data collection (i.e., more sampling phases) is needed, or whether the data

collected so far is adequate to minimize unit nonresponse bias through imputation, regardless of

nonresponse mechanism. This decision is based on factors such as the quality of the data that are

already collected, how different the respondents are from the benchmark, and the properties of the

imputed data with respect to the inferences.

We propose comparing the respondent data (DR) and the benchmark data (DB) to assess the M

step and comparing the completed data (DC = DR

⋃
D̂NR) and the benchmark to assess the I step.

The goals and methods corresponding to each step of the benchmarked adaptive survey design can

be summarized as the following:

1. Draw phase (k − 1) sample by formula (3.2) and collect respondent data.

• Evaluate similarity between DR and DB aiming at P (XR,ZR) ≈ P (XB,ZB).

2. Impute (YB,Y
(K−1)
NR ,X

(K−1)
NR ,Z

(K−1)
NR ) and (Y

(k)
s ,X

(k)
s ) based on

(XB,ZB,Y
(K−1)
R ,X

(K−1)
R ,Z

(K−1)
R ,Z

(k)
s ) using MICE.

(Note, capital K denotes cumulative data up to kth phase and lowercase k denotes single kth

phase. s denotes sample.)

• Evaluate similarity between DC and DB aiming at

P (YR, ŶNR|XR, X̂NR,ZR, ẐNR) ≈ P (ŶB|XB,ZB).

3. Consider:

• If P (K−1)(YR, ŶNR|XR, X̂NR, ẐR, ẐNR) ≈ P (ŶB|XB,ZB) then stop.

• If P (K−1)(YR, ŶNR|XR, X̂NR, ẐR, ẐNR) 6= P (ŶB|XB,ZB) then repeat steps 1 and

2.
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Since X is imputed at mitigation stage, the quality of the imputation adds a level of uncertainty

on the performance in addition to the truncation properties for the sampling method (see section

2.2.4).

The advantage of M&I over weighting is that M&I strategy utilizes the joint probability of

(X, Y |Z) whereas weighting does not.

3.2.5 Evaluation

To evaluate the quality of the data produced by our strategy, we gauge it against benchmark param-

eters. We are interested in respondent data (DR), completed data (DC), and joint data (DJ ), where

DJ = DC ∪ DB. Comparison of DR and DB tells us the performance of the sampling design

(the mitigation step), whereas the assessment between DC and DB tells us the performance of the

M&I strategy. We focus the evaluation on three categories: 1) marginal distribution 2) conditional

distribution, and 3) accuracy of parameter estimates.

To evaluate benchmarked sequential sampling, we compute the difference betweenDR andDB

on the following estimates from the respondent data: 1) the probability of (X > c|Z > c), where

c is a constant, 2) the correlation between X and Z (denoted as ρz,x) and 3) the difference of ȲR

and ȲB.

To evaluate benchmarked multiple imputation, we compute the difference betweenDC andDB

on the following : 1) the probability of (Y > c|X > c, Z > c), 2) the correlation between Y and

X (denoted as ρy,x) and 3) the difference of YC and ȲB. Note, measures derived from imputed data

are combined using Rubin’s rules (1987).

Finally, to evaluate the M&I strategy we assess the accuracy of parameter estimates on joint

data (J) by reporting on 1)Bias(ȲJ), 2) ρy,x, 3) P (Y > c), 4) P (Y > c|X > c), 5) P (X > c|Z >

c).

For the difference of ρ’s between two samples, we report on RMSE, 95% confidence interval

(CI) width, 95% CI coverage rate (CR), and bias. For example, the difference of ρy,x between DC
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and DB, denoted by dρ for simplification, its RMSE is computed by RMSE =
√
MSE, and

MSE(dρ) = B(dρ)
2 + V (dρ) (3.3)

where B(dρ) is the bias of a point estimate dρ (dρ = ρC(y,x) − ρB(y,x)), estimated by bias(d̂ρ) =∑
S(d̂ρS − dρN )/r. d̂ρS is the estimate from sample S, and dρN is the finite population parameter.

dρN = 0 in our case. V (dρ) is the empirical variance of d̂ρ, estimated by V ar(d̂ρ) =
∑

S(d̂ρS −

d̄ρ)
2/r, where d̄ρ =

∑
S d̂ρ/r. r denotes simulation replicates.

The 95% confidence interval width is computed by

Width95 = 2× 1.96× SE, (3.4)

where SE =
√
V (dρ). The CR, the percentages of intervals that include dρN , are based on the

nominal 95 percent confidence intervals (d̂ρ ± 1.96V̂ 1/2) computed for each of the r simulations

for each simulation scheme.

3.3 Simulation Study

The simulation study investigates the performance of M&I strategy on multivariate normal data in

terms of bias reduction and recovery of population structure.

3.3.1 Simulation Design and Nonresponse Models

We simulate a finite population of sizeNPOP = 500, 000 that comprises of three variables (Y,X,Z)

from a multivariate normal distribution with the following joint distribution.

(Z,X, Y ) ∼ N3(0,Σ), and (3.5)
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Σ =


1 cov(Z,X) cov(Z, Y )

cov(Z,X) 1 cov(X, Y )

cov(Z, Y ) cov(X, Y ) 1


where cov(Z,X) and cov(Z, Y ) are varied to examine the effects of Z with varying degrees of

explanatory power on X and on Y . And cov(X, Y ) are varying to examine the effects of X

with various degrees of explanatory power on Y . From this finite population, a simple random

sample without replacement (srswor) of size NB = 25, 000 (5% of the finite population) is drawn

to serve as the benchmark data and the remaining 475, 000 units serve as the sampling frame for

the focal surveys. From this sampling frame, three concurrent focal surveys are simulated, one

implements the proposed benchmarked sequential sampling design BSS-X, another implements

the benchmarked sequential sampling design BSS-Z from chapter 2, and the third implements the

conventional fixed sampling design (F).

For all three focal surveys, the first phase is a srswor of size 1, 000 (n(1) = 1, 000). This sample

size is carried on for phase II to IV for the F sampling design. For BSS-X and BSS-Z designs,

the kth phase samples are of size n(k) = 1, 200, where k = 2, 3, 4. The larger sample sizes are to

account for higher selection probability on subjects who are less likely to respond. These sample

sizes in BSS-X and BSS-Z designs result in comparable number of respondents as with the fixed

design such that we are imputing the same number of missing units at the imputation step and

arriving in the same sizes of completed data.

The simulation study can be described as a 2× 2× 2× 4 factorial design. The factors are:

Factor A: cov(Z,X): high vs low

Factor B: cov(Z, Y ): high vs low

Factor C: cov(X, Y ): high vs low

Factor D: Four nonresponse mechanisms based on the nonresponse models described below.
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For design factors A and B, a high correlation of two variables is set to be ρ = 0.894 (i.e. R2 = 0.8)

and a low correlation is ρ = 0.447 (i.e. R2 = 0.2, where R2 is the coefficient of determination in

simple linear regression). For factor C, a high correlation between X and Y is ρX,Y = 0.707 (i.e.

R2(X, Y ) = 0.5) and a low correlation is ρX,Y = 0.3 (i.e. R2(X, Y ) = 0.09). The combination

scenario of a low correlation (L) in Factor A, a high correlation (H) in Factor B, and a high corre-

lation (H) is Factor C is labeled “LHH” herein. Similarly the other seven scenarios of Factors A,

B and C are labeled “LLL”, “LLH”, “HLL” ,“HLH”, “HHL”, and “HHH”.

For nonresponse mechanisms (factor D), we simulate response status < by drawing from

Bernoulli random variables with e(z, x, y) = Pr(< = 1|z, x, y) computed from four different

nonresponse models:

1. logit(e(z, x, y)) = Bernoulli(0.5). (MCAR)

2. logit(e(z, x, y)) = 0.00020 + 0.8z. (MAR)

3. logit(e(z, x, y)) = 0.00001 + 0.31z + 0.61x. (MNARX)

4. logit(e(z, x, y)) = 0.00004 + 0.19z + 0.38x+ 0.38y. (MNARY )

where < = 1 if subject responded, 0 otherwise. Each of these models generate an average of 50%

response rate. For model 1, the response probability is independent of (Y, Z,X), i.e. MCAR.

For model 1, the response probability depends on Z alone, i.e. MAR. For model 2 the response

probability depends on both Z and X , labeled as MNARX . For model 3, the response probability

depends on (Y, Z,X), labeled as MNARY . Note, model 2 is MNAR since response depends on

X , which is not observed for nonrespondents.

For the imputation procedure, five imputations are implemented where each imputation runs

for 10 iterations. The imputation models include main effects of Y ,X and Z. Let n(K) denote

the intended sample size up to phase k. Of these n(K)
R responded and n(K)

NR did not. There are

two options to obtain a completed data of size n(K). The first option applies to fixed design (F).
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At each phase, the YNR, XNR and YB are imputed by MICE based on the cumulative respondents

YR, XR, ZR, nonrespondent ZNR, and the benchmark XB, ZB.

The second option is to impute the nonrespondents, not only for (Y
(K)
NR ,X

(K)
NR) but also for

(Z
(K)
NR). This option is preferred for the BSS-X and BSS-Z designs. Note that ZNR is imputed as

described in section 3.2.3. In addition, X values corresponding to Z of the next phase sampling

frame is also imputed for BSS-X design, since X̂ on the sampling frame is necessary for the next

phase sampling.

For all three designs, imputation is carried out by using all available data collected so far.

Therefore imputed values at phase k are always replaced by the imputed values at phase k + 1 for

both sampling and inference.

With the finite population generated by the data model 3.5, the procedure of a) drawing a bench-

mark, b) forming a sampling frame, c) simulating three concurrent focal surveys, and d) imputing

nonrespondents, is carried out 1000 times (trials) for each of the 32 simulation scenarios. For

each trial, the evaluation measures mentioned in section 3.2.5 are computed. For each simulation

scenarios, we report the average quantities from the 1000 trials.

3.3.2 Simulation Results

Recall that the goals are to achieve the convergence of the following distributions:

• Mitigating step: f(XR|ZR) ≈ f(XB|ZB).

• Imputation step: f(YR, ŶNR|XR, X̂NR,ZR, ẐNR) ≈ f(ŶB|XB,ZB) given that

f(XR, X̂NR,ZR, ẐNR) ≈ f(XB,ZB).

Since the simulations show little difference between the two levels of factor C, i.e. scenarios

cor(X, Y ) = Low and cor(X, Y ) = High, we focus on reporting the results of cor(X, Y ) = Low.

We abbreviate the simulation scenario labels to factors A and B, unless otherwise noted. For
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example, a ”LH” indicates factor A cor(Z,X) = Low and factor B cor(Z, Y ) = High, while

factor C is low.

3.3.2.1 Benchmarked sequential sampling

To evaluate M-step objective of f(XR|ZR) ≈ f(XB|ZB), we compare DR and DB on three

measures: P (X > 1|Z > 1), ρz,x, and Ȳ .

We first show the results of PR(X > 1|Z > 1) ≈ PB(X > 1|Z > 1) from the three sampling

designs. We compute dX|Z , the difference of PR(X > 1|Z > 1) and PB(X > 1|Z > 1). The

smaller the dX|Z implies the closer the PR(X > 1|Z > 1) and PB(X > 1|Z > 1). Figure 3.2

illustrates the phase IV point estimates and their corresponding confidence intervals for dX|Z for

the various simulation scenarios.

In the figure, the point estimates of dX|Z and their corresponding confidence intervals are rep-

resented by a horizontal error bar, where the dots are point estimates. For each plot, the x-axis

represents the value of dX|Z and the Y-axis shows the combination scenarios of factors A and B,

respectively. A zero vertical line is added to aid the visual comparison. In the grand view, the

horizontal panels show the nonresponse mechanisms and factor C, and the vertical panels show the

sampling designs. For example, the first two horizontal panels are labeled ”MAR H” and ”MAR

L”, indicating MAR nonresponse with cor(X, Y ) being high and low, respectively.

Under the MAR missingness mechanism, the point estimates of dX|Z are zero among BSS-Z

and BSS-X designs while they all deviate from zero for the F design. For MNARX and MNARY ,

the confidence intervals cover zero in all but one scenario. The exception is the fixed design with

nonresponse pattern MNARY under the LLH scenario. In general, zero tends to fall on the edges

of the confidence interval for the F design, whereas zero tends to be the point estimates or close

to the point estimates of dX|Z in BSS-X and BSS-Z designs. This pattern is evident by the larger

variation of point estimates and several nearly missed CI band noncoverage of the zero line from

the F design when comparing to those of the BSS-X and BSS-Z designs. Under MNARX and
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MNARY dX|Z point estimates range from 0.025 to 0.055 for the F design and range from 0.01

to 0.025 for the BSS-X and BSS-Z designs. Among all simulation scenarios, the performances

of BSS-Z is slightly better than those of the BSS-X on dX|Z with respect to the point estimates.

However, all their CIs cover zero.

We then assess the preservation of the correlation between Z and X (denoted as ρz,x). Table

3.1 shows the average of 1000 trials on dρz,x at phase IV for various simulation scenarios, where

dρz,x = ρR(z,x) − ρB(z,x). The rows show the combination scenarios of factors A by B by nonre-

sponse mechanisms. For example, four rows corresponding to MAR represent LL, HL, LH and

HH scenarios of cor(Z,X) and cor(Z,Y) combinations. Columns show the four statistical properties

of the estimates, including root mean squared error (RMSE), 95% confidence interval width (CI

width), coverage rate (CR), and bias.

Among all simulation scenarios, BSS-X performs better than BSS-Z, and BSS-Z is better than

F, with respect to RMSE, CR, and bias. For bias, BSS-X and BSS-Z are in general about half or

less of those from the F design. Most strikingly, when cor(Z,X) = Low, biases from BSS-X are

0 and 1 under MNARX and 2 and 20 under MNARY , whereas the corresponding biases for BSS-Z

design are 39, 39, 34, 35 and for F design are 88, 90, 75, and 80.

Similarly, for coverage rate, BSS-X and BSS-Z in general are at least two-fold that of the

F design. Under MAR missingness, the CRs for BSS-X are 82, 41, 81, 50 for LL, HL, LH,

HH scenarios, respectively, and the corresponding CRs for the F design are 32, 3, 32, 3. The

greatest benefits of BSS-X are seen under MNARX and MNARY . When cor(Z,X) = Low,

BSS-X coverage rates are 95 and 96 for MNARX and 94 and 88 for MNARY . The corresponding

coverage rates for BSS-Z are 55, 55, 66, 62, and for F are 4, 1, 9, 5.

The results of RMSE are similar to those of the bias. With regard to CI width, the results are

mixed among three designs, although BSS-Z in general has narrower CI width than F and BSS-X.

Figure 3.3 illustrates four sampling phases of d(ȲR,ȲB) in horizontal boxplots where d(ȲR,ȲB) =

ȲR − ȲB. The vertical panels show the three sampling designs and horizontal panels show the
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nonresponse mechanisms. For each plot, the x-axis represents the value of d(ȲR,ȲB) and the y-axis

indicates the combination scenarios of cor(Z,X) and cor(Z, Y ) under cor(Y,X) = Low.

Each box shows the distribution of d(ȲR,ȲB) from 1000 trials. Each cluster of four boxes (in

different colors) represents the four phases of sampling where phase I is the top box. The most

obvious pattern in figure 3.3 is the contrast of stationary (F) versus the shifting (BSS-X and BSS-

Z) of the d(ȲR,ȲB) across sampling phases over all missingness patterns. In all cases, the d(ȲR,ȲB)

of the BSS-X and BSS-Z designs decrease as the sampling phases progress (judging by the boxes

shifting toward the zero line) while the d(ȲR,ȲB) of the F design remains the same across phases

within a given scenario. The shifting of the boxes (towards zero) over sampling phases suggests

P (XR|ZR) ≈ P (XB|ZB) for these two designs.

These findings suggest that the BSS-X and BSS-Z designs improve respondent representative-

ness by better preserving f(X|Z) and ρz,x, even under MNAR missingness. Furthermore, the

BSS-X has some advantages over the BSS-Z with respect to achieving P (XR|ZR) ≈ P (XB|ZB)

and preserving ρz,x.

3.3.2.2 Benchmarked multiple imputation

To evaluate I-step objective of f(YR, ŶNR|XR, X̂NR,ZR, ẐNR) ≈ f(ŶB|XB,ZB), we compare

DC and DB on three measures: P (Y > 1|X > 1, Z > 1), ρy,x, and Ȳ .

We first assess whether PC(Y > 1|X > 1, Z > 1) ≈ PB(Y > 1|X > 1, Z > 1) by computing

their differences dŶ |X,Z . The smaller the dŶ |X,Z implies the closer the PC(Y > 1|X > 1, Z > 1)

and PB(Y > 1|X > 1, Z > 1). Figure 3.4 illustrates phase IV dŶ |X,Z point estimates and their

corresponding 95% confidence intervals for each simulation scenarios. The layout of figure 3.4 is

identical to that of figure 3.2.

In all scenarios, the point estimates of dŶ |X,Z are zero or near zero for BSS-X and BSS-Z de-

signs while they depart from zero for the F design. In several cases, the 95% confidence intervals

of dŶ |X,Z for F design do not cover zero, e.g. LHH and LHL scenarios under MAR and MNARY
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Figure 3.2: Difference of PR(X > 1|Z > 1) and PB(X > 1|Z > 1) by sampling design at phase
IV.
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Table 3.1: Difference of ρz,x between DR and DB.

RMSE1 CI width2 Coverage3 Bias4

F AZ AX F AZ AX F AZ AX F AZ AX

MAR

LL 60 35 33 89 85 88 32 74 82 56 27 23
HL 114 57 54 109 87 88 3 34 41 110 53 49
LH 59 34 33 88 85 87 32 74 81 54 27 24
HH 100 53 49 99 84 88 3 39 50 97 48 44

MNARX

LL 91 44 25 88 82 99 4 55 95 88 39 0
HL 119 59 48 103 82 102 1 25 64 116 55 40
LH 92 44 27 83 84 107 1 55 96 90 39 1
HH 115 56 39 97 84 115 1 33 88 112 52 25

MNARY

LL 78 41 28 86 86 108 9 66 94 75 34 2
HL 105 54 48 107 83 92 6 33 58 102 49 41
LH 83 41 31 86 85 94 5 62 88 80 35 20
HH 105 51 49 105 84 88 4 42 50 101 46 44

Note, for RMSE, CI width, and bias, values shown are average of 1000 trials multiplied by 1000.
AZ = BSS-Z; AX = BSS-X.
1 RMSE=

√
MSE, where MSE is computed from equation (3.3).

2 CI width is computed from equation (3.4).
3 Coverage is the percentage of 95% CI among r imputations that includes zero. Note: values are
multiplied by 100.
4 Bias =

∑
r(ρR(z,x) − ρB(z,x))/r.
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Figure 3.3: Boxplots for difference of ȲR and ȲB by sampling design.
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missingness. In many cases for F design, zero falls on the boundary of the lower bound of the 95%

confidence intervals. Overall, the most striking pattern is the larger variation of dŶ |X,Z point esti-

mates in F design in contrast to those in BSS-X and BSS-Z designs. This pattern is consistent for

all nonresponse mechanisms. One interesting observation is that, not only the point estimates of

dŶ |X,Z for F design depart from zero, the 95% CI does not cover zero for two out of the eight sce-

narios under MAR missingness. When comparing BSS-X to BSS-Z design, they are comparable

with respect to dŶ |X,Z .

The assessment on the preservation of ρy,x from completed data is shown on table 3.2. Values

on the table are the average of dρy,x at phase IV over 1000 trials, where dρy,x = ρR(y,x) − ρB(y,x).

The layout of table 3.2 is identical to that of table 3.1. We found that under MAR missingness

the three designs are comparable with respect to RMSE, yet the bias and CR from F design trump

those of the BSS-X and BSS-Z designs.

For MNARX , BSS-X and BSS-Z designs have better CI width and CR. BSS-X and BSS-Z

designs also have better bias values when cor(Z,X) is low, whereas F design has better bias values

when cor(Z,X) is high. Perhaps the greatest advantage of BSS-X and BSS-Z over F design is

under MNARY missingness, especially for LL, HL, and LH scenarios, where better values are seen

for RMSE, CR and bias. A somewhat surprising finding is that for HH scenario under MNARY , F

design outperforms BSS-X and BSS-Z designs on RMSE, CR, and bias. When comparing BSS-X

to BSS-Z designs, the BSS-X design in general performs better on RMSE, bias and CR. BSS-X

and BSS-Z are comparable over CI width.

Figure 3.5 illustrates four sampling phases of d(ȲC ,ȲB) in horizontal boxplots where d(ȲC ,ȲB) =

ȲC − ȲB. For each plot, the x-axis represents the value of d(ȲC ,ȲB) and the y-axis indicates the

combination scenarios of cor(Z,X) and cor(Z, Y ) given that cor(Y,X) = Low. The layout of

figure 3.5 is identical to that of figure 3.3.

Each box shows the distribution of d(ȲC ,ȲB) from 1000 trials. Each cluster of four boxes (in

different colors) represents the four phases of sampling where phase I is the top box. For the fixed
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design, differences between ȲC and ȲB are eliminated under MAR. Although these differences

remain under MNARX and MNARY as the data collection phases progress, the differences are

largely minimized when Z has high predictive power on X and Y (HH scenario).

Similar to figure 3.3, the most obvious pattern in figure 3.5 is the contrast patterns of stationary

(F) versus the shifting (BSS-X and BSS-Z) on d(ȲC ,ȲB) over sampling phases under MNARX and

MNARY . In these cases, the d(ȲC ,ȲB) of the BSS-X and BSS-Z designs decreases as the sampling

phases progress (judging by the boxes shifting toward the zero line) while the d(ȲR,ȲB) of the F

design remains the same over sampling phases for any given scenario.

The most interesting finding is that, under MAR, d(ȲC ,ȲB) for all three designs centered around

zero. This is different from the findings in figure 3.3 where d(ȲR,ȲB) of the F design remains apart

from zero over sampling phases.

By comparing figures 3.5 to 3.3, we find that imputation step completely eliminates the dif-

ferences between ȲC and ȲB for F design under MAR. This is not surprising since imputation

under MAR is comparable to weighting adjustments. In addition, under MNARX and MNARY ,

the imputation also eliminates almost all of the differences between ȲC and ȲB for F design in

HH scenario. Furthermore, for LH and HL scenarios imputation reduces the differences between

ȲC and ȲB by at least 50% for F design. For LL scenario, the differences between ȲC and ȲB is

reduced by 30%.

3.3.2.3 Accuracy of the estimation

Figure 3.6 illustratesBias(ȲJ) in boxplots for scenario cor(X, Y ) = Low from the three sampling

designs. The layout of this figure is the same as figures 3.3 and 3.5 where each horizontal panel

represents a nonresponse scenario and each vertical panel shows a sampling design.

Under MAR, all boxplots are centered around zero indicating that the benchmarked multiple

imputation strategy successfully recovers the population information for ȲJ at all phases regardless

of the sampling design. Similar results are found for MNARX missingness, although there are
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Figure 3.4: Difference of PC(Y > 1|X > 1, Z > 1) and PB(Y > 1|X > 1, Z > 1) by sampling
design at phase IV.
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Table 3.2: Difference of ρy,x between DC and DB.

RMSE CI width Coverage Bias

F AZ AX F AZ AX F AZ AX F AZ AX

MAR

LL 20 20 21 79 78 80 95 93 94 1 4 3
HL 21 22 21 83 78 77 94 91 92 2 8 7
LH 14 15 14 55 52 52 93 91 92 1 6 5
HH 14 16 16 54 44 45 92 81 84 1 12 12

MNARX

LL 24 22 21 83 82 82 91 93 94 11 6 0
HL 21 22 21 83 83 80 93 93 94 1 7 4
LH 22 17 15 57 55 56 78 88 94 16 10 3
HH 14 16 13 52 45 48 93 85 94 3 11 4

MNARY

LL 39 25 24 79 80 81 62 87 91 33 15 12
HL 35 27 26 85 77 77 74 85 86 28 18 17
LH 22 18 16 58 53 54 81 86 90 16 11 8
HH 14 18 17 55 46 44 93 79 79 1 13 13

Note, for RMSE, CI width, and bias, values shown are average of 1000 trials multiplied by 1000.
AZ = BSS-Z; AX = BSS-X.
1 RMSE=

√
MSE, where MSE is computed from equation (3.3).

2 CI width is computed from equation (3.4).
3 Coverage is the percentage of 95% CI among r imputations that includes zero. Note: values are
multiplied by 100.
4 Bias =

∑
r(ρC(z,x) − ρB(z,x))/r.
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Figure 3.5: Boxplots for difference of ȲC and ȲB by sampling design.
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small biases remain for F design when cor(Z, Y ) = L.

When nonresponse is related to Y (MNARY ), the M&I strategy of BSS-X design recovers

the population information for ȲJ when cor(Z, Y ) = H . When cor(Z, Y ) = L, minimal bias

remains after four phases of data collection. Similar results are seen for BSS-Z design. Under

MNARY , Bias(ȲJ) of F design remains, and Bias(ȲJ) is relatively larger when cor(Z, Y ) = L

as comparing to when cor(Z, Y ) = H . The scale of the bias increases with the increase of the

sampling phases when cor(Z, Y ) = L.

Table 3.3 shows the assessment on the preservation of ρy,x from joint data. This table has the

identical layout as Tables 3.1 and 3.2. Values on the table are the average of dρy,x at phase IV over

1000 trials, where dρy,x = ρR(y,x) − ρB(y,x). The results are similar to those of the Bias(ȲJ) where

benchmarked multiple imputation strategy successfully recovers the population ρy,x under MAR

and MNARX regardless of sampling design. These findings are evident based on the comparable

numbers among three designs in RMSE, CI width, CR, and bias, although bias of ρy,x for F design

is slightly larger than that of BSS-X and BSS-Z when cor(Z,X) = L. When comparing BSS-X

to BSS-Z designs under MNARX , the BSS-X design performs better on bias for all scenarios.

For MNARY , three designs are comparable for HH scenario. For scenarios LL, LH, HL, BSS-

X and BSS-Z designs have noticeable advantage over F design in RMSE, CR, and bias. This

finding is consistent with the results of ρy,x from completed data that the greatest advantage of

BSS-X and BSS-Z over F design is under MNARY missingness, especially for LL, HL, and LH

scenarios. When comparing BSS-X to BSS-Z designs, BSS-X design performs slightly better on

CI width when cor(Z,X) = H .

Table 3.4 shows the percent bias of three probability measures: M1 = P (Y > 1), M2 =

P (Y > 1|X > 1), and M3 = P (X > 1|Z > 1) from joint data. Under MAR, three designs are

comparable although F design are mostly unbiased (for M1 and M3) whereas BSS-X and BSS-Z

often have small residual bias (especially for M1 and M2).

Under MNARX , three designs are comparable for M1; BSS-X and BSS-Z outperform F for
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M3; and results are mixed for M2. Under MNARY , three designs are comparable for M1, M2 and

M3 for HH scenario. For LL, LH and HL scenarios, BSS-X and BSS-Z designs have better results

on minimizing the bias.

These findings suggest that the benchmarked sequential sampling effectively enhances the re-

spondent representativeness, and the benchmarked multiple imputation when applied to unit nonre-

sponse sufficiently minimizes the nonresponse bias. Overall, the major benefit of the M&I strategy

focuses on the MNARY missingness, especially when both or one of the cor(Z,X) and cor(Z, Y )

are low.

Table 3.3: Difference of ρy,x between DJ and population true value.

RMSE CI width Coverage Bias

F AZ AX F AZ AX F AZ AX F AZ AX

MAR

LL 20 20 21 79 79 80 94 94 95 1 1 1
HL 21 20 20 82 78 79 94 94 94 2 2 1
LH 11 11 11 42 42 42 96 96 96 0 1 0
HH 7 7 7 26 27 28 98 98 98 0 1 1

MNARX

LL 22 21 21 86 83 82 95 94 94 3 1 0
HL 21 21 21 82 83 81 94 94 94 1 2 1
LH 12 11 11 44 44 44 95 96 96 4 2 1
HH 7 7 7 29 28 27 98 98 99 0 2 0

MNARY

LL 35 24 24 81 82 83 72 91 91 28 11 11
HL 36 24 24 82 80 78 71 89 89 29 13 12
LH 13 11 12 44 42 44 93 95 94 6 3 3
HH 7 8 7 28 28 27 98 97 98 2 3 2

Note, for RMSE, CI width, and bias, values shown are average of 1000 trials multiplied by 1000.
AZ = BSS-Z; AX = BSS-X.
1 RMSE=

√
MSE, where MSE is computed from equation (3.3).

2 CI width is computed from equation (3.4).
3 Coverage is the percentage of 95% CI among r imputations that includes zero. Note: values are
multiplied by 100.
4 Bias =

∑
r(ρJ(z,x) − ρB(z,x))/r.
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Figure 3.6: Boxplots for bias of Ȳ from joint data (DR ∪DNR ∪DB).

F BSS-Z BSS-X

●●●● ●

● ●●●●

● ●● ●●●

●● ●● ●●●

● ●●● ●

●●●● ●●

●●●●●● ●● ●●●●● ●

●●● ●●● ●● ●●

●● ●

●● ●●●●

●● ●● ● ●● ● ●

●●● ●●●●● ●● ●●● ●●●●●

● ●● ●● ●● ● ● ●●

●●●●● ● ●

● ●●●● ●●●●●

●● ● ● ●● ●● ●●●●●

● ●●● ●●●●

●● ●● ● ●

●

● ●● ●●

●●

●●●● ● ●

●●●● ● ●●

●●● ●●●●

●● ●●●

●●●●● ●●

●●● ●●● ●● ●●

● ●●●● ● ●● ●● ●

● ●● ●● ●●●

●●● ●

● ●●● ●● ●●

● ●●●● ●●●●

●● ●● ●●●●

●●● ●●

● ●● ●●

● ●●● ●●● ●

●● ●● ●●●

●●● ●●

●●●● ● ●

●●● ●● ●●● ●● ●

●●● ●●●●

●●● ●● ●●

●● ●●● ●

● ●●●

● ● ●●●● ●

●●● ● ● ●●●

●● ●●●● ●

● ●●●●● ●

● ●●● ●●●

● ●●● ●●

● ●●●● ●●●●

●●●●● ●●● ●● ●●●

● ● ●●●● ●

●●● ●●● ●

● ●● ●●●● ●

●●● ●

● ● ●

●

● ●●●●

● ●●●●● ●

● ●●●●● ●●

● ●●●●●

●● ● ●● ●

●●●● ●●

● ●●●● ●●● ●● ●●

●● ●●

●●● ●●●● ●

● ●●●●●●●●

●● ●●● ●

●●●●●● ●● ● ●

●●●

●●● ●●●

●●●● ●

●● ●● ●●

●●●●●

●

●● ●●●●● ●●● ●● ●

●●●●● ●● ●●●

● ●●

●●● ●●● ● ●

●●● ●●●●● ● ●

●● ●●

●●●● ●●● ●●

● ● ●●

●●●● ●● ●●

●● ●●●●●● ●● ●●●● ●●●● ● ●●

●● ●●●●● ●●

● ●●

●● ●● ●

●● ●●●● ●●● ●

● ●●● ●● ●

●●●

● ●●

●● ●● ● ●●●

● ●●●●●

● ●● ●●

●● ●●● ●●●

●●● ●●●●

●● ● ●● ●●●●●● ●

●●

●●● ● ●●●

●● ●●●●● ●

●● ●●●●●●● ●

●●●●●●●●

●●●

● ●●●

● ●● ●● ●●●●●

● ●● ●● ●

●●● ●●●●●

●● ●●● ●

● ●● ●● ●● ●●●

●● ●● ●

●● ●●● ● ●●

● ●●

● ●●●● ●

● ●●● ●●● ●●●● ●●

●●●

● ●●● ●●● ●

●●●●●●

●●

● ●●● ●●

●●●●●●

●●●● ●●●

●●● ●● ●

● ●● ●●● ●

●●●

● ●● ●●●

● ●●●

●●●●● ● ●●●● ●

●●●● ●●●●

●●●

● ●●●●●●

●● ●●●●●

●● ●●●●●●●●

● ●●●●●● ●

●●●● ●●●●●

● ●●● ●●●● ● ●

●●● ●●● ●●

● ●●

● ●● ●●

● ●●● ●●● ●● ●● ●● ●●

●●● ●

●● ●● ●●●

LL

HL

LH

HH

LL

HL

LH

HH

LL

HL

LH

HH

M
A

R
M

N
A

R
.X

M
N

A
R

.Y

−0.1 0.0 0.1 0.2 0.3 −0.1 0.0 0.1 0.2 0.3 −0.1 0.0 0.1 0.2 0.3

Horizontal panels show nonresponse mechanism and vertical panels show sampling designs.
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Table 3.4: Percent bias on M1, M2, and M3 for joint data.

M1 M2 M3

BSS BSS BSS BSS BSS BSS
F Z X F Z X F Z X

MAR

LL 0 1 1 1 1 2 0 0 0
HL 0 1 1 1 1 3 0 1 1
LH 0 2 1 1 2 1 0 0 0
HH 0 2 2 0 2 3 0 1 1

MNARX

LL 1 0 1 3 1 0 6 3 3
HL 0 1 1 1 0 2 2 0 0
LH 1 2 2 5 3 2 7 2 2
HH 2 3 2 4 4 1 3 1 1

MNARY

LL 28 7 7 23 7 5 6 1 2
HL 25 5 6 20 1 5 1 0 0
LH 4 1 1 1 1 2 3 1 1
HH 1 1 1 1 1 1 0 0 0

Note: M1 = P (Y > 1), M2 = P (Y > 1|X > 1), and M3 = P (X > 1|Z > 1).

3.4 Application to CPS Data

Our goal is to examine the relative performances of the three sampling designs in situations that

are likely to occur in practice. We conducted a repeated sampling experiment using an extract of

the public-use microdata sample from the 2010 Current Population Survey (CPS), 2010 American

Community Survey (ACS), and the Census Planning Database (PDB).

3.4.1 The Sample Population

CPS and ACS share many common variables and have similar target populations. Both use the

Master Address File (MAF) as the sample frame and together they represent a sensible example

to implement our proposed framework. In this practical application, CPS is considered the focal

survey, ACS is the benchmark survey, and PDB contains the frame information that is shared

for the two surveys. Our goal is to recover the population information (e.g.Census estimates) by
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imputing the CPS nonresponse through MICE using CPS respondent data, benchmark data (ACS)

and the frame data (PDB).

We first line up the sample domains between ACS and CPS and excluded subjects who reside

in only one of the ACS or CPS domains. For example, in ACS, subjects from Puerto Rico and/or

living in group quarters are excluded from our sample because CPS does not collect data from these

special populations. We further excluded subjects who are younger than 18 years old and/or have

missing value data on the PDB variable “percent mail-out mail-back”. This leaves a combined

ACS and CPS data with N = 666, 188 individuals. A random sample of 50% (N=333,094) is

selected for the analysis, serving as the sample population (i.e., sampling frame).

The selected five X variables shared by ACS and CPS are age, sex, race (white, black, and

other), education (less than high school, high school and more than high school), and Hispanic

origin (yes vs no). The age variable is continuous with an average of 49.5 years old. The other

four variables (Sex, race, education, Hispanic origin) are categorical. These variables are chosen

because they are typical of weighting models applied to this type of survey. There are 19 selected

frame variables (Z), all are continuous quantities (percentages) except for geographic region (4

levels). (See Table 3.5).

The original designs for both ACS and CPS are multi-stage stratified samples. For our illus-

tration, we treat the data as a simple random sample. We combine the ACS and CPS data as the

sampling population. PDB is based on the Census geographical boundaries, data are subject to

non-sampling error, whereas ACS data are subject to sampling error. For our purpose, we consider

PDB data as true values.

3.4.2 Study Designs

Of the 333, 094 subjects in the sample population we randomly selected 5% (nB = 16, 655) as

the benchmark survey. The remaining 316,439 subjects comprise the sample frame for the focal

surveys. Three concurrent focal surveys (F, BSS-X, BSS-Z) draw samples independently from this
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sample frame. Each focal survey has four sampling phases and the sample size for kth phase is

nk = 1000 for the fixed design, where k = 1, . . . , 4; n1 = 1000 and nk = 1200 for the adaptive

sampling designs (BSS-X, BSS-Z), where k = 2, 3, 4.

Four outcome variables are created such that X and Z variables have different predictive

strength for Y. Table 3.6 lists regression coefficients for the four models that created the four out-

come variables Y1, . . . , Y4. The last row on table 3.5 indicates the R-squared of all the variables on

Y. Table 3.6 lists the predictive power of X-variables and Z-variables for each Y. These Y variables

can be considered as index of well-being.

Three schemes of unit nonresponse mechanisms are evaluated: MAR, MNARX and MNARY .

To create unit nonresponse, response probabilities are generated using the coefficients listed below.

1. logit(e(Z)) = 0.01 + Zβ (MAR)

2. logit(e(Z,X)) = 0.01 + Zβ + Xγ (MNARX)

3. logit(e(Z,X, y)) = 0.01 + Zβ + Xγ + 0.15y (MNARY )

In the three models above, Z is an n × 18 matrix, X is an n × 7 matrix, and y is an n × 1 vector.

The columns of Z and X correspond to the variables listed in Table 3.5. For the all three models,

β is an 18 × 1 vector and γ is a 7 × 1 vector. For the MAR model, all elements of β are equal to

0.17. For the MNARX model, all elements of β and γ are equal to 0.16. For the MNARY model,

all elements of β and γ are equal to 0.15. The response status for sampled cases is simulated by

drawing Bernoulli random variables based on these response probabilities, creating an average of

50% unit nonresponse for each nonresponse mechanism.

At the imputation step, all imputation models include Y and all X and Z variables. The con-

tinuous variables, other than age and Ys, are standardized by their corresponding mean and sd and

modeled as a normal distribution. Age and Ys are modeled using predictive mean matching (pmm)

because normal transformed data resulted in poor predictions. The binary variables, sex and His-

panic origin, are predicted using logistic regression. Categorical variables, including geographic

91



region, education and race, are predicted using polytomous regression. Imputation diagnostics in-

clude the scatter plot of imputed Y versus respondent Y values, residuals plotted against propensity

scores, and density plots of imputed vs benchmark data. Five imputations are implemented and

each imputation runs for 10 iterations.

The experiment is conducted by first drawing simple random sample (s.r.s) as the benchmark

using the population described in section 3.4.1. Once the benchmark is selected, the phase samples

of focal surveys are drawn from the sample frame, excluding the benchmark subjects. Response

status (respondent/nonrespondent) is assigned to each sampled unit according to the given response

scheme. The MICE procedure imputes the unit nonresponse of focal survey phase sample for

each of the M = 5 imputed datasets. The new imputation is carried out after each phase of data

collection, using the cumulative respondent data, discarding previous imputed data. The estimated

mean values of Y are computed for the respondents, completed data, and joint data and variance

are estimated using the MI variance estimation method suggested by Rubin (1987). The entire

process is repeated 100 times (trials) for each nonresponse scheme.

For the evaluation of M&I strategy we report on the bias of the following measures.

1. Ȳj .

2. E1: %Yj > µj , where µj denotes population mean for Yj .

3. E2: % age> 50 and Yj > µj , and

4. E3: % Black, college degree, and Yj > µj .

where j = 1, . . . , 4. These estimates are averaged over 100 replicates for each of the following

data sets: respondents, completed data, and joint data.
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Table 3.5: CPS example. Population coefficients that created Y.

Y1 Y2 Y3 Y4

Intercept 121.023 -484.399 -13.861 -575.622
X variables

Age 1.831 1.834 4.078 4.077
Sex 2.356 1.615 3.803 3.755

Hispanic origin 1.315 2.346 3.801 3.588
Race White 1.33 2.091 4.082 4.367
Race Black 1.42 1.729 4.185 5.675

Education HS 0.391 1.936 3.647 5.086
Education College 0.982 3.127 3.467 4.541

Z variables
Region MW -0.996 -0.323 0.175 0.797

Region S -0.709 -0.108 -0.054 0.31
Region W 0.568 0.961 -0.901 0.577

Female(%) 0.053 0.139 0.05 0.129
under 5(%) 0.029 0.027 -0.02 0.163
65plus(%) 0.093 0.18 0.08 0.169

Hisp(%) 0.073 0.157 0.069 0.163
Blk alone(%) 0.081 0.154 0.07 0.166

AIAN alone(%) 0.08 0.116 0.083 0.161
Asian alone(%) 0.067 0.154 0.084 0.161

NH NHOPI alone(%) 0.083 0.169 0.03 0.123
NH SOR(%) -0.249 0.097 -0.03 0.184

Female No HB(%) 0.047 0.28 0.112 0.149
Prns in HHD(%) 0.074 0.162 0.073 0.165

Rel Child Under 5(%) 0.087 0.234 0.118 0.162
Vacant Units CEN 2010(%) 0.06 0.157 0.077 0.166

MailBack Area Count(%) 0.083 0.168 0.068 0.167
TEA Mail Out Mail Back(%) 0.072 0.163 0.072 0.159

R2 0.098 0.296 0.296 0.492
Population mean 658.994 592.882 627.626 612.805

Table 3.6: CPS example. Population R2 between Y and X and Z variables.

Scenarios R2(Y |Z) R2(Y |X)

Y1 LL 0.05 0.05
Y2 LH 0.05 0.25
Y3 HL 0.25 0.08
Y4 HH 0.24 0.27
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3.4.3 Results

Figure 3.7 illustrates results of Bias(Ȳ ) in boxplots from joint data of the CPS application. The

layout of this figure is identical to that of figures 3.3, 3.5, and 3.6. The findings are consistent with

those of the simulation study on multivariate normal data.

The benchmarked sequential sampling, BSS-X and BSS-Z, successfully improved respondent

representativeness, judging by the declining bias(Ȳ ) from respondent data as the sampling phases

progress. The benchmarked multiple imputation successfully reduces the bias(Ȳ ) for all three

sampling designs on completed data, yet the degree of bias reduction is greater for BSS-X and BSS-

Z designs, especially for MNARY missingness under LL, LH, and HL scenarios when comparing

to the F design.

For joint data, the population estimates of Ȳ are recovered through benchmarked multiple

imputation for MAR and MNARX missingness, regardless of sampling design and the degree

of respondent representativeness. The greatest benefit of the M&I strategy, however, occurs un-

der the MNARY missingness where the improvement in respondent representativeness through

M-step demonstrated its return by minimizing the bias of Ȳ through I-step, regardless of the pre-

dictive power of X and Z on Y . On the other hand, the I-step followed by the F design reduces

Bias(Ȳ ) for MNARY if cor(Z, Y ) = H . BSS-X and BSS-Z designs are comparable with respect

to Bias(Ȳ ) from joint data.

Table 3.7 shows the bias of three percentage measures, % Yj > µj , % (age > 50 and Yj > µj),

% (Black College Graduates and Yj > µj), computed from respondent, completed, and joint data,

where j = 1, . . . , 4. As expected, we found that when looking at respondent data, BSS-X and

BSS-Z designs perform better than F design, while the results are mixed when comparing BSS-

X and BSS-Z. The results depend on the measures, the missingness mechanism, and predictive

power of Z and X on Y . For example, the results for %Y > µ shows that BSS-X produces smaller

bias than BSS-Z under MAR, yet BSS-X produces larger bias than BSS-Z under MNARX . For

MNARY , BSS-X produces smaller bias when X has lower predictive power on Y (Y1, Y3) whereas
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BSS-Z produces smaller bias when X has higher predictive power on Y (Y2, Y4).

When looking at the results from the completed data, F design in general has an advantage over

BSS-X and BSS-Z under MAR. BSS-Z has advantage over BSS-X under MNARX . For MNARY ,

BSS-X in general reduces the bias more when cor(Y,X) = L whereas BSS-Z reduces more bias

when cor(Y,X) = H . Finally, estimates from joint data show comparable results under MAR and

MNARX over three sampling designs. The greatest benefit of the M&I strategy appears for joint

data under MNARY missingness, although the results also depend on the particular estimates.

3.5 Discussion

In this chapter, a “design with the estimation in mind” strategy is presented. Our goal is to repro-

duce the population estimates under unit nonresponse by using a benchmark survey. Our two main

objectives are 1) improving respondent representativeness and 2) recovering population informa-

tion under unknown nonresponse mechanism. The first objective is accomplished by the reduction

in the level of differences between respondents and the benchmark through benchmarked sequen-

tial sampling. The second objective is achieved by minimization of nonresponse bias in estimates

derived from benchmarked multiple imputation. By capitalizing on the benchmark (the auxiliary

variables), we provide a new paradigm for survey inference that leads to more robust statistics,

eliminating bias not only under ignorable nonresponse but also under one type of non-ignorable

nonresponse (MNARX).

Guided by the benchmark, a propensity score based sampling probability is used to monitor

and tailor the sampling decision sequentially, attenuating the impact of undesirable nonresponse

patterns. We show that adaptive sampling mediates the undesirable nonresponse and achieves

f(ZR, XR) ≈ f(ZB, XB). Later, we implement MICE to perform the benchmarked multiple

imputation. Imputation models iteratively fit to the benchmark data (XB, ZB) and the respondent

data (YR, XR, ZR), predicting missing information from unit nonresponse to construct a completed
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Figure 3.7: CPS example. Bias of Ȳ from joint data.
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Table 3.7: CPS example. Bias of E1, E1, E1 for respondent, completed and joint data.

Respondent Completed Joint

F AZ AX F AZ AX F AZ AX

Bias(E1)

MAR

LL 22 6 0 0 2 5 1 0 2
HL 22 5 5 1 1 2 0 0 2
LH 55 13 1 2 2 10 1 0 1
HH 54 11 1 2 2 15 1 1 3

MNARX

LL 26 6 18 5 1 16 0 3 3
HL 33 9 16 14 2 13 2 0 2
LH 53 13 46 4 3 41 0 0 8
HH 63 14 44 14 2 36 3 2 7

MNARY

LL 53 13 9 34 8 8 29 7 6
HL 59 17 3 41 11 1 24 7 6
LH 79 18 39 28 5 32 22 6 2
HH 86 20 37 37 6 31 19 5 0

Bias(E2)

MAR

LL 11 4 1 1 0 1 1 1 2
HL 9 2 2 1 0 2 2 0 0
LH 25 7 0 1 2 5 0 0 1
HH 25 6 0 0 0 8 1 0 2

MNARX

LL 24 7 2 14 4 3 2 1 2
HL 28 7 1 18 5 1 2 0 1
LH 35 10 17 12 4 15 1 1 3
HH 42 10 15 18 2 13 3 0 3

MNARY

LL 41 10 3 33 9 2 16 4 2
HL 47 14 7 38 10 6 15 4 3
LH 52 13 14 28 8 10 13 3 1
HH 61 14 10 37 8 9 12 3 1

Bias(E3)

MAR

LL 7 0 0 0 2 1 0 1 0
HL 6 1 1 0 1 1 0 0 0
LH 7 1 1 0 0 1 0 0 0
HH 8 1 0 0 0 2 0 0 0

MNARX

LL 7 1 4 1 0 5 0 0 1
HL 6 1 4 1 0 4 0 0 1
LH 8 0 6 0 1 6 0 0 1
HH 9 1 6 1 1 5 0 1 1

MNARY

LL 8 1 4 2 0 4 1 0 0
HL 8 2 4 3 1 4 2 1 0
LH 9 1 6 1 0 5 1 0 1
HH 9 2 5 2 0 5 1 1 1
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data (ŶC , X̂C , ẐC) of size ns. Under MCAR (not shown) and MAR (Response model 2: R ∼

Z),f(YB, XB, ZB) = f(Ŷ , X̂, Ẑ), is the direct result of imputation framework. Yet this result

also holds for response model 3 where R ∼ (X,Z). Lastly, we show that under response model

4: R ∼ (Y,X,Z), the bias was completely eliminated when Z has strong correlation with Y

(scenarios LH and HH); when Z has weak correlation with Y , f(Ŷ , X̂, Ẑ) still preserves a high

level of population structure with respect to the marginal distribution, joint distribution, and the

correlation structure (see Table 3.3), although biases of the estimates are not completely eliminated

(see Table 3.4).

The benefit of this strategy is twofold: 1) through each sampling phase, survey respondents

become more representative of the target population, attenuating undesirable nonresponse, lead-

ing to less nonresponse bias, 2) benchmarked multiple imputation models build on representative

respondent data and are better able to recover the population structure. Note that for the first

benefit, it is true even if nonresponse occurs in a rare population (e.g. Black and Hispanics) as

long as there are enough of them on the sampling frame to be selected from. It is also true for

non-proportionally allocated or non-self-weighting samples as possibilities for the focal survey.

In such cases, focal survey respondents need to be weighted appropriately before the assessment

of P (XR|ZR) ≈ P (XB|ZB) and the sampling probability in (3.2) can be extended with higher

technical complexity to include design weights.

Benchmarked sequential sampling using both Z and X does not out-perform the benchmarked

sequential sampling using Z alone. This is likely due to the fact that imputations do not reflect the

real values but a distributional information. Our sampling strategy requires accurately selecting the

targeted subjects in the micro-data level which call for knowing the real value of X. Our results

show that sampling by matching the observed Z values appear to be comparable to sampling by Z

and X̂ .

Previous research on unit nonresponse imputation has not produced definitive results when

compared to the conventional nonresponse weighting adjustments. The main problem is that the
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imputation models are built upon respondent data alone, whereas weighting adjustments take ad-

vantage of data Z that are also known for the unit nonrespondents. Imputation may recover the

nonrespondent information when nonresponse is missing at random. However, when missingness

is non-ignorable, the differential distributions for respondents and nonrespondents undermine the

ability of imputation to effectively restore nonrespondent information. The proposed research over-

comes this pitfall by employing an external micro-level benchmark that captures the data structure

of the target population, hence delivers desired results.

The proposed framework has the following limitations. (1) As with any simulation, the findings

are restricted to the situations posited in this study. The simulation experiment used only a few

variables from ACS and the Census PDB. A common survey has a lot more variables and the inter-

correlation among variables would be more complex. (2) Although simulation scenarios included

MAR and MNAR nonresponse mechanisms, the nonresponse mechanisms are relatively simple,

with known structures. The findings in this study are important but more simulation conditions are

needed to generalize the results. (3) The MNAR nonresponse mechanism was studied in a single

continuous outcome variable. Analysis on multivariate outcomes with a mixture of distributions

may lead to different conclusions. (4) In this study, the sample size of the focal survey is merely

a small fraction (5%) of the benchmark survey. Such sample size differences implicate a small

fraction of predictions are computed based on a set of stable chained equation models, which

warrants easy iteration convergence. Clearly, in practice these sample size conditions may not be

attainable leading to imprecise prediction models and convergence difficulties. (5) Finally, the key

ingredient in the proposed framework is a high quality benchmark that resembles target population

of interest and shares many common variables with the focal survey. Such a benchmark is only a

proxy of the population and may need to be constructed from several sources.

Given these limitations, mediating nonresponse mechanisms by benchmarked sequential sam-

pling can be recommended for surveys with suitable benchmark information, especially when the

proportion of sample size in focal survey is small relative to that of the benchmark, and the number
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of variables are moderate (around 10-20) for constructing the model fitting. To improve prediction

on focal survey data, strategies recommended for the implementation of MICE algorithm for miss-

ing data imputation are readily applicable for the proposed framework and should be diligently

followed (Abayomi, et. al. 2008; He et. al., 2009; Schafer, 1999, 2003; Stuart, et. al. 2009; White,

et. al., 2011).

Our research has important implication on the era of increasing organic data, data not col-

lected from probability samples. Combining data from various sources to produce information not

available from either data sources is not only inevitable but also sensible with respect to time and

cost. The proposed new inferential paradigm is simple, straightforward and readily applicable with

current statistical software.

In conclusion, a micro-level benchmark provides an opportunity to improve population esti-

mates through benchmarked sequential sampling and imputation. And the benchmarked multiple

imputation by chained equations is a feasible and effective way to recover population regardless

of the nonresponse mechanism. This paper has outlined the use of a micro-level benchmark for

benchmarked sequential sampling and benchmarked imputation by chained equations for predic-

tion on focal survey nonrespondents, focusing on the utility of improving population estimates for

nonresponse mechanism investigated here. Further research is warranted to investigate the flexi-

bility of the proposed method with respect to more complex nonresponse mechanisms.
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CHAPTER 4

Cost and Error Evaluation

Improving respondent representativeness by adaptive sampling designs is associated with reducing

nonresponse bias. Some speculate that reduced bias is at the expense of increased cost. This chap-

ter uses simulations to investigate cost and error of two adaptive sampling designs and compare

their performances with the conventional fixed design.

The simulations study the cost-effectiveness (efficacy) for weighted and imputed estimates of a

sample mean under different unit nonresponse mechanisms, including missing at random (MAR)

and missing not at random (MNAR). The cost-effectiveness measure “Efficacy” is derived from

root mean square error and cost, where cost is estimated from a new subject-level cost model.

RMSE of a sample mean is computed from two estimation methods: one uses a conventional

calibration weighting estimator and the other uses benchmarked multiple imputation estimator.

Other evaluation measures include RMSE per unit cost, bias and coverage rate. The comparison

is done between the new design of adaptive sampling and imputation and the traditional design of

fixed sampling and weighting (generalized regression estimator).

4.1 Introduction

This chapter concerns cost and errors from unit nonresponse when implementing adaptive survey

design by benchmarked sequential sampling methods. We use simulation studies to compare er-
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ror per unit cost (PUC) and cost-effectiveness (efficacy) from fixed and adaptive designs when the

MAR assumption required by weighting methods does and does not hold. The error here is nonre-

sponse error, but implicitly also encompasses coverage and sampling errors. This is fundamentally

different from the classical optimizing problem on cost and error that minimizes sampling error

for a fixed total survey cost (Groves, 2004). Our goal is to examine the relative performances of

different sample designs under the same set of auxiliary variables and experimental conditions.

Nonresponse error here is defined as root mean square error (RMSE) of the sample mean, a mea-

sure combining bias and variance. A subject-level cost model is developed. A simple random

sample (s.r.s) of a four-phase single stage survey from a simulated population is used to evaluate

these designs and estimation methods.

Two types of adaptive survey designs appear in the recent literature, one targets sampling prob-

ability and the other focuses on data collection. Adaptive data collection design is primarily a

nonresponse follow-up strategy which applies differential data collection protocols to different

subgroups of the nonrespondents (Groves and Heeringa, 2006; Wagner, 2008; Schouten, et al.,

2009). Adaptive sampling design obtains representative respondents through differential sampling

probabilities among over- and under-represented subjects while maintaining a coherent data collec-

tion protocol (see Chapters 2 and 3). Both types of adaptive designs aim at improving respondent

representativeness, reducing nonresponse bias. This chapter focuses on adaptive sampling designs.

Adaptive sampling designs by benchmarked sequential sampling methods as described in Chap-

ters 2 and 3 improve respondent representativeness by capitalizing on a micro-level benchmark data

which serves as a surrogate for the unobserved target population of interest. The benchmark data

shares sample frame and survey covariate information with the focal survey. One design (BSS-

Z) derives its sampling probability by matching the benchmark frame information, and the other

design (BSS-X) matches both frame and survey covariate information. In the multi-phase setting

where new sample replicates are introduced at each phase, the benchmarked sequential sampling

adjusts the sampling probability such that cumulative distributions of respondent characteristics
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for the focal survey converge to those for the benchmark data. Chapter 3 shows that both adaptive

sampling designs outperform conventional fixed design with respect to bias of descriptive survey

measures under ignorable and nonignorable nonresponse.

A general concern for adaptive sampling designs is their cost. For example, Section 2.3 demon-

strated a simulated population with an average true response rate of 50%. Samples drawn by the

adpative sampling designs consisted of more subjects with lower response propensities, hence

yielded lower response rates. Furthermore, to reach a comparable respondent size the total sample

size of adaptive sampling design is 15% larger than that of the fixed sampling design. While sub-

jects with lower response propensity are costlier to obtain a response, larger samples cost more. Yet

these incurred higher costs are prompted by the intent of bias reduction. To evaluate whether the

reduced bias offsets the increased cost, we compute the error per unit cost. Ultimately one prefers

a design that not only produces smaller error per unit cost but also costs less. A cost-effectiveness

scale, efficacy, is derived to consider both cost and error where a larger efficacy represents a de-

sign of better value. We suggest that, when designing a survey, efficacy provides a more sensible

assessment.

However, the use of cost models to design the sample is uncommon. Judkins, Waksberg, and

Northrup (1990) reported difficulties in using existing cost data from an ongoing survey to con-

struct a model for National Health Interview Survey (NHIS), a three-stage probability sample of

households. They discussed the differences of planning purpose cost data and administrative cost

data, in addition to the scarcity of detailed information on survey costs. Shimizu, et. al., (2001) il-

lustrated an example of approximating variable costs using NHIS administrative data, where many

assumptions were made to assign the aggregated administrative cost data to the case level. Groves

(2004) points out that the survey costs in reality are often nonlinear functions of sample size, dis-

continuous over large sample ranges, vary stochastically and have limited domain of applicability;

making it not generalizable from one survey to another. Given these challenges, our goal is to

establish a cost model for the purpose of comparing the sampling design and estimation methods,
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instead of developing a cost model for sample design purpose. We limit our discussion to survey

costs that occur before nonresponse follow-up.

While the cost model has its challenges, variance estimation is relatively straightforward. Vari-

ance estimation is tied to the inference methods, most commonly weighting and imputation, for

survey estimates with unit nonresponse (Kalton and Maligalig, 1991). We study variance estima-

tors for estimates of a sample mean from both weighting and imputation strategies. Both strategies

share the same objective of compensating for missing data and of making inferences from the sam-

ple to the target population. A conventional weighting strategy is implemented by a sequence of

weights (design weight, nonresponse weight and a calibration method) that applies to the respon-

dent data to reflect the variation of sample design, nonresponse and population structure (Kish,

1965; Deville and Särndal, 1992; Brick and Kalton, 1996; Valliant, et. al., 2013). The bench-

marked multiple imputation (MI) is implemented by appending benchmark data to respondent data

and imputing the nonrespondent data using multivariate imputation by chained equation (MICE)

(see Sect. 3.2.3). Both methods have been applied to unit nonresponse, although weighting strat-

egy is the current norm (Brick and Kalton, 1996; Rässler and Schnell, 2004; Brick and Jones,

2008) Weighting methods to adjust for unit nonresponse produce unbiased survey estimates under

MAR. In the case of informative auxiliary data, Sect. 3.3.2.2 show that benchmarked multiple

imputation for unit nonresponse is effective in removing bias especially under MNAR.

In Section 4.2, we describe methods of adaptive sampling design, variance estimation with

weighted and imputed data, the cost model under consideration, and evaluation measures. In

Section 4.3, we outline the study population, the sample designs used in the simulations, and the

models used to generate the missing data and to implement the weighting and imputations. Section

4.4 gives the results of simulation. The last section concludes with an analysis of error PUC and

efficacy of the adaptive sampling design compared with those under traditional fixed sampling

design and gives some discussion about the methods and their applicability.
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4.2 Method

We assume that suitable benchmark data are available for the planning and developing of the

adaptive sampling designs. We also assume that the focal survey is organized into sequential phases

and the total sample is divided into separate replicates that are introduced at the beginning of each

sequential phase. See chapter 2 Figure 1 for data structure that facilitates the implementation of

benchmarked sequential sampling designs. Two post-survey adjustment strategies are investigated:

the conventional post survey weighting strategy and the benchmarked multiple imputation (B-MI)

strategy. The frame variables used for weighting are also used for B-MI. While B-MI uses micro-

level data, the final step of the weighting adjustment (i.e. the calibration) uses aggregated data as

control totals. For our purpose, we ignore the uncertainty of the control total.

4.2.1 The Sample Designs

The fixed sampling design refers to the conventional sampling design where a sample is drawn to

be representative of the underlying target population. The sample design remains unchanged across

sampling phases. Subjects with the same characteristics have the same sampling probability across

sampling phases.

In contrast to the fixed sampling design the sampling probabilities of the adaptive sampling

design for a given characteristic vary across phases, depending on the distribution of the cumulative

respondent pool. We study two types of benchmarked sequential sampling designs, BSS-Z and

BSS-X, that are given in Chapter 3.

Suppose Y denotes survey outcome variables, X denotes survey covariates, and Z denotes

frame variables. The benchmarked sequential sampling designs call for an external benchmark

survey that shares a subset of X and Z variables with the focal survey.

The core idea of the benchmarked sequential sampling design is that a k-phase focal survey

is conducted. Benchmark data are available where PB(A) denotes the distribution of some vari-
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ables A. After obtaining the phase k − 1 respondent data, the goal is to restore the resemblance

between the benchmark and the cumulative respondents, denoted as Q(k−1)(A), with respect to the

distribution of A variables. This goal can be written as

π(k) × P (k)(A|sample) + (1− π(k))×Q(k−1)
R (A) = PB(A) (4.1)

where π denotes the proportion of the new sample to be added. The adaptive sampling probability

at phase k, P (k)(sample|A), can be solved by combining formula (4.1) with a Bayes formula.

The benchmarked sequential sampling design, BSS-Z, derives sampling probability by match-

ing the Z distribution of the focal survey and the benchmark survey. Its sampling probability for

subject i at phase k + 1 is

P (k+1)(sample|Z) = { PB(Z)

P (k)(Z)
− π(k) × Q(k)(Z)

P (k)(Z)
}P

(k)(sample)

1− π(k)

∝ PB(Z)

P (k)(Z)
− π(k) × Q(k)(Z)

P (k)(Z)

(4.2)

where PB(Z) is the Z distribution of benchmark, P (k)(Z) is population Z distribution at kth phase,

Q(k)(Z) is the cumulative respondent Z distribution obtained up to the kth phase, and 1 − π(k)

denotes the cumulative sample proportion at the kth phase. In practice, P (k)(Z) is approximated

by the Z distribution in sampling frame. In most cases, P (k)(Z) = P (Z) for all k.

The BSS-X design derives sampling probability through benchmarking Z and X, where X for

the subsequent phases are imputed. The sampling probability for subject i at phase k + 1 is

P (k+1)(sample|Z,X) = { PB(Z,X)

P (k)(Z,X)
− π(k) × Q(k)(Z,X)

P (k)(Z,X)
}P

(k)(sample)

1− π(k)
(4.3)

where P (k)(Z,X) denotes the distribution of (Z,X) from sampling frame. In most cases, P (k)(Z,X) =

P (Z,X) for all k.
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4.2.2 The Estimation Methods

We study inference for a sample mean by two estimation methods: the weighting method (WT)

and the benchmarked multiple imputation method (MI).

We denote the full sample by D. The subset of n(k)
R respondents at phase k sampling is denoted

as D(k)
R , and the subset of nonrespondents is denoted as D(k)

NR. Four phases are implemented for a

total sample size of
∑K

i=1 n
(i) = n, where K = 4. We then denote DR =

K⋃
k=1

D
(k)
R and DNR =

K⋃
k=1

D
(k)
NR.

The weighted estimator of a sample mean is ȳw =
∑

i∈DR
wiyi/

∑
i∈DR

wi, where yi is the

ith respondent reported value and wi is the corresponding survey weight. The imputed estimator

of a sample mean is ȳm =
∑

i∈DR
wiyi/

∑
i∈DR

wi +
∑

j∈DNR
wj ¯̂yj/

∑
j∈DNR

wj , where ¯̂yj is the

average of imputed values for unit j in the nonrespondent set.

4.2.2.1 Weighting

Weighting methods are the current convention to adjust for unit nonresponse. Respondents are

weighted by a sequence of weights to account for the uncertainty by sample design, nonresponse,

and the deviation from the target population. A weighted mean estimate can be written as

ȳw =
∑
i∈DR

diuigiyi/
∑
i∈DR

diuigi

where di denotes design weight, ui denotes nonresponse weight, and gi denotes weight from a

calibration strategy.

For the nonresponse weight, we predict the probability of response by fitting a logistic regres-

sion model using frame variables that are available for both respondents and nonrespondent. The ui

is the inverse of the estimated response probability. The nonresponse adjusted weights are further

calibrated to match the control totals, which are the total of benchmark data frame variables.

Among the model-assisted calibration strategies, including poststratification, raking, and the
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generalized regression estimator (GREG), we choose GREG which is known for improved effi-

ciency over traditional weighting methods by borrowing strength from auxiliary information (Dev-

ille and Särndal, 1992). GREG weighting adjusts the weights so that the weighted sample totals of

covariates conform to population totals (i.e., benchmark data totals in our case).

4.2.2.2 Benchmarked multiple imputation

Literature on imputation for unit nonresponse is scarce and has mixed findings (Rässler and Schnell,

2004). We study benchmarked multiple imputation (B-MI) which is applicable to the particular

situation when a micro-level benchmark data capturing a target population of interest is available

(see section 3.2.1). Benchmarked multiple imputation differs from other imputation adjustments

for unit nonresponse in that nonrespondents are imputed using both the benchmark data and the

respondent data, instead of respondent data alone. The inclusion of the benchmark data conforms

the unit nonresponse to a special case of item nonresponse, facilitating the imputation rationale.

We adopted Multivariate Imputation by Chained Equation (MICE) as the imputation strategy (see

section 3.2.3).

MICE is described in detail in van Buuren (2007) and van Buuren and Groothuis-Oudshoorn

(2011). As with the item nonresponse approach, the MICE assumes ignorable missingness when

conditioning on all other variables in the model. For each missing unit, m units are imputed, creat-

ing m completed datasets. The point estimate is the average of m imputations, Ȳm = 1
m

∑m
j=1 Ȳj .

The variance estimation takes into account within and between imputation variations, as suggested

by Rubin (1987) and Rubin and Schenker (1991).

T = Ū +
(
1 +

1

m

)
B (4.4)

where Ū is the average variance within the imputations and B is the variance between the imputa-

tions.
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4.2.3 The Cost Model

The most cited survey cost model is of a linear form. For example, the cost model for a two-stage

design with a total cost of C can be written as

C = C0 + C1n1 + C2n2 (4.5)

whereC0 denotes the fixed overhead cost, C1 denotes the sampling or operation cost corresponding

to n1 primary sampling units, PSU, (e.g., housing units), and C2 denotes the variable cost for n2

secondary sampling units (e.g. subjects).

Overhead cost is the fixed cost of conducting a survey regardless of numbers of PSUs and sam-

ple subjects. Sampling/operation cost refers to costs such as the implementation of sample design

(e.g. mapping and listing housing units, etc., field representative training, and the deployment of

the field staff). The variable cost is the costs which increases with increases in sample size at each

sampling stage. Example variable costs include hours, miles and other expenses related to locating,

contacting and interviewing (when possible) sampled units.

As the formula states, the sampling/operation costs and variable costs are frequently considered

separately. Sampling cost sometimes is included in the overhead cost C0, not affecting allocation.

Operation cost, depending on the survey design, may or may not increase with the increase in

sample sizes. For example, operation cost increases discontinuously in a household face-to-face

interview survey where a fixed ratio of field supervisor to field representative is needed. When the

sample size increases so that an extra field representative needs to be hired; the hiring leads to the

higher ratio of supervisor and staff, which in turn necessitates the hiring of a supervisor; in this

situation the operation cost increases with the increase in the sample size. On the other hand, if

the increase in the sample size fits into current field representatives’ workload, then the operation

cost would not increase. Variable cost (C2) is the cost that by definition links to the direct cost of

sampled subjects.
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Note that the setup of the cost model in (4.5) implies that all subjects, regardless of their

characteristics and response propensities, have identical variable cost, C2. This assumption is

often not true. Groves (2004) pointed out that there is evidence that the efficiency of interviewers

increases with the number of interviews completed. Therefore, the cost per sampled subject is a

decreasing function of sample size within an interviewer. The model in (4.5) also did not take into

account the discontinuous increase in operation cost, as the example described above.

In practice, survey costs are affected by the response propensity, in addition to the sample de-

sign, operational plan and the sample size. The reason is that cases with lower response propensity

are likely to incur higher cost. Therefore, a cost model needs to take into sensible consideration

the differential cost of sampling and operation between subjects with lower and higher response

propensities, and presents a fair comparison on the variable cost for these subjects. We focus

on survey cost before nonresponse follow-up. This is because the adaptive sampling designs im-

prove respondent representativeness by oversampling the under-represented subjects, instead of

conducting nonresponse follow-up. Conducting nonresponse follow-up increases the inferential

complexity (Brick, 2013).

We propose a cost model that specifies the individual-level costs and reflects the differences be-

tween subjects with lower (likely nonrespondent) and higher (likely respondent) response propen-

sities. For example, the sampling cost incurred by a likely nonrespondent may include the use

of special frame, samples from areas with strong minority concentrations, sub-sampling within

household, and screening (extra screener households). Operation cost incurred by likely nonre-

spondents may be allocating field representatives to a rural area or inner city, and special training

for field representatives on communication skills. The variable cost for a likely nonrespondent is

higher, perhaps due to the reasons such as harder to obtain a contact (requiring more visits) and

higher probability of rejection (requiring a more experienced interviewer and costlier data collec-

tion protocols).

With respect to the differential cost between adaptive sampling and fixed sampling designs,
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adaptive sampling designs over-sample subjects with lower response propensity, incurring higher

sampling, operation and variable costs. Suppose the overhead cost of conducting a survey is com-

parable between fixed and adaptive sampling designs, we can leave it out from the cost model for

our purpose. Let total cost of subject i, excluding overhead cost, be written as

Ci = Ai +Bi (4.6)

where Ai denotes the sample/operation cost and Bi denotes the variable cost. The setting of

formula (4.6) suggests that, depending on their characteristics, each subject has their own sam-

pling/operation and variable costs. Using this model, the total cost will be higher for a sample with

higher number of likely nonrespondents than a sample with lower number of likely nonrespon-

dents.

We assume that (a) subject i incurs the variable costBi, regardless of the sample design and (b)

subject i incurs sampling/operation cost Ai regardless of the sample design. That is, if subjects i

and j have the same response propensities, subject i is in fixed sampling design and subject j is in

adaptive sampling design, they incur the same total cost, Ci = Cj , regardless of the sample design.

We can simplify the comparison by considering the cost model as the inverse of the response

propensity. That is,

Ci ∝ 1/pi (4.7)

where pi is the response propensity for subject i. Formula (4.7) takes into account of the differ-

ential cost between likely respondents and nonrespondents. This cost model is subject-specific,

stochastic, and simple.

111



4.2.4 Evaluation Measures

Evaluation focuses on two aspects: root mean square error per unit cost (RMSE PUC) and cost-

effectiveness (efficacy). RMSE PUC assesses the sizes of the RMSE for a fixed cost. Efficacy (Eff)

takes into account both error and cost and evaluate the “best value” design. Cost unit is defined as

the inverse of the estimated response propensity.

The RMSE PUC is computed by

RMSEPUC = RMSE/Cs (4.8)

where RMSE =
√
MSE and Cs is the total cost for sample S. Cs =

∑
i∈S Ci, and Ci ∝ 1/pi,

where pi denotes response propensity for subject i. MSE is mean square error, estimated by

MSE(θ) = B(θ)2 + V (θ) (4.9)

where B(θ) is the bias of a point estimate θ, estimated by bias(θ̂) =
∑

S(θ̂S − θN)/r. θ̂S is the

estimate from sample S, and θN is the finite population parameter. V (θ) is the empirical variance

of θ̂, estimated by

V ar(θ̂) =
∑
S

(θ̂S − θ̄)2/r, (4.10)

where θ̄ =
∑

S θ̂/r and r denotes simulation replicates. We also compute Bias PUC and SE

PUC. Bias PUC is estimated by BiasPUC = bias(θ̂)/Cs. Standard error PUC is estimated by

SEPUC =
√
V (θ)/Cs.

RMSE PUC decreases when errors decrease, a desirable scenario. However, given the same

error sizes, designs with larger costs also yield smaller RMSE PUC, perplexing the comparison.

The ultimate preference would be a design that not only produces smaller errors per cost unit but

also costs less. We propose an efficacy measure that increases when errors decrease and/or costs
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decrease. The efficacy is computed by

Eff = f(Q)/g(C) (4.11)

where Q stands for Quality, proportional to the inverse of the error. f(Q) denotes a quality

function and g(C) denotes a cost function. Example efficacy measures are Eff = (RMSE)−1/Cs

and Eff = (Bias)−1/
√
Cs.

The relationship between quality and cost is likely to be complex and survey-dependent. For

illustration purpose, we compute EffRMSE , EffBias and EffSE .

EffRMSE = (RMSE)−1/g(Cs), (4.12)

Similarly, EffBias = (Bias)−1/g(Cs) and EffSE = (SE)−1/g(Cs). Note that GREG estimates

are unbiased under MAR and B-MI estimates are unbiased under MAR and MNARX , therefore

EffBias is only defined under MNARX and MNARY for GREG estimates and MNARY for B-MI

estimates. Three g(Cs) are evaluated: g(Cs) = Cs, g(Cs) =
√
Cs, and g(Cs) = log(Cs). These

cost functions imply linear, square root and logarithm relationship between the quality and the

cost, respectively. When comparing sample designs, larger efficacy is preferable.

We also consider relative efficiency, 95% confidence interval width and coverage rates. The

relative efficiency is computed by Rel.eff = SEF/SEBSS.Z , where larger Rel.eff values indi-

cate better efficiency for adaptive designs. The 95% confidence interval width is computed by

Width95 = 2× 1.96× SE. The percentages of intervals that include θN are based on the nominal

95 percent confidence intervals (θ̂ ± 1.96V̂ 1/2) computed for each of the r simulations for each

simulation scheme.
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4.3 Design of the Simulation Study

The simulations study the 1) root mean square error per unit cost (RMSE PUC), 2) cost-effectiveness

(efficacy), and 3) properties of the bias and variance for weighted and imputed estimates of the

sample mean under various unit nonresponse mechanisms.

4.3.1 Study Population and Sample Design

We simulate a finite population of sizeNPOP = 500, 000 that comprises of three variables (Y,X,Z)

from a multivariate normal distribution with the following joint distribution.

(Z,X, Y ) ∼ N3(0,Σ), and (4.13)

Σ =


1 cov(Z,X) cov(Z, Y )

cov(Z,X) 1 cov(X, Y )

cov(Z, Y ) cov(X, Y ) 1


where cov(Z,X) and cov(Z, Y ) are varied to examine the effects of Z with various degrees of

explanatory power on X and on Y . And cov(X, Y ) are varied to examine the effects of X with

various degrees of explanatory power on Y . From this finite population, a simple random sample

without replacement (srswor) of size NB = 25, 000 (5% of the finite population) is drawn to serve

as the benchmark data and the remaining 475, 000 units serve as the sampling frame for the focal

surveys. From this sampling frame, three concurrent focal surveys are simulated: the conventional

fixed sampling design (F), and the adaptive sampling designs (BSS-Z and BSS-X), as described in

Sections 2.2, 3.2.2 and 4.2.1.

For all three focal surveys, the first phase is a srswor of size 1, 000 (n(1) = 1, 000). This sample

size is carried on for phase II to IV for the F sampling design. For BSS-X and BSS-Z designs,

the kth phase samples are of size n(k) = 1, 200, where k = 2, 3, 4. The larger sample sizes are to
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account for higher selection probability on subjects who are less likely to respond. These sample

sizes in BSS-Z and BSS-X design result in comparable number of respondents as with the fixed

design such that we are weighting and imputing the same number of missing units at the estimation

step and arriving in the same sizes of completed data.

The simulation study can be described as a 2× 2× 2× 4 factorial design. The factors are:

Factor A: cov(Z,X): high vs low

Factor B: cov(Z, Y ): high vs low

Factor C: cov(X, Y ): high vs low

Factor D: Four nonresponse mechanisms based on the response models described below.

Among factors A and B, a high correlation of two variables is set to be ρ = 0.894 (i.e. R2 = 0.8)

and a low correlation is ρ = 0.447 (i.e. R2 = 0.2, where R2 is the coefficient of determination in

simple linear regression). For factor C, a high correlation between X and Y is ρX,Y = 0.707 (i.e.

R2(X, Y ) = 0.5) and a low correlation is ρX,Y = 0.3 (i.e. R2(X, Y ) = 0.09). The combination

scenario of a low correlation (L) in Factor A, a high correlation (H) in Factor B, and a high corre-

lation (H) is Factor C is labeled “LHH” herein. Similarly the other seven scenarios of Factors A,

B and C are labeled “LLL”, “LLH”, “HLL” ,“HLH”, “HHL”, and “HHH”.

4.3.2 Missing Data Mechanisms and Imputation Methods

For nonresponse mechanisms (factor D), we simulate response status < by drawing from Bernoulli

random variables with e(z, x, y) = Pr(< = 1|z, x, y) computed from four different nonresponse

models:

1. logit(e(z, x, y)) = Bernoulli(0.5). (MCAR)

2. logit(e(z, x, y)) = 0.00020 + 0.8z. (MAR)
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3. logit(e(z, x, y)) = 0.00001 + 0.31z + 0.61x. (MNARX)

4. logit(e(z, x, y)) = 0.00004 + 0.19z + 0.38x+ 0.38y. (MNARY )

where < = 1 if subject responded, 0 otherwise. Each of these models generate an average of 50%

response rate. For model 1, the response probability is independent of (Y, Z,X), i.e. MCAR.

For model 2, the response probability depends on Z alone, i.e. MAR. For model 3 the response

probability depends on both Z and X , labeled as MNARX . For model 4, the response probability

depends on (Y, Z,X), labeled as MNARY . Note, model 3 is MNAR since response depends on

X , which is not observed for nonrespondents.

For the imputation procedure, five imputations are implemented where each imputation runs

for 10 iterations. The imputation models include main effects of Y ,X and Z. Let n(K) denote the

intended sample size up to phase k, of it n(K)
R responded and n(K)

NR did not. There are two options

to obtain a completed data of size n(K). The first option applies to F design. At each phase, the

YNR, XNR and YB are imputed by MICE using a linear model based on the cumulative respondents

YR, XR, ZR, nonrespondent ZNR, and the benchmark XB, ZB.

The second option is to impute the nonrespondents, not only for (Y
(K)
NR ,X

(K)
NR) but also for

(Z
(K)
NR). This option is preferred for BSS-Z and BSS-X designs. Note that ZNR is imputed as

described in section 3.3 of Chapter 3. In addition, X values corresponding to Z of the next phase

sampling frame is also imputed for BSS-X design, since X̂ on the sampling frame is necessary for

the next phase sampling.

For all three designs, imputation is carried out by using all available data collected so far.

Therefore imputed values at phase k are always replaced by the imputed values at phase k + 1 for

both sampling and inference.

With the finite population generated by the data model (4.13), the procedure of a) drawing

a benchmark, b) forming a sampling frame, c) simulating three concurrent focal surveys, and d)

imputing nonrespondents, is carried out 1, 000 times (trials) for each of the 32 simulation scenarios.
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For each trial, the evaluation measures mentioned in Sect. 4.2.4 are computed. For each simulation

scenarios, we report the average quantities from the 1, 000 trials.

4.4 Simulation Results

We first present the estimated cost from the three sample designs to show the higher costs from

adaptive designs. To compare designs of higher cost with smaller bias to designs of lower cost with

bigger bias, we consider a measure, root mean square error per unit cost (RMSE PUC), that takes

into account of both cost and error. While a design may have smaller RMSE PUC, a preferable

design should also cost less, that is, cost-effective. To assess the cost-effectiveness for the three

sample designs we report on efficacy (Eff), a measure that increases when cost decreases and/or

error decreases. Lastly we show bias PUC, SE PUC and 95 percent confidence interval coverage

rates as described in Sect. 4.2.4 for GREG and B-MI estimators, respectively.

4.4.1 Cost

For a total sample of 1, 000 subjects with an average of 50% response rate, the average cost for the

fixed design is approximately 9, 508 cost units. To obtain a comparable number of respondents,

adaptive designs have to sample 1200 subjects which require an average cost of 13, 024 and 13, 273

cost units for BSS-Z design and BSS-X design, respectively. The relative cost of adaptive designs

are 37% and 40% higher than fixed design. The higher cost of the adaptive designs is attributed

to the objective of reducing nonresponse biases by oversampling of under-represented subjects.

Evaluating survey cost alone may not be as pertinent as considering survey errors per unit cost

since the later contains information on survey quality generated by the cost. Below we show

results from several evaluation criteria to assess a survey design on its cost and error.
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4.4.2 RMSE Per Unit Cost

Figure 4.1 shows the results of the simulations for the GREG (4) and the B-MI (•) estimates from

the 10, 000 trials for each of the 24 simulation schemes. The figure gives the RMSE PUC by three

sample designs for estimating Ȳ . A vertical line at 0.2 is drawn to aid visual comparison. All three

sample designs performed very well under MAR missingness with unbiased point estimates and

roughly comparable RMSE per unit cost. Under MNARX , all three sample designs had comparable

RMSE PUC over B-MI estimates. However, for the GREG estimates, the two adaptive sampling

methods were substantial improvements over the traditional fixed sampling design.

When missingness is MNARY , the results depend on the strength of the auxiliary (weighting)

variables. When the auxiliary variables (Z) are strong, i.e. ρZ,Y = H , RMSE PUC are comparable

among three sample designs within the bounds of simulation error, for both B-MI and GREG

estimates. The one exception where B-MI outperforms GREG for the fixed sampling design is

under LHH, suggesting that B-MI estimators capitalize on the high correlation between X and Y

to reduce RMSE while GREG does not.

When the auxiliary variables are weak, the two adaptive sampling designs outperformed the

traditional fixed sampling design substantially, for both B-MI and GREG estimators. This is be-

cause weak weighting variables cannot effectively reduce bias and variance (Little and Vartivarian,

2005), adaptive designs with representative respondents are less susceptible to weak weighting

variables. If weak auxiliary variables compound with the high ρX,Y , the B-MI estimators have

greater advantage over the GREG estimators. This advantage is most pronounced for the fixed

sampling design.

Since the RMSE PUC from the two adaptive designs, BSS-Z and BSS-X, are comparable, the

graphs presented hereinafter (Figures 4.2, 4.3, 4.4, and 4.5) only show the results for the BSS-Z

design with the F design. A downside of RMSE PUC is that, for designs with the same error sizes,

the costlier one will yield a smaller RMSE PUC.
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Figure 4.1: Root mean square error per unit cost (RMSE PUC) by sampling design at phase IV.
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4 denotes GREG estimates and • denotes the B-MI estimates. Horizontal panels show nonresponse
mechanism (MAR, MNARX , MNARY ) and cor(X,Y ) (High,Low) and vertical panels show sampling
designs. Within each plot, x-axis shows the values of RMSE PUC, and y-axis represents predictive power
of Z on X and Y (i.e. cor(Z,X) and cor(Z, Y )). For example, “LH” indicates a low correlation between
Z and X (ρZ,X = 0.2) and a high correlation between Z and Y (ρZ,Y = 0.8). F = fixed sampling design,
BSS-Z = benchmarked sequential sampling using Z, and BSS-X = benchmarked sequential sampling using
(Z, X̂). A vertical line at x = 0.2 is added to aid visual comparison.
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4.4.3 RMSE Efficacy

Efficacy assesses cost-effectiveness with larger numbers representing designs of “better value”.

Ratio of efficacy provides an easy measure to evaluate the relative cost-effectiveness from two

designs. A ratio larger than one indicates the numerator design is more cost-effective. Figure 4.2

shows the ratio of the efficacy measures, BSS-Z divided by F (denoted by ERBSS.Z
F = ER =

EffBSS.Z/EffF ) for the GREG (4) and the B-MI (•) estimates from the 10, 000 trials for each of

the 24 simulation schemes. Vertical lines at ER = 1 are drawn to aid visual comparison. There

are three vertical lines for each plot, with each line at ER = 1 from one of the three cost functions

(see Sect. 4.2.4). For example, the solid black line is drawn at ER = 1 for cost model 1. The

location of ER = 1 varies by the cost function, suggesting that the relative efficacy of two designs

hinges on the relationship between their quality and cost.

For EffRMSE under MAR, F design is more cost-effective since all three designs have compara-

ble RMSE but fixed design costs less. Similarly, under MNARX all three designs have comparable

RMSE over B-MI estimates and fixed design costs less, hence fixed design is of better value. For

the GREG estimates, BSS-Z design is more cost-effective than fixed design, echoing the results of

RMSE PUC.

When missingness is MNARY , adaptive designs are more cost-effective with the exceptions

of HHH and HHL scenarios. For these two scenarios, EffRMSE for the F design is slightly better,

comparable, and slightly worse than adaptive designs under linear, square root, and logarithm

cost function, respectively, for both B-MI and GREG estimates. When the auxiliary variables are

weak, the two adaptive designs are more cost-effective than the fixed sampling design, for both

B-MI and GREG estimators. The advantage of adaptive designs in efficacy is more pronounced for

GREG estimators, which is attributed to the poor performance of GREG under MNAR with weak

weighting variables. This finding echoes that of the RMSE PUC described above.

The results of efficacy suggest that when errors can be eliminated from post-survey adjustments,

fixed design is of better value. Otherwise, depending on the relationship between quality and
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cost, adaptive designs are often more cost-effective, especially under MNAR with weak weighting

variables.

In the following sections, we report on Effbias and EffSE , bias PUC, SE PUC, and 95% coverage

rate. We show the results from the GREG estimates, followed by the results for the B-MI. GREG

results reflect the current norm of practice whereas the B-MI results illustrate the improvement

over GREG by taking into account of X in the post-survey adjustments.

4.4.4 GREG Estimates

Theoretically the point estimates should be nearly unbiased with GREG weighted respondent data

if missingness is MAR (Deville and Särndal, 1992). As illustrated in the right hand panel of Figure

4.3, the expected outcome of zero bias holds for the three sample designs. For MNAR missingness,

the bias of fixed design is greater than that of the adaptive designs since adaptive designs obtain a

more representative respondent set. With greater cost and smaller bias, the bias per unit cost for the

adaptive design is expected to be noticeably more favorable than for the fixed design. The graph

of bias per unit cost in Figure 4.3 (first column) is consistent with this expectation.

The advantage of adaptive designs on bias PUC under MNAR is mostly echoed by the Effbias,

with the exceptions at the situations of strong auxiliary variables. When biases are minimized by

strong auxiliary variables, the advantage of adaptive designs decreases(with respect to their smaller

biases relative to its cost), resulting in diminished cost-effectiveness. This situation can be seen

under HHH and HHL scenarios. On the other hand, the advantage of adaptive design is especially

pronounced under MNARY when weighting variables are weak, i.e. ρzy = L. When ER values

are greater than one, they indicate better efficacy on BSS-Z design.

While the bias of the point estimates under MNARX and MNARY in the two adaptive sampling

designs are small (always less than 0.05 per unit cost), they still may be important if the ratio

of the bias to the standard error (SE) is relatively large. A large bias-to-SE ratio suggests that

the coverage rate can be much lower than the nominal level (Cochran, 1977). For the adaptive
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Figure 4.2: Efficacy and efficiency ratio of BSS-Z and F at phase IV.
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4 denotes GREG estimates and • denotes the B-MI estimates. Horizontal panels show nonresponse
mechanism (MAR, MNARX , MNARY ) and cor(X,Y ) (High,Low) and vertical panels show: RMSE
efficacy ratio (ERRMSE), relative efficiency (R.Efficiency) and SE efficacy ratio (ERSE). Within each
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predictive power of Z on X and Y (i.e. cor(Z,X) and cor(Z, Y )). For example, “LH” indicates a low
correlation between Z and X (ρZ,X = 0.2) and a high correlation between Z and Y (ρZ,Y = 0.8). F =
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solid and two dashed lines) for ER.RMSE and ER.SE are added to aid visual comparison where, for
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designs GREG estimates, the ratios never exceed 0.07, 2 and 3.5 for MAR, MNARX and MNARY

missingness, respectively. Much larger ratios occur for fixed design estimates, especially under

MNARY missingness, where five of the eight simulation schemes have ratios above 5. As expected,

the corresponding coverage rates for these large ratios are much lower than the nominal level, close

to zero in some cases as discussed later.

The variance is estimated empirically, as shown in equation (4.10). Theoretically good weight-

ing variables reduce not only bias but also the variance of the estimates. That is, the variances

are smaller when ρzy = H as comparing to when ρzy = L. These observations hold for all three

sample designs. The variance estimates are consistent with this theoretical result. The variances

are also smaller when weights are less variable, such as, for example under a representative respon-

dent set. We found that, for a given simulation scheme, the variances of the two adaptive designs

are consistently smaller than those of the fixed design. The graph of Rel.eff in Figure 4.2 (second

column) is consistent with this result.

With larger variance estimates and greater costs in fixed designs, the standard error (SE) per

unit cost for the fixed design is larger than that of the adaptive designs. This result is shown in

the second column in Figure 4.3. The large differences between the F and BSS-Z designs in SE

PUC are observed for all three nonresponse mechanisms. These differences are greater when the

weighting variables are weak.

Whether the advantage of adaptive designs on SE PUC translates to better efficacy depends on

the cost function. For example, the third column on figure 4.2 (4) shows the efficacy ratio of SE

for BSS-Z and F designs. When the cost function is linear or square root, the ERSE values are less

than one for all simulation scenarios, suggesting better efficacy on fixed design. For a logarithm

cost function, however, the adaptive designs have better efficacy.

For a given simulation scheme the variance differences in three designs are small, leading to

similar confidence intervals. However, the coverage rates of these confidence intervals may prove

to be more insightful. The third column in Figure 4.3 shows that the coverage rates of the 95%
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confidence intervals for the estimates under MAR missingness are generally close to the nominal

95 percent level for both F and BSS-Z designs.

The coverage rates for BSS-Z design under MNARX are between 80% and 95%, with the

exception of LHH, LLH, and HHL schemes (coverage rates of 55%, 55%, and 76%, respectively).

For these three schemes the F design has zero coverage rate, which is attributed to the relatively

large bias in point estimate. Under MNARY the coverage rates are zero for F design with the

exception of HHH, HHL, and LHL schemes. These schemes have coverage rates of 80%, 95%,

86% for the F design, and 94%, 95%, and 95% for the BSS-Z design. The BSS-Z design point

estimates for these three schemes are nearly unbiased. For those schemes where F design has zero

coverage rate, the coverage rates for BSS-Z design range from 25% to 68%, with the exception

of LLH scheme (8%) which corresponds to the largest bias on point estimate. Overall, adaptive

sampling designs produce confidence intervals with coverages that are vast improvements over

those for intervals based on fixed sampling design.

4.4.5 Benchmarked Multiple Imputation Estimates

Benchmarked multiple imputation (B-MI) applied to unit nonresponse can be more effective than

weighting strategies in reducing bias. Section 3.3.2.2 reported favorable results on bias reduction

for point estimates and multivariate correlation preservation for MAR and MNARX missingness.

These results are attributed to the effective utilization of micro-level data as well as the information

ofX covariates. However, micro-level benchmark information may not be available for all surveys,

it is unrealistic to favor one estimation method over the other. For this reason, we report the results

of B-MI with respect to the gains over traditional weighting method in the case where micro-level

data are available. Weighting strategy in most surveys is still the only feasible estimation method.

Figure 4.4 presents the results of the simulations for the B-MI estimates in the same format as

used in the GREG estimates. Note that scales for Figures 4.3 and 4.4 differ from each other. The

most noticeable pattern is the zero biases and their corresponding nominal level coverage rates un-
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Figure 4.3: GREG estimates for 1) bias per unit cost (Bias.PUC), 2) standard error per unit cost
(SE.PUC), and 3) 95% coverage rates by sampling design at phase IV.
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4 denotes BSS-Z design estimates and • denotes the F design estimates. Horizontal panels show
nonresponse mechanism (MAR, MNARX , MNARY ) and cor(X,Y ) (High,Low) and vertical panels show
evaluation measures (Bias.PUC, SE.PUC, and coverage rate). Within each plot, x-axis shows the values of
the corresponding evaluation measures, and y-axis represents predictive power of Z on X and Y (i.e.
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For Bias.PUC, a zero line is added. For SE.PUC, vertical line is at 0.012. For 95% coverage rates, the
vertical line is at 95.
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der MAR and MNARX for both BSS-Z and F designs. Recall the results of GREG estimates where

both adaptive designs and fixed design show biased estimates under MNARX . This is because non-

response depends on X , not on Y , hence GREG estimates of Y are biased for not using X in the

weight adjustment. The fact that biases can be eliminated by B-MI under MNARX suggests the

importance of incorporating X variables in the post-survey adjustment when unit nonresponse de-

pends on X . These results also imply that, under MAR and MNARX , cost-effectiveness (Effbias)

is better for the fixed design than for adaptive designs (for B-MI estimates) since the former cost

less. The graph of ERbias in Figure 4.2 (second column) is consistent with this expectation.

Under MNARY , the results of B-MI estimates are similar to those for GREG estimates where

the bias is not completely eliminated by B-MI even if Z is highly predictive of Y . Highly infor-

mative Z still reduce more bias than weak Z, and adaptive designs have smaller bias PUC than the

fixed design. However, The advantage of adaptive designs over the fixed design in reducing bias

is most pronounced when Z is weak. These findings are also echoed in efficacy where adaptive

designs have higher values on Effbias as comparing to the fixed design.

The coverage rates reflect similar results as those of the GREG estimates. In addition, when

ρxy = H , the B-MI estimates substantially improve the coverage rates for the adaptive designs

over those of the GREG estimates, again suggesting the importance of incorporating X variables

in the post-survey adjustments.

The variance (V ) is estimated empirically, as shown in equation (4.10). For SE (SE =
√
V ),

SE per unit cost, and Rel.eff, the results are similar to the GREG estimators. That is, for a given

simulation scheme, the variances of the adaptive designs are consistently smaller than those of the

fixed design, suggesting adaptive designs to be of better efficiency, as shown by the (larger than

one) values of Rel.eff (second column (Rel.eff) in Figure 4.2). With samller SE and larger cost,

adaptive designs yield smaller SE PUC than fixed design. In terms of efficacy, EffSE for the fixed

design is larger than the adaptive designs when cost function is either linear or square root. When

the cost funtion is logarithm, adaptive design EffSE is larger than the fixed deisgn except when
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weighting variables are strong (i.e., ρz,y = H).

Under MAR and MNARX the bias-to-SE ratio are zero for all three designs since the B-MI

point estimates are unbiased. For MNARY the adaptive designs have lower bias-to-SE ratio than

the fixed design, consist with the results of coverage rates. In addition, adaptive designs bias-to-

SE ratio for B-MI estimates are smaller than those of the GREG estimates. This is, however, not

always true for the fixed design. Under MNARY , the ratio for B-MI estimates are in general smaller

than those of the GREG estimates, with the exception of HHH, HHL and LHL simulation schemes.

Not surprisingly, the GREG estimates have better 95 percent confidence interval coverage rates for

these three schemes comparing to the B-MI estimates, suggesting that the inclusion ofX variable in

the post-survey adjustment may not necessary improve the results under MNARY when weighting

variables have strong correlation with Y .

4.5 Conclusion and Discussion

In today’s survey climate with tight budgets and high nonresponse, considering a survey design

with favorable cost-effectiveness is preeminent. This study employed simulations to examine the

cost and error implications when using the benchmarked sequential sampling methods to improve

respondent representativeness, under a single-stage four-phase simple random sample design. We

developed a subject-level cost model and presented simulation variance from two types of post-

survey adjustments for error estimation. The cost model was nonlinear, stochastic, and inversely

proportionate to subjects response propensity. For the variance estimators, we showed a current

practice for post-survey adjustments, GREG estimate, and an alternative adjustment, benchmarked

multiple imputation (B-MI) estimate. The benchmarked multiple imputation offered some insights

for additional gains over GREG on bias reduction in situations where micro-level benchmark data

and X covariates were available.

Under MAR, both GREG and B-MI produced unbiased point estimates regardless of sample
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Figure 4.4: Benchmarked multiple imputation estimates for 1) bias per unit cost (Bias.PUC), 2)
standard error per unit cost (SE.PUC), and 3) 95% coverage rates by sampling design at phase IV.
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4 denotes BSS-Z design estimates and • denotes the F design estimates. Horizontal panels show
nonresponse mechanism (MAR, MNARX , MNARY ) and cor(X,Y ) (High,Low) and vertical panels show
evaluation measures (Bias.PUC, SE.PUC, and coverage rate). Within each plot, x-axis shows the values of
the corresponding evaluation measures, and y-axis represents predictive power of Z on X and Y (i.e.
cor(Z,X) and cor(Z, Y )). For example, “LH” indicates a low correlation between Z and X (ρZ,X = 0.2)
and a high correlation between Z and Y (ρZ,Y = 0.8). Vertical lines are added to aid visual comparison.
For Bias.PUC, a zero line is added. For SE.PUC, vertical line is at 0.012. For 95% coverage rates, the
vertical line is at 95.
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design. For MNARX , B-MI point estimates were unbiased while those of the GREG were biased.

This is an anticipated result since GREG used only Z for weighting adjustment whereas B-MI used

both Z and X in the adjustment. Although bias persisted under MNARY for GREG and B-MI

estimates, it was largely reduced when Z had high correlation with Y and X . And B-MI estimates

had smaller bias than GREG estimates when ρXY = H , regardless the strength of Z. When bias

persisted, the adaptive designs outperformed the fixed design for bias and cost-effectiveness. The

differences in the biases of the sample designs support claims that, when MAR assumption is

violated, adaptive designs are superior in general.

When the MAR assumption was violated, adaptive designs consistently had more favorable

bias properties, hence better coverage rates. When the biases were small, both GREG and B-

MI estimates often produced confidence intervals with the nominal coverage levels. When the

point estimates were seriously biased, both variance estimators produced confidence intervals that

covered at far less than the nominal rate. Poor coverage rates are expected for GREG estimates

under MNARY , especially when ρZ,Y is low. This is because the MAR assumption is required

for the post-survey adjustment to arrive at unbiasedness of the point estimate. B-MI estimates had

better coverage rates under MNARY . The differences in the coverage rates of the two estimators

are consistent to support claims that, when MAR assumption is violated, B-MI estimators are

superior in general.

Adaptive designs also produced smaller variances on point estimates compared to the fixed

design. For B-MI estimators, the differences in general were small especially when Z was strong

predictor of Y . The differences on variance estimates for the designs were more pronounced under

GREG estimators. Taking into account of both bias and variance, we computed root mean square

error (RMSE). The results suggested that the RMSE by both WT and MI performed well in single

stage samples estimates of survey mean; B-MI performs much better when MAR assumption was

violated.

Overall, adaptive designs were more cost-effective than the fixed design when the MAR as-
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sumption was violated and weighting variables were weak. Specifically, for GREG estimates

adpative designs offered better quality per unit cost under MNARX and MNARY . B-MI strat-

egy minimized bias effectively for both types of sample designs, the cost-effectiveness of adaptive

designs were more evident under MNARY when ρZ,Y = L. For both adaptive and fixed designs,

GREG and B-MI estimates were comparable under MAR, and B-MI outperformed GREG esti-

mates under MNAR with ρX,Y = H or under HHL scenario. For adpative sampling designs,

B-MI estimates outperformed GREG estimates in cost-effectiveness. For the fixed design, B-MI

outperforms GREG with the exception of when ρZ,Y was high.

This article does not intend to answer the question of whether we should weight or impute for

unit nonresponse. Both methods have their strengths, weaknesses and applicability. The point here

is that with budget shortage and increasing nonresponse, strategies that can effectively capitalize

on the available auxiliary data become increasingly important in minimizing the survey error and

maximizing the cost-effectiveness.

Our simulation results showed that B-MI (using both Z and X information) outperformed

GREG weighting (using only Z) in reducing bias and variance of the population mean estimate,

for both the fixed design and adaptive design, and under both ignorable and nonignorable nonre-

sponse. We attribute this to two factors: First, B-MI takes advantage of the correlation structure

among auxiliary variables which provides better variance reduction than GREG weighting strategy.

Second, B-MI is model-based. It models survey variables by their distributions and therefore is

able to better predict the values of nonrespondents. In contrast, the GREG weighting strategy uses

same variables to develop weights to correct the entire dataset. However, B-MI is only applicable

to situations where a micro-level benchmark data is available. Weighting, on the other hand, needs

relatively little information on non-respondents. The choice of weighting versus imputing should

be a data-driven decision.

While variance estimation is relatively straightforward for the nonresponse adjustment, the

development of cost models has received less attention among statisticians. James, et. al. (1997)
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Figure 4.5: BSS-Z design GREG and B-MI estimates for 1) bias per unit cost (Bias.PUC), 2)
standard error per unit cost (SE.PUC), and 3) 95% coverage rates at phase IV.
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4 denotes GREG estimates and • denotes the B-MI estimates. Horizontal panels show nonresponse
mechanism (MAR, MNARX , MNARY ) and cor(X,Y ) (High,Low) and vertical panels show evaluation
measures (Bias.PUC, SE.PUC, and coverage rate). Within each plot, x-axis shows the values of the
corresponding evaluation measures, and y-axis represents predictive power of Z on X and Y (i.e.
cor(Z,X) and cor(Z, Y )). For example, “LH” indicates a low correlation between Z and X (ρZ,X = 0.2)
and a high correlation between Z and Y (ρZ,Y = 0.8). Vertical lines are added to aid visual comparison.
For Bias.PUC, a zero line is added. For SE.PUC, vertical line is at 0.01. For 95% coverage rates, the
vertical line is at 95.
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developed a spreadsheet-based survey budgeting system for the National Center for Education

Statistics for computer assisted telephone interview (CATI) surveys (James et al., 1997). A set of

input parameters are: 1) a project time schedule broken down by activity, e.g. survey design, staff

recruitment, data collection, data processing, report preparation. 2) sample design factors, e.g.

sample targets, average interview length, etc., broken down by strata or subpopulation 3) projected

sample performance factors, e.g. incidence rates, response rates, etc. 4) CATI factors, e.g. number

of calling centers, workload distribution across centers, paid hours and calling hours per shift,

interviewer/supervisor ratios, etc. 5) unit cost for field and office personnel (including fringes),

telephone time, equipment printing, postage, etc. However, we are unable to find literature on the

performance evaluation and survey design examples of this system.

Judkins, et. al. (1990) discussed the difficulty in fitting a complex cost model using both

administrative data and data from special cost studies, and the difficulty of optimization efforts with

simple cost considerations. The main reason of these difficulties is that the purposes of tracking

cost by survey organizations do not coincide with the needs of cost modelers. The cost modeler

would like to associate costs with individual cases whereas costs monitored by organizations focus

on paying the line items and field staff (Judkins, et. al. 1990). Tracking costs at the case level often

requires more complicated approach to recording time and expense which requires the design of

project specific applications. All of these issues limit the development and application of cost data

on survey design and evaluation.

In this study, we use a simple model that relates the cost to the inverse of the response propen-

sity estimated for the sampled unit. Although it does not reflect all of the small subtleties of a

large scale data collection such as interviewer variability, scale economies, learning efficiencies,

and extreme efforts to convert initial nonrespondents, this simple approach has the benefit of being

generalizable from one survey to another. We assume the volume of work (i.e. sampling, oper-

ation, and data collection cost) for subjects with the same response probability remain the same

regardless of sample design. In some situations the variable cost of a sampled subject is inversely
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proportional to its response propensity regardless of sample design, but sampling and operation

costs drastically differs depending on the sample design. In such cases, the presented cost model

would only account for partial differences on cost between the two designs, and the benefits on

error per unit costs for adaptive designs may change. This awaits further investigation.

We show the findings of one sample mean. When applied to multiple outcome variables, one

can aggregate the bias or RMSE over all variables. The results of this study give practitioners of

conventional sample design empirical evidence that adaptive sampling design is both cost effective

and less susceptible to unknown missingness mechanisms.
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CHAPTER 5

Conclusion

This dissertation develops a new inferential paradigm to improve survey data quality, by capitaliz-

ing on benchmark data which captures the target population of interest. The inferential paradigm

consists of sampling and imputation stages. This paradigm improves survey inference for surveys

with rich micro-level auxiliary data and surveys that use respondents of other surveys as a sampling

frame. The new paradigm first improves respondent representativeness by benchmarked sequen-

tial sampling that conforms the frame and covariate information of the focal survey respondents

to those of the benchmark. With improved respondent representativeness, benchmarked multiple

imputation recovers the population information, leading to better quality survey estimates that are

less susceptible to bias under unknown nonresponse mechanisms. A new subject-level cost model

is used to evaluate the cost-effectiveness of the proposed paradigm relative to the cost-effectiveness

of a traditional paradigm. A traditional paradigm is referred to a fixed sampling design with post-

survey weighting adjustment.

5.1 Chapter Overview

Improving respondent representativeness by adaptive design is associated with reducing nonre-

sponse bias (Sarndal 2014, Schouten, et. al. 2016). Current methods for adaptive designs focus on

data collection. Adaptive data collection designs are primarily a nonresponse follow-up strategy
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which applies differential data collection protocols to different subgroups of the nonrespondents.

Although intricate strategies targeting nonresponse follow-up improve respondent representative-

ness, it is a task that not only complicates the inferential process but also inflicts additional cost

(i.e. costs related to nonresponse follow-up). In contrast, this dissertation develops adaptive sam-

pling designs that obtains representative respondents through differential sampling probabilities

for over- and under-represented subjects while maintaining a coherent data collection protocol.

Two adaptive sampling designs are proposed, BSS-Z and BSS-X. Guided by the benchmark, a

propensity score based sampling probability is used to tailor the sampling decision sequentially,

attenuating the impact of undesirable nonresponse mechanisms. In a multi-replicate survey set-

ting, the BSS-Z method sequentially conforms the frame variables of focal survey to those of the

benchmark, improving the representativeness of the respondent data. Employing a similar mecha-

nism, the BSS-X method conforms not only the frame but also survey covariates of focal survey to

those of the benchmark. Both sampling designs are evaluated by simulation experiments to mimic

adaptive designs under various nonresponse mechanisms, including two types of not missing at

random (NMAR) mechanisms, NMARX and NMARY . The results show that the respondent rep-

resentativeness improves at each successive sampling phase. The greatest benefit to these sampling

paradigm is that representative respondent pool maintains a similar variance-covariance structure

to that of the benchmark, thereby producing less biased descriptive statistics.

Prior studies on unit nonresponse imputation obtained mixed results, perhaps in part caused by

the fact that imputation models were built by the respondent data alone. Focal survey respondent

data often bear unknown nonresponse patterns, thereby producing mixed results on inferences. In

this dissertation, the imputation of unit nonresponse is guided by the benchmark. The benchmarked

multiple imputation (B-MI), implemented after obtaining representative respondent data, are better

able to recover the population structure and eliminates bias not only under ignorable nonresponse

(MAR) but also under one type of nonignorable nonresponse (NMARX). We implemented Multi-

variate Imputation for Chained Equation (MICE) to perform the benchmarked multiple imputation.
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The imputation models iteratively fit to the benchmark data and the cumulative respondent data,

predicting missing information for unit nonrespondents to construct a completed dataset, i.e., re-

spondent data and imputed nonrespondent data. The completed data preserves a high level of

population structure with respect to marginal distribution and joint distribution, although biases of

the estimates are not completely eliminated under MNAR.Y missingness. The point estimates of

the sample mean are unbiased for both MAR and NMARX . The greatest benefit of the proposed

approach is nonresponse bias reduction under NMARX and NMARY missingness.

Conventional wisdom suggests that the reduced error often is a tradeoff from increased cost.

We use simulation to examine the cost and error implications under a single-stage four-phase sim-

ple random sample design. We developed a cost model and evaluated the cost-effectiveness of

proposed paradigm. The subject-level cost model is nonlinear, stochastic, and inversely propor-

tionate to subjects response propensity. For error estimation we presented two variance estimators,

a current practice for post-survey adjustments (i.e., GREG estimate), and an alternative adjust-

ment (i.e., benchmarked MI estimate). The benchmarked MI offers some insights for additional

gains over GREG on bias reduction in situations where micro-level data and survey covariates are

available.

Overall, while we found that the traditional fixed sampling and weighting adjustments out-

performed the proposed strategy on cost-effectiveness when missingness is MAR, the proposed

strategy outperformed the traditional strategy when missingness is NMAR. Although bias persists

under NMAR, the adaptive designs outperformed the fixed design for both bias reduction and

cost-effectiveness. In practice, it is not possible to assess whether the unit nonresponse is MAR or

NMAR without obtaining additional data for nonrespondents (Brick, 2013). But where real world

limits exist, the advantage for the proposed strategy was even more pronounced when auxiliary

variables are weak and/or survey variable (Y) is strongly correlated with survey covariates (X).

The differences in bias reduction and cost-effectiveness of the sample designs support claims that,

when the MAR assumption is violated, adaptive designs are superior in general.
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When the MAR assumption is violated, adaptive designs consistently have more favorable

bias properties, thereby better coverage rates for confidence intervals. When the point estimates

are seriously biased, Benchmarked MI estimates have better coverage rates under NMARY . The

differences in the coverage rates of the two estimators are consistent to support claims that, when

the MAR assumption is violated, Benchmarked MI estimators are superior in general.

In summary, the proposed adaptive designs are more cost-effective than the fixed sampling

design when the MAR assumption is violated and weighting variables are weak predictors of sur-

vey outcome variables. Our research has important implications for the era of increasing survey

cost and increasing availability of digital data, e.g., administrative data, medical records, and para-

data. Combining data from various sources to produce information not available from a single data

source is not only inevitable but also sensible with respect to time and cost. The time is ripe for

a new path forward. The proposed strategy is simple, straightforward and readily applicable with

current statistical software. Most importantly, the proposed inferential paradigm would serve as an

alternative and cost-effective survey design strategy in improving the quality of survey inference.

5.2 Limitations

The issues of incomparability and issues of modelling are common challenges in the research

on combining surveys (Schenker and Raghunathan, 2007). The sources of incomparability could

come from the modes of interviewing, the survey contexts, the sample design, the survey questions,

and the types of respondents and/or the sources of respondent information. The modeling issues

for combining surveys range from variable selection to the forms of the models, and in some cases,

small sample sizes.

For example, Schenker et. al. (2010) used clinical information from the National Health and

Nutrition Examination Survey (NHANES) to improve on analyses of the National Health Interview

Survey (NHIS), adapting an imputation-based strategy. NHIS respondents provided information
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from their memory for themselves and household members whereas NHANES respondents re-

ceived physical health examination. Such incomparability of two survey designs in respondents

(self vs. proxy) and sources of respondent information (self-reported vs. examination) requires

careful thoughts when models fitted to the NHANES are applied to the data from the NHIS.

Incomparability and its related issues limit our methods and deserve further investigation.

5.3 Future Research

Here we list some extensions that one could pursue.

In chapters 2, 3, and 4 we illustrated our strategy for a simple random sample design. Surveys

nowadays, however, are often multipurpose with complex sample designs. Extending the idea of

benchmarked sequential sampling and benchmarked multiple imputation strategy to account for

complex survey design could further generalize our method.

For example, the sample design of the National Health Interview Survey (NHIS) is a multistage

area probability sample where the first stage consists of strata formed by primary sampling units

(e.g. counties), the second stage are clusters formed by secondary sampling units (e.g. housing

units) and at the third stage black, Hispanic and Asian are oversampled with a higher rate.

When using NHIS as the benchmark, a focal survey may have the same multistage sample

design, or may have a different sample design. In the first case, the complex sample design is

identical for both the benchmark and the focal survey. A more realistic and generalized situation is

the second case where the focal survey has a different complex survey design from the benchmark

survey.

In chapter 4 we evaluated the cost and error properties of our strategy. We compared the errors

from the benchmarked multiple imputation and the GREG estimates using the empirical variances

of the adaptive design. A more technically involved extension would be to develop the analytical

variance formula of the adaptive design. The development of such formula enable reserachers to
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evaluate the error of their survey estimates in a direct fashion with much less computation.

Recall that, at each mitigation and imputation iteration, our method monitors the convergence

between the benchmark and the focal survey on frame variables alone (BSS-Z) or frame variables

and the survey covariates (BSS-X). A direct extension of our method is to monitor the convergence

of survey outcome variables (Y). Survey outcome variables are predicted for the benchmark data

and the nonrespondent data using imputation models iteratively fitted to all the observed data

in the benchmark and the focal survey. Monitoring the changes in differences of the predicted

survey outcome variables between the benchmark and the focal survey across phases may provide

information on the necessity of further data collection.

Quantifying the relationship between these changes and the cost may serve as a tool for cost-

and-error optimization. Also, similar estimates on survey outcome variables between the bench-

mark and the focal survey suggest information saturation for imputation models. Quantifying the

changes of predicted survey outcome variables may be developed into a survey stopping rule. For

example, one could stop the survey data collection when the difference between the benchmark

and the focal survey is equal to or smaller than a predefined distance measure. And moreover, this

quantification may result in the development of a new representativeness indicator or bias indicator

that measures the similarity of the benchmark and the focal survey.
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[70] Rässler S, Schnell R. “Multiple imputation for unit-nonresponse versus weighting including
a comparison with a nonresponse follow-up study.” No 65/2004, Discussion Papers, Statistics
and Econometrics, University Erlangen-Nuremberg,

[71] Reist B. “Early Experience of Adaptive Design Work in the NSCG.” Presentation at the
Federal Economic Statistics Advisory Committee Meeting, June 2014, available at ftp:
//ftp.census.gov/adrm/fesac/2014-06-13_reist.pdf, [accessed on Sep
30, 2014]

[72] Rosenbaum PR, Rubin DB. “The central role of the propensity score in observational studies
for causal effects.” Biometrika 1983; 70:41–55.

[73] Rosenbaum PR, Rubin DB. “Constructing a control group using multivariate matched sam-
pling methods that incorporate the propensity score.” American Statistician 1985; 39: 33–38.

[74] Royall R, Herson J. “Robust Estimation in Finite Populations I.” Journal of the American
Statistical Association 1973; 68(344):880–889.

[75] Rubin DB. Multiple imputation for nonresponse in surveys. Wiley: New York, 1987.

[76] Rubin DB, Schenker N. “Multiple Imputation in Health Care Databases: An Overview and
Some Applications.” Statistics in Medicine 1991; 10:585–598.

[77] Rubin DB. “Using propensity scores to help design observational studies: Application to the
tobacco litigation.” Health Services and Outcomes Research Methodology 2002; 2:169–188.

[78] Rubin DB. “The design versus the analysis of observational studies for causal effects: paral-
lels with the design of randomized trials.” Statistics in Medicine 2007; 26(1): 20–36.

[79] Särndal CE, Lundström S. Estimation in surveys with nonresponse. Wiley: New York, 2005.

[80] Särndal CE. “The 2010 Morris Hansen Lecture Dealing with Survey Nonresponse in Data
Collection, in Estimation,” (with Discussions) by M. Brick and R. Tourangeau, Journal of
Official Statistics 2011; 27(1):1–21.

145

http://www.nonresponse.org/index.php?fl=2&lact=1&bid=621&avtor=509&parent=3
http://www.nonresponse.org/index.php?fl=2&lact=1&bid=621&avtor=509&parent=3
ftp://ftp.census.gov/adrm/fesac/2014-06-13_reist.pdf
ftp://ftp.census.gov/adrm/fesac/2014-06-13_reist.pdf


[81] Särndal CE, Lundquist P. “Accuracy in Estimation with Nonresponse: A Function of Degree
of Imbalance and Degree of Explanation.” J Surv Stat Methodology 2014; 2(4):361–387.

[82] Schafer JL. Analysis of Incomplete Multivariate Data. Chapman & Hall: London, 1997.

[83] Schafer JL. “Multiple imputation: a primer.” Statistical Methods in Medical Research. 1999;
8:3–15.

[84] Schafer JL. “Multiple imputation in multivariate problems when the imputation and analysis
models differ”. Statistica Neerlandica 2003; 57:19–35.

[85] Schenker N, Gentleman JF, Rose D, Hing E, Shimizu IM. “Combining estimates from com-
plementary surveys: a case study using prevalence estimates from national health surveys of
households and nursing homes.” Public Health Reports 2002; 117:393–407.

[86] Schenker N, Parker JD. “From single-race reporting to multiple-race reporting: using impu-
tation methods to bridge the transition.” Statistics in Medicine 2003; 22:1571–1587. DOI:
10.1002/sim.1512

[87] Schenker N, Raghunathan TE. “Combining information from multiple surveys to improve
measures of health.” Statistics in Medicine 2007; 26:1802–1811.

[88] Schenker N, Raghunathan TE, Bondarenko I. “Improving on analyses of self-reported data in
a large-scale health survey by using information from an examination-based survey.” Statis-
tics in Medicine 2010; 29(5):533–545.

[89] Schouten B, Cobben F. 2007. “R-indexes for the comparison of different fieldwork strategies
and data collection modes,” Discussion paper 07002, Voorburg/Heerlen, The Netherlands:
Statistics Netherlands.

[90] Schouten B, Cobben F, Bethlehem J. “Indicators of Representativeness of Survey Nonre-
sponse,” Survey Methodology 2009; 35:101–113.

[91] Schouten B, Shlomo N, Skinner C. “Indicators for monitoring and improving representative-
ness of response.” Journal of Official Statistics 2011; 27:231–253.

[92] Schouten B, Calinescu M, Luiten A. “Optimizing quality of response through adaptive survey
designs.” Survey Methodology 2013; 39(1):29–58.

[93] Schouten B, Cobben F, Lundquist P, Wagner J. “Does more balanced survey response imply
less non-response bias?” Journal of Royal Statistical Society, Series A 2016; 179(3): 727–
748.

[94] Shimizu I, Lan F. “Approximation of Variable Costs for the National Health Interview Sur-
vey”, Proceedings of Survey Research Methods Section, American Statistical Association
2001; 3197–3202.

146



[95] Stuart EA, Azur M, Frangakis C, Leaf P. “Multiple imputation with large data sets: a case
study of the Children’s Mental Health Initiative.” Am J Epidemiol 2009; 169(9): 1133–1139.

[96] Tang G, Little RJA, Raghunathan TE. “Analysis of multivariate missing data with nonignor-
able nonresponse.” Biometrika 2003; 90(4):747–764.

[97] The Census Planning Database, http://www.census.gov/research/data/
planning_database/

[98] Tourangeau R, Plewes T. ”The growing problem of nonresponse”, in Nonresponse in Social
Science Surveys: A Research Agenda. 2013: eds. Roger Tourangeau and Thomas Plewes,
Washington, D.C.: The National Academies Press, pp. 23.

[99] Valliant R, Dever JA, Kreuter F. Practical Tools for Designing and Weighting Survey Samples
Springer: New York, 2013

[100] van Buuren S., “Multiple Imputation of Discrete and Continuous Data by Fully Con-
ditional Specification,” Statistical Methods in Medical Research 2007; 16(3):219–242.
http://dx.doi.org/10.1177/0962280206074463

[101] van Buuren S., Groothuis-Oudshoorn K. “mice: Multivariate Imputation by Chained Equa-
tions in R.” Journal of Statistical Software 2011; 45(3):1–67

[102] Wagner J. “Adaptive Survey Designs to Reduce Nonresponse Bias.” Ph.D. Dissertation,
University Of Michigan, 2008.

[103] White IR, Royston P, Wood AM. “Multiple Imputation using Chained Equations: Issues and
guidance for practice.” Statistics in Medicine 2011; 30(4):377–399. DOI: 10.1002/sim.4067

147

http://www.census.gov/research/data/planning_database/
http://www.census.gov/research/data/planning_database/

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background and Significance
	Benchmarked Sequential Sampling and Benchmarked Multiple Imputation Approach
	Benefits and Potential Impacts

	Improving Respondent Representativeness Using External Micro-level Benchmark Data
	Introduction
	Methods
	Data structure
	The Benchmarked Sequential Sampling Design
	Illustrative Example with One Auxiliary Variable 
	Computing the Sampling Rate in Successive Sampling Phases
	Estimating the Sampling Rate with the Propensity Score
	Assessing the Representativeness of the Respondents

	Simulation Study
	Simulation Setup
	Simulation Results

	Illustration with NHIS and BRFSS Data
	Application Results

	Discussion

	Benchmarked Sequential Sampling and Benchmarked Multiple Imputation
	Introduction
	Method
	The Benchmark Data
	Mitigating Step: Benchmarked Sequential Sampling
	Imputation Step: Benchmarked Multiple Imputation
	Adaptive Design
	Evaluation

	Simulation Study
	Simulation Design and Nonresponse Models
	Simulation Results
	Benchmarked sequential sampling
	Benchmarked multiple imputation
	Accuracy of the estimation


	Application to CPS Data
	The Sample Population
	Study Designs
	Results

	Discussion

	Cost and Error Evaluation
	Introduction
	Method
	The Sample Designs
	The Estimation Methods
	Weighting
	Benchmarked multiple imputation

	The Cost Model
	Evaluation Measures

	Design of the Simulation Study
	Study Population and Sample Design
	Missing Data Mechanisms and Imputation Methods

	Simulation Results
	Cost
	RMSE Per Unit Cost
	RMSE Efficacy
	GREG Estimates
	Benchmarked Multiple Imputation Estimates

	Conclusion and Discussion

	Conclusion
	Chapter Overview
	Limitations
	Future Research

	BIBLIOGRAPHY



