# **CHEMISTRY** A European Journal

# Supporting Information

# Reaction between Azidyl Radicals and Alkynes: A Straightforward Approach to *NH*-1,2,3-Triazoles

Long Hu,<sup>[a]</sup> Christian Mück-Lichtenfeld,<sup>[b]</sup> Tao Wang,<sup>\*[a]</sup> Guifeng He,<sup>[a]</sup> Meng Gao,<sup>[a]</sup> and Junfeng Zhao<sup>\*[a]</sup>

chem\_201504515\_sm\_miscellaneous\_information.pdf

# **Supporting Information**

# TABLE OF CONTENTS

| 1. | General Remarks                | S2      |
|----|--------------------------------|---------|
| 2. | General Experimental Procedure | S3-S5   |
| 3. | Characterization Data          | S6-S17  |
| 4. | Details of DFT study           | S18-S39 |
| 5. | NMR spectra                    |         |

#### **General Remarks**

<sup>1</sup>H/<sup>13</sup>C NMR spectra were recorded on Bruker avance 400 MHz and Bruker AMX 400 MHz spectrometer at 400/100 MHz, respectively, in CDCl<sub>3</sub> unless otherwise stated, using either TMS or the undeuterated solvent residual signal as the reference. Chemical shifts are given in ppm and are measured relative to CDCl<sub>3</sub> ( $\delta$  = 7.26 ppm), CD<sub>3</sub>CN ( $\delta$  = 1.94 ppm) or DMSO-d<sub>6</sub> ( $\delta$  = 2.5 ppm) as an internal standard. <sup>13</sup>C-NMR spectra were obtained by using the same NMR spectrometers and calibrated with CDCl<sub>3</sub> ( $\delta$  = 77.00 ppm), CD<sub>3</sub>CN ( $\delta$  = 118.70, 1.40 ppm) or DMSO-d<sub>6</sub> ( $\delta$  = 39.60 ppm), Mass spectra were obtained by the electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. GC yields were obtained using biphenyl as an internal standard. Flash column chromatography purification of compounds was carried out by gradient elution using ethyl acetate (EA) in light petroleum ether (PE).Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

#### The statement concerning safety issues

#### Sodium azide (NaN<sub>3</sub>)

Sodium azide is toxic (LD<sub>50</sub> oral = 27 mg/kg for rats) and can be absorbed through skin. Appropriate gloves are necessary when use it. It decomposes explosively upon heating to above 275  $^{\circ}$ C. Sodium azide is relatively safe especially in aqueous solution, unless acidified to from HN<sub>3</sub>, which is volatile and highly toxic.

#### **General Experimental Procedure:**

In a 10 mL round bottom flask, alkynes (0.2 mmol) was dissolved in MeCN (3 mL), NaN<sub>3</sub> (19.5 mg, 0.3 mmol), PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) was added and the reaction mixture was stirred at room temperature under nitrogen atmosphere. The reaction is monitored by thin layer chromatography (TLC). After the alkyne was completely consumed, the reaction mixture was concentrated and purified by silica gel chromatography to give the *NH*-1,2,3-triazoles.

#### **Control experiment:**



In a 10 mL round bottom flask, 1,2-diphenylethyne (35.6 mg, 0.2 mmol) was dissolved in MeCN (3 mL), NaN<sub>3</sub> (19.5 mg, 0.3 mmol), TEMPO (62.4 mg, 0.4 mmol) and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) was added and the reaction mixture was stirred at room temperature under nitrogen atmosphere. Almost no reaction was observed based on TLC monitor. 95% (33.8 mg) of 1,2-diphenylethyne was recovered.

#### **Isotopic experiment:**

To confirm the origin of hydrogen atom, isotopic experiment was performed. Due to the extremely fast H/D exchange of ND-1,2,3-triazole, it is hard to identify ND-1,2,3-triazole by either LC-MS or GC-MS. Then we resorted to <sup>1</sup>H-NMR experiment and the results were shown in Figure 1. It is clearly demonstrated that 4,5-diphenyl-2D-1,2,3-triazole was obtained when the reaction was performed in CD<sub>3</sub>CN. These <sup>1</sup>H-NMR experiment results together with computational calculation results unambiguously confirmed that the hydrogen atom of NH-1,2,3-triazole is come from acetonitrile.



Figure **1.** <sup>1</sup>H-NMR spectra. CD<sub>3</sub>CN was used as <sup>1</sup>H-NMR solvent. Red: 4,5-diphenyl-2H-1,2,3-triazole; Green: 4,5-diphenyl-2H-1,2,3-triazole treated with two drops of D<sub>2</sub>O; Cyan: 4,5-diphenyl-2D-1,2,3-triazole prepared via procedure A; Purple: 4,5-diphenyl-2D-1,2,3-triazole prepared via procedure B.

#### **Procedures for preparation of 4,5-diphenyl-2D-1,2,3-triazole:**

Procedure A:



0.5 mmol of 4,5-diphenyl-2H-1,2,3-triazole was dissolved in anhydrous THF and treated with 0.6 mmol (1.2 equiv.) of NaH at -5 °C. The reaction mixture was stirred for 30 min. at -5 °C and quenched by addition of 2 mL of D<sub>2</sub>O. The mixture was extracted by diethylether ( $2 \times 3$  mL) and the combined organic phase was discarded. The aqueous phase was treated with 2 drops of diethylether and kept at room temperature for several hours after which 65 mg of 4,5-diphenyl-2D-1,2,3-triazole was recrystallized from the mixture.

Procedure B:

$$Ph = Ph + NaN_3 \xrightarrow{PhI(OAc)_2} \xrightarrow{N \\ CD_3CN, rt} Ph \xrightarrow{Ph} Ph$$

п

In a 10 mL round bottom flask, alkynes (0.5 mmol) was dissolved in  $CD_3CN$  (5 mL),  $NaN_3$  (48.8 mg, 0.75 mmol), PhI(OAc)<sub>2</sub> (161.0 mg, 0.5 mmol) was added and the reaction mixture was stirred at room temperature under nitrogen atmosphere. The reaction is monitored by thin layer chromatography (TLC). After the alkyne was completely consumed, the reaction mixture was concentrated. The residue was further purified by recrystallization with dichloromethane/hexane to give 4,5-diphenyl-2D-1,2,3-triazole in 70% yield (77.7 mg).

#### **Characterization data**

#### 4,5-diphenyl-2H-1,2,3-triazole (2a)



The mixture of 1,2-diphenylethyne **1a** (35.6 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 8 h, and afforded 42.0 mg (95 %) of **2a** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 – 7.48 (m, 4H), 7.40 – 7.27 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.1, 129.9, 128.6, 128.5, 128.2 ppm; IR(KBr):  $v_{max} = 3443, 2952, 1608, 1450, 1538, 1237, 1009, 686 \text{ cm}^{-1}$ ; HRMS m/z (ESI) calcd for C<sub>14</sub>H<sub>12</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 222.1031, found 222.1028.

#### 4-phenyl-5-(p-tolyl)-2H-1,2,3-triazole (2b)



The mixture of 1-methyl-4-(phenylethynyl)benzene **1b** (38.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 8 h, and afforded 43.5 mg (92 %) of **2b** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.62 (s, 1H), 7.71 – 7.52 (m, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.41 – 7.31 (m, 3H), 7.18 (d, *J* = 7.8 Hz, 2H), 2.38 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.1, 141.9, 138.5, 130.2, 129.3, 128.6, 128.4, 128.2, 128.1, 126.9, 21.3 ppm; IR(KBr): v<sub>max</sub> = 3431, 3097, 2919, 1525, 1447, 1195, 1005, 823, 697 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>15</sub>H<sub>14</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 236.1188, found 236.1182.

#### 4-(4-methoxyphenyl)-5-phenyl-2H-1,2,3-triazole (2c)



The mixture of 1-methoxy-4-(phenylethynyl)benzene **1c** (41.6 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 39.7 mg (79 %) of **2c** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 – 7.53 (m, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.40 – 7.31 (m, 3H), 6.89 (d, *J* = 8.7 Hz, 2H), 3.83 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.8, 142.1, 141.8, 130.3, 129.5, 128.6, 128.4, 128.1, 122.2, 114.1, 55.2 ppm; IR(KBr): v<sub>max</sub> = 3387, 3140, 2925, 1615, 1463, 1252, 1177, 835, 698 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>15</sub>H<sub>14</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 252.1137, found 252.1130.

#### 4-(4-fluorophenyl)-5-phenyl-2H-1,2,3-triazole (2d)



The mixture of 1-fluoro-4-(phenylethynyl)benzene **1d** (39.2.0 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 8 h, and afforded 39.2 mg (82 %) of **2d** as a white yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (s, 4H), 7.33 (d, *J* = 5.8 Hz, 3H), 7.00 (t, *J* = 7.7 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.8 (d, *J* = 248.4 Hz), 141.7, 141.4, 130.1, 123.0, 129.5, 128.7, 128.1, 126.0, 115.7 (d, *J* = 21.7 Hz) ppm; IR (KBr): v<sub>max</sub> = 3449, 3059, 2924, 1616, 1506, 1230, 1001, 836, 697 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>14</sub>H<sub>11</sub>N<sub>3</sub>F (M+H)<sup>+</sup>: 240.0937, found 240.0935.

#### 4-(4-bromophenyl)-5-phenyl-2H-1,2,3-triazole (2e)



The mixture of 1-bromo-4-(phenylethynyl)benzene **1e** (51.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 12 h, and afforded 48.0 mg (80 %) of **2e** as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 – 7.42 (m, 4H), 7.42 – 7.30 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.7, 142.3, 131.9, 129.7, 129.7, 129.3, 128.9, 128.8, 128.3, 122.8 ppm; IR (KBr):  $v_{max}$  = 3462, 3147, 2922, 1600, 1500, 1069, 984, 830, 697 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>14</sub>H<sub>11</sub>N<sub>3</sub>Br (M+H)<sup>+</sup>: 300.0136, found 300.0135.

#### 4-(4-nitrophenyl)-5-phenyl-2H-1,2,3-triazole (2f)



The mixture of 1-nitro-4-(phenylethynyl)benzene **2f** (44.6 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 12 h, and afforded 33.0 mg (62 %) of **2f** as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 7.54 – 7.48 (m, 2H), 7.48 – 7.40 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.6, 143.0, 141.7, 137.0, 129.5, 129.1, 128.9, 128.6, 128.4, 124.0 ppm; IR (KBr): v<sub>max</sub> = 3349, 3093, 2925, 1600, 1515, 1348, 1000, 866, 735 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>14</sub>H<sub>11</sub>N<sub>4</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 267.0882, found 267.0886

4-(5-phenyl-2H-1,2,3-triazol-4-yl)benzonitrile (2g)



The mixture of 4-(phenylethynyl)benzonitrile **2g** (40.6 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 14 h, and afforded 31.0 mg (63 %) of **2g** as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 7.54 – 7.48 (m, 2H), 7.48 – 7.40 (m, 3H); <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  141.2, 140.2, 135.8, 132.8, 129.8, 129.1, 129.0, 128.4, 128.3, 118.8, 110.7 ppm; IR (KBr): v<sub>max</sub> =3441, 2921, 2253, 2167, 1655, 1078, 824, 763 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>15</sub>H<sub>11</sub>N<sub>4</sub> (M+H)<sup>+</sup>: 247.0984, found 247.0976.

#### 1-(4-(5-phenyl-2H-1,2,3-triazol-4-yl)phenyl)ethanone (2h)



The mixture of 1-(4-(phenylethynyl)phenyl)ethanone **1h** (44.0 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 12 h, and afforded 38.9 mg (74 %) of **2h** as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.52 – 7.47 (m, 2H), 7.39 – 7.32 (m, 3H), 2.60 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  198.3, 142.1, 141.4, 136.4, 135.1, 129.3, 128.9, 128.8, 128.7, 128.3, 128.0, 26.5 ppm; IR (KBr):  $v_{max}$  = 3266, 2982, 1714, 1611, 1496, 1180, 984, 855, 786, 706 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>16</sub>H<sub>14</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 264.1137, found 264.1139.

#### Methyl 4-(5-phenyl-2H-1,2,3-triazol-4-yl)benzoate (2i)



The mixture of methyl 4-(phenylethynyl)benzoate **1i** (47.2 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 12 h, and afforded 46.3 mg (83 %) of **2i** as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.32 (s, 1H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 8.5 Hz, 2H), 7.55 – 7.50 (m, 2H), 7.43 – 7.37 (m, 3H), 3.94 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.9, 142.5, 141.9, 134.8, 129.9, 129.8, 129.4, 129.0, 128.8, 128.3, 128.0, 52.3 ppm; IR (KBr):  $v_{max} = 3423$ , 3140, 2924, 1722, 1614, 1437, 1280, 1113, 769, 699 cm<sup>-1</sup>;

HRMS m/z (ESI) calcd for C<sub>16</sub>H<sub>14</sub>N<sub>3</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 280.1086, found 280.1079.





The mixture of 1,2-di-p-tolylethyne **1j** (41.2 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 46.3 mg (93 %) of **2j** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (d, *J* = 8.2 Hz, 4H), 7.14 (d, *J* = 8.0 Hz, 4H), 2.37 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.8, 138.3, 129.3, 128.1, 127.1, 21.3 ppm; IR(KBr): v<sub>max</sub> = 3398, 3105, 2919, 1620, 1526, 1185, 1006, 819 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>16</sub>H<sub>16</sub>N<sub>3</sub> (M+H)<sup>+</sup>:250.1344, found 250.1346.

#### 4-(4-fluorophenyl)-5-(p-tolyl)-2H-1,2,3-triazole (2k)



The mixture of 1-fluoro-4-(p-tolylethynyl)benzene **1k** (42.0 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 8 h, and afforded 44.5 mg (88 %) of **2k** as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53–7.49 (m, 2H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.14 (d, *J* = 7.7 Hz, 2H), 7.02 (t, *J* = 8.5 Hz, 2H), 2.37 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.0, 161.6, 141.6, 138.7, 123.0 (d, *J* = 8.2 Hz), 129.4, 128.1, 126.5, 126.3, 115.6 (d, *J* = 21.7 Hz), 21.3 ppm; IR (KBr): v<sub>max</sub> = 3448, 3109, 2954, 1575, 1463, 1255, 1016, 845, 799 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>15</sub>H<sub>13</sub>N<sub>3</sub>F (M+H)<sup>+</sup>: 252.1094, found 252.1089.

#### 4-methyl-5-phenyl-2H-1,2,3-triazole (2l)



The mixture of prop-1-yn-1-ylbenzene **11** (23.2 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 28.2 mg (88 %) of **2l** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 – 7.69 (m, 2H), 7.50 – 7.44 (m, 2H), 7.42 – 7.36 (m, 1H), 2.55 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  142.8, 139.0, 130.9, 128.2, 127.1, 126.3, 10.95 ppm; IR (KBr): v<sub>max</sub> =3441, 3070, 1607, 1478, 1233, 1023, 773, 694 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>9</sub>H<sub>10</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 160.0875, found 160.0877.

4-butyl-5-phenyl-2H-1,2,3-triazole (2m)



The mixture of hex-1-yn-1-ylbenzene **1m** (31.6 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 31.0 mg (80 %) of **2m** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 7.1 Hz, 2H), 7.50 – 7.31 (m, 3H), 2.96 – 2.74 (m, 2H), 1.71 (dt, *J* = 15.3, 7.7 Hz, 2H), 1.38 (td, *J* = 14.7, 7.4 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.9, 142.0, 130.7, 128.7, 128.0, 127.4, 31.0, 24.6, 22.4, 13.7 ppm; IR (KBr): v<sub>max</sub> = 3451, 3086, 2989, 1584, 1491, 1004, 760, 697, 689 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>12</sub>H<sub>16</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 202.1344, found 202.1341.

#### Methyl 5-phenyl-2H-1,2,3-triazole-4-carboxylate (2n)



The mixture of methyl 3-phenylpropiolate **1n** (40.6 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 31.0 mg (73 %) of **2n** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 – 7.77 (m, 2H), 7.49 – 7.41 (m, 3H), 3.92 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.5, 146.7, 134.0, 130.0, 129.7, 129.2, 128.4, 52.4 ppm; IR (KBr): v<sub>max</sub> = 3434, 3001, 2936, 1687, 1579, 1418, 1013, 924, 649 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>10</sub>H<sub>10</sub>N<sub>3</sub>O<sub>2</sub> (M+H)<sup>+</sup>: 204.0773, found 204.0771.

#### 4-cyclopropyl-5-(p-tolyl)-2H-1,2,3-triazole (20)



Me

The mixture of 1-(cyclopropylethynyl)-4-methylbenzene **10** (31.2 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 31.0 mg (89 %) of **20** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 2.36 (s, 3H), 1.99 (tt, *J* = 8.1, 5.4 Hz, 1H), 1.04 – 0.88 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.9, 142.8, 137.6, 129.1, 127.3, 127. 1, 21.0, 7.5, 6.2 ppm; IR (KBr): v<sub>max</sub> = 3406, 3015, 2922, 1591, 1527, 1202, 1031, 823 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>12</sub>H<sub>14</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 200.1188, found 200.186.

#### 4-cyclopropyl-5-phenyl-2H-1,2,3-triazole (2p)



The mixture of (cyclopropylethynyl)benzene **1p** (28.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 31.0 mg (90 %) of **2p** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 – 7.78 (m, 2H), 7.54 – 7.33 (m, 3H), 2.07 – 2.00 (m,), 1.13 – 0.92 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 143.3, 130.4, 128.5, 127.9, 127.3, 7.7, 6.3 ppm; IR (KBr): v<sub>max</sub> = 3365, 3144, 2950, 1068, 1588, 1014, 774, 696 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>11</sub>H<sub>12</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 186.1031, found 186.1030.

4-phenyl-5-(thiophen-2-yl)-2H-1,2,3-triazole (2q)



The mixture of 2-(phenylethynyl)thiophene **1q** (36.8 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 34.5 mg (76 %) of **2q** as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 – 7.52 (m, 2H), 7.40 – 7.38 (m, 3H), 7.32 – 7.27 (m, 1H), 7.23 – 7.16 (m, 1H), 6.99 (dd, *J* = 4.9, 3.7 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.6, 137.9, 131.5, 129.3, 128.9, 128.6, 128.5, 127.4, 126.5, 126.2 ppm; IR (KBr): v<sub>max</sub> =3424, 3107, 2924, 1610, 1491, 1470, 942, 697 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>12</sub>H<sub>10</sub>N<sub>3</sub>S(M+H)<sup>+</sup>: 228.0595, found 228.0595.

#### 4-(thiophen-3-yl)-5-(trimethylsilyl)-2H-1,2,3-triazole (2r)



The mixture of trimethyl(thiophen-3-ylethynyl)silane **1r** (36 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 26.7 mg (60 %) of **2r** as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (dd, *J* = 2.6, 1.5 Hz, 1H), 7.41 – 7.35 (m, 2H), 0.34 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.2, 133.1, 132.6, 128.0, 125.7, 123.5, -1.1 ppm; IR (KBr): v<sub>max</sub> = 3420, 3103, 2921, 1610, 1525, 1223, 990, 841, 823 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>9</sub>H<sub>14</sub>N<sub>3</sub>SiS (M+H)<sup>+</sup>: 224.0678, found 224.0673.

#### 2-(5-(trimethylsilyl)-2H-1,2,3-triazol-4-yl)pyridine (2s)

SiMe<sub>3</sub>

The mixture of 2-((trimethylsilyl)ethynyl)pyridine **1s** (35.0 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 27.5 mg (63 %) of **2s** as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.39 (s, 1H), 8.57 (d, *J* = 3.5 Hz, 1H), 8.23 (d, *J* = 7.9 Hz, 1H), 7.76 (dd, *J* = 11.0, 4.5 Hz, 1H), 7.20 (dd, *J* = 6.8, 5.1 Hz, 1H), 0.43 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.1, 151.1, 148.5, 136.4, 134.9, 122.3, 120.6, -1.2 ppm; IR (KBr): v<sub>max</sub> = 3394, 3128, 2965, 1595, 1497, 1245, 1016, 846, 744 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>10</sub>H<sub>15</sub>N<sub>4</sub>Si (M+H)<sup>+</sup>: 219.1066, found 219.1065.

#### 4-(4-bromophenyl)-5-(trimethylsilyl)-2H-1,2,3-triazole(2t)



The mixture of ((4-bromophenyl)ethynyl)trimethylsilane **1t** (50.6 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 54.9 mg (93 %) of **2t** as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 2H), 0.29 (s, 9H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.9, 133.3, 131.5, 131.1, 130.2, 122.4, -0.90 ppm; IR (KBr): v<sub>max</sub> = 3439, 3111, 2960, 2910, 1657, 1454, 1257, 1000, 844, 826 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>11</sub>H<sub>15</sub>BrN<sub>3</sub>Si (M+H)<sup>+</sup>: 296.0219, found 296.0217.

#### 1,3-bis(5-(trimethylsilyl)-2H-1,2,3-triazol-4-yl)benzene(2u)



The mixture of 1,3-bis((trimethylsily))ethynyl)benzene **1u** (54.0 mg, 0.2 mmol), NaN<sub>3</sub> (39.0 mg, 0.6 mmol), and PhI(OAc)<sub>2</sub> (128.8 mg, 0.4 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 57.7 mg (81 %) of **2u** as a white solid. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  15.10 (s, 2H), 7.85 (s, 1H), 7.56 (m, 3H), 0.28 (s, 18H); <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  152.3, 132.9, 130.3, 128.5, 128.4, 127.8, -0.8 ppm; IR (KBr): v<sub>max</sub> =3442, 3125, 2957, 2917, 1728, 1255, 1006, 845 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>16</sub>H<sub>25</sub>N<sub>6</sub>Si<sub>2</sub> (M+H)<sup>+</sup>: 357.1679, found 357.1676.

#### 5-(5-phenyl-2H-1,2,3-triazol-4-yl)thiophene-2-carbaldehyde(2v)



The mixture of 5-(phenylethynyl)thiophene-2-carbaldehyde 1v (42.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 26.6 mg (52 %) of 2v as a yellow solid. <sup>1</sup>H NMR (400 MHz,

CD<sub>3</sub>CN)  $\delta$  13.34 (s, 1H), 9.81 (s, 1H), 7.70 (d, J = 3.9 Hz, 1H), 7.62 – 7.50 (m, 2H), 7.50 – 7.40 (m, 3H), 7.23 (d, J = 3.9 Hz, 1H) ; <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>CN)  $\delta$  185.0, 144.4, 143.3, 138.9, 130.9, 130.3, 130.2, 128.0 ppm; IR (KBr):  $v_{max}$  =3442, 3156, 2925, 1644, 1635, 1491, 1239, 985 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>13</sub>H<sub>10</sub>N<sub>3</sub>OS (M+H)<sup>+</sup>: 256.0545, found 256.0543.

#### (5-phenyl-2H-1,2,3-triazol-4-yl)methanol(2w)



The mixture of 3-phenylprop-2-yn-1-ol **1w** (26.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 22.4 mg (64 %) of **2w** as a yellow solid. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  14.80 (s, 1H), 7.82 (d, *J* = 37.8 Hz, 2H), 7.45 (m, 3H), 5.36 (s, 1H), 4.68 (d, *J* = 31.8 Hz, 2H) ; <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  144.5, 143.768, 131.1, 128.8, 128.0, 127.2, 54.4 ppm; IR (KBr): v<sub>max</sub> =3394, 3156, 2922, 1646, 1313, 1059, 767, 687 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>9</sub>H<sub>10</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 176.0824, found 176.0827.

#### 1-(5-phenyl-2H-1,2,3-triazol-4-yl)cyclohexanol(2x)



The mixture of 1-(phenylethynyl)cyclohexanol **1x** (40.0 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was trirred at room temperature under ambient nitrogen for 10 h, and afforded 35.0 mg (72 %) of **2x** as a yellow solid. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  7.86 (m, 2H), 7.38 (m, 3H), 5.15 (s, 1H), 1.94 – 1.21 (m, 10H) ; <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  149.9, 144.2, 133.0, 129.5, 127.9, 127.7, 68.1, 37.1, 25.4, 22.1 ppm; IR (KBr): v<sub>max</sub> =3296, 3090, 2930, 1448, 1261, 1150, 964, 773, 706 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>14</sub>H<sub>17</sub>N<sub>3</sub>ONa (M+Na)<sup>+</sup>: 266.1269, found 266.1268.

#### 4-cyclopropyl-5-(trimethylsilyl)-2H-1,2,3-triazole(2z)



The mixture of (cyclopropylethynyl)trimethylsilane **1z** (27.6 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 26.5 mg (73 %) of **2z** as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.67 (m, 1H), 0.85 – 0.60 (m, 4H), 0.15 (s, 9H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.6, 134.1, 7.6, 7.0, -1.2 ppm; IR (KBr): v<sub>max</sub> =3431, 3103, 2959, 2789, 1906, 1544, 1259, 1014, 842 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>8</sub>H<sub>16</sub>N<sub>3</sub>Si (M+H)<sup>+</sup>: 182.1113, found 182.1113.

#### 4-methyl-5-(trimethylsilyl)-2H-1,2,3-triazole(2aa)



The mixture of trimethyl(prop-1-yn-1-yl)silane **1aa** (22.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 21.7 mg (70 %) of **2aa** as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.42 (s, 3H), 0.34 (s, 9H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.7, 134.1, 11.4, -1.3 ppm; IR (KBr):  $v_{max}$  =3431, 3117, 2957, 1535, 1255, 1037, 842, 763 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>8</sub>H<sub>16</sub>N<sub>3</sub>Si (M+H)<sup>+</sup>: 156.0957, found 156.0959.

#### 4,5-bis(trimethylsilyl)-2H-1,2,3-triazole(2ab)



The mixture of 1,2-bis(trimethylsilyl)ethyne **1ab** (34.0 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 29.8 mg (70 %) of **2ab** as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.38 (s, 18H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 145.9, -0.2 ppm; IR (KBr): v<sub>max</sub> =3438, 3117, 2955, 1253, 1144, 856, 758, cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>8</sub>H<sub>20</sub>N<sub>3</sub>Si<sub>2</sub> (M+H)<sup>+</sup>: 214.1196, found 214.1198.

#### 4-(trimethylsilyl)-5-((trimethylsilyl)ethynyl)-2H-1,2,3-triazole(2ac)



The mixture of 1,4-bis(trimethylsilyl)buta-1,3-diyne **1ac** (38.8 mg, 0.2 mmol), NaN<sub>3</sub> (39.0 mg, 0.6 mmol), and PhI(OAc)<sub>2</sub> (128.8 mg, 0.4 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 33.2 mg (70 %) of **2ac** as a white yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.43 – 0.37 (m, 9H), 0.26 – 0.19 (m, 9H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  139.3, 135.5, 99.5, 95.5, -0.4, -1.7 ppm; IR (KBr): v<sub>max</sub> =3421, 3090, 2961, 2166, 1316, 1253, 1007, 864, 846 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>10</sub>H<sub>20</sub>N<sub>3</sub>Si<sub>2</sub> (M+H)<sup>+</sup>: 238.1196, found 238.1200.

#### 3-(5-phenyl-2H-1,2,3-triazol-4-yl)oxazolidin-2-one(2ad)



The mixture of 3-(phenylethynyl)oxazolidin-2-one **1ad** (37.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 33.1 mg (72 %) of **2ad** as a white solid. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  7.69 (d, *J* = 7.5 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 2H), 7.45 – 7.38 (m, 1H), 4.56 (t, *J* = 7.8 Hz, 2H), 4.02 (t, *J* = 7.8 Hz, 2H) ; <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  156.0, 134.0, 139.1, 129.7, 128.9, 128.7, 126.5, 63.1, 46.9 ppm ; IR (KBr):  $v_{max}$  =3438, 2924, 2853, 1756, 1645, 1224, 1027, 763 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>11</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub>Na (M+Na)<sup>+</sup>: 253.0701, found 231.253.0699.

#### 4-(butylthio)-5-phenyl-2H-1,2,3-triazole(2ae)



The mixture of butyl(phenylethynyl)sulfane **1ae** (38.0 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 10 h, and afforded 31.7 mg (68 %) of **2ae** as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 7.4 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 3.05 (t, *J* = 7.3 Hz, 2H), 1.65 (dt, *J* = 14.9, 7.4 Hz, 2H), 1.42 (dq, *J* = 14.5, 7.3 Hz, 2H), 0.88 (t, *J* = 7.3 Hz, 3H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  144.7, 138.4, 129.6, 128.7, 128.7, 127.3, 33.8, 31.4, 21.8, 13.5 ppm; IR (KBr): v<sub>max</sub> = 3439, 3161, 2958, 2927, 2855, 1658, 1456, 1009, 772, 694 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>12</sub>H<sub>16</sub>N<sub>3</sub>S (M+H)<sup>+</sup>: 234.1065, found 234.1063.

#### 4-phenyl-2H-1,2,3-triazole (2af)



The mixture of ethynylbenzene **1af** (20.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 14 h, and afforded 9.3 mg (32 %) of **2af** as a white solid. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  8.27 (s, 1H), 7.87 (d, *J* = 7.2 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.1 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 146.4, 130.7, 129.0, 128.5, 128.2, 125.7 ppm; IR (KBr): v<sub>max</sub> = 3440, 3113, 2928, 2252, 1654, 1056, 1008, 822, 761 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>8</sub>H<sub>8</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 146.0718, found 146.0717.

#### 4-(p-tolyl)-2H-1,2,3-triazole (2ag)



The mixture of 1-ethynyl-4-methylbenzene **1ag** (23.2 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 14 h, and afforded 16.5 mg (52 %) of **2ag** as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.08 (s, 1H), 7.72 (d, *J* = 7.3 Hz, 2H), 7.49 – 7.37 (m, 3H), 2.55 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  159.4, 146.3, 130.3, 127.1, 123.3, 114.5, 55.3 ppm; IR (KBr):  $v_{max}$  =3432, 2924, 2253, 1655, 1027, 824, 762 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>9</sub>H<sub>10</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 160.0875, found 160.0874.

#### 4-(2-methoxyphenyl)-2H-1,2,3-triazole(2ah)



The mixture of 1-ethynyl-2-methoxybenzene **1ah** (26.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 12 h, and afforded 21.7 mg (62 %) of **2ah** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (s, 1H), 7.92 (d, *J* = 6.9 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.10 – 7.00 (m, 2H), 3.97 (s, 3H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  156.0, 139.5, 130.3, 129.9, 128.1, 121.2, 117.0, 111.4, 55.6 ppm; IR (KBr): v<sub>max</sub> = 3423, 2933, 1606, 1487, 1248, 1025, 754 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>9</sub>H<sub>10</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 176.0824, found 176.0825.

#### 4-(3-methoxyphenyl)-2H-1,2,3-triazole(2ai)



The mixture of 1-ethynyl-3-methoxybenzene **1ai** (26.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 12 h, and afforded 11.9 mg (34 %) of **2ai** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (s, 1H), 7.92 (d, *J* = 6.9 Hz, 1H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.10 – 6.99 (m, 2H), 3.97 (s, 3H) ; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 147.2, 131.2, 130.0, 129.9, 118.6, 114.6, 111.4, 55.4 ppm; IR (KBr): v<sub>max</sub> =3396, 3183, 2922, 2850, 1647, 1585, 1468, 1240, 1045, 784, 691 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>9</sub>H<sub>10</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 176.0824, found 176.0820.

#### 4-(4-methoxyphenyl)-2H-1,2,3-triazole (2aj)



The mixture of 1-ethynyl-4-methoxybenzene **1aj** (26.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 14 h, and afforded 22.1 mg (63 %) of **2aj** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (s, 1H), 7.75 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H); <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  159.4, 146.3, 130.3, 127.1, 123.3, 114.5, 55.3 ppm; IR (KBr): v<sub>max</sub> =3440, 3007, 2923, 2125, 1656, 1618, 1027, 823, 697 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>9</sub>H<sub>10</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 176.0824, found 176.0824.

#### 4-(phenanthren-9-yl)-2H-1,2,3-triazole(2ak)



The mixture of 9-ethynylphenanthrene **1ak** (40.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 12 h, and afforded 25.0 mg (51 %) of **2ak** as a yellow solid. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  8.91 (dd, *J* = 26.4, 8.1 Hz, 2H), 8.52 (d, *J* = 8.3 Hz, 1H), 8.09 (m, 2H), 7.83 – 7.65 (m, 4H). IR (KBr): v<sub>max</sub> =3424, 2923, 1648, 1048, 1028, 1000, 827, 766, 633 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>16</sub>H<sub>12</sub>N<sub>3</sub> (M+H)<sup>+</sup>: 246.1031, found 246.1027.

#### 4-(6-methoxynaphthalen-2-yl)-2H-1,2,3-triazole(2al)





The mixture of 2-ethynyl-6-methoxynaphthalene **1al** (36.4 mg, 0.2 mmol), NaN<sub>3</sub> (19.5, 0.3 mmol), and PhI(OAc)<sub>2</sub> (64.4 mg, 0.2 mmol) in MeCN (3 mL) was stirred at room temperature under ambient nitrogen for 12 h, and afforded 31.5 mg (70 %) of **2al** as a light yellow solid. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  14.98 (s, 1H), 8.33 (d, *J* = 8.6 Hz, 2H), 7.93 (dd, *J* = 36.0, 8.6 Hz, 3H), 7.34 (s, 1H), 7.20 (d, *J* = 8.6 Hz, 1H), 3.89 (s, 3H), <sup>13</sup>C NMR (100 MHz, DMSO)  $\delta$  157.6, 146.6, 134.1, 130.8, 129.6, 128.6, 127.4, 125.8, 124.4, 124.3, 119.2, 106.1, 55.3 ppm, IR (KBr): v<sub>max</sub> =3438, 3153, 2932, 1610, 1500, 1260, 1217, 1030, 858 cm<sup>-1</sup>; HRMS m/z (ESI) calcd for C<sub>13</sub>H<sub>12</sub>N<sub>3</sub>O (M+H)<sup>+</sup>: 226.0980, found 226.0975.

## Supporting information: DFT calculations

All intermediates and transition structures were optimized using the B3LYP<sup>1</sup> hybrid functional. A triple zeta basis set with polarization functions  $(def2-TZVP)^2$  was used in all geometry optimizations and energy calculations. After a determination of the harmonic vibrational frequencies, using analytical second energy derivatives, all stationary points were characterized as either minima (no negative eigenvalue of the hessian matrix **H**) or transition structures (one negative eigenvalue of **H**). The harmonic vibrational frequencies were used to calculate thermodynamic corrections to the enthalpy and Gibbs free energy under standard conditions (298 K, p = 1 atm). For vibrational modes with low frequencies (<100cm<sup>-1</sup>), a rotor approximation<sup>3</sup> was used. Electronic energies were also evaluated with the double hybrid functional B2PLYP<sup>4</sup>, which obtains part of the correlation energy in a perturbative approach including virtual Kohn-Sham orbitals.

All DFT calculations were conducted with functional-specific semiempirical corrections (D3) to correct the failure of most functionals to account for long-range London dispersion forces.<sup>5</sup> The B3LYP calculations were performed with TURBOMOLE (Version 6.6)<sup>6</sup>, the B2PLYP-D3 energies were obtained with ORCA (3.0.3)<sup>7</sup>.

<sup>&</sup>lt;sup>1</sup> a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648-5652. b) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, *J. Phys. Chem.* **1994**, *98*, 11623-11627.

<sup>&</sup>lt;sup>2</sup> F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.

<sup>&</sup>lt;sup>3</sup> S. Grimme, *Chem. Eur. J.* **2012**, *18*, 9955-9964.

<sup>&</sup>lt;sup>4</sup> S. Grimme, J. Chem. Phys. **2006**, 124, 034108.

<sup>&</sup>lt;sup>5</sup> a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, *132*, 154104. b) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* **2011**, *32*, 1456–1465.

<sup>&</sup>lt;sup>6</sup> TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

<sup>&</sup>lt;sup>7</sup> F. Neese, The ORCA program system, *Wiley Interdisciplinary Reviews: Computational Molecular Science*, **2012**, *2*, 73-78.

| Structure       | E (B3LYP-D3)  | E (B2PLYP-D3) | ZPE                        | Н (298 К)                  | G (298 K)                  |
|-----------------|---------------|---------------|----------------------------|----------------------------|----------------------------|
|                 | [ Eh ]        | [ Eh ]        | [ kcal mol <sup>-1</sup> ] | [ kcal mol <sup>-1</sup> ] | [ kcal mol <sup>-1</sup> ] |
| 1a              | -539.3620599  | -539.2653181  | 119.810                    | 127.356                    | 96.531                     |
| 1a-TSA          | -703.4915554  | -703.3683919  | 126.608                    | 136.229                    | 100.747                    |
| 1a-A            | -703.5190669  | -703.3972650  | 127.818                    | 137.335                    | 101.828                    |
| 1a-TSB          | -703.4965631  | -703.3757769  | 127.616                    | 136.545                    | 102.405                    |
| 1a-B            | -703.5711229  | -703.4479388  | 129.149                    | 137.815                    | 104.667                    |
| 1a-TSHAT        | -836.2874487  | -836.1433070  | 155.741                    | 166.968                    | 128.215                    |
| 2a              | -704.2395283  | -704.1231531  | 138.841                    | 147.368                    | 114.531                    |
| 1z              | -155.9431983  | -155.9083401  | 52.63                      | 56.83                      | 35.13                      |
| 1z-TSA          | -320.0701469  | -320.0103004  | 59.653                     | 65.631                     | 38.894                     |
| 1z-A            | -320.0926297  | -320.0356724  | 61.421                     | 67.089                     | 41.127                     |
| 1z-TSB          | -320.0696196  | -320.0119973  | 60.537                     | 65.350                     | 41.442                     |
| 1z-B            | -320.14779420 | -320.0888513  | 61.202                     | 66.549                     | 41.527                     |
| 1z-TSHAT        | -452.8703055  | -452.7883483  | 88.733                     | 96.338                     | 65.702                     |
| 2z              | -320.8248730  | -320.7692797  | 71.848                     | 76.830                     | 52.496                     |
| TSD             | -296.8394112  | -296.7916125  | 31.644                     | 36.450                     | 12.358                     |
| 1a-TSC          | -836.2370812  | -836.0943861  | 154.252                    | 166.270                    | 126.056                    |
| 1z-TSC          | -452.8157097  | -452.7346733  | 87.461                     | 95.829                     | 63.540                     |
| 1a-C            | -704.1871885  | -704.0700959  | 136.644                    | 145.826                    | 111.671                    |
| 1z-C            | -320.7698395  | -320.7137904  | 69.837                     | 75.365                     | 49.846                     |
| N₃ (Rad.)       | -164.1310324  | -164.1074740  | 5.147                      | 7.362                      | -8.142                     |
| HN <sub>3</sub> | -164.7781460  | -164.7573818  | 13.448                     | 16.049                     | -0.956                     |
| CH₃CN           | -132.7340274  | -132.7123082  | 28.352                     | 31.209                     | 13.289                     |
| CH₂CN (Rad.)    | -132.0759754  | -132.0518895  | 19.450                     | 22.314                     | 4.649                      |

Table 1: Electronic Energies (B3LYP-D3 and B2PLYP-D3) obtained with optimized geometries obtained with the B3LYP-D3 functional (def2-TZVP basis set). Thermodynamic corrections as evaluated from harmonic vibrational frequencies (B3LYP-D3/def2-TZVP).

Energy-optimized cartesian coordinates (B3LYP-D3/def2-TZVP) of all intermediates and transition structures discussed in this work in Å.

N3 radical

./N3-Rad/c1/b3lyp-d3.def2-TZVP

| Ν | -1.17320 | 0.00000 | -0.00020 |
|---|----------|---------|----------|
| Ν | 0.00000  | 0.00000 | 0.00020  |
| Ν | 1.17320  | 0.00000 | -0.00020 |

1a



| С | -0.00110 | -0.00010 | 0.60410  |
|---|----------|----------|----------|
| С | -0.00090 | -0.00010 | -0.60400 |
| С | -0.00080 | -0.00010 | 2.02390  |
| С | 0.01460  | -1.20780 | 2.73790  |
| С | -0.01550 | 1.20780  | 2.73790  |
| С | -0.01480 | 1.20320  | 4.12410  |
| С | 0.01540  | -1.20320 | 4.12410  |
| С | 0.00070  | 0.00000  | 4.82260  |
| Н | -0.02740 | 2.14150  | 2.19160  |
| Н | 0.02610  | -2.14160 | 2.19180  |
| Н | -0.02650 | 2.14240  | 4.66250  |
| Н | 0.02740  | -2.14230 | 4.66270  |
| Н | 0.00150  | 0.00010  | 5.90500  |
| С | -0.00050 | -0.00000 | -2.02390 |
| С | 0.01480  | 1.20780  | -2.73790 |
| С | -0.01530 | -1.20780 | -2.73790 |
| С | -0.01480 | -1.20320 | -4.12410 |
| С | 0.01540  | 1.20320  | -4.12410 |
| С | 0.00060  | 0.00000  | -4.82260 |
| Н | -0.02730 | -2.14150 | -2.19180 |
| Н | 0.02640  | 2.14150  | -2.19160 |
| Н | -0.02630 | -2.14230 | -4.66270 |
| Н | 0.02760  | 2.14240  | -4.66260 |
| Н | 0.00090  | 0.00010  | -5.90500 |



| Ν | 0.43820  | 1.21040  | 3.25950  |
|---|----------|----------|----------|
| Ν | 0.17590  | 0.18880  | 2.80020  |
| Ν | -0.09430 | -0.86840 | 2.30350  |
| С | 0.12710  | 0.50110  | -0.00290 |
| С | -0.16790 | -0.67020 | 0.27120  |
| С | 0.46580  | 1.85660  | -0.03350 |
| С | -0.52510 | 2.84660  | 0.14640  |
| С | 1.80160  | 2.25950  | -0.24930 |
| С | 2.12780  | 3.60170  | -0.27170 |
| С | -0.18320 | 4.18490  | 0.12270  |
| С | 1.14040  | 4.56810  | -0.08570 |
| Н | 2.56160  | 1.50210  | -0.38480 |
| Н | -1.54750 | 2.53790  | 0.31510  |
| Н | 3.15560  | 3.90210  | -0.42910 |
| Н | -0.94710 | 4.93670  | 0.27200  |
| Н | 1.40290  | 5.61790  | -0.10050 |
| С | -0.51210 | -1.99840 | -0.16340 |
| С | -1.41960 | -2.79780 | 0.53670  |
| С | 0.05900  | -2.48380 | -1.34720 |
| С | -0.28220 | -3.74020 | -1.82360 |
| С | -1.75760 | -4.05230 | 0.05170  |
| С | -1.19250 | -4.52760 | -1.12680 |
| Н | 0.76760  | -1.86640 | -1.88290 |
| Н | -1.84110 | -2.42920 | 1.45970  |
| Н | 0.16610  | -4.10660 | -2.73830 |
| Н | -2.46300 | -4.66410 | 0.59930  |
| Н | -1.45640 | -5.50950 | -1.49830 |

27

| Ν | 3.54140  | 1.68510  | 0.07130  |
|---|----------|----------|----------|
| Ν | 2.43360  | 1.89450  | 0.05360  |
| Ν | 1.25200  | 2.22300  | 0.03530  |
| С | 0.60580  | -0.10690 | 0.00420  |
| С | 0.27080  | 1.15750  | 0.01020  |
| С | 1.21390  | -1.33670 | 0.00690  |
| С | 1.54380  | -1.99930 | -1.21270 |
| С | 1.50780  | -2.01140 | 1.22900  |
| С | 2.10020  | -3.25580 | 1.21880  |
| С | 2.13570  | -3.24380 | -1.19740 |
| С | 2.41940  | -3.88300 | 0.01200  |
| Н | 1.25950  | -1.52420 | 2.16230  |
| Н | 1.32300  | -1.50280 | -2.14790 |
| Н | 2.32060  | -3.74960 | 2.15690  |
| Н | 2.38380  | -3.72830 | -2.13340 |
| Н | 2.88440  | -4.85990 | 0.01400  |
| С | -1.11840 | 1.66640  | -0.00730 |
| С | -1.38930 | 3.03520  | 0.01870  |
| С | -2.18850 | 0.76670  | -0.04960 |
| С | -3.49500 | 1.22490  | -0.06490 |
| С | -2.70230 | 3.49190  | 0.00310  |
| С | -3.75880 | 2.59240  | -0.03850 |
| Н | -1.98440 | -0.29660 | -0.07090 |
| Н | -0.57000 | 3.73870  | 0.05120  |
| Н | -4.31190 | 0.51510  | -0.09800 |
| Н | -2.89680 | 4.55680  | 0.02370  |
| Н | -4.78030 | 2.95030  | -0.05070 |

1a-A

1a-TSB



| Ν | 0.19100  | 1.19240  | 3.36190  |
|---|----------|----------|----------|
| Ν | 0.24190  | 0.04790  | 3.53040  |
| Ν | 0.19740  | -1.04780 | 2.90050  |
| С | 0.01440  | 0.61820  | 1.21690  |
| С | 0.07600  | -0.66920 | 1.52000  |
| С | 0.02230  | 1.71680  | 0.36010  |
| С | 1.22280  | 2.13710  | -0.26540 |
| С | -1.16280 | 2.44880  | 0.10380  |
| С | -1.14510 | 3.53340  | -0.75030 |
| С | 1.22510  | 3.22250  | -1.11870 |
| С | 0.04480  | 3.92460  | -1.36500 |
| Н | -2.07700 | 2.13930  | 0.59140  |
| Н | 2.13220  | 1.58770  | -0.06290 |
| Н | -2.05770 | 4.08310  | -0.94170 |
| Н | 2.14670  | 3.53110  | -1.59510 |
| Н | 0.05310  | 4.77720  | -2.03180 |
| С | -0.00910 | -1.78410 | 0.55650  |
| С | -0.11490 | -3.09910 | 1.01780  |
| С | 0.01510  | -1.55090 | -0.82260 |
| С | -0.06650 | -2.60670 | -1.71690 |
| С | -0.19410 | -4.15340 | 0.11740  |
| С | -0.17110 | -3.91360 | -1.25090 |
| Н | 0.09820  | -0.53910 | -1.19540 |
| Н | -0.12980 | -3.28220 | 2.08210  |
| Н | -0.04590 | -2.40920 | -2.78120 |
| Н | -0.27410 | -5.16710 | 0.48920  |
| Н | -0.23290 | -4.73760 | -1.95030 |



| Ν | -1.06250 | 2.94980  | -0.07740 |
|---|----------|----------|----------|
| Ν | 0.05300  | 3.68610  | 0.03080  |
| Ν | 1.15160  | 2.91270  | 0.12480  |
| С | 0.76070  | 1.64640  | 0.06360  |
| С | -0.70930 | 1.66840  | -0.03850 |
| С | -1.68990 | 0.60980  | -0.01940 |
| С | -2.94840 | 0.83030  | -0.60980 |
| С | -1.44990 | -0.61570 | 0.62630  |
| С | -2.42920 | -1.59410 | 0.65980  |
| С | -3.91530 | -0.15700 | -0.58400 |
| С | -3.65920 | -1.37340 | 0.04770  |
| Н | -0.50730 | -0.78190 | 1.12680  |
| Н | -3.13500 | 1.78220  | -1.08660 |
| Н | -2.23720 | -2.52820 | 1.17170  |
| Н | -4.87470 | 0.01740  | -1.05360 |
| Н | -4.42050 | -2.14270 | 0.06990  |
| С | 1.70890  | 0.55680  | 0.02840  |
| С | 2.96440  | 0.72010  | 0.64150  |
| С | 1.43920  | -0.64090 | -0.65540 |
| С | 2.38770  | -1.64880 | -0.70510 |
| С | 3.90050  | -0.29630 | 0.59920  |
| С | 3.61550  | -1.48500 | -0.07120 |
| Н | 0.49830  | -0.76270 | -1.17190 |
| Н | 3.17420  | 1.65120  | 1.14870  |
| Н | 2.17330  | -2.56130 | -1.24620 |
| Н | 4.85810  | -0.16600 | 1.08640  |
| Н | 4.35270  | -2.27700 | -0.10650 |

S24



| 33 |            |            |            |
|----|------------|------------|------------|
| Ν  | 3.4391183  | 1.4794966  | 0.8462025  |
| Ν  | 2.3198482  | 1.5602661  | 0.9456278  |
| Ν  | 1.1243791  | 1.7782717  | 1.1383422  |
| С  | 0.4107489  | -0.3064659 | 0.0906415  |
| С  | 0.1462560  | 0.9170072  | 0.5519260  |
| С  | 1.5246885  | -1.2082574 | 0.2027882  |
| С  | 2.1331574  | -1.7571893 | -0.9386868 |
| С  | 2.0028094  | -1.5938428 | 1.4679656  |
| С  | 3.0686486  | -2.4718298 | 1.5815206  |
| С  | 3.1931409  | -2.6398040 | -0.8177923 |
| С  | 3.6665333  | -2.9996092 | 0.4414788  |
| Η  | 1.5282636  | -1.1908094 | 2.3535262  |
| Η  | 1.7784121  | -1.4644119 | -1.9186191 |
| Н  | 3.4328850  | -2.7493670 | 2.5625101  |
| Η  | 3.6585124  | -3.0453502 | -1.7070873 |
| Η  | 4.4966905  | -3.6878978 | 0.5328057  |
| С  | -1.1868362 | 1.5442740  | 0.4897388  |
| С  | -1.3250063 | 2.8915196  | 0.1496689  |
| С  | -2.3323610 | 0.7891995  | 0.7483859  |
| С  | -3.5925402 | 1.3584248  | 0.6326955  |
| С  | -2.5847729 | 3.4585258  | 0.0330851  |
| С  | -3.7219174 | 2.6928340  | 0.2672479  |
| Н  | -2.2257403 | -0.2408044 | 1.0617686  |
| Н  | -0.4402511 | 3.4836867  | -0.0399887 |
| Н  | -4.4732864 | 0.7630552  | 0.8372028  |
| Н  | -2.6808672 | 4.4988258  | -0.2498465 |
| Н  | -4.7043227 | 3.1371842  | 0.1724779  |
| Н  | -0.5482245 | -0.7706493 | -0.7644604 |
| С  | -1.3902644 | -1.2317933 | -1.6784942 |
| Н  | -0.8117069 | -2.0121040 | -2.1658988 |
| Η  | -2.2276901 | -1.6194446 | -1.1067035 |
| С  | -1.7234189 | -0.1392683 | -2.5277846 |
| Ν  | -1.9548859 | 0.7763275  | -3.1922446 |



| Ν | 3.0439849  | 1.5369072  | 0.4130454  |
|---|------------|------------|------------|
| Ν | 1.9368854  | 1.4555268  | 0.6039605  |
| Ν | 0.7518372  | 1.4713580  | 0.9309030  |
| С | 0.0736086  | -0.5220998 | -0.3335826 |
| С | -0.1875997 | 0.6868428  | 0.2060682  |
| С | 1.2463643  | -1.3796109 | -0.1789410 |
| С | 1.6100477  | -2.2276028 | -1.2350717 |
| С | 1.9890407  | -1.4519187 | 1.0080394  |
| С | 3.0654587  | -2.3189883 | 1.1211287  |
| С | 2.6911651  | -3.0876386 | -1.1238261 |
| С | 3.4275317  | -3.1347293 | 0.0553465  |
| Η | 1.7017054  | -0.8459531 | 1.8570688  |
| Η | 1.0359617  | -2.1990743 | -2.1535384 |
| Η | 3.6215271  | -2.3611658 | 2.0491110  |
| Η | 2.9587474  | -3.7255528 | -1.9568052 |
| Η | 4.2706858  | -3.8073824 | 0.1456328  |
| С | -1.5042693 | 1.3433187  | 0.0980482  |
| С | -1.6087945 | 2.7377162  | 0.1292059  |
| С | -2.6763766 | 0.5903248  | -0.0397345 |
| С | -3.9075389 | 1.2135140  | -0.1756833 |
| С | -2.8422981 | 3.3598089  | -0.0021238 |
| С | -3.9962844 | 2.6016520  | -0.1605990 |
| Η | -2.6249500 | -0.4898199 | -0.0122430 |
| Η | -0.7136724 | 3.3308843  | 0.2534126  |
| Η | -4.8030194 | 0.6134475  | -0.2766914 |
| Η | -2.9017358 | 4.4406747  | 0.0187201  |
| Η | -4.9587571 | 3.0870782  | -0.2595856 |
| Η | -0.6992552 | -0.9175174 | -0.9812655 |

1a-C

1a-TSHAT

Η

4.34360

| 20-0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |
| 9       | 1,326 1,335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,266              |          |
|         | 1.331 1.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                  |          |
| 9       | and the second s |                    |          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |
| 22      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |
| 33<br>N | -1 26590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 76720            | _0 50590 |
| N       | -1.26580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.70730<br>2.43380 | -0.59580 |
| N       | 0.92770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 77310            | -1.02700 |
| C       | 0.92770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 54810            | -0.61770 |
| C       | -0.81510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.55000            | -0.32610 |
| ч       | -0 16930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 67250            | -0 76530 |
| C       | -0 10060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 89010            | -0 21460 |
| н       | 0.50770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.42230            | -0.94300 |
| Н       | -1.14560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.19150            | -0.20830 |
| С       | 0.48640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.79060            | 1.07330  |
| Ν       | 0.96830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.66830            | 2.11750  |
| С       | -1.70700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.48150           | 0.20310  |
| С       | -3.06270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.47220           | -0.15470 |
| С       | -1.25570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.44950           | 1.11050  |
| С       | -2.13580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.38290           | 1.63920  |
| С       | -3.93560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.41310           | 0.36930  |
| С       | -3.47590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.37270           | 1.26690  |
| Н       | -0.22070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.45400           | 1.42350  |
| Н       | -3.41570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.27840            | -0.84880 |
| Н       | -1.77470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.11580           | 2.34980  |
| Н       | -4.97840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.39860           | 0.07740  |
| Н       | -4.15940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.10560           | 1.67710  |
| С       | 1.60850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.51280           | -0.58700 |
| С       | 2.93830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.19670           | -0.26710 |
| С       | 1.28920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.83720           | -0.91870 |
| С       | 2.26930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2.81880           | -0.91600 |
| С       | 3.91130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.18260           | -0.25760 |
| С       | 3.58070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2.49680           | -0.58070 |
| Н       | 0.27540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2.09220           | -1.19620 |
| Н       | 3.18940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.82660            | -0.02270 |
| Н       | 2.01050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.83590           | -1.18230 |
| Н       | 4.93130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.92810           | 0.00190  |

-0.57560

-3.26530



| -1.07520 | 3.01090                                                                                                                                                                                                                                                                                                            | 0.01840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.05820  | 3.68930                                                                                                                                                                                                                                                                                                            | 0.03700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.17000  | 2.97560                                                                                                                                                                                                                                                                                                            | 0.04000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.73880  | 1.71030                                                                                                                                                                                                                                                                                                            | 0.01800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.68380 | 1.73260                                                                                                                                                                                                                                                                                                            | 0.01230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -1.66450 | 0.64100                                                                                                                                                                                                                                                                                                            | 0.03480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -2.86350 | 0.76120                                                                                                                                                                                                                                                                                                            | -0.67270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -1.43220 | -0.51880                                                                                                                                                                                                                                                                                                           | 0.77860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -2.37210 | -1.53930                                                                                                                                                                                                                                                                                                           | 0.80300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -3.80290 | -0.26020                                                                                                                                                                                                                                                                                                           | -0.64510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -3.55920 | -1.41540                                                                                                                                                                                                                                                                                                           | 0.08950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.51490 | -0.61810                                                                                                                                                                                                                                                                                                           | 1.34260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -3.04880 | 1.66120                                                                                                                                                                                                                                                                                                            | -1.24340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -2.17910 | -2.43080                                                                                                                                                                                                                                                                                                           | 1.38610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -4.72610 | -0.15510                                                                                                                                                                                                                                                                                                           | -1.20100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -4.29100 | -2.21280                                                                                                                                                                                                                                                                                                           | 0.10850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.68490  | 0.58920                                                                                                                                                                                                                                                                                                            | -0.02520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.88430  | 0.65610                                                                                                                                                                                                                                                                                                            | 0.68870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.41910  | -0.54620                                                                                                                                                                                                                                                                                                           | -0.79500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.32670  | -1.59500                                                                                                                                                                                                                                                                                                           | -0.83880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.79130  | -0.39340                                                                                                                                                                                                                                                                                                           | 0.64160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.51420  | -1.52400                                                                                                                                                                                                                                                                                                           | -0.11900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.50130  | -0.60420                                                                                                                                                                                                                                                                                                           | -1.36390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.09540  | 1.53710                                                                                                                                                                                                                                                                                                            | 1.27980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.10810  | -2.46700                                                                                                                                                                                                                                                                                                           | -1.44210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.71510  | -0.32970                                                                                                                                                                                                                                                                                                           | 1.20260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.22070  | -2.34350                                                                                                                                                                                                                                                                                                           | -0.15310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.07390  | 4.69550                                                                                                                                                                                                                                                                                                            | 0.04850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | -1.07520<br>0.05820<br>1.17000<br>0.73880<br>-0.68380<br>-1.66450<br>-2.86350<br>-1.43220<br>-2.37210<br>-3.80290<br>-3.55920<br>-0.51490<br>-3.04880<br>-2.17910<br>-4.72610<br>-4.29100<br>1.68490<br>2.88430<br>1.41910<br>2.32670<br>3.79130<br>3.51420<br>0.50130<br>3.09540<br>2.10810<br>4.22070<br>0.07390 | -1.07520 $3.01090$ $0.05820$ $3.68930$ $1.17000$ $2.97560$ $0.73880$ $1.71030$ $-0.68380$ $1.73260$ $-1.66450$ $0.64100$ $-2.86350$ $0.76120$ $-1.43220$ $-0.51880$ $-2.37210$ $-1.53930$ $-3.80290$ $-0.26020$ $-3.55920$ $-1.41540$ $-0.51490$ $-0.61810$ $-3.04880$ $1.66120$ $-2.17910$ $-2.43080$ $-4.72610$ $-0.15510$ $-4.29100$ $-2.21280$ $1.68490$ $0.58920$ $2.88430$ $0.65610$ $1.41910$ $-0.54620$ $2.32670$ $-1.59500$ $3.79130$ $-0.39340$ $3.51420$ $-1.52400$ $0.50130$ $-0.60420$ $3.09540$ $1.53710$ $2.10810$ $-2.46700$ $4.22070$ $-2.34350$ $0.07390$ $4.69550$ |



| С | 0.00000  | 0.00000  | 0.60080  |
|---|----------|----------|----------|
| С | 0.0000   | -0.00000 | -0.60080 |
| С | -0.00000 | 0.00000  | 2.05710  |
| Н | -0.64100 | 0.79240  | 2.45120  |
| Н | 1.00670  | 0.15890  | 2.45120  |
| Н | -0.36570 | -0.95130 | 2.45120  |
| С | -0.00000 | -0.00000 | -2.05710 |
| Н | -0.64100 | -0.79240 | -2.45120 |
| Н | 1.00670  | -0.15890 | -2.45120 |
| Н | -0.36570 | 0.95130  | -2.45120 |

S30

| 13 |          |          |          |
|----|----------|----------|----------|
| N  | 1.61400  | 0.58030  | 2.46410  |
| Ν  | 0.86370  | -0.16560 | 2.01730  |
| N  | 0.07530  | -0.94920 | 1.55810  |
| С  | -0.13610 | 0.61850  | -0.56590 |
| С  | -0.29290 | -0.58590 | -0.31900 |
| С  | 0.14580  | 2.03540  | -0.46610 |
| Н  | -0.76240 | 2.63160  | -0.57860 |
| Н  | 0.86540  | 2.35220  | -1.22500 |
| Н  | 0.58010  | 2.26360  | 0.51520  |
| С  | -0.66850 | -1.93340 | -0.76640 |
| Н  | 0.17710  | -2.61620 | -0.67420 |
| Н  | -0.99390 | -1.90310 | -1.80650 |
| Н  | -1.47790 | -2.32190 | -0.14720 |
|    |          |          |          |

1,148

03

1.947

1.239

1z-TSA



| N | -4.24600 | -0.24990 | -0.07770 |
|---|----------|----------|----------|
| N | -3.23600 | 0.24840  | -0.02920 |
| N | -2.19420 | 0.89860  | 0.02790  |
| С | -0.88330 | -1.14090 | -0.04680 |
| С | -0.95980 | 0.16910  | 0.01800  |
| С | 0.07940  | -2.23910 | -0.08210 |
| Н | -0.05720 | -2.92200 | 0.76110  |
| Н | 1.11020  | -1.85980 | -0.03470 |
| Н | -0.01170 | -2.82590 | -1.00040 |
| С | 0.21840  | 1.10210  | 0.09190  |
| Н | 1.15610  | 0.54960  | 0.08870  |
| Н | 0.16590  | 1.70260  | 1.00290  |
| Н | 0.20970  | 1.78710  | -0.75890 |

1z-A



| Ν | 2.67427  | -0.20464 | 0.00000  |
|---|----------|----------|----------|
| Ν | 2.29451  | 0.89737  | 0.00000  |
| Ν | 1.27949  | 1.65627  | 0.00000  |
| С | 0.35482  | -0.56205 | 0.00000  |
| С | 0.15289  | 0.74721  | 0.00000  |
| С | -0.13795 | -1.92673 | 0.00000  |
| Н | 0.18270  | -2.48497 | -0.89425 |
| Н | -1.24617 | -1.91889 | 0.00000  |
| Н | 0.18270  | -2.48497 | 0.89425  |
| С | -1.18301 | 1.43140  | 0.00000  |
| Н | -1.27332 | 2.06942  | 0.89494  |
| Н | -2.00521 | 0.70591  | 0.00000  |
| Н | -1.27332 | 2.06942  | -0.89494 |



| Ν | -1.07990 | 1.78340  | -0.17040 |
|---|----------|----------|----------|
| Ν | 0.06790  | 2.51730  | -0.27780 |
| Ν | 1.17250  | 1.71910  | -0.21840 |
| С | 0.75260  | 0.48710  | -0.07200 |
| С | -0.72610 | 0.53000  | -0.04060 |
| С | -1.66490 | -0.60080 | 0.10690  |
| Н | -1.52300 | -1.32800 | -0.69860 |
| Н | -2.69310 | -0.24600 | 0.09150  |
| Н | -1.48240 | -1.13430 | 1.04500  |
| С | 1.63040  | -0.69560 | 0.03670  |
| Н | 2.67570  | -0.40010 | -0.02080 |
| Н | 1.41430  | -1.41140 | -0.76270 |
| Н | 1.45590  | -1.22070 | 0.98110  |

1z-B



| Ν | 3.4291545  | 1.7897919  | 0.9596837  |
|---|------------|------------|------------|
| Ν | 2.3075928  | 1.7669365  | 1.0862359  |
| Ν | 1.1030684  | 1.8702658  | 1.2979087  |
| С | 0.4860256  | -0.2445631 | 0.2695039  |
| С | 0.1829367  | 0.9964925  | 0.6140747  |
| Η | -0.5346270 | -0.9214776 | -0.4221133 |
| С | -1.3806259 | -1.6805372 | -1.0318632 |
| Η | -0.7552378 | -2.4116339 | -1.5390892 |
| Η | -1.9716172 | -2.1253290 | -0.2346336 |
| С | -2.1483132 | -0.8746757 | -1.9251873 |
| Ν | -2.7452769 | -0.1749791 | -2.6226363 |
| С | 1.6611744  | -1.1250328 | 0.4607374  |
| Н | 2.3458916  | -1.0943475 | -0.3919501 |
| Η | 1.3472393  | -2.1643366 | 0.5873506  |
| Η | 2.2246332  | -0.8515455 | 1.3569942  |
| С | -1.1379996 | 1.6718752  | 0.4162898  |
| Η | -1.8705005 | 1.0027514  | -0.0259581 |
| Н | -1.0282667 | 2.5428333  | -0.2332624 |
| Н | -1.5152517 | 2.0275113  | 1.3779146  |



| Ν | 2.7625475  | 1.2727332  | 0.3430937  |
|---|------------|------------|------------|
| Ν | 1.6499844  | 1.2027469  | 0.5205083  |
| Ν | 0.4558397  | 1.2543397  | 0.7987677  |
| С | -0.2301922 | -0.8156712 | -0.3125359 |
| С | -0.4724654 | 0.4375012  | 0.0799014  |
| Н | -1.0292962 | -1.3038546 | -0.8586722 |
| С | 1.0007792  | -1.6280387 | -0.0492249 |
| Н | 1.7201683  | -1.5728958 | -0.8726674 |
| Н | 0.7360210  | -2.6797863 | 0.0715256  |
| Н | 1.5160661  | -1.3129196 | 0.8584243  |
| С | -1.7774202 | 1.1449905  | -0.1134374 |
| Н | -2.5051144 | 0.4902658  | -0.5903337 |
| Н | -1.6503609 | 2.0409258  | -0.7262179 |
| Н | -2.1765570 | 1.4696632  | 0.8508683  |
|   |            |            |            |


| Ν | -1.28876 | 0.37177  | -0.59594 |
|---|----------|----------|----------|
| Ν | -0.25563 | 1.02885  | -1.19015 |
| Ν | 0.91269  | 0.35060  | -1.09722 |
| С | 0.60002  | -0.82445 | -0.59975 |
| С | -0.81475 | -0.80944 | -0.27797 |
| Н | -0.12976 | 2.19128  | -0.65105 |
| С | 0.01955  | 3.12513  | 0.26540  |
| Н | 0.73760  | 3.80575  | -0.18486 |
| Н | -0.98507 | 3.52973  | 0.35761  |
| С | 0.48213  | 2.44081  | 1.42098  |
| Ν | 0.84397  | 1.81343  | 2.32132  |
| С | -1.62947 | -1.89506 | 0.31976  |
| Н | -1.42996 | -2.85382 | -0.16331 |
| Н | -2.68970 | -1.66452 | 0.23640  |
| Н | -1.38408 | -2.00950 | 1.38028  |
| С | 1.56825  | -1.93210 | -0.42373 |
| Н | 2.56725  | -1.60967 | -0.70964 |
| Н | 1.28946  | -2.80006 | -1.02779 |
| Н | 1.58626  | -2.25874 | 0.61967  |



| Ν | -1.11530 | 0.89540  | -0.13120 |
|---|----------|----------|----------|
| Ν | 0.01820  | 1.57640  | -0.21710 |
| Ν | 1.13310  | 0.86130  | -0.17670 |
| С | 0.69890  | -0.39180 | -0.05330 |
| С | -0.71460 | -0.37040 | -0.02470 |
| С | -1.66950 | -1.50630 | 0.10010  |
| Н | -1.53700 | -2.22590 | -0.71170 |
| Н | -2.69420 | -1.13910 | 0.07110  |
| Н | -1.52260 | -2.04600 | 1.03910  |
| С | 1.62330  | -1.55610 | 0.03360  |
| Н | 2.65650  | -1.22070 | -0.04110 |
| Н | 1.43350  | -2.27300 | -0.76920 |
| Н | 1.50110  | -2.08920 | 0.97990  |
| Н | 0.03150  | 2.57750  | -0.31010 |

CH₃CN

1.455 1.150

## 6

| С | -1.54100 | 0.44760  | -0.00000 |
|---|----------|----------|----------|
| С | -0.09500 | 0.60750  | -0.00000 |
| Ν | 1.04760  | 0.73380  | 0.00000  |
| Η | -1.80180 | -0.61130 | 0.00000  |
| Н | -1.97070 | 0.91510  | 0.88660  |
| Н | -1.97070 | 0.91510  | -0.88660 |

## CH<sub>2</sub>CN Radical

| С | 0.09210  | 0.01560  | -0.29100 |
|---|----------|----------|----------|
| H | -0.42270 | -0.92320 | -0.43530 |
| Н | -0.45790 | 0.94340  | -0.35350 |
| С | 1.44320  | 0.02920  | -0.02820 |
| N | 2.58780  | 0.04020  | 0.19470  |





| ~  |
|----|
| () |
| ~  |
| ~  |
|    |

| С | -0.0802115 | -0.5339040 | 1.0771270  |
|---|------------|------------|------------|
| С | 1.2300434  | -0.0707925 | 0.8200246  |
| Ν | 2.2829334  | 0.3283062  | 0.5543120  |
| Ν | -1.3539019 | 0.0718953  | -1.1143191 |
| Ν | -0.5643680 | 0.7174327  | -1.7800915 |
| Ν | 0.1220739  | 1.3263325  | -2.4529261 |
| Н | -0.8099100 | -0.2473168 | -0.0585284 |
| Н | -0.6324992 | 0.0211542  | 1.8298491  |
| Н | -0.1941602 | -1.6131076 | 1.1245525  |
|   |            |            |            |

 $HN_3$ 



| л |
|---|
| 4 |

| Ν | -0.7383958 | -0.3802622 | 0.0000000 |
|---|------------|------------|-----------|
| Ν | 0.4626629  | -0.0942257 | 0.0000000 |
| Ν | 1.5835083  | 0.0101334  | 0.0000000 |
| Η | -1.3077755 | 0.4643545  | 0.0000000 |

## NMR spectra





S41





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1c f1 (ppm)







2g



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



2i



2j



2k



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1( f1 (ppm)



2m









2q







2t





2v





2x









2ac



2ae







2ah




2aj



S73