CHEMISTRY A European Journal

Supporting Information

Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates

Thien H. Ngo, ${ }^{*[a, b]}$ David Zieba, ${ }^{[c]}$ Whitney A. Webre, ${ }^{[d]}$ Gary N. Lim, ${ }^{[d]}$ Paul A. Karr, ${ }^{[\text {[e] }}$ Scheghajegh Kord, ${ }^{[c]}$ Shangbin Jin, ${ }^{[b]}$ Katsuhiko Ariga, ${ }^{[b]}$ Marzia Galli, ${ }^{[f]}$ Steve Goldup, ${ }^{[f]}$ Jonathan P. Hill, ${ }^{*[b]}$ and Francis D'Souza* ${ }^{\text {*d] }}$
chem_201503490_sm_miscellaneous_information.pdf

Contents

Synthesis Scheme ... S2
1.0 Synthetic details for triad 6 and pentad 7.S3
2.0 Spectroscopic data for dyad 5 S6
3.0 Spectroscopic data for triad 6 S10
4.0 Spectroscopic data for pentad 7 S14
$2\left(A^{1}=A^{2}=A^{3}=3,5\right.$-bis-tert-butylphenyl)
$3\left(A^{1}=A^{3}=\right.$ mesityl $A^{2}=$ athynylphenyl) $3\left(A A^{1}=A^{3}=\right.$ mesityl, $A^{2}=$ ethynylp
$4\left(A^{1}=A^{2}=A^{3}=\right.$ ethynylphenyl)

Scheme S1. Click synthesis of the conjugates 5, 6 and 7

1.0 Synthetic methods for Triad 6 and Pentad 7

Method (a) described in the main manuscript was not investigated for the synthesis of compounds 6 and 7.

Triad 6

Method (b): $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(8 \mathrm{mg}, 3.2 \times 10^{-5} \mathrm{~mol}, 2.6 \mathrm{eq}.\right)$ and ascorbic acid ($6 \mathrm{mg}, 3.2 \times$ $\left.10^{-5} \mathrm{~mol}, 2.6 \mathrm{eq}.\right)$ were added to a solution of porphyrin $\mathbf{3}\left(10 \mathrm{mg}, 1.23 \times 10^{-5} \mathrm{~mol}, 1 \mathrm{eq}.\right)$ and corrole 1 ($23 \mathrm{mg}, 3.2 \times 10^{-5} \mathrm{~mol}$, 2.6 eq.) in dry DMF (3 mL) under an argon atmosphere. After stirring for 2 d at $50^{\circ} \mathrm{C}$ the reaction mixture was partitioned between dichloromethane (20 mL) and water (20 mL) and the layers were separated. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude product was purified by size exclusion chromatography (Biobeads SX-1, tetrahydrofuran) affording the corrole-porphyrin triconjugate $\mathbf{6}$ as a brown solid ($24.9 \mathrm{mg}, 89 \%$).

Method (c): CuI ($1 \mathrm{mg}, 5.25 \times 10^{-6} \mathrm{~mol}, 0.4 \mathrm{eq}$.), DIPEA ($\left.1 \mathrm{mg}, 7.74 \times 10^{-6} \mathrm{~mol}, 0.6 \mathrm{eq}.\right)$ and acetic acid ($1 \mathrm{mg}, 1.67 \times 10^{-5} \mathrm{~mol}, 1.4 \mathrm{eq}$.) were added to a solution of porphyrin $\mathbf{3}$ ($10 \mathrm{mg}, 1.23 \times 10^{-5} \mathrm{~mol}, 1$ eq.) and corrole $1\left(18 \mathrm{mg}, 2.48 \times 10^{-5} \mathrm{~mol}, 2\right.$ eq.) in dry dichloromethane (3 mL). The reaction mixture was stirred for 1 d at r.t. The crude product was purified by size exclusion chromatography (Biobeads SX-1, tetrahydrofuran) affording the corrole-porphyrin triconjugate $\mathbf{6}$ as a brown solid ($20,4 \mathrm{mg}, 73 \%$).

Method (d): A solution of azidocorrole $\mathbf{1}\left(36.2 \mathrm{mg}, 5.44 \times 10^{-5} \mathrm{~mol}\right)$, porphyrin 3 (20.2 $\left.\mathrm{mg}, 3.08 \times 10^{-5} \mathrm{~mol}\right)$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}\left(16 \mathrm{mg}, 4.29 \times 10^{-5} \mathrm{~mol}\right)$ in 4 mL DCM was stirred at $80^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction was monitored by t.l.c. After completion, water (20 mL) was added and the mixture was extracted with DCM (3×20 $\mathrm{mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent evaporated under reduced pressure. After purification by size extrusion chromatography (Biobeads SX-1, chloroform) 55.4 mg (99%) of triad $\mathbf{6}$ was obtained as a brown solid.

Pentad 7.

Method (b): $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(15 \mathrm{mg}, 5.92 \times 10^{-5} \mathrm{~mol}, 4.5 \mathrm{eq}.\right)$ and ascorbic acid $(11 \mathrm{mg}$, $\left.5.92 \times 10^{-5} \mathrm{~mol}, 4.5 \mathrm{eq}.\right)$ were added to a solution of porphyrin $4\left(10 \mathrm{mg}, 1.29 \times 10^{-5}\right.$ mol, 1 eq.) and corrole $\mathbf{1}\left(43 \mathrm{mg}, 5.92 \times 10^{-5} \mathrm{~mol}, 4.5\right.$ eq.) in dry DMF (3 mL) under an argon atmosphere. After stirring for 2 d at $50^{\circ} \mathrm{C}$ the reaction mixture was partitioned between dichloromethane (20 mL) and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the layers separated. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude product was purified by size exclusion chromatography (eluent, THF) affording the corrole-porphyrin pentaconjugate 7 as a brown solid ($38 \mathrm{mg}, 79 \%$).

Method (c): $\mathrm{CuI}\left(1 \mathrm{mg}, 5.25 \times 10^{-6} \mathrm{~mol}, 0.4 \mathrm{eq}.\right)$, DIPEA ($\left.1 \mathrm{mg}, 7.74 \times 10^{-6} \mathrm{~mol}, 0.6 \mathrm{eq}.\right)$ and acetic acid ($1 \mathrm{mg}, 1.67 \times 10^{-} 5 \mathrm{~mol}, 1.4 \mathrm{eq}$.) were added to a solution of porphyrin 4 $\left(10 \mathrm{mg}, 1.29 \times 10^{-5} \mathrm{~mol}, 1\right.$ eq.) and corrole $\mathbf{1}\left(38 \mathrm{mg}, 5.23 \times 10^{-5} \mathrm{~mol}, 4\right.$ eq.) in dry DCM
$(3 \mathrm{~mL})$. The reaction mixture was stirred for 1 d at r.t. The crude product was purified by size exclusion chromatography (Biobeads SX-1, THF) affording the corrole-porphyrin pentaconjugate $\mathbf{7}$ as a brown solid ($33 \mathrm{mg}, 63 \%$).

Method (d): A solution of azidocorrole $1\left(6.45 \mathrm{mg}, 6.44 \times 10^{-5} \mathrm{~mol}\right)$, porphyrin 4 (10 $\left.\mathrm{mg}, 1.29 \times 10^{-5} \mathrm{~mol}\right)$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}\left(25 \mathrm{mg}, 6.70 \times 10^{-5} \mathrm{~mol}\right)$ in 5 mL DCM was stirred at $80^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction was monitored using t.l.c. After completion, water (20 mL) was added and the mixture was extracted with DCM $(3 \times 20$ $\mathrm{mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent evaporated under reduced pressure. After purification by size extrusion chromatography (polystyrene, biobeads, chloroform) 47 mg (98%) of pentad 7 was obtained as a brown solid.

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
spectrum of dyad $\mathbf{5}$ in
2.0 Spectroscopic data for diad 5 .

Figure S2. ${ }^{13} \mathrm{C}$-NMR spectrum of dyad 5 in

Figure S3. ESI-mass spectrum of dyad 5. Top panel: Peaks due to doubly charged 5; middle panel: singly charged molecular ion; lower panels: isotope distribution pattern and model for the doubly charged ion.

diamagnetic state. Two resonances present are due to the external standard.

Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
3.0 Spectroscopic data for triad 6.

Figure S6．${ }^{13} \mathrm{C}-\mathrm{NMR}$
spectrum of triad 6 in
1100^{-}
$629^{\circ} \downarrow$
$\xrightarrow{2 \angle 661=}$

20L．62 | $201+\square$ |
| :--- |

\qquad
$890^{\circ} \mathrm{LZL}$
110 เロて1—
$9 \angle 9.2 \mathrm{Zl}$

くガ・8カー
$610^{\circ} 0 \mathrm{Sl}$

Figure S7. ESI-mass spectrum of triad 6. Top panel: Peaks due to doubly charged 6; middle panel: singly charged molecular ion; lower panels: isotope distribution pattern and model for the doubly charged ion.

Figure S10. ${ }^{13} \mathrm{C}-\mathrm{NMR}$
spectrum of pentad 7
_ in CDCl_{3}.

Odeg_300min
Data: 68B0001.B3 4 Aug 2014 9:51 Cal: tof 12 Dec 2013 11:14
Kratos PC Axima CFRplus V2.4.0: Mode linear, Power: 161, P.Ext. @ 3673 (bin 86)
\%Int. 13 mV [sum= 1266 mV] Profiles 1-100: Averaged

Figure S11. Mass spectrometric data for pentad 7. Top panel: ESI-MS of triply and singly-charged 7. Lower panel: MALDI-TOF-MS spectrum of 7.

Figure S12. ESR	spectrum	of	
pentad	7	indicating	its

diamagnetic state. Two resonances present are due to the external standard.

Figure S13. Spectral changes observed during (a) first reduction of CuC , (b) first oxidation of CuC , (c) first reduction of ZnP , and (d) first oxidation of ZnP in benzonitrile containing 0.1 M $(\mathrm{TBA}) \mathrm{ClO}_{4}$.

