CHEMISTRY A European Journal

Supporting Information

Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin–Copper Corrole Donor–Acceptor Conjugates

Thien H. Ngo,^{*[a, b]} David Zieba,^[c] Whitney A. Webre,^[d] Gary N. Lim,^[d] Paul A. Karr,^[e] Scheghajegh Kord,^[c] Shangbin Jin,^[b] Katsuhiko Ariga,^[b] Marzia Galli,^[f] Steve Goldup,^[f] Jonathan P. Hill,^{*[b]} and Francis D'Souza^{*[d]}

chem_201503490_sm_miscellaneous_information.pdf

Contents

Synthesis Scheme	S2
1.0 Synthetic details for triad 6 and pentad 7	S 3
2.0 Spectroscopic data for dyad 5	S6
3.0 Spectroscopic data for triad 6	S 10
4.0 Spectroscopic data for pentad 7	S14

Scheme S1. Click synthesis of the conjugates 5, 6 and 7

1.0 Synthetic methods for Triad 6 and Pentad 7

Method (a) described in the main manuscript was not investigated for the synthesis of compounds **6** and **7**.

Triad 6

<u>Method (b)</u>: CuSO₄·5H₂O (8 mg, 3.2×10^{-5} mol, 2.6 eq.) and ascorbic acid (6 mg, 3.2×10^{-5} mol, 2.6 eq.) were added to a solution of porphyrin **3** (10 mg, 1.23×10^{-5} mol, 1 eq.) and corrole **1** (23 mg, 3.2×10^{-5} mol, 2.6 eq.) in dry DMF (3mL) under an argon atmosphere. After stirring for 2 d at 50°C the reaction mixture was partitioned between dichloromethane (20 mL) and water (20 mL) and the layers were separated. The organic layer was washed with H₂O (3 × 20 mL), dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude product was purified by size exclusion chromatography (Biobeads SX-1, tetrahydrofuran) affording the corrole-porphyrin triconjugate **6** as a brown solid (24.9 mg, 89%).

<u>Method (c)</u>: CuI (1 mg, 5.25×10^{-6} mol, 0.4 eq.), DIPEA (1 mg, 7.74×10^{-6} mol, 0.6 eq.) and acetic acid (1 mg, 1.67×10^{-5} mol, 1.4 eq.) were added to a solution of porphyrin **3** (10 mg, 1.23×10^{-5} mol, 1 eq.) and corrole **1** (18 mg, 2.48×10^{-5} mol, 2 eq.) in dry dichloromethane (3 mL). The reaction mixture was stirred for 1 d at r.t. The crude product was purified by size exclusion chromatography (Biobeads SX-1, tetrahydrofuran) affording the corrole-porphyrin triconjugate **6** as a brown solid (20,4 mg, 73%). <u>Method (d)</u>: A solution of azidocorrole **1** (36.2 mg, 5.44×10^{-5} mol), porphyrin **3** (20.2 mg, 3.08×10^{-5} mol) and [Cu(CH₃CN)₄]PF₆ (16 mg, 4.29×10^{-5} mol) in 4 mL DCM was stirred at 80 °C under N₂ atmosphere. The reaction was monitored by t.l.c. After completion, water (20 mL) was added and the mixture was extracted with DCM (3 × 20 mL). The combined organic phase was dried over Na₂SO₄ and solvent evaporated under reduced pressure. After purification by size extrusion chromatography (Biobeads SX-1, chloroform) 55.4 mg (99%) of triad **6** was obtained as a brown solid.

Pentad 7.

<u>Method (b)</u>: CuSO₄·5H₂O (15 mg, 5.92×10^{-5} mol, 4.5 eq.) and ascorbic acid (11 mg, 5.92×10^{-5} mol, 4.5 eq.) were added to a solution of porphyrin **4** (10 mg, 1.29×10^{-5} mol, 1 eq.) and corrole **1** (43 mg, 5.92×10^{-5} mol, 4.5 eq.) in dry DMF (3 mL) under an argon atmosphere. After stirring for 2d at 50°C the reaction mixture was partitioned between dichloromethane (20 mL) and H₂O (20 mL) and the layers separated. The organic layer was washed with H₂O (3 × 20 mL), dried over Na₂SO₄ and the solvent removed under reduced pressure. The crude product was purified by size exclusion chromatography (eluent, THF) affording the corrole-porphyrin pentaconjugate **7** as a brown solid (38 mg, 79%).

<u>Method (c)</u>: CuI (1 mg, 5.25×10^{-6} mol, 0.4 eq.), DIPEA (1 mg, 7.74×10^{-6} mol, 0.6 eq.) and acetic acid (1 mg, 1.67×10^{-5} mol, 1.4 eq.) were added to a solution of porphyrin **4** (10 mg, 1.29×10^{-5} mol, 1 eq.) and corrole **1** (38 mg, 5.23×10^{-5} mol, 4 eq.) in dry DCM (3 mL). The reaction mixture was stirred for 1d at r.t. The crude product was purified by size exclusion chromatography (Biobeads SX-1, THF) affording the corrole-porphyrin pentaconjugate **7** as a brown solid (33 mg, 63%).

<u>Method (d)</u>: A solution of azidocorrole **1** (6.45 mg, 6.44×10^{-5} mol), porphyrin **4** (10 mg, 1.29×10^{-5} mol) and [Cu(CH₃CN)₄]PF₆ (25 mg, 6.70×10^{-5} mol) in 5 mL DCM was stirred at 80 °C under N₂ atmosphere. The reaction was monitored using t.l.c. After completion, water (20 mL) was added and the mixture was extracted with DCM (3 × 20 mL). The combined organic phase was dried over Na₂SO₄ and solvent evaporated under reduced pressure. After purification by size extrusion chromatography (polystyrene, biobeads, chloroform) 47 mg (98%) of pentad **7** was obtained as a brown solid.

Figure S2. ¹³C-NMR

Figure S3. ESI-mass spectrum of dyad **5**. Top panel: Peaks due to doubly charged **5**; middle panel: singly charged molecular ion; lower panels: isotope distribution pattern and model for the doubly charged ion.

diamagnetic state. Two resonances present are due to the external standard.

S10

Figure S7. ESI-mass spectrum of triad **6**. Top panel: Peaks due to doubly charged **6**; middle panel: singly charged molecular ion; lower panels: isotope distribution pattern and model for the doubly charged ion.

Figure S10. ¹³C-NMR

spectrum of pentad 7

in CDCl₃.

Figure S11. Mass spectrometric data for pentad 7. Top panel: ESI-MS of triply and singly-charged 7. Lower panel: MALDI-TOF-MS spectrum of 7.

Figure S12. ESR	spectrum	of

pentad 7 indicating its

diamagnetic state. Two resonances present are due to the external standard.

Figure S13. Spectral changes observed during (a) first reduction of CuC, (b) first oxidation of CuC, (c) first reduction of ZnP, and (d) first oxidation of ZnP in benzonitrile containing 0.1 M (TBA)ClO₄.