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Introduction  

This supporting information contains the following:  

1. Pareto results for every case study examined in this study (Figures S1 and S2).  
Specifically, we provide a plot for each catchment showing the Pareto curve obtained 
for each of the five model structures, for a total of 430 curves.  

2. Comparison table for Kling Gupta Efficiency versus Nash Sutcliffe Efficiency 
(Figure S3) highlighting problems noted by Gupta et al. (2009). 

3. Plotted comparison of calibration results between AMALGAM and the single-
objective optimizer CMA-ES (Figure S4).  This comparison was done in ten 
catchments, for five model structures, for each of the two objectives.   

4. Four additional case studies pursuant to Section 3.2 of the article (Figure S5).  
Section 3.2 showed an example (Figure 11) where the endpoints of two Pareto 
curves (those for GR4J and GR4JMOD) were similar despite divergence mid-curve.   
As the article explains, “…use of a single-objective DSST…would lead to the 
erroneous conclusion that the alterations to GR4JMOD by Hughes et al. (2013) 
made negligible difference to the model’s capabilities.  In contrast, Figure 11 shows 
that this is not the case by the divergence of the purple GR4JMOD curve from the 
orange GR4J curve.”  To demonstrate that Figure 11 is not an isolated case, in 
Figure S4 we provide examples from four other catchments. 
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5. Catchment-by-catchment information for the 12 catchments in which no model 
structure was able to meet modelling standard 1 (Table S1).  We provide 
additional information for the interested reader who wishes to know the names and 
physical properties of the catchments that were most difficult to model.     

6. Catchment location map (Figure S6) showing location of catchments where no 
model structure could meet a given modelling standard, referenced in Section 3.4 of 
the article.   

7. Text discussing categorization of model failure based on the shape of the 
Pareto Curve (Text S1).  This text expands upon the summary provided in Section 
3.4. 

8. Diagram in support of Text S1 (Figure S7) providing a visual summary of model 
failure categorization for each model structure. 

9. Text regarding bushfires (Text S2) outlining efforts to investigate whether the 
hydrological effects of bushfires might be associated with catchments where no 
model structure could meet a given modelling standard.  Referenced in Section ## of 
the article.   

10. Diagrams of simulation bias for selected parameter sets (Figures S8 to S11), 
following a format suggested by Coron et al. (2014).  These plots are the same as 
Figure 13 of the article, but are shown for more case studies.   

11. References. 
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Figure S1. Pareto curves, for each of the five model structures, in 48 of the 86 study 
catchments.  The y axis is KGE over non-dry period (axis limits: 0,1) and the x axis is 
KGE over dry period (axis limits: 0,1). For plot legend, refer next figure.   
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Figure S2. Pareto curves, for each of the five model structures, in 38 of the 86 study 
catchments.  The y axis is KGE over non-dry period (axis limits: 0,1) and the x axis is 
KGE over dry period (axis limits: 0,1). For a plot legend, refer next figure.   
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Figure S3. Values for Nash Sutcliffe Efficiency (NSE) and Kling Gupta Efficiency (KGE) 
for different combinations of standard deviation σ and bias β.  Linear correlation r is 
constant at 0.9.  The analysis is done for two values of standard deviation: σ = 0.7 mm/d 
(10th percentile – 9 catchments of 86 had a lower value); and σ = 4.0 mm/d (90th 
percentile – 9 catchments of 86 had a higher value).  Note that Equation 4 from Gupta et 
al. (2009) requires the average flow to be defined in absolute terms; a value of 0.7 mm/d 
or 255 mm/yr was assumed, which was close to the median value for the study 
catchments.  Orange and purple values mark issues with the NSE, as follows: Orange: 
Gupta et al. (2009) noted that the bias term is normalised by the observed standard 
deviation, which means that in catchments with high flow variability (as in this study) the 
magnitude of the bias can be high without penalising the NSE score.   Purple: Gupta et 
al. (2009) noted a further problem with the treatment of the standard deviation σ in the 
NSE, regarding the ratio σsimulated / σobserved.  Although this ratio should ideally have a 
value of unity, the optimum value for NSE occurs when the ratio is equal to the linear 
correlation.   
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Figure S4. Pareto curves, for each of the five model structures, in 10 selected study 
catchments, along with single-objective optimization results using CMA-ES.     
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Figure S5. Four cases where the GR4J and GR4JMOD curves have similar endpoints.  
In each case the single-objective Differential Split Sample Test results would lead to the 
erroneous conclusion that the improvements introduced into GR4JMOD by Hughes et al. 
(2013) made negligible difference to the model’s capabilities.  (a) 401210 Snowy Creek 
below Granite Flat, Victoria; (b) 405217 Yea River at Devlins Bridge, Victoria; (c) 
143110A Bremer River at Adams Bridge, Queensland; (d) A5040517 First Creek at 
Waterfall Gully, South Australia.      
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Catch-
ment 
area 

Mean 
annual 
rainfall 

Dry 
period 
flow 
ratio 

Average 
slope 

Forest 
Cover 

Farm Dam 
Develop-
ment 

Catchment number & name (km²) (mm/yr) (-) (%) (%) (ML/km²) 
208009 - Barnard River at 
Barry  152 958 0.766 23.1 98.4 n/a 

216002 - Clyde River at 
Brooman  862 1066 0.521 22.7 97.4 n/a 

405248 - Major Creek at 
Graytown  292 608 0.061 4.3 72.3 4.13 

406214 - Axe Creek at 
Longlea  236 600 0.068 5.0 71.4 32.06 

406224 - Mount Pleasant 
Creek at Runnymede  243 518 0.053 2.4 21.4 6.93 

407253 - Piccaninny Creek at 
Minto  681 491 0.441 1.5 59.3 22.54 

408202 - Avoca River at 
Amphitheatre  77 616 0.125 13.3 49.5 5.35 

415226 - Richardson River at 
Carrs Plains  130 504 0.002 1.3 17.9 2.58 

136202D - Barambah Creek 
at Litzows  652 876 0.158 9.1 96.1 n/a 

137101A - Gregory River at 
Burrum Highway  454 918 0.154 4.1 98.3 n/a 

138010A - Wide Bay Creek 
at Kilkivan  352 819 0.056 10.4 97.7 n/a 

422306A - Swan Creek at 
Swanfels  82 1012 0.345 24.2 96.4 n/a 

 

Table S1. Characteristics for each of the 12 study catchments in group FF; that is, for 
which no model structure was able to meet modelling standard 1 (KGEnon-dry = 0.7; 
KGEdry = 0.7).  Farm dam development data is only available for catchments in the state 
of Victoria.   
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Figure S6. Map of catchments where no model structure could meet a given modelling 
standard.  

Text S1 – Categorisation of model failure based on shape of the Pareto Curve 

In this section we examine those catchments where the model structures failed to meet 
Standard 1 and/or Standard 2.  We analyse the Pareto Curves and consider what the 
form of these curves may indicate about the type of model failure. 

Figure S7 divides the instances where model structures failed to meet the standards (ie. 
Case C in Figure 14) into sub-categories according the type of failure, which we deduce 
from the form of their Pareto Curves.   Having failed to meet the standard, every 
instance listed in these tables is one where no single parameter set can simulate flows 
satisfactorily in both wet and dry periods.  The endpoints of the curves indicate whether 
the model structure is able to meet the standard in a given objective when optimized to it 
in isolation.  If it can meet one or both standards in isolation, we classify this as a 
different type of failure compared to instances where the standard can be met in neither 
objective.   

The results are relatively well spread between the failure types, making generalisation 
difficult (Figure S7).  GR4J and GR4JMOD were exceptionally good at meeting the lower 
standard (KGE = 0.7) in a given objective provided that they were calibrated to it in 
isolation; hence zero catchments in Failure Type 1 (see also Figure 7).  IHACRES had a 
much lower failure rate (hence lower totals) but among failure instances, Failure Type 1 
was relatively common; that is, IHACRES failures tended to belong to the “appears to be 
deficient in this catchment, regardless of climate” category, particularly for the more 
stringent of the two standards (Figure S7).  This category was also common for the 
model structure SIMHYD.  It was more common for model structures to fail to meet the 
KGE=0.7 standard in the dry period (Failure types 3 and 1) than in the wet (Failure types 
2 and 1).  This distinction was not evident for KGE = 0.8.   In general, the lack of a 
dominating category, particularly for the higher standard, speaks against the 
generalisation that model structures are generally poor at simulating dry conditions. 
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Figure S7. Details of model failure for those catchments where a given model structure 
failed. 
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Text S2 – Discussion of bushfires 
We considered the possible effect of bushfires on the hydrology of the test catchments.  
As with farm dams, data on historic bushfire severity was only available for the State of 
Victoria (Department of Environment, Land, Water and Planning, 2015).  There have 
been a number of significant bushfires in Victoria over the last 15 years, notably in 2003, 
2007 and 2009.  Also relevant to this study was a significant fire in 1983.  Bushfires in 
Australia have been shown to cause changes in catchment hydrology, including a 
decrease in plant water use immediately following a fire, followed by a period of higher 
water use as saplings recolonise (eg. Kuczera 1987; Cornish and Vertessy, 2001).  
These changes may cause temporary degradation of performance of a calibrated model.  
In the current study, bushfires could confound the results if the 7-year dry period 
immediately followed a bushfire.  If this was the case, bushfires could be a reason for 
model failure in the dry period.  Given that the modelling period adopted in this study 
runs to 2010, the 2007 and 2009 fires occurred too late in the record (ie. are too recent) 
for this confounding to occur.  To examine the 2003 and 1983 fires, we looked for 
catchments where the 7-year period was immediately after the fire.  Although many 
catchments had dry periods starting around 2003 (Figure 5b), only three of these 
catchments were within the extent of the 2003 bushfires (401217, 403222 and 402204) 
and none of these three failed Modelling Standards 1 or 2.  Very few catchments had dry 
periods starting around 1983 (Figure 5b); only one of these was in Victoria (407214) and 
this catchment was not burned in the 1983 fires.  Based on the above discussion, it is 
concluded that there is no evidence that poor model performance observed in Groups 
PF and FF is the result of bushfires.   
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Figure S8. Long-term simulation bias for three selected parameter sets, after Coron et al. (2015, Figure 5), 
1 of 4.  Simulation bias is plotted as a ten-year moving average for three selected parameter sets from the 
Pareto curve.  The ten-year average streamflows are also plotted for reference, in blue.  This figure is the 
first of a series of four, showing a total of 21 case studies selected based on the shape of their Pareto 
Fronts.  Specifically, three criteria were used to select these 21 case studies: (1) At least 1 parameter set 
within [0.8+, 0.8+] - that is, the model structure meets Standard 2 in this catchment (refer paper for 
definitions); (2) Calibrating to the non-dry period in isolation results in reductions in KGEdry by at least 0.10 
(ie. to 0.70) relative to the parameter set in (1); and (3) Calibrating to the dry period in isolation results in 
reductions in KGEnon-dry by at least 0.10 (ie. to 0.70) relative to the parameter set in (1). 
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Figure S9: Long-term simulation bias for three selected parameter sets, after Coron et 
al. (2015, Figure 5), 2 of 4. 
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Figure S10:  Long-term simulation bias for three selected parameter sets, after Coron et 
al. (2015, Figure 5), 3 of 4. 
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Figure S11:  Long-term simulation bias for three selected parameter sets, after Coron et 
al. (2015, Figure 5), 4 of 4.
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