
A
cc

ep
te

d
 A

rt
ic

le

 

Abstract 

Hydrologic models have potential to be useful tools in planning for future climate variability.  
However, recent literature suggests that the current generation of conceptual rainfall runoff models 
tend to underestimate the sensitivity of runoff to a given change in rainfall, leading to poor 
performance when evaluated over multi-year droughts.  This research revisited this conclusion, 
investigating whether the observed poor performance could be due to insufficient model calibration 
and evaluation techniques.  We applied an approach based on Pareto optimality to explore trade-
offs between model performance in different climatic conditions.  Five conceptual rainfall runoff 
model structures were tested in 86 catchments in Australia, for a total of 430 Pareto analyses.  The 
Pareto results were then compared with results from a commonly used model calibration and 
evaluation method, the Differential Split Sample Test.  We found that the latter often missed 
potentially promising parameter sets within a given model structure, giving a false negative 
impression of the capabilities of the model.  This suggests that models may be more capable under 
changing climatic conditions than previously thought.  Of the 282(347) cases of apparent model 
failure under the split sample test using the lower (higher) of two model performance criteria 
trialled, 155(120) were false negatives.   We discuss potential causes of remaining model failures, 
including the role of data errors.  Although the Pareto approach proved useful, our aim was not to 
suggest an alternative calibration strategy, but to critically assess existing methods of model 
calibration and evaluation.  We recommend caution when interpreting split sample results.   
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1 Introduction 
Water resource planning is essential to ensure the ongoing security of water supply for domestic, 
agricultural, industrial and environmental needs.   Long-term streamflow projections inform this 
planning and help to anticipate potential future shortfalls in surface water supply.   Estimates of 
water availability should take into account both historical observations of river flow and also 
potential changes in environmental conditions such as climate or land use.   

Hydrologic processes exhibit variability and cyclical behaviour on a variety of timescales, from 
familiar short term cycles (diurnal, event and seasonal) to multi-decadal (Hurst 1951).  Alongside the 
reality of climate variability is the potential for long term trends due to climate change (eg. Covey et 
al. 2003; Forster et al. 2007).  A number of elements of the hydrologic cycle could be affected, 
including rainfall and evapotranspiration (Meehl et al. 2007; Donohue et al. 2010; McVicar et al. 
2012).  Although the effects on precipitation are uncertain (Covey et al. 2003), many parts of the 
world, including southern Australia are likely to see reduced rainfall (Chiew et al. 2009) and 
catchments may be persistently drier in the future than the past.   

Hydrologic models are useful tools in planning for future variability in climate.  They allow 
hydrologists to estimate the impact that long-term changes in climatic variables, such as rainfall, 
might have on water availability for human consumption or environmental needs.  In this research 
we focus on conceptual rainfall runoff models, which aim to represent mathematically the concepts 
underlying physical processes, without direct reference to physically based equations.  Conceptual 
models generally have minimal data requirements, require minimal computing time, and often 
provide comparable simulations to more complex models (eg. Refsgaard & Knudsen, 1996), so they 
are relatively popular in practice.  As reviewed below, many studies have concluded that conceptual 
models are generally not suitable when climatic conditions change (nevertheless they are often used 
in such conditions), and the intention of this paper is to revisit this conclusion.  Before reviewing this 
literature in detail we describe the tests that are commonly used to support the conclusion, 
specifically the concept of split sample testing.     

To increase the level of confidence in the predictive capability of a given model, Klemeš (1986) 
recommended a scheme known as the Split Sample Test, whereby a portion of historic recorded 
data is withheld from the calibration period, and used to check that the model can perform well over 
a period that it was not calibrated to – hereafter referred to as an evaluation period rather than 
using the common terms validation, verification or confirmation (Oreskes et al. 1994; Andreassian et 
al. 2009).  In cases where a model will be applied in conditions different to the calibration period, 
Klemeš (1986) suggested that the calibration and evaluation periods be specifically chosen so as to 
reflect a similar contrast in conditions, a test known as the Differential Split Sample Test (DSST).  In 
the context of a changing climate, whereby rainfall may be subject to long term trends, the DSST 
involves evaluating a model over a period that is significantly drier or wetter than the calibration 
period.  More recently, variants of the DSST have been proposed, including the idea of using multiple 
calibration and evaluation periods via a sliding window in time (Coron et al., 2012, 2014; Thirel et al., 
2014).   

Studies that have applied the DSST to assess the capabilities of models over a changing climate have 
generally reported unfavourable results.  Model predictive ability following a change in climate does 
not appear to improve with more complex models, as demonstrated by Refsgaard and Knudsen 
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(1996) who tested three models of varying complexity on three catchments in Zimbabwe.  
Furthermore, a number of studies have identified significant bias following application of the DSST. 
Hartmann and Bardossy (2005) applied a lumped conceptual model to a 2000km² catchment in 
Germany, calibrating successively to ‘wet’, ‘dry’, ‘warm’ and ‘cold’ years.  They found that models 
calibrated to the wet periods systematically overestimated flow during dry periods unless the 
objective function explicitly included performance measures calculated over longer (eg. annual) 
timesteps.  Coron et al. (2012) applied three conceptual models to 216 catchments and reported 
that “calibration over a wetter (drier) climate than the validation climate leads to an overestimation 
(underestimation) of the mean simulated runoff” (ibid. p1).  Chiew et al. (2009) applied two 
conceptual models to provide climate change projections based on downscaled GCM outputs across 
south east Australia.  Testing model performance over various periods with different climatic 
characteristics, they reported reductions in Nash Sutcliffe Efficiency (NSE) value of 0.1 – 0.3 
compared to the calibration period, and long term bias of 30-40% in some cases.  The recent 
workshop entitled Testing simulation and forecasting models in non-stationary conditions (Thirel et 
al., 2015a), held under the auspices of the International Association of Hydrological Sciences (IAHS), 
further confirmed – for a wide range of models and catchments – that hydrological models tend to 
perform poorly if applied under changing climatic conditions (Thirel et al., 2015b and citations 
therein).   

Some researchers have sought to quantify acceptable changes in climatic variables such as rainfall, 
such that a calibrated model still provides acceptable results.  Vaze et al. (2010) tested four rainfall-
runoff models in 61 catchments in South East Australia, and reported that the calibrated parameter 
sets generally gave acceptable simulations provided rainfall changes were not too large - no more 
than 15% less or 20% greater than rainfall over the calibration period.  Similiarly, Singh et al. (2011) 
identified an acceptable change of 10% drier or 20% wetter for five catchments across the 
continental USA.   

Other studies have phrased the problem in terms of the non-stationarity of model parameters across 
different climatic conditions.  Merz et al. (2011) applied the HBV model to 273 catchments in Austria 
and found that parameters relating to snow melt and the nonlinearity of runoff generation tended 
to change with time, showing significant correlation with climatic variables such as temperature.  
Coron et al. (2014) similarly observed problems with parameter robustness in twenty mountainous 
catchments in southern France.  Some studies have observed that even if a rainfall-runoff model 
may appear to perform poorly in the DSST, it is usually possible to find a parameter set that can 
match a given period, even if it is unusually dry or wet, provided that the model is directly calibrated 
to that period exclusively.  This observation led to Li et al. (2012) recommending that “if a 
hydrological model is set up to simulate runoff for a wet climate scenario then it should be 
calibrated on a wet segment of the historic record, and similarly a dry segment should be used for a 
dry climate scenario” (ibid. p1239).  Similar sentiments were expressed by Vaze et al. (2010).  
However, this solution is limited to providing predictions that are within the range of climatic 
conditions experienced in the past (cf. Refsgaard et al. 2013).  Choi and Beven (2007) tested a 
hydrologic model in a South Korean catchment and evaluated it over a variety of climatic conditions.  
Despite good performance according to classical performance measures on the timeseries as a 
whole, no parameter set tested was considered behavioural over all 15 of their categories of climatic 
conditions.   
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Despite these problems, some studies have had success searching for robust parameter sets, that is, 
parameter sets that can replicate streamflow over a wide variety of climatic conditions.  Hartmann 
and Bardossy (2005) formulated a number of objective functions based on least squares calculations 
at different timesteps (eg. daily, annual, decadal).  Methods that combined both annual and daily 
objective functions into a single ‘meta-objective’ were shown to reduce the error in annual flows 
from 30% to 10%.  Shamir et al. (2005) applied similar multi-timescale logic but based their analysis 
on flow statistics (signatures) rather than least squares measures.  The result was an ensemble of 
parameter sets that performed well on all timescales considered; the identifiability of parameters in 
the Sacramento model was also improved.  Bárdossy & Singh (2008) introduced the statistical 
concept of data depth to hydrological modelling.  A parameter set has greater depth if it is located 
closer to the centre of a cloud of well performing sets.  They found that parameter sets with greater 
data depth were more robust in split sample tests and less sensitive to random errors in input data.   

Although in the above discussion we have used the term model quite loosely, henceforth we adopt 
the terminology outlined in Andreassian et al. (2009) where model structure refers to a set of 
equations representing a catchment whereas the term model refers to a model structure populated 
with a particular set of model parameters.  A number of studies have concluded that a particular 
model structure is unsuitable for modelling under a changing climate (eg. Vaze et al. 2010).  Others 
have suggested that a given model structure needs changing to do so (Merz et al. 2011) or have 
gone further and actually produced a model structure specifically designed to simulate under 
changing climatic conditions (eg. Ramchurn 2012; Hughes et al. 2013).  However, given the success 
of the studies mentioned above in finding more robust parameter sets under changing climates, 
perhaps the greater part of the problem lies with calibration and evaluation techniques rather than 
model structures.  We suggest that a conclusion of model structure invalidity actually requires a 
much higher standard of proof than the tests of model evaluation suggested by Klemeš (1986).  To 
conclude that a model structure is invalid is to assert that no suitable parameter combinations exist 
(eg. Vogel and Sankarasubramanian, 2003); whereas Klemeš’ (1986) methodology seeks only to test 
the suitability of a chosen parameter set(s).   

This research sought to investigate the apparent deficiency of a range of conceptual rainfall runoff 
model structures, across a large sample of catchments.  The key research question was, Are current 
conceptual rainfall runoff model structures deficient in their ability to simulate streamflow responses 
to long term changes in climate?  As described above, some existing literature portrays rainfall 
runoff models as suffering from poor performance if applied in climatic conditions different to those 
against which they were calibrated.  The hypothesis tested here is that the poor performance is due 
to poor or insufficient model calibration and evaluation techniques rather than deficient model 
structures. 

To conclude this section, we wish to clarify our intended meaning when using words such as 
deficient.   Gupta et al. (2012) among others note that different hydrologists have different 
perspectives when defining model adequacy, contrasting the “physical science” viewpoint (where 
adequacy means consistency with the physical system) with the “engineering” viewpoint (where 
adequacy means that the model can emulate system input-output behaviour).   In the context of 
rainfall runoff models, a physical science viewpoint would insist that a model can realistically 
represent the dominant physical processes occurring in a river catchment, whereas an engineering 
viewpoint would focus on whether the model streamflow outputs match with observations.   We 
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affirm the physical science viewpoint and the need to advance hydrologic science by developing 
more physically realistic models.  However, the general nature of our research question requires 
testing a large variety of case studies (86 catchments, 5 model structures, see Section 2 and cf. 
Gupta et al., 2014), which renders detailed consideration of physical processes in each individual 
case difficult.  Therefore, in the present study we use the word ‘deficiency’ in a sense consistent with 
the engineering viewpoint – that is, we mean a model that cannot match observed (streamflow) 
outputs.  We note that models capable of matching outputs are not necessarily adequate in the 
physical sciences sense since their empirical match with observations does not necessarily imply 
consistency with physical processes.    
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2.2 Multi-criteria analysis and Pareto search method 
Multi-criteria analysis has been used in hydrology for some time in various contexts (Efstratiadis and 
Koutsoyiannis, 2010).   Early examples included optimising treatment and monitoring of 
groundwater contamination (Cieniawski et al., 1994; Ritzel et al., 1995) and the incorporation of 
multi-response data in hydrologic modelling (Seibert, 2000; Madsen, 2003).  Some authors adopted 
multi-objective approaches to improve identifiability of highly parameterised distributed models (eg. 
Muleta and Nicklow, 2005; Bekele and Nicklow, 2007; Woehling et al., 2013).  Other studies have 
used multi-criteria approaches to integrate different data types into model calibration, including 
‘soft’ information (such as local or expert knowledge, Seibert & McDonnell, 2002) and regionalised 
information (Kim and Lee, 2014).  Gupta et al (1998) suggested the potential for multi-objective 
calibration of rainfall runoff models using different aspects of the same observed timeseries of flow 
(eg. high flow versus low flow metrics), and a number of studies have adopted this approach (eg. 
Booij and Krol, 2010; Kollat et al., 2012).  The use of hydrologic signatures in model calibration can 
be seen as a variant on the multi-criteria approach, although methodological approaches vary (eg. 
Shamir et al., 2005; Yadav et al., 2007; Bardossy, 2007; Winsemius et al., 2009; Vrugt and Sadegh, 
2013).  Gharari et al. (2013) noted that in addition to trade-offs between different metrics in the 
same time period, there are also trade-offs between model performance during one period and 
performance during another.  They defined Pareto Fronts on both of these levels, and then designed 
a meta-Pareto analysis to choose parameter sets that provided the best overall compromise on the 
objective functions considered, over all periods considered.  A key difference with the current study 
is that they were proposing a new model calibration approach, whereas in the current study we are 
using Pareto analysis to critically assess existing methods of model calibration and evaluation.   

A number of algorithms to search for Pareto fronts are available in the hydrologic literature with 
notable early contributions being the development of the hydrology-specific multi-objective 
calibration algorithms MOCOM-UA (Yapo et al. 1998) and MOSCEM (Vrugt et al. 2003).  However, 
the concept is used in many fields and numerous algorithms from outside the field of hydrology are 
potentially applicable (eg. Storn et al., 1997; Deb et al., 2002).  Algorithms are generally evolutionary 
rather than gradient-based, and this led Vrugt and Robinson (2007) to suggest a hybrid approach 
whereby the evolutionary process is conducted not only between different model parameter sets, 
but also between different search algorithms.  The resulting Pareto search meta-algorithm, called 
AMALGAM (A MultiAlgorithm, Genetically Adaptive Multi-objective method), calls upon four 
commonly used methods for multi-objective searches (NSGA-II – Deb et al., 2002; Particle Swarm 
Optimization (PSO) – Haario et al., 2001; Adaptive Metropolis Search (AMS) – Kennedy et al., 2001; 
and Differential Evolution (DE) – Storn et al., 1997).  These search algorithms are run simultaneously 
during an AMALGAM run, and the evolution of the population of parameter sets is directed by a 
combination of the search algorithms, with the influence of each in proportion to its performance at 
that point in the search.  Vrugt and Robinson (2007) reported efficiency gains of up to a factor of 10 
in some multi-objective problems.  For this research, we adopted AMALGAM to search for Pareto 
Fronts.   

2.3 Rainfall-runoff model structures 
The intention of this study is to test a variety of model structures chosen to reflect common usage in 
the study area and, where possible, breadth of design of conceptual rainfall runoff models.  Since 
this study is focused in Australia three model structures that are commonly used in Australia were 
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selected: GR4J (Perrin et al. 2003); SIMHYD (Chiew et al. 2002); and IHACRES (Jakeman & Hornberger 
1993; Ye et al. 1997).  We adopt the version of IHACRES used in similar studies in Australia (eg. Vaze 
et al. 2010) which incorporates the two parallel storages of IHACRES ‘Classic’ (Jakeman & 
Hornberger, 1993, see also Jakeman et al., 1990) with the option for a threshold of runoff 
production proposed by Ye et al. (1997).  These three model structures, GR4J, SIMHYD and IHACRES 
are the result of three different ways of formulating conceptual rainfall runoff models, as follows: (1) 
SIMHYD is an attempt to represent physical processes in conceptual equations, so that it has 
separate components for such processes as interception, infiltration excess overland flow, 
interflow/saturation excess flow and baseflow (Porter and McMahon, 1975; Chiew and McMahon, 
1994; Chiew et al. 2002); (2) IHACRES has much less emphasis on physical processes, having been 
derived from mathematical analysis of the number of parameters that could reasonably be inferred 
from typical calibration data (Jakeman et al., 1990; Jakeman & Hornberger, 1993); and (3) GR4J has a 
similarly low emphasis on physical processes but was derived using an empirical approach that 
tested a large number of candidate structures and used a rejection method based on the empirical 
match with calibration data (Perrin et al., 2001; Perrin et al., 2003).  We consider that these three 
approaches to model formulation cover the majority of conceptual rainfall runoff models currently 
in the literature.   

In addition, two further model structures were included.  GR4JMOD (Hughes et al. 2013) was chosen 
as a case study for improvement of rainfall runoff models.  Hughes et al. (2013) started with the 
GR4J model (Perrin et al. 2003) and tested a number of changes designed to better simulate 
environments with long-term (ie. multi-year) catchment storage.  Their changes allowed the soil 
moisture to deplete below the level required for runoff production, effectively increasing catchment 
‘memory’.  They also added exponents to increase non-linearity of runoff production and actual 
evapotranspiration.  Note that Hughes et al.’s (2013) module to account for changes in Leaf Area 
Index was not adopted here.   Lastly, one model structure has been selected because it is widely 
used in the literature and in practice in the USA, namely SACRAMENTO (Burnash et al. 1973).   

These model structures are summarised in Table 1.  Model complexity varied, with the number of 
conceptual storages ranging from two to four, and the number of parameters ranging from four to  

Table 1: Details of the five conceptual rainfall runoff model structures tested in this study 

Name Original authors Number of free 
parameters1 

Comments re model 
code GR4J	 Perrin	et	al.	(2003)	 4	 Checked	against	code	provided	by	authors	SIMHYD	 Chiew	et	al.	(2002)	 7	 Code	provided	by	authors	

IHACRES	 Jakeman	&	Hornberger	(1993);		Ye	et	al.	(1997)	 8	 Code	based	on	original	papers	and	Andrews	(2013)	
GR4JMOD	 Hughes	et	al.	(2013)	 8	 GR4J	(see	above),	with	changes	implemented	based	on	Hughes	et	al.’s	(2013)	paper	
SACRAMENTO	 Burnash	et	al.	(1973)	 16	 Based	on	code	from	the	website	of	the	National	Oceanic	and	Atmospheric	Administration	(NOAA)2	1Note	that	IHACRES	parameter	PETref	was	set	to	zero		2http://www.nws.noaa.gov/iao/sacsma/fland1.f,	accessed	30/03/2015	
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sixteen.  All models take the same inputs, namely, rainfall and potential evapotranspiration (PET – 
note the adopted version of IHACRES used PET rather than temperature).  A lumped modelling 
approach was taken, whereby a single timeseries was derived for rainfall and PET in each catchment 
(Section 2.5).   The modelling framework was implemented in a hybrid Matlab-Fortran system 
whereby the rainfall runoff models were run in Fortran 95 (checking against the code of the original 
authors where available – Table 1) which was called by the AMALGAM code in MATLAB provided by 
Vrugt and Robinson (2007).    

2.4 Study area 
This study was conducted in 86 catchments in southern and eastern Australia (Figure 3).  This region 
is well-suited to studying hydrological responses to long-term shifts in climate, because the 
variability of annual flows is relatively high on a global scale (Peel et al. 2001) and there have been a 
number of dry periods lasting several years or even decades on which to test model simulations.  For 
example, the reduction in rainfall since the 1970s in the south west corner of Australia relative to the 
1960s (eg. Petrone et al. 2010) has led local water authorities to run their long-term planning 
simulations using post-1975 data only.  The south-east of the country experienced a severe and 
prolonged drought throughout much of the 2000s, known as the Millenium Drought (Potter et al. 
2010).  River flows during the Millenium Drought, even given the low rainfall, were unexpectedly low 
in some areas (Potter & Chiew 2011; Chiew et al. 2013; Saft et al. 2015).  These droughts had 
numerous impacts on Australian society, including installation of alternative water sources such as 
desalination in most major cities, the cessation of irrigation in some areas causing changes in rural 
communities, and revision of water allocation arrangements to include water trading and provision 
for environmental flows (see eg. Aghakouchak et al. 2014).   

The 86 study catchments were chosen from a wider set of ‘Hydrologic Reference Stations’ (Turner 
2012) defined by Australia’s Bureau of Meteorology as a set of catchments “with minimal water 
resource development and land use disturbances” (ibid, p6) such as regulation from large reservoirs 
and broadscale land use changes.  Of the 154 Hydrologic Reference Stations that lie within southern 
Australia, (broadly defined as south of the Tropic of Capricorn), the list was refined according to:  

1. Data quality checking including inspection of quality flags, missing data, plotted daily data, 
inspection of double mass curves for flow and rainfall, and plotting long term climatic 
averages on axes similar to those used by Budyko (1971) - specifically, Actual 
Evapotranspiration versus Potential Evapotranspiration, both normalised by rainfall (see also 
Zhang et al., 2001).   

2. Rain gauge coverage: Catchments were checked for coverage of rainfall gauges, and 
catchments with relatively low coverage were flagged.   

3. Spatial rainfall contrasts: As mentioned above, a spatially lumped modelling approach was 
adopted, meaning that a single rainfall timeseries was used over a catchment (namely, the 
spatial average).  Catchments with high spatial contrasts in rainfall are more difficult to 
simulate using a lumped approach, because the average rainfall is generally less 
representative of the rainfall extremes within the catchment.  While a certain degree of 
rainfall contrast is usually inevitable due to topographic differences, the catchments with 
relatively higher contrast were flagged.  Rainfall contrasts were assessed using the gridded 
rainfall data as described in the next section.   
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Figure 3: Study catchments used in this analysis 

The final dataset of 86 catchments (Figure 3) was chosen so as to exclude those catchments with the 
clearest data issues, the lowest rain gauge coverage, and/or the highest spatial rainfall contrast, 
while aiming to preserve both the majority of catchments, and the spatial and climatic coverage 
inherent in the original dataset.    

The set of 86 catchments vary in size from 4.4km² to 1106km², with 49 of the catchments between 
100 and 500km² (see Figure 4).  All of the catchments are in the temperate climate zone, falling 
within Group C of the Köppen-Geiger climate classification scheme (Peel et al. 2007).  This means 
that the average maximum temperature of the hottest month is greater than 10° Celsius, and the 
average maximum temperature of the coldest month is between 0° and 18° Celsius.  Mean annual 
rainfall is generally less than 1200 mm/year, while catchment average slope is generally less than 
25% (Figure 4).  Forest cover is generally high, with tree cover exceeding 90% in over half of the 
catchments.  Catchment elevation ranges from sea level to 2000m AHD, although most catchments 
do not exceed 1500m AHD.  Winter snowfall occurs in some catchments, but the snowpack is 
generally not sufficient to significantly affect hydrology.  The development of small private 
waterbodies (referred to as ‘farm ponds’ in the USA and ‘farm dams’ in Australia) was also assessed 
where available.  Over half of the catchments had an estimated farm dam storage of less than 5 
ML/km², which can be considered quite low (Nathan and Lowe, 2012), although three catchments 
had more than 20 ML/km².  These physical properties will be related to model performance later in 
the paper.   

2.5 Input data 
The two main inputs to the rainfall runoff models were rainfall and potential evapotranspiration 
(PET), each derived as a timseries on a daily timestep.  Rainfall was derived from the interpolated 
gridded product of Jones et al. (2009) which is available as a set of daily grids at a resolution of 
approximately 5km, based on gauged rainfall data and including land elevation as a spatial co-

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

 

 13

variate.  For each day to be simulated, the spatial average across the catchment was derived from 
the daily grids from Jones et al. (2009).  PET estimates were derived using the Wet Environment 
method from Morton (1983).  Given the relatively low spatial variability of potential 
evapotranspiration, this was extracted for the catchment centroid only, from the gridded datasets 
produced by Jeffrey et al. (2001).   

In the case of both rainfall and PET, the catchment boundary was required in order to extract 
information from the gridded datasets.  Catchment boundaries were derived using flow analysis on 
Shuttle Radar Topography Mission (SRTM) data on a grid size of 1-second (approximately thirty 
metres).   The post processed version by Gallant et al. (2011) was used for the flow analysis, which 
was done in ESRI’s ArcHydro toolbox using the D8 method to define flow pathways.   

Streamflow data for the Hydrologic Reference Stations are publically available from 
www.bom.gov.au/hrs (accessed 02/01/2014).  Quality codes were inspected and periods with 
quality issues were excluded from the analysis. Since quality code systems are different for each 
state of Australia, the details of this checking depended on location.   

2.6 Defining dry periods and wet periods 
As described in Section 2.1, the intention of the Pareto analysis is to search for parameter sets within 
a given model structure that provide a favourable trade-off between performance in dry climatic 
conditions and performance in wet climatic conditions.  There were two separate tasks in order to 
develop this logic into a working system: firstly, to define ‘dry periods’ and ‘wet periods’ more 
precisely (this section), and secondly to choose a single objective function as an indicator of model 
performance over a given period (described in the next section).   

To define dry periods, it would be possible to simply select the driest X% of years (or months), 
regardless of where those years may fall in the historic record.  The results would be a set of years  

 

Figure 4: Catchment properties for the 86 study catchments.  The whiskers extend a maximum of 1.5 times the 
interquantile range. Values beyond the whisker are marked as outliers and are denoted as +.  Catchment average slope 
was derived based on analysis of a DEM (Section 2.5) and represents the spatial average of cell-by-cell slope values.  
Forest cover was from Lymburner et al. (2011) and is the sum of the four landuses in the ‘tree’ category.  Farm dam 
development is based on the dam locations and estimated volumes published by the Department of Environment, Land, 
Water and Planning (2015a and 2015b).  For catchment area and rainfall data, see Section 2.5. 
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that are not concurrent.  However, one of the key aspects of the recent droughts in Australia was 
not only their severity but also their length and persistence; the persistent dry conditions have been 
shown to be associated with lower than expected streamflow response (Petrone et al. 2010; Potter 
& Chiew 2011; Hughes et al. 2012; Hughes et al. 2013; Potter et al. 2013; Saft et al. 2015).  
Therefore, we focused on sequences of dry years in this research, with the intention of examining 
multi-year droughts.  While a number of studies have proposed methods of defining drought (see eg. 
Mishra and Singh 2010; 2011 and citations therein) there is no single accepted method for doing so.  
In this study we opt for a relatively simple definition, where we define the ‘dry period’ to be the 
driest consecutive set of years of a given length in the historic record.  Given that the Millennium 
Drought is generally considered to have lasted from 1997 to 2009 (Chiew et al., 2014), we 
considered adopting a length of 13 years, or alternatively a round figure such as 10 years.  However, 
in some places the drought was punctuated by an average or wet year mid-way through an 
otherwise dry spell (eg. the year 2000 in the state of Victoria).  It was felt that such a year could 
dominate the calculation of performance metrics relative to the drier years that are the topic of 
interest.  Therefore, it was decided to use a shorter period, specifically seven years, instead.  Thus, 
the dry period for this paper (also called “Period 2”) is defined as the driest set of seven consecutive 
years in the historic record.  This is defined according to streamflow, not rainfall.   

While it is possible to define a ‘wet period’ in a similar way, (ie. by identifying the wettest series of 
concurrent years in the historic series), we have elected to adopt a method similar to that described 
in the hypothetical in Section 2.1.  We defined “Period 1” as all years in the historic record, apart 
from Period 2 – that is, Period 1 is the complement of Period 2.  This definition meant that Period 1 
contains the majority of the historic data.  Since the intention of this paper was to provide a critique 
of the single-objective calibration approach (ie. single objective calibration to the non-dry period and 
subsequent evaluation to the dry period), it was logical to provide as much calibration data as 
possible to this approach, such that the method under scrutiny was given the best possible chance 
to succeed.  In any case, when calibrating to objective functions such as the Kling Gupta Efficiency 
used in this paper (Gupta et al., 2009; see next section), the wetter periods tend to be matched 
preferentially since the components of the KGE (linear correlation, error in mean and error in 
standard deviation) tend to be more strongly influenced by larger flow values.  Thus, performance in 
Period 1 is an acceptable surrogate for performance over the wettest years in a given timeseries.  
For convenience, Period 1 will be referred to as the ‘non-dry’ period.   

We acknowledge that, in a given case study, Period 1 will usually contain some years that are 
relatively dry.  Period 1 may contain entire sequences of droughts that were not the most severe on 
record, plus portions of the most severe drought not captured within Period 2 in cases where 
drought duration exceeds seven years.  Conversely, Period 2 may contain years that were 
immediately prior to or following the drought of interest, in cases where the most severe drought is 
less than 7 years in duration.   Nonetheless, these simple definitions were sufficient to examine 
differences in model performance between wet and dry periods, particularly for catchments where 
droughts tended to be longer and more severe.   
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Supplementary Material we provide a table that relates the KGE to the more familiar NSE objective 
function (Figure S3), and also highlights the problems noted by Gupta et al. (2009).   

2.8 Results checking 
Since AMALGAM is an evolutionary algorithm, it is possible that calibration runs may proceed in 
different directions through the parameter space and have divergent end results (see, eg. Arsenault 
et al., 2013; Peterson and Western, 2014).  To check the consistency of the AMALGAM results, we 
started with a relatively low number of function evaluations (10,000) and ran the algorithm three 
times, resulting in three different Pareto Fronts.  These Pareto Fronts were checked for consistency 
both visually and using the numerical rule that the Euclidian Distance separating any two of the 
three curves could not exceed 0.01 at any point on the curves.  If this numerical rule was violated, 
the number of function iterations was doubled and the analysis re-run and re-checked.  Around one 
quarter of the case studies passed at the first iteration (ie. 10,000 function evaluations).  Case 
studies that failed the numerical test at 40,000 iterations were manually (visually) checked and 
accepted only if the differences were judged to be immaterial to the conclusions of this paper.   

The presentation of results in the following section initially focuses on one objective (ie. one period) 
at a time, before moving to consideration of the two objectives (ie. performance over dry and non-
dry periods) simultaneously.  Presentation of the AMALGAM results in this way implicitly assumes 
that AMALGAM is a sufficiently powerful search algorithm to find the optimum of a single objective.  
Another way of stating this assumption is that the endpoints of the Pareto Curves are assumed to be 
accurate.  To test this assumption, the single-objective optimization algorithm CMA-ES (Hansen et al. 
2003) was applied.  CMA-ES has been widely used across a number of fields and tested favourably in 
the context of hydrology compared to more common methods in hydrology such as Shuffled 
Complex Evolution (Duan et al., 1992; see Arsenault et al., 2013 and Peterson & Western, 2014).  In 
the current study, CMA-ES was trialled in ten catchments, for each of the five model structures, for 
each of the two objectives (KGE over Period 1 and KGE over Period 2).  This gave a total of one 
hundred CMA-ES case studies.  Similarly to AMALGAM, CMA-ES was run three separate times and if 
the results were not consistent, the number of restarts (the only user-defined parameter in CMA-ES) 
was increased by one (starting from zero restarts) and the process was repeated.   

For brevity, the CMA-ES results are not shown in the body of this paper but are provided in the 
Supporting Information (Figure S4).  In summary, the results indicated that AMALGAM was a capable 
and reliable optimizer to a single objective.  Optimisation results (in terms of KGE scores) were 
within 0.005 in 76 of 100 cases.  In the remaining 24 cases AMALGAM produced the best result in 15 
and CMA-ES in 9.  There were a few cases where AMALGAM results were significantly better than 
CMA-ES.  In fact, ordering the case studies according to the absolute difference between the two 
results revealed that the top five cases (cases of greatest difference) were all cases where 
AMALGAM found a better solution than CMA-ES.  We also note that, on average, the AMALGAM 
algorithm generally used less function evaluations than CMA-ES, although this varied based on the 
case study. Given these favourable results, we will now present the AMALGAM results with similar 
confidence as we would have in a dedicated single-objective optimizer.    
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3 Results 

3.1 Performance when optimising to each objective in isolation 
As demonstrated in the previous section, although a tool for multi-objective problems, the 
AMALGAM algorithm can also be used to provide results of a single-objective optimization, by 
considering the endpoints of the Pareto curves only. In this section, we present single-objective 
Differential Split Sample Test results, extracted from the wider set of AMALGAM outputs.   

In general, optimising the rainfall runoff models to KGE over Period 1 (non-dry) provided good KGE 
values over Period 1 (Figure 6a).  The median KGE score across all 86 catchments was 0.8 or higher, 
regardless of which rainfall runoff model structure was chosen.  For those readers who are not 
familiar with KGE scores, in the Supplementary Material we provide a table that relates the KGE to 
the more familiar NSE objective function (Figure S3).  The GR4J and GR4JMOD model structures 
appeared to perform best.  However, when the same parameter sets were evaluated by simulating 
flows over the driest 7 consecutive years (Period 2), model performance was much lower (Figure 6c).  
The model structures with the highest calibration KGE scores (GR4J and GR4JMOD) showed negative 
evaluation KGE values in more than 25% of catchments.  IHACRES was comparatively better, with a 
median score of 0.67.  Nonetheless, in general, the performance was markedly reduced when 
moving from wetter to drier climatic periods.  Furthermore, some of the lowest values of KGE in 
evaluation corresponded to relatively high KGE values in calibration (Figure 7).  These findings are 
consistent with the literature review (eg. Vaze et al, 2010; Coron et al., 2012; Thirel et al., 2015b).   

If the dry period (Period 2) was used as the calibration period instead of the evaluation period, 
results demonstrated that the rainfall runoff models are generally able to replicate the flows during 
dry conditions, provided they are directly calibrated to them in isolation.  However, there were some 
exceptions, particularly for the GR4J model structure, as shown by the outliers in Figure 6d.  The 
reduction in performance between the calibration period (dry period, Figure 6d) and the evaluation 
period (non-dry, Figure 6b) is less pronounced than in the previous case (Figure 6a/c) but is still 
evident.  As above, some of the lowest values of KGE in evaluation corresponded to relatively high 
KGE values in calibration (Figure 7).   

In summary, the model structures tested were generally able to replicate flows over a given set of 
climatic conditions, whether dry or wet, provided that they were directly calibrated to those 
conditions (Li et al., 2012).  The key problem was that the parameter sets identified by optimization 
to one set of climatic conditions performed poorly in different conditions; that is, the 
mathematically optimum parameter sets identified were not robust to changes in climate.  In 
subsequent discussion, the results presented in this section will be referred to as the results of a 
‘single-objective DSST’, since the models were calibrated to only one objective at a time; ie. KGE in 
one set of climatic conditions, with subsequent evaluation in different climatic conditions.  These 
single-objective DSST results are used in this paper as a baseline method representing common 
practice.   

3.2 Pareto Curve results 
For each of the five model structures, AMALGAM was applied to derive a Pareto Front between the 
two objectives (ie. between KGE in Period 1 (non-dry) and Period 2 (dry)) in each of the 86 study 
catchments.  To explain and interpret these results, we first use the example of the  
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parameter set that meets a given standard to be ‘suitable’ (note that concepts of model adequacy 
are discussed in Section 4.2).   

For each case study (ie. combination of model structure and catchment) we now ask two questions:  
1. Would a suitable parameter set be found by a single-objective DSST calibrating over the non-

dry period (y-axis) and evaluating over the dry period (x axis)?  (Note that this corresponds 
to the left hand extreme of the Pareto Curve, such that the y-axis ordinate is maximised).   

2. Would a suitable parameter set be found by AMALGAM?  ie. is any portion of the Pareto 
Curve within the boxes of Figure 10?   

We note that the DSST in point (1) above could equally be defined the other way around, with 
calibration over the dry period and evaluation over the non-dry.  However, climate projections for 
southern Australia generally agree that long-term average rainfall is likely to reduce under climate 
change (eg. Chiew et al., 2009).  Thus, it is more relevant within this study area to evaluate models in 
conditions that are drier than the calibration period.   

There are three possible combinations of answers to the above questions: 
(a) Suitable parameter set(s), ie. parameter set(s) that meet the performance standard, were 

found by both the single-objective DSST and AMALGAM;  
(b) Suitable parameter set(s) were not found by the single-objective DSST but were found by 

AMALGAM; and 
(c) Suitable parameter set(s) were not found by either method.   

To explain these categories graphically, consider the curves in Figure 10, which show Pareto results 
for Home Creek at Yaark (Station 405274, 181.6 km², mean annual rainfall = 744 mm/year; rainfall-
runoff ratio 0.18).  As an example, we consider the results for Standard 2 (dark grey).  Only two of 
the model structures have a portion of the Pareto Curve within the box for Standard 2 – Sacramento 
(red) and IHACRES (green).  This means that GR4J, GR4JMOD and SIMHYD are all in category (c) with 
respect to Standard 2.   With respect to SACRAMENTO, although it can fulfil Standard 2, the 
parameter set that would be chosen by the single-objective DSST to Objective 1 (ie. the endpoint 
[0.51, 0.90]) does not fulfil Standard 2.  Thus, SACRAMENTO is in category (b) with respect to 
Standard 2.  For IHACRES, the parameter set that would be chosen by the single-objective DSST to 
Objective 1 (ie. the endpoint [0.92, 0.88]) does fulfil Standard 2.  Thus, IHACRES is in category (a) 
with respect to Standard 2.   

Hypothetically, if the results across all catchments and model structures indicated a dominance of 
case (a), then we would conclude that there are in fact few problems with current rainfall runoff 
model structures simulating changing climates (in the ‘engineering’ sense; Section 4.2), although 
there might still be some scope to improve them.  However, the results presented above (eg. Figure 
6) have already demonstrated that this is not the case.  Thus we are left with (b) or (c).  Dominance 
of (b) would indicate that common single-objective calibration methods (as commonly used in the 
Differential Split Sample Test) generate an abundance of false negatives, and thus the problem is 
with the calibration methods, not with the model structures themselves.  Dominance of (c) would 
support the argument that the model structures themselves need to be improved in order to 
provide an empirical match with streamflow data.   

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

 

 

Figure 10
grey) and

The resu
Looking 
GR4JMO
means t
was the 
the calib
conditio

The IHA
attain St
category
is relativ
empirica
single-o
remaind
single-o
suggests

Howeve
number 
GR4JMO
meet th
(74) for 
current 

0: Pareto fronts
 2 (dark grey). 

ults (Figure 1
first at the lo

OD, SACRAM
hat it was ju
result of the

bration meth
ons.   

CRES model 
tandard 1 in 
y (a) plus 37 
vely well suit
al match wit
bjective DSS

der (category
bjective DSS
s the need to

er, the interp
of catchmen

OD and SACR
is modelling 
Standard 1. 
generation o

s for Catchmen
 The ticks and c

11) depend o
ower of the 
ENTO) the c
st as commo

e model stru
hods need im

structure on
a very high p
catchments 

ted to simula
h data.  How
T was only a

y b) were cat
T did not.  T

o review the 

pretation shif
nts where th

RAMENTO, an
standard in 
 Thus, if this

of rainfall run

nt 405274, with
crosses refer to

and AMA

on the mode
two standar
ases are rela
on for failure
cture.  Thus,

mprovement 

nce again pro
proportion o
in category 

ating change
wever, of the 
able to find a
tchments wh
his is not a p
use of single

fts if Standar
he modelling 
nd greater fo
59% of case
 higher stand
noff model s

 

h annotations r
o results for the

ALGAM (right of

lling standar
ds (Standard

atively evenly
e in a DSST to
, with regard
in order to s

ovides an int
of catchment
(b)).  This wo
s in climate a
74 that wer
 suitable par

here AMALGA
particularly fa
e objective o

rd 2 is adopte
standard is 

or GR4J and 
s (24+27=51
dard is adop

structures, in

regarding the m
e single-object
f the line). 

rd used, and 
d 1), for som
y split betwe
o be the resu
ds to the hyp
successfully m

teresting cas
ts: 74 out of 
ould suggest
and does no

re successful
rameter set 
AM found a 
avourable su
optimization

ed instead o
not met is ar
SIMHYD.  Th

1 out of 86 ca
ted, one pos

ncluding IHAC

meeting of mod
ive DSST to Ob

on the mode
e model stru

een case (b) a
ult of the cal
pothesis, bot
model chang

e study.  IHA
86 (ie. 37 ca

t that the mo
t require cha
ly modelled 
in 37 cases (
suitable para

uccess rate fo
methods in 

f Standard 1
round 50% in

he IHACRES m
atchments) c
ssible conclu
CRES, require

 

delling standard
bjective 1 (left o

el structure t
uctures (eg. G
and case (c).
ibration met
h the models
ging climatic 

ACRES was ab
tchments in 

odel structur
ange to prov
by IHACRES,
category a). 
ameter set b
or the DSST, 
model calibr

1.  In this case
n the case of

model is able
compared to
sion is that t
e improvem

ds 1 (light 
of the line) 

tested.  
GR4J, 
.  This 
thod as it 
s and 

ble to 

re itself 
vide an 
, the 
 The 

but the 
and 

ration.   

e the 
f 

e to 
o 87% 
the 
ents to 

23

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

 

 

Figure 11:
sets that m
AMALGAM
C means n
the mode

simulate
alternat
(Section

The pie 
apply all
model w
objectiv
of catch
that are 
in the ca

3.4 E
We exam
Standard
consider
secondly
element
more de

Having f
set could
instance
a given o

: Effectiveness 
meet the two p
M; Case B mea
neither method

el structures an

e changes in 
ive explanat
 4.3).    

charts to the
l five of the m

whatever it m
e Differentia
ments (28 o
 not modelle

ase of Standa

Examinati
mined those 
d 2.  Two ma
red what the
y we examin
ts of this disc
etail.    

failed to mee
d simulate fl

es further acc
objective wh

of the single-o
performance st
ns suitable par
d found suitabl
d has the freed

climatic con
ion is that th

e far right of 
model struct

may be.  In th
al Split Samp
ut of 86) for 
ed satisfacto
ard 1, and 30

on of catc
catchments

ain avenues w
e form of the
ned the physi
cussion are s

et the standa
ows satisfac
cording to w

hen optimize

objective Differe
tandards.  Case
rameter sets we
le parameter se
dom to adopt t

nditions in or
he failure to 

Figure 11 pr
tures to ever
his case, suita
le Test in 53
Standard 2. 
rily by any o

0 catchment

chments w
s where the m
were explore
ese curves m
ical and clim

summaries o

ard, every ins
ctorily in both
whether or no
ed to it in iso

ential Split Sam
e A means suita
ere not found b
ets.  ‘Any mode
the best model 

rder to produ
attain the m

resent the re
ry catchment
able parame
% of catchm
 There still r
f the 5 mode
s out of 86 (3

where mo
model struct
ed: firstly, w

may indicate a
atic propert
nly, with a re

stance consi
h wet and dr
ot the mode
lation.  The r

mple Test (DSST
able parameter
by the DSST bu
el’ means that 
whatever it m

uce an empir
modelling stan

esults in the c
t and has the

eter sets are 
ments (46 out
remains a sig
el structures
35%) in the c

odels faile
tures failed t
e analysed t
about the ty
ies of these 
eference to t

dered was o
ry periods.  H
l structure w
results varied

T) and AMALGA
r sets were fou
ut were found b
the modeller a
ay be.   

rical match w
ndard is due

case where a
e freedom to
found during
t of 86) for St
gnificant port
: 12 catchme
case of Stand

ed 
o meet Stan
he Pareto Cu
pe of model 
catchments.
the Supplem

one where no
However, we
was able to m
d by model t

AM in finding p
nd by both the

by AMALGAM; 
able to apply al

with data.  An
 to data erro

a modeller is
o adopt the b
g the single-
tandard 1, a
tion of catch
ents out of 8
dard 2.   

dard 1 and/o
urves and 
failure; and 
  For brevity

mentary Mate

o single para
e categorised
meet the stan
type: for exa

 

parameter 
e DSST and 

and Case 
l five of 

n 
ors 

s able to 
best 

nd 33% 
hments 
86 (14%) 

or 

y, some 
erial for 

meter 
d failure 
ndard in 
mple, 

24

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

 

 25

GR4J and GR4JMOD were exceptionally good at meeting the modelling standards in a given objective 
provided that they were calibrated to it in isolation; ie. the maximum possible value in each 
objective was high, but there was also a high degree of tradeoff in between these endpoints. We 
categorised this type of failure with the phrase “Model structure can simulate both dry and wet 
periods, but not with the same parameter set”.  In contrast, this type of failure was not common 
with IHACRES and SIMHYD, particularly for Standard 2, in which the category “Appears to be 
deficient in this catchment, regardless of climate” claimed the highest proportion of failures.  The 
full results of this analysis are shown in the Supplementary Material, Figure S7.     

Next, we focussed on the physical properties, including location, of the catchments where the model 
structures failed.  For this analysis, we examined only those catchments where none of the model 
structures were able to meet the required standard.  As per Figure 11, there were 12 such 
catchments in the case of Standard 1 (labelled “FF” since they failed both standards) and a further 
18 in the case of Standard 2 (labelled “PF” since they passed one standard and failed the other). 

In terms of geographic location, the instances of model failure are relatively well dispersed.  In terms 
of failure to meet Standard 1 (red), there appeared to be two regions where model structures were 
more likely to fail: the central part of the state of Victoria, and the northern-most catchments tested 
in the state of Queensland.    There were also a number of catchments failing Standard 2 (yellow) in 
the eastern highlands of New South Wales.  A map is provided in the Supplementary Material (Figure 
S6).   

Figure 12 shows the physical characteristics of catchments where model structures failed one or 
both standards.  We selected five characteristics for testing, based on their perceived importance to 
hydrology: catchment area; rainfall; slope; forest cover; and degree of development of private farm 
dams.   Soil type and geology are also perceived to be important, but there are few high-quality 
national soil type / geology datasets that are numerical (ie. non-categorical).  In addition to the five 
characteristics above, the observed severity of drought was also included, measured as the ratio of 
mean annual flows during the dry period to mean annual flows during the non-dry period.  From 
Figure 12a, catchment area appears to have little bearing on the failure of the model structures.  
However, Figure 12b and c show that cases of model structure failure tended to be in drier 
catchments, and where flow reductions during Period 2 were greatest.   

To further investigate these results, we applied the non-parametric one-sided Rank-Sum Test, 
otherwise known as the Wilcoxon-Mann-Whitney test or the Mann-Whitney U test (as described by 
eg. Wilks, 2011; see also Wilcoxon, 1945 and Mann and Whitney, 1947).   This evaluates the 
probability of the null hypothesis that two groups of data (in this case, characteristics of catchments 
where a modelling standard was / was not met, respectively) came from the same underlying 
distribution.  By concentrating only on relative ranks rather than actual values, this test resists being 
influenced by one or two extreme values, which is important because some catchment 
characteristics have quite skewed distributions.  The results (Table 2) confirmed that the catchments 
where the modelling standards were not met tended to be those with lower rainfall, lower slope and 
a greater relative reduction in flow during the seven driest consecutive years.  Catchment area was 
less strongly related to modelling performance than these three, and forest cover less so again.   
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Figure 12: Physical characteristics of catchments where model structures failed one or both standards.  Four boxplots 
are shown for each characteristic: all catchments (marked A; N = 86); cases where both standards were passed (marked 
PP; N = 56); cases where Standard 1 was passed but Standard 2 was failed (marked PF; N = 18); and cases where neither 
standard was met (marked FF; N = 12).  Farm dam data were only available for Victoria, so that the N values are 
different in plot f (NA = 39, NPP = 27, NPF = 6 and NFF = 6).  The whiskers extend a maximum of 1.5 times the interquantile 
range. Values beyond the whiskers are marked as outliers and are denoted as +.   

Table 2: Results from the non-parametric rank-sum test to test whether catchment characteristics differed between 
catchments where a given modelling standard was not met (by any model structure) and those where it was.  
Columns two and four indicate the probability that the observed differences in characteristics between the two groups 
of catchments arose purely by chance.   	 Relating	to	Modelling	Standard	1 Relating	to	Modelling	Standard	2	 p	value Significant	at	95%	level? p	value Significant	at	95%	le	vel?	Catchment	area	 0.0953 no 0.0304	 yesMean	annual	rainfall	 0.0002 yes <0.0001	 yesDry	period	flow	ratio	 0.0003 yes <0.0001	 yesCatchment	average	slope	 0.0165 yes 0.0001	 yesForest	Cover	 0.4161 no 0.2343	 noFarm	Dam	Development	 0.0553 no 0.0041	 yes
 

Since the group that failed Modelling Standard 1 (Group FF) is such a small sample size, we provide a 
catchment-by-catchment list of characteristics for each member of group FF in Supporting 
Information Table S1.  Inspection of the individual characteristics of group FF reveals that although 
there appears to be differences between the boxplots for catchment average slope and forest cover, 
the reality is more complex, with group FF being spread across a relatively wide range in both cases.  

In terms of farm dams, estimates of farm dam volume were only available for catchments in the 
State of Victoria (N = 39).  Two of the three catchments where farm dam density exceeds 20 ML/km2 
were catchments where modelling standard 1 was not met, and it is possible that harvesting of 
water by farm dams in these catchments is causing difficulties in modelling.  However, the other 
catchments had much lower levels of development of farm dams so it is unlikely that farm dams are 
degrading model performance in these catchments.  Further research is required to investigate 
whether rainfall-runoff modelling in the two catchments with farm dam density exceeding 20 
ML/km2 might be aided by quantification of farm dam interception.   

The results of this study are partially consistent with recent findings of Saft et al (2015) who analysed 
changes to the relationship between rainfall and runoff on an annual timestep, in the same study 
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area.  They found that changes to the relationship were more likely in drier catchments (upheld 
here) with low slope (upheld here) and low forest cover (not upheld here, although the catchments 
used in this study generally had greater forest cover than those in Saft et al. 2015).  Note that 
although bushfires are relatively common throughout Australia, we could not find any evidence 
linking bushfire history with the failure of models to attain the modelling standards (Supplementary 
Material Text S2).   
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average bias still deviates considerably from zero for the three parameter sets shown in each case, 
and shows some similarity with the results of Coron et al. (2014), particularly in catchment 613002.  
Choosing a parameter set that performs well in both periods (red) does not guarantee unbiased 
simulations over the modelling period, although GR4JMOD performs better in this aspect in the 
second case (A5040517) than the first (613002).  This analysis of bias, based on the format of Coron 
et al. (2014), is shown for other selected case studies in the Supplementary Material (Figures S8 to 
S11).  From these examples it is clear that a high KGE score may mask underlying discrepancies in 
matching the observed data.  Furthermore, even a near-perfect match with observed streamflows 
would not necessarily imply that a rainfall runoff model is ‘adequate’ or ‘valid’, depending on the 
philosophical viewpoint.  As discussed in the Introduction, a near-perfect match with observed 
streamflows corresponds to adequacy in an operational or ‘engineering’ sense (Gupta et al., 2012) 
but a ‘physical science’ approach would ask whether the model is getting the right answers for the 
right reasons (Kirchner, 2006; Gupta et al., 2012).  Under this viewpoint, models are adequate only if 
consistent with dominant physical processes.  As noted in the introduction, this is difficult to test in 
practice for a large sample of catchments, and thus we do not assess the adequacy of models in this 
physical science sense.  Given that some processes that are thought to be important are not 
represented by the conceptual models used in this study (eg. interception in the case of IHACRES – 
Jakeman and Hornberger, 1993; Savenije, 2004) it is unlikely that such models could be considered 
adequate in the physical science sense, regardless of their goodness of fit.   

4.3 The role of data errors 
Data errors are ubiquitous in hydrology and can confound the results of hydrologic studies.  For 
example, for the data used in this study, the streamflow data are subject to uncertainty in the stage-
discharge relationship (McMillan et al., 2010), while the gridded rainfall data are subject to 
measurement error in the underlying point rainfall data (eg. Nešpor and Sevruk, 1999) plus 
interpolation error associated with creating a spatial grid of values based on point measurements 
(Jones et al., 2009; Tozer et al., 2012).   

Although optimisation to a single performance measure (eg. KGE or NSE) remains common in 
practice, during optimisation the mathematical compensation for input and output errors can lead 
to spurious results (Thyer et al., 2009).  The mathematically optimum parameter set is actually a 
function of the input and output errors, and a different set of errors may result in an entirely 
different ‘optimum’ set.  In this paper, since the input and output errors were not explicitly 
accounted for, the Pareto Fronts generated are similarly a function of the errors in the input and 
output data.    The complex interactions of model structural error with input and output error 
further complicate the situation (Renard et al., 2010).   

The uncertainty in model inputs and flow data propagate through to uncertainty in parameters and 
projections, and this can be quantified in various ways (eg. Beven and Binley, 1992; Freer et al., 
1996; Kavetski et al, 2006a; 2006b; Renard et al., 2010; 2011).  Common methods identify not a 
single parameter set (as in optimisation) but an ensemble of parameter sets, which together are 
consistent with knowledge of input and output uncertainty, and allow quantification of uncertainty 
through consideration of multiple possible model simulations.   

We affirm that the quantification of uncertainty is an important aspect of any study aiming to 
provide model projections or forecasting to inform decision making.  In contrast, the aim of this 
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study was to revisit the conclusion that rainfall runoff models suffer from poor performance if 
applied in climatic conditions different to those against which they were calibrated.  Given that 
previous studies have used single objective optimisation and the DSST to make conclusions about 
model validity (Vaze et al., 2010) and parameter stationary (Merz et al., 2006), we tailored our 
method to specifically investigate how reliable the outcomes of such tests may be.  The Pareto 
approach proved useful in this context, but we reiterate that the method used here is not 
recommended as a general calibration method, in part due to its inability to estimate predictive 
uncertainty.   

4.4 Relevance to future model improvements 
The results of this study are instructive towards future efforts to improve rainfall runoff models.  The 
key lesson for model improvements is this: where improvements are trialled, it is possible that their 
full benefit will not be seen if evaluated using the DSST in isolation, due to the chance of false 
negatives.  This was shown very clearly (see Figure 9 and Supplementary Material Figure S5) for the 
comparison between GR4J (Perrin et al., 2003) and the modified version GR4JMOD by Hughes et al. 
(2013).  Numerous cases were found where the DSST led to a false conclusion of negligible benefit 
from the changes of Hughes et al. (2013).   

Some studies, such as Brigode et al. (2013) demonstrated a DSST using a method (eg. DREAM - Vrugt 
et al., 2008) that generated an ensemble of parameter sets.  Because such ensemble methods 
inherently provide information about a wider range of parameter sets, they may be more likely to 
identify sets that demonstrate the true capabilities resulting from a model improvement.  However, 
this depends strongly on details of methodology, with a key choice being whether or not to explicitly 
represent the uncertainty of inputs and outputs (eg. Renard et al., 2010; 2011) or adopt objective 
functions that compensate for these errors without representing them explicitly (as adopted by 
Brigode et al., 2013, cf. Schoups and Vrugt, 2010).   

As discussed above, in this study we did not account for data errors, and so instances of apparent 
model failure may be related to cases of particularly poor data quality.  However, we observed 
tendencies among catchments where failure was common – namely, they tended to be drier, flatter 
and have more severe droughts (see also Saft et al. 2015) – and these systematic tendencies support 
the case for research to better simulate flow generation mechanisms in such catchments, as 
opposed to assuming that all remaining deficiencies are the result of data errors (Brigode et al., 
2013).   

4.5 Minimising false negatives 
This paper has demonstrated that DSST results may provide a false negative impression of the 
capabilities of a model.  Geometrically, this is associated with Pareto Fronts that had an “inverted L” 
shape, intersecting regions of robust performance (eg. shaded regions of Figure 10), but with 
endpoint(s) distant from these regions (eg. IHACRES in Figure 10).  Shapes less prone to false 
negatives included Pareto curves that formed quasi-linear diagonal lines in the objective space (eg. 
GR4J in Figure 10) and the ideal case (in the sense of parameter stationarity) where the Pareto curve 
is so compact as to appear as a dot in the objective space (eg. GR4JMOD in 410057, Supplementary 
Material Figure S1).   
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It is difficult to generalise about the relation between model complexity (number of parameters) and 
the tendency to produce false negatives.  In a separate analysis (not shown) we examined the shape 
of the Pareto curves on a model-by-model basis, which demonstrated that the parsimonious model 
GR4J tended to produce Pareto Fronts of the ‘quasi linear diagonal’ type, and thus have a lower 
tendency to generate false negative impressions of model capabilities.  However, higher model 
complexity did not necessarily lead to more false negatives, as shown by a comparison of IHACRES (8 
parameters, 37 false negatives for Standard 1) and SACRAMENTO (16 parameters, 32 false negatives 
for Standard 1).  It is possible that careful selection of objective functions may minimise false 
negatives.  In the ideal case listed above (Pareto curve collapsed to a dot in the Objective Space), the 
parameter set identified as optimal in one set of climatic conditions is optimal or near-optimal in 
other climatic conditions – a desirable attribute for an objective function and/or model structure.  In 
the present context, the tendency to produce this ideal case could be evaluated for a given objective 
function either by (a) assessing only the endpoints of the Pareto curves (one-at-a-time single 
objective optimisation, cf. Coron et al., 2012; 2014); or (b) via full Pareto analysis as shown in this 
paper.   Future research could conduct this analysis individually for a number of objective functions 
from the literature in turn, and then compare the results.  It is likely that a more nuanced objective 
function such as a meta-function incorporating responses over multiple timescales (Hartmann and 
Bardossy, 2005; Shamir et al., 2005) may have more success than commonly used functions that 
consider only the daily timestep.  Such analysis would be relevant to the discussion of the value (or 
lack of value) of single objective optimisation in hydrology (eg. Gupta et al., 2008).    

4.6 Climate change: beyond the scope of historical observations? 
While climate change may be outside of the range of current observations in many regions of the 
world, in South East Australia the changes in streamflow projected in some climate change studies 
are of a similar order to the historic streamflow declines during the Millennium Drought.  For 
example, Chiew et al. (2009) projected future runoff across South East Australia using the outputs of 
15 Global Climate Models (GCMs).  Although there was a high degree of uncertainty, in most 
locations and for all GCMs the percentage change in long-term average annual flows was generally 
less than 55% (ibid. Figure 9), which was the median observed reduction during the Millennium 
Drought for the catchments in this study (Section 2.6, cf. Figure 5).  However, Chiew et al. (2009) 
used GCM runs based on a 0.9°C increase in temperature, and scenarios with greater temperature 
increases would result in greater reductions in streamflow that may be beyond the range of 
observations.  Nonetheless, we suggest that it is reasonable to assume that the observed behaviour 
of catchments during historic dry periods like the Millennium Drought can be used to inform our 
understanding of possible future behaviour of these catchments under climate change.   

4.7 Research challenges 
In this section we summarise the research challenges to improve rainfall runoff modelling under a 
changing climate.  These are not original ideas; rather, we aim to relate the present study to existing 
ideas and trends in the literature.  We broadly group the challenges under two headings: 

1. Making better use of information content of measured data: Figure 13 (see also eg. Oudin et 
al., 2006; Gupta et al., 2009; Berthet et al., 2010; Andressian et al., 2012) demonstrated that the 
use of global performance measures can mask significant deficiencies in simulations.  
Hydrologists should therefore favour measures that consider a breadth of characteristics about 
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the historic data.  The multi-timescale objective functions mentioned above (Section 4.5) are an 
example of this.  We also note developments in using hydrologic signatures to inform calibration 
(Wagener and Montanari, 2011; Vrugt and Sadegh, 2013).  While signatures do not inherently 
take data errors into account, some signatures are less sensitive to data errors than others 
(Westerberg and McMillan, 2015), so that signature sets can be chosen with the intent of 
reducing the confounding effect of data errors (Vrugt and Sadegh, 2013) while maximising the 
information content gained from observed data.  This paper has demonstrated that some 
existing model structures were capable of simulations that provided robust performance before 
and after a change in climate.  The challenge is to develop calibration methods that can identify 
these parameter sets using only ‘pre-change’ data.   The Pareto method used here does not do 
this, and furthermore is not viable if the changed climate has not yet been observed.      

 
2. Improving process understanding in catchments under change: Following the same logic as 

above, it may be that even with considerable advances in parameter estimation methods, it is 
still not possible to identify robust parameter sets using only ‘pre-change’ data.  Further 
research is needed to investigate the physical reasons why runoff is more sensitive to changes in 
rainfall than current rainfall runoff models would suggest.  Such research would be consistent 
with the current research focus on change in hydrology and society (IAHS Panta Rhei decade 
2013-2022 - Montanari et al., 2013).  This knowledge could inform new rainfall runoff model(s) 
that, when calibrated to “pre-change” data, would ideally provide more certainty about the 
trajectory of runoff after a change in rainfall, and be closer to “adequate” in both a physical 
science and engineering sense.    However, it is noted that even if a model does have the correct 
structure to simulate flows under contrasting conditions, the relevant parameters may remain 
poorly identified during calibration (Reichert & Omlin 1997), depending on the input data and 
method of calibration.   

4.8 Recommendations 
Based on the above discussion, we recommend:  

1. Caution when interpreting split sample results.  Split sample testing remains an essential test of 
models that will be used operationally (in the sense of Klemes, 1986) and a useful ‘first test’ of a 
model structure’s capabilities.  However, this paper has demonstrated that split sample test 
results can give a false negative impression of the ability of a model to match observed 
streamflow, and are thus a poor basis to reject a model hypothesis.   

2. Further work towards identifying parameter sets that are robust to changes in climate.  This 
paper has demonstrated that commonly used calibration and evaluation methods often fail to 
identify parameter sets that can simulate flows robustly when climatic conditions change, even 
when such parameter sets do exist within a model structure.  New methods are needed that can 
more reliably identify such parameter sets.   

3. Further research aimed at understanding the physical processes of catchments when climatic 
conditions change, in line with the IAHS Panta Rhei Decade’s focus on change in hydrology and 
society (Montanari et al., 2013). 
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5 Conclusions  
In this paper, five conceptual rainfall-runoff model structures were tested in 86 catchments, initially 
using a Differential Split Sample Test (DSST) that was intended to replicate common practice.  When 
optimized to match the Kling-Gupta efficiency over the non-dry period, the models generally had 
poor performance during the dry period, and vice versa.  These results were consistent with existing 
literature (eg. Vaze et al, 2010; Coron et al., 2012; 2014; Thirel et al., 2015b)).  Therefore, the model 
structures largely failed the DSST, although this was catchment dependent.  The model structures 
were then further tested using a Pareto approach via the AMALGAM algorithm.  The AMALGAM 
results demonstrated that many of the cases of apparent failure under the DSST were false 
negatives.  Of the 279(349) cases of apparent model failure under the DSST using the lower (higher) 
modelling standard, 152(123) were false negatives.  Thus, the DSST approach used here often missed 
potentially promising parameter sets within a given model structure.   

These results can be used to answer the research question and hypothesis stated at the beginning of 
the paper.  Responding to the recorded deficiencies of rainfall runoff model performance in the 
literature, the research question was, Are current conceptual rainfall runoff model structures 
deficient in their ability to simulate streamflow responses to long term changes in climate? 
The hypothesis to be tested was that the observed poor performance is due to poor or insufficient 
model calibration and evaluation techniques rather than deficient model structures.  The results 
indicate that this hypothesis was true in around 55% of the cases (152 out of 279) or around 35% of 
the cases (123 out of 349) of poor performance in the DSST, depending on the modelling standard 
adopted.  Thus, the answer to the research question is that some rainfall runoff model structures are 
deficient in some catchments, with the corollary that the deficiency is significantly less common than 
the Differential Split Sample Test might suggest.   It was discussed that the definitions of ‘deficient’ 
and ‘adequate’ are themselves dependent on philosophical perspective (Gupta et al., 2012).   

As noted throughout the paper, we are not proposing that the multi-objective approach trialled here 
is a viable alternative approach to the DSST.  The logic expounded by Klemes (1983) is valid and we 
affirm the need to withhold a portion of historic data for independent testing and evaluation.  The 
multi-objective approach here does not do this, so the findings of this paper are based solely on 
calibration results, with no independent evaluation period.   The Pareto approach trialled here is 
only useful insofar as it has demonstrated that commonly used model calibration and evaluation 
methods can give a false negative impression of the ability of a model to match observed 
streamflow.    

We recommend caution when interpreting split sample results and more work towards identifying 
parameter sets that are robust to changes in climate.  In addition, further research is needed to 
understand the changes in physical processes that occur in catchments when climatic conditions 
change (cf. Montanari et al., 2013).   
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