
A
cc

ep
te

d
 A

rt
ic

le
Abstract  

Reliable information about hydrological behavior is needed for water-resource management 

and scientific investigations. Hydrological signatures quantify catchment behavior as index 

values, and can be predicted for ungauged catchments using a regionalization procedure. The 

prediction reliability is affected by data uncertainties for the gauged catchments used in 

prediction and by uncertainties in the regionalization procedure. We quantified signature 

uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated 

these uncertainties in signature regionalization, while accounting for regionalization 

uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated 

using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating 

curve, a discharge time series was calculated and used in deriving the gauged signature 

uncertainty distribution. We found that the gauged uncertainty varied with signature type, 

local measurement conditions and catchment behavior, with the highest uncertainties (median 

relative uncertainty ±30–40% across all catchments) for signatures measuring high- and low-

flow magnitude and dynamics. Our regionalization method allowed assessing the role and 

relative magnitudes of the gauged and regionalized uncertainty sources in shaping the 

signature uncertainty distributions predicted for catchments treated as ungauged. We found 

that 1) if the gauged uncertainties were neglected there was a clear risk of over-conditioning 

the regionalization inference, e.g. by attributing catchment differences resulting from gauged 

uncertainty to differences in catchment behavior, and 2) uncertainty in the regionalization 

results was lower for signatures measuring flow distribution (e.g. mean flow) than flow 

dynamics (e.g. autocorrelation), and for average flows (and then high flows) compared to low 

flows.  
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1 Introduction 

Reliable information about the hydrological behavior of both gauged and ungauged 

catchments is needed for a wide range of scientific and water-resources management 

purposes. Such information is often summarized as an index value – or a hydrological 

signature – calculated from data time series in gauged catchments. Examples include the 

base-flow index and flow descriptors such as flow percentiles or statistics of high and low 

flow behavior. Signatures have a long history of use in eco-hydrology [Olden and Poff, 2003] 

and hydrology for, e.g., change detection  [Archer and Newson, 2002; Juston et al., 2014; 

Sawicz et al., 2014], model evaluation [Hrachowitz et al., 2014; Montanari and Toth, 2007; 

Refsgaard and Knudsen, 1996; Sugawara, 1979], model-structure diagnostics [Coxon et al., 

2013; Gupta et al., 2008; Jothityangkoon et al., 2001; McMillan et al., 2011], and catchment 

classification [Sawicz et al., 2011]. In particular, they have been widely used for transferring 

information about hydrological behavior from gauged to ungauged catchments [Bloeschl et 

al., 2013]. In this paper we consider regionalization procedures that transfer flow signature 

information directly from gauged to ungauged catchments (i.e. without using a hydrological 

model), and the uncertainties that affect such procedures.  

Uncertainty in signature values for gauged catchments stems from the observed data from 

which they are calculated and, for more complex signatures such as recession parameters, 

from the choice of calculation method [Westerberg and McMillan, 2015]. Such uncertainties 

reduce the information gained from the signature values for hydrological analyses and thus 

also the reliability of those analyses, e.g. when used to study differences in catchment 

behavior [Wagener and Montanari, 2011]. It is therefore important to understand the 

magnitude and characteristics of signature uncertainty under different conditions. The main 

sources of data uncertainty are the measurements’ accuracy, precision and representativeness 

for the studied variable [McMillan et al., 2012], but also data post-processing [Hamilton and 
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Moore, 2012]. Studies have shown that rating curve uncertainty propagates to uncertainty in 

flood-frequency estimates and in signatures used for model calibration or change detection 

for individual catchments [Blazkova and Beven, 2009; Juston et al., 2014; Kuczera, 1996; 

Westerberg et al., 2011]. Westerberg and McMillan [2015] found that rainfall-runoff 

signature uncertainty as a result of observational uncertainty for two catchments in the UK 

and New Zealand were on the order of ±10–40% and varied between the signatures. 

However, there have been no large-scale studies investigating these uncertainties across 

multiple catchments and multiple signature types.  

When regionalizing signature values to an ungauged catchment, the uncertainty in the 

regionalized signatures have several sources; 1) uncertainty in the signatures calculated for 

the gauged catchments, 2) uncertainty stemming from the regionalization procedure, and 

where the latter may include 3) uncertainty in catchment characteristics data (e.g. 

geomorphological descriptors like elevation and soils) used to describe catchment similarity 

for the transfer of information. There is a long tradition of regionalization of flow signatures 

to ungauged basins [Bloeschl et al., 2013], with common approaches including those based 

on regression against catchment descriptors [e.g. Almeida et al., 2012; Bardossy, 2007; 

Castiglioni et al., 2010; Nathan and McMahon, 1992], donor catchments or pooling groups 

[Burn, 1990; Holmes et al., 2002; Kjeldsen et al., 2014], and, more recently, geostatisics 

[Pugliese et al., 2014; Viglione et al., 2013]. Yadav et al. [2007] investigated uncertainty in 

the regionalization procedure when using regression to regionalize signature values for 30 

UK catchments. They found that regionalization performance varied widely between 

signatures and that the most useful independent catchment characteristics were climate, 

topography and geology characteristics.  Hannaford et al. [2013] evaluated the utility of the 

hydrometric network in England and Wales for regionalization based on catchment 

descriptors and gauging station data quality. They found that for low (high) flows 22% (45%) 
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of the catchments with the highest regionalization potential have low utility because of 

inadequate hydrometric data quality. Westerberg et al. [2014] investigated signature 

uncertainty resulting from observed data and the regionalization procedure for 36 Central 

American catchments. They regionalized flow duration curves (FDCs) using a typical 

estimate of discharge uncertainty for the region, and found that the majority of the predicted 

uncertainty bounds encompassed the observed values. However, discharge uncertainty is 

known to vary with flow range depending on site-specific measurement conditions [Le Coz et 

al., 2014; McMillan and Westerberg, 2015; Morlot et al., 2014]. Further investigation using 

datasets that allow site-specific uncertainty estimates is therefore needed to gain a better 

understanding of uncertainty for a wider range of flow signatures compared to earlier studies 

for both gauged catchments and in regionalization for ungauged catchments.  

The aim of this study was to investigate uncertainty in flow signatures for gauged and 

ungauged catchments. In particular the objectives were to; 1) regionalize signatures while 

accounting for discharge uncertainty in the gauged donor catchments as well as uncertainty in 

the regionalization procedure, and 2) investigate the role and relative magnitude of the 

different uncertainty sources in defining the predicted signature uncertainties. Uncertainty in 

the catchment characteristics data used to describe catchment similarity was not included in 

this study. 

2 Data  

The study was performed using a comprehensive dataset consisting of 15-minute water level 

time series (1 October 2003 to 30 September 2008) in combination with rating curve and 

gauging data for 43 catchments in England and Wales ranging in size from 8 to 1480 km2 

(Figure 1). The catchment characteristics that we used for the regionalization procedure were: 

mean annual precipitation for the study period, BFIHOST (a baseflow index from the UK 
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Flood Estimation Handbook derived from soil characteristics in the hydrology of soil types 

(HOST) classification; Institute of Hydrology, 1999), and the 90th percentile of the catchment 

elevation distribution (see also Section 3.3). The BFIHOST and elevation indices were 

obtained from the UK Hydrometric Register [Marsh and Hannaford, 2008]. We selected 

catchments that fulfilled a number of criteria to ensure reliable discharge data uncertainty 

estimates and that the regionalization performance was not affected by anthropogenic factors 

or nested catchment locations. The criteria were: 1) the station was active, 2) it was classified 

as having a natural flow regime in the UK Hydrometric Register, 3) the station was classified 

as having a Service License Agreement in the register (part of a strategic monitoring network 

subject to more rigorous quality control), 4) data suitable for reliable discharge uncertainty 

analyses were available (e.g. sufficient information about out-of-bank rating, no stilling-well 

problems, etc.), 5) it was a gauged weir and/or velocity-area station, and 6) it was not 

upstream/downstream of another catchment in the dataset. Only water level data not 

classified as suspect by the data provider were used; other uncertainties in the water level 

data series were not considered. There were five stations with 5–12% missing water level 

data, 32 stations had less than 2% missing data and the rest were in-between 2% and 5%. The 

chosen catchments spanned a wide range of hydrological behavior (Figure 1), representing 

most of the range of catchments classified as having a natural flow regime in England and 

Wales. In central and Eastern England, there are few catchments with natural flow regimes, 

and only one of these fulfilled all the selection criteria for this study. 

3 Methods 

3.1 Choice and calculation of signatures 

We used nine signatures describing the flow distribution and six signatures that describe flow 

dynamics (Table 1). These signatures describe the magnitude and dynamics of high and low 
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flows together with average flow conditions and overall flow variability. They represent 

signature information of interest for a wide range of applications and illustrate the effect of 

data uncertainty across a range of flow behavior. Most of these have been used in previous 

studies aiming to regionalize specific signature information separately [Castellarin et al., 

2004; Holmes et al., 2002], when using multiple signatures to constrain rainfall-runoff 

models [Euser et al., 2013; Hrachowitz et al., 2014; Yadav et al., 2007; Yilmaz et al., 2008], 

and in eco-hydrological studies [Clausen and Biggs, 2000; Jowett and Duncan, 1990].  

3.2 Discharge and signature uncertainty for gauged catchments 

The uncertainty in the signatures for the gauged catchments was estimated as follows. 

Discharge uncertainty was estimated for each gauging station. The uncertainty in the rating 

curve parameters was estimated from the stage-discharge gauging data, obtaining 40,000 

equally likely rating curves for each station (see below). Each rating curve was used to 

calculate a discharge time series from the water level data. The resulting set of 40,000 

discharge time series were aggregated to hourly time scale, converted to specific discharge 

(i.e. per unit area, expressed in mm/h) and each used to calculate a signature value, thus 

obtaining an uncertainty distribution for each signature. A detailed description of this method 

is given by Westerberg and McMillan [2015]. 

The uncertainty in the rating curve parameters was estimated in a Markov Chain Monte Carlo 

(MCMC) analysis with the Voting Point likelihood method [McMillan and Westerberg, 

2015]. This method accounts for random and epistemic uncertainty sources. Random 

(aleatory) gauging measurement uncertainty was estimated as logistic distribution functions 

for UK conditions for a set of stations where uncertainty due to temporal rating curve 

variability was assumed negligible [Coxon et al., 2015]. Epistemic uncertainty related to the 

rating curve approximation of the true stage-discharge relationship is important to consider at 

many gauging stations. This approximation may be uncertain outside the gauged range where 
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the curve is extrapolated, or where processes such as erosion, seasonal weed growth, 

hysteresis, and variable backwater induce non-stationarity in the stage-discharge relationship. 

Such epistemic uncertainties imply that all gauging points are not compatible with the same 

“true” rating curve, and the voting point likelihood was therefore defined in terms of the 

fraction of time that a candidate rating curve could have been representative of the channel 

conditions (see definition and equations in McMillan and Westerberg, [2015]). The analysis 

was constrained to the functional form of the official rating curves used in the study period, 

which was a power-law function often containing multiple segments. The priors for the rating 

curve parameters were set to standardized ranges defined relative to the official parameter 

values. These were adjusted for some stations where visual inspection showed that these 

ranges did not fully capture the gauging data uncertainty. Only the gaugings that were 

representative for the rating curve were used, where the gauging data were pooled based on 

deviations between historical rating curves [Coxon et al., 2015]. 

3.3 Regionalization of signatures to ungauged catchments with uncertainty 

Traditional regionalization methods, e.g. regression of signature values using catchment 

descriptors as independent variables, allow estimation of predictive uncertainty, but involve 

strong assumptions on the signature error distribution (e.g. normality). Those assumptions 

may not be compatible with uncertainties estimated in site-specific analyses of gauged 

catchments. Instead, our regionalization method is based on hydrologic similarity, allowing 

for different empirical distributions for the gauged signature uncertainties, drawing on 

previous studies by Holmes et al. [2002] and Westerberg et al. [2014]. Hydrologic similarity 

was expressed as the Euclidean distance dit in the standardized catchment descriptor space 

between each gauged catchment, i, and the target catchment, t:  
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where Xmi is the standardized catchment descriptor m (normalized by the standard deviation 

for all stations) for catchment i, and M the number of descriptors. The catchment descriptors 

were chosen in a correlation analysis aimed at finding descriptors that were highly correlated 

with the signature values, but weakly correlated with each other [following Yadav et al., 2007 

and Westerberg et al., 2014]. The chosen descriptors were mean annual precipitation in the 

study period, the 90 percentile catchment elevation, the BFIHOST base-flow index and 

catchment area (Section 2 and Figure 1). These describe climate, topography and geology, 

similar to descriptors previously found to explain most of the observed daily streamflow 

behavior for UK catchments [Yadav et al., 2007]. We found it useful to also include 

catchment area [Kjeldsen et al., 2014; McIntyre et al., 2005], which can, for example, explain 

differences in flow peak attenuation that are more pronounced in hourly data.  

A dynamic region of influence (i.e. a pooling group) was defined as the N catchments that 

were most similar to the target catchment [Burn, 1990]. The signature PDFs for each target 

catchment were then estimated by sampling from each pooling catchment’s signature PDF, 

with the number of samples proportional to the catchment’s similarity weight, wit (Figure 2): 





N
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         (2) 

This method of deriving the predicted signature distribution makes the assumption that the 

weights, based on the similarity quantified in the catchment descriptor space through (1), can 

be interpreted as the probability that each donor catchment is the ‘nearest neighbor’ of the 

target catchment in terms of the streamflow signatures. I.e., that the catchment descriptor 

similarity is proportional to the probability that the gauged catchment signatures are 

representative of the ungauged catchment signatures. Our method is equivalent to making 
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multiple draws from the gauged catchment signature uncertainty distributions, and each time 

selecting the "probable nearest neighbor" according to those probabilities. Regionalization 

uncertainty was thus represented by the weighted pooling group variability (equivalent to a 

nearest-neighbor method with uncertainty). This reflects the expectation that hydrologic 

similarity is always approximate [Olden et al., 2012; Oudin et al., 2010; Reichl et al., 2009; 

Wagener et al., 2007] and that there is no ideal donor catchment [Beven, 2000]. The method 

provides a direct visualization of the gauged vs the regionalization uncertainty components. 

We also present “gauging-uncertainty-only” regionalized results, where only the gauged 

uncertainty component was considered, to illustrate the effect of excluding uncertainty 

stemming from the regionalization procedure. These were obtained by randomly sampling 

values from each observed signature distribution in the N catchment pooling group and 

calculating the predicted value as a linear weighted combination [e.g. Holmes et al., 2002]. 

4 Results 

4.1 Uncertainty in rating curves and flow percentiles for gauged catchments 

The rating curve estimation method succeeded in capturing the uncertainty in the gauging 

data over the diverse range of gauging data and rating curve characteristics for the 43 

stations. Results from five stations with different flow magnitudes, rating curve sections and 

gauging data error characteristics are shown in Figure 3 as examples that illustrate the range 

of rating curve uncertainties across the dataset. The first station (Figure 3a) is affected by 

seasonal weed growth at low flows and extrapolation uncertainty due to lack of high-flow 

gaugings. The second station (Figure 3b) has low uncertainty; it is well gauged for almost the 

whole flow range with little gauging data scatter. The third station (Figure 3c) was the ‘worst 

case’ in the dataset. It has a considerable gauging scatter for the whole flow range as a result 

of tidal influence and heavy weed growth, and the gauging authority has therefore 
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downgraded it to a level-only station with a high-flow rating. The fourth station (Figure 3d) is 

a velocity-area station with large scatter at low flows and a gauged out-of-bank section with 

high flows reaching large magnitudes. In contrast, the fifth station (Figure 3e) has very low 

flow magnitudes, and a rating curve that appears to underestimate discharge for the whole 

flow range. 

Figure 4 shows how rating curve uncertainties propagate to uncertainty in hourly flow 

percentiles, with the results for the five stations in Figure 3 highlighted in blue. The relative 

uncertainties were calculated with respect to the optimal rating curve from the MCMC 

estimation. The signature uncertainties result from the combination of the rating curve 

uncertainty distribution and the variability of the flow time series during the period. An 

extrapolated and uncertain high-flow part of a rating curve will therefore have more/less 

impact on the signature uncertainties depending on how often the highest gauged discharge 

was exceeded. This is illustrated in Figure 5 for a station which had one of the largest rating 

curve extrapolations in the dataset (about 2 m). However, the large extrapolation mainly 

affects one 5-hour peak-flow event that is more than twice the size of the other annual 

maximum flows. This demonstrates that the time series variability needs to be considered 

when determining the effect of the rating curve uncertainty on the flow signatures. The 

largest relative uncertainties occurred at high and low flows (Figure 4) where uncertainty in 

the rating-curve is normally highest (Section 3.2), similar to results from a large Norwegian 

rating curve study [Petersen-Overleir et al., 2009].  

4.2 Uncertainty in signature values for gauged catchments 

The relative uncertainty ranges were calculated as the half-width of the 5 to 95 percentile 

range for each signature and catchment. Then the 5, 50 and 95 percentiles of these ranges 

were calculated to illustrate typical values for catchments with low, medium and high 

uncertainty respectively (Table 2). The uncertainties were in general lowest (median values ~ 
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±10–15%) for QBFI measuring average groundwater contribution and QMEAN and Q5 

measuring average flow behavior, and highest (median values ~ ±30–40%) for signatures 

measuring low and high flow magnitude (e.g. Q99 and Q0.01) and dynamics (QLV and QHV). 

This shows that careful consideration of data uncertainty is needed when using the latter type 

of signatures, e.g. in flood and drought studies. Signatures measuring flow variability across 

the time series (QAC and QCV) had uncertainty magnitudes similar to or somewhat higher than 

the average flow signatures, where QAC had generally higher uncertainty in the above-median 

range, but the lowest uncertainty in the below-median range. The four catchments with the 

highest BFIHOST values (>0.8) had the lowest maximum uncertainties across all the 

signatures. This might be because these catchments have a dampened flow variability where 

low and high flows are less extreme, thus facilitating gauging of the whole flow range. In 

addition, the slow water-level dynamics would control the values of the QAC and QBFI 

signatures, rather than rating curve uncertainty. 

The uncertainty magnitudes were correlated within the low/high flow signature groups, but 

poorly correlated between these two groups, which is expected given the different factors 

affecting the uncertainty of high and low flows (Table 2). The uncertainty magnitude for SFDC 

was poorly correlated (correlation coefficient <0.5) against all the other signatures. We found 

that the uncertainty in this signature was high for most stations that had a breakpoint in the 

rating curve in the 33–66 percentile flow range.  

The relative signature uncertainties were in some cases considerable even for signatures 

measuring average behavior, such as QMEAN (±30–40% for three catchments in Figure 6b). 

This demonstrates the systematic nature of discharge uncertainties caused by rating curve 

uncertainty; they do not cancel out when averaging over longer time periods. These large 

uncertainties in QMEAN occurred for the stations that had a large gauging scatter over the 

whole flow range (e.g. 70005 in Figure 3c that was affected by tides and heavy weed 
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growth), and when there was large uncertainty in the flow range that contributed the largest 

flow volumes (Table 2). This was also illustrated by a high correlation between the 

magnitude of the QMEAN uncertainty range and that for Q50 and Q5.  

For cross-catchment comparisons, signature uncertainty is important when the absolute 

uncertainties overlap and therefore impede the interpretation of differences between 

catchments. This situation was in particular found for SFDC (Figure 6c, note the contrast to 

QMEAN in Figure 6a), but would also be of concern for several other signatures (e.g. QLV and 

QAC, Figures S1 to S5 in supplementary material). We found no clear links between the type 

of gauging station and the uncertainty magnitudes; these are likely more controlled by local 

gauging conditions such as weed growth and backwater causing variability in the stage-

discharge relation.  

4.3 Uncertainty in signature predictions for ungauged catchments 

To evaluate the signature predictions for ungauged catchments we compared the uncertainty 

distributions for the gauged signatures with those for the regionalized predictions. The 

comparisons were made 1) across all signatures and catchments using summary measures, 2) 

by analyzing differences between signatures and catchments, and 3) by analyzing the 

contributions of the different uncertainty sources to the predicted PDFs. 

4.3.1 Performance of the regionalization method and size of the pooling group 

We first evaluated the performance of the regionalization method in a leave-one-out cross-

validation by comparing the overlap between the 5–95 percentile ranges of the gauged and 

regionalized signature distributions. This comparison accounts for the uncertainty in the 

observed as well as the regionalized values and was made in terms of reliability (the 

overlapping range as a percentage of the gauged range) and precision (the overlap as a 

percentage of the regionalized range, see definitions in Figure 7c). Ideally predictions should 
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have both high reliability and precision, but high reliability is more important than high 

precision. These measures have previously been used by, e.g., Westerberg et al. [2014] and 

are similar to those used by Yadav et al. [2007]. We also compared the distributions using 

two standard metrics, the Kolmogorov-Smirnov distance (K-S, the maximum absolute 

distance between the CDFs) and the earth mover’s distance (EM, the sum of the absolute 

distances between the CDFs).  

Reliability (across all signatures and catchments, Figure 7a) increased with the number of 

stations, while precision decreased (the regionalized distributions became wider as the 

pooling group size increased). The average reliability was high (>80%) even for a pooling 

group of 4–5 stations, and there was a marked increase in the reliability for poor performance 

stations (10th percentile) when the group size increased, with a smaller drop in overall 

precision. The K-S and the EM distance metrics showed similar results with a large initial 

decrease in the distances when the number of pooling catchments increased (Figure 7d). This 

was followed by a slight increase in the distances as more and more samples were taken from 

catchments with low similarity weights with often somewhat wider and flatter distributions as 

a result. The number of stations in the pooling group was chosen to be 10 as a trade-off 

between increase in reliability and decrease in precision across all the signatures. Increasing 

the number of stations means that the pooling group is less homogenous, thus allowing more 

reliable predictions for catchments with low hydrologic similarity. However, for catchments 

near the extremes of the signature distributions, this implies less precise predictions [Burn, 

1990; Holmes et al., 2002]. 

With 10 pooling catchments the average reliability (precision) varied between 83–93% (24–

48%) for the different signatures, while the 10th percentile of the overall reliability 

(measuring poor performance) was 54%. The pooling group size is similar to that used by 

Westerberg et al. [2014] who used 8 donor catchments in regionalization of FDCs with 
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uncertainty, while Holmes et al. [2002] also used 10 donors in deterministic regionalization 

of Q95 in the UK. Previous studies using catchment similarity as a basis for conceptual model 

regionalization, have similarly found that multiple donors are needed [Reichl et al., 2009], 

e.g. McIntyre et al. [2005] also used 10 donors for weighted ensemble predictions of the 

PDM model in the UK.  

For comparison we investigated the reliability and precision of a gauging-uncertainty-only 

regionalization where regionalization uncertainty was not included (Section 3.3). This 

resulted in predicted regionalized distributions that were generally narrower than the 

observed distributions and much less reliable (average reliability 18% for 10 pooling 

stations). The gauging-uncertainty-only predicted distributions became narrower as more 

pooling stations were included in the weighted average predictions, leading to a decrease in 

average reliability with increase in pooling group size (Figure 7a). This was also seen in the 

K-S and EM distances that increased with the number of pooling stations (Figure 7d). 

4.3.2 Differences in regionalization performance between signatures 

The average flow signatures had the highest reliability followed by the high flow signatures, 

whereas the low flow signatures had the worst performance (Figure 7b). In general, the 

results were reliable except for the most extreme signature values that were not captured well 

(Figure 7 and 8). This is expected as the regionalization predictions were constrained to the 

observed variability among the pooling catchments. In the best performance range, there were 

7 (2) catchments where all 15 signatures had a reliability of 90% (100%), and 31 (27) 

catchments where 10 or more signatures had a reliability of 90% (100%). In the poor 

performance range, there was one catchment for which 7 signatures had a reliability of 0, and 

an additional 9 catchments where 1–3 signatures had a reliability of 0. The station that had 

the poorest results had the most extreme QBFI and high flow signature values, and a 

groundwater catchment that differed from the topographical catchment. Uncertainties in the 
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contributing catchment area add uncertainty to both the signature values and their 

regionalization, but were not explicitly considered in this study.  

Both the magnitude of the gauged uncertainties and the explanatory strength of the 

regionalization method need to be considered when evaluating the results (Figure 8). The 

average signatures (QMEAN, and Q5) that both had low gauged uncertainty and strong 

correlations with the catchment characteristics, had the highest number of stations (>84%) 

with high reliability (>95%). The opposite was seen for SFDC that had the lowest number of 

stations (49%) with high reliability. This was caused by high gauged uncertainty in relation to 

the signature range across the dataset (Figure 6c and 8), in combination with poor correlation 

with the catchment characteristics. This poor correlation may partly be a result of the high 

gauged uncertainties, exemplifying how consideration of gauged uncertainty is important 

when interpreting the regionalization results.  

When using the regionalized signature information, high reliability is important, but high 

precision is also desirable. Regionalized values with large uncertainty compared to the 

gauged range give little information about the regional signature variability (e.g. QAC, Figure 

8). The signatures measuring flow dynamics (Table 1, QAC, QHV, etc.), had less precise 

regionalized results than those measuring flow distribution (QMEAN and the flow percentiles, 

Figure 8). Better results might be obtained for some flow dynamics signatures by tailoring the 

regionalization to each signature separately, e.g. by giving a higher weight to the BFIHOST 

characteristic in predicting QBFI.  

4.3.3 Contribution of the different uncertainty sources 

The regionalized distributions provide additional information about the success of the 

regionalization and the role of the different uncertainty sources (Figure 9). The color of the 

distributions illustrates the contributions from catchments with different hydrologic similarity 
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to the target catchment. For example, where the whole distribution is light-blue (e.g. 25003 

and 72015 in Figure 9), all the pooling group catchments have a low hydrologic similarity 

with the ungauged catchment, indicating that the regionalization is likely to be imprecise.  

The shape of the distributions varied from unimodal (where gauged uncertainty dominates) to 

multimodal distributions (where regionalization uncertainty dominates). In general, the low 

flow signatures were the most unimodal (gauged uncertainty was high), and the average flow 

signatures were the most multimodal (gauged uncertainty was low). The widths of the 

distributions are also important. For example, if there is both a wide range of signature values 

and multiple separated peaks (e.g. Q5 for 27051) this reflects a large variability within the 

pooling group and that the regionalization uncertainty dominates. This contrasts with other 

cases where the regionalized distribution is more compact and the gauged uncertainty 

dominates over the regionalization uncertainty (e.g. SFDC for 27084). Where stations have 

different levels of gauged uncertainty this gave regionalized distributions with multiple peaks 

of different width (e.g. SFDC for 60003 and Q5 for 41022). These results clearly illustrate the 

risk of attributing differences between catchments that are a result of gauged uncertainty to 

differences in catchment behavior. In other cases, disregarding gauged uncertainty may lead 

to underestimation of signature variability between catchments. Neglecting the gauged 

uncertainties thus leads to over-conditioning of the regionalization inference, i.e. the domain 

of possible predicted values is too constrained because the full range of possible data values 

is not taken into account..  

A comparison with a gauging-uncertainty-only regionalized simulation (i.e. not including 

regionalization uncertainty, Section 3.3) was also made (grey lines in Figure 9). These 

distributions were often narrower than the gauged uncertainties and often completely outside 

the gauged distributions, showing that the regionalization uncertainty needs to be considered 

to obtain reliable results. In addition, the optimal gauged and regionalized signature values 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

19 
 

(the optimal values from the MCMC rating curve estimation) are shown as black and grey 

dots respectively on the x-axes in the figures. These illustrate how over-conditioned analyses 

that do not consider gauged uncertainty can be (e.g. Q0.01 for 25003, QCV for 41022 and SFDC 

for 27084). 

5 Discussion 

5.1 Rating curve uncertainty 

Our rating curve uncertainty estimation method captured the uncertainty for diverse gauging 

datasets with different epistemic errors (e.g. weed growth or high-flow extrapolation), and 

different multi-section power-law rating curves. Site-specific hydraulic information might 

reduce the uncertainties, but would require detailed information and investigation [e.g. Le 

Coz et al., 2014], that is typically not available across large catchment datasets. We found it 

important to check the estimates for each station against available metadata, including 

information about non-ideal conditions such as weed growth, backwater and out-of-bank flow 

ranges. The last was especially important to avoid unreliable extrapolation where there was 

insufficient information about the out-of-bank rating, and we excluded several such 

catchments. It is important to note that rating curve uncertainty may vary with time. This 

means that our estimates are not necessarily representative for other time periods as a result 

of station modifications, rating shifts, and/or different flow ranges (in particular out-of-bank 

flows). The rating curve estimations involved a considerable effort, suggesting that similar 

estimations for hundreds of stations are not easily achievable and that depth may need to be 

balanced with breath for large-sample hydrology also in terms of data uncertainty estimation 

[Gupta et al., 2014]. 
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5.2 Gauged signature uncertainty  

The medium-level gauged signature uncertainty magnitudes (Table 2) we found were similar 

to the ±10–40% range found in two catchments by Westerberg and McMillan [2015]. 

However, we found a large range in uncertainty magnitudes across the 43 catchments for all 

signatures, including those measuring average conditions (e.g. ±10–30% range in typical low 

and high uncertainty values for QMEAN). This large variability, and the absence of clear links 

between station types and uncertainty magnitudes, illustrate the importance of site-specific 

factors in controlling uncertainty. We found factors linked to high uncertainty in particular 

signature types, such as uncertainty in breakpoint location for multi-section rating curves 

affecting SFDC. Our analyses could be extended in the future to include catchments with 

greater human impacts, and to include signatures requiring both rainfall and runoff data such 

as runoff ratio, which may have different uncertainty characteristics. Uncertainties in the 

water level time series may be important, but were not considered here other than removing 

suspect, flagged data and excluding stations with documented problems (e.g. blocked stilling-

well intake pipes). In addition to data uncertainty, the data time step determines the 

information gained from signature values, as temporal averaging leads to loss of information 

about short-term response patterns [Hrachowitz et al., 2013]. We used an hourly time scale as 

catchments in England and Wales are small, and we could see a clear loss of flow-peak 

information when averaging data to a daily time scale.  

5.3 Signature regionalization 

The signatures quantifying low-flow magnitude and dynamics had the poorest 

regionalization. These signatures had high gauged uncertainty, the lowest correlations with 

the independent catchment descriptors, and they may be more susceptible to water level time 

series uncertainty (e.g. from moderate human impacts like sluices) than average and high 

flow signatures. As discussed by Olden et al. [2012], limitations in data and process 
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understanding (e.g. surface water–groundwater connectivity) make it difficult to accurately 

characterize spatial variation in low flow magnitude and duration using catchment 

descriptors. However, including additional geologic data might improve prediction [Holmes 

et al., 2002]. Similar to the Austrian study by Viglione et al. [2013], the average flow 

signatures had the best regionalization results. In contrast, they found poorer results for high 

than low flows, but they did not account for gauged uncertainty that is often large at high 

flows.  

Our regionalization method enabled visualization of how uncertainties in the gauged data and 

the regionalization contribute to the predicted uncertainty; thus providing valuable additional 

information about the reliability of each prediction. For example, if the highest weighted 

catchments have distinct signature peaks, this shows that regionalization uncertainty is large 

and that the hydrologic similarity definition might be improved. The influence of the gauged 

uncertainties in the individual pooling catchments are also made explicit. Catchments with 

high gauged uncertainty contribute less information to the regionalization, but do not 

compromise the reliability of the predictions when their uncertainties are accounted for.  

Our results clearly show that regionalization uncertainty is important: the gauging-

uncertainty-only regionalized distributions were much less reliable and often completely 

outside the gauged distributions. We represented the regionalization uncertainty by the 

weighted pooling group variability, which is a simple and straight-forward method that 

enabled us to incorporate the site-specific gauged uncertainty distributions. However, the 

predicted signature distributions are conditional on both the hydrologic similarity weights and 

the assumption that the signature value in the target catchment can be selected according to 

the uncertain nearest neighbor method that we describe in Section 3.3. This assumption could 

be explored in the future by developing methods to incorporate site-specific gauged 

uncertainty estimates in other regionalization methods, such as the Bayesian regression 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

22 
 

technique based on conditional probabilities, suggested by Muller et al (1996). Such methods 

could also enable prediction of ‘extreme’ signature values outside the observed variability in 

the pooling data set (which here covered most of the variability among catchments with a 

natural flow regime in England and Wales, see Section 2). Our method could be further 

developed by considering uncertainty in the definition of hydrologic similarity, both the type 

of measure/weighting used, and in the catchment characteristics data used to calculate it 

[Burn, 1990; Reichl et al., 2009]. The latter was found to be important in snow-dominated 

catchments (Arsenault and Brissette, 2014) and may be difficult to estimate, e.g. uncertainty 

in catchment area where groundwater and surface water catchments differ, but sensitivity 

analyses could be used for a first investigation of their impact. For the characteristics we 

used, we expect elevation to have low uncertainty, uncertainty in catchment area to be 

important in flat and karstic areas, uncertainty in BFIHOST to be dependent on the 

underlying model, and uncertainty in mean annual precipitation to depend strongly on the 

number of rain gauges (Westerberg and McMillan, 2015). The latter study found that 

uncertainty in mean annual precipitation was around ±10% in two catchments (50 and 135 

km2) using 1 rain gauge, which would not have a large effect on the relative weightings given 

the range of values in our dataset (710–2400 mm/y, Figure 1). The choice and/or weighting 

of the catchment characteristics could also be tailored to the different signatures, e.g. using 

the most correlated characteristics for each signature, or enabling dynamic regions where the 

number of catchments depend on within-region similarity as suggested by Holmes et al. 

[2002].  

5.4 Implications of signature uncertainty 

Uncertainties in discharge data and derived signature values affect analyses such as 

catchment classification, eco-hydrological analyses, change detection and model calibration 

[e.g. Juston et al., 2014; Kennard et al., 2010; McMillan et al., 2012]. Signatures have in 
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particular been used to understand differences in catchment function, and to reduce predictive 

uncertainty in ungauged catchments [Hrachowitz et al., 2013; Wagener and Montanari, 

2011]. Understanding whether differences in signature values are a result of data uncertainty 

or a difference in catchment behavior is fundamental to comparative analyses [Kennard et al., 

2010], and when transferring information to ungauged catchments [Hrachowitz et al., 2013; 

Olden et al., 2012]. To understand the impact of data uncertainty the signature type needs to 

be considered, e.g., signatures describing the magnitude and dynamics of extreme flows are 

more susceptible to data uncertainty than those describing average behavior. Viglione et al. 

[2013] find that regionalization performance decreases with catchment area and discuss the 

generally poorer results found in arid regions [Bloeschl et al., 2013] as a result of greater non-

linearity in runoff processes and larger space-time variability. In addition to these factors, 

discharge uncertainties likely play an important role: in arid catchments there are few high 

flow events with rapid flow variability, which impedes reliable gauging of the high-flow 

rating curve. Similarly, greater discharge uncertainty can be expected in small catchments 

because greater flow variability and shorter rainfall–runoff lag times impede reliable gauging 

of the full flow range. Understanding the sources of data uncertainty, at what conditions they 

are active, and how they affect different types of signatures and analyses is therefore 

important for reliable estimation of predictive uncertainty.  

The gauged signature uncertainty distributions varied in size and shape between the stations 

and over the flow range in a site-specific way. This means that regression-based 

regionalization that assumes normally distributed errors [e.g. Yadav et al., 2007], or fuzzy 

methods that use general discharge uncertainty estimates [e.g. Westerberg et al., 2014], do 

not fully represent the nature of these errors. Using the regionalized signatures from this 

study for constraining model predictive uncertainty in ungauged basins (as in these previous 

studies) could therefore provide valuable insights. Valuable further information would also be 
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gained by investigating the effects of rating curve uncertainty on signature analyses in other 

regions as they are determined by measurement practices in combination with natural 

conditions such as topography, catchment size, geology and climate (e.g. snow and ice 

conditions would introduce different uncertainties [Hamilton and Moore, 2012]).  

6 Conclusions 

This study has demonstrated how rating curve uncertainty propagates to uncertainty in 

hydrological signatures and their regionalization across a large set of catchments with diverse 

flow series characteristics and across multiple signature types. The gauged uncertainty varied 

with signature type and for each station local measurement conditions (e.g. weed growth, 

backwater, and station design) in combination with flow variability determined the 

uncertainty magnitudes. The catchments with the most dampened flow variability had the 

lowest signature uncertainties in our dataset.  The highest uncertainty magnitudes were found 

for signatures measuring high/low flow magnitude and dynamics (relative uncertainty ±30–

40% as the median across all catchments). Signatures measuring average flow behavior had 

lower uncertainty (median relative uncertainty ±10–15%), but there was a large range in 

uncertainty magnitudes across the 43 catchments for all signatures. Our regionalization 

method allowed us to assess the role and relative magnitudes of the gauged and regionalized 

uncertainty sources in shaping the signature uncertainty distributions predicted for 

catchments treated as ungauged. We found that 1) if the gauged uncertainties were neglected 

there was a clear risk of over-conditioning the regionalization inference, e.g. by attributing 

differences between catchments resulting from gauged uncertainty to differences in 

catchment behavior, and 2) the uncertainty in the regionalization results was lower for 

signatures measuring flow distribution than flow dynamics, as well as for average flows (and 

then high flows) compared to low flows.  
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Our results provide a strong demonstration of the need to investigate data uncertainties in 

analyses where signatures are used. Consideration of data uncertainty may often make these 

analyses more complex. But, as emphasized by Juston et al. [2013], moving beyond 

deterministic frameworks by recognizing these inherent data uncertainties increases our 

possibilities to draw robust conclusions about present and future hydrologic behavior – in 

gauged and ungauged catchments.  

Acknowledgements 

The research leading to these results has received funding from the People Programme 

(Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-

2013/ under REA grant agreement n° 329762.  We thank Carol Langley and Liz Henry from 

the Environment Agency for providing the rating curves, stage-discharge measurements and 

water level time series, and Marcus Weiler, Wouter Berghuijs and Susana Almeida for useful 

suggestions. The data used in this paper was obtained from the Environment Agency 

(enquiries@environment-agency.gov.uk).  Partial support for TW was provided by 

the Natural Environment Research Council [Consortium on Risk in the Environment: 

Diagnostics, Integration, Benchmarking, Learning and Elicitation (CREDIBLE); grant 

number NE/J017450/1]. The study contributes to developing the framework of the “Panta 

Rhei” Research Initiative of the International Association of Hydrological Sciences (IAHS) 

and was partially funded by the European Commission FP7 research project SWITCH-ON 

(grant agreement n° 603587). HKM was funded by NIWA under Hazards Research 

Programme 1 (2014/15 SCI) and by Ministry of Business, Innovation and Employment, New 

Zealand, through contract C01X1006 Waterscape. Partial support for IW was provided by 

FORMAS (942-2015-321). We thank Richard Arsenault, Nataliya Le Vine and an 

anonymous reviewer for constructive comments that helped to improve our paper. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

26 
 

References 

Almeida, S. L., N. Bulygina, N. McIntyre, T. Wagener, and W. Buytaert (2012), Predicting 

flows in ungauged catchments using correlated information sources, paper presented at 

Eleventh National Hydrology Symposium: Hydrology for a Changing World, British 

Hydrological Society, Dundee, U.K. 

Archer, D., and M. Newson (2002), The use of indices of flow variability in assessing the 

hydrological and instream habitat impacts of upland afforestation and drainage, J Hydrol, 

268(1-4), 244-258, doi: 10.1016/S0022-1694(02)00171-3. 

Arsenault, R., and Brissette, F.P. (2014). Continuous streamflow prediction in ungauged 

basins: The effects of equifinality and parameter set selection on uncertainty in 

regionalization approaches. Water Resour Res, 50, 6135-6153. 

Bardossy, A. (2007), Calibration of hydrological model parameters for ungauged catchments, 

Hydrol Earth Syst Sc, 11(2), 703-710. 

Beven, K. J. (2000), Uniqueness of place and process representations in hydrological 

modelling, Hydrol Earth Syst Sc, 4(2), 203-213. 

Blazkova, S., and K. J. Beven (2009), A limits of acceptability approach to model evaluation 

and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka 

catchment, Czech Republic, Water Resour Res, 45, W00B16, doi: 10.1029/2007WR006726. 

Bloeschl, G., M. Sivapalan, T. Wagener, A. Viglione, and H. H. G. Savenije (Eds.) (2013), 

Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales, 

Cambridge University Press, Cambridge. 

Burn, D. H. (1990), Evaluation of Regional Flood Frequency-Analysis with a Region of 

Influence Approach, Water Resour Res, 26(10), 2257-2265. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

27 
 

Castellarin, A., G. Galeati, L. Brandimarte, A. Montanari, and A. Brath (2004), Regional 

flow-duration curves: reliability for ungauged basins, Adv Water Resour, 27(10), 953-965, 

doi: 10.1016/j.advwatres.2004.08.005. 

Castiglioni, S., L. Lombardi, E. Toth, A. Castellarin, and A. Montanari (2010), Calibration of 

rainfall-runoff models in ungauged basins: A regional maximum likelihood approach, Adv 

Water Resour, 33(10), 1235-1242, doi: 10.1016/j.advwatres.2010.04.009. 

Clausen, B., and B. J. F. Biggs (2000), Flow variables for ecological studies in temperate 

streams: groupings based on covariance, J Hydrol, 237(3-4), 184-197, doi: 10.1016/S0022-

1694(00)00306-1. 

Coxon, G., J. E. Freer, T. Wagener, N. Odoni, and M. P. Clark (2013), Diagnostic evaluation 

of multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 

24 UK catchments Hydrol Process, doi:10.1002/hyp.10096, doi: 10.1002/hyp.10096. 

Coxon, G., J. Freer, I. K. Westerberg, T. Wagener, R. Woods, and P. J. Smith (2015), A 

novel framework for discharge uncertainty quantification applied to 500 UK gauging stations, 

Water Resour Res, Accepted subject to minor revisions. 

Euser, T., H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. 

Savenije (2013), A framework to assess the realism of model structures using hydrological 

signatures, Hydrol Earth Syst Sc, 17, 1893-1912. 

Gupta, H. V., T. Wagener, and Y. Q. Liu (2008), Reconciling theory with observations: 

elements of a diagnostic approach to model evaluation, Hydrol Process, 22(18), 3802-3813, 

doi: 10.1002/Hyp.6989. 

Gupta, H. V., C. Perrin, G. Bloschl, A. Montanari, R. Kumar, M. Clark, and V. Andreassian 

(2014), Large-sample hydrology: a need to balance depth with breadth, Hydrol Earth Syst Sc, 

18(2), 463-477, doi: 10.5194/hess-18-463-2014. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

28 
 

Gustard, A., A. Bullock, and J. M. Dixon (1992), Low flow estimation in the United 

Kingdom Rep. 108, 88 pp, Institute of Hydrology, Wallingford, UK. 

Hamilton, A. S., and R. D. Moore (2012), Quantifying Uncertainty in Streamflow Records, 

Can Water Resour J, 37(1), 3-21, doi: 10.4296/Cwrj3701865. 

Hannaford, J., M. G. R. Holmes, C. L. R. Laize, T. J. Marsh, and A. R. Young (2013), 

Evaluating hydrometric networks for prediction in ungauged basins: a new methodology and 

its application to England and Wales, Hydrol Res, 44(3), 401-418. 

Holmes, M. G. R., A. R. Young, A. Gustard, and R. Grew (2002), A region of influence 

approach to predicting flow duration curves within ungauged catchments, Hydrol Earth Syst 

Sc, 6(4), 721-731. 

Hrachowitz, M., O. Fovet, L. Ruiz, T. Euser, S. Gharari, R. Nijzink, J. Freer, H. H. G. 

Savenije, and C. Gascuel-Odoux (2014), Process consistency in models: The importance of 

system signatures, expert knowledge, and process complexity, Water Resour Res, 50, doi: 

10.1002/2014WR015484. 

Hrachowitz, M., et al. (2013), A decade of Predictions in Ungauged Basins (PUB)a review, 

Hydrolog Sci J, 58(6), 1198-1255, doi: 10.1080/02626667.2013.803183. 

Institute of Hydrology. 1999. Flood Estimation Handbook, 5 volumes. Institute of 

Hydrology,Wallingford, UK 

Jothityangkoon, C., M. Sivapalan, and D. L. Farmer (2001), Process controls of water 

balance variability in a large semi-arid catchment: downward approach to hydrological model 

development, J Hydrol, 254(1-4), 174-198, doi: 10.1016/S0022-1694(01)00496-6. 

Jowett, I. G., and M. J. Duncan (1990), Flow Variability in New-Zealand Rivers and Its 

Relationship to in-Stream Habitat and Biota, New Zeal J Mar Fresh, 24(3), 305-317. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

29 
 

Juston, J., P.-E. Jansson, and D. Gustafsson (2014), Rating curve uncertainty and change 

detection in discharge time series: case study with 44-year historic data from the Nyangores 

River, Kenya, Hydrol Process, 28, 2509-2523, doi: 10.1002/hyp.9786. 

Juston, J., A. Kauffeldt, B. Q. Montano, J. Seibert, K. J. Beven, and I. K. Westerberg (2013), 

Smiling in the rain: Seven reasons to be positive about uncertainty in hydrological modelling, 

Hydrol Process, 27(7), 1117-1122, doi: 10.1002/Hyp.9625. 

Kennard, M. J., S. J. Mackay, B. J. Pusey, J. D. Olden, and N. Marsh (2010), Quantifying 

Uncertainty in Estimation of Hydrologic Metrics for Ecohydrological Studies, River Res 

Appl, 26(2), 137-156, doi: 10.1002/Rra.1249. 

Kjeldsen, T. R., D. A. Jones, and D. G. Morris (2014), Using multiple donor sites for 

enhanced flood estimation in ungauged catchments, Water Resour Res, 50(8), 6646-6657, 

doi: 10.1002/2013wr015203. 

Kuczera, G. (1996), Correlated rating curve error in flood frequency inference, Water Resour 

Res, 32(7), 2119-2127. 

Le Coz, J., B. Renard, L. Bonnifait, F. Branger, and R. Le Boursicaud (2014), Combining 

hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: 

A Bayesian approach, J Hydrol, 509, 573-587, doi: 10.1016/j.jhydrol.2013.11.016. 

Marsh, T. J., and J. Hannaford (Eds.) (2008), UK Hydrometric Register, 210 pp., Centre for 

Ecology & Hydrology. 

McIntyre, N., H. Lee, H. Wheater, A. Young, and T. Wagener (2005), Ensemble predictions 

of runoff in ungauged catchments, Water Resour Res, 41(12), W12434, doi: 

10.1029/2005wr004289. 

McMillan, H. K., and I. K. Westerberg (2015), Rating curve estimation under epistemic 

uncertainty, Hydrol Process, 29(7), 1873-1882, doi: 10.1002/hyp.10419. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

30 
 

McMillan, H. K., T. Krueger, and J. Freer (2012), Benchmarking observational uncertainties 

for hydrology: rainfall, river discharge and water quality, Hydrol Process, 26(26), 4078-4111, 

doi: 10.1002/hyp.9384. 

McMillan, H. K., M. P. Clark, W. B. Bowden, M. Duncan, and R. A. Woods (2011), 

Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model 

structure, Hydrol Process, 25(4), 511-522, doi: 10.1002/Hyp.7841. 

Montanari, A., and E. Toth (2007), Calibration of hydrological models in the spectral 

domain: An opportunity for scarcely gauged basins?, Water Resour Res, 43(5), W05434, doi: 

10.1029/2006wr005184. 

Morlot, T., C. Perret, A. C. Favre, and J. Jalbert (2014), Dynamic rating curve assessment for 

hydrometric stations and computation of the associated uncertainties: Quality and station 

management indicators, J Hydrol, 517, 173-186, doi: 10.1016/j.jhydrol.2014.05.007. 

Muller, P., A. Erkanli, and M. West (1996), Bayesian curve fitting using multivariate normal 

mixtures, Biometrika, 83(1), 67–79, doi:10.1093/ biomet/83.1.67 

Nathan, R. J., and T. A. McMahon (1992), Estimating low flow characteristics in ungauged 

catchments, Water Resour Manag, 6, 85-100. 

Olden, J. D., and N. L. Poff (2003), Redundancy and the choice of hydrologic indices for 

characterizing streamflow regimes, River Res Appl, 19(2), 101-121, doi: 10.1002/Rra.700. 

Olden, J. D., M. J. Kennard, and B. J. Pusey (2012), A framework for hydrologic 

classification with a review of methodologies and applications in ecohydrology, 

Ecohydrology, 5(4), 503-518, doi: 10.1002/Eco.251. 

Oudin, L., A. Kay, V. Andreassian, and C. Perrin (2010), Are seemingly physically similar 

catchments truly hydrologically similar?, Water Resour Res, 46, W11558, doi: 

10.1029/2009wr008887. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

31 
 

Petersen-Overleir, A., A. Soot, and T. Reitan (2009), Bayesian Rating Curve Inference as a 

Streamflow Data Quality Assessment Tool, Water Resour Manag, 23(9), 1835-1842, doi: 

10.1007/s11269-008-9354-5. 

Pugliese, A., A. Castellarin, and A. Brath (2014), Geostatistical prediction of flow-duration 

curves in an index-flow framework, Hydrol Earth Syst Sc, 18(9), 3801-3816, doi: 

10.5194/hess-18-3801-2014. 

Refsgaard, J. C., and J. Knudsen (1996), Operational validation and intercomparison of 

different types of hydrological models, Water Resour Res, 32(7), 2189-2202. 

Reichl, J. P. C., A. W. Western, N. R. McIntyre, and F. H. S. Chiew (2009), Optimization of 

a similarity measure for estimating ungauged streamflow, Water Resour Res, 45, W10423, 

doi: 10.1029/2008wr007248. 

Sawicz, K., T. Wagener, M. Sivapalan, P. A. Troch, and G. Carrillo (2011), Catchment 

classification: empirical analysis of hydrologic similarity based on catchment function in the 

eastern USA, Hydrol Earth Syst Sc, 15(9), 2895-2911, doi: 10.5194/hess-15-2895-2011. 

Sawicz, K., C. Kelleher, T. Wagener, P. A. Troch, M. Sivapalan, and G. Carrillo (2014), 

Characterizing hydrologic change through catchment classification, Hydrol Earth Syst Sc, 18, 

273-285. 

Sugawara, M. (1979), Automatic calibration of the tank model, Hydrological Sciences 

Bulletin, 24(3), 375-388. 

Viglione, A., J. Parajka, M. Rogger, J. L. Salinas, G. Laaha, M. Sivapalan, and G. Bloschl 

(2013), Comparative assessment of predictions in ungauged basins - Part 3: Runoff signatures 

in Austria, Hydrol Earth Syst Sc, 17(6), 2263-2279, doi: 10.5194/hess-17-2263-2013. 

Wagener, T., and A. Montanari (2011), Convergence of Approaches towards Reducing 

Uncertainty in Predictions in Ungauged Basins (PUB), Water Resour Res, W06301, doi: 

10.1029/2010wr009469. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

32 
 

Wagener, T., M. Sivapalan, P. A. Troch, and R. Woods (2007), Catchment classification and 

hydrologic similarity, Geography compass, 1(4), 901-931. 

Westerberg, I. K., and H. K. McMillan (2015), Uncertainty in hydrological signatures, 

Hydrol. Earth Syst. Sci. 19, 3951-3968. 

Westerberg, I. K., L. Gong, K. Beven, J. Seibert, A. Semedo, C. Y. Xu, and S. Halldin 

(2014), Regional water balance modelling using flow-duration curves with observational 

uncertainties, Hydrol Earth Syst Sc, 18, 2993-3013. 

Westerberg, I. K., J. L. Guerrero, P. M. Younger, K. J. Beven, J. Seibert, S. Halldin, J. E. 

Freer, and C. Y. Xu (2011), Calibration of hydrological models using flow-duration curves, 

Hydrol Earth Syst Sc, 15(7), 2205-2227, doi: 10.5194/hess-15-2205-2011. 

Winsemius, H. C., B. Schaefli, A. Montanari, and H. H. G. Savenije (2009), On the 

calibration of hydrological models in ungauged basins: A framework for integrating hard and 

soft hydrological information, Water Resour Res, 45, W12422, doi: 10.1029/2009wr007706. 

Yadav, M., T. Wagener, and H. Gupta (2007), Regionalization of constraints on expected 

watershed response behavior for improved predictions in ungauged basins, Adv Water 

Resour, 30(8), 1756-1774, doi: DOI 10.1016/j.advwatres.2007.01.005. 

Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008), A process-based diagnostic approach to 

model evaluation: Application to the NWS distributed hydrologic model, Water Resour Res, 

44(9), W09417, doi: 10.1029/2007wr006716. 

 

  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

33 
 

TABLES 

Table 1. Runoff signatures included in the study. All signatures were calculated on hourly 

data unless otherwise specified, annual flow was calculated for hydrological years. 

Signature Signature name Description Unit 

Flow distribution    

QMEAN Mean flow Mean flow for the analysis period mm/h

Q0.01,Q0.1,Q1,Q5, 

Q50,Q85,Q95,Q99 

Flow percentiles Low and high flow exceedance percentiles 

from the FDC 

mm/h

Flow dynamics    

QBFI Base Flow Index Contribution of baseflow to total 

streamflow. The index was calculated from 

daily flows according to the Flood 

Estimation Handbook methodology 

[Gustard et al., 1992]. 

- 

SFDC Slope of 

normalized FDC 

Slope of the FDC between the 33% and 

66% flow exceedance values of streamflow 

normalized by their means [Yadav et al., 

2007].  

- 

QCV Overall flow 

variability 

Coefficient of variation in streamflow 

(standard deviation divided by mean flow). 

Used by Clausen and Biggs [2000] and 

Jowett and Duncan [1990]. 

- 

QLV Low flow 

variability 

Mean of annual minimum flow divided by 

the median flow [Jowett and Duncan, 

- 
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1990]. 

QHV High flow 

variability 

Mean of annual maximum flow divided by 

the median flow [Jowett and Duncan, 

1990]. 

- 

QAC Flow 

autocorrelation 

Autocorrelation for 1 day (24 hours). Used 

by Euser et al. [2013] and Winsemius et al. 

[2009]. 

- 

 

 

  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

35 
 

Table 2. Uncertainty magnitudes for different signature types and the factors that affect the 

uncertainty magnitude 

Signatures Factors affecting uncertainty Uncertainty 

magnitudes1:  

Low, Medium, High  

QMEAN, Q5 Largest uncertainty where there was a large scatter 

for the whole flow range (e.g. Figure 3c), or when 

there was large uncertainty in the range of flows 

that contribute most of the total flow volume. 

QMEAN: 9%, 12%, 29% 

Q5: 10%, 14%, 27%  

QBFI Generally low uncertainty. The station with the 

largest uncertainty had a large scatter for the 

whole flow range. 

QBFI: 2%, 9%, 17%  

SFDC   Uncertainty in the 33–66 percentile flow range, 

including change in rating curve (i.e. breakpoint in 

a multi-section curve), in combination with 

uncertainty in the mean flow used for 

normalization. 

SFDC: 3%, 17%, 31% 

QLV  High uncertainty in the low flow range QLV: 13%, 31%, 59% 

Q99, Q95, 

Q85 

Scatter in low flow gaugings (e.g. because of 

weed growth or riverbed change) 

Q99: 20%, 39%, 87% 

Q95: 17%, 34%, 78% 

Q85: 14%, 27%, 66% 

Q50 Largest uncertainty where there was gauging 

scatter in the median flow range 

Q50: 12%, 18%, 38%  

Q1, Q0.1, High flow uncertainty. Extrapolation above Q1: 10%, 17%, 32% 
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Q0.01 highest gauging and/or scatter in high flow 

gaugings (e.g. because of backwater effects or 

high gauging uncertainty).  

Q0.1: 12%, 24%, 45% 

Q0.01: 14%, 32%, 62%  

 

QAC, QCV, 

QHV 

High flow uncertainty (see Q1, Q0.1, and Q0.01 

above), and flashiness of runoff response 

QAC: 0.2%, 12%, 30% 

QCV: 9%, 16%, 37% 

QHV: 18%, 38%, 94% 

1 The low, medium and high values for the half widths of the 5–95 percentile uncertainty 

ranges were calculated as the 5, 50 and 95 percentiles from the distribution of half widths at 

all stations 
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FIGURES 

Figure 1. The 43 catchments in England and Wales used in the study and their range of 

characteristics (top, where Elevation 90 p. is the 90th percentile of the catchment elevation 

distribution) and signature values (bottom, where the parallel coordinate plots shows the 

range of signature values with the minimum (maximum) values below (above) the plot). The 

signatures were calculated with the optimal rating curves from the uncertainty analysis 

(signature definitions in Table 1).  

 

Figure 2. Schematic illustration of the signature regionalization procedure. The signature 

distribution for the target ungauged catchment is estimated by sampling from the signature 

distributions for the most hydrologically similar gauged catchments proportional to their 

hydrological similarity weight (wi). The hydrologic similarity was calculated as a function of 

the catchment descriptors BFIHOST, the 90th percentile of the elevation distribution, 

catchment area and mean annual precipitation. 

 

Figure 3.  Gauging data with estimated aleatory discharge measurement uncertainties and 

rating curve sample quantiles for five catchments with diverse error characteristics shown in 

linear and log space. The quantiles are calculated for each stage interval from the distribution 

of flow values from all rating curve samples. Narrower colored intervals indicate higher 

density of rating curve samples and therefore higher probability density for the flow. The 

symbols a) to e) refer to the stations highlighted in blue in Figure 4, and the 5-digit numbers 

are the gauging station reference numbers.  
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Figure 4. Uncertainty in hourly flow percentiles for all gauging stations sorted by catchment 

BFIHOST value from left to right. Note that the scale is different for the top and the bottom 

graph for visualization purposes. The stations a) to e) that are highlighted in blue correspond 

to the stations with rating curve uncertainties in Figure 3. The boxplot whiskers extend to the 

5 and 95 percentiles, and the box covers the interquartile range. 

 

Figure 5. a) Rating curve in linear and log scale (inset plot), see explanation to Figure 3, and 

here the optimal curve is also shown (next to the official curve), b) relative uncertainty in the 

flow percentiles, c) hourly time series for the study period calculated from the optimal rating 

curve, and d) relative uncertainty in mean flow and flow dynamics signatures.  

 

Figure 6. Absolute and relative uncertainty in mean flow (a-b), and slope of the flow 

duration curve (c-d) for all catchments, the catchments are sorted from left to right according 

to their BFIHOST values. 

 

Figure 7. Performance of the regionalization method measured by reliability and precision 

plotted against the number of stations in the pooling group for a) statistics of the values for all 

signatures and catchments, and b) average reliability for all catchments for low flow (black), 

medium flow (red), and high flow (blue) signatures separately.  The calculation of the 

reliability and precision measures are explained in c) where the boxplots extend to the 5 and 

95 percentiles of the signature distributions. The K-S distance and the earth mover’s (EM) 

distance for all signatures and catchments are shown in d), where GUO Reg. denotes the 

“gauging-uncertainty-only” regionalization. 
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Figure 8. Gauged and regionalized signature uncertainty ranges (5–95 percentile range in 

blue, 40–60 percentile range in red) for each catchment. Flow distribution signatures are 

shown in the top and middle row and flow dynamics signatures are shown in the bottom row. 

 

Figure 9. Regionalized distributions for flow distribution (a-b) and flow dynamics signatures 

(c) plotted as blue histograms, where the sampled values from each pooling group catchment 

are colored according to the hydrologic similarity weight with the target catchment. The 

CDFs of the gauged (black), regionalized (blue, dotted) and gauging-uncertainty-only 

regionalized (grey) uncertainty distributions are shown as lines. The deterministically 

regionalized (grey) and gauged (black) optimal values are shown as dots. Signatures of the 

same type are plotted with the same scale on the x-axis. 
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