# CHIMMSTRY <br> <br> AN ASIAN JOURNAL 

 <br> <br> AN ASIAN JOURNAL}

## Supporting Information

## Supramolecular Porphyrin-Based Metal-Organic Frameworks with Fullerenes: Crystal Structures and Preferential Intercalation of $\mathbf{C}_{70}$

Tetsushi Ohmura,* ${ }^{[a]}$ Arimitsu Usuki, ${ }^{[a]}$ Yusuke Mukae, ${ }^{[a]}$ Hirofumi Motegi, ${ }^{[a]}$ Shuji Kajiya, ${ }^{[a]}$ Masami Yamamoto, ${ }^{[a]}$ Shunsuke Senda, ${ }^{[b]}$ Tsuyoshi Matsumoto, ${ }^{[c]}$ and Kazuyuki Tatsumi ${ }^{[b]}$
asia_201501422_sm_miscellaneous_information.pdf

1. Single-crystal X-ray Diffraction (XRD)
2. Powder XRD
3. TGA

## 4. TD-MS

5. HPLC
6. SEM

## 1. Single-crystal X-ray Diffraction (XRD)

ORTEP view of $\mathbf{1}$ and $\mathbf{2}$ are shown in Fig.1S-1 and Fig. 1S-2, respectively. Crystallographic data can be obtained in 'Complex 1_Report.pdf' and 'Complex 2_Report.pdf'.


Fig. 1S-1. ORTEP view of 1. Color scheme: C, gray; N, blue; O, red; Cl, green; and Cu , brown color.


Fig. 1S-2. ORTEP view of 2. Color scheme: C, gray; N, blue; O, red; Cl, green; and Cu, brown color.

## 2. Powder XRD

An m-DCB solution of $\mathrm{C}_{70}$ was added to a $\mathrm{CHCl}_{3}$ solution of $\mathrm{H}_{2} \mathrm{TPyP}$ and a MeOH solution of CuAcO was added to this mixture. The resultant mixture was stirred for 12 h . The crystals were filtered, $\mathrm{CuAcO}-\mathrm{CuTPyP} \cdot \mathrm{C}_{70} \supset$ solvent ( $\mathbf{2}^{\prime}$ ). A $m$-DCB solution that contained a $1: 1$ mixture of $\mathrm{C}_{60}$ and $\mathrm{C}_{70}$ was added to a $\mathrm{CHCl}_{3}$ solution of $\mathrm{H}_{2} \mathrm{TPyP}$ and a MeOH solution of CuAcO was added to this mixture. The resultant mixture was stirred for 12 h . The crystals were filtered, $\mathrm{CuAcO}-\mathrm{CuTPyP} \cdot 0.23 \mathrm{C}_{60} \cdot 0.77 \mathrm{C}_{70} \supset$ solvent ( 3 ').

Powder XRD patterns were obtained by a Rigaku Ultima IV using Mo K $\alpha$ radiation at room temperature. The following conditions were used: $40 \mathrm{kV}, 40 \mathrm{~mA}$, increment $=0.02 \mathrm{deg}$, scan speed $=2.0 \mathrm{deg} / \mathrm{min}$. The XRD patterns for 2' and 3' are shown in Fig. 2S.
——As-prepared 2': CuAcO-CuTPyP $\cdot \mathrm{C}_{70} \supset$ solvent
—— As-prepared 3': CuAcO-CuTPyP $\cdot 0.23 \mathrm{C}_{60} \cdot 0.77 \mathrm{C}_{70} \supset$ solvent


Fig. 2S. Powder XRD patterns for as-prepared 2' and 3'.

## 3. TGA

TGA data were obtained using a Rigaku Thermo Plus TGA. The experiment was carried out with 2.118 mg of $\mathbf{2}^{\prime}$ placed in an Al pan and heated at $10^{\circ} \mathrm{C} / \mathrm{min}$ up to $400^{\circ} \mathrm{C}$ in a flow of $\mathrm{N}_{2}$ (Fig. 3S).


Fig. 3S. TGA plot of as-prepared 2' ${ }^{\prime}$.

## 4. TD-MS

TD-MS data were obtained on a Frontier Lab PY-2020D and Agilent 6890-5970 GC-MS. The experiment was carried out with 0.5 mg of $\mathbf{2}^{\prime}$, and $\mathbf{3}^{\prime}$ and heated at $10^{\circ} \mathrm{C} / \mathrm{min}$ up to $400^{\circ} \mathrm{C}$ in a flow of He (Fig. 4 S ). The evolution curves were obtained for the parent ions or fragment ions of $m$ - $\mathrm{DCB}(\mathrm{m} / \mathrm{z}=146), \mathrm{CHCl}_{3}$ radical $(\mathrm{m} / \mathrm{z}=83,85), \mathrm{CH}_{3} \mathrm{COOH}$ radical $(\mathrm{m} / \mathrm{z}=60), \mathrm{CO}_{2} \operatorname{radical}(\mathrm{~m} / \mathrm{z}=44)$, and $\mathrm{MeOH} \mathrm{radical}(\mathrm{m} / \mathrm{z}=31)$.


As-prepared 3': CuAcO-CuTPyP $\cdot 0.23 \mathrm{C}_{60} \cdot 0.77 \mathrm{C}_{70} \supset$ solvent


Fig. 4S. TD-MS plot of as prepared $\mathbf{2}^{\prime}$ and $\mathbf{3}^{\prime}$.

## 5. HPLC

A m-DCB solution that contained a $1: 1$ mixture of $\mathrm{C}_{60}$ and $\mathrm{C}_{70}$ was add to a $\mathrm{CHCl}_{3}$ solution of $\mathrm{H}_{2} \mathrm{TPyP}$ and a MeOH solution of CuAcO was add to this mixture. The resultant mixture was stirred for 1 week. The crystals were filtered, decomposed with HCl and extracted with $m$-DCB. High-performance liquid chromatography (HPLC) analysis revealed an enriched $\mathrm{C}_{70}$ content ( $\mathrm{C}_{60}: \mathrm{C}_{70}=19: 81$ ). When a m-DCB solution containing a 19:81 mixture of $\mathrm{C}_{60}$ and $\mathrm{C}_{70}$ was used, the $\mathrm{C}_{70}$ was enriched further to a 8:92 $\mathrm{C}_{60}: \mathrm{C}_{70}$ ratio (Fig. 5S).

HPLC measurement conditions:
Solvent: toluene/acetone $=6: 4$
Columm: Agilent Eclipse XDB-C18; inner diameter $4.6 \mathrm{~mm} \times$ length 150 mm )
Detector: UV at 350 nm
Flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$


Fig. 5S. HPLC plot of as-prepared 3'.

## 6. SEM images

Scanning electron microscopy (SEM) was performed using a Hitachi SU-3500 scanning electron microscope (Hitachi, Tokyo, Japan) at an acceleration voltage of 5 kV .


Fig. 6S-1. SEM images of 2'.


Fig. 6S-2. SEM images of $\mathbf{3}^{\prime}$.

