A case of advanced infantile myofibromatosis harboring a novel MYH10-RET fusion

Mark Rosenzweig1,*, Siraj M. Ali1, Victor Wong2, Alexa B. Schrock1, Theodore W. Laetsch3, Andreas Heilmann1, Samantha Morley1, Yakov Chudnovsky1, Rachel L. Erlich1, Kai Wang4, Philip J. Stephens1, Jeffrey S. Ross1,5, Vincent A. Miller1, Javier Oesterheld6,*

1Foundation Medicine, Inc., Cambridge, MA, USA
2Rady Children’s Hospital and University of California San Diego, San Diego, CA, USA
3University of Texas Southwestern Medical Center/Children’s Health, Dallas, TX, USA
4Zhejiang University International Hospital, Hangzhou, China
5Albany Medical Center, Albany, NY, USA
6Levine Children’s Hospital, Charlotte, NC, USA

Running title: RET fusion in infantile myofibromatosis

*Corresponding authors:
Mark Rosenzweig, PhD
Foundation Medicine, Inc.
150 Second St., 1st Floor
Cambridge, MA 02141
Phone: 617-418-7080
Email: mrosenzweig@foundationmedicine.com

Javier Oesterheld, MD
Levine Pediatric Hematology Oncology
1001 Blythe Boulevard, Suite 601
Charlotte, NC 28203
Phone: 704-381-9900
Email: javier.oesterheld@carolinashealthcare.org

Word Count (not counting Title page, Refs or acknowledgements): 499

Figure Count: 1
Supplementary Figure Count: 1
Supplemental File: 1

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi:10.1002/pbc.26377.

This article is protected by copyright. All rights reserved.
INTRODUCTION

Infantile myofibromatosis (IM), predominantly observed in infants and young children, features variable prognosis, as evidenced by some tumors spontaneously regressing, others successfully surgically managed, and those multi-focal or with visceral involvement requiring systemic therapy. For patients with unresectable, persistent, and disseminated IM, comprehensive genomic profiling (CGP) may identify targetable genomic alterations. In this case of a child with a single focus unresectable IM, CGP identified a novel MYH10-RET fusion, suggesting possible utility of RET targeted therapies.

RESULTS
The index patient is a newborn female with a large mass in the left sacrum and inability to move lower extremities. Magnetic resonance imaging (MRI) revealed a single large multi-lobulated retroperitoneal mass encasing the lumbosacral spine, with a portion of the mass within the lumbosacral spinal canal and multiple neural foramina bilaterally. This mass encased multiple vessels and narrowed the iliac veins bilaterally and the inferior vena cava. Surgical resection was deemed unfeasible.

Biopsy revealed a moderately cellular lesion composed of spindle cells with a fascicular architecture and some areas displaying prominent hemangiopericytomatous vascular pattern with adipose tissue infiltration. Patchy extramedullary hematopoiesis and focal intervascular extension by the tumor were noted. CD34, HHF35, desmin and myogenin were negative, whereas smooth muscle actin was focally and weakly positive. Based on these features and FISH negativity for the t(12;15)(p13;q25) ETV6-NTRK3 translocation, the diagnosis was a low-grade spindle cell tumor consistent with IM.

Initial treatment with vincristine, actinomycin-D, and cyclophosphamide was poorly tolerated, leading to necrotizing enterocolitis, liver dysfunction and veno-occlusive disease. Subsequent weekly vinblastine and methotrexate (VBL/MTZ) were well-tolerated - after 26 weeks, tumor shrunk by ~40%, and neurologic function of extremities and urinary continence improved. Currently at 42 weeks on VBL/MTZ, she is continuing to respond.

CGP of the tumor revealed a single alteration, a MYH10-RET fusion (Figure 1).

DISCUSSION
This is the first report describing a RET fusion in IM. In lung and thyroid carcinomas, RET fusions are established oncogenic drivers, sensitive to RET inhibitors\(^4,5\). MYH10-RET, although novel, has the same domain structure as the well-characterized KIF5B-RET, indicating that this fusion is an oncogenic driver.

This finding also suggests broadening of diagnostic possibilities. Previously, familial IM has been associated with mutations of PDGFRB\(^6,7\). Kinase fusions, particularly involving ALK, but also ROS1, PDGFRB, and RET, are observed in a related entity, inflammatory myofibroblastic tumor (IMT). The differential diagnosis for this lesion does include IMT, and morphologic and immunohistochemical features of both entities do overlap. Since RET alterations have never previously been observed in IM but have been observed in IMT, it is possible that this lesion might be characterized as an IMT under other circumstances\(^8\).

Importantly, IMTs harboring various kinase fusions, including ALK and ROS1, were sensitive to small molecule kinase inhibitors\(^9,10\).

For this child, identification of the MYH10-RET fusion indicates possible benefit from RET inhibitors. Further CGP myofibromatosis and IMT should reveal whether RET fusions are a recurrent feature of aggressive myofibromatosis or whether the index case is genomically unique and may be better characterized as an IMT.

Industry support and conflicts of interest

MR, SMA, ABS, AH, SM, YC, RLE, PJS, JSR and VAM are employees and stockholders of Foundation Medicine, Inc. TWL is supported by an NIH grant R01 CA199937, as well as by Children’s Health; he is a consultant for Novartis and LOXO Oncology. For the remaining authors, no sources of funding or potential conflicts of interest were declared.
References

Legends

Figure 1. Identification of a MYH10-RET fusion in the soft tissue myofibromatosis. A rearrangement between the MYH10 and RET loci resulted in a MYH10-RET fusion protein that is predicted to include the MYH10 myosin motor, IQ domain and a portion of the coiled-coil domain, as well as the entire kinase domain of RET.
Supplemental Figure S1. Identification of a MYH10-RET fusion in the soft tissue myofibromatosis.

DNA sequencing (top panel) identified a rearrangement between the RET locus on 10q11 (blue bars) and the MYH10 locus on 17p13.1 (pink bars). Break points are in intron 33 of MYH10 and intron 11 of RET. RNA sequencing (bottom panel) identified an in-frame fusion joining exons 1-33 (residues 1-1598, NM_005964) of MYH10 with exons 12-19 (residues 713-1072, NM_020630) of RET.

Supplemental File S1.

Methods

Comprehensive genomic profiling