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THE FITNESS CONSEQUENCES OF MULTIPLE-LOCUS
HETEROZYGOSITY UNDER THE MULTIPLICATIVE

OVERDOMINANCE AND INBREEDING
DEPRESSION MODELS

PETER E. SMOUSE

Department ofHuman Genetics, University ofMichigan, Ann Arbor, M148109

Abstract,- There is a growing body ofliterature suggesting that the fitness ofan individual increases
with the observed number of heterozygous loci. Broad theoretical considerations indicate that
under various sorts of balancing selection, this is what one should generally expect in a population
of multiple-locus genotypes. To date, however, it has not been possible to distinguish between two
potential explanations of the phenomenon, The first explanation is that the loci examined are
themselves responsible for the fitness differences observed (or, equivalently, are very closely linked
to those that do). The genetic variation in question is thought to be maintained in polymorphic
equilibrium by some form ofbalancing selection. The second explanation assumes that the observed
loci are themselves selectively irrelevant but that their heterozygosity reflects that of the total
genome. Genomic heterozygosity is thought to be predictive of fitness, being an obverse measure
of generalized inbreeding depression. We provide a formal derivation of an explicit relationship
between fitness and multiple-locus genotype for a simple form of the first explanation, the mul­
tiplicative overdominance model. The inbreeding depression model is a degenerate special case of
this more general formulation. A formal estimation and testing framework is constructed that
should facilitate evaluation of the two models with empiric data on heterozygosity and fitness.
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The accumulating allozyme data from
natural populations have established con­
vincingly that genetic variation is wide­
spread in a great many organisms, but we
still have no compelling evidence to suggest
how much of that variation is maintained
by natural selection. Quite a bit ofeffort has
been expended on the search for meaningful
selective differences among alleles (or ge­
notypes) at particular loci, with at least
modest success (e.g., Tsakas and Krimbas,
1970; Vigue and Johnson, 1973; Cavener
and Clegg, 1981a, 1981b; DiMichele and
Powers, 1982; Hilbish et al., 1982; Oake­
shott et al., 1982; Burton and Feldman,
1983; Watt, 1983; Watt et al., 1983), but
the vast majority ofsegregating loci in most
of the species surveyed so far have never
been examined in enough detail to charac­
terize selective factors in satisfactory detail.
Indeed, the effort required to "prove" the
selective relevance of even a single locus in
even a single species is so prohibitive that
we can never hope to do so for more than
a small fraction of the locus/species com­
binations of interest. The careful effort to
evaluate particular cases has been rewarding
in a variety ofways, and is to be encouraged,
but exhaustive enumeration is neither an

attractive nor a feasible route to wide gen­
eralization about the maintenance of ob­
served genetic variability; some other ap­
proach is needed.

Single-locus analysis of the relation be­
tween genetic variation and fitness has not
been very rewarding, and a number ofwork­
ers have been led to consider the impact of
multiple-locus genotypes on fitness. In par­
ticular, several authors have attempted to
correlate fitness or some surrogate measure
with the number of heterozygous loci in an
individual. Some workers find an increase
in fitness with increasing heterozygosity
(Schall and Levin, 1976; Singh and Zouros,
1978; Bottini et al., 1979; Zouros et al., 1980;
Mitton et al., 1981; Koehn and Shumway,
1982; Pierce and Mitton, 1982; Ledig et al.,
1983; Leary et al., 1984), but others do not
(e.g., Mukai et al., 1974; Gaines et al., 1978;
Knowles and Grant, 1981; Mitton et al.,
1981).

Turelli and Ginzburg (1983) have theo­
retically demonstrated that if allozyme
polymorphisms are maintained by any of
several forms of balancing selection, then
we should observe a general increase in fit­
ness with an increase in the number ofhet­
erozygous loci. Whether the variation in
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question is actually maintained by balanc­
ing selection remains to be seen, of course,
but the observations are generally in agree­
ment with predictions based on a broad
concept of balancing selection.

Alternatively, it has been suggested that
measured heterozygosity may merely reflect
overall genomic heterozygosity and that
highly homozygous genotypes suffer from
inbreeding depression (Ledig et al., 1983).
Mitton and Pierce (1980) and Chakraborty
(1981) have shown, however, that hetero­
zygosity from a small sample of loci is a
poor indicator of total genomic heterozy­
gosity for an individual, suggesting that there
should be little or no association if inbreed­
ing depression is the root cause of the phe­
nomenon. On the other hand, inbreeding
depression can be a powerful force (cf.
Franklin, 1970), so even a small correlation
between observed and genomic heterozy­
gosity might be sufficient to account for the
loose association observed between hetero­
zygosity and fitness.

It is difficult to choose between these al­
ternative explanations, because our current
assessment procedures are almost hopeless­
ly crude; they are not designed to distinguish
between the two selective hypotheses. In
current practice, no attention is paid to
which loci are heterozygous, and most of
the potentially useful information is sup­
pressed in the interest of convenient sum­
marization. The objective of this paper is
to develop a predictive model for the rela­
tionship between fitness and the particular
multiple-locus genetic state of a single in­
dividual. The model employed is the sim­
plest I could use, the multiplicative over­
dominance model for unlinked loci. I present
an evaluation procedure: (1) that is very eas­
ily implemented, (2) that provides a test of
the null hypothesis of no selective differ­
ences among observed genotypes, (3) that
distinguishes between genomic inbreeding
and specific-locus effects, (4) that permits a
determination of the marginal effect ofeach
locus, and (5) that facilitates an assessment
of the multiplicative overdominance as­
sumption.

I begin with a consideration ofthe pattern
of fitness to be expected from a set of two­
allele loci, then describe the pattern to be
expected of multiple-allele loci, and then

present an assessment procedure for eval­
uating the hypothesis. I argue that the in­
breeding depression hypothesis is a degen­
erate special case of the more general
formulation. In a later paper (Bush et al.,
unpubl.), the predictions of the two models
are compared for a series ofpopulation sam­
ples from pitch pine (Pinus rigida Mill.).

A Set of Two-Allele Loci

Consider a diploid population with K seg­
regating loci, unlinked and with two alleles
each. I assume that the two alleles at each
locus are codominant, as is usual with al­
lozyme electromorphs; denote them as A I

and A 2, B 1 and B 2, and their allele frequen­
cies as PAand QA, P B and QB,etc. I presume
that the population has already attained
multiple-locus Hardy-Weinberg equilibri­
um.

I envisage a broad sort of balancing se­
lection that maintains the genetic variation
in equilibrium. The marginal fitness values
for anyone locus are functions ofgenotypic
frequencies and of the fitness values of the
multiple-locus genotypes. I postulate that at
equilibrium the net balance offorces is such
that the marginal fitness array at each locus
shows overdominance. Karlin and Liber­
man (1979a, 1979b) have shown that for
either additive or multiplicative fitness
across a set of "loosely linked" loci, stable
polymorphic equilibria will exhibit margin­
al overdominance. More general fitness
schemes leading to multiple-locus stable
polymorphism are not guaranteed to yield
marginal overdominance at equilibrium
(Lewontin and Kojima, 1960; Ewens and
Thomson, 1977; Hastings, 1981, 1982), but
Turelli and Ginzburg (1983) have shown
that marginal overdominance is the most
frequent consequence of multiple-locus
polymorphism. For purposes ofexposition,
then, let the A -locus be represented as shown
in the panel below.

Genotype
Frequency
Fitness (WJ

The values of SA and T A are assumed to be
small and positive, compatible with the no­
tion that marginal selective differentials are
small. It will be convenient to use the fact



948 PETER E. SMOUSE

SATAa = . (3)
SA + T A

The term a is traditionally referred to as
the "segregational genetic load" for the
A-locus (Morton et a1., 1956). Whether one
views genetic load as the cost of heterosis
or as a measure oflost opportunity resulting
from the impossibility ofmaintaining a pure
population of the optimal (heterozygous)
genotype, it is a measure of the magnitude
of differential selection operating on geno­
types at the locus. The relationship between
log(fitness) and adaptive distance is linear,
and the slope of the line is the intensity of
selection for the locus. For scaling the asym­
metry between X A(1l) and XA(22), a is of
no concern, since:

The fitness values (WA ) above are marginal
genotypic averages, ofcourse, and we really
desire values for individuals. For the jth
individual, the natural logarithm of fitness
(denoted YA ) and adaptive distance (XA ) are
simply related:

YA(11) = 10g[WA(Il)]

= -SA + ~j

= -a· XA(II) + ~j

=[-a/PA]+~j (2a)

YA(12) = log[WA(12)]

= -a' XA(12) + ~j

= ~j (2b)

YA (22) = log[ WA(22)]

= -TA + ~j

= -a' X A(22) + ~j

= [-a/QA] + ~j, (2c)

where the error terms (~) reflect the fact that
individuals have fitness (or surrogate) val­
ues departing from the genotypic averages,
due to differences in genotype at other loci,
due to random environmental influences,
measurement error, and so on. These error
terms (deviations from genotypic expecta­
tions) are assumed to be independent and
identically distributed, with mean (E) = 0
and variance (a}). The slope coefficient (a)
takes the value:

that (1 - SA) :::::: exp{-SA} and (1 - T A ) ::::::

exp{ - T A} for small SA and T A, and I shall
switch back and forth between these nota­
tional forms whenever convenient.

I have assumed Hardy-Weinberg fre­
quencies for expository purposes, and this
warrants some comment. Not all types of
heterotic selection lead to Hardy-Weinberg
proportions at equilibrium, but where se­
lective differentials are small, departures
from Hardy-Weinberg proportions will be
small as well. Moreover, there is little evi­
dence in natural populations for large de­
partures from Hardy-Weinberg proportions
that could be attributed to large selective
differentials, although the difficulties of de­
tecting departures from Hardy-Weinberg
proportions are well known (e.g., Lewontin
and Cockerham, 1959; Ward and Sing, 1970;
Chakraborty and Rao, 1972; Haber, 1980).
Given the observations to date, the as­
sumption of Hardy-Weinberg proportions
at equilibrium is a reasonable first approx­
imation.

Using the fact that (1 -S~ :::::: exp{ -SA}
and (1 - T~ :::::: exp{ - T A } for small SAand
T A , standard theory (e.g., Li, 1978) yields
the following equilibrium frequencies for the
A-locus:

TA SA
PA= STand QA = S T (1)

A+ A A+ A
The more fit of the two homozygotes is the
more common. The central idea in what
follows is that some homozygotes are more
fit than others. Rather than using the num­
ber of homozygous loci as a criterion of fit­
ness, I construct testable hypotheses about
the differences ofhomozygote fitness values
from the observed allele frequencies. To do
that, I construct a measure of the "adaptive
distance" between any homozygote and the
(heterozygous) optimum genotype. The least
fit homozygote should be furthest from this
optimum. The scaling of adaptive distance
is also helpful in determining the relative
fitness impact of selection at different loci.
Consider the quantity (X~ as a candidate
measure of adaptive distance for A-locus
genotypes.

Genotype
Fitness (WA )

Distance (XA )

[-a/PAl = SA
[-a/QA] TA '

(4)
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FIG. 1. Two-locus fitness values for the multipli­
cative overdominance model, with marginal relative
fitness values for each locus.

Now, consider a second locus, also mar­
ginally overdominant. Genotypic frequen­
cies are given (at least approximately) by
two-locus Hardy-Weinberg expectations at
equilibrium. Having assumed multiplica­
tive fitness across a set ofunlinked loci, there
should be no gametic disequilibria between
the A and B loci at equilibrium (Karlin and
Liberman, 1979a, 1979b). The adaptive
distances of BIB!> BIBz, and BzBz are
X B(ll)=PB- I , XB(l2)=0, and X B(22) =
QB-1, respectively. In keeping with the mul­
tiplicative overdominance model, the two­
locus fitness array is as shown in Figure 1.
Each double homozygote (corner) has lower
fitness than either flanking single-locus ho­
mozygote, and each single-locus homozy­
gote has lower fitness than the two-locus
heterozygote (center). Fitness decreases
when additional loci are homozygous, but
the decreases are not identical for all ge­
notypes with the same level of homozygos­
ity, a fact I make use of below.

Since the fitness values are assumed to be
multiplicative across loci, and since there
are no disequilibria, the natural logarithm
of fitness can be represented by (cf. Appen­
dix):

Yj = 10g(Uj) = -a,XA - {3,XB + fj' (5)

where the slope coefficients are:

a = SATA and {3 = SBTB (6)
SA + TA SB + TB '

the respective intensities ofselection for the
two loci. Allele frequencies are sufficient to
gauge the asymmetry of adaptive distance
within a locus, but the respective intensities
are needed to weight the loci. Note, for ex­
ample, that both the parameter sets {S =
0.01, T= 0.02} and {S = 0.05, T= O.lO}
imply {P = 213, Q = 1M, but they represent
rather different intensities of selection. The
allele frequencies are observable, but it is
necessary to estimate the slopes. There are
nine genotypes, each with a different adap­
tive distance. To see what this means, con­
sider the following example; let SA = 0.02,
TA = 0.04, SB = 0.015, and TB= 0.045. The
equilibrium allele frequencies are PA = Z13,
QA = 113, P B= 314, and QB = 1/4, and the slopes
(intensities) are a = 0.0133 and {3 = 0.0113.

A plot of the logarithm of fitness against
two-locus adaptive distances is presented in
Figure 2a, where the X-values for the A and
B loci are weighted by a and {3, respectively.
The optimal genotype (A IA2BIB z) is at one
end of the scale and the worst (AzAzBzBz)
is at the other end, but there is no strict
order of fitness with the number of hetero­
zygous loci. For example, A1A1BIB j has
higher fitness than either A1AzBzBz or
AzAzB IBz. An analogue of the more usual
treatment is presented in Figure 2b, where
log(fitness) is plotted against the number of
homozygous loci. The usual monotonicity
is evident, but this presentation is less in­
formative than that ofFigure 2a. Moreover,
since the points of the graph are averages
for two-locus genotypes, there is individual­
to-individual variation around the regres­
sion line, more variation in Figure 2b than
in Figure 2a.

The extension to multiple loci, each with
two alleles, is obvious. Given the same sort
of adaptive distance measures; the predic­
tive model becomes:
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FIG. 2. An example of the relationship between
log(fitness) and genotype for two loci: a) according to
the adaptive distance formulation, and b) reflected in
the number of homozygous loci.
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Yj = log(ffj)
= -a,XA - {3.XB - •••

- K,XK + Ej' (7)

where the slope coefficients are the respec­
tive intensities of selection for the various
loci. The model encompassed by Equation
(7) is richer in predictive detail than the
standard treatment; with K loci, the usual
treatment allows for only (K + 1) hetero­
zygosity classes. With the same Kloci, there
are almost always more than (K + 1) dif­
ferent genotypes in the adaptive distance
model, sometimes substantially more.

A Multiple-Allele Locus
The mathematical theory for the selective

maintenance of multiple-alleles in poly­
morphic equilibrium is considerably more
complicated than is that for a pair ofalleles.
The conditions that must be satisfied are
very demanding, and simple heterosis is
neither necessary nor sufficient (e.g., Man­
del, 1970; Lewontin et al., 1978; Li, 1978).
However, provided that a state ofbalanced
equilibrium is assumed to exist, there are
certain conditions that will be satisfied.
Consider the three-allele C-locus, which can
be represented as follows.

Now, pool C2 and C3 into C I " reducing the
locus to a pair ofallelic classes (CI and CI ,) .

(9)

and

and

To treat a three-allele lOCUS, it is only nec­
essary to pool two ofthe alleles into an "oth­
er alleles" class, and then use the two-allele
treatment, merely adding the locus to the

Alternatively, one might pool C I and C1

into C2" reducing the locus to a different
pair of allelic classes, or even C I and C 2

into C3" reducing the locus to a third two­
allele form. For each of these alternative
lumpings, it is straightforward to define syn­
thetic fitness measures along the lines in­
dicated by Equations (8a) and (8b). A nec­
essary condition for (consequence of) a stable
polymorphic equilibrium is that:

WII' W I '1' < W I I ,

(8a)

C"CI ,

(l - Pd'
WIT

CIC"
2Pdl - Pd
W ll ,

eCI C,C, CIC, C,C, C,C, C,C,
Pc' 2PeQe 2PeR e Qe' 2QeRe R e'
WI' W12 W 13 W" W" W"

Genotype C I C I

Frequency Pc'
Fitness WI'

Genotype
Frequency
Fitness

The fitnesses ofthe synthetic genotypes (WI I ,

and WI '1') are:

(2PC Q C W I 2 + 2PcRcWI 3)
WII' = ..:...-.....::::=-.:..:..---=-....:::....----:.::::.

(2PcQc + 2PcRd

(Qc W 12 + R C W I 3)

(1 - Pd
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WII = 0.9250, WIT = 0.9587
< WII' = 0.9643 (11a)

W22 = 0.9000, W2'2' = 0.9527
< W22' = 0.9792 (11b)

W33 = 0.9550, W3'3' = 0.9472
< W 33 , = 0.9667. (1 Ic)

-.8

These equilibrium frequencies and fitness
values imply frequencies and fitness values
for the synthetic genotypes (CICI, and
C),CI,), (C2C2, and C2,C2.) , (C3C3, and C3,C3.) ,

and these latter satisfy, as they must, the
conditions required for a stable polymor­
phism:

Genotype C,C, C'C2 C,C, C2C2 C2C, C,C,

Frequency
I 4 IO 4 20 25

64 64 64 64 64 64

Fitness 0.925 1.000 0.950 0.900 0.975 0.955

The genotypic frequencies are determined
by the fitness values and are computed as
in Li (1978):

o 8/5 8/3

ADAPTIVE DISTANCE Xc

FIG. 3. An example of the relationship between
log(fitness) and genotype for a three-allele locus. The
line represents the model specification, which is an
exact representation if C,C" C,C2 , and C2C2 are pooled
into C,.C", and if C,C, and C2C" are pooled into
C,C". The actuallog(fitnesses) of all six genotypes are
also plotted.

array in (7). The only question is which of
the three available pooling strategies to use.
The best strategy is to use the most frequent
allele as CI, lumping the other two into CI,.
The major reason for this is that evaluation
of the model will be most effective if the
rarer of the two homozygotes is present in
the sample in nontrivial frequencies. Pool­
ing of the rarer alleles should generally en­
sure this.

To illustrate the three-allele analysis fur­
ther, I envision a three-allele C-locus with
a frequency/fitness specification slightly
modified from an example by Li (1978 p.
44).

An Estimation and Testing Framework
The estimation of the regression coeffi­

cients (the intensities of selection) is a rel­
atively straightforward matter that I shall
develop below. Before beginning that dis-

The 10g(Wd values are scaled relative to the
average fitness of CIC3 and C2C3 (0.9667).
A plot oflog(Wd against Xc is presented in
Figure 3. The theoretical line eYd is that
predicted by the model (with C I and C2

pooled); the slope is -" = -0.0073. The six
logarithmically transformed fitness values
are plotted against their respective adaptive
distance values. The weighted averages of
the fitness values of the genotypes having
the same Xc-values fit the line exactly, but
individual genotypes do not. This is an un­
avoidable consequence of pooling the least
common alleles. There is always some loss
of information with pooling, but what in­
formation remains is valid.

The extension of this treatment to mul­
tiple-allele loci is straightforward. Stable
polymorphic equilibrium for multiple al­
leles implies overdominance for all of the
synthetic pairs:

~i' ~'i' < ~i' for all alleles (i). (12)

All but the most common allele can be
lumped into a single "other alleles" class,
and the locus can be treated in two-allele
form.

Genotype
C,C, C'C2 C,C, C2C2 C2C, C,C,

Yc
-0,0195 -0.0195 0 -0,0195 0 -0.0117

Xc
2.6667 2.6667 0 2.6667 0 1.6000

Log(Wd
-0.0426 +0.0328 -0.0168 -0.0690 +0.0083 -0.0117

Since C3 is the most frequent allele, lump
CI and C2 into C3" and construct the fol­
lowing (X, y)-specification for the C-locus.

(10)

Pc = 0.125
Qc = 0.250
Rc = 0.625.
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(14a)
(14b)

cussion, however, some assurance is needed
that the adaptive distances (X-values) are
measured without error or at least with small
error, relative to the error in the Y-values.
The X-values are simply assigned from the
allele frequencies ofthe population, but these
frequencies are estimated with some error.
Given large samples, the allele frequencies
(and hence the X-values) will be estimated
with minimal error, and it might be well in
general to estimate those frequencies from
a different (and hopefully larger) sample than
is used to assess the relationship between
heterozygosity and fitness. The real uncer­
tainty in all of this work is the measurement
of fitness (or some credible surrogate) for an
individual. That task is formidable under
the best of circumstances, and one can an­
ticipate measurement and estimation errors
at least an order of magnitude larger than
the errors in the adaptive distances. Both
problems will be discussed in more detail
in a later paper (Bush et aI., unpubl.). I as­
sume here that the requisite measures of
fitness are in hand.

Consider a pair of two-allele loci, and re­
call the fitness array of Figure 1. Define a
parameter vector () = [ex,~]'. It can be shown
(Appendix) that the usual regression esti­
mator 0is unbiased:

E[O] = E[&, ~]' = [ex, ~]' = (). (13)

The model (regression) and error (residual)
sums ofsquares are easily shown to be func­
tions of sample size (N), the error variance
(o}), and the selection intensities (Appen­
dix):

E[SS(MODEL)] = 2· u,2 + (N - 1)
'(ex2 + ~2)

E[SS(ERROR)] = (N - 3)·u,2.

Given K loci, each with two alleles, the
regression treatment can be extended to
models involving the K-dimensional vector
() = [ex, ~, ... , K]', merely by extending (13),
(14a), and (14b) in the obvious fashion.
Multi-allelic loci can also be treated in two­
allele fashion, as I have indicated above, but
it must be remembered that the error terms
(~) will contain variation among genotypes
within a pooled class.

Since individual fitness (or surrogate) val­
ues will vary around the genotypic averages,
due both to measurement error and fitness

variation ascribable to unobserved loci, the
observed SS(ERROR) will not be identi­
cally zero, and the regression model can be
compared with observations in the usual
fashion, testing the hypothesis that any sub­
set of () is zero, indicating a lack of selective
relevance for that subset ofloci. In the event
that SS(ERROR) is large, it might be useful
to determine whether the linear model
(multiplicative overdominance) is itself ad­
equate as a representation, since one can
augment the model by adding cross-product
(epistatic) terms.

One final remark on estimation and test­
ing is in order. All ofthe above is predicated
on the assumption that it is possible to de­
termine relative fitness values ofall K-Iocus
genotypes, by reference to the optimal ge­
notype, the K-Iocus heterozygote. In routine
practice, with even a modest number ofloci
under examination, the K-Iocus heterozy­
gote will frequently not be observed. In that
event, some other genotype must be used
as a fitness reference, which results in the
addition of a nonzero intercept to (7). This
convention represents a mere shift of scale,
and has no consequences for the evaulation
techniques presented here.

The Inbreeding Depression Model
I pointed out above that the observed

relationship between heterozygosity and fit­
ness could be the result of nonspecific in­
breeding depression, with a more hetero­
zygous genotype merely indicating a lower
homozygosity level of the individual. The
convention of counting the number of het­
erozygous loci is a special case of the adap­
tive distance formulation I have used here.
A count of the number ofheterozygous loci
is tantamount to the assumption that all
observed loci are equivalent in fitness terms.
If the genetic loci under consideration are
mere indicators of the genomic heterozy­
gosity of the individual, then the details
concerning which of the alternate allelic
markers at any particular locus are homo­
zygous will convey no useful information
about the fitness of that multiple-locus ge­
notype. In essence, that amounts to scoring
all heterozygotes as X = 0 and all homo­
zygotes as X = I and setting all regression
coefficients equal. That reduces the inbreed­
ing depression model to a degenerate special
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case of the adaptive distance model, a treat­
ment developed by Morton et al. (1956). To
evaluate that model, it is only necessary to
regress log( W) on the number of homozy­
gous loci; serious lack of fit would be an
indication that the inbreeding depression
model is too simple. Any significant im­
provement in the prediction due to fitting
separate slopes for the separate loci and/or
different adaptive distances for different
homozygotes would be evidence that the
loci under examination are important in
themselves, rather than being indicators of
a generalized inbreeding effect.

It is appropriate to close this section with
a final comment on the inbreeding depres­
sion model. Mitton and Pierce (1980) and
Chakraborty (1981) have examined the cor­
relation between the heterozygosity/homo­
zygosity of a subset of observed loci and
that of the total genome, and have shown
that the correlation is generally quite small.
If the loci under examination are assumed
to be of no adaptive relevance, then one
might argue that the fitness effects of geno­
mic homozygosity must be large to account
for the moderate size of the necessarily in­
direct association between observed homo­
zygosity and fitness. It develops, however,
that this whole line of argument is in need
of closer scrutiny.

Mitton and Pierce, and Chakraborty as
well, employed sets of independently seg­
regating loci. There is no correlation of
homozygosity across a set of independently
segregating loci, and the correlation be­
tween observed and genomic homozygosity
is due solely to the fact that the former is a
subset of the latter. Formally, let homozy­
gosity at the observed loci be denoted by
(X) and that of all other (unobserved loci)
be denoted by (X'). Ifgenomic homozygos­
ity is denoted by (2), then the relation be­
tween Z and X is merely:

Z = rX + (l - n·X', (15)

where r is the fraction of segregating loci
under actual observation. The correlation
between X and Z is thus:

Uxzrxz = - -
UX'Uz

(16)

which is nonzero because t is nonzero. For
the inbreeding depression model, X is
thought to have no direct effect on fitness,
so what we really need is the indirect rela­
tionship between X and Y, through X'. The
relationship between X, X', and Y is shown
in path diagram form in Figure 4. If ob­
served homozygosity (X) has no direct effect
on Y, then the direct path coefficient PXy =
0, and since rxX' = °as well, there is no
correlation between observed homozygos­
ity and fitness, direct or indirect (Fig. 4a).
If there is an association between X and Y,
it must be due to the direct effect of X on
Y, with PXy * 0, as shown in Figure 4b.
The basic phenomenon cannot be due to
independently segregating loci that are not
under observation.

The rest ofthe genome does not, ofcourse,
consist of only those loci segregating inde­
pendently ofthe ones under observation. In
general, closely linked loci can be expected
to exhibit gametic disequilibrium with the
loci under observation. In that case, rxX' *
0, and one might very well observe an in­
direct correlation (associative overdomi­
nance) between X and Y (Kojima and Le­
wontin, 1969), an observable set of neutral
markers that appear to be overdominant be­
cause of their disequilibria with unseen but
linked markers that are under selection.
More generally, the fitness-homozygosity
associations observed by several authors
probably represent the effects of small seg­
ments of chromosome surrounding the ob­
served markers. Since it is not possible to
distinguish between the heterozygosity of
the observed markers and that ofthe flank­
ing loci, the term "observed loci" might just
as well be understood to mean "observed
segments of chromosome."

Whether the fitness-homozygosity asso­
ciation is due to balancing selection or to
inbreeding depression, the "loci" ofinterest
are those under observation. There is noth­
ing to be gained by invoking independently
segregating portions of the genome that are
not under observation. Inbreeding depres­
sion comes in two forms, the depression
caused by deleterious recessive homozy­
gotes at loci not supporting polymorphisms
and the depression caused by homozygosity
for alternate alleles at loci maintained as
balanced polymorphisms (Morton et al.,
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OBSERVED UNSEEN

HOMOZYG. HOMOZYG.

FIG. 4. Direct and indirect effects of observed
homozygosity (X) on Y = log(W): a) the case where
PXY = 0 and PX'Y * 0, and b) the case where PXY * 0
and PX'Y * O.

adaptive distance (X) and (Y) = log( W) is
the theoretical reward. My assumption that
exp{ -S} ~ (1 - S) and exp{ - T} ~ (1 ­
n is tantamount to saying that there is no
real distinction between the additive over­
dominance and multiplicative overdomi­
nance models, and there are no changes in
the basic conclusions for the additive mod­
el.

Either of these simple models is only an
approximation to a general fitness scheme
for multiple unlinked loci, but the approx­
imation may not be unreasonable as a first
approximation. If marginal selective differ­
entials are small at equilibrium, as seems
empirically to be the case in most studies,
it should be possible to approximate the
log(fitness) values of particular multiple­
locus genotypes by means of a Taylor ex­
pansion in the mathematical vicinity of
equilibrium. In the parlance ofFigure 1, the
Y-value for A1A1B]B1(for example) can be
represented as:

a

UNSEEN

HOMOZYG.

Log IFITNESS)

'XX'=O
~----- ... ,

X X
OBSERVED

HOMOZYG.

= PXY

P XY=0 \\, !X'Y ¢ 0

y 'XY' PXY' 'XX' PX'y

Logi FITNESS) • 0

Pxy¢O \ !x,y*O

'Xy=PXY+'Xx'PX'Y y

b

1956). Given that the "loci" under exami­
nation are those that matter, there should
be no real need for the (1, 0) scoring system
ofthe homozygosity treatment, and it should
generally be possible to extract more infor­
mation with the adaptive distance treat­
ment.

DISCUSSION

The adaptive distance treatment is based
on the idea that marginal selective differ­
entials are quite small; the assumption is
the only one compatible with the known
facts. Almost no one has been able to con­
vincingly demonstrate large selective differ­
entials for single loci. Moreover, the lack of
large single-locus marginals makes a certain
amount of theoretical sense. A marginal­
fitness value includes the frequency-depen­
dent effects ofall other loci, assayed or oth­
erwise. With even a modest number of loci
under consideration, no two individuals will
have the same genotype, and the genetic
backgrounds over which two marginal ge­
notypes are averaged may not include a sin­
gle background genotype in common. It is
entirely plausible that the average fitness
values of two or more random collections
of genotypes will be about the same, every­
thing else being equal. When viewing a sin­
gle locus, one is merely looking at one facet
ofa multi-faceted genotype. Although dem­
onstrating large marginal selective effects for
single loci is bound to be difficult, the fact
that several workers have detected fitness
differences between groups of individuals
that differ for as few as 6-12 identifiable
loci (cf. Mitton and Grant, 1984) argues that
the multiple-locus genome is under strong
selection.

The variety ofmodels that one might em­
ploy to generate a stable multiple-locus
polymorphic array is very large. It is not
possible to elaborate the detailed fitness
structure of a complicated multiple-locus
system from survey data alone, of course,
but that is scarcely the point. An attempt
to determine whether or not multiple-locus
fitness is related to heterozygosity in some
systematic and theoretically plausible fash­
ion is the only real issue at stake here. Hav­
ing begun with the simplest model that might
do the job, multiplicative overdominance,
the linearity of the relationship between
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Y(A]A]BIB I)::::: a- SA - SB

+ O(SA + SBY (17)

With a < SA, SB < 0.10, the higher order
terms should be very small. Multiplicative
(additive) overdominance is surely not the
true model, but within the limits of detec­
tion, it should be a reasonable first approx­
imation. The regression strategy can be used
to evaluate quadratic, cubic, or higher order
(epistatic) models, of course, but with very
little hope of a convincing demonstration,
given small SA and SB.
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Similar manipulations yield:

(A3)

= (N - I)·o} + (N - 1)(a2 + ~2).

(A2a)

(AAa)

(A5b)

(A5a)

(A4b)

N

= ~ (XBj - XB)2
j=1

= XB'XB
N

XA'XB= ~ (XAj - XA)(XBj - XB)
j=1

= XB'XA
= 0,

= (N - I)

E[XA'Y] = E[~ (XAj - XA)(}j - Y)]
= (N - I)·a

E[XB'Y] = E[~ (XBj - XB)(}j - Y)]
= (N- IH.

ApPENDIX

The purpose of this appendix is to derive the ex­
pected means, sums of squares, and cross products
needed for the regression analysis for a pair ofunlinked,
two-allele loci with multiplicative fitness values. As­
sume that the population is at two-locus Hardy-Wein­
berg equilibrium and that the allele frequencies are
known without error. Using the definitions in the text,
it develops that the expected value of Y, the mean of
the Yj , is (since € = 0):

E(y) = PA2PB2(-SA -SB)+ ...
+ QA2QB2(- TA- TB) + €

=-(a+~), (AI)

since at equilibrium:

PA=~
SA + TA

= PA2PB2·E[-SA - SB - Yj2 + ...
+ QA2QB2·E[-TA - TB - Yj2

PB=~ and Q =~ (A2b)
SB + TB B SB + TB •

The regression of Yon X A and X B requires:

E[SS(TOTAL)] = E[Y'Y]

= E[~ (}j - yy]

N

XAXA = ~ (XAj - XA)2
)=1

and:
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The expected model and error sums of squares are:

E[SS(MODEL)] = E[(y'X)(X'X)-'·(X'y)]
= 2·u,2 + (N - 1)·(a2 + (32) (A.7a)

E[SS(ERROR)] = E[Y' {I - X(X'Xt'X'} Y]

~~ =~-~.~ ~~


