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AKT protein kinase B 

AST aspartate transaminase 

AUC area under the curve 
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IRB Institutional Review Board 

MSKCC Memorial Sloan Kettering Cancer Center 

MTD maximum tolerated dose 

mTOR mammalian Target of rapamycin 

mTORC mammalian target of rapamycin complex 

PI3K phosphoinositide 3-kinase 

PK pharmacokinetic 

PTEN phosphatase and tensin homolog 

t1/2 half-life 

Vss volume of distribution at steady state 

 

Abstract 

Background: The PI3K/AKT/mTOR pathway is aberrantly activated in many pediatric solid tumors 

including gliomas and medulloblastomas. Preclinical data in a pediatric glioma model demonstrated 

that the combination of perifosine (AKT inhibitor) and temsirolimus (mTOR inhibitor) is more potent 

at inhibiting the axis than either agent alone. We conducted this study to assess pharmacokinetics and 

to identify the maximally tolerated dose for the combination. 
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Procedure: We performed a standard 3+3 phase I, open-label, dose escalation study in patients with 

recurrent/refractory pediatric solid tumors. Four dose levels of perifosine (25 to 75 mg/m2/day) and 

temsirolimus (25 to 75 mg/m2 IV weekly) were investigated.  

Results: 23 patients (median age 8.5 years) with brain tumors (diffuse intrinsic pontine glioma 

[DIPG] n=8, high-grade glioma n=6, medulloblastoma n=2, ependymoma n=1), neuroblastoma (n=4), 

or rhabdomyosarcoma (n=2) were treated. The combination was generally well tolerated and no dose 

limiting toxicity was encountered. The most common grade 3 or 4 toxicities (at least possibly related) 

were thrombocytopenia (38.1%), neutropenia (23.8%), lymphopenia (23.8%) and 

hypercholesterolemia (19.0%). Pharmacokinetic findings for temsirolimus were similar to those 

observed in the temsirolimus single agent phase II pediatric study and pharmacokinetic findings for 

perifosine were similar to those in adults. Stable disease was seen in 9 of 11 subjects with DIPG or 

high-grade glioma; no partial or complete responses were achieved. 

 

Conclusions: The combination of these AKT and mTOR inhibitors was safe and feasible in patients 

with recurrent/refractory pediatric solid tumors. 

 

Introduction 

New agents are desperately needed for relapsed pediatric solid tumors because of their very poor 

outcome and the lack of effective salvage strategies. The phosphoinositide 3-kinases (PI3Ks) are a 

family of lipid enzymes which phosphorylate the phosphatidylinositols on the plasma membrane. 

They transmit signals received from activated tyrosine kinase receptors, G protein-coupled receptors, 

and activated Ras to molecules such as protein kinase B (AKT) and mammalian Target of rapamycin 
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(mTOR) that control cell metabolism, proliferation, size, and survival.[1] Activated PI3K recruits 

AKT to the cell membrane and activates it, which can indirectly activate mammalian target of 

rapamycin complex (mTORC) 1 which consists of mTOR, the catalytic subunit of this complex, and 

several other proteins. Activation of mTORC1 results in increased protein synthesis, cell growth, 

survival and proliferation.[2] An important negative regulator of PI3K/AKT/mTOR signaling is 

phosphatase and tensin homolog (PTEN), which is a lipid phosphatase that antagonizes the kinase 

activity of PI3K. 

 

The PI3K/AKT/mTOR axis is aberrantly activated in a variety of cancers including pediatric solid 

tumors through gene amplification or mutation upstream at the level of the receptor (e.g., activating 

mutations in platelet-derived growth factor receptor-alpha, anaplastic lymphoma kinase, and 

fibroblast growth factor receptor 1, activating mutations in one of the subunits of PI3K, or inactivating 

mutations of the negative regulator PTEN.[3-8] AKT activation has been associated with a poorer 

outcome in neuroblastoma and with other markers of aggressive disease.[9] Similarly, PTEN loss has 

been noted to be a poor prognostic factor in pediatric high-grade gliomas and 

medulloblastomas.[10,11] In addition, there is evidence that the PI3K/AKT/mTOR pathway may also 

play an important role in resistance to radiation and/or chemotherapy.[12,13] 

 

Perifosine, a synthetic alkylphospholipid, represents a new class of antitumor agents that act on cell 

membranes rather than on DNA. Perifosine’s primary mechanism of action is thought to be through 

interference with the recruitment of AKT to the plasma membrane resulting in inhibition of AKT 

phosphorylation and activation.[14,15] Perifosine also has other mechanisms of action such as 

inhibition of de novo synthesis of cell membrane components.[15] 
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Temsirolimus is an ester derivative of sirolimus or rapamycin, a naturally occurring drug produced by 

a soil bacterium.[16] Both rapamycin and temsirolimus are inhibitors of mTORC1. However, mTOR 

can also form a second complex called mTORC2, which is insensitive to temsirolimus and sirolimus 

and is known to activate AKT.[16] Temsirolimus is FDA approved for the treatment of renal cell 

carcinoma. Recently, temsirolimus has been evaluated in children with solid tumors as a single agent 

(high-grade glioma, neuroblastoma, and rhabdomyosarcomas) with prolonged stable disease in some 

patients.[17] This suggests that inhibiting the mTOR pathway is a promising approach but that 

targeting a single molecule may not be adequate to achieve significant anti-tumor activity. 

 

Research over the past decade has unraveled multiple feedback loops in this pathway and the 

scientific rationale for this study is the observation that mTOR inhibition alone with rapalogs like 

rapamycin or temsirolimus results in AKT activation through upregulation of receptor tyrosine kinase 

signaling.[18-20] In addition, AKT inhibition induces the expression and activation of multiple 

activated tyrosine kinase receptors.[1] Preclinical evaluation of perifosine and temsirolimus in a 

pediatric glioma model demonstrated that significant inhibition of both AKT and mTOR occurred 

only when both drugs were given together.[21] Therefore this phase I clinical study of perifosine in 

combination with temsirolimus (two targeted agents that inhibit different points of the same pathway) 

was developed to evaluate the preclinical findings of synergy in targeting the PI3K/AKT/mTOR 

pathway between the two drugs as observed in this preclinical model of glioma. 

 

Methods 
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The primary aim of the study was to determine the maximum tolerated dose (MTD) of the 

combination of perifosine and temsirolimus in patients with recurrent or refractory pediatric solid 

tumors. Secondary aims were to (1) determine whether pharmacokinetic (PK) serum levels of 

perifosine and temsirolimus correlate with toxicity, (2) assess preliminary data on the efficacy of the 

perifosine and temsirolimus combination, and (3) determine whether molecular features of the tumor 

were associated with likelihood of response. 

 

Patients 

Between February 10, 2010 and August 21, 2012, 23 patients with recurrent or refractory pediatric 

solid tumors were enrolled onto the study. One enrolled subject never received study prescribed 

therapy and is not included in this analysis (Figure 1). Twenty of the 22 treated subjects were less than 

18 years old. The other two were young adults (21 and 24 years old). 

 

Eligibility criteria included: (1) presence of any solid tumor that had failed standard therapy, (2) 

evidence of tumor by computed tomography, magnetic resonance imaging, or 

metaiodobenzylguanidine scan, serum markers, or tissue sampling, (3) age ≤ 21 years (age ≤ 35 years 

for biopsy proven medulloblastoma or neuroblastoma), (4) Karnofsky or Lansky performance status ≥ 

50%, (5) adequate organ function [absolute neutrophil count ≥ 1000 at least 24 hours off filgrastim, 

platelet count ≥ 100,000/mcL at least 1 week post-platelet transfusion, hemoglobin ≥ 8g/dL at least 1 

week post- packed red blood cell transfusion, aspartate transaminase (AST) and alanine transaminase 

≤ 2 x the upper limits of normal, total bilirubin ≤ 2 mg/dL, serum creatinine ≤ 1.5 x the upper limit of 

normal for age, or calculated creatinine clearance or nuclear glomerular filtration rate ≥ 70 
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ml/min/1.73 m2], (6) adequate lipid profile [cholesterol level < 350 mg/dL and triglycerides level < 

400 mg/dL], (7) mandated interval since prior therapy [≥ 3 weeks since last non-nitrosourea 

chemotherapy, ≥ 6 weeks since last nitrosoureas, ≥ 4 weeks since last radiation therapy], (8) ability to 

swallow tablets whole, and (9) agreement to practice adequate contraception and not breast feed. Prior 

exposure to single-agent perifosine and/or an mTOR inhibitor was permitted as long as the agent had 

not been associated with a dose-limiting toxicity (DLT). Exclusion criteria included (1) pregnancy, (2) 

uncontrolled active infection, (3) patients with human immunodeficiency virus receiving combination 

anti-retroviral therapy, (4) enzyme-inducing anti-convulsant usage, and (5) history of pulmonary 

hypertension or pneumonitis. The subjects (if adults or emancipated minors) or parents or legal 

guardians of all patients gave informed consent. The Memorial Sloan Kettering Cancer Center 

(MSKCC) Institutional Review Board (IRB) and the Food and Drug Administration (FDA) approved 

the protocol. 

 

Treatment protocol 

This was a standard 3+3 phase I dose escalation study in which doses of both drugs were escalated. 

Four dose levels were investigated (Table 1). Temsirolimus was administered weekly, intravenously 

over 30 minutes following antihistamine pre-medication, at either 25 or 75 mg/m2/dose. Perifosine 

was only available as 50 mg tablets. A loading dose was administered on day 1 and then the 

maintenance dose was administered every 1 to 4 days, depending on the dose level and body surface 

area of the subject. The complete dosing scheme is given in Table 1. Treatment was continued until 

disease progression, intolerable toxicity, DLT or death was encountered. Subjects experiencing DLT 

after 2 cycles of treatment, but with evidence of clinical benefit, were eligible to remain on study with 

a dose level reduction. Some treatable laboratory abnormalities that were not associated with any 
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signs or symptoms originally met the DLT definition, but the MSKCC IRB and the FDA approved an 

amendment to exclude them. 

 

Subjects were seen weekly for assessment and temsirolimus treatment. Laboratory assessments 

(complete blood count, coagulation studies, chemistries, lipid profiles) were performed weekly during 

cycle 1 and then every other week. Tumor assessments were performed about every 8 weeks. 

 

Toxicity was assessed according to the Common Toxicity Criteria (version 3.0) of the National 

Cancer Institute, National Institutes of Health. Dose-limiting toxicity was defined in the final version 

of the protocol as (1) any non-hematological toxicity grade ≥ 3 [except for grade 3 nausea, vomiting, 

and diarrhea that could be controlled within 24 hours with supportive care measures, grade 3 or 4 

electrolyte abnormalities that could be corrected by medical management or grade 3 or 4 cholesterol 

or triglyceride abnormality], (2) grade 4 neutropenia on 2 consecutive blood counts drawn at least 72 

hours apart, (3) grade 4 febrile neutropenia or grade 4 documented infection with absolute neutrophil 

count < 1,000/mcL, (4) grade 3 thrombocytopenia with bleeding or a platelet count < 25,000/mcL. 

 

Correlative studies 

Samples for PK analyses were obtained at baseline and during cycle 1. Serum for perifosine levels 

was obtained on days 1, 8, 15 and 22 of cycle 1. One blood sample for temsirolimus and sirolimus 

levels was obtained pre-infusion on days 1, 8 and 22; on day 15 samples were obtained pre-infusion 

and at hours 1, 6 and 24. 
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Perifosine: At each time point, heparinized blood (7 to 10 ml) was collected into a plastic vacutainer 

to minimize adhesion of perifosine. Plasma was separated by centrifugation and stored in 

polypropylene cryovials at -80°C until assayed. Perifosine in plasma was measured by a validated 

reversed phase liquid chromatography/electrospray mass spectrometry method as previously 

described.[22] 

 

Temsirolimus: At each time point, whole blood (2 ml) was collected into an 

ethylenediaminetetraacetic acid -treated tube and stored at -80°C until assayed. Concentrations of 

temsirolimus and sirolimus were measured by a validated liquid chromatography/tandem-mass 

spectrometry assay with internal standards at SFBC-Taylor (Princeton, NJ). Standard PK parameters 

such as maximum concentration (Cmax), area under the curve (AUC), half-life (t1/2), clearance (CL), 

and volume of distribution at steady state (Vss) were calculated using non-compartmental approach 

using WinNonlin 6.3 software (Pharsight Corp). 

 

Tumor tissue: Five micron formalin-fixed paraffin-embedded sections were used for all 

immunostaining procedures. Immunohistochemical staining was performed on a Discovery Ultra 

autostainer (Ventana Medical Systems, Tucson, AZ, USA) using the following antibodies and 

concentrations: PTEN (1:100) (cat# 9559, Cell Signaling Technology, Davers, MA, USA), p-AKT 

S473 (1:100) (cat#4060, Cell Signaling Technology), p-PRAS40 (1:40) (cat# 2997, Cell Signaling 

Technology). Stains were developed with standard DAB-based reagents with the exception of p-AKT, 

which employed multimeric chemistry (OmniMap anti-RB, Ventana Medical Systems). Following 
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staining, slides were dehydrated in graded alcohols and coverslipped manually with Permount 

mounting media (Sigma-Aldrich, St. Louis, MO, USA). 

 

Response criteria 

For subjects with tumors other than neuroblastoma, responses were assessed via RECIST.[23] For 

subjects with neuroblastoma, the International Neuroblastoma Response criteria were used.[24] 

 

Statistics 

The DLT assessment period was the first 28 day cycle. If therapy was discontinued during the 

first cycle for reasons other than toxicity, an additional subject could be enrolled at that dose 

level to ensure adequate evaluation of toxicity. No intra-patient dose escalation was 

permitted. 

 

Results 

Patient Characteristics  
The median age of the 22 subjects was 9 years (range 4 to 24 years). Eleven (50%) were male and 11 

female. Sixteen subjects had central nervous system tumors (DIPG n=8, high-grade astrocytoma n=5, 

medulloblastoma n=2, ependymoma n=1), 4 had neuroblastoma, and 2 had rhabdomyosarcoma. Table 

2 contains additional details regarding patient characteristics. 
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Number of Cycles 

The entire group of subjects initiated a total of 62 cycles of treatment. A median of 2 cycles was 

administered per patient, with a range from <1 to 6 cycles. Two subjects withdrew consent during the 

first cycle (not due to toxicity) and were replaced.  

 

Toxicity 

Table 3 contains a summary of toxicities considered at least possibly related to perifosine and/or 

temsirolimus including all hematologic toxicities and non-hematologic toxicities seen in > 10% of 

subjects or at least grade 3 (even if seen in < 10% of subjects). The perifosine and temsirolimus 

combination was generally well tolerated. The most common toxicities of any grade (at least possibly 

related) were hyperglycemia (95.2%), fatigue (90.5%), increased AST (81%), decreased hemoglobin 

(81%), and decreased platelets (81%), with the vast majority of these toxicities ≤ grade 2. The most 

common grade 3 or 4 toxicities (at least possibly related) were thrombocytopenia (38.1%), 

neutropenia (23.8%), lymphopenia (23.8%) and hypercholesterolemia (19.0%). 

 

No subject suffered a DLT based on the criteria described in the Methods section above. The original 

version of the study included more stringent DLT definitions and 3 subjects suffered DLT. On dose 

level 2 one subject had grade 3 hypokalemia that spontaneously resolved 1 day later and on dose level 

3 one subject each had grade 4 hypercholesterolemia and grade 3 hypophosphatemia.  

 

Responses 



 

 

This article is protected by copyright. All rights reserved. 

13 

 

Nineteen subjects were evaluable for response and the results are detailed in Table 2. Three were 

considered inevaluable due to withdrawal of consent (n=2) and early removal from study (n=1) within 

the first month, prior to any response evaluation. 

 

Five subjects with recurrent high-grade glioma were treated on study. One went off study after only 9 

days due to electrolyte abnormalities (not considered to be DLT) and so was not evaluable for 

response. Four were evaluable for response and their best responses were stable disease (n=3) for 2, 2, 

and 4 months and progressive disease (n=1). None of them were treated on combined dose level 4, 

which is being proposed as the recommended phase 2 dose. 

 

Eight subjects with recurrent DIPG were treated on study. One went off study due to withdrawal of 

consent following an infusion reaction (hives, cough, and hypoxia that responded promptly to 

supportive care) associated with the first dose of temsirolimus (not considered to be DLT) and so was 

not evaluable for response. Seven were evaluable for response and their best responses were stable 

disease (n=6) for 1.5, 2, 2, 4, 4 and 4 months and progressive disease (n=1). The 5 DIPG patients 

treated at the proposed phase 2 dose all had stable disease at first evaluation. 

 

Four subjects with neuroblastoma were treated on study. All 4 had no response to treatment as 

evaluated after the first cycle of therapy. Three had progressive disease after 4 cycles and 1 received 

only 1 cycle of therapy before withdrawing consent. 
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Pharmacokinetics 

PK calculations for perifosine were possible from 18 patients. Perifosine plasma 

concentration was measured weekly (steady state levels) and presented in Figure 2. Average 

steady state levels of perifosine were calculated for each dose level. Linear dose response was 

found (Figure 2; average steady-state level vs. average actual daily dose given), albeit rather 

large inter-patient (especially in dose group 3) and in some cases intra-patient variability as 

illustrated in Figure 1. The average perifosine steady-state values were correlated with PK 

parameters obtained for temsirolimus and sirolimus; correlation coefficients are given in 

Supplemental Table S1. Despite some strong correlations found in case of dose group 1, the 

overall trend observed across dose groups and statistical power available is not enough to 

suggest that perifosine interferes with temsirolimus metabolism. The steady-state perifosine 

levels are similar to steady-state levels reported in clinical trials with perifosine for adults 

with cancer.[25] 

 

PK calculations for temsirolimus and sirolimus were possible from 18 and 17 patients, 

respectively. PK parameters for temsirolimus and its major active metabolite, sirolimus, are 

listed in Supplemental Table S1. Large inter-patient variability in temsirolimus Cmax 

measurements was observed, which was less pronounced with sirolimus and is in line with 

other studies.[17] There was no clear correlation pattern observed between perifosine steady-

state levels and temsirolimus/sirolimus PK parameters.  
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Tumor tissue biological assays 

Eight subjects had DIPG tumors that had never been biopsied and tumor tissue was 

unavailable from 7 other subjects. The results of the biological assays performed on 7 

subjects’ tumor tissue are presented in Table 2. 

 

Discussion 

To the best of our knowledge, this is the first published experience regarding a clinical trial employing 

both AKT and mTOR inhibition. The most notable finding is that this is tolerable and joint 

AKT/mTOR inhibition potentially could be developed further with the addition of other agents. 

 

There are few prior publications regarding the use of temsirolimus in pediatric oncology patients. 

Spunt et al treated 18 subjects at 10 to 150 mg/m2/dose weekly. One of 18 had DLT (grade 3 

anorexia) at the 150 mg/m2/weekly dose level, but no MTD was identified. One subject with 

neuroblastoma achieved complete response; 5 other subjects achieved stable disease, 3 for more than 

4 months (ependymoma, germ cell tumor, adrenocortical carcinoma).[26] The same group 

subsequently performed a phase II trial of temsirolimus in 52 children with high-grade glioma, 

neuroblastoma or rhabdomyosarcoma. They used a dose of 75 mg/m2/dose weekly and only 1 partial 

response (in a patient with neuroblastoma) was achieved. Stable disease at week 12 was seen in 7 of 

17 patients with high-grade glioma, 6 of 19 with neuroblastoma, and 1 of 16 with 

rhabdomyosarcoma.[17] 
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Our team hypothesized that the failure of mTOR inhibition monotherapy might be due to 

compensatory AKT activation and that simultaneous inhibition of mTOR and AKT might be more 

effective. Prior to the initiation of this study a pediatric phase I study of single-agent perifosine 

opened at MSKCC and the preliminary safety data supported the development of this combination 

trial. The single-agent perifosine data will be published separately. The only other pediatric clinical 

experience with an AKT inhibitor that we are aware of was a phase I trial of MK-2206 conducted by 

the Children’s Oncology Group.[27] Fifty children received MK-2206 orally on 2 schedules: every 

other day (n=23 evaluable) or weekly (n=17 evaluable). The recommended phase II dose was 

determined to be 45 mg/m2/dose every other day or 120 mg/m2/dose weekly. No objective response 

was observed; 7 subjects had stable disease for at least 3 courses (n=2 with ependymoma; n=1 each 

with malignant paraganglioma, gliomatosis, juvenile pilocytic astrocytoma, malignant peripheral 

nerve sheath tumor, and clear cell sarcoma). 

 

The perifosine and temsirolimus combination has also been investigated in 34 adults with recurrent or 

refractory malignant gliomas, but thus far only reported in abstract form.[28] The MTD of perifosine 

was determined to be a 600 mg load, then 100 mg daily with temsirolimus 115 mg weekly. Two 

partial responses were achieved, but at a dose level that used a higher temsirolimus dose (170 mg) 

than the MTD. 

 

The PK analysis of both perifosine and temsirolimus demonstrated large interpatient variability with 

perifosine steady state plasma levels in this pediatric cohort that are similar to those observed in adult 

studies and temsirolimus blood levels that are similar to those observed in the temsirolimus single 

agent phase II pediatric trial in a similar patient population suggesting that perifosine does not 
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interfere with the metabolism of temsirolimus. While the correlation between the perifosine dose 

administered and steady state plasma levels observed in this study suggest a linear dose response for 

perifosine at the dose range tested, this relationship should be interpreted with caution due to the large 

interpatient variability. By contrast, some perifosine studies in the adult population have observed an 

absence of a dose response at similar doses.[25, 29] In support of these latter observations are 

unpublished results from our phase I study of perifosine alone in children with recurrent solid tumors 

in which 25, 50, 75, 100, and 125 mg/m
2
/day dose levels were investigated, and no dose response was 

observed beyond 50 mg/m
2
/day (personal communication, Becher & Dunkel). 

 

In conclusion, the combination of perifosine and temsirolimus is well tolerated in children with 

recurrent solid tumors. Although this was a phase I study, the lack of objective responses suggest that 

this combination may need to be combined with additional agent(s) in the future. We did not assess 

target inhibition in tumor tissue in response to the therapy so it is not clear whether we were 

successful in inhibiting the PI3K/AKT/mTOR pathway in our subjects’ tumors. As most of the 

patients on the study had brain tumors, it is pertinent to know whether adequate levels of these drugs 

got to these tumors. Recently, the cerebrospinal fluid penetration of perifosine as a surrogate for 

blood-brain-barrier penetration was assessed in normal rhesus monkeys and was noted to be poor.[30] 

By contrast, another recent study identified the receptor for docosahexaenoic acid in endothelium of 

the blood-brain-barrier of mice and also noted that alkylphospholipids such as miltefosine may enter 

through this receptor.[31] Therefore, future studies with this combination particularly in brain tumor 

patients should investigate whether adequate concentrations of these drugs reach their targets. 

 

Supplemental Table S1. Detailed pharmacokinetic results. 
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Figure legends 

Figure 1. Flow diagram regarding the enrolled subjects. 
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Figure 2. (A) Steady state plasma concentration of perifosine at weeks 2, 3, and 4 plotted for each 

study subject (1-24) across perifosine/combination dose groups; enumerated individual subject trace; 

grey semi-transparent thick line represents the average trace for the given dose group. Large inter-

patient and occasionally intra-patient variability observed. (B) Correlation plot of perifosine steady 

state plasma concentration versus daily dose (actually administered); error bars represent single 

standard deviation; enumerated combination dose groups. The excellent correlation observed supports 

linear dose response (i.e. linear PK) in the dose range utilized but should be interpreted with caution 

due to the large inter-patient variability. 
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TABLE 1. Dose Escalation Scheme 

Combination 

dose level 

Perifosine 

dose level 

Temsirolimus 

dose 

BSA Loading dose 

day 1 

Maintenance 

dose 

1 1 25 mg/m2 0.4 to 0.59 50 mg 50mg every 4 

days 

   0.6 to 0.79 50 mg 50mg every 3 

days 

   0.8 to 1.2 100 mg 50mg every 2 

days 

   1.21 to 1.6 150 mg 50mg 5 days 

per week 

   > 1.6 150 mg 50mg daily 

2 1 75 mg/m2 0.4 to 0.59 50 mg 50mg every 4 

days 

   0.6 to 0.79 50 mg 50mg every 3 

days 

   0.8 to 1.2 100 mg 50mg every 2 

days 

   1.21 to 1.6 150 mg 50mg 5 days 

per week 

   > 1.6 150 mg 50mg daily 

3 2 75 mg/m2 0.4 to 0.59 100 mg 50mg every 2 

days 

   0.6 to 0.79 100 mg 50 mg daily 5 

days per week 

   0.8 to 1.2 100 mg BID 50mg daily 

   1.21 to 1.6 150 mg BID 100mg daily 5 

days per week 
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   > 1.6 150 mg BID 100mg daily 

4 3 75 mg/m2 0.4 to 0.59 100 mg 50 mg daily 5 

days per week 

   0.6 to 0.79 100 mg 50mg daily 

   0.8 to 1.2 100 mg BID 50mg 

alternating 

with 100mg 

daily 

   1.21 to 1.6 150 mg BID 100mg daily 

   > 1.6 150 mg BID 100mg 

alternating 

with 150mg 

daily 

Perifosine dose level 1 aim 25 mg/m2, mean dose (SD) achieved: 25.92 (3.61). Perifosine dose level 2 

aim 50 mg/m2, mean dose (SD) achieved: 51.73 (8.36). Perifosine dose level 3 aim 75 mg/m2, mean 

dose (SD) achieved: 74.60 (11.59). 
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TABLE 2. Patient Characteristics and Responses 

Patient Dose 

level 

Age Sex Dx Prior 

RT  

# prior 

Cx 

regimens 

Best 

response 

(duration) 

pAKT PTEN pPRAS40 

1 1 7 F HGG Yes 3 PD Negative Negative Positive 

2 1 4 M MB Yes 4 PD    

3 1 11 M NB Yes 9 NR (1 mo) Negative Positive Negative 

4 2 24 M NB Yes 3 NR (4 mo) Negative Negative Negative 

5 2 9 F NB Yes 2 NR (4 mo) Negative Negative Negative 

6 2 4 F DIPG Yes 2 SD (4 mo)    

7 2 9 F HGG Yes 1 SD (4 mo) AF AF AF 

8 2 4 M DIPG Yes 3 PD    

9 3 10 M RMS Yes 2 PD Positive Negative Positive 

10 3 9 F HGG Yes 2 SD (2 mo)    

11 3 9 F MB Yes 5 PD    

12 3 17 M HGG Yes 2 SD (2 mo) Positive Positive Positive 

13 3 21 M HGG Yes 6 IE    

14 3 6 F NB Yes 3 NR (4 mo)    

15 4 8 M DIPG Yes 0 SD (4 mo)    

16 4 5 M DIPG Yes 1 PD    

17 4 5 F DIPG Yes 0 SD (1.5 

mo) 

   

18 4 5 F RMS Yes 5 IE    

19 4 5 F DIPG Yes 0 IE    
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20 4 15 M DIPG Yes 0 SD (4 mo)    

21 4 10 M DIPG Yes 0 SD (2 mo)    

22 4 9 F Ep Yes 2 PD    

Legend: AF=assay failure, Cx=chemotherapy, DIPG=diffuse intrinsic pontine glioma, Dx=diagnosis, 

Ep=ependymoma, F=female, HGG=high-grade glioma, IE=inevaluable for response, M=male, 

MB=medulloblastoma, mo=months, NB=neuroblastoma, NR=no response per INRC, PD=progressive 

disease, RMS=rhabdomyosarcoma, RT=radiation therapy, Rx=treatment, SD=stable disease 
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TABLE 3. Toxicity Summary 

  Any Grade Grade 3 or 4 

Hematologic Adverse 

Events 

No. % No. % 

Decreased 

hemoglobin 

17 80.95% 1 4.76% 

Decreased platelets 17 80.95% 8 38.09% 

Decreased leukocytes 13 61.90% 2 9.52% 

Increased PTT 11 52.38% 1 4.76% 

Decreased 

neutrophils 

9 42.85% 5 23.80% 

Increased INR 9 42.85% 0 0 

Lymphopenia 5 23.80% 5 23.80% 

Nonhematologic 

Adverse Events 

    

Hyperglycemia 20 95.23% 2 9.52% 

Fatigue (asthenia, 

lethargy, malaise) 

19 90.47% 0 0 

Increased AST 17 80.95% 2 9.52% 

Increased ALT 15 71.42% 3 14.28% 

Anorexia 13 61.90% 0 0 

Hypercholesterolemia 13 61.90% 4 19.04% 

Vomiting 13 61.90% 0 0 

Hypertriglyceridemia 13 61.90% 1 4.76% 

Hypokalemia 11 52.38% 2 9.52% 
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Constipation 10 47.61% 0 0 

Nausea 9 42.85% 0 0 

Hypernatremia 9 42.85% 1 4.76% 

Pain - Head/headache 8 38.09% 0 0 

Hypophosphatemia 8 38.09% 1 4.76% 

Urinary 

frequency/urgency 

7 33.33% 0 0 

Hyponatremia 6 28.57% 3 14.28% 

Fever (in the absence 

of neutropenia) 

6 28.57% 0 0 

Diarrhea 6 28.57% 0 0 

Mood alteration - 

Agitation 

6 28.57% 0 0 

Muscle weakness - 

Whole body/general 

6 28.57% 0 0 

Hypoalbuminemia 6 28.57% 0 0 

Pain - Joint 5 23.80% 0 0 

Pain - Stomach 5 23.80% 0 0 

Urinary retention 4 19.04% 0 0 

Pain - Extremity-limb 4 19.04% 0 0 

Hemorrhage, Nose 3 14.28% 0 0 

Mood alteration - 

Anxiety 

3 14.28% 0 0 

Ocular/Visual - Other 

(eye discharge) 

3 14.28% 0 0 
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Allergic rhinitis 3 14.28% 0 0 

Hypoglycemia 3 14.28% 0 0 

Infection w/ ≥ grade 3 

neutropenia, Urinary 

tract NOS 

1 4.76% 1 4.76% 

Notes: Toxicities considered to be at least possibly related. Non-hematological toxicities seen in > 10 

% of subjects 

 

 


