Angewandte manderneme Chemie

Supporting Information

Total Synthesis of the Diterpenoid (+)-Harringtonolide

Hai-Jun Zhang ${ }^{+}$, Lin Hu ${ }^{+}$, Zhiqiang Ma, Ruining Li, Zhen Zhang, Cheng Tao, Bin Cheng, Yun Li, Huifei Wang, and Hongbin Zhai*
anie_201605879_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

General Information S2
Experimental Procedures and Characterization Data for (+)-Harringtonolide S3
Comparison of Spectra of Natural and Synthetic Harringtonolide. S27
HPLC Data of (\pm)-8 and (-)-8. S30
NMR Spectra of the Intermediates and (+)-Harringtonolide. S32

General Information

All reactions involving air or moisture sensitive reagents or intermediates were performed under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diisopropylamine $\left(i-\mathrm{Pr}_{2} \mathrm{NH}\right)$, and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were freshly distilled from calcium hydride. Toluene and THF were freshly distilled in the presence of the sodium/benzophenone couple. All reagents were reagent grade and used without purification unless otherwise noted. All extracts were dried over MgSO 4 or $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporation below $30{ }^{\circ} \mathrm{C}$ unless otherwise noted. Proton nuclear magnetic resonance $\left({ }^{1} \mathrm{H}\right.$ NMR) and carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were obtained at the indicated field as solutions in CDCl_{3}. Chemical shifts are referenced to the deuterated solvent $\left(\mathrm{CDCl}_{3}, \delta=7.27 \mathrm{ppm}\right.$ and 77.0 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively) and are reported in parts per million (ppm, δ) relative to tetramethylsilane (TMS, $\delta=0.00 \mathrm{ppm}$). Signal splitting patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) or broad (br), and coupling constants (J) are reported in Hz. ${ }^{1} \mathrm{H}$ spectra were recorded on a Brucker Avance 400 III spectrometer (400 MHz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Brucker Avance 400 III spectrometer at 100 MHz . HPLC was recorded on a Waters 600/2996 spectrometer using CHIRALCEL OJ-H, Column No OJHOCE-EAO30. Optical rotations were recorded on a RUDOLPH A21202-T digital polarimeter at ambient temperature. High resolution mass spectra (HRMS) were performed by Analytical Instrument Center at the School of Pharmacy or Department of Chemistry of Lanzhou University on an Electron Spray Injection (ESI) mass spectrometer. Melting point was recorded on a SGW ${ }_{B}$ X-4A melting point apparatus. X-ray diffraction was recorded on a Supernova apparatus.

Experimental Procedures and Characterization Data for (+)-Harringtonolide

9
To a 1 L three-necked flask equipped with a stirrer, an ammonia (g) outlet and a cold-finger condenser were added m-Anisic acid ($70 \mathrm{~g}, 0.46 \mathrm{~mol}$) and $\mathrm{H}_{2} \mathrm{O}(90 \mathrm{~mL})$. Ammonia (800 mL) was collected through the condenser containing $\mathrm{N}_{2}(\mathrm{l})$. Lithium wire $(9.6 \mathrm{~g}, 1.4 \mathrm{~mol})$ was added in small pieces over a period of 30 min and the reaction mixture was stirred vigorously for 4 h . The stirring was stopped and the solution was allowed to warm to room temperature overnight. Then $\mathrm{KOH}(\mathrm{aq}, 1.0 \mathrm{M}, 580 \mathrm{~mL}$) was added and stirring was restarted. The solution was heated for 3 h at $60^{\circ} \mathrm{C}$ and then cooled to about $10^{\circ} \mathrm{C}$. Concentrated $\mathrm{HCl}(72 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ until the $\mathrm{pH}=$ 2. The aqueous solution was extracted with $\mathrm{DCM} /{ }^{i} \operatorname{PrOH}=3: 1$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was used for the next step without further purification.

To a solution of the crude product in $\mathrm{MeOH}(400 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(44 \mathrm{~g}, 0.37 \mathrm{~mol})$ at 0 ${ }^{\circ} \mathrm{C}$. The solution was allowed to warm to rt and stirred overnight. The mixture was concentrated under vacuum, diluted with EtOAc, washed with $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and brine sequentially, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The crude product was used for the next step without further purification.

To a solution of the crude product in $\mathrm{CHCl}_{3}(858 \mathrm{~mL})$ was added $\mathrm{DBU}(56 \mathrm{~g}, 0.37 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. The solution was stirred at rt for 12 h and then washed with $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and brine sequentially. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $=1: 3, \mathrm{R}_{\mathrm{f}}$ $=0.29)$ to give $9\left(35 \mathrm{~g}, 50 \%\right.$ over three steps) as a light yellow oil. 9: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.74(\mathrm{t}, J=2.0 \mathrm{~Hz} 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.03(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 200.0, 167.0, 148.7, 133.1, 52.6, 37.7, 24.8, 22.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 155.0703$, found: 155.0705 .

To a solution of $9(28.4 \mathrm{~g}, 184 \mathrm{mmol})$ in $\mathrm{MeOH}(367 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(6.99 \mathrm{~g}, 184 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 10 min before it was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq). The aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(E t O A c /\right.$ hexanes $\left.=1: 3, R_{f}=0.22\right)$ to giv alcohol $(\pm)-\mathbf{8}(27.8 \mathrm{~g}, 98 \%)$ as a light yellow oil. $(\pm)-8:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H}) 1.87-1.76(\mathrm{~m}, 1 \mathrm{H}) 1.68-1.53(\mathrm{~m}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.7,139.7,132.5,66.0,51.8,31.1,24.2,19.1 ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 179.0679$, found: 179.0676.

To a solution of $9(10.2 \mathrm{~g}, 66.2 \mathrm{mmol})$ in DCE $(200 \mathrm{~mL})$ were added $\operatorname{RuCl}(p$-cymene $)[(S, S)$-Ts-DPEN] (210 mg, 0.331 mmol$), \mathrm{NEt}_{3}(6.70 \mathrm{~g}, 66.2 \mathrm{mmol})$, and $\mathrm{HCO}_{2} \mathrm{H}$ $(4.88 \mathrm{~g}, 106 \mathrm{mmol})$ sequentially at room temperature and the reaction was monitored by TLC. When the reaction was completed, the mixture (organic phase) was washed with $\mathrm{NaHCO}_{3}(\mathrm{aq})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give (-)-8 (10.0 g, 97\%, ee $=94.0 \%)$ as a light brown oil. $[\alpha]_{\mathrm{D}}{ }^{18.2}=-46.1\left(c\right.$ 1.28, $\left.\mathrm{CHCl}_{3}\right)$.

To a solution of alcohol $8(30.0 \mathrm{~g}, 192 \mathrm{mmol})$ in DCM $(550 \mathrm{~mL})$ were added sorbic acid (27.6 g , $246 \mathrm{mmol})$ and DMAP $(23.5 \mathrm{~g}, 192 \mathrm{mmol})$. After the solution was cooled to $0{ }^{\circ} \mathrm{C}$, $\mathrm{DCC}(50.7 \mathrm{~g}$,

246 mmol) was added. The solution was allowed to warm to rt and stirred overnight at this temperature. The mixture was filtered using a Buchner funnel and washed with DCM three times. The filtrate was washed with $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ sequentially. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $\left.=1: 3, \mathrm{R}_{\mathrm{f}}=0.77\right)$ to give $7(47.1 \mathrm{~g}$, 98%) as a light yellow oil. 7: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.84(\mathrm{~m}$, $1 \mathrm{H}), 6.23-6.12(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.46(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.22$ $(\mathrm{m}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.3,166.6,145.4,139.6,136.0,134.2,129.7,118.7,67.6,51.8$, 27.6, 24.1, 19.0, 18.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 273.1097$, found: 273.1095; $[\alpha]_{\mathrm{D}}{ }^{18.9}=-36.6\left(c 1.61, \mathrm{CHCl}_{3}\right)$.

A mixture of $7(57.8 \mathrm{~g}, 231 \mathrm{mmol})$ and $\mathrm{BHT}(5.09 \mathrm{~g}, 23.1 \mathrm{mmol})$ was heated at $180^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature, and subjected to purification by flash column chromatography on silica gel $\left(E t O A c /\right.$ hexanes $\left.=1: 3, \mathrm{R}_{\mathrm{f}}=0.32\right)$ to give a mixture of $\mathbf{1 0}$ and the epimer $\mathbf{1 0}^{\prime}(40.0 \mathrm{~g})$. The ${ }^{1} \mathrm{H}$ NMR spectra indicated that the ratio of $\mathbf{1 0}$ and $\mathbf{1 0}$ ' was 2.5:1.

The pure sample of $\mathbf{1 0}$ was obtained after $\mathbf{6}$ was separated in the next step. To a solution of $\mathbf{6}$ $(0.10 \mathrm{~g}, 0.40 \mathrm{mmol})$ in CHCl_{3} was added $\mathrm{DBU}(0.091 \mathrm{~g})$. After 1 h , the mixture was deluted with EtOAc and washed with $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(\mathrm{EtOAc} /\right.$ hexanes $\left.=1: 3, \mathrm{R}_{\mathrm{f}}=0.32\right)$ to give compound 10 as a light yellow oil $(0.095 \mathrm{~g}, 95 \%)$. 10: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{dd}, J=7.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.40-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.11-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0,169.7,132.8,126.7,76.9,52.2,49.6,37.0,32.8,30.6$,
30.3, 29.0, 19.3, 17.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 251.1278$, found: 251.1275; $[\alpha]_{\mathrm{D}}{ }^{20.2}=-46.1\left(c 1.02, \mathrm{CHCl}_{3}\right)$.

To a solution of freshly distilled diisopropylamine ($33.9 \mathrm{~mL}, 240 \mathrm{mmol}$) in dry THF (114 mL) was added $n-\mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ in hexane, $80 \mathrm{~mL}, 200 \mathrm{mmol}$) dropwise at $-50^{\circ} \mathrm{C}$. After 20 min , the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and HMPA ($55.7 \mathrm{~mL}, 320 \mathrm{mmol}$) was added dropwise. After stirring for 10 min , a solution of $\mathbf{1 0 / 1 0}{ }^{\prime}\left(\right.$ a mixture, $\left.20 \mathrm{~g}, 80 \mathrm{mmol}, \mathbf{1 0} / \mathbf{1 0}{ }^{\prime}=2.5: 1\right)$ in dry THF $(40$ mL) was added dropwise. The reaction mixture was stirred at this temperature for 1 h before $\mathrm{AcOH}(30 \mathrm{~mL})$ was added as quickly as possible. The mixture was warmed to rt in 0.5 h , diluted with EtOAc $(500 \mathrm{~mL})$, and washed with $\mathrm{NaHCO}_{3}(\mathrm{aq})$ until $\mathrm{pH}=9$ in aqueous. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{EtOAc} /$ hexanes $=1: 3, \mathrm{R}_{\mathrm{f}}=0.38$) to give compound $\mathbf{6}$ as a light yellow oil ($10.2 \mathrm{~g}, 35 \%$ over two steps). 6: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89-5.83$ (m, 2H), $4.93(\mathrm{dt}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.51(\mathrm{~m}$, $3 \mathrm{H}), 0.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.9,176.6,131.3,119.9,77.8$, 52.1, 45.2, 39.1, 37.2, 32.7, 25.9, 22.0, 17.5, 14.3; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 273.1097$, found: 273.1093; $[\alpha]_{\mathrm{D}}{ }^{18.6}=-54.1\left(c 1.09, \mathrm{CHCl}_{3}\right)$.

11
To a solution of $6(5.12 \mathrm{~g}, 20.5 \mathrm{mmol})$ in dry THF (100 mL) was added Dibal-H (1.0 M in toluene, $24.6 \mathrm{~mL}, 24.6 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was gradually warmed to $-40{ }^{\circ} \mathrm{C}$ over 3 h and then the reaction was quenched with saturated potassium sodium tartrate at $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for additional 2 h . The organic layer was
separated and the aqueous layer was extracted with DCM. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $\left.=1: 3, \mathrm{R}_{\mathrm{f}}=0.27\right)$ to give $\mathbf{1 1}(5.0 \mathrm{~g}, 97 \%)$ as a colorless oil that contains another unseparated diastereomer in a 1:10 ratio. 11: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.66(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.34-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{dd}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.63-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $177.5,131.4,124.7,103.1,76.9,51.8,46.8,46.4,37.0,36.7,27.7,23.2,16.9,15.5$; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 275.1254$, found: 275.1256; $[\alpha]_{\mathrm{D}}{ }^{18.8}=-32.4\left(c 1.82, \mathrm{CHCl}_{3}\right)$.

14

14'

A solution of 1-propynylmagnesium bromide (0.5 M in $\mathrm{THF}, 114 \mathrm{~mL}, 57 \mathrm{mmol}$) was added to $11(4.99 \mathrm{~g}, 19.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was heated at reflux for 36 h . The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ at $0{ }^{\circ} \mathrm{C}$ and extracted with DCM three times. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum to give the crude product as a yellow foam that required no further purification.

To a solution of the crude product in dry DMF (40 mL) were added imidazole ($5.39 \mathrm{~g}, 79.2$ $\mathrm{mmol})$ and $\mathrm{TBSCl}(5.94 \mathrm{~g}, 39.6 \mathrm{mmol})$ at room temperature. After being stirred for 12 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}$ three times, dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{EtOAc} /$ hexanes $=1: 10, \mathrm{R}_{\mathrm{f}}=0.47$) to give a mixture of the product.

To a solution of the above crude product in dry DCM $(40 \mathrm{~mL})$ were added DMP $(13.0 \mathrm{~g}, 30.7$ mmol) and $\mathrm{NaHCO}_{3}(4.99 \mathrm{~g}, 59.4 \mathrm{mmol})$ at room temperature. The mixture was stirred for 24 h before quenching with $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give the
products $\mathbf{1 4}\left(2.6 \mathrm{~g}, 32 \%\right.$ over three steps, EtOAc/hexanes $\left.=1: 10, \mathrm{R}_{\mathrm{f}}=0.47\right)$ and $\mathbf{1 4}$ ' $(2.8 \mathrm{~g}, 35 \%$ over three steps, EtOAc/hexanes $\left.=1: 10, \mathrm{R}_{\mathrm{f}}=0.36\right)$ as light yellow oil. $14:{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.70(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dt}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.03(\mathrm{~m}$, 2H), $1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}) ; 0.12(\mathrm{~s}$, $3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.1,173.3,131.0,124.0,81.2,80.6,63.1$, 54.7, 51.9, 51.6, 44.2, 42.3, 31.5, 30.9, 25.8, 24.0, 18.0, 14.6, 3.5, - 4.3, - 5.4; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}, 427.2275$, found: 427.2283; $[\alpha]_{\mathrm{D}}{ }^{20.2}=-35.4\left(c 0.96, \mathrm{CHCl}_{3}\right)$. 14': ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}$, $J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{td}, J=12.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-$ $2.24(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}) ; 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 209.2, 173.4, $130.6,124.6,81.7,79.2,63.9,54.9,54.3,52.0,43.7,42.0,31.3,30.8,25.9,23.8,18.2,14.7,3.5,-$ 4.5, - 5.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 427.2275, found: 427.2280; $[\alpha]_{\mathrm{D}}{ }^{19.9}=-104.8\left(c \quad 1.04, \mathrm{CHCl}_{3}\right)$.

15
To a solution of $\mathbf{1 4}(573 \mathrm{mg}, 1.42 \mathrm{mmol})$ in acetone $(7.1 \mathrm{~mL})$ was added $(\mathrm{CONCl})_{3}(263 \mathrm{mg}$, 1.14 mmol) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 0.5 h , the mixture was quenched with $\mathrm{NaHSO}_{3}(\mathrm{aq})$ and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(E t O A c /\right.$ hexanes $\left.=1: 8, \mathrm{R}_{\mathrm{f}}=0.56\right)$ to give compound $15(401 \mathrm{mg}, 62 \%)$ as a colorless foam. 15: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=10.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-$ $4.23(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{dt}, J=10.8,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.84$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.03$
$(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 218.8,174.9,82.3,78.9,71.1,67.2,61.7,52.1,52.0,50.7$, $42.0,41.2,34.9,34.8,25.8,22.1,18.0,14.5,3.6,-4.2,-5.3$; HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{ClO}_{5} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}, 479.1991$, found: 479.2002; $[\alpha]_{\mathrm{D}}{ }^{20.1}=+3.5\left(c 1.16, \mathrm{CHCl}_{3}\right)$.

To a solution of $\mathbf{1 5}(1.69 \mathrm{~g}, 3.71 \mathrm{mmol})$ in $\mathrm{DCM}(19 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(750 \mathrm{mg}, 7.42 \mathrm{mmol})$ and TBSOTf $(1.47 \mathrm{~g}, 5.57 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After the starting material disappeared as monitored by TLC, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $=1: 10, \mathrm{R}_{\mathrm{f}}=0.65$) to give compound $16(1.5 \mathrm{~g}, 71 \%)$ as a colorless foam. $16:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.43$ (dd, $J=$ $10.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=10.4,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.20-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, $0.17(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}) 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 207.7,175.7$, $81.8,80.7,72.3,67.4,62.9,51.8,49.5,48.3,43.3,40.6,33.9,33.3,25.8,25.7,18.9,18.1,17.9$, 14.6, 3.5, - 4.3, - 4.8, - 5.3, - 5.6; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{ClO}_{5} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 593.2856, found: 593.2865; $[\alpha]_{\mathrm{D}}{ }^{20.0}=+55.5\left(c 1.55, \mathrm{CHCl}_{3}\right)$.

To a solution of freshly distilled diisopropylamine $(0.66 \mathrm{~g}, 6.5 \mathrm{mmol})$ in dry THF (13 mL) was added a solution of $n-\mathrm{BuLi}(2.4 \mathrm{M}$ in hexane, $2.2 \mathrm{~mL}, 5.2 \mathrm{mmol})$ dropwise at $-50^{\circ} \mathrm{C}$. After 0.5 h , the solution was cooled to $-78^{\circ} \mathrm{C}$ and then a solution of $\mathbf{1 6}(1.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ in dry THF $(13 \mathrm{~mL})$ was added dropwise. After additional $1 \mathrm{~h}, \mathrm{HMPA}(1.4 \mathrm{~g}, 7.8 \mathrm{mmol})$ was added dropwise at this
temperature. The resulting solution was stirred for 10 min and $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}(0.65 \mathrm{~g}, 3.9 \mathrm{mmol})$ was added dropwise. The mixture was allowed to warm to $-40^{\circ} \mathrm{C}$ and stirred for additional 1 h at this temperature. The mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ at that temperature and extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(E t O A c /\right.$ hexanes $\left.=1: 10, \mathrm{R}_{\mathrm{f}}=0.57\right)$ to give compound $17(0.92 \mathrm{~g}, 54 \%)$ as a colorless oil along with $0.46 \mathrm{~g}(31 \%)$ of recovered starting material. 17: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.15$ (dd, $J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{brs}, 1 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=16.4$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{brs}, 1 \mathrm{H})$, $1.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}$, $3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,175.3,172.1,82.3,80.5$, $72.8,66.8,62.8,60.4,51.9,47.9,46.7,44.5,42.3,36.6,33.8,31.5,26.0,25.7,23.3,18.2,17.9$, $15.0,14.2,3.5,-4.2,-4.9,-5.1,-5.1 ;$ HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{57} \mathrm{ClO}_{7} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 679.3224, found: 679.3233; $[\alpha]_{\mathrm{D}}{ }^{20.0}=+5.7\left(c 1.22, \mathrm{CHCl}_{3}\right)$.

18

To a solution of the crude $17(0.92 \mathrm{~g}, 1.4 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4: 1,14 \mathrm{~mL})$ was added LiOH $(0.29 \mathrm{~g}, 7.1 \mathrm{mmol})$. The mixture was stirred vigorously at $35^{\circ} \mathrm{C}$ for 30 h , diluted with DCM, washed with $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $=1: 4, \mathrm{R}_{\mathrm{f}}=$ $0.35)$ to give compound $18(0.33 \mathrm{~g}, 38 \%)$ as a colorless solid that contains another unseparated diastereomer in a $1: 10$ ratio along with $0.36 \mathrm{~g}(39 \%)$ of recovered starting material. 18: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.12(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{brs}, 1 \mathrm{H}), 2.74-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.88-$ $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{brs}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.83$
$(\mathrm{s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.3$, $177.6,175.2,82.4,80.4,72.8,66.7,62.8,51.9,47.8,46.8,44.6,41.9,36.3,33.9,31.6,25.9,25.7$, 23.4, 18.2, 18.0, 15.0, 3.5, - 4.2, - 4.9, - 5.1, - 5.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{ClO}_{7} \mathrm{NaSi}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 651.2911$, found: $651.2907 ;[\alpha]_{\mathrm{D}}{ }^{19.7}=+9.0\left(c 1.22, \mathrm{CHCl}_{3}\right)$; $\mathrm{mp}=59-61^{\circ} \mathrm{C}$.

5
Preparation of $\mathrm{CH}_{2} \mathrm{~N}_{2}$: Under continuously shaking, $\mathrm{CH}_{3} \mathrm{~N}(\mathrm{NO}) \mathrm{CONH}_{2}(2.6 \mathrm{~g}, 25 \mathrm{mmol})$ was added to a mixture of $\mathrm{KOH}\left(40 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 8.6 \mathrm{~mL}\right)$ and $\mathrm{Et}_{2} \mathrm{O}(26 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Decantation of the light yellow solution gave the solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The solution was dried over dusty KOH and used for the next reaction step.

To a solution of acid $18(0.32 \mathrm{~g}, 0.50 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~g}, 1.5$ mmol) and $\mathrm{ClCO}_{2}{ }^{i} \mathrm{Bu}(0.14 \mathrm{~g}, 1.0 \mathrm{mmol})$ sequentially at $0{ }^{\circ} \mathrm{C}$. After 0.5 h , a freshly prepared solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{M}, 26 \mathrm{~mL})$ was added to the mixture at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 12 h before quenching with silica gel. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(\right.$ EtOAc/hexanes $\left.=1: 4, \mathrm{R}_{\mathrm{f}}=0.46\right)$ to give compound $5(0.25 \mathrm{~g}, 77 \%)$ as a yellow foam that contains another unseparated diastereomer in a 1:10 ratio. 5: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23(\mathrm{~s}$, $1 \mathrm{H}), 5.16(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{brs}, 1 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$, $0.20(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.7,192.8$, $175.3,82.4,80.4,72.7,66.8,62.8,54.8,51.9,47.9,46.8,44.4,42.9,42.8,34.0,31.4,25.9,25.6$, 23.3, 18.2, 17.9, 15.0, 3.5, - 4.1, - 4.9, - 5.1, - 5.2; HRMS (ESI): m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 675.3023$, found: 675.3016; $[\alpha]_{\mathrm{D}}^{21.2}=-5.5\left(c 1.09, \mathrm{CHCl}_{3}\right)$.

To a suspension of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.016 \mathrm{~g}, 0.037 \mathrm{mmol})$ in refluxing toluene $(7.4 \mathrm{~mL})$ was added a solution of diazoketone $5(0.24 \mathrm{~g}, 0.37 \mathrm{mmol})$ in toluene $(7.4 \mathrm{~mL})$ over 0.5 h via a syringe pump. After additional 0.5 h , the mixture was cooled to rt and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $=1: 4, \mathrm{R}_{\mathrm{f}}$ $=0.41)$ to afford $3(0.19 \mathrm{~g}, 81 \%)$ as a colorless solid. 3: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.76(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.56$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{td}, J=12.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{brs}, 1 \mathrm{H}), 1.12-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.1,176.2,149.5,127.3,95.2,93.8,69.8,67.8,63.4,52.7,52.4,50.1,44.6$, $44.3,39.8,39.3,30.7,27.9,26.3,25.7,18.7,18.1,11.3,11.2,-4.3,-4.4,-4.6,-4.9$; HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{ClO}_{6} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 647.2961$, found: 647.2953; $[\alpha]_{\mathrm{D}}{ }^{21.3}=-104.6(c$ $\left.1.08, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=52-54{ }^{\circ} \mathrm{C}$.

To a solution of $3(0.17 \mathrm{~g}, 0.27 \mathrm{mmol})$ in dry THF $(11 \mathrm{~mL})$ was added TBAF $(0.42 \mathrm{~g}, 1.4 \mathrm{mmol})$ at room temperature. The solution was quenched with $\mathrm{H}_{2} \mathrm{O}$ after the starting material disappeared as monitored by TLC. The mixture was extracted with DCM three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified
by flash column chromatography on silica gel (EtOAc/hexanes $=1: 1, \mathrm{R}_{\mathrm{f}}=0.31$) to give compound $19(91 \mathrm{mg}, 85 \%)$ as a colorless solid. 19: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.90(\mathrm{dd}, J=3.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{td}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.60$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}$, $3 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.9,175.7,147.3,130.2,95.1,94.1,70.4,67.8,66.6,52.6,50.7,49.0,44.6,43.5,39.9$, 39.1, 30.7, 28.3, 11.3, 10.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 419.1232$, found: 419.1225; $[\alpha]_{\mathrm{D}}{ }^{21.6}=-192.7\left(c 1.10, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=156-158{ }^{\circ} \mathrm{C}$.

20
To a solution of $19(76 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry THF $(7.0 \mathrm{~mL})$ was added $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $76 \mathrm{mg}, 1.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature over 2 h . After the starting material disappeared, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM. The combinedorganic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(\mathrm{EtOAc} /\right.$ hexanes $\left.=1: 1, \mathrm{R}_{\mathrm{f}}=0.25\right)$ to give compound $20(49 \mathrm{mg}, 71 \%)$ as a colorless solid. $\mathbf{2 0}$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{q}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=18.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.52(\mathrm{~m}$, $1 \mathrm{H}), 2.25(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=18.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.86(\mathrm{~m}$, $1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{brs}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.0,177.6,147.3,134.1,95.7,94.0,88.4,74.9,72.3,54.3,51.9,46.9,45.5,43.3$, 42.4, 31.3, 28.9, 26.0, 16.3, 11.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 383.1465$, found: $383.1457 ;[\alpha]_{\mathrm{D}}{ }^{18.5}=-309.7\left(c 1.03, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=253-255^{\circ} \mathrm{C}$.

21
To a solution of $20(35 \mathrm{mg}, 0.098 \mathrm{mmol})$ in $\mathrm{DCM}(4.0 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(0.16 \mathrm{~g}, 1.9$ $\mathrm{mmol})$ and DMP $(0.21 \mathrm{~g}, 0.49 \mathrm{mmol})$. The mixture was stirred for 24 h before quenching with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$ and $\mathrm{NaHCO}_{3}(\mathrm{aq})$. The solution was extracted with DCM three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{EtOAc} /$ hexanes $=1: 1, \mathrm{R}_{\mathrm{f}}=0.65$) to give compound 21 ($23 \mathrm{mg}, 66 \%$) as a colorless solid along with $9 \mathrm{mg}(25 \%)$ of recovered starting material. 21: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $3.60(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=18.8,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=18.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.82(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.0,202.5,175.0,147.7,135.8,95.3,94.4,79.8,72.4,53.9,53.3,51.7$, 48.6, 43.1, 42.4, 31.4, 27.5, 25.9, 15.0, 11.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 381.1309, found: 381.1302; $[\alpha]_{\mathrm{D}}{ }^{18.4}=-245.8\left(c 1.20, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=165-167^{\circ} \mathrm{C}$.

22

To a solution of $21(23.2 \mathrm{mg}, 0.0648 \mathrm{mmol})$ in $\mathrm{MeOH}(2.6 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(10 \mathrm{mg}, 0.26$ $\mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After $5 \mathrm{~min}, \mathrm{~K}_{2} \mathrm{CO}_{3}(45 \mathrm{mg}, 0.32 \mathrm{mmol})$ was added to the mixture. The mixture was warmed to $60{ }^{\circ} \mathrm{C}$ and stirred for 20 min before quenching with $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with DCM three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The crude product was used for the next reaction without further purification.

To a solution of the above crude product in $\mathrm{DCM}(2.6 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(54 \mathrm{mg}, 0.65$
$\mathrm{mmol})$ and DMP $(0.14 \mathrm{~g}, 0.32 \mathrm{mmol})$ at rt . The mixture was stirred until the starting material disappeared as indicated by TLC. The mixture was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$ and $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and extracted with DCM three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel ($\mathrm{EtOAc} /$ hexanes $\left.=1: 1, \mathrm{R}_{\mathrm{f}}=0.44\right)$ to give compound $22(19.1 \mathrm{mg}, 90 \%$ over three steps) as a colorless foam. 22: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.81$ $(\mathrm{m}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 2 \mathrm{H})$, $1.92(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.4$, $174.0,149.0,142.3,95.6,92.8,78.3,77.8,75.1,47.8,45.2,43.7,42.7,41.3,32.7,26.5,20.3,15.0$, 12.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}, 329.1384$, found: $329.1390 ;[\alpha]_{\mathrm{D}}{ }^{21.2}=-364.2$ (c $1.85, \mathrm{CHCl}_{3}$).

To a solution of $22(13.4 \mathrm{mg}, 0.0409 \mathrm{mmol})$ in $\mathrm{DCM}(0.8 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(29 \mu \mathrm{~L}, 0.21$ mmol) and TBSOTf ($38 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) at room temperature. After the starting material disappeared, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The crude product was used for the next reaction without further purification.

To a solution of the above crude product in $\mathrm{DCM}(3.0 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{AlCl}(0.9 \mathrm{M}$ in heptane, $2.3 \mathrm{~mL}, 2.1 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to $40{ }^{\circ} \mathrm{C}$. After the starting material disappeared as indicated by TLC, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ again and
quenched with MeOH added dropwise at the temperature. The mixture was warmed to room temperature, diluted with DCM, treated with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, and extracted with DCM three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $=1: 1, \mathrm{R}_{\mathrm{f}}$ $=0.15)$ to give natural product $(+)$-harringtonolide $(1,5.8 \mathrm{mg}, 46 \%$ over two steps $)$ as a light yellow solid. 1: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.66-$ $2.60(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=$ 7.6 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 186.5,173.5,145.8,145.6,145.0,143.6,141.6,139.3$, 86.0, 80.0, 79.7, 49.9, 45.8, 41.8, 40.0, 32.3, 23.9, 22.4, 14.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 311.1278$, found: 311.1283; $[\alpha]_{\mathrm{D}}{ }^{17.8}=+81.0\left(c 1.16, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=255-258$ ${ }^{\circ} \mathrm{C}$.

To a solution of $\mathbf{1 4}^{\mathbf{\prime}}(504 \mathrm{mg}, 1.25 \mathrm{mmol})$ in acetone $(5.6 \mathrm{~mL})$ was added $(\mathrm{CONCl})_{3}(0.23 \mathrm{~g}, 1.0$ mol) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 0.5 h , the mixture was quenched with $\mathrm{NaHSO}_{3}(\mathrm{aq})$ and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(\right.$ EtOAc/hexanes $\left.=1: 8, \mathrm{R}_{\mathrm{f}}=0.53\right)$ to give compound $\mathbf{1 5}^{\prime}(434 \mathrm{mg}, 76 \%)$ as a colorless foam that contains another unseparated diastereomer in a $1: 16$ ratio. $15 \prime:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$5.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dt}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H})$, $2.38-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-$ $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 218.4,175.1,82.4,79.0,69.4,67.0,61.2,53.0,52.2,52.2,41.8,40.8,34.8,34.5$, $25.8,21.8,18.2,14.6,3.6,-4.5,-5.2$; $\mathrm{HRMS}(\mathrm{ESI}): ~ m / z$ calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{ClO}_{5} \mathrm{NaSi}[\mathrm{M}+\mathrm{Na}]^{+}$, 479.1991, found: $479.1997 ;[\alpha]_{\mathrm{D}}{ }^{19.8}=-111.1\left(c 1.26, \mathrm{CHCl}_{3}\right)$.

16'
To a solution of $\mathbf{1 5}^{\prime}(1.01 \mathrm{~g}, 2.21 \mathrm{mmol})$ in $\mathrm{DCM}(11 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(671 \mathrm{mg}, 6.63$ $\mathrm{mmol})$ and TBSOTf $(1.46 \mathrm{~g}, 5.53 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 3 h , the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $\left.=1: 10, \mathrm{R}_{\mathrm{f}}=0.63\right)$ to give compound 16' $(1.1 \mathrm{~g}$, 90%) a colorless foam. 16 ': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.31(\mathrm{dd}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (dd, $J=2.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-$ $2.61(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.67(\mathrm{td}, J=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}$, $3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 206.8, 176.0, 82.1, $79.4,70.5,67.1,62.9,51.9,51.4,49.3,43.8,39.5,33.1,32.5,26.1,25.7,18.4,18.2,17.9,14.5,3.8$, - 3.1, - 3.9, - 4.7, - 5.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{ClO}_{5} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 593.2856, found: 593.2846; $[\alpha]_{\mathrm{D}}{ }^{19.7}=-25.9\left(c 1.16, \mathrm{CHCl}_{3}\right)$.

S18

To a solution of freshly distilled diisopropylamine ($1.08 \mathrm{~g}, 10.7 \mathrm{mmol}$) in dry THF (21 mL) was added a solution of $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $3.4 \mathrm{~mL}, 8.5 \mathrm{mmol})$ dropwise at $-50^{\circ} \mathrm{C}$. After 0.5 h , the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and then a solution of $\mathbf{1 6}^{\prime}(2.4 \mathrm{~g}, 4.3 \mathrm{mmol})$ in dry THF (21 mL) was added dropwise. After additional 1 h , HMPA ($2.29 \mathrm{~g}, 12.8 \mathrm{mmol}$) was added dropwise at the temperature. The resulting solution was stirred for 10 min and $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Et}(1.06 \mathrm{~g}, 6.39 \mathrm{mmol})$ was added dropwise. The mixture was allowed to warm to $-40{ }^{\circ} \mathrm{C}$ and stirred for additional 1 h at the temperature. The mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ at the temperature and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(E t O A c /\right.$ hexanes $\left.=1: 10, \mathrm{R}_{\mathrm{f}}=0.62\right)$ to give compound 17 ' $(1.80 \mathrm{~g}, 64 \%)$ as a colorless oil along with $0.36 \mathrm{~g}(15 \%)$ of recovered starting material. 17': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.99$ (dd, $J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{dd}, J=16.0$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}$, $9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.3$, $175.5,172.0,82.5,79.6,70.6,66.5,62.6,60.5,51.9,49.5,48.2,44.0,42.5,36.8,34.2,31.7,26.1$, 25.6, 23.4, 18.2, 17.9, 14.9, 14.2, 3.8,-3.1,-3.8,-4.8,-5.1; HRMS (ESI): m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{57} \mathrm{ClO}_{7} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 679.3224$, found: 679.3232; $[\alpha]_{\mathrm{D}}{ }^{19.7}=-61.5\left(c 0.95, \mathrm{CHCl}_{3}\right)$.

To a solution of the crude $\mathbf{1 7}^{\prime}(1.7 \mathrm{~g}, 2.6 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(4: 1,26 \mathrm{~mL})$ was added LiOH ($551 \mathrm{mg}, 13.1 \mathrm{mmol}$). After the mixture was stirred vigorously for 20 h at $35^{\circ} \mathrm{C}$, the mixture was diluted with DCM and washed with $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $\left.=1: 4, \mathrm{R}_{\mathrm{f}}=0.21\right)$ to give compound $\mathbf{1 8}^{\prime}(0.65 \mathrm{~g}$,
42%) as a colorless foam that contains another unseparated diastereomer in a $1: 14$ ratio. 18 ': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.99-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.69(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{dd}, J=16.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-$ $2.16(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.58(\mathrm{~m}$, $1 \mathrm{H}), 1.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.4,177.5,175.5,82.6,79.5,70.6,66.4,62.6,52.0$, $49.5,48.1,44.1,42.2,36.4,34.4,31.7,26.1,25.6,23.5,18.2,17.9,15.0,3.8,-3.1,-3.8,-4.9,-$ 5.1; HRMS (ESI): m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{ClO}_{7} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 651.2911$, found: $651.2919 ;[\alpha]_{\mathrm{D}}{ }^{21.8}=$ - 54.7 (c 1.17, CHCl_{3}).

5'
Preparation of $\mathrm{CH}_{2} \mathrm{~N}_{2}$: under continuously shaking, $\mathrm{CH}_{3} \mathrm{~N}(\mathrm{NO}) \mathrm{CONH}_{2}(3.4 \mathrm{~g}, 33 \mathrm{mmol})$ was added to a mixture of $\mathrm{KOH}\left(40 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 11.2 \mathrm{~mL}\right)$ and $\mathrm{Et}_{2} \mathrm{O}(34 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Decantation of the light yellow solution gave the solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The solution was dried over dusty KOH and used for the next reaction step.

To a solution of acid 18 ' $(0.41 \mathrm{~g}, 0.65 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6.5 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.20 \mathrm{~g}, 2.0$ mmol) and $\mathrm{ClCO}_{2}{ }^{i} \mathrm{Bu}(0.18 \mathrm{~g}, 1.3 \mathrm{mmol})$ sequentially at $0{ }^{\circ} \mathrm{C}$. After 0.5 h , a freshly prepared solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(34 \mathrm{~mL}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added to the mixture at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 12 h before quenching with silica gel. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel $\left(E t O A c /\right.$ hexanes $\left.=1: 4, \mathrm{R}_{\mathrm{f}}=0.23\right)$ to give compound $5^{\prime}(0.33 \mathrm{~g}, 77 \%)$ as a yellow oil that contains another unseparated diastereomer in a $1: 14$ ratio. 5': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.24$ $(\mathrm{s}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.46(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{brs}, 1 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{brs}, 1 \mathrm{H}), 2.18-2.12(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.34$
$(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 209.7, 192.7, 175.5, 82.4, 79.6, 70.6, 66.5, 62.6, 54.7, 51.9, 49.5, $48.1,44.1,42.8,42.8,34.2,31.6,26.1,25.6,23.5,18.2,17.9,14.9,3.8,-3.1,-3.8,-4.8,-5.2$; HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 675.3023$, found: 675.3032; $[\alpha]_{\mathrm{D}}{ }^{21.2}=$ - 47.6 (c 1.37, CHCl_{3}).

3'
To a suspension of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.022 \mathrm{~g}, 0.050 \mathrm{mmol})$ in refluxing toluene $(10 \mathrm{~mL})$ was added a solution of diazoketone $5^{\prime}(0.33 \mathrm{~g}, 0.50 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ over 0.5 h via a syringe pump. After additional 0.5 h , the solution was cooled to rt and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $=1: 4, \mathrm{R}_{\mathrm{f}}$ $=0.57)$ to afford compound $3^{\prime}(0.20 \mathrm{~g}, 62 \%)$ as a colorless solid. $3^{\prime}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dq}, J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=18.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-$ $2.50(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}$, 9H), $0.19(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.8$, $175.8,149.7,135.1,96.2,96.1,75.0,68.1,65.0,52.6,52.1,46.6,41.3,38.2,35.1,30.9,28.0,27.3$, 25.7, 25.6, 18.0, 17.9, 14.2, 11.5, - 3.6, - 4.1, - 4.7, - 4.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{ClO}_{6} \mathrm{NaSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}, 647.2961$, found: $647.2973 ;[\alpha]_{\mathrm{D}}{ }^{22.0}=-213.5\left(c\right.$ 1.26, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{mp}=$ 36-37 ${ }^{\circ} \mathrm{C}$.

19'

To a solution of $\mathbf{3}^{\prime}(0.18 \mathrm{~g}, 0.29 \mathrm{mmol})$ in dry THF (12 mL) was added TBAF $(0.28 \mathrm{~g}, 0.87$
mmol) at room temperature. The solution was quenched with $\mathrm{H}_{2} \mathrm{O}$ after the starting material disappeared as indicated by TLC. The mixture was extracted with DCM three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $=1: 1, \mathrm{R}_{\mathrm{f}}=$ 0.33) to give compound $\mathbf{1 9}^{\prime}(92 \mathrm{mg}, 79 \%)$ as a colorless solid. 19 ': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $4.78(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.10-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.64-2.52$ $(\mathrm{m}, 2 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.68-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{q}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 204.2,175.1,146.7,127.4,94.4,90.9,70.4,70.2,65.2,52.7,50.5,48.3,43.5,43.4,42.1$, 38.0, 32.1, 27.8, 10.5, 9.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 419.1232$, found: 419.1238; $[\alpha]_{\mathrm{D}}{ }^{22.2}=-225.7\left(c 1.13, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}=78-81{ }^{\circ} \mathrm{C}$.

19
To a solution of $\mathbf{1 9}^{\prime}(78 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry THF $(4.0 \mathrm{~mL})$ were added $\mathrm{Ph}_{3} \mathrm{P}(0.16 \mathrm{~g}, 0.59$ mmol), 4- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}(99 \mathrm{mg}, 0.59 \mathrm{mmol})$ and DEAD ($0.10 \mathrm{~g}, 0.59 \mathrm{mmol}$) sequentially at room temperature. The solution was quenched with $\mathrm{H}_{2} \mathrm{O}$ after the starting material disappeared as indicated by TLC. The mixture was extracted with DCM three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes $\left.=1: 1, \mathrm{R}_{\mathrm{f}}=0.40\right)$ to give a crude product used for the next step.

To a solution of the above crude product in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(54 \mathrm{mg}, 0.59$ mmol). The solution was quenched with $\mathrm{H}_{2} \mathrm{O}$ after the starting material disappeared as indicated by TLC. The mixture was extracted with DCM three times. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give $19(25 \mathrm{mg}, 33 \%$ over two steps) as a colorless solid.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR was in agreement with those measured above.

Some Important Intermediates (A-E)

A: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.28-5.24(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{q}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.85(\mathrm{~m}$, $4 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.9,172.5,116.7,85.2,83.0,78.8,72.4,66.8,46.9,45.7,45.6,37.1,34.2,33.1,19.3$, 19.2, 13.3, 3.9.

B: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=$ 7.2, 2.8 Hz, 1H), $3.96(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.63(\mathrm{~m}$, $1 \mathrm{H}), 2.67-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

1. $\mathrm{ClCO}_{2}{ }^{i} \mathrm{Bu}, \mathrm{Et}_{3} \mathrm{~N}$ then $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$
2. $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ PhMe, reflux

32

33

$\mathbf{C}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{dt}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dt}, J=10.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.19(\mathrm{~m}, 1 \mathrm{H})$, $3.00-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{td}, J=13.2,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.9,173.0,148.8,146.3,144.7,144.0,141.5,141.2,134.9,125.7,77.2,52.9,51.3$, $46.6,45.9,43.2,32.1,30.3,26.0,24.1,18.5,15.4,-3.2,-4.0$.

D
Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$
Exact Mass: 360.16
D: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.37(\mathrm{~m}, 1 \mathrm{H})$, $3.29-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.44(\mathrm{~m}$, $1 \mathrm{H}), 1.19-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

E: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{D}_{2} \mathrm{O}\right) \delta 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=$ $14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.7,145.9,141.7,137.8,118.3$, 88.6, 83.5, 79.6, 79.2, 74.8, 49.0, 45.0, 42.9, 40.6, 38.7, 34.5, 28.1, 23.7, 15.0; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{4}\left[\mathrm{M}^{-} \mathrm{OH}\right]^{+}, 311.1278$, found: 311.1282.

Comparison of Spectra of Natural and Synthetic Harringtonolide

Comparison of ${ }^{1} \mathrm{H}$ NMR Spectra of Harringtonolide $\mathbf{1}$ in CDCl_{3}
(a) ${ }^{1} \mathrm{H}$ NMR spectra provided by B. Nay ${ }^{[1]}$
(b) ${ }^{1} \mathrm{H}$ NMR spectra provided by W. P. Tang ${ }^{[2]}$
(c) ${ }^{1} \mathrm{H}$ NMR spectra of our synthetic 1

0	25	20	65	6.0	55	5.0	45	$\mathrm{n}(\mathrm{pm})$	35	3.0	25	20	15	10	0.5

(c)

Table S1 ${ }^{1}$ H NMR Spectroscopic Data of Our Synthetic 1, Buta's Natural 1, ${ }^{[3]}$ Sun' Natural 1, ${ }^{[4]}$ and Tang's Synthetic $\mathbf{1}^{[2]}$ in CDCl_{3}

$\delta \mathrm{H}$ of our synthetic 1 (400 MHz)	$\delta \mathrm{H}$ of lit. natural $\mathbf{1}^{[3]}$ $(100 \mathrm{MHz})$	$\delta \mathrm{H}$ of lit. natural $\mathbf{1}^{[4]}$ (100 MHz)	$\delta \mathrm{H}$ of Tang's synthetic $\mathbf{1}^{[2]}$ (500 MHz)
6.97 (s, 1H)	6.98 (s, 1H)	6.95 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H})$	6.98 (s, 1H)
6.90 (s, 1H)	6.92 (s, 1H)	6.77 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H})$	6.91 (s, 1H)
5.36 (t, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$	5.47 (m, 1H)	5.35 (q, 1H)	5.36 (m, 1H)
$5.21(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$	5.32 (m, 1H)	5.19 (m, 1H)	5.22 (dd, $J=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H})$
3.99 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$	4.00 (m, 1H)	3.98 (d, $J=6 \mathrm{~Hz}, 1 \mathrm{H})$	4.00 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$
$3.42-3.36$ (m, 2H)	3.51 (m, 2H)	3.40 (m, 2H)	3.42 (m, 2H)
2.91-2.82 (m, 2H)	2.70 (m, 3H)	2.85 (m, 1H)	2.87 (m, 1H)
2.66-2.60 (m, 1H)		2.75 (m, 1H)	2.83 (m, 1H)
		2.65 (m, 1H)	2.64 (dd, $J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H})$
2.37 (d, $J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$	2.36 (s, 3H)	2.37 (s, 3H)	2.38 (s, 3H)
1.76 (q, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$	1.75 (q, 1H)	1.74 (q, $J=8 \mathrm{~Hz}, 1 \mathrm{H})$	1.77 (q, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$
1.36-1.28(m, 1H)	1.25 (m, 1H)	1.32 (m, 1H)	1.31 (m, 1H)
0.90 (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$	0.90 (d, 3H)	0.89 (d, $J=8 \mathrm{~Hz}, 3 \mathrm{H})$	0.91 (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$

Table S2. ${ }^{13} \mathrm{C}$ NMR Spectroscopic Data of Our Synthetic 1, Nay's Natural 1, ${ }^{[1]}$ Buta's Natural 1, ${ }^{[3]}$ Sun's Natural 1, ${ }^{[4]}$ and Tang's Synthetic $\mathbf{1}^{[2]}$ in CDCl_{3}

δC (I) of our synthetic $\mathbf{1}$	$\delta \mathrm{C}$ (II) of lit. natural $\mathbf{1}^{[1]}$	$\delta \mathrm{C}$ (III) of lit. natural $\mathbf{1}^{[3]}$	$\delta \mathrm{C}$ (IV) of lit. natural $\mathbf{1}^{[4]}$	$\delta \mathrm{C}$ of Tang's synthetic $\mathbf{1}^{[2]}$
186.5	186.2	186.4	186.9	186.3
173.5	173.3	173.5	173.0	173.3
145.8	145.7	145.9	145.9	145.7
145.6	145.5	145.7	145.2	-
145.0	144.9	145.0	145.0	144.8
143.6	143.4	143.6	143.4	-
141.6	141.3	141.5	141.5	141.5
139.3	139.0	139.1	139.4	139.1
86.0	85.9	85.5	86.0	85.9
80.0	79.8	80.0	79.6	79.9
79.7	79.5	80.0	78.2	79.6
49.9	49.7	49.9	49.7	49.8
45.8	45.6	43.8	45.5	45.7
41.8	41.6	41.7	41.5	41.7
40.0	39.8	40.0	39.7	39.9
32.3	32.1	32.3	31.8	32.2
23.9	23.7	23.8	23.3	23.7
22.4	22.2	22.3	22.0	22.3
14.7	14.6	14.7	14.2	14.6

References:

[1] L. Evanno, A. Jossang, J. Nguyen-Pouplin, D. Delaroche, P. Herson, M. Seuleiman, B. Bodo, B. Nay, Planta Med. 2008, 74, 870-872.
[2] M. Zhang, N. Liu, W. P. Tang, J. Am. Chem. Soc. 2013, 135, 12434-12438.
[3] J. G. Buta, J. L. Flippen, W. R. Lusby, J. Org. Chem. 1978, 43, 1002-1003.
[4] N. J. Sun, Z. Xue, X. T. Liang, L. Huang, Acta Pharm. Sin. 1979, 14, 39-44.

HPLC Data of（ \pm ）－8 and（－）－8

进样综合报告 报告
software 用户名称：System
项目名称：a2015
样品信息

样品名称：	zhj－race20151009	采集者：	System
样品类型：	未知	采集时间：	2015－10－8 17：11：05
兓号：	1	采集方法组：	zhjrace
进样次数：	4	处理日期：	2015－10－8 17：38：33
进样体积：	5.00 ul	处理方法：	zhjrace20151009
运行时间：样品组名称	60．0 Minutes	通道名称： 处理通道注秚：	Wvin Ch1 PDA 230.0 纳米

自动标尺色谱图

—— SampleName zhj－race20151009；Vial 1；Injection 4；Channel W2996 ；Date Acquired 2015－10－8 17：11：05
处理通道：PDA 230.0 纳米

	处理通道	保留时间 （分钟）	面积	\％面积	峰高
1	PDA 230.0 納米	11.323	13789851	47.43	643009
2	PDA 230.0 纳米	12.224	15283185	52.57	653100

样品信息			
样品名称	zhj－zif（RuH30g）	采集者：	System
样品类棌，	未知	采集时侚：	2015－10－21 15：32：05
㭚号：	1	采集方法组：	zhjrace
断次次数：	1	处星日基	2015－10－21 16：00：08
进样体棌	5.00 ul	处里方法	zhijifRuH30g
运行时伺：样躇组名你：	60．0 Mrutes	通道名你。 处坦通道誰释：	WVn Ch1 PDA 230.0 纳米

自动标尺色垏图

——＿SampleName zti－2jif（RuH3Og）；Vial 1；Injection 1；Channel W2996 ；Date Acquired 2015－10－21 15：32：05
处理通道：PDA 230.0 纳米

	疑理辺通	保算时间 （分体）	闌机	\％相机	唯高
1	PDA 230.0 消米	11.403	2117865	2.99	94087
2	PDA 230.0 消米	12.402	68773533	97.01	2262600

（－）－8

NMR Spectra of the Intermediates and (+)-Harringtonolide

|

(\pm)-8

$\stackrel{\bullet}{\circ} \stackrel{\bullet}{\dot{~}}$
菵

(\pm)-8

10

Mixture of 10 and 10':

11

-131.34
-124.31

$\}$

芼す。

$\begin{array}{llllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 1\end{array}$
80

 -149.47
$-^{127.28}$

$\begin{array}{lllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \text { ppm }\end{array}$

|

20

กิ

21

	\％	$\stackrel{\sim}{6}$	กู	มสะฐ？	※スを゙さ ロ゙	\％\％\％
	\cdots	\＃	\％	¢5¢\％		
			V	｜V＇	V／／V	I／

22

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 130 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 30 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

(+)-harringtonolide

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\begin{array}{lllllll}220 & 210 & 200 & 190 & 180 & 170 & 160\end{array}$
$150 \quad 140$
$120 \quad 110 \quad 100$

$10 i$

|

