

Supporting Information

Total Synthesis of the Diterpenoid (+)-Harringtonolide

Hai-Jun Zhang⁺, Lin Hu⁺, Zhiqiang Ma, Ruining Li, Zhen Zhang, Cheng Tao, Bin Cheng, Yun Li, Huifei Wang, and Hongbin Zhai*

anie_201605879_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

General Information	S2
Experimental Procedures and Characterization Data for (+)-Harringtonolide	S3
Comparison of Spectra of Natural and Synthetic Harringtonolide	S27
HPLC Data of (\pm) -8 and (-)-8	S30
NMR Spectra of the Intermediates and (+)-Harringtonolide	S32

General Information

All reactions involving air or moisture sensitive reagents or intermediates were performed under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Methylene chloride (CH₂Cl₂), diisopropylamine (*i*-Pr₂NH), and triethylamine (Et₃N) were freshly distilled from calcium hydride. Toluene and THF were freshly distilled in the presence of the sodium/benzophenone couple. All reagents were reagent grade and used without purification unless otherwise noted. All extracts were dried over MgSO4 or Na₂SO₄ and concentrated by rotary evaporation below 30 °C unless otherwise noted. Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were obtained at the indicated field as solutions in CDCl₃. Chemical shifts are referenced to the deuterated solvent (CDCl₃, δ = 7.27 ppm and 77.0 ppm for ¹H and ¹³C NMR, respectively) and are reported in parts per million (ppm, δ) relative to tetramethylsilane (TMS, $\delta = 0.00$ ppm). Signal splitting patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) or broad (br), and coupling constants (J) are reported in Hz. 'H spectra were recorded on a Brucker Avance 400 III spectrometer (400 MHz). ¹³C NMR spectra were recorded on Brucker Avance 400 III spectrometer at 100 MHz. HPLC was recorded on a Waters 600/2996 spectrometer using CHIRALCEL OJ-H, Column No OJHOCE-EAO30. Optical rotations were recorded on a RUDOLPH A21202-T digital polarimeter at ambient temperature. High resolution mass spectra (HRMS) were performed by Analytical Instrument Center at the School of Pharmacy or Department of Chemistry of Lanzhou University on an Electron Spray Injection (ESI) mass spectrometer. Melting point was recorded on a SGW® X-4A melting point apparatus. X-ray diffraction was recorded on a Supernova apparatus.

Experimental Procedures and Characterization Data for (+)-Harringtonolide

To a 1 L three-necked flask equipped with a stirrer, an ammonia (g) outlet and a cold-finger condenser were added *m*-Anisic acid (70 g, 0.46 mol) and H₂O (90 mL). Ammonia (800 mL) was collected through the condenser containing N₂ (l). Lithium wire (9.6 g, 1.4 mol) was added in small pieces over a period of 30 min and the reaction mixture was stirred vigorously for 4 h. The stirring was stopped and the solution was allowed to warm to room temperature overnight. Then KOH (aq, 1.0 M, 580 mL) was added and stirring was restarted. The solution was heated for 3 h at 60 °C and then cooled to about 10 °C. Concentrated HCl (72 mL) was added at 0 °C until the pH = 2. The aqueous solution was extracted with DCM/⁴PrOH = 3:1. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The crude product was used for the next step without further purification.

To a solution of the crude product in MeOH (400 mL) was added SOCl₂ (44 g, 0.37 mol) at 0 ^oC. The solution was allowed to warm to rt and stirred overnight. The mixture was concentrated under vacuum, diluted with EtOAc, washed with NaHCO₃ (aq) and brine sequentially, dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was used for the next step without further purification.

To a solution of the crude product in CHCl₃ (858 mL) was added DBU (56 g, 0.37 mmol) at 0 ^oC. The solution was stirred at rt for 12 h and then washed with 1.0 M HCl (aq) and brine sequentially. The organic layer was dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:3, R_f = 0.29) to give **9** (35 g, 50% over three steps) as a light yellow oil. **9**: ¹H NMR (400 MHz, CDCl₃) δ 6.74 (t, *J* = 2.0 Hz 1H), 3.83 (s, 3H), 2.61 - 2.57 (m, 2H), 2.47 - 2.44 (m, 2H), 2.10 - 2.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 167.0, 148.7, 133.1, 52.6, 37.7, 24.8, 22.1; HRMS (ESI): *m/z* calcd for C₈H₁₁O₃ [M+H]⁺: 155.0703, found: 155.0705.

To a solution of **9** (28.4 g, 184 mmol) in MeOH (367 mL) was added NaBH₄ (6.99 g, 184 mmol) at 0 °C. The mixture was stirred for 10 min before it was quenched with NH₄Cl (aq). The aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:3, $R_f = 0.22$) to giv alcohol (±)-**8** (27.8 g, 98%) as a light yellow oil. (±)-**8**: ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, *J* = 1.2 Hz, 1H), 4.36 (s, 1H), 3.76 (s, 3H), 2.34 - 2.20 (m, 2H), 1.99 - 1.91 (m, 1H) 1.87 - 1.76 (m, 1H) 1.68 - 1.53 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 139.7, 132.5, 66.0, 51.8, 31.1, 24.2, 19.1; HRMS (ESI): *m/z* calcd for C₈H₁₂O₃Na [M+Na]⁺: 179.0679, found: 179.0676.

To a solution of **9** (10.2 g, 66.2 mmol) in DCE (200 mL) were added RuCl(*p*-cymene)[(*S*,*S*)-Ts-DPEN] (210 mg, 0.331 mmol), NEt₃ (6.70 g, 66.2 mmol), and HCO₂H (4.88 g, 106 mmol) sequentially at room temperature and the reaction was monitored by TLC. When the reaction was completed, the mixture (organic phase) was washed with NaHCO₃ (aq), dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give (-)-**8** (10.0 g, 97%, *ee* = 94.0%) as a light brown oil. $[\alpha]_D^{18.2} = -46.1$ (*c* 1.28, CHCl₃).

To a solution of alcohol **8** (30.0 g, 192 mmol) in DCM (550 mL) were added sorbic acid (27.6 g, 246 mmol) and DMAP (23.5 g, 192 mmol). After the solution was cooled to 0 $^{\circ}$ C, DCC (50.7 g,

246 mmol) was added. The solution was allowed to warm to rt and stirred overnight at this temperature. The mixture was filtered using a Buchner funnel and washed with DCM three times. The filtrate was washed with NaHCO₃ (aq) and 1.0 M HCl (aq) sequentially. The organic layer was dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:3, R_f = 0.77) to give **7** (47.1 g, 98%) as a light yellow oil. **7**: ¹H NMR (400 MHz, CDCl₃) δ 7.30 - 7.23 (m, 1H), 6.85 - 6.84 (m, 1H), 6.23 - 6.12 (m, 2H), 5.76 (d, *J* = 15.6 Hz, 1H), 5.49 - 5.46 (m, 1H), 3.75 (s, 3H), 2.40 - 2.22 (m, 2H), 1.98 - 1.90 (m, 1H), 1.86 (d, *J* = 5.2 Hz, 3H), 1.84 - 1.78 (m, 1H), 1.74 - 1.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 166.6, 145.4, 139.6, 136.0, 134.2, 129.7, 118.7, 67.6, 51.8, 27.6, 24.1, 19.0, 18.6; HRMS (ESI): *m*/*z* calcd for C₁₄H₁₈O₄Na [M+Na]⁺: 273.1097, found: 273.1095; [α]_D^{18.9} = - 36.6 (*c* 1.61, CHCl₃).

A mixture of **7** (57.8 g, 231 mmol) and BHT (5.09 g, 23.1 mmol) was heated at 180 °C for 24 h, cooled to room temperature, and subjected to purification by flash column chromatography on silica gel (EtOAc/hexanes = 1:3, $R_f = 0.32$) to give a mixture of **10** and the epimer **10'** (40.0 g). The ¹H NMR spectra indicated that the ratio of **10** and **10'** was 2.5:1.

The pure sample of **10** was obtained after **6** was separated in the next step. To a solution of **6** (0.10 g, 0.40 mmol) in CHCl₃ was added DBU (0.091 g). After 1 h, the mixture was deluted with EtOAc and washed with 0.1 M HCl (aq). The organic layer was dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:3, $R_f = 0.32$) to give compound **10** as a light yellow oil (0.095 g, 95%). **10**: ¹H NMR (400 MHz, CDCl₃) δ 6.77 (dd, J = 7.2, 3.2 Hz, 1H), 4.94 - 4.88 (m, 1H), 3.74 (s, 3H), 3.40 - 3.38 (m, 1H), 2.62 - 2.54 (m, 1H), 2.27 - 2.20 (m, 1H), 2.19 - 2.11 (m, 2H), 1.79 (d, J = 13.2 Hz, 1H), 1.58 - 1.53 (m, 1H), 1.25 - 1.18 (m, 1H), 1.11 - 0.97 (m, 2H), 0.82 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 169.7, 132.8, 126.7, 76.9, 52.2, 49.6, 37.0, 32.8, 30.6, 30.3, 29.0, 19.3, 17.0; HRMS (ESI): m/z calcd for C₁₄H₁₉O₄ [M+H]⁺, 251.1278, found: 251.1275; $[\alpha]_D^{20.2} = -46.1$ (*c* 1.02, CHCl₃).

To a solution of freshly distilled diisopropylamine (33.9 mL, 240 mmol) in dry THF (114 mL) was added *n*-BuLi (2.5 M in hexane, 80 mL, 200 mmol) dropwise at - 50 °C. After 20 min, the solution was cooled to - 78 °C and HMPA (55.7 mL, 320 mmol) was added dropwise. After stirring for 10 min, a solution of **10/10'** (a mixture, 20 g, 80 mmol, **10/10'** = 2.5:1) in dry THF (40 mL) was added dropwise. The reaction mixture was stirred at this temperature for 1 h before AcOH (30 mL) was added as quickly as possible. The mixture was warmed to rt in 0.5 h, diluted with EtOAc (500 mL), and washed with NaHCO₃ (aq) until pH = 9 in aqueous. The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:3, R_f = 0.38) to give compound **6** as a light yellow oil (10.2 g, 35 % over two steps). **6**: ¹H NMR (400 MHz, CDCl₃) δ 5.89 - 5.83 (m, 2H), 4.93 (dt, *J* = 6.4, 1.6 Hz, 1H), 3.75 (s, 3H), 3.57 - 3.52 (m, 1H), 3.36 (d, *J* = 10.8 Hz, 1H), 2.24 - 2.18 (m, 1H), 1.95 - 1.89 (m, 1H), 1.81 - 1.71 (m, 1H), 1.70 - 1.60 (m, 1H), 1.59 - 1.51 (m, 3H), 0.80 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 176.6, 131.3, 119.9, 77.8, 52.1, 45.2, 39.1, 37.2, 32.7, 25.9, 22.0, 17.5, 14.3; HRMS (ESI): *m/z* calcd for C₁₄H₁₈O₄Na [M+Na]⁺, 273.1097, found: 273.1093; [α]_D^{18.6} = - 54.1 (*c* 1.09, CHCl₃).

To a solution of **6** (5.12 g, 20.5 mmol) in dry THF (100 mL) was added Dibal-H (1.0 M in toluene, 24.6 mL, 24.6 mmol) at -78 °C. The mixture was gradually warmed to -40 °C over 3 h and then the reaction was quenched with saturated potassium sodium tartrate at -78 °C. The mixture was warmed to room temperature and stirred for additional 2 h. The organic layer was

separated and the aqueous layer was extracted with DCM. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:3, $R_f = 0.27$) to give **11** (5.0 g, 97%) as a colorless oil that contains another unseparated diastereomer in a 1:10 ratio. **11**: ¹H NMR (400 MHz, CDCl₃) δ 5.81 - 5.73 (m, 2H), 5.24 (t, J = 2.8 Hz, 1H), 4.70 - 4.66 (m, 1H), 3.71 (s, 3H), 3.34 - 3.24 (m, 2H), 2.85 (dd, J = 10.0, 2.4 Hz, 1H), 2.27 - 2.21 (m, 1H), 1.88 - 1.64 (m, 2H), 1.63 - 1.55 (m, 3H), 1.50 - 1.40 (m, 1H), 0.84 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 131.4, 124.7, 103.1, 76.9, 51.8, 46.8, 46.4, 37.0, 36.7, 27.7, 23.2, 16.9, 15.5; HRMS (ESI): m/z calcd for C₁₄H₂₀O₄Na [M+Na]⁺, 275.1254, found: 275.1256; [α]_D^{18.8} = - 32.4 (*c* 1.82, CHCl₃).

A solution of 1-propynylmagnesium bromide (0.5 M in THF, 114 mL, 57 mmol) was added to **11** (4.99 g, 19.8 mmol) at 0 $^{\circ}$ C. The mixture was heated at reflux for 36 h. The reaction was quenched with NH₄Cl (aq) at 0 $^{\circ}$ C and extracted with DCM three times. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum to give the crude product as a yellow foam that required no further purification.

To a solution of the crude product in dry DMF (40 mL) were added imidazole (5.39 g, 79.2 mmol) and TBSCl (5.94 g, 39.6 mmol) at room temperature. After being stirred for 12 h, the mixture was diluted with Et_2O (300 mL), washed with H_2O three times, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:10, $R_f = 0.47$) to give a mixture of the product.

To a solution of the above crude product in dry DCM (40 mL) were added DMP (13.0 g, 30.7 mmol) and NaHCO₃ (4.99 g, 59.4 mmol) at room temperature. The mixture was stirred for 24 h before quenching with NaHCO₃ (aq) and Na₂S₂O₃ (aq) at 0 °C. The mixture was extracted with Et₂O. The combined organic layers were dried with MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give the

products **14** (2.6 g, 32% over three steps, EtOAc/hexanes = 1:10, $R_f = 0.47$) and **14**[•] (2.8 g, 35% over three steps, EtOAc/hexanes = 1:10, $R_f = 0.36$) as light yellow oil. **14**: ¹H NMR (400 MHz, CDCl₃) δ 5.70 (d, J = 10.0 Hz, 1H), 5.49 (dt, J = 10.4, 2.4 Hz, 1H), 4.88 (dd, J = 10.8, 2.4 Hz, 1H), 3.71 (s, 3H), 3.34 (d, J = 4.4 Hz, 1H), 2.45 - 2.34 (m, 2H), 2.31 - 2.27 (m, 3H), 2.10 - 2.03 (m, 2H), 1.91 - 1.82 (m, 1H), 1.79 (d, J = 4.4 Hz, 3H), 1.17 (d, J = 7.2 Hz, 3H), 0.86 (s, 9H); 0.12 (s, 3H), 0.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.1, 173.3, 131.0, 124.0, 81.2, 80.6, 63.1, 54.7, 51.9, 51.6, 44.2, 42.3, 31.5, 30.9, 25.8, 24.0, 18.0, 14.6, 3.5, - 4.3, - 5.4; HRMS (ESI): *m/z* calcd for C₂₃H₃₆O₄NaSi [M+Na]⁺, 427.2275, found: 427.2283; [α]_D^{20.2} = - 35.4 (*c* 0.96, CHCl₃). **14**[•]: ¹H NMR (400 MHz, CDCl₃) δ 5.74 (d, J = 10.4 Hz, 1H), 5.47 (d, J = 10.4 Hz, 1H), 4.90 (dd, J = 9.6, 2.0 Hz, 1H), 3.70 (s, 3H), 3.42 (d, J = 4.4 Hz, 1H), 2.44 (td, J = 12.8, 6.8 Hz, 1H), 2.36 - 2.24 (m, 4H), 2.11 - 2.05 (m, 2H), 1.90 - 1.75 (m, 1H), 1.79 (d, J = 2.0 Hz, 3H), 1.15 (d, J = 7.2 Hz, 3H), 0.91 (s, 9H); 0.14 (s, 3H), 0.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.2, 173.4, 130.6, 124.6, 81.7, 79.2, 63.9, 54.9, 54.3, 52.0, 43.7, 42.0, 31.3, 30.8, 25.9, 23.8, 18.2, 14.7, 3.5, - 4.5, - 5.0; HRMS (ESI): *m/z* calcd for C₂₃H₃₆O₄NaSi [M+Na]⁺, 427.2275, found: [M+Na]⁺, 427.2275, found: 427.2280; [α]_D^{19.9} = - 104.8 (*c* 1.04, CHCl₃).

To a solution of **14** (573 mg, 1.42 mmol) in acetone (7.1 mL) was added (CONCl)₃ (263 mg, 1.14 mmol) at 0 °C. After being stirred for 0.5 h, the mixture was quenched with NaHSO₃ (aq) and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:8, R_f = 0.56) to give compound **15** (401 mg, 62%) as a colorless foam. **15**: ¹H NMR (400 MHz, CDCl₃) δ 5.52 (d, *J* = 8.0 Hz, 1H), 4.80 (dd, *J* = 10.8, 2.0 Hz, 1H), 4.26 - 4.23 (m, 1H), 4.05 (t, *J* = 2.4 Hz, 1H), 4.01 (d, *J* = 4.4 Hz, 1H), 3.73 (s, 3H), 2.80 (dt, *J* = 10.8, 4.0 Hz, 1H), 2.51 - 2.44 (m, 1H), 2.36 - 2.30 (m, 1H), 2.22 - 2.16 (m, 1H), 2.10 - 1.95 (m, 3H), 1.84 (d, *J* = 2.0 Hz, 3H), 1.82 - 1.75 (m, 1H), 1.31 (d, *J* = 6.8 Hz, 3H), 0.89 (s, 9H), 0.17 (s, 3H), 0.03

(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.8, 174.9, 82.3, 78.9, 71.1, 67.2, 61.7, 52.1, 52.0, 50.7, 42.0, 41.2, 34.9, 34.8, 25.8, 22.1, 18.0, 14.5, 3.6, - 4.2, - 5.3; HRMS (ESI): *m/z* calcd for C₂₃H₃₇ClO₅NaSi [M+Na]⁺, 479.1991, found: 479.2002; [α]_D^{20.1} = +3.5 (*c* 1.16, CHCl₃).

To a solution of **15** (1.69 g, 3.71 mmol) in DCM (19 mL) were added Et₃N (750 mg, 7.42 mmol) and TBSOTf (1.47 g, 5.57 mmol) at 0 °C. After the starting material disappeared as monitored by TLC, the mixture was quenched with H₂O and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:10, R_f = 0.65) to give compound **16** (1.5 g, 71%) as a colorless foam. **16**: ¹H NMR (400 MHz, CDCl₃) δ 5.43 (dd, *J* = 10.8, 2.0 Hz, 1H), 4.29 (t, *J* = 2.4 Hz, 1H), 3.87 (t, *J* = 2.4 Hz, 1H), 3.69 (s, 3H), 3.40 (d, *J* = 4.8 Hz, 1H), 2.67 (ddd, *J* = 10.4, 4.8, 2.0 Hz, 1H), 2.62 - 2.56 (m, 1H), 2.37 - 2.26 (m, 2H), 2.20 - 2.12 (m, 1H), 1.88 (s, 3H), 1.87 - 1.68 (m, 3H), 1.33 (d, *J* = 7.2 Hz, 3H), 0.87 (s, 9H), 0.86 (s, 9H), 0.17 (s, 3H), 0.16 (s, 3H) 0.07 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ; 207.7, 175.7, 81.8, 80.7, 72.3, 67.4, 62.9, 51.8, 49.5, 48.3, 43.3, 40.6, 33.9, 33.3, 25.8, 25.7, 18.9, 18.1, 17.9, 14.6, 3.5, -4.3, -4.8, -5.3, -5.6; HRMS (ESI): *m/z* calcd for C₂₉H₅₁ClO₅NaSi₂ [M+Na]⁺, 593.2856, found: 593.2865; [α]_D^{20.0} = +55.5 (*c* 1.55, CHCl₃).

To a solution of freshly distilled diisopropylamine (0.66 g, 6.5 mmol) in dry THF (13 mL) was added a solution of *n*-BuLi (2.4 M in hexane, 2.2 mL, 5.2 mmol) dropwise at -50 °C. After 0.5 h, the solution was cooled to -78 °C and then a solution of **16** (1.5 g, 2.6 mmol) in dry THF (13 mL) was added dropwise. After additional 1 h, HMPA (1.4 g, 7.8 mmol) was added dropwise at this

temperature. The resulting solution was stirred for 10 min and BrCH₂CO₂Et (0.65 g, 3.9 mmol) was added dropwise. The mixture was allowed to warm to - 40 °C and stirred for additional 1 h at this temperature. The mixture was quenched with NH₄Cl (aq) at that temperature and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:10, R_f = 0.57) to give compound **17** (0.92 g, 54%) as a colorless oil along with 0.46 g (31%) of recovered starting material. **17**: ¹H NMR (400 MHz, CDCl₃) δ 5.15 (dd, *J* = 10.4, 2.0 Hz, 1H), 4.34 (s, 1H), 4.13 - 4.07 (m, 2H), 3.91 (s, 1H), 3.68 (s, 3H), 3.37 (d, *J* = 5.2 Hz, 1H), 2.88 (brs, 1H), 2.76 - 2.72 (m, 2H), 2.64 (d, *J* = 16.0 Hz, 1H), 2.43 (dd, *J* = 16.4, 9.2 Hz, 1H), 2.25 - 2.12 (m, 2H), 1.83 (d, *J* = 2.0 Hz, 3H), 1.81 - 1.76 (m, 1H), 1.60 (brs, 1H), 1.37 (d, *J* = 6.4 Hz, 3H), 1.23 (t, *J* = 7.2 Hz, 3H), 0.90 (s, 9H), 0.83 (s, 9H), 0.20 (s, 3H), 0.14 (s, 3H), 0.10 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.2, 175.3, 172.1, 82.3, 80.5, 72.8, 66.8, 62.8, 60.4, 51.9, 47.9, 46.7, 44.5, 42.3, 36.6, 33.8, 31.5, 26.0, 25.7, 23.3, 18.2, 17.9, 15.0, 14.2, 3.5, - 4.2, - 4.9, - 5.1, - 5.1; HRMS (ESI): *m/z* calcd for C₃₃H₅₇ClO₇NaSi₂ [M+Na]⁺, 679.3224, found: 679.3233; [α]_D^{20.0} = +5.7 (*c* 1.22, CHCl₃).

To a solution of the crude **17** (0.92 g, 1.4 mmol) in THF/H₂O (4:1, 14 mL) was added LiOH (0.29 g, 7.1 mmol). The mixture was stirred vigorously at 35 °C for 30 h, diluted with DCM, washed with 1.0 M HCl (aq), dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:4, R_f = 0.35) to give compound **18** (0.33 g, 38%) as a colorless solid that contains another unseparated diastereomer in a 1:10 ratio along with 0.36 g (39%) of recovered starting material. **18**: ¹H NMR (400 MHz, CDCl₃) δ 5.12 (d, *J* = 9.6 Hz, 1H), 4.34 (s, 1H), 3.91 (s, 1H), 3.69 (s, 3H), 3.39 (d, *J* = 5.2 Hz, 1H), 2.88 (brs, 1H), 2.74 - 2.70 (m, 3H), 2.53 - 2.46 (m, 1H), 2.26 - 2.18 (m, 2H), 1.88 - 1.75 (m, 1H), 1.84 (d, *J* = 1.2 Hz, 3H), 1.62 (brs, 1H), 1.38 (d, *J* = 5.6 Hz, 3H), 0.90 (s, 9H), 0.83

(s, 9H), 0.20 (s, 3H), 0.15 (s, 3H), 0.10 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.3, 177.6, 175.2, 82.4, 80.4, 72.8, 66.7, 62.8, 51.9, 47.8, 46.8, 44.6, 41.9, 36.3, 33.9, 31.6, 25.9, 25.7, 23.4, 18.2, 18.0, 15.0, 3.5, - 4.2, - 4.9, - 5.1, - 5.2; HRMS (ESI): *m/z* calcd for C₃₁H₅₃ClO₇NaSi₂ [M+Na]⁺, 651.2911, found: 651.2907; [α]_D^{19.7} = +9.0 (*c* 1.22, CHCl₃); mp = 59 - 61 °C.

Preparation of CH_2N_2 : Under continuously shaking, $CH_3N(NO)CONH_2$ (2.6 g, 25 mmol) was added to a mixture of KOH (40% in H₂O, 8.6 mL) and Et₂O (26 mL) at 0 °C. Decantation of the light yellow solution gave the solution of CH_2N_2 (1.0 M in Et₂O). The solution was dried over dusty KOH and used for the next reaction step.

To a solution of acid **18** (0.32 g, 0.50 mmol) in Et₂O (5.0 mL) were added Et₃N (0.15 g, 1.5 mmol) and ClCO₂^{*i*}Bu (0.14 g, 1.0 mmol) sequentially at 0 °C. After 0.5 h, a freshly prepared solution of CH₂N₂ in Et₂O (1.0 M, 26 mL) was added to the mixture at 0 °C. The mixture was warmed to room temperature and stirred for 12 h before quenching with silica gel. The mixture was extracted with Et₂O twice. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:4, R_f = 0.46) to give compound **5** (0.25 g, 77%) as a yellow foam that contains another unseparated diastereomer in a 1:10 ratio. **5**: ¹H NMR (400 MHz, CDCl₃) δ 5.23 (s, 1H), 5.16 (d, *J* = 9.2 Hz, 1H), 4.33 (s, 1H), 3.90 (s, 1H), 3.68 (s, 3H), 3.38 (d, *J* = 5.2 Hz, 1H), 2.94 (brs, 1H), 2.74 - 2.64 (m, 3H), 2.48 - 2.37 (m, 1H), 2.25 - 2.12 (m, 2H), 1.83 (d, *J* = 1.6 Hz, 3H), 1.81 - 1.70 (m, 1H), 1.58 - 1.55 (m, 1H), 1.36 (d, *J* = 6.4 Hz, 3H), 0.89 (s, 9H), 0.82 (s, 9H), 0.20 (s, 3H), 0.14 (s, 3H), 0.10 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 192.8, 175.3, 82.4, 80.4, 72.7, 66.8, 62.8, 54.8, 51.9, 47.9, 46.8, 44.4, 42.9, 42.8, 34.0, 31.4, 25.9, 25.6, 23.3, 18.2, 17.9, 15.0, 3.5, - 4.1, - 4.9, - 5.1, - 5.2; HRMS (ESI): *m/z* calcd for C₃₂H₃₃ClN₂O₆NaSi₂ [M+Na]⁺, 675.3023, found: 675.3016; [α]_D^{21.2} = - 5.5 (*c* 1.09, CHCl₃).

To a suspension of Rh₂(OAc)₄ (0.016 g, 0.037 mmol) in refluxing toluene (7.4 mL) was added a solution of diazoketone **5** (0.24 g, 0.37 mmol) in toluene (7.4 mL) over 0.5 h via a syringe pump. After additional 0.5 h, the mixture was cooled to rt and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:4, R_f = 0.41) to afford **3** (0.19 g, 81%) as a colorless solid. **3**: ¹H NMR (400 MHz, CDCl₃) δ 4.76 (d, *J* = 3.6 Hz, 1H), 4.68 (dd, *J* = 10.8, 3.6 Hz, 1H), 4.62 (s, 1H), 4.11 - 4.07 (m, 1H), 3.75 (s, 3H), 3.56 (d, *J* = 11.6 Hz, 1H), 2.89 - 2.83 (m, 1H), 2.66 - 2.45 (m, 4H), 2.11 (td, *J* = 12.8, 2.8 Hz, 1H), 1.96 (d, *J* = 11.6 Hz, 1H), 1.79 (s, 3H), 1.64 (brs, 1H), 1.12 - 1.04 (m, 1H), 0.99 (d, *J* = 7.2 Hz, 3H), 0.93 (s, 9H), 0.89 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H), 0.14 (s, 3H), 0.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.1, 176.2, 149.5, 127.3, 95.2, 93.8, 69.8, 67.8, 63.4, 52.7, 52.4, 50.1, 44.6, 44.3, 39.8, 39.3, 30.7, 27.9, 26.3, 25.7, 18.7, 18.1, 11.3, 11.2, -4.3, -4.4, -4.6, -4.9; HRMS (ESI): *m/z* calcd for C₃₂H₅₃ClO₆NaSi₂ [M+Na]⁺, 647.2961, found: 647.2953; [α]_D^{21.3} = - 104.6 (*c* 1.08, CHCl₃); mp = 52 - 54 °C.

To a solution of **3** (0.17 g, 0.27 mmol) in dry THF (11 mL) was added TBAF (0.42 g, 1.4 mmol) at room temperature. The solution was quenched with H_2O after the starting material disappeared as monitored by TLC. The mixture was extracted with DCM three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified

by flash column chromatography on silica gel (EtOAc/hexanes = 1:1, $R_f = 0.31$) to give compound **19** (91 mg, 85%) as a colorless solid. **19**: ¹H NMR (400 MHz, CDCl₃) δ 4.90 (dd, J = 3.6, 2.0 Hz, 1H), 4.65 (s, 1H), 4.48 (dd, J = 11.2, 3.6 Hz, 1H), 4.14 (td, J = 10.4, 2.8 Hz, 1H), 3.77 (s, 3H), 3.60 (d, J = 12.8 Hz, 1H), 3.18 - 3.12 (m, 1H), 3.00 (d, J = 2.4 Hz, 1H), 2.77 (d, J = 3.2 Hz, 1H), 2.62 (d, J = 2.4 Hz, 1H), 2.60 (d, J = 2.0 Hz, 1H), 2.52 - 2.42 (m, 2H), 2.05 - 2.02 (m, 2H), 1.81 (s, 3H), 1.70 - 1.62 (m, 1H), 1.15 - 1.00 (m, 1H), 0.96 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 175.7, 147.3, 130.2, 95.1, 94.1, 70.4, 67.8, 66.6, 52.6, 50.7, 49.0, 44.6, 43.5, 39.9, 39.1, 30.7, 28.3, 11.3, 10.7; HRMS (ESI): m/z calcd for C₂₀H₂₅ClO₆Na [M+Na]⁺, 419.1232, found: 419.1225; $[\alpha]_D^{21.6} = -192.7$ (c 1.10, CHCl₃); mp = 156 - 158 °C.

To a solution of **19** (76 mg, 0.19 mmol) in dry THF (7.0 mL) was added NaH (60% dispersion in mineral oil, 76 mg, 1.9 mmol) at 0 °C. The solution was allowed to warm to room temperature over 2 h. After the starting material disappeared, the mixture was quenched with H₂O and extracted with DCM. The combinedorganic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:1, R_f = 0.25) to give compound **20** (49 mg, 71%) as a colorless solid. **20**: ¹H NMR (400 MHz, CDCl₃) δ 4.90 (d, *J* = 2.4 Hz, 1H), 4.54 (s, 1H), 4.38 (d, *J* = 1.2 Hz, 1H), 3.88 (s, 1H), 3.69 (s, 3H), 3.03 (q, *J* = 9.6 Hz, 2H), 2.91 (dd, *J* = 18.8, 8.4 Hz, 1H), 2.59 - 2.52 (m, 1H), 2.25 (q, *J* = 7.6 Hz, 1H), 2.18 (dd, *J* = 18.8, 3.6 Hz, 1H), 2.10 - 2.02 (m, 1H), 1.91 - 1.86 (m, 1H), 1.89 (s, 3H), 1.84 - 1.70 (m, 2H), 1.59 (brs, 1H), 1.06 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.0, 177.6, 147.3, 134.1, 95.7, 94.0, 88.4, 74.9, 72.3, 54.3, 51.9, 46.9, 45.5, 43.3, 42.4, 31.3, 28.9, 26.0, 16.3, 11.5; HRMS (ESI): *m/z* calcd for C₂₀H₂₄O₆Na [M+Na]⁺, 383.1465, found: 383.1457; [α]_D^{18.5} = - 309.7 (*c* 1.03, CHCl₃); mp = 253 - 255 °C.

To a solution of **20** (35 mg, 0.098 mmol) in DCM (4.0 mL) were added NaHCO₃ (0.16 g, 1.9 mmol) and DMP (0.21 g, 0.49 mmol). The mixture was stirred for 24 h before quenching with Na₂S₂O₃ (aq) and NaHCO₃ (aq). The solution was extracted with DCM three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:1, R_f = 0.65) to give compound **21** (23 mg, 66%) as a colorless solid along with 9 mg (25%) of recovered starting material. **21**: ¹H NMR (400 MHz, CDCl₃) δ 4.77 (d, *J* = 2.4 Hz, 1H), 4.58 (s, 1H), 3.65 (s, 3H), 3.60 (s, 1H), 3.21 (d, *J* = 9.6 Hz, 1H), 3.05 (dd, *J* = 9.2, 2.4 Hz, 1H), 2.96 (dd, *J* = 18.8, 8.4 Hz, 1H), 2.81 - 2.73 (m, 1H), 2.57 (q, *J* = 7.6 Hz, 1H), 2.28 (dd, *J* = 18.4, 3.6 Hz, 1H), 2.15 - 2.06 (m, 1H), 2.00 - 1.91 (m, 2H), 1.89 (s, 3H), 1.86 - 1.82 (m, 1H), 0.98 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.0, 202.5, 175.0, 147.7, 135.8, 95.3, 94.4, 79.8, 72.4, 53.9, 53.3, 51.7, 48.6, 43.1, 42.4, 31.4, 27.5, 25.9, 15.0, 11.7; HRMS (ESI): *m/z* calcd for C₂₀H₂₂O₆Na [M+Na]⁺, 381.1309, found: 381.1302; [α]_D^{18.4} = - 245.8 (*c* 1.20, CHCl₃); mp = 165 - 167 °C.

To a solution of **21** (23.2 mg, 0.0648 mmol) in MeOH (2.6 mL) was added NaBH₄ (10 mg, 0.26 mmol) at 0 $^{\circ}$ C. After 5 min, K₂CO₃ (45 mg, 0.32 mmol) was added to the mixture. The mixture was warmed to 60 $^{\circ}$ C and stirred for 20 min before quenching with H₂O. The mixture was extracted with DCM three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was used for the next reaction without further purification.

To a solution of the above crude product in DCM (2.6 mL) were added NaHCO₃ (54 mg, 0.65

mmol) and DMP (0.14 g, 0.32 mmol) at rt. The mixture was stirred until the starting material disappeared as indicated by TLC. The mixture was quenched with Na₂S₂O₃ (aq) and NaHCO₃ (aq) and extracted with DCM three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:1, R_f = 0.44) to give compound **22** (19.1 mg, 90% over three steps) as a colorless foam. **22**: ¹H NMR (400 MHz, CDCl₃) δ 5.13 (t, *J* = 6.0 Hz, 1H), 4.82 (d, *J* = 4.0 Hz, 1H), 4.50 (s, 1H), 4.07 (d, *J* = 6.0 Hz, 1H), 3.28 - 3.23 (m, 1H), 2.88 - 2.81 (m, 1H), 2.52 (d, *J* = 10.0 Hz, 1H), 2.46 - 2.36 (m, 2H), 2.27 - 2.17 (m, 2H), 1.96 - 1.89 (m, 2H), 1.92 (s, 3H), 1.85 - 1.76 (m, 1H), 0.97 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.4, 174.0, 149.0, 142.3, 95.6, 92.8, 78.3, 77.8, 75.1, 47.8, 45.2, 43.7, 42.7, 41.3, 32.7, 26.5, 20.3, 15.0, 12.5; HRMS (ESI): *m/z* calcd for C₁₉H₂₁O₅ [M+H]⁺, 329.1384, found: 329.1390; [α]_D^{21.2} = - 364.2 (*c* 1.85, CHCl₃).

To a solution of **22** (13.4 mg, 0.0409 mmol) in DCM (0.8 mL) were added Et_3N (29 μ L, 0.21 mmol) and TBSOTf (38 μ L, 0.16 mmol) at room temperature. After the starting material disappeared, the mixture was quenched with H₂O and extracted with DCM. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was used for the next reaction without further purification.

To a solution of the above crude product in DCM (3.0 mL) was added Me₂AlCl (0.9 M in heptane, 2.3 mL, 2.1 mmol) at - 78 °C. The mixture was allowed to warm to 40 °C. After the starting material disappeared as indicated by TLC, the mixture was cooled to - 78 °C again and

quenched with MeOH added dropwise at the temperature. The mixture was warmed to room temperature, diluted with DCM, treated with NH₄Cl (aq), and extracted with DCM three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:1, R_f = 0.15) to give natural product (+)-harringtonolide (**1**, 5.8 mg, 46% over two steps) as a light yellow solid. **1**: ¹H NMR (400 MHz, CDCl₃) δ 6.97 (s, 1H), 6.90 (s, 1H), 5.36 (t, *J* = 2.8 Hz, 1H), 5.21 (t, *J* = 5.2 Hz, 1H), 3.99 (d, *J* = 5.6 Hz, 1H), 3.42 - 3.36 (m, 2H), 2.91 - 2.82 (m, 2H), 2.66 - 2.60 (m, 1H), 2.37 (d, *J* = 0.8 Hz, 3H), 1.76 (q, *J* = 7.6 Hz, 1H), 1.36 - 1.28 (m, 1H), 0.90 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 186.5, 173.5, 145.8, 145.6, 145.0, 143.6, 141.6, 139.3, 86.0, 80.0, 79.7, 49.9, 45.8, 41.8, 40.0, 32.3, 23.9, 22.4, 14.7; HRMS (ESI): *m/z* calcd for C₁₉H₁₉O₄ [M+H]⁺, 311.1278, found: 311.1283; [α]_D^{17.8} = +81.0 (*c* 1.16, CHCl₃); mp = 255 - 258 ^oC.

Construction of Oxapentacycle 19 from Compound 14'

To a solution of **14'** (504 mg, 1.25 mmol) in acetone (5.6 mL) was added (CONCl)₃ (0.23 g, 1.0 mol) at 0 °C. After being stirred for 0.5 h, the mixture was quenched with NaHSO₃ (aq) and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:8, $R_f = 0.53$) to give compound **15'** (434 mg, 76%) as a colorless foam that contains another unseparated diastereomer in a 1:16 ratio. **15'**: ¹H NMR (400 MHz, CDCl₃) δ

5.23 (d, J = 7.2 Hz, 1H), 4.85 (dd, J = 10.4, 2.4 Hz, 1H), 4.17 - 4.13 (m, 1H), 4.04 (t, J = 2.8 Hz, 1H), 4.01 (d, J = 4.0 Hz, 1H), 3.74 (s, 3H), 2.70 (dt, J = 10.0, 4.0 Hz, 1H), 2.52 - 2.44 (m, 1H), 2.38 - 2.32 (m, 1H), 2.22 - 2.17 (m, 1H), 2.11 - 1.93 (m, 3H), 1.84 (d, J = 2.0 Hz, 3H), 1.80 - 1.76 (m, 1H), 1.30 (d, J = 7.2 Hz, 3H), 0.91 (s, 9H), 0.16 (s, 3H), 0.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 218.4, 175.1, 82.4, 79.0, 69.4, 67.0, 61.2, 53.0, 52.2, 52.2, 41.8, 40.8, 34.8, 34.5, 25.8, 21.8, 18.2, 14.6, 3.6, -4.5, -5.2; HRMS (ESI): *m*/*z* calcd for C₂₃H₃₇ClO₅NaSi [M+Na]⁺, 479.1991, found: 479.1997; [α]_D^{19.8} = - 111.1 (*c* 1.26, CHCl₃).

To a solution of **15'** (1.01 g, 2.21 mmol) in DCM (11 mL) were added Et₃N (671 mg, 6.63 mmol) and TBSOTf (1.46 g, 5.53 mmol) at 0 °C. After being stirred for 3 h, the mixture was quenched with H₂O and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:10, R_f = 0.63) to give compound **16'** (1.1g, 90%) a colorless foam. **16'**: ¹H NMR (400 MHz, CDCl₃) δ 5.31 (dd, *J* = 10.0, 2.4 Hz, 1H), 4.30 (dd, *J* = 2.8, 1.6 Hz, 1H), 3.89 (t, *J* = 2.8 Hz, 1H), 3.71 (s, 3H), 3.36 (d, *J* = 4.8 Hz, 1H), 2.70 - 2.61 (m, 2H), 2.43 - 2.31 (m, 2H), 2.24 - 2.15 (m, 1H), 1.87 - 1.80 (m, 2H), 1.82 (d, *J* = 2.0 Hz, 3H), 1.67 (td, *J* = 13.6, 5.2 Hz, 1H), 1.32 (d, *J* = 6.8 Hz, 3H), 0.89 (s, 9H), 0.84 (s, 9H), 0.21 (s, 3H), 0.19 (s, 3H), 0.13 (s, 3H), 0.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.8, 176.0, 82.1, 79.4, 70.5, 67.1, 62.9, 51.9, 51.4, 49.3, 43.8, 39.5, 33.1, 32.5, 26.1, 25.7, 18.4, 18.2, 17.9, 14.5, 3.8, - 3.1, - 3.9, - 4.7, - 5.2; HRMS (ESI): *m/z* calcd for C₂₉H₅₁ClO₅NaSi₂ [M+Na]⁺, 593.2856, found: 593.2846; [α]₀^{19.7} = - 25.9 (*c* 1.16, CHCl₃).

To a solution of freshly distilled diisopropylamine (1.08 g, 10.7 mmol) in dry THF (21 mL) was added a solution of n-BuLi (2.5 M in hexane, 3.4 mL, 8.5 mmol) dropwise at - 50 °C. After 0.5 h, the solution was cooled to - 78 °C and then a solution of 16' (2.4 g, 4.3 mmol) in dry THF (21 mL) was added dropwise. After additional 1 h, HMPA (2.29 g, 12.8 mmol) was added dropwise at the temperature. The resulting solution was stirred for 10 min and BrCH₂CO₂Et (1.06 g, 6.39 mmol) was added dropwise. The mixture was allowed to warm to - 40 °C and stirred for additional 1 h at the temperature. The mixture was quenched with NH₄Cl (aq) at the temperature and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:10, $R_f = 0.62$) to give compound 17' (1.80 g, 64%) as a colorless oil along with 0.36 g (15%) of recovered starting material. 17': ¹H NMR (400 MHz, CDCl₃) δ 4.99 (dd, J = 10.0, 2.0 Hz, 1H), 4.31 (q, J = 1.6 Hz, 1H), 4.13 - 4.08 (m, 2H), 3.91 (t, J = 2.8 Hz, 1H), 3.71 (s, 3H), 3.47 (d, J = 4.8 Hz, 1H), 2.88 - 2.81 (m, 1H), 2.74 - 2.66 (m, 3H), 2.42 (dd, J = 16.0, 9.6 Hz, 1H), 2.21 - 2.11 (m, 1H), 2.09 - 2.03 (m, 1H), 1.92 - 1.87 (m, 1H), 1.85 (d, J = 2.0 Hz, 3H), 1.61 - 1.55 (m, 1H), 1.35 (d, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H), 0.88 (s, 9H), 0.83 (s, 9H), 0.21 (s, 3H), 0.18 (s, 3H), 0.10 (s, 3H), 0.05 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 209.3, 175.5, 172.0, 82.5, 79.6, 70.6, 66.5, 62.6, 60.5, 51.9, 49.5, 48.2, 44.0, 42.5, 36.8, 34.2, 31.7, 26.1, 25.6, 23.4, 18.2, 17.9, 14.9, 14.2, 3.8, - 3.1, - 3.8, - 4.8, - 5.1; HRMS (ESI): m/z calcd for $C_{33}H_{57}ClO_7NaSi_2[M+Na]^+$, 679.3224, found: 679.3232; $[\alpha]_D^{19.7} = -61.5$ (*c* 0.95, CHCl₃).

To a solution of the crude **17'** (1.7 g, 2.6 mmol) in THF/H₂O (4:1, 26 mL) was added LiOH (551 mg, 13.1 mmol). After the mixture was stirred vigorously for 20 h at 35 °C, the mixture was diluted with DCM and washed with 1.0 M HCl (aq). The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:4, $R_f = 0.21$) to give compound **18'** (0.65 g,

42%) as a colorless foam that contains another unseparated diastereomer in a 1:14 ratio. **18**': ¹H NMR (400 MHz, CDCl₃) δ 4.99 - 4.96 (m, 1H), 4.32 (s, 1H), 3.91 (s, 1H), 3.72 (s, 3H), 3.47 (d, *J* = 5.2 Hz, 1H), 2.86 - 2.84 (m, 1H), 2.80 - 2.69 (m, 3H), 2.46 (dd, *J* = 16.4, 8.8 Hz, 1H), 2.25 - 2.16 (m, 1H), 2.11 - 2.05 (m, 1H), 1.91 - 1.81 (m, 1H), 1.86 (d, *J* = 1.6 Hz, 3H), 1.63 - 1.58 (m, 1H), 1.36 (d, *J* = 7.2 Hz, 3H), 0.89 (s, 9H), 0.83 (s, 9H), 0.21 (s, 3H), 0.18 (s, 3H), 0.10 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.4, 177.5, 175.5, 82.6, 79.5, 70.6, 66.4, 62.6, 52.0, 49.5, 48.1, 44.1, 42.2, 36.4, 34.4, 31.7, 26.1, 25.6, 23.5, 18.2, 17.9, 15.0, 3.8, - 3.1, - 3.8, - 4.9, - 5.1; HRMS (ESI): *m/z* calcd for C₃₁H₅₃ClO₇NaSi₂ [M+Na]⁺, 651.2911, found: 651.2919; [α]_D^{21.8} = - 54.7 (*c* 1.17, CHCl₃).

Preparation of CH_2N_2 : under continuously shaking, $CH_3N(NO)CONH_2$ (3.4 g, 33 mmol) was added to a mixture of KOH (40% in H₂O, 11.2 mL) and Et₂O (34 mL) at 0 °C. Decantation of the light yellow solution gave the solution of CH_2N_2 (1.0 M in Et₂O). The solution was dried over dusty KOH and used for the next reaction step.

To a solution of acid **18'** (0.41 g, 0.65 mmol) in Et₂O (6.5 mL) were added Et₃N (0.20 g, 2.0 mmol) and ClCO₂^{*i*}Bu (0.18 g, 1.3 mmol) sequentially at 0 °C. After 0.5 h, a freshly prepared solution of CH₂N₂ (34 mL, 1.0 M in Et₂O) was added to the mixture at 0 °C. The mixture was warmed to room temperature and stirred for 12 h before quenching with silica gel. The mixture was extracted with Et₂O twice. The combined organic layers were dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:4, R_f = 0.23) to give compound **5'** (0.33 g, 77%) as a yellow oil that contains another unseparated diastereomer in a 1:14 ratio. **5'**: ¹H NMR (400 MHz, CDCl₃) δ 5.24 (s, 1H), 4.99 (dd, *J* = 10.0, 2.0 Hz, 1H), 4.31 (d, *J* = 1.6 Hz, 1H), 3.90 (t, *J* = 2.4 Hz, 1H), 3.70 (s, 3H), 3.46 (d, *J* = 5.2 Hz, 1H), 2.88 (brs, 1H), 2.74 - 2.67 (m, 3H), 2.41 (brs, 1H), 2.18 - 2.12 (m, 1H), 2.10 - 2.04 (m, 1H), 1.91 - 1.81 (m, 1H), 1.85 (d, *J* = 2.0 Hz, 3H), 1.60 - 1.55 (m, 1H), 1.34

(d, J = 7.2 Hz, 3H), 0.88 (s, 9H), 0.82 (s, 9H), 0.20 (s, 3H), 0.17 (s, 3H), 0.09 (s, 3H), 0.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 192.7, 175.5, 82.4, 79.6, 70.6, 66.5, 62.6, 54.7, 51.9, 49.5, 48.1, 44.1, 42.8, 42.8, 34.2, 31.6, 26.1, 25.6, 23.5, 18.2, 17.9, 14.9, 3.8, - 3.1, - 3.8, - 4.8, - 5.2; HRMS (ESI): m/z calcd for C₃₂H₅₃ClN₂O₆NaSi₂ [M+Na]⁺, 675.3023, found: 675.3032; $[\alpha]_D^{21.2} = -47.6$ (*c* 1.37, CHCl₃).

To a suspension of Rh₂(OAc)₄ (0.022 g, 0.050 mmol) in refluxing toluene (10 mL) was added a solution of diazoketone **5'** (0.33 g, 0.50 mmol) in toluene (10 mL) over 0.5 h via a syringe pump. After additional 0.5 h, the solution was cooled to rt and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:4, R_f = 0.57) to afford compound **3'** (0.20 g, 62%) as a colorless solid. **3'**: ¹H NMR (400 MHz, CDCl₃) δ 4.77 (s, 1H), 4.57 (s, 1H), 4.25 (dd, *J* = 4.8, 1.6 Hz, 1H), 4.19 (d, *J* = 4.8 Hz, 1H), 3.69 (s, 3H), 3.47 (d, *J* = 12.0 Hz, 1H), 2.93 (dq, *J* = 12.0, 2.4 Hz, 1H), 2.83 (dd, *J* = 18.4, 8.4 Hz, 1H), 2.53 - 2.50 (m, 2H), 2.28 - 2.21 (m, 1H), 2.12 (d, *J* = 18.8 Hz, 1H), 1.87 - 1.83 (m, 1H), 1.80 (d, *J* = 1.2 Hz, 3H), 1.73 - 1.67 (m, 1H), 1.51 - 1.42 (m, 1H), 1.08 (d, *J* = 7.2 Hz, 3H), 0.90 (s, 9H), 0.87 (s, 9H), 0.19 (s, 3H), 0.18 (s, 3H), 0.12 (s, 3H), 0.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 175.8, 149.7, 135.1, 96.2, 96.1, 75.0, 68.1, 65.0, 52.6, 52.1, 46.6, 41.3, 38.2, 35.1, 30.9, 28.0, 27.3, 25.7, 25.6, 18.0, 17.9, 14.2, 11.5, - 3.6, - 4.1, - 4.7, - 4.8; HRMS (ESI): *m/z* calcd for C₃₂H₅₃ClO₆NaSi₂ [M+Na]⁺, 647.2961, found: 647.2973; [α]_p^{22.0} = - 213.5 (*c* 1.26, CHCl₃); mp = 36 - 37 °C.

To a solution of 3' (0.18 g, 0.29 mmol) in dry THF (12 mL) was added TBAF (0.28 g, 0.87

mmol) at room temperature. The solution was quenched with H₂O after the starting material disappeared as indicated by TLC. The mixture was extracted with DCM three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:1, R_f = 0.33) to give compound **19'** (92 mg, 79%) as a colorless solid. **19'**: ¹H NMR (400 MHz, CDCl₃) δ 4.78 (d, *J* = 10.8 Hz, 1H), 4.63 (s, 1H), 4.34 (dd, *J* = 10.8, 3.2 Hz, 1H), 4.19 (t, *J* =10.0 Hz, 1H), 3.77 (s, 3H), 3.67 (d, *J* = 13.2 Hz, 1H), 3.63 (s, 1H), 3.10 - 3.01 (m, 1H), 2.76 (s, 1H), 2.64 - 2.52 (m, 2H), 2.45 - 2.39 (m, 1H), 2.15 - 2.11 (m, 1H), 1.87 (d, *J* = 1.6 Hz, 3H), 1.80 - 1.72 (m, 1H), 1.68 - 1.54 (m, 2H), 1.07 (q, *J* = 12.8 Hz, 1H), 0.95 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.2, 175.1, 146.7, 127.4, 94.4, 90.9, 70.4, 70.2, 65.2, 52.7, 50.5, 48.3, 43.5, 43.4, 42.1, 38.0, 32.1, 27.8, 10.5, 9.8; HRMS (ESI): *m*/*z* calcd for C₂₀H₂₅ClO₆Na [M+Na]⁺, 419.1232, found: 419.1238; [α]_D^{22.2} = - 225.7 (*c* 1.13, CHCl₃); mp = 78 - 81 °C.

To a solution of **19'** (78 mg, 0.20 mmol) in dry THF (4.0 mL) were added Ph_3P (0.16 g, 0.59 mmol), 4-NO₂-C₆H₄CO₂H (99 mg, 0.59 mmol) and DEAD (0.10 g, 0.59 mmol) sequentially at room temperature. The solution was quenched with H₂O after the starting material disappeared as indicated by TLC. The mixture was extracted with DCM three times. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (EtOAc/hexanes = 1:1, R_f = 0.40) to give a crude product used for the next step.

To a solution of the above crude product in MeOH (2.0 mL) was added K_2CO_3 (54 mg, 0.59 mmol). The solution was quenched with H_2O after the starting material disappeared as indicated by TLC. The mixture was extracted with DCM three times. The combined organic layers were dried over Na_2SO_4 , filtered, and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel to give **19** (25 mg, 33 % over two steps) as a colorless solid.

The ¹H NMR and ¹³C NMR was in agreement with those measured above.

Some Important Intermediates (A-E)

A: ¹H NMR (400 MHz, CDCl₃) δ 5.28 - 5.24 (m, 1H), 4.36 - 4.30 (m, 1H), 4.28 (s, 1H), 3.42 (q, J = 8.4 Hz, 1H), 2.93 - 2.86 (m, 1H), 2.71 - 2.55 (m, 3H), 2.50 - 2.41 (m, 2H), 1.93 - 1.85 (m, 4H), 1.80 - 1.73 (m, 1H), 1.71 - 1.58 (m, 2H), 1.06 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.9, 172.5, 116.7, 85.2, 83.0, 78.8, 72.4, 66.8, 46.9, 45.7, 45.6, 37.1, 34.2, 33.1, 19.3, 19.2, 13.3, 3.9.

B: ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 1H), 6.89 (s, 1H), 5.95 (d, J = 5.6 Hz, 1H), 5.20 (dd, J = 7.2, 2.8 Hz, 1H), 3.96 (t, J = 2.8 Hz, 1H), 3.90 (d, J = 9.6 Hz, 1H), 3.75 (s, 3H), 3.69 - 3.63 (m, 1H), 2.67 - 2.50 (m, 3H), 2.27 (s, 3H), 1.69 - 1.62 (m, 2H), 1.26 (d, J = 6.8 Hz, 3H).

C: ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 2H), 5.95 (dt, J = 10.0, 2.4 Hz, 1H), 5.51 (dt, J = 10.0, 2.4 Hz, 1H), 5.20 (d, J = 4.4 Hz, 1H), 3.62 (s, 3H), 3.38 (d, J = 10.8 Hz, 1H), 3.23 - 3.19 (m, 1H), 3.00 - 2.81 (m, 2H), 2.65 - 2.60 (m, 1H), 2.44 - 2.42 (m, 1H), 2.35 (s, 3H), 1.54 (td, J = 13.2, 6.0 Hz, 1H), 1.10 (d, J = 7.6 Hz, 3H), 0.82 (s, 9H), 0.13 (s, 3H), 0.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.9, 173.0, 148.8, 146.3, 144.7, 144.0, 141.5, 141.2, 134.9, 125.7, 77.2, 52.9, 51.3, 46.6, 45.9, 43.2, 32.1, 30.3, 26.0, 24.1, 18.5, 15.4, - 3.2, - 4.0.

D: ¹H NMR (400 MHz, CDCl₃) δ 4.90 (s, 1H), 4.72 (s, 1H), 3.77 (s, 3H), 3.38 - 3.37 (m, 1H), 3.29 - 3.23 (m, 2H), 3.20 (t, J = 4.0 Hz, 1H), 2.75 (dd, J = 16.8, 7.2 Hz, 1H), 2.55 - 2.51 (m, 1H), 2.50 - 2.45 (m, 1H), 2.43 - 2.32 (m, 3H), 1.95 (d, J = 13.6 Hz, 1H), 1.86 (s, 3H), 1.61 - 1.44 (m, 1H), 1.19 - 1.08 (m, 1H), 0.87 (d, J = 6.8 Hz, 3H).

E: ¹H NMR (400 MHz, CDCl₃) δ 5.39 (s, 1H), 5.31 (s, 1H), 5.07 (t, *J* =5.6 Hz, 1H), 4.88 (d, *J* = 4.4 Hz, 1H), 4.08 (s, 1H), 3.93 (d, *J* = 5.6 Hz, 1H), 3.24 - 3.16 (m, 2H), 2.61 (dd, *J* = 14.0, 6.0 Hz, 1H), 2.49 (s, 1H), 2.02 - 1.89 (m, 3H), 1.77 - 1.65 (m, 2H), 1.61 - 1.46 (m, 2H), 0.95 (d, *J* = 7.6 Hz, 3H); ¹H NMR (400 MHz, CDCl₃/D₂O) δ 5.38 (s, 1H), 5.31 (s, 1H), 5.07 (t, *J* =5.6 Hz, 1H), 4.87 (d, *J* = 4.4 Hz, 1H), 4.07 (s, 1H), 3.93 (d, *J* = 5.6 Hz, 1H), 3.23 - 3.16 (m, 2H), 2.61 (dd, *J* = 14.8, 6.0 Hz, 1H), 2.02 - 1.89 (m, 3H), 1.78 - 1.67 (m, 2H), 1.60 (s, 1H), 1.50 (d, *J* = 10.8 Hz, 1H), 0.94 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.7, 145.9, 141.7, 137.8, 118.3, 88.6, 83.5, 79.6, 79.2, 74.8, 49.0, 45.0, 42.9, 40.6, 38.7, 34.5, 28.1, 23.7, 15.0; HRMS (ESI): *m/z* calcd for C₁₉H₁₉O₄ [M-OH]⁺, 311.1278, found: 311.1282.

Comparison of Spectra of Natural and Synthetic Harringtonolide

Comparison of ¹H NMR Spectra of Harringtonolide 1 in CDCl₃

- (a) ¹H NMR spectra provided by B. Nay^[1]
- (b) ¹H NMR spectra provided by W. P. Tang^[2]
- (c) 1 H NMR spectra of our synthetic **1**

δH of our synthetic 1	δH of lit. natural $1^{[3]}$	δH of lit. natural $1^{[4]}$	δH of Tang's synthetic $1^{[2]}$
(400 MHz)	(100 MHz)	(100 MHz)	(500 MHz)
6.97 (s, 1H)	6.98 (s, 1H)	6.95 (d, <i>J</i> = 2 Hz, 1H)	6.98 (s, 1H)
6.90 (s, 1H)	6.92 (s, 1H)	6.77 (d, <i>J</i> = 2 Hz, 1H)	6.91 (s, 1H)
5.36 (t, J = 2.8 Hz, 1H)	5.47 (m, 1H)	5.35 (q, 1H)	5.36 (m, 1H)
5.21 (t, <i>J</i> = 5.2 Hz, 1H)	5.32 (m, 1H)	5.19 (m, 1H)	5.22 (dd, <i>J</i> = 5.3, 5.3 Hz, 1H)
3.99 (d, J = 5.6 Hz, 1H)	4.00 (m, 1H)	3.98 (d, J = 6 Hz, 1H)	4.00 (d, <i>J</i> = 5.6 Hz, 1H)
3.42 - 3.36 (m, 2H)	3.51 (m, 2H)	3.40 (m, 2H)	3.42 (m, 2H)
2.91 - 2.82 (m, 2H)		2.85 (m, 1H)	2.87 (m, 1H)
266 - 260 (m - 111)	2.70 (m, 3H)	2.75 (m, 1H)	2.83 (m, 1H)
2.00 - 2.00 (III, TH)		2.65 (m, 1H)	2.64 (dd, <i>J</i> = 13.7, 6.5 Hz, 1H)
2.37 (d, J = 0.8 Hz, 3H)	2.36 (s, 3H)	2.37 (s, 3H)	2.38 (s, 3H)
1.76 (q, J = 7.6 Hz, 1H)	1.75 (q, 1H)	1.74 (q, J = 8 Hz, 1H)	1.77 (q, J = 7.5 Hz, 1H)
1.36 - 1.28 (m, 1H)	1.25 (m, 1H)	1.32 (m, 1H)	1.31 (m, 1H)
0.90 (d, J = 7.6 Hz, 3H)	0.90 (d, 3H)	0.89 (d, J = 8 Hz, 3H)	0.91 (d, <i>J</i> = 7.6 Hz, 3H)

Table S1 ¹H NMR Spectroscopic Data of Our Synthetic **1**, Buta's Natural **1**,^[3] Sun' Natural **1**,^[4] and Tang's Synthetic **1**^[2] in CDCl₃

δC (I) of our	δC (II) of lit.	δC (III) of lit.	δC (IV) of lit.	δC of Tang's
synthetic 1	natural $1^{[1]}$	natural 1 ^[3]	natural $1^{[4]}$	synthetic $1^{[2]}$
186.5	186.2	186.4	186.9	186.3
173.5	173.3	173.5	173.0	173.3
145.8	145.7	145.9	145.9	145.7
145.6	145.5	145.7	145.2	-
145.0	144.9	145.0	145.0	144.8
143.6	143.4	143.6	143.4	-
141.6	141.3	141.5	141.5	141.5
139.3	139.0	139.1	139.4	139.1
86.0	85.9	85.5	86.0	85.9
80.0	79.8	80.0	79.6	79.9
79.7	79.5	80.0	78.2	79.6
49.9	49.7	49.9	49.7	49.8
45.8	45.6	43.8	45.5	45.7
41.8	41.6	41.7	41.5	41.7
40.0	39.8	40.0	39.7	39.9
32.3	32.1	32.3	31.8	32.2
23.9	23.7	23.8	23.3	23.7
22.4	22.2	22.3	22.0	22.3
14.7	14.6	14.7	14.2	14.6

Table S2. ¹³C NMR Spectroscopic Data of Our Synthetic **1**, Nay's Natural **1**,^[1] Buta's Natural **1**,^[3] Sun's Natural **1**,^[4] and Tang's Synthetic **1**^[2] in CDCl₃

References:

 L. Evanno, A. Jossang, J. Nguyen-Pouplin, D. Delaroche, P. Herson, M. Seuleiman, B. Bodo, B. Nay, *Planta Med.* 2008, 74, 870-872.

[2] M. Zhang, N. Liu, W. P. Tang, J. Am. Chem. Soc. 2013, 135, 12434-12438.

[3] J. G. Buta, J. L. Flippen, W. R. Lusby, J. Org. Chem. 1978, 43, 1002-1003.

[4] N. J. Sun, Z. Xue, X. T. Liang, L. Huang, Acta Pharm. Sin. 1979, 14, 39-44.

HPLC Data of (\pm)-8 and (-)-8

<u></u>						
	处理通道	保留时间 (分钟)	面积	% 面积	峰高	
1	PDA 230.0 纳米	11.323	13789851	47.43	643009	
2	PDA 230.0 纳米	12.224	15283185	52.57	653100	

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 230.0 纳米	11.403	2117865	2.99	94087
2	PDA 230.0 纳米	12.402	68773533	97.01	2262600

NMR Spectra of the Intermediates and (+)-Harringtonolide

Mixture of 10 and 10':

S44

S46

S49

S58

