CHEMISTRY A European Journal

Supporting Information

Magnetic N-Enriched Fe₃C/Graphitic Carbon instead of Pt as an Electrocatalyst for the Oxygen Reduction Reaction

Xiaobai Wang, Peng Zhang, Wei Wang, Xiang Lei, and Hua Yang*[a]

chem_201505138_sm_miscellaneous_information.pdf

Figure S1 (a) Low-resolution XPS spectra of $Fe_3C/C-N_{650}$, $Fe_3C/C-N_{700}$ and $Fe_3C/C-N_{800}$ NPs. (b), (c) and (d) High-resolution XPS spectra of the N 1s electrons of $Fe_3C/C-N_{650}$, $Fe_3C/C-N_{700}$ and $Fe_3C/C-N_{800}$ NPs.

Figure S2 XRD pattern of the Fe₃C/C-N₅₈₀.

Figure S3 (a) RRDE voltammograms, (b) plots of H₂O₂ yield and number of electron transfer of Fe₃C/C-N₇₅₀ and Pt/C at the rotation rate of 1600 rpm. LSV curves of (c) Fe₃C/C-N₇₅₀ and (d) Pt/C for ORR before and after 3000 cycles. All of these experiments were carried out in O₂-saturated 0.10 M HClO₄ solution.

Table. ST Summary of re and N concentrations of the as-synthesized resc/ C - N_x NTS						
	Fe ₃ C/C-N ₆₅₀	Fe ₃ C/C-N ₇₀₀	Fe3C/C-N750	Fe ₃ C/C-N ₈₀₀		
Pyridinic N (at. %)	2.22	2.05	1.38	0.76		
Pyrrolic N (at. %)	0.78	0.70	0.22	0.21		
graphitic N (at. %)	2.6	2.25	2.9	2.03		
Total N (at. %)	5.6	5	4.5	3		
Fe (at. %)	0.57	0.51	0.46	0.44		

Table. S1 Summary of Fe and N concentrations of the as-synthesized Fe₃C/C-N_x NPs

Table. S2. Magnetic parameters of the as-synthesized $Fe_3C/C-N_x$ NPs

Sample	M_s (emu/g)	M_r (emu/g)	H_c (Oe)	Squareness (M_r/M_s)
--------	---------------	---------------	------------	------------------------

Fe ₃ C/C-N ₆₅₀	42.3	2.19	175	0.05
Fe ₃ C/C-N ₇₀₀	51.6	1.21	109	0.02
Fe ₃ C/C-N ₇₅₀	63.8	2.10	97.1	0.03
Fe ₃ C/C-N ₈₀₀	77.2	2.54	78.9	0.03