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Abstract
Background: Recurrent genomic changes in B-lymphoblastic leukemia (B-ALL) identified by

genome-wide single-nucleotide polymorphism (SNP) microarray analysis provide important

prognostic information, but gene copy number analysis of its rare lymphoma counterpart, B-

lymphoblastic lymphoma (B-LBL), is limited by the low incidence and lack of fresh tissue for

genomic testing.

Procedure: We used molecular inversion probe (MIP) technology to analyze and compare copy

number alterations (CNAs) in archival formalin-fixed paraffin-embedded pediatric B-LBL (n = 23)

and B-ALL (n= 55).

Results: Similar to B-ALL, CDKN2A/B deletions were the most common alteration identified in

6/23 (26%) B-LBL cases. Eleven of 23 (48%) B-LBL patients were hyperdiploid, but none showed

triple trisomies (chromosomes 4, 10, and 17) characteristic of B-ALL. IKZF1 and PAX5 deletions

were observed in 13 and 17% of B-LBL, respectively, which was similar to the reported frequency

in B-ALL. Immunoglobulin light chain lambda (IGL) locus deletions consistent with normal light

chain rearrangement were observed in 5/23 (22%) B-LBL cases, compared with only 1% in B-ALL

samples. None of the B-LBL cases showed abnormal, isolated VPREB1 deletion adjacent to IGL

locus, which we identified in 25% of B-ALL.

Conclusions: Our study demonstrates that the copy number profile of B-LBL is distinct from

B-ALL, suggesting possible differences in pathogenesis between these closely related diseases.
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1 BACKGROUND

Most malignancies of B-lineage lymphoblasts present as B-

lymphoblastic leukemia (B-ALL), while only 10–20% present as

B-lymphoblastic lymphoma (B-LBL).1 The distinction according to the
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2008 WHO classification is that B-ALL involves bone marrow with or

without peripheral blood involvement, while B-LBL occurs in nodal

or extranodal sites without significant bone marrow (<25% blasts)

or peripheral blood involvement.2 As B-ALL and B-LBL show similar

morphology and immunophenotype, it has been suggested that these

two represent different clinical manifestations of the same disease

process. Pediatric B-LBL is currently treated according to B-ALL

protocols with a prognosis comparable to that of low-risk B-ALL.3,4

Due to the accessibility of tumor cells, B-ALL is one of the best

characterized neoplasms at the cytogenetic andmolecular genetic lev-

els resulting in important prognostic associations. The introduction

of high-resolution single-nucleotide polymorphism (SNP) microarray

technology has furthered the discovery of focal recurrent copy num-

ber alterations (CNAs) in B-ALL including CRLF2, IKZF1, JAK2, PAX5,

and VPREB1 alterations5–7 and the association of certain gene dele-

tions such as IKZF1 and VPREB1 with prognosis.8,9 However, genomic

analysis of B-LBL is limited by the lack of fresh or frozen tissue speci-

mens for cytogenetic andmolecular analysis and genomic testing.

Formalin-fixed paraffin-embedded (FFPE) tissues are routinely

stored in pathology archives and represent a source of tissue for

studies of rare neoplasms or patient cohorts where fresh frozen

samples were not collected. We previously demonstrated the fea-

sibility of high-resolution CNA analysis in FFPE Burkitt lymphoma

samples.10 FFPE bone marrow aspirate clot samples are routinely

archived at many centers and could represent an abundant source of

leukemia specimens, which have not previously been utilized in B-ALL

SNP microarray studies. Although B-LBL FFPE tissue in blocks was

scarce, we had access to FFPE tissue sections on unstained slides as a

potential source of B-LBLDNA.

In this study, we utilized molecular inversion probe (MIP)-based

SNPmicroarray technology to detect CNAs in clinically archived FFPE

pediatric B-ALL and B-LBL samples. We compared CNAs identified in

B-LBL to those in B-ALL to determine if they possess similar genetic

alterations.We also compared our FFPE B-ALL copy number results to

those of fresh frozenB-ALL samples to determine if accurateCNAcalls

were generated.7 Our study demonstrates the utility of this assay for

the study of archival tissue specimens, highlights the use of FFPE sam-

ples to identify focal genomic changes in leukemia and lymphoma, and

importantly characterizes B-LBL recurrent CNAs, including changes

that are distinct fromB-ALL.

2 PROCEDURE

2.1 Patients and samples

The Institutional ReviewBoard of theUniversity of Utah approved this

study. We obtained FFPE bone marrow aspirate clots from 55 B-ALL

patients diagnosed at Primary Children’s Hospital at the University of

Utah from 2004 to 2009. B-LBL unstained slides submitted for central

pathology reviewwere available for patients enrolled in the Children’s

Oncology Group (COG) A597111 and AALL0932 trials and approved

for use in this study by COG (Protocol #ANHL15B1-Q) and the Cancer

Therapy Evaluation Program CTEP. Patients enrolled in COG A5971

were treated as low risk if disease was localized and high risk for those

TABLE 1 Clinical characteristics of each cohort

Patient characteristics

B-ALL
(N= 55) %

B-LBL
(N= 23) %

Gender

Female 28 51 15 65

Male 27 49 8 35

Unknown

Age

Median (in years) 6.5 6.5

Less than 10 years 38 69 15 65

At least 10 years 17 31 8 35

Risk
group

Low 0

Standard 33 60

High 22 40

with disseminated disease. Unstained FFPE slideswere stored at room

temperature for 1–10 years. Our results were compared to a B-ALL

cohort that included both standard and high-risk patients treated and

analyzed by St. Jude Children’s Research Hospital (SJCRH, N = 192).7

Leukemia and germline CEL files from the Affymetrix Genome-Wide

Human SNP Array 6.0 and the Affymetrix GeneChip Human Mapping

500 K Array were obtained from GSE5511, and only B-ALL samples

were utilized for comparison. See Table 1 for clinical characteristics of

each cohort.

2.2 DNA extraction

H&E staining was reviewed on each case to evaluate tissue adequacy

in clot sections and to verify at least 80% tumor cells in B-LBL sec-

tions. B-ALL bone marrow aspirate clots were required to contain at

least 66% lymphoblasts based on the corresponding aspirate smear

differential. FFPE tissue from 4 to 10 slides per B-LBL case (n = 30)

was scraped into tubes, and 50-𝜇m thick sections of B-ALL FFPE bone

marrow aspirate clots (n = 55) were collected from archived tissue

blocks. DNA was isolated using the RecoverAll Total Nucleic Acid Iso-

lation Kit (Ambion/Applied Biosystems, Austin, Texas) and quantified

with PicoGreen (Invitrogen, Waltham, Massachusetts). Total genomic

DNA yields from the FFPE samples ranged from 19.8 up to 1,924.1 ng

(median 376.5 ng) for B-ALL. Of the initial 30 B-LBL cases, 23 yielded

adequate DNA for MIP analysis; the six cases with insufficient DNA

yields were bone or small skin biopsies. For B-LBL cases with adequate

DNA, the yield ranged from 6.9 to 1,089.0 ng (median 165.8 ng).

2.3 Molecular inversion probe and copy number

data analysis

The OncoScanTM FFPE Express assay (Affymetrix Inc., Santa Clara,

California), with increased coverage for known cancer genes, was

used on the samples from these Utah cohorts with hybridization

and scanning as previously described.10 Data visualization, CNA call-

ing, and analysis for the OncoScanTM FFPE Express Array as well as

the Affymetrix Genome-Wide Human SNP 6.0 and 500 K array data
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F IGURE 1 Whole genome view of B-ALL copy number abnormalities. Summary of SNP array copy number data from all 55 cases. Chromosomal
gains are shown to right of the affected chromosome in blue and losses are to the left in red. Thicker bars indicate areas of recurrent change

were performed with Nexus Copy Number 7.5 (BioDiscovery, Inc.,

El Segundo, California). The copy number values of each microarray

probe were loaded into Nexus with default settings without probe re-

centering. Themedian probe values of diploid regions of chromosomes

1–8 from each samplewere used to re-center all probes. CNA genomic

segments were identified using the default settings and calling param-

eters of BioDiscovery’s SNP-FASST2 Segmentation Algorithm (a Hid-

denMarkovModel based approach). Gene regions identified as loss or

gainwere thenmanually inspected to verify each call was supported by

five or more probes and were 50 kb or more in length. This was neces-

sary toallowgreater consistency in copynumber calls across chipswith

varying number of probes spanning certain genes. Peak prevalence of

common events over identical regionswas then compared in each data

set. DNA gains and losses resulting from normal antigen receptor gene

rearrangements at Chr2p11 (IGKL), Chr7p14 (TRGV), Chr7q34 (TRBV),

Chr14q11-12 (TRAV, TRDV, TRDJ, TRDC, and TRAJ), Chr14q32 (IGHV)

and Chr22q11.22 (IGLL) were not counted with the exception of focal

deletions within the IGLL/VPREB1 region as previously described in

B-ALL.9 Gene annotation was based on Build 36.1 of NCBI’s human

genome reference sequence for all B-ALL samples and Build 37 for all

B-LBL samples. Copy number at TCF3 was also not assessed due to

probe coverage differences across chips at this locus, which could not

be rectified.

2.4 Statistics

B-ALL vs. B-LBL genetic differenceswere compared using a two-tailed,

Fisher exact test or two-tailed chi-square test where appropriate.

3 RESULTS

3.1 Patient characteristics

The median age of the B-LBL patients was 6 years (range 1–17) and

6.5 years for B-ALL patients (range 1–26) (Table 1). ALL cases were

TABLE 2 ALL and LBL deletions across all cohorts (B-cell develop-
ment genes, etc.)

Utah Utah St. Jude

B-LBL (%) B-ALL (%) B-ALL (%)

Gene N= 23 N= 55 N= 192

CDKN2A/B 26 20 33.9

EBF1 0 10.9 4.2

ETV6 13 29 26.6

IKZF1 13 12.7 8.9

PAX5 17 10.9 29.2

VPREB1 (region) 4.3 25.4 28.6

At least one
B-cell
development
genea

26 43.6 53.6

aB-cell development gene deletion examined: IKZF1, EBF1, PAX5, LEF1,
BLNK, and VPREB1.

predominatelyNCI StandardRisk (60%standard, 40%high risk). B-LBL

cases were all treated as low risk; stage at diagnosis and tumor site are

provided in Supplementary Table S1.

3.2 Recurrent CNVs in B-ALL

The OncoScanTM FFPE Express 330 K cancer panel detected multiple

CNAs of different sizes and frequencies in the FFPE B-ALL cohort of

patients (Fig. 1 and Supplementary Table S2). The majority of the dele-

tions in the FFPE B-ALL cohort have been previously reported in stud-

ies of fresh/frozen tissues and occurred at very similar rates across

other B-ALL patients (Table 2). The most frequent deletions found in

the B-ALL MIP analysis included commonly occurring deletions ETV6

(16/55, 29%), VPREB1 (14/55, 25%), CDKN2A/CDKN2B-AS1 (11/55,

20%; eight homozygous, three hemizygous), IKZF1 (7/55, 13%), PAX5

(6/55, 11%), and EBF1 (6/55, 11%). Deletions in other genes previously

implicated in B-ALLwere also observed at low frequency such as BTG1

(6/55, 11%) and RB1 (2/55, 4%).7,8
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F IGURE 2 Chromosomal gains in hyperdiploid cases of B-LBL versus B-ALL. Each row represents a patient and is grouped according to disease.
Chromosome numbers are listed across the top. Height of blue bars indicate the overall frequency of chromosomal gain in each patient population
(red= deletion; blue= gain)

Recurrent amplifications in B-ALL consisted largely of whole chro-

mosomal amplifications. Our cohort contained previously reported

trisomies present in hyperdiploid cases (Figs. 1 and 2). Overall, 21/55

(38%) B-ALL cases were hyperdiploid and 17/21 cases had triple tri-

somies:+4,+10, and+17 (Supplementary Table S2).

3.3 Recurrent CNVs in B-LBL

All 23 cases of B-LBL with adequate DNA for MIP analysis yielded

interpretable copy number data. Four cases showed noise typical of

specimenswith low-qualityDNA, but in each case, gain or loss of either

large segments or entire chromosomes could still be determined reli-

ably with matching B-allele frequencies for each CNV. Genome-wide

copy number data were generated from all 23 cases (Fig. 3 and Supple-

mentary Table S3), and 22 cases showed at least one gain or loss (96%).

Themedian number of gains and losses per case was 4 (range 0–9) and

1.5 (range 0–5), respectively.

3.4 B-LBL show similarities and differences when

compared to genomic copy number abnormalities

present in Utah B-ALL cohort

B-LBL showed many features commonly seen in B-ALL. CDKN2A/B

deletions were identified in 6/23 (26%) of the B-LBL and 11/55 (20%)

of our B-ALL cases. Similar rates of IKZF1 and PAX5 deletion were also

seen. However, differences in ETV6 and EBF1 deletions were identified

between the two groups with both genes having lower alteration fre-

quencies in B-LBL (Table 2).

Hyperdiploidy is defined in WHO 2008 as more than 50 chromo-

somes, usually less than 66, and with an incidence of about 25% in B-

ALL.2 Hyperdiploidy, involving chromosomes 4, 6, 10, 14, 17, 18, 21,

and X is found most often, with chromosomes 21 and X the most fre-

quently cited gains.12 Additionally, hyperdiploidy involving chromo-

somes 4, 10, and 17 is associated with a favorable prognosis.13 We

found hyperdiploidy involving trisomies of chromosomes 4, 6, 18, 21,

and X as the most frequent whole chromosome gains in B-LBL (Fig. 2

and Supplementary Table S2). Similar to B-ALL, gains of chromosome

21 and X were the most frequent (10/10 B-LBL cases), while gains of

chromosome 10 were seen the least (3/10). None of the B-LBL cases

harbored the characteristically favorable triple trisomyof 4, 10, and 17

and interestingly all cases of hyperdiploidywere found in patientswith

local versus disseminated disease (P= 0.0075).

3.5 B-LBLs show a lower frequency of B-cell

development gene deletions and different

immunoglobulin light chain lambda locus deletions

comparedwith B-ALL

In B-ALL, gene copy number changes in the genes regulating B-cell

development were found in about 43–54% of cases (Table 2). These

genes included IKZF1, PAX5, EBF1 (transcription factors), BLNK, LEF1,
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F IGURE 3 Whole genome view of B-LBL copy number abnormalities. Summary of SNP array copy number data from all 23 cases. Chromosomal
gains are shown to right of the affected chromosome in blue and losses are to the left in red. Thicker bars indicate areas of recurrent change

and VPREB1 (encodes surrogate light chain). In B-LBL, gene deletions

(IKZF1 and/or PAX5) were observed in similar percentages to B-ALL,

while the deletions of EBF1 and VPREB1 were rarely seen (Table 2).

When considered together, deletion of any one or more of the B-cell

development genes occurred in 26% of B-LBL versus 49% in B-ALL

(average in combinedUtah and SJCRH cohort, P= 0.024). Additionally,

no differences were seen between the frequencies of B-cell develop-

ment gene deletions occurring in disseminated versus local B-LBL dis-

ease.

B-LBL also differed from B-ALL in the pattern of deletions involv-

ing the immunoglobulin light chain lambda (IGL) locus. As we have

shown in our previous studies, SNP arrays inmature B-cell lymphomas

demonstrate contiguous IGL locus deletions that extend to the VJ

junction, consistent with normal light chain rearrangement, while B-

ALLs show abnormal, focal IGL deletions that do not extend to the VJ

junction and are thus not consistent with light chain rearrangement.9

B-LBL showed contiguous IGL deletions indicating light chain rear-

rangement in 5/23 (22%), compared with only 1/55 (2%) in the

B-ALL FFPE cohort (P = 0.0076, two tailed Fisher exact; Fig. 4). Only

one of the B-LBL cases showed a focal IGL deletion on or upstream

of the VPREB1 gene, which we have recently identified was present

in 25% of B-ALL (Table 2, P = 0.05).9 While the deletion in this

patient did not reach the V-J junction characteristic of IGLL rearrange-

ment, the deleted segment also did not match the boundaries often

seen in B-ALL (either upstream of VPREB1 or directly centered on

VPREB1).

4 CONCLUSIONS

High-resolution, genome-wide SNP array profiling of B-ALL has pro-

vided important prognostic and biologic insights.7,8 The biology of B-

LBL is much less characterized than that of B-ALL because it is much

less common and fresh tissue is rarely available; there are only a few

studies of B-LBL genomics.3,14,15 The ability to study rare diseases

such as B-LBL is often further limited by availability of fresh frozen tis-

sue required for many genomic techniques, so development of meth-

ods for analysis of fixed tissues from rare diseases is advantageous.

Using a MIP-based SNP array, we demonstrated the feasibility of ana-

lyzing clinically archived FFPE bone marrow aspirate clot specimens

and tissue fromunstained glass slides using SNPmicroarrays.We iden-

tified previously reported CNAs in FFPE samples from a local B-ALL

cohort and demonstrated that CNAs occurred at frequencies similar

to another previously published cohort of fresh-frozen B-ALL samples.

This allowed us to perform the largest high-resolution SNP array study

of B-LBL to date and directly compare the genomic features of B-LBL

to B-ALL using the same platform. The FFPE samples in our studywere

up to 10 years old and still performed remarkablywell on theMIP plat-

formwith high-resolution results for copy number data.

Many of the most frequent CNAs identified in our cohort were

reported previously in studies using fresh or frozen B-ALL samples,

thus validating the CNAs that we describe and the MIP assay itself.

CNAs affect multiple cellular pathways in B-ALL and are commonly

found within genes that regulate B-cell development and differentia-

tion, such as EBF1, PAX5, IKZF1, and VPREB1.7–9 Also consistent with

previous reports in B-ALL, we identified recurrent deletions involving

ETV6,CDKN2A, andBTG1.16–18 Ofnote, to increaseCNAcalling consis-

tency across different microarray versions, we only utilized CNA calls

across genes if the region of aberration was at least 50 kb. The pres-

enceof smallermicro-aberrations couldpotentially increase thepreva-

lence rates we observed.

In contrast to B-ALL, genomic studies of B-LBL are few in

number and include small numbers of cases. Maitra et al.3 reported

cytogenetic results from eight B-LBL cases, which lacked the char-

acteristic translocations of B-ALL. They found one case with hyper-

diploidy (>50 chromosomes) and three other cases with additional

chromosome 21 material. A more recent study of lymphoblastic lym-

phoma karyotypes included two patients with B-LBL. Both patients
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F IGURE 4 B-LBL 22q11.22 deletions resemble the deletion pattern associated with normal immunoglobulin lambda light chain rearrangement.
Deletions commonly seen in B-ALL are typically focal and rarely involve the lambda V-J function (red= deletion; blue= gain)

had massive aneuploidy: one patient showed a near tetraploid kary-

otype (84 chromosomes) and the other patient was hyperdiploid.14

Finally, a study by Schraders et al.15 compared B-ALL and B-LBL using

snap-frozen specimens from seven cases of B-LBL on Affymetrix SNP

array CGH. They detected chromosomal aneuploidies in all seven B-

LBL cases, and five of the cases (71%) showed high-hyperdiploidy

with 51–54 chromosomes. This rate is higher than that reported

by Maitra et al., and although the difference in testing methods

might contribute to this discrepancy, the inconsistency is most likely

caused by the small sample number in all of the reported studies

on B-LBL.

In our current study, by using FFPE tissue sections on archived glass

slides from two national clinical trials, we found that B-LBL shares

some genomic features with B-ALL including high frequencies of tri-

somy21 anddeletion of key genes (e.g.,CDKN2A, IKZF1, andPAX5).We

demonstrated a trend toward less frequent deletion of B-cell devel-

opment genes in B-LBL versus B-ALL, but this may in part be related

to the relative higher frequency of hyperdiploidy (43%), which in B-

ALL is associated with a decreased incidence of such deletions.7 Our

report of higher rates of hyperdiploidy is in agreement with that of

Schraders et al.15 and helps to validate hyperdiploidy as a hallmark

feature of B-LBL. However, the hyperdiploidy of B-LBL is distinct

from that of B-ALL, as triple trisomy (4, 10, and 17) cases were not

identified.

Previous studies of T lineage ALL and LBL identified differences in

loss of heterozygosity patterns on chromosome 6q and differences in

gene expression profiles between T-LBL and T-ALL.19–21 In our study,

we have now likewise identified differences betweenB-LBL andB-ALL.

The pattern of deletions within the IGL locus on 22q11.22 in B-LBL is

also distinct from what has been seen in B-ALL, where we have previ-

ously showed a high incidence of focal IGL deletions that are abnormal

and do not represent immunoglobulin light chain rearrangement. Such

focal deletions were not seen in B-LBL; however, contiguous IGL dele-

tions, which are consistentwith normal Ig light chain rearrangement as

seen in normalmature B cells ormature B-cell lymphomas (e.g., Burkitt

lymphoma), were identified in B-LBL (22%) despite being very rare in

B-ALL (2%). These findings indicate that B-LBL shows genomic fea-

tures distinct from B-ALL that could indicate pathogenic differences.

Although further study will be required, these differences could indi-

cate that B-LBL is derived from a slightly more mature stage of B-cell

than B-ALL.

In summary, we performed SNP microarray analysis utilizing FFPE

B-ALL and B-LBL samples. Our B-ALL CNA results are similar to those

found in fresh-frozenB-ALL tissue cohorts, andourB-LBLfindings indi-

cate genomic similarities as well as differences between B-ALL and

B-LBL. The significant genomic similarities suggest that treatment of

B-LBL according to B-ALL protocols may be appropriate, but this will

need to be confirmed in future prospective clinical trials that include

genomic characterization of B-LBL. This is the largest high-resolution

SNP microarray study of B-LBL to date and the first such study utiliz-

ing clinically archived FFPE B-ALL samples. This approach could be of

particular value in the future for studying other pediatric lymphomas

as well as uncommon B-ALL presentations for which frozen tissues are

not available.
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