CHEMISTRY A European Journal

Supporting Information

Counterion-Controlled Self-Sorting in Amphiphilic Calixarene Micellar System

Silvia Fernández-Abad,^[a] Márcia Pessêgo,^[b] Nuno Basílio,^[b] and Luis García-Río*^[a]

chem_201504649_sm_miscellaneous_information.pdf

Counterion-Controlled Self-Sorting in Amphiphilic Calixarene

Micellar System

Silvia Fernández Abad,^a Márcia Pessêgo,^{a,b} Nuno Basílio^b and Luis García-Río^a

Supporting Information

Determination of the CMC in presence of TEA

Figure S1. Plot of the electrical conductivity of SC4TB in presence TEA (3x10⁻³ M).

PBS buffer and Na⁺ influence on DMSI fluorescence spectra.

Figure S-3. Fluorescence spectra of DMSI (10 μM) in the presence of 10mM PBS buffer (pH=6.90) at different NaCl concentrations. [NaCl]=1mM; 15mM; 30mM; 60mM; 90mM; 100mM.

Influence of DMSI on the critical micelle concentation of SC4TB.

1400

Figure S-4. Conductimetric determination of CMC for SC4TB in the absence of additives at 25°C. cmc=3mM.

Figure S-5. Conductimetric determination of CMC for SC4TB in the presence of 0.1mM of DMSI at 25°C. cmc=3mM.

Figure S-6. Conductimetric determination of CMC for SC4TB in the presence of 1.0mM of DMSI at 25°C. cmc=3mM

[SC4TB]/M

Derivation of distribution model

Based in Scheme 3 of the manuscript the following set of equations can be proposed:

$$[H]_0 = [H]_w + [H]_M + [HG]_w + [HG]_M$$
(1)

$$[G]_0 = [G]_w + [G]_M + [HG]_w + [HG]_M$$
(2)

Above the CMC and if $CMC >> [G]_0$

$$[H]_{M} = [H]_{0} - CMC \tag{3}$$

$$K_{\rm H:G}^{\rm w} = \frac{[{\rm HG}]_{\rm w}}{[{\rm H}]_{\rm w}[{\rm G}]_{\rm w}} \qquad \qquad K_{\rm H:G}^{\rm M} = \frac{[{\rm HG}]_{\rm M}}{[{\rm H}]_{\rm M}[{\rm G}]_{\rm W}} \qquad \qquad K_{\rm S}^{\rm M} = \frac{[{\rm G}]_{\rm M}}{[{\rm H}]_{\rm M}[{\rm G}]_{\rm w}} \tag{4}$$

By combining the above expressions a quadratic equation is obtained that allows determination of the concentration of monomeric free host:

$$a[H]_w^2 + b[H]_w + c = 0$$
 (5)

with:

$$a = K_{H:G}^{w}$$

$$b = 1 + (K_{S}^{M} + K_{H:G}^{M} + K_{H:G}^{w})[H]_{M} + K_{H:G}^{w}([G]_{0} - [H]_{0})$$

$$c = (K_{S}^{M} + K_{H:G}^{M})[H]_{M}^{2} + \{([G]_{0} - [H]_{0}) K_{H:G}^{M} - K_{S}^{M}[H]_{0} + 1\}[H]_{M} - [H]_{0}$$

The concentration of free guest is given by:

$$[G]_{w} = \frac{[G]_{0}}{(1 + K_{MG}[H]_{M} + K_{M}^{1:1}[H]_{M} + K_{W}^{1:1}[H]_{w})}$$
(6)

and the concentration of the complexes is given by the respective equations for the equilibrium constants (equation 4).