CHEMELECTROCHEM

Supporting Information

Rechargeable Metal–Air Proton-Exchange Membrane Batteries for Renewable Energy Storage

Masahiro Nagao,^[a] Kazuyo Kobayashi,^[a] Yuta Yamamoto,^[b] Togo Yamaguchi,^[c] Akihide Oogushi,^[d] and Takashi Hibino^{*[a]}

celc_201500473_sm_miscellaneous_information.pdf

Figure S1. Change in the O_2 and H_2O concentrations over the RuO_2/C cathode during charge and discharge at room temperature, where the current density was set at 10 mA cm⁻².

The O_2 , H_2O , and CO_2 concentrations in the outlet gas from the electrode during charge and discharge were analyzed using online gas chromatography (GC; Varian CP-2002). The validity of Reaction (2) was confirmed by analyzing the outlet gas from the RuO₂/C cathode. Although the accuracy of this analysis is not high, especially for H_2O , because the measurement was conducted at a low current density of 10 mA cm⁻², the H₂O concentration decreased and the O₂ concentration increased during charge, and vice versa during discharge