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Abstract.- This paper documents congruence in geographical patterns of speciation for four clades
of birds having taxa endemic to the same areas within the Neotropics. Two genera, Pionopsitta
parrots and Selenidera toucans, corroborate a well known biogeographic disjunction in which taxa
endemic to southern Central America and the Choco region of northwestern South America are
the sister-group to a radiation within the Amazon basin. These two genera, along with two lineages
within the toucan genus Pteroglossus, also document a pattern of historical interrelationships for
four well known areas of endemism within Amazonia: Guyanan + (Belem-Para + (Inambari +
Napoj).

These generalized historical patterns are interpreted to have arisen via fragmentation (vicariance)
of a widespread ancestral biota. A review of the paleogeographic evidence suggests that these
vicariance events could have originated as a result of several different mechanisms operating at
various times during the Cenozoic. The inference that diversification of the Neotropical biota is
primarily the result of the most recent of these possible vicariance events, namely isolation within
Quaternary forest refugia, is unwarranted, given present data. These patterns of historical congru
ence are also interpreted as direct evidence against the hypothesis that diversification of the forest
biota was a consequence ofpara patrie differentiation along recently established ecological gradients.
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The origin and evolution of biotic diver- clades ofthose biotas. By searching for con
sity remains a central problem within evo- gruence in the historical patterns of differ
lutionary biology. The hypothesis that spe- entiation, we can evaluate the relative con
ciation is predominately allopatric has been tributions that dichopatric (vicariant) and
highly corroborated over the past 50 years peripatric modes of speciation have made
(evidence summarized in Mayr [1942, to the evolution of diversity within conti
1963]; Bush, 1975; Futuyma and Mayer, nental biotas (Rosen, 1978; Cracraft, 1982,
1980), thus it is generally agreed that biotic 1983a, 1983b, 1986; Wiley, 1981; Wiley
diversity is the result of episodes of differ- and Mayden, 1985).
entiation within spatially isolated popula- Systematic and biogeographic analyses of
tions, accumu1ated over time. Allopatric dif- the Neotropical biota in general and ofbirds
ferentiation is now postulated to develop in in particular have played a central role in
two ways-by vicariance ofwidespread an- our current models of biotic diversification
cestral populations following the inception (Haffer, 1969, 1974, 1982, 1985; Simpson
ofa physiographic or ecological barrier (type and Haffer, 1978; Vuilleumier, 1971). At
Ia of Bush [1975]; dichopatric of Cracraft this time, the refuge hypothesis (Haffer,
[1984]), or by long-distance dispersal across 1969; Simpson and Haffer, 1978; Prance,
a preexisting barrier (peripatric speciation 1982a) is the most widely accepted model
of Mayr [1982a]). Some workers (Mayr, for the evolution of the Neotropical biota.
1963 p. 513, 1982a, 1982b; Bush, 1975) According to this model, speciation pat
have postulated that peripatric speciation is terns of Neotropical faunal elements arose
the more common of the two modes. Yet, as a result of cyclical expansion and con
if we are to understand processes of faunal traction of the forest and nonforest habitats
assembly within continental biotas, it will during Quaternary climatic fluctuations
first be necessary to documentthe historical (Haffer, 1969, 1970a, 1974, 1977, 1979,
patterns ofspeciation within the component 1981, 1982, 1985).
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Patterns ofendemism (Muller, 1973; Haf
fer, 1974, 1978; Cracraft, 1985) and geo
graphic variation (Haffer, 1970a, 1974; Haf
fer and Fitzpatrick, 1985) have been
established for many groups of Neotropical
birds. Despite this information, we suffer
from an almost complete lack of under
standing about the phylogenetic patterns of
avian differentiation within the Neotropics
or about the existence of spatial and tem
poral congruence in those patterns. The pur
pose of this paper is to present evidence for
one such pattern ofhistorical biogeographic
congruence within the Neotropical biota
based on phylogenetic hypotheses for four
clades of birds.

MATERIALS AND METHODS

Evolutionary Taxa
This study examines spatial patterns of

cladogenesis using discrete evolutionary
taxonomic units or "phylogenetic species"
(Nelson and Platnick, 1981; Cracraft, 1982,
1983a, 1986, 1987). These taxa may be di
agnosed in terms of unique combinations
of discrete characters, and they cannot be
further subdivided on the basis of diagnos
tic character variation into smaller units (i.e.,
these taxa are basal). Many basal taxa with
in birds have been united into a variable
number of "biological species," either be
cause it is presumed that the forms have not
differentiated sufficiently to be reproduc
tively isolated or because some specimens
within zones of sympatry are considered to
be hybrids. As is well known, however, pat
terns of reproductive cohesion and disjunc
tion among populations do not necessarily
parallel phylogenetic patterns ofdifferentia
tion (Cronquist, 1978; Rosen, 1978; Cra
craft, 1983a, 1987). Hence, phylogenetic,
not "biological," species must be used to
reconstruct the spatial history of differen
tiation. Both species concepts will provide
the same pattern only when all included
"biological species" are monotypic taxa.

Because we employ basal taxa that are
defined in terms of discrete character vari
ation, we will not be concerned with non
discrete (continuous) variation such as that
found along clines. This type of variation,
although critical for examining the popu
lation-level dynamics of differentiation,
cannot be used to delimit taxa or to for-

mu1ate genealogical hypotheses. A major
problem facing evolutionary biologists is
whether observed discrete taxa arose sym
patrieally, parapatrically, or allopatrically.
The analysis of historical pattern is critical
for evaluating the potential influence ofthese
different modes (Wiley, 1981; Cracraft,
1982), and the use of discrete basal taxa
does not prejudge what those patterns might
be or how they might be interpreted (the
evolutionary significance ofclinal variation,
for example whether it is the result of pri
mary or secondary intergradation, is in part
dependent upon a correct resolution of his
torical pattern). Complete understanding of
patterns and processes of diversification
within any biota will require analyses ofboth
discrete and nondiscrete variation, but
identification of postulated patterns of vi
cariance and evaluation oftheir significance
necessitates analysis of diagnostically dis
crete taxa.

Phylogenetic Analysis
Phylogenetic hypotheses were generated

by cladistic analysis (Eldredge and Cracraft,
1980; Wiley, 1981; Nelson and P1atnick,
1981), using the numerical cladistic pro
gram, Phylogenetic Analysis using Parsi
mony (PAUP) of D. L. Swofford (1985).
Character variation was studied using spec
imens housed in the American Museum of
Natural History (New York), Field Museum
of Natural History (Chicago), Museum of
Comparative Zoology (Cambridge, MA),
and the University ofMichigan Museum of
Zoology (Ann Arbor), and external mor
phological characters were coded binarily
into primitive-derived character-states us
ing outgroup comparison (see above refer
ences and Maddison et al. [1984]). In all
cases, outgroup taxa were easily identified
and included species in closely related
species-groups or genera (see Results).

In order to examine the preliminary hy
pothesis of ingroup monophy1y and to eval
uate alternative interpretations of polarity,
minimum-length trees were generated using
the unordered character option of PAUP.
This option permits all possible character
state transformations and thus does not
make a prior judgment about character po
larity. The results presented below, how
ever, were produced using the ordered char-
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acter-state option based on the hypothesized
polarity sequences. PAUP generates un
rooted networks, and these trees were root
ed by specifying an outgroup taxon as that
root.

RESULTS

Patterns ofDifferentiation

The four clades discussed in this section
were chosen because they exemplify con
gruence in their spatial pattern of differen
tiation. Each clade consists ofthree or more
nonsympatric, basal taxa distributed within
established areas ofendemism (Haffer, 1974;
Cracraft, 1985), and together they produce
four independent area-cladograms for the
historical interrelationships of these areas.
We have undertaken analyses of other
groups, and congruent patterns different
from the results presented here have been
discovered (Prum, 1982, 1988; Cracraft,
unpubl.); these other patterns will be de
scribed elsewhere. Theoretically, conflicting
general patterns such as these are to be ex
pected, inasmuch as all continental biotas
have had a long complex history, with pa
leogeographic and paleoclimatic events
having influenced spatial patterns of differ
entiation differently among groups. The key
to unraveling this complexity, we suggest,
is to delineate these different congruent pat
terns and then seek to resolve any conflicts
among them by recourse to still more gen
eral explanatory hypotheses.

Pionopsitta. - The parrot genus Pionop
sitta (Psittacidae) consists ofeight (possibly
nine) evolutionary taxa distributed allopat
rically in Central and South America (Fig.
1). Haffer (1970a pp. 290-295) discussed
the distributional patterns of the forms of
the Amazon basin, northwest South Amer
ica, and Central America. He recognized six
species but did not treat another species in
cluded here, P. pileata. Forshaw and Cooper
(1973 pp. 487-494) accepted six species in
the genus, but placed P. vulturina in its own
genus, Gypopsitta, based on numerous de
rived characters. Differences in species lim
its between these two studies and the phy
logenetic species of this analysis are
relatively minor. Both Haffer (1970a) and
Forshaw and Cooper (1973) combined P.
haematotis and P. coccinicollaris into a sin
gle biological species, but we recognize them

as phylogenetically differentiated taxa. Two
subspecies of P. barrabandi have been rec
ognized by previous workers. The form dis
tributed south ofthe Amazon, aurantiigena,
was described by Gyldenstolpe (1951 pp.
67-68) as having bright orange on the
cheeks, bend of the wing, and thighs, com
pared to the more yellowish or yellow-or
ange color ofnominate barrabandi. We have
been unable to confirm this distinction, be
cause critical specimens are few in number
and appear to show some gradation in color
(specimens in the Louisiana State Univer
sity Museum of Zoology also suggest that
these two forms may not be distinct; J. V.
Remsen, pers. comm.). We plot the distri
butions of both forms in Figure 1 but rec
ognize one species in the systematic anal
ysis. A close relative, H apalopsittaca
melanotis, was used as a root for the tree
and, along with other South American par
rots, as an outgroup in the character analysis
(Hapalopsittaca and Pionopsitta are united
by having a green tail, tipped with dark blue).

Phylogenetic analysis using 26 characters
(Table 1) revealed a single most parsimo
nious tree (29 steps, consistency index of
0.897; Fig. 1). The genus is divisible into
two basal lineages: P. pileata of the Serra
do Mar center ofendemism in southeastern
coastal Brazil is the sister-species of all the
remaining species. This latter clade exhibits
a cis-trans-Andean pattern of relationships.
Thus, one lineage shows a Choco-Central
American (trans-Andean) distribution: P.
haematotis, distributed from western Pan
ama north to southern Mexico, is the sister
species of P. coccinicollaris of eastern Pan
ama and northwestern Colombia (western
part ofthe Nechi center ofendemism); these
two taxa are, in turn, the sister-group of P.
pulchra of the Choco, This lineage is the
sister-group of a larger species-group dis
tributed in the Amazon basin (cis-Andean).
Within this latter clade, P. caica ofthe Guy
anan center of endemism is the sister-taxon
of three well-defined species: P. pyrilia of
northwestern Colombia from Lake Mara
caibo to the northern part of the Choco, and
its sister-pair, P. vulturina of the Para and
Belem (Maranhao) centers ofendemism and
P. barrabandi of the Napo (nominate bar
rabandi) and Inambari (aurantiigena) cen
ters.
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FIG. 1. Distributions and a phylogenetic hypothesis for the differentiated taxa of the genus Pionopsitta. A
tree of 29 steps (consistency index = 0.897) was produced based on an analysis of 26 ordered characters (Table
I). Distributions are from Haffer (1970a fig. 4) and Forshaw and Cooper (1973). Parallelisms are indicated by
underlining, and reversals are indicated by negative numbers.
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FIG. 2. Distributions and a phylogenetic hypothesis for the differentiated taxa of the genus Selenidera. Species
in the genus Andigena were used as an outgroup and root for the tree. A tree of 21 steps (consistency index =
1.00) was produced using 21 ordered characters (Table 2). Distributions are after Haffer (1974 fig. 16.22 and p.
240).

The relationships shown in Figure 1 are
strongly supported by the data of Table 1,
with only one case of parallelism (character
11) and one reversal (character 10). Haffer

(1985 pp. 134-135) proposed that P. caica
is most closely related to P. vulturina and
that they are, in tum, the sister-group of P.
barrabandi. He presented no evidence to
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support this hypothesis, however, and the
data presented in Table 1 and Figure 1 do
not corroborate those relationships.

Selenidera. - Toucans of the genus Sele
nidera (Ramphastidae) include seven dif
ferentiated taxa distributed in Amazonia,
southeastern Brazil, northwestern Colom
bia, and Central America (Fig. 2). Haffer
(1974) presented detailed distributional and
systematic data. Although Haffer (1974 p.
189) proposed a general phylogenetic hy
pothesis for the species in the Ramphasti
dae, it was not supported by character-state
data and differs significantly from those pos
tulated here for Selenidera and two clades
within Pteroglossus (Prum, 1982, unpubl.).
Within Selenidera, character polarity was
hypothesized based on outgroup compari
son to its probable sister-group, the genus
Andigena, and to other toucans (Prum, 1982,
unpubl.).

The hypothesis diagramed in Figure 2
represents the most parsimonious tree for
the 21 characters of Table 2 (because ofthe
trichotomy, three dichotomous trees are
possible). The tree has a length of 21 steps
and a consistency index of 1.00, thus indi
cating no homoplasy in the data. This phy
logenetic hypothesis for Selenidera displays
a primary cis-trans-Andean distribution.
Selenidera spectabilis of the Choco and
Central America is the sister-species of the
entire Amazonian radiation. Within this
Amazonian clade, S. culik of the Guyanan
area ofendemism is the sister-species ofthe
five remaining Amazonian taxa. Selenidera
maculirostris of the Serra do Mar center in
southeastern coastal Brazil and S. gouldii of
the Para and Belem centers form a clade.
Among the west Amazonian forms, S. rein
wardtii of the Napo area and S. langsdorffti
of the Inambari center are sister-species.
These two phylogenetic species are known
to hybridize in Peru and are sometimes
placed in a single biological species (Haffer,
1974 p. 241). The relationships of S. nat
tereri are unresolved by this data set, and
consequently a trichotomy is recognized in
Figure 2.

With the exception of S. nattereri, the
relationships of these species (Fig. 2) are
well supported by the available evidence
(Table 2). Haffer (1974 p. 189) suggested a
very different genealogical arrangement,

with the genus being divisible into two lin
eages: culik + (gouldii + maculirostris) and
nattereri + treinwardtii + spectabilis). Our
analysis indicates that character data for ex
ternal morphological features are inconsis
tent with that hypothesis.

Pteroglossus. - The genus Pteroglossus
(Ramphastidae) contains approximately 30
differentiated taxonomic units distributed
over much of tropical America (Haffer,
1974). We will discuss here two monophy
letic species-groups having patterns ofende
mism within the Amazon basin; the phy
logenetic relationships of the entire genus
will be considered elsewhere (Prum, un
publ.). The distributions of the two species
groups are shown in Figures 3 and 4, along
with phylogenetic hypotheses depicting
their relationships. For each analysis, out
group taxa included other Pteroglossus
species-groups (Haffer, 1974; Prum, 1982),
the genus Ballonius (which is the apparent
sister-group of Pteroglossus [Prum, 1982,
unpubl.]), and all other toucans.

Based on the character-state data shown
in Table 3, a single most parsimonious tree
(nine steps, consistency index = 1.00) was
found for the P. viridis species-group (Fig.
3). One species, P. viridis, is endemic to the
Guyanan center but also ranges westward
into the eastern portion ofthe Pantepui cen
ter. The sister-group ofP. viridis consists of
two differentiated taxa, P. inscriptus of the
Belem, Para, and Rondonia centers ofende
mism, and P. humboldti, endemic to the
Inambari and western portion of the Napo
center. Haffer (1974 p. 215) considered these
taxa conspecific because of intermediate
specimens in the region ofthe Rio Madeira.

A phylogenetic hypothesis (15 steps; con
sistency index = 0.933) for the second
species-group of Pteroglossus is presented
in Figure 4 and is based on the character
state data of Table 4. The bitorquatus
species-group is composed of six taxa, tra
ditionally divided into two biological species
(Haffer, 1974). The first consists of three
forms often united under the name P. bi
torquatus: reichenowi of the Rondonia cen
ter, sturmii of the Para center, and bitor
quatus of the Belem center. Although they
form a monophyletic group, we were unable
to resolve the interrelationships of these
three forms, and for convenience of discus-
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FIG.3. Distributions and a phylogenetic hypothesis
for the differentiated taxa of Pteroglossus viridis species
group. Other species in the genus and other genera of
toucans were used as outgroups and the root for the
tree. A tree of nine steps (consistency index = 1.00)
was produced using nine ordered characters (Table 3).
Distributions are after Haffer (1974 fig. 16.12 and p.
216).

sion they will simply be called "bitorqua
tus," The sister-group of"bitorquatus" con
sists ofthree differentiated taxa. One ofthese
forms, P. azara, is narrowly distributed in

TABLE 3. Character-state data for the Pteroglossus vir
idis species-group. Characters and character-states are
defined as follows. I) One or more colored bands on
yellow belly: 0 = present, I = absent; 2) female throat
color: 0 = black, I = brown; 3) female crown color:
0= blackish brown, I = chestnut; 4) red postocular
spot on facial skin: 0 = absent, I = present; 5) black
culmen stripe: 0 = present, I = absent; 6) bill largely
red at base: 0 = absent, I = present; 7) upper mandible
with dark brown wedge along lower edge: 0 = absent,
I = present; 8) upper mandible with incised vertical
striations: 0 = absent, I = present; 9) lower mandible:
o = black, I = extensively yellow with black incised
serrations on tomium.

Characters

Taxon 2 4 6

Outgroup 0 0 0 0 0 0 0 0 0
P. humboldti I I 0 I 0 0 0 I 0
P. viridis I I I I I I I 0 0
P. inscriptus I I 0 I 0 0 0 I I

azara slurmll reichenowi bilorqualus

FIG.4. Distributions and a phylogenetic hypothesis
for the differentiated taxa of Pteroglossus bitorquatus
species-group. Other species in the genus and other
genera of toucans were used as outgroups and the root
for the tree. A tree of IS steps (consistency index =
0.933) was produced using 14 ordered characters (Ta
ble 4). Distributions are after Haffer (1974 fig. 16.14
and p. 220). Each of the two equally parsimonious trees
requires a parallelism in either character 6 or II (both
of these possibilities are shown on the tree, but the tree
length is based on the calculation for either tree).

the Imeri center of endemism. Its sister
taxon, in tum, consists of P. flavirostris of
the Napo center and P. mariae of the In
ambari center, which are united on the basis
of a single character (brown on the lower
mandible). Some hybridization may occur
between flavirostris and mariae and be
tween azara and mariae (Haffer, 1974); with
respect to the latter two species, hybridiza
tion would be misleading if used as an in
dicator of sister-group relationships.

Historical Congruence ofBiogeographic
Patterns

The four clades analyzed here exhibit
congruence in their biogeographic patterns.
The historical interrelationships of areas of
endemism, as revealed by phylogenetic
analysis of the taxa, are remarkably similar
from one clade to the next. There are several
exceptions to this general pattern of con
gruence, and they raise important issues and
problems.
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TABLE 4. Character-state data for the Pteroglossus bitorquatus species-group. Characters and character-states
are defined as follows. I) Nostril openings narrow and notch-like: 0 = absent, I = present; 2) black culmen
stripe: 0 = present, I = absent; 3) upper mandible ivory color: 0 = absent, I = present; 4) upper mandible
entirely yellow-green: 0 = absent, I = present; 5) lower mandible: 0 = with black, I = entirely without black;
6) lower mandible: 0 = entirely black, I = black with proximal one-third greenish-white; 7) lower mandible
partially red-brown: 0 = absent, I = present; 9) throat color: 0 = black, I = dark brown; 10) wide red band on
upper breast: 0 = absent, I = present; II) thin yellow band between throat and breast: 0 = absent, I = present;
12) wide black band immediately posterior to red on breast: 0 = absent, I = present; 13) blood-red longitudinal
stripe on upper mandible: 0 = absent, I = present; 14) back with bright red anteriorly: 0 = absent, I = present.

Characters

Taxon 2 4 6 9 10 11 12 13 14

Outgroup 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P. bitorquatus I I 0 I 0 I 0 0 I I I 0 0 I
P. reichenowi I I 0 I 0 I 0 0 I I 0 0 0 I
P. sturmii I I 0 I 0 0 0 0 I I I 0 0 I
P. mariae I I I 0 I 0 I I I I 0 I 0 0
P. flavirostris I I I 0 I 0 I 0 I I 0 I 0 0
P. azara I I I 0 I 0 0 0 I I 0 I I 0

The genus Pionopsitta exhibits a major
biogeographic disjunction across the Andes,
with one lineage having differentiated iso
lates in Central America and the Choco, and
the other lineage having isolates in centers
ofendemism within the Amazon basin (Fig.
I). That same major dichotomy is also found
in Selenidera (Fig. 2). Within the Amazon
basin, moreover, both genera show an iden
tical biogeographic pattern with respect to
those areas of endemism held in common:
Guyanan + (Belem-Para + (Inambari +
Napo)).

Each genus has one biogeographic com
ponent not shared with the other. Pionop
sitta pyrilia is restricted to northern Colom
bia, and Selenidera nattereri is endemic to
the Imeri and western Pantepui region. The
relationships of the taxa found in the Serra
do Mar region of southeastern Brazil also
differ in the two clades. In Pionopsitta, this
species is the sister-taxon to the rest of the
clade, whereas in Selenidera the sister-group
of the Serra do Mar endemic is found in the
Para + Belem area. These findings imply
either dispersal or different ages for some
components of the Serra do Mar avifauna.

The two Amazonian lineages of Ptero
glossus (Figs. 3 and 4) are also congruent
with the biogeographic histories of Seleni
dera and Pionopsitta. In the viridis species
group (Fig. 3), the Belem-Para-Rondonia
species (P. inscriptus) is more closely related
to the Inambari-Napo species (P. humbold
ti) than either is to the Guyanan form (P.

viridisy; and in the bitorquatus species-group
(Fig. 4), the Inambari species (P. mariae) is
more closely related to the Napo species (P.
flavirostrisi than either is to the Belem-Para
Rondonia isolate ("bitorquatus"). The bi
torquatus species-group has a fourth species,
P. azara, whose distribution in the Imeri
center of endemism parallels that of Sele
nidera nattereri. The historical pattern be
tween these two latter species is congruent,
at least given our present ability to resolve
relationships within Selenidera.

The biogeographic patterns of the four
clades can therefore be generalized by a sin
gle historical hypothesis for all the non
unique areas (Fig. 5). The hypothesis spec
ifies the most precise set ofarea-relationships
supported by the phylogenetic patterns,
hence southeast Brazil (Serra do Mar) ap-

FIG. 5. A general hypothesis for the historical in
terrelationships of some areas ofendemism in tropical
America. Vicariance events, indicated by nodes of the
tree, are discussed in the text.
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pears as a composite, or biogeographic "hy
brid," area having component taxa with dif
ferent biogeographic histories. Four cladistic
events are corroborated by two or more
phylogenetic hypotheses (nodes 1-4 of Fig.
5) and thus define a core pattern requiring
explanation.

DISCUSSION

Speciation and Congruence: A Vicariance
Hypothesis

In a noncomparative approach to the
analysis ofspeciation, differentiation is typ
ically viewed as a series ofunique historical
events that cannot be understood unless
precise details about each of those events
are obtained. Comparative analyses that
search for congruence in spatial patterns of
differentiation among clades permit a dif
ferent approach to speciation analysis (Cra
craft, 1983a, 1986), one that challenges us
to seek unifying explanations for shared his
torical patterns (Platnick and Nelson, 1978;
Rosen, 1978).

We propose that the areas of endemism
and the corroborated pattern of historical
relationships (Fig. 5) arose as a result of a
series of vicariance events that segregated a
common ancestral biota. Restricting our
discussion to the core areas, the first event
is postulated to have partitioned this wide
spread Neotropical biota into Choco-Cen
tral American and Amazon basin compo
nents. The next three events subdivided the
Amazonian biota: the first isolated the re
gion that was to become the Guyanan center
of endemism; the second segregated the
southeastern part of the Amazon basin (Be
lem-Para-Rondonia centers) from the west
ern portion; and the third segregated the
western Amazon region into the Napo and
Inambari areas. This hypothesis thus pro
poses a specific sequence of relative ages for
the vicariance events, the endemic taxa, and
for the areas themselves (Fig. 5).

The vicariance hypothesis proposed here
is highly favored over an explanation that
invokes long-distance dispersal and isola
tion offounder populations (peripatric spe
ciation). A peripatric hypothesis would re
quire numerous parallel dispersal events
having similar temporal orders within each
of the four clades. Neither explanation can

be labeled as "simple" since both necessi
tate detailed conjectures about past events,
but the vicariance hypothesis is more
broadly explanatory, generalizable, predic
tive, and requires fewer ad hoc assumptions
than a peripatric hypothesis.

The idea that diversification within the
moist forest biota was primarily a result of
vicariance is not new. Indeed, the best
known and most frequently invoked expla
nation for the diversification ofthis biota
the refuge hypothesis-postulates a major
role for ecological vicariance of forest and
nonforest habitats due to alternating wetl
dry climatic events associated with Quater
nary glacial cycles (Haffer, 1969; Vuilleu
mier, 1971; Simpson and Haffer, 1978).
Other potential vicariance events, particu
larly the origin of physiographic barriers
(rivers or mountains, for example), were
proposed early in this century but lately have
been considered relatively unimportant as
causes of geographic isolation and specia
tion in the lowland forest biota (e.g., Haffer,
1979 pp. 115-117, 1981, 1982; Simpson
and Haffer, 1978 p. 510), although propo
nents of the refuge hypothesis may also ac
cept some species-level diversification prior
to the Quaternary (e.g., Haffer, 1983 p. 134,
1985 p. 138). We will discuss some general
aspects of the refuge hypothesis in the next
section; here we describe and compare the
possible vicariance events that might have
played a role in the origin of the core areas
of endemism shown in Figure 5.

In this treatment, we make no prior as
sumptions regarding the relationship be
tween the observed degree ofdifferentiation
and the age of the taxon. Systematic and
evolutionary biologists commonly adopt the
view that relative age can be estimated as a
direct function ofthe amount ofdivergence,
but this requires an explicit assumption of
constant rates of differentiation across all
taxa being compared. We know of no em
pirical reason to accept such an assumption,
and indeed to do so would preclude the un
biased use of systematic data to investigate
questions about evolutionary rates.

The temporal correlation of geological
climatological vicariance events with the
historical relationships postulated by gen
eral area-cladograms is problematic (see also
Rosen [1985] and Cracraft [1986]). Most
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geological data are not sufficiently fine
grained in their temporal and spatial scales
to be useful for interpreting biogeographic
patterns. Many geologic events, such as uplift
producing areas ofhigh relief, may take place
over such an extended period of time that
it is difficult to correlate them with specific
cladogenetic events, which may occur on
relatively more rapid time-scales. Finally,
paleoecological data are often incomplete
temporally and spatially and thus are usu
ally inadequate to specify the location and
age of postulated ecological barriers.

Central America-Chaco/Amazonia Vi
cariance Event (Fig. 5: Node 1). - Two dis
tinct hypotheses have been proposed to ex
plain the trans-Icis-Andean disjunction
between Choco-Central American taxa and
their close relatives in Amazonia. Long ago,
Chapman (1917 pp. 89,109-110) suggested
that many of the Choco endemics were iso
lated " ... from upper Amazonia before the
Andes had acquired a sufficient altitude ef
fectively to separate, as they do now, the
Tropical Zones at their eastern and western
bases." This endemic fauna, according to
Chapman, was then " ... cut off from that
of upper Amazonia by the Andean uplift."
Emsley (1965) also explained a trans-/cis
Andean distributional pattern within Heli
coniusbutterflies in terms oforogenic events
in the northern Andes.

The second hypothesis proposes that the
disjunction of these trans-Icis-Andean bio
tas was entirely or predominately ecological
and ofrelatively recent origin. Haffer (1967 a,
1967b, 1969, 1975) postulated that inter
change ofthe forest biota took place around
the northern end of the Colombian Andes
(across low passes) during Quaternary gla
cial cycles when sea level was lower and,
presumably, climates were more humid.
With the advent of interglacial periods, sea
levels rose, and the development ofarid en
vironments along the northern coast of Co
lombia and Venezuela partitioned the moist
forest biota from east to west.

The hypothesis that trans-leis-Andean
vicariance patterns resulted from physio
graphic changes has been largely rejected by
contemporary biologists, whereas the refuge
hypothesis has been extensively promoted
and accepted (see next section). Proponents
of the latter hypothesis, while generally dis-

counting Andean uplift as a potentially sig
nificant vicariance event (Haffer, 1967b p.
25, 1974 pp. 174-175, 1975 p. 71, 1979 p.
115), have provided little counterevidence
and, instead, have sometimes treated the
hypothesis of speciation in isolated Quater
nary refuges as an established fact (e.g., Haf
fer, 1967b p. 24, 1975 p. 71).

Evidence for either hypothesis is circum
stantial at best. Geological arguments for or
against the role ofphysiographic vicariance
events have all been formulated outside the
interpretive framework of plate tectonics.
Recent hypotheses about the paleogeo
graphic history of northwestern South
America and southern Central America
(Malfait and Dinkelman, 1972; Pindell and
Dewey, 1982; Burke et aI., 1984; Duncan
and Hargraves, 1984; Dengo, 1985; Smith,
1985) have identified a number of alterna
tive mechanisms, from uplift of mountains
to marine transgressions, that could have
separated eastern and western forest biotas
at various times during the Cenozoic. The
Cordillera Occidental of Colombia, essen
tially all of the Choco region, and southern
Panama are composed of oceanic (not con
tinental) crust that was accreted to the South
American margin (Case et aI., 1971, 1984;
Case, 1974; BurkeetaI., 1984; Dengo, 1985).
In this area, the Chucunaque Basin of east
ern Panama, the Uraba Basin of northern
Colombia, and the Atrato-San Juan Basin
of western Colombia (the "Bolivar geosyn
cline") accumulated from 3,000 m (in the
north) to as much as 10,000 m (in the south)
ofpredominately marine volcaniclastic sed
iments during the Tertiary (Case et aI., 1971;
Case, 1974; Dengo, 1985), thus implying
the presence ofvolcanic arcs in eastern Pan
ama and oceanic-derived uplands in west
ern Colombia (Cordillera Occidental, Ser
rania de Baudo) that would have supported
an ancestral Choco biota for most of the
Cenozoic.

In northwestern South America, moun
tain building has taken place virtually
throughout the Cenozoic. Due to interplate
compressional stresses, the Cordillera Oc
cidental was elevated as much as 5,000 m
in the middle Eocene (ca. 45 MY ago) and
the Sierra de Perija underwent its initial
uplift in the late Oligocene (ca. 25 MY ago)
and was apparently raised 3,000-4,000 m
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(Kellogg, 1984 pp. 244-245; see also sum
maries ofearlier literature by Van der Ham
men [1961], Haffer [1970b, 1974], and
Simpson [1975, 1979]).

Because substantial tectonic complexity
has characterized the northern Andes
throughout the Cenozoic (Irving, 1975), nu
merous physiographic barriers could have
arisen to produce vicariance of the forest
biota. Unfortunately, as a consequence of
this complexity, it may be impossible to
specify any particular event as being espe
cially important biogeographically. Certain
ly, uplift ofthe Sierra de Perija and the East
ern Cordillera-Merida Andes beginning in
the late Oligocene-Miocene (Irving, 1975;
Macellari, 1984) could have provided, at
some point in time, a barrier to many ele
ments of the lowland forest biota. Signifi
cantly, these major physiographic features
were in place prior to the Quaternary.

There can be little doubt that Quaternary
climatic cycles influenced the spatial pat
terns ofdifferent plant associations (Van der
Hammen, 1974), and such changes may
have been important in the Choco-Amazon
basin disjunction. Haffer's (1967b pp. 5-8)
hypothesis ofcycles of interchange between
the Choco and Amazonia during the Qua
ternary is based in part on the assumptions
that the Tertiary Colombian Andes were
"rather low mountain ranges" and that they
were uplifted primarily in the Pleistocene
(1967b pp. 5-6), thus providing the first
emergent lowlands to become forested. This
hypothesis is not entirely consistent with the
more recent geological data cited above. The
latter suggest that if the Choco and Ama
zonian biotas were interconnected during
the Quaternary, then faunal interchange may
have been possible only through very nar
row, relatively low-lying portals in the Ven
ezuelan Andes and, thus, was more restrict
ed than previously supposed.

Intra-Amazonia Vicariance Events (Fig.
5: Nodes 2-4). - We confine this discussion
to alternative hypotheses that explain the
historical interrelationships of the four ma
jor areas of endemism described earlier:
Guyana, Belem-Para, Napo, and Inambari
(Fig. 5). Without question, the predominant
explanation for the origin of areas of ende
mism within the Amazon basin has been
the refuge hypothesis (Haffer, 1969, 1974,

1977, 1979; Simpson and Haffer, 1978;
Vuilleumier, 1971; see also Prance [1982a]);
thus, areas of endemism are considered
manifestations ofQuaternary forest refuges,
within which differentiation has resulted
from ecological vicariance of widespread,
ancestral forest habitats. Despite disclaim
ers that not all Amazonian species arose in
the Pleistocene, proponents of the refuge
hypothesis have generally criticized alter
native explanations that postulate pre-Qua
ternary vicariance within the Amazonian
biota. The most important alternative hy
pothesis regarding a mechanism of vicari
ance has been the origin and development
ofbroad river valleys or epicontinental ma
rine transgressions. Distributions of many
species of plants and animals within Ama
zonia are frequently bounded by river sys
tems (e.g., Haffer, 1978 p. 71; Simpson and
Haffer, 1978 p. 510). The Guyana area of
endemism, for example, is bounded on the
south and southwest by the Amazon and
the Rio Negro and by the delta of the Ori
noco to the north; the Belem-Para (and
Rondonia) areas are bordered by the To
cantins, Tapajos, and Madeira-Beni rivers;
and the Inambari and Napo areas are sep
arated by the Amazon (Solimoes) and the
Marafion (Haffer, 1974; Cracraft, 1985).

A number of arguments have been in
voked against the role of major river sys
tems as agents of vicariance (Haffer, 1974
pp. 102-108, 1978 pp. 69-71,1979 p. 115,
1982 pp. 8-9, 1985 p. 137; Simpson and
Haffer, 1978 p. 510). Chief among these is
the observation that some closely related
taxa hybridize in the region of the head
waters, where the river barrier is much nar
rower. Yet, even though hybridization is
observed in some cases, this does not pre
clude the rivers having been the original
basis for vicariance for these taxa or for those
that do not hybridize; rivers are dynamic
entities and changes in their spatial history
may allow populations to come into contact
and, possibly, hybridize. A second argu
ment is that competition from those close
relatives (or other species), and not riverine
barriers, is responsible for maintaining geo
graphic isolation (see especially Haffer [1978
p. 70]). This argument is ad hoc and vir
tually incapable ofempirical assessment in
asmuch as any test would necessitate his-
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torical data that cannot be recovered. The
hypothesis also requires that allopatry can
be maintained by a process that can only
take place when populations are in contact.
The argument, moreover, does not speak to
the role of rivers as mechanisms of vicari
ance, even given the existence of competi
tion subsequent to differentiation.

A final argument against the importance
ofriverine vicariance is geological. It claims
that the Amazonian lowlands have been rel
atively stable physiographically for a very
long time and that the present river systems
are relatively young (Quaternary), primarily
because the Andes consisted only of inter
mittent, low-lying ranges until the P1io
Pleistocene orogeny (Haffer, 1974 pp. 128
130, 1979 p. 115, 1985 p. 137). The time
of the establishment of the major rivers of
the Amazon basin is unknown. Even ifQua
ternary in age, they might still have played
a major role in subdividing forest biotas. In
fact, however, many of these rivers, espe
cially the larger, well established drainage
systems, may be substantially older than the
Quaternary. Not only have the Brazilian and
Guyanan shields undergone uplift through
out the Cenozoic, the Andes have also con
sisted of significant uplands since the Late
Cretaceous (James, 1971; Zeil, 1979). The
Late Miocene-Pleistocene orogeny was only
the culmination of several previous orogen
ic events in the Eocene and Oligocene (Zeil,
1979 pp. 154-156). Thus, some major river
systems almost certainly have been in ex
istence throughout the Cenozoic. Haffer
(1974 pp. 128-129 [and elsewhere]) has dis
cussed the existence ofbroad epicontinental
marine transgressions at different times dur
ing the Tertiary and Quaternary and how
these undoubtedly fragmented the forest
biota. In summary, it seems reasonable to
conclude that the physiographic landscape
of Amazonia has been sufficiently diverse
and dynamic during the Tertiary to have
produced vicariance within the forest biota.

The above discussion is not an argument
against ecological vicariance as a result of
Quaternary climatic events (i.e., the refuge
hypothesis). We stress instead the need to
consider pre-Quaternary paleogeographic
and paleoclimatic changes as also being po
tentially important causal agents in pro
moting allopatry and differentiation within

the Neotropical biota. Unfortunately, pres
ent geoclimatic and geomorphological data
cannot be used to produce a geological area
cladogram that can be tested by the biolog
ical data.

The Refuge Hypothesis

Considerable data exist to document ex
tensive habitat change within the South
American biota as a result of Quaternary
climatic cycles (Haffer, 1974, 1979; Simp
son and Haffer, 1978; Prance, 1982a,
1982b), but that evidence is still inadequate
to corroborate the refuge hypothesis and is
likely to remain so because of the difficulty
of recovering a palynological and paleon
tological record of sufficient spatial and
temporal scale. Thus, acceptance of the ref
uge hypothesis must necessarily rely upon
the acceptance of numerous assumptions.
Prime among these is the conjecture that
most species-level taxa within the Amazo
nian biota are no older than the Pleistocene.
This is a logical consequence and critical
component of the refuge hypothesis, yet vir
tually no evidence has been offered in its
support. Recently, some authors have be
gun to question this assumption. Heyer and
Maxson (1982, 1983), for example, propose
that immunological distances among species
ofAmazonian and coastal Brazilian frogs in
the genera Leptodactylus and Cycloramphus
indicate divergence times as old as the early
Cenozoic in some cases (see Roberts and
Maxson [1985] for similar results for Aus
tralian Pleistocene "refuges"). Weitzman
and Weitzman (1982) also question the as
sumption that species diversity of Amazo
nian fresh-water fishes is a Quaternary phe
nomenon. Capparella (1988) has
investigated genetic divergence in three
species-groups ofmanakins (Pipridae) hav
ing populations on opposite sides of the
Amazon River. Based on the genetic-dis
tance/divergence-time calibration of Gu
tierrez et al. (1983), Capparella (1988) pos
tulates that some divergences may have
taken place as long as 2.65 MY ago. In fact,
transriverine genetic differentiation within
a single subspecies (Pipra coronata coro
nata) indicates a divergence 0.92 MY ago,
which is decidedly older than most episodes
of forest fragmentation postulated by the
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refuge hypothesis. Given the evidence for
potentially earlier vicariance events, as dis
cussed above, exclusive reliance on the ref
uge hypothesis requires an assumption that
only the most recent plausible mechanism
of vicariance is responsible for these bio
geographic patterns.

The refuge hypothesis remains a viable
explanation for the patterns of vicariance
documented in this paper, but considerable
problems exist with the method by which
this model is often applied. In the majority
of cases, Quaternary forest refuges are hy
pothesized to be located at restricted "core
areas" of maximal species diversity and on
either side of faunal "suture zones," which
represent congruent regions of secondary
contact (e.g., Haffer, 1974 pp. 143-144, 1981
p. 380,1982 pp. 15-17, 1985). By focusing
explicitly on the positions of hypothetical
forest refuges, however, investigators apply
a center-of-origin model to a biogeographic
process that involves both vicariant isola
tion and secondary expansion. Such inves
tigations place emphasis on the least gen
eralizable aspect of this model: namely,
expansion following allopatric isolation. The
initial vicariance of a wide-ranging forest
biota by some ecological-climatic change
should have a generalized effect on the en
tire biota, whereas the subsequent second
ary expansion away from localized refuges
is more likely to be influenced by ecological
factors that are unique and intrinsic to each
species. Core areas and suture zones are both
phenomena of this latter, less generalizable
aspect of the refuge model. Speculations
about the position of hypothesized refuges
or the pattern of expansion following vi
cariant isolation cannot themselves be used
to corroborate the refuge hypothesis. It is
for this reason, furthermore, that investi
gations using these methods have been un
able to test the parapatric model of differ
entiation (see next section). By employing
a vicariance model, it is possible to identify
historical patterns that could have resulted
from the generalizable portion of the refuge
model: namely, the segregation of the biota
by ecological-climatic events. These pat
terns, in turn, may be supported or refuted
by the results of future systematic investi
gations of additional elements of the biota
and then correlated with sequences of pos-

tulated vicariance events as revealed by
paleoecological data.

The Hypothesis ofParapatric
Differentiation

The large majority ofbiologists who have
attempted to explain diversity within Ama
zonia have done so using a model of allo
patric speciation via vicariance. Within the
context of this model, the central unre
solved questions remain the precise pattern
of area-relationships, their temporal histo
ry, and thus the identification of specific
vicariance events. A few workers have pro
posed an alternative hypothesis to explain
contiguous areas of endemism. They sug
gest that such patterns are the result ofpres
ent-day ecological barriers to gene flow and
that diversification within Amazonia is
therefore primarily a manifestation ofpara
patrie, not allopatric, processes (Endler,
1982a, 1982b; Benson, 1982; Beven et aI.,
1984). As an alternative explanation for di
versification of tropical forest biotas, the
parapatric model has been criticized by var
ious workers (Futuyma and Mayer, 1980;
Cracraft, 1982, 1985; Mayr and O'Hara,
1986).

The vicariance and parapatric models can
be most easily distinguished by the predic
tion of historical congruence. The former
model makes a specific prediction: histori
cal congruence will be expected among the
speciation patterns of taxa sharing areas of
endemism. The parapatric model, in con
trast, makes no such prediction. Whereas
some taxa may exhibit occasionally parallel
patterns of geographic variation across a
particular gradient of ecological change, an
expectation of historical congruence across
large spatial scales (i.e., among multiple areas
of endemism, whether contiguous or not) is
not deducible from any premises of the
parapatric model. Consequently, congru
ence in the historical patterns of differen
tiation within different clades, such as doc
umented in this paper, is the best possible
kind of evidence for preferring a vicariance
model as the primary explanation for biotic
diversification within the Neotropics. End
ler (1982a, 1982b) has suggested that clinal
gradients ofselection, which might produce
parapatric differentiation, will also affect the
characters used in cladistic analyses, there-
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by convergently producing congruent, hi
erarchical patterns in systematic characters
that are unrelated to true cladistic events.
We contend, however, that many postulat
ed derived characters, such as used here, are
very unlikely to have arisen and been main
tained by parallel directional selection across
each ofthese clades ofbirds, let alone across
other major taxonomic groups (e.g., plants,
insects, mammals) that have biogeographic
patterns ofendemism congruent with those
of birds. At present, the available empirical
data do not support the parapatric model.
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