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Abstract

Stroke is the leading cause of adult disability. The last decade has seen advances in basic
science research of neural repair in stroke. The brain forms new connections after stroke, which
have a causal role in recovery of function. Brain progenitors, including neuronal and glia
progenitors, respond to stroke and initiate a partial formation of new neurons and glial cells. The
molecular_systems that underlie axonal sprouting, neurogenesis and gliogenesis after stroke
have recently been identified. Importantly, tractable drug targets exist within these molecular
systems that might stimulate tissue repair. These basic science advances have taken the field
to its first scientific milestone: the elemental principles of neural repair in stroke have been
identified. The next stages in this field involve understanding how these elemental principles of
recovery interact in the dynamic cellular systems of the repairing brain. Emergent principles
arise out of the interaction of the fundamental or elemental principles in a system. In neural
repair, the elemental principles of brain reorganization after stroke interact to generate higher
order and distinct concepts of regenerative brain niches in cellular repair, neuronal networks in
synaptic plasticity, and the distinction of molecular systems of neuroregeneration. Many of these
emergent principles directly guide the development of new therapies, such as the necessity for
spatial and temporal control in neural repair therapy delivery and the overlap of cancer and
neural repair mechanisms. This review discusses the emergent principles of neural repair in
stroke as they relate to scientific and therapeutic concepts in this field.
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Emergent properties arise out of more fundamental properties in a given context and are distinct
or irreducible. As individual fish form a school, the synchronous and coordinated movements of
the group are distinct from the properties of the single fish'. A walk on a leafy street in the
summertime Midwest brings the sound of the cicada. As cicadas sing in a group, the song takes
on oscillating waves that emerge as properties with unique harmonics and function, distinct from
the screech of the single male”. In these cases the properties of the group do not directly relate
to properties of the single member, but emerge as elements uniquely related to the single
members when they aggregate.

Closer to_ home, synaptic plasticity is an emergent property of the molecular connections and
transmitter release in a single synapse, which reflects the activity patterns of that synapse
together with its interactions from adjacent synapses®. The migration of groups of cells in a three
dimensional environment takes on properties that are not present in isolated cell migration.
Migrating cells signal through group interactions that relay distant cues across the whole
population*, something metaphorically similar to the school of fish.

Tissue reorganization and repair after stroke shows emergent properties that stem from
interactions of individual elements in reorganizing brain tissue. The basic or elemental
properties of neural repair include axonal sprouting, neurogenesis, gliogenesis, and changes in
neuronal excitability in peri-infarct tissue. Each of these cellular events is a distinct and
definable property of the brain tissue response to stroke, and has irreducible elements in its
response. For example, reactive astrocytes downregulate the uptake of the inhibitory transmitter
GABA, and this causes an elevation in tonic GABA signaling and hypo-excitability of pyramidal
neurons adjacent to stroke®. In post-stroke neurogenesis, angiogenic vessels release
chemokines and growth factors that simulate immature neurons to migrate to areas of brain
injury adjacent to the stroke core®®. These individual neural repair events interact in the
aggregate and evolve over time to produce properties that are different, larger and more
impartant than then the properties of the single reactive astrocyte or migrating neuroblast. In a
definitional sense, the formation of new neurons®®, new oligodendrocytes®® or new
connections'""® has been interchangeably described as “repair” or “regeneration”. Both terms
connote a process of renewal and growth of tissues after injury, and are literally true in a limited
fashion in the"CNS after injury'. This review will discuss emergent properties of neural repair
from_.the «epidemiology of stroke to the synapse, highlighting areas of clinical translation
opportunity. These emergent properties are: Stroke is a Not a Killer but a Chronic and
Progressive Disabling Disease, Behavioral Activity Shapes Tissue Regeneration, Molecular
Memory Systems in Stroke Recovery (The Suffered is the Learned), Plasticity is a Risk for
Neuroprotection, The Brain forms Regenerative Cellular Niches during Repair and Recovery,
Engaging”CNS Tissue Regeneration is like Activating a Cancer, Neural Repair Therapies
Require Directed Effect, and Regeneration Does not Recapitulate Development.

Stroke is a Not a Killer but a Chronic and Progressive Disabling Disease

Stroke mortality is declining. Two years ago stroke slipped from the third leading cause of death
to the fourth' and this year it fell to the fifth leading cause of death'. This decline in mortality is
welcomed and stems from implementation of stroke guidelines and improved care in the acute
setting. Recent epidemiological studies indicate a decline in stroke incidence’®. However, even
with this decline in stroke incidence, mortality is declining faster than the reduction in
incidence’®. The prevalence of stroke is thus increasing. An emergent property of stroke
epidemiology is that stroke is ever more a chronically disabling disease: stroke victims survive
their stroke but not their disability. This stroke disability is substantial. Up to 80% of stroke
patients may ultimately recover the ability to walk short distances, but most do not achieve the
ability for community ambulation'’. Initially, 70% to 80% of people who sustain a stroke have
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upper-extremity impairment'®'?. As with gait, most of these patients will recover but many do not
regain functional use of the paretic arm In terms of personal function, 6 months after stroke a
substantial proportion (25%-53%) of people remain dependent in at least one ADL task?*?'.

What:-makes matters worse is that stroke is not just disabling as reflected in these statistics, but
stroke victims themselves show declines over time after their initial gains from
neurorehabilitation?*?°. Most of this decline may be due to inactivity and lack of task-specific
practice®®. This means that stroke disability progresses. The decline of stroke patients in initially
recovered neurological function over time after stroke, through dis-use or non-use of the
affected function, is a major target of outpatient neurorehabilitative therapies, such as
occupational, physical and speech therapy, but to only a limited success. Overall in the
epidemiology of stroke, the elemental facts of declining mortality, increasing prevalence and
progressing disability mean that the emergent epidemiology of stroke is that it is now a
chronically disabling and progressive disease. With no medical therapies that address
neurological recovery after stroke, developing treatments for this chronically disabling and
progressive disease becomes a research priority.

Behavioral Activity Shapes Tissue Regeneration

Stroke alters behavioral activity by directly changing neurological function, such as producing a
hemiparesis, incoordination or aphasia. Clinicians in turn alter behavioral activity after stroke
through neurorehabilitation, in which patients are placed in regimens of repetitive and task-
specific overuse of their affected function. The behavioral and neuronal activity of the brain
regions that undergo repair alter the cellular events that are occurring during tissue repair of
these brain regions. An emergent property in stroke neural repair is that behavioral activity
interacts with elements of cellular repair after stroke to create properties that are unique, and
unexpected.

An elemental process of repair is that axonal sprouting and the formation of new connections
after stroke occurs in brain regions that are damaged or partially de-afferented from the stroke.
Stroke'triggers new connections to form in motor, somatosensory and premotor cortex adjacent
to the stroke site, and in projections from cortex contralateral to the stroke site into distant
connections in the striatum, midbrain and spinal cord'"*#"32_ |n both contralateral cortex to the
stroke, and ipsilateral or peri-infarct cortex, animal models indicate that axonal sprouting
establishes new patterns of connections that are causally linked to recovery. In peri-infarct
cortex, when new connections are stimulated from motor to premotor cortex motor recovery is
enhanced, and when these same connections are blocked from forming motor recovery is
reduced™®®. In contralateral cortex, when new connections form in the cervical spinal cord,
reaching into the portion of the cervical spinal cord that has lost its original projection from the
stroke_site; this process mediates part of the motor recovery in a rat stroke model*® It appears
that axonal-sprouting is a widespread process after stroke, and that axonal sprouting in different
functional areas can control recovery in distinct neuronal systems, such as corticospinal or
premotor connections. These studies come from several distinct models of stroke in rats, mice
and primates. Axonal sprouting cannot be definitively identified yet in human imaging studies,
but the most extensive cortical re-mapping after stroke occurs in the same functional systems
and relative areas of peri-infarct cortex that undergo axonal sprouting in primates, rats and
mice'?. Also, the paradigmatic axonal sprouting marker, GAP43, was first studied in its
association with human stroke, where is induced in peri-infarct tissue®.

Behavioral activity is also highly likely to modulate the structure of axonal fiber tracts after stroke
in addition to the distal axonal connections of these fiber tracts in the spinal cord or peri-infarct
cortex. Human studies show that the structure of specific white matter tracts are associated with
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functional recovery after stroke, and can respond to behavioral activity’’®. The relationship of
white matter tract structure and axonal sprouting has not been determined. Human studies
image large white matter tracts and, through the diffusion of water, their myelination state and
their directional organization®’*°. Rodent studies image truly small axonal collaterals and fine
synaptic terminations within the cervical spinal cord®’>'. One set of studies is looking at the
cross-country electrical power transmission lines and the other is looking at the electrical wiring
of the end-user’s house. It is quite possible that a rehabilitation therapy may affect white matter
structure and myelination, and not affect axonal terminal fields; or that axonal terminal fields
may be affected and not gross structure of the myelin tract; or that both are affected by the
same behavioral therapy after stroke. Because both myelinated fiber tracts and axonal terminal
fields are sensitive to behavioral modulation®*°, both are likely altered to some degree after
stroke and through neurorehabilitative therapies. But at present, the role of behavioral activity in
modulating white matter structure after stroke has not been determined in animal models and
only larger white matter tracts can be studied in humans*'.

The lprocess of post-stroke axonal sprouting has basic cellular and molecular properties. Axonal
connections are confined by the expression of glial growth inhibitory molecules, such as NogoA,
EphrinA5 and chondroitin sulfate proteoglycans''? 2" Opposed to these glial growth
inhibitors, sprouting neurons activate a unique regenerative molecular program'""*. Outside of
stroke, behavioral activity in the normal adult brain, such as overuse or learning in a forelimb
task, induces local changes in synaptic connections on a small scale within the corresponding
motor cortex>>*>*_However, when the behavioral activity patterns of neurorehabilitative therapy
are added to the axonal sprouting response in stroke, emergent properties appear that are not
present in each of these two parent conditions.

Oneexample of the interaction of behavioral brain activity and axonal sprouting is seen in peri-
infarct. cortex after stroke. Stroke induces axonal sprouting in motor, somatosensory and
premotor areas in peri-infarct cortex. When glial growth inhibitors are blocked after stroke, this
axonal sprouting response is locally enhanced in these cortical areas'"*®. When glial growth
inhibitorsare blocked and the animal is forced to overuse the affected forelimb, a model for the
clinical approach of constraint-induced motor therapy, there is a magnitude of axonal sprouting
that ris"remarkable in the adult brain. New projections are formed from motor cortex to
widespread areas in prefrontal, orbitofrontal, temporal and parietal cortical areas in a substantial
re-mapping of mapping of the ipsilateral hemisphere®. The magnitude and pattern of axonal
sprouting that is seen when behavioral activity is modified under conditions of manipulation of
glial growth inhibitors emerges as unique, widespread and unpredictable from the two individual
conditions” which underlie this response: behavioral activity alone and glial growth inhibition
blockade ‘alone®. This emergent property suggests that neurorehabilitative therapy will have
great_power to shape neuronal connections when these connections are released from the
normal inhibition of the post-stroke brain (Figure).

Other types of post-stroke axonal sprouting are also responsive to behavioral activity patterns.
Axonal sprouting from the cortex contralateral to large strokes occurs in the projection from
sensorimotor regions to the cervical spinal cord. This axonal sprouting response is into the
portion of the cervical spinal cord that lost its corticospinal projection from the stroke site'** .
Blocking the myelin growth inhibitory protein NogoA or stimulating axonal sprouting with inosine
enhances this axonal sprouting response®*'. Stimulating behavioral activity after stroke, such
as with an enriched environment or repetitive forelimb tasks, also stimulates axonal sprouting
from the cortex contralateral to the stroke into this denervated spinal cord®®*'*2. When
increased behavioral activity and blockade of Nogo signaling are combined, there is a significant
increase in spinal cord axonal sprouting in stroke. However, if the behavioral activity increase
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occurs at the time of the Nogo blockade, the axonal sprouting is exuberant and aberrant in the
spinal cord and overall functional recovery is actually degraded—worse than in stroke alone. If
Nogo blockade is induced first, followed by the rehabilitative activity, axonal sprouting is more
targeted in the spinal cord and behavioral recovery is enhanced®. These findings, like those
noted-above in peri-infarct cortex, indicate that the combination of altered behavioral activity and
blockade of growth inhibitors produces emergent properties that are not expected from the
effects of either activity or growth-inhibitory interventions alone.

The Suffered is the Learned

The process of spontaneous recovery after stroke shares similarities with the process of normal
motor learning. Both involve similar neuropsychological characteristics, such as learned non-
use, mass action, contextual interference and distributed practice42. Both occur with similar
brain imaging changes in which an initially diffuse network of brain areas is funneled down with
learning, training or recovery into a core set of brain areas directly involved in the task. On a
cellular level, processes of memory formation and network changes in the post-stroke brain are
both associated with LTP-like phenomena and dendritic spine morphogenesis. On a molecular
level; learning and memory paradigms, such as in the hippocampus, are associated with
expression changes in stathmin, RB3, GAP43 and the Nogo signaling system, and these same
molecular-pathways are involved in recovery from stroke'?**. An emergent property in neural
repair after stroke is that molecular systems which mediate the synaptic plasticity that underlies
learning and memory are co-opted in brain injury to produce recovery of function.

There has been recent experimental testing of this idea. Two signaling processes that impact
the synaptic signaling in learning and memory have been implicated in recovery after stroke.
Tonic GABA receptors respond to extrasynaptic or ambient levels of GABA, are more sensitive
than 'phasic (synaptic) GABAa receptors and desensitize more slowly. These inhibitory
receptors can thus mediate an inhibitory chloride current that controls the baseline firing
threshold of pyramidal neurons*. Tonic or extrasynaptic GABA signaling is a target in the
learning ‘and memory field, as blocking this current promotes neuronal excitability in the
hippocampus and enhances learning and memory in many animal models**°. In stroke, tonic
GABA signaling is increased in peri-infarct cortex in a zone of cortex near the stroke site
(0.2mm adjacent to the stroke) and produces a hypoexcitable state in pyramidal neurons in
brain. regions that normally mediate recovery of function. This can be pharmacologically
reversed to enhance recovery in several rodent models of stroke at a considerable delay after
the infarct™®’.

The finding of increased tonic inhibition or effectiveness of agents that block tonic GABA
inhibition in promoting behavioral recovery has been reported in two models of cortical stroke in
two species (rat and mouse) by independent investigators®>*’. This replication meets part of the
goals-of stroke drug development guidelines (STAIR and STEPS criteria®®*?) and is fairly
rigorous in this field in terms of support. There remain additional studies that might enhance
these findings, such as testing in other stroke models. Clinically, the literature on tonic GABA
inhibition in humans after stroke is not strong because of the inability to measure tonic vs.
phasic GABA signaling in clinically available techniques. No technique in human studies (TMS,
tDC, MRI PET) can specifically measure tonic and not phasic inhibition®. Perhaps the closest
ability to replicate the findings behind the mechanism of increased tonic GABA inhibition in a
human study would be in measuring total extrasynaptic GABA levels, which in the mouse to be
elevated because of reduced astrocyte uptake of GABA after stroke®. However, the only ability
to measure GABA in humans is with [18]F-Flumazenil (which measures synaptic GABA receptor
binding occupancy) and GABA MRS MRI (which measures total GABA levels in a 2 x 2 mm
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block of brain tissue). Neither of these approaches is sensitive to phasic (synaptic) vs. tonic
(extrasynaptic) GABA levels or activity’>®'. Nonetheless, there are reports that good functional
recovery is correlated with declining GABA levels after stroke®**® and that motor learning is
associated with a reduced GABA level in motor cortex™.

These human and rodent findings on levels of inhibition after stroke imply generally that
manipulation of cortical excitability may modulate recovery. Transcranial direct current
stimulation (tDC) and theta burst magnetic stimulation (TMS) are methods to do this in humans.
Unlike the pharmacological manipulation of tonic GABA in rodent models of stroke, which
specifically manipulate excitatory neurons and preferentially those that have been impacted by
stroke®, tDC and TMS more grossly affect all of the brain tissue in the electrical or magnetic
field, and induce many distinct types of cortical circuits®™. Nonetheless, small scale studies
indicate that excitatory tDC or TMS over the ipsilesional hemisphere in stroke, or inhibitory tDC
over the contralateral hemisphere, may improve recovery after stroke®. Larger scale trials are
under way for this application®®*’.

Synaptic activity mediated by the AMPA subtype of the glutamate receptor is also a key process
in memory formation. Manipulations that enhance AMPA receptor signaling increase long term
potentiation and produce increased performance in many models of learning and memory®.
Positive allosteric modulators of the AMPA receptor, which enhance AMPA receptor signaling
only when glutamate is bound to the receptor, were originally developed as memory enhancing
drugs®. Termed AMPAKkines, these drugs stimulate learning and memory in normal conditions
and disease models®®. In stroke, AMPAkines also promote recovery of function. Specifically,
high impact AMPAKkines, which induce downstream production of BDNF, promote motor
recovery. This action is via BDNF production, rather than through the increased excitability of
AMPA receptor ion channel opening duration or amplitude. The action of AMPAkines after
stroke.occurs specifically in peri-infarct cortex, further indicating that stroke specifically alters
neuronal networks in regions of recovery in a way that parallels learning and memory function®'.
The | circuit-specific and regional effect (peri-infarct cortex) in modulating AMPA receptor
signaling after stroke with pharmacological means contrasts with the more generalized action of
tDC'and TMS in inducing excitatory circuits in the brain.

These data in tonic GABA and AMPA receptor signaling are supported by other studies in which
molecular processes that affect molecular systems first described in learning and memory
contexts also improve recovery after stroke®'. The ancient Greeks used the term “ta pathemeta
mathmeta”, the suffered is the learned. An emergent property in neural repair after stroke is that
the damage suffered from the infarct sets in place mechanisms of learning that can be
manipulated to promote recovery.

Plasticity is a Risk for Neuroprotection: timing for a neural repair therapy

The neuronal excitability in learning and memory systems after stroke that leads to enhanced
recovery,-and the increased behavioral activity in stroke rehabilitation that leads to enhanced
recovery, also define a key emergent concept: mechanisms that enhance neuronal plasticity
also de-stabilize a brain’s ability to deal with stress. Put more simply, enhancing neuroplasticity
at times in which the acute insult of the stroke is still present will make the stroke worse. In
studies with blocking tonic GABA signaling or enhancing signaling through the AMPA glutamate
receptor, when therapy was within three to five days from the stroke, GABA antagonists or
AMPA drugs make the stroke worse by increasing infarct size. When these therapies were
initiated after this three to five day period, they do not change infarct size and enhance motor
recovery>®. Many neural repair therapies enhance endogenous neuronal plasticity in ways that
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activate neuronal excitability, such as with enhancing signaling of the transcription factor Creb®’
and might be expected to also follow this timeline. This general principle of a trade-off between
enhancing the plasticity of a cell vs. ensuring its ability to withstand stress is seen in other
neuronal systems. Manipulations of the growth cone protein GAP43 enhance the ability of a
neuron to‘grow a new axon after injury but also increase the level of cell death from that very
same injury®?®®. Neuronal cell types with the greatest resistance to cell death after injury usually
also have the lowest regenerative capacity, such as Purkinje cells; whereas neuronal cell types
with the greatest regenerative capacity after injury also suffer the most cell death when injured,
such-as inferior olivary neurons®. In neuronal sites as diverse as the optic nerve, dorsal root
ganglion and cortex, lesions closest to the cell body provoke the greatest amount of cell death,
but also induce a greater regenerative response—compared to lesions distant from the cell
body in which there is little cell death and also little regeneration®®®. Outside of these
experimental lesion and molecular observations, increasing the activity of the motor system
early after stroke may exacerbate the stroke insult itself in animal models even though this
same activity will lead to improved recovery at a later period after stroke®.

Based on this transition from stroke damage to stroke repair, the timing of an activity or plasticity
therapy in human stroke, based on animal model data, is not exactly clear. The early events of
inflammatory cell infiltration and astrocytosis appear to follow similar time courses in rodent and
human. The recovery curve for rodents also has a similar shape and ceiling to that of humans,
except constricted to the first month after stroke in rodents and to the first three months after
stroke in humans®®. In humans, early and increased neurorehabilitative therapy after stroke
may also worsen outcome compared to similar neurorehabilitative therapies introduced later™.
The ‘early time period in this VECTORS trial was 9 days after stroke”. Thus, it may be inferred
that starting a neuroplasticity therapy earlier than the first week after stroke in humans positions
this therapy within a window of risk for exacerbation of the initial stroke damage.

The ropposite applies in this emergent principle as well: treatments that protect the brain in
stroke may worsen behavioral performance if given during the recovery phase®. Glutamate
receptor antagonists and GABA receptor agonists reduce neuronal excitability and stroke size
when given early after stroke, but degrade behavioral performance and recovery when given
later after stroke®®’". The upshot of this emergent concept in stroke neural repair is that
treatments. that promote plasticity and recovery must clearly be distinguished from treatments
that promote stability and protection, and a timeline developed in which each has its own
window.
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The Brain forms Regenerative Cellular Niches during Repair and Recovery

Stroke triggers regenerative responses in neural stem cells and glial progenitors that mediate
some aspects of repair. The term “regeneration” is far-reaching in its implication but literally true
in its application to the limited processes of neurogenesis®®, oligodendrocyte generation®' and
formation of new connections after stroke'? in that these processes form new circuits and cells
in the brain after destructive injury. In post stroke neurogenesis, the multipotent neural stem
cells and transit amplifying cells in the subventricular zone respond to stroke and proliferate.
Immature neurons produced from these progenitor cells migrate to areas of injury and can
differeéntiate into mature neurons with local synaptic connections and long distance projections®
8  Ablation of newly derived immature neurons after stroke causes reduced recovery’.
Immature neurons localize to angiogenic blood vessels in damaged tissue and are stimulated to
migrate by growth factors or cytokines released by these vessels®®. However, despite a robust
initial neurogenic response, most of these immature neurons die. Post-stroke neurogenesis has
been reported in human stroke, by utilizing tissue staining for protein markers of immature
neurons in autopsy material’*’>. However, a lack of post-stroke neurogenesis has been
reported in human cortical stroke, using "C labeling of newly born cells”. Both techniques have
limitations-in specificity and sensitivity, and may also miss a transient neurogenic response after
stroke that is limited in size and then stopped’”’®. Because of the nature of human studies, a
definitive finding of clinical post-stroke neurogenesis remains lacking.

Stroke also stimulates oligodendrocyte progenitor cells (OPCs) to divide and partially
differentiate adjacent to the lesion®'?, a form of post-stroke gliogenesis. This has also been
reported in human stroke’. Further white matter remodeling occurs in humans with stroke and
with' therapies that promote recovery in human stroke®®. OPCs carry the capacity to
differentiate into mature oligodendrocytes and are in a position to mediate neural repair, as
occurs in the initial stages of multiple sclerosis. However, glial progenitor cells after stroke do
not appear to differentiate into oligodendrocytes as in multiple sclerosis and the damage
produced to myelinated fiber tracts is even worse in aged animals after white matter stroke®.
This age effect on OPC and white matter responses appears to be mediated by greater local
inflammation in the aged brain® and by intrinsic differences in aged OPCs®3. In another aspect
of gliogenesis, stroke induces proliferation of astrocytes adjacent to the lesion®*® and a
remarkable generation of new astrocytes from neural progenitor cells that migrate from the
subventricular zone®®. Astrocytes proliferate near human stroke®® but the role of this
generation of new astrocytes immediately adjacent to stroke in recovery remains to be defined.

Neurogenesis and gliogenesis involve elemental cellular programs of tropism, migration and
stimulation (neurogenesis) or inhibition (gliogenesis) by inflammation. However, these elemental
cellular responses occur within the larger context of multi-cellular niches. Post-stroke
neurogenesis occurs within a neurovascular niche in which angiogenesis and neurogenesis are
causally inter-connected®®. Gliogenesis occurs in a zone of reactive astrocytes and damaged
axons and in both rodents and humans and appears limited by cues from these cellular
compartments®®. The emergent property of tissue regeneration after stroke is that neural
progenitor.responses occur in regenerative cellular niches within damaged tissues that are
transient and unique to the injured brain. The concept of a progenitor niche in neural repair after
stroke is informed by the concept of the stem cell niche. The original description of the stem cell
niche explained the maintenance of bone marrow stem cells in aging and in response to
chemotherapy®.  Scadden recently updated this concept: “Stem-cell populations are
established in 'niches' — specific anatomic locations that regulate how they participate in tissue
generation, maintenance and repair...It constitutes a basic unit of tissue physiology, integrating
signals that mediate the balanced response of stem cells to the needs of organisms.”".
Progenitor cells in stroke engage in tissue repair within transitory regenerative niches whose
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properties are emergent from the constituent cells and which induce the initial progenitor
response, mediate cues from the surrounding environment, communicate signals that reflect
age and likely co-morbid diseases, and ultimately define the outcome of recovery. A promising
area of future research will be to define the molecular signaling systems within these niches to
enhance progenitor responses, maturation and repair.

Engaging CNS Tissue Regeneration is like Activating a Cancer

Neural repair means in part activating a growth program in an adult neuron to form new
connections or inducing progenitor responses to tissue injury signals’''*?% In axonal sprouting,
induction of oncogenes such as c-myc? and RAS® promote the formation of new connections
in stroke and spinal cord injury models. Blockade or inactivation of tumor suppressor proteins,
such as PTEN and SOCS3, also promote axonal sprouting or functional recovery in stroke,
spinal cord injury, optic nerve injury and other types of CNS injury *** (ding et al). But PTEN is
also mutated or inactivated in up to 70% of prostate cancers®™®" and 40% of glioblastomas®.
SOCS3 is a tumor suppressor, and its function is lost in liver, lung, and squamous head and
neck cancer®. Molecular receptor systems, such as TGFB receptors, induce a growth state and
axonal sprouting in stroke' and also are key molecules in metastatic transformation in cancer,
such. as the epithelial-mesenchymal transition®®'°*'%". Recently described microRNA’s that
induce neural repair or axonal growth responses, such as miR-9 and miR-133"%%'% are also
closely linked to oncogenesis'®'%. Thus there is a substantial molecular overlap between gene
systems that promote tissue regeneration and recovery in brain and spinal cord injury, including
stroke, and also induce initial formation of a cancerous state or promote tumor metastasis.

On a phenotypic level, there is similarity between neuronal and glial progenitor responses after
stroke and cancer. Following a stroke, progenitor cells are induced into a growth program that
involves cell division, migration to a tropic cue and association with angiogenic vessels®®. This
is a similar'cellular response as tumor metastasis, in which primary tumor cells invade adjacent
tissue, circulate and localize to angiogenic vessels®'%. Like metastatic tumor cells'®!, migrating
progenitors. after stroke secrete matrix metallproteinases to digest their way to the target
tissue'’. | Thus, neurogenesis after stroke occurs in a neurovascular niche and tumor

metastases home to and then create a similar vascular niche.

Each of the elemental properties of neural repair in stroke in neurogenesis and axonal
sprouting,.and in cancer in tumor initiation and metastasis, when taken into the larger context of
biological responses in the body leads to this emergent property in CNS regeneration: molecular
programs in cancer and in brain repair are shared. Outside of the CNS, similar pathways
regulate tissue regeneration in other organ systems within molecular pathways that are also
involved in cancer development'®. This emergent property of tissue regeneration is obviously
problematic for the design of neural repair therapies. The emergent property of neural repair as
a cancer program leads to the next emergent property of neural repair.

Neural Repair Therapies Require Directed Effect

Therapies that stimulate neural repair after stroke will need to be controlled in their effect in both
time and space because of the overlap in molecular programs between oncogenesis and neural
repair. Also, outside of this cancer overlap, many of the growth factors or cytokines that
stimulate neural repair in pre-clinical models have widespread effects in other body tissues.
Examples of these are erythropoietin, fibroblast growth factor and G-CSF. In pre-clinical studies
these molecules stimulated axonal sprouting, neurogenesis and other aspects of neural repair.
However, in clinical trials their off-CNS effect limited their use, with renal, hemodynamic, bone
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marrow and thrombogenic complications’®'"°. In addition to these past examples, recent

discoveries in the neural repair field further make this point. The TGF family member GDF10
serves as a signal after stroke that activates a gene expression program in peri-infarct tissue,
which produces axonal sprouting and motor recovery'®. However, this molecule signals through
TGFBRI and Il, and this system also plays a role in tumor metastasis''. A GDF10 therapeutic
would need to be delivered locally to peri-infarct tissue, or only for a brief period in the subacute
phase after stroke when axonal sprouting is active, or both—so as to minimize a potential
oncogenic or non-CNS complications. Similar therapeutic control has been proposed for PTEN
inhibition'!, which would be another pathway to enhance axonal sprouting and recovery. One
mechanism for spatial and temporal control of delivery of a neural repair drug is to use tissue
bioengineering, with hydrogels that self-assemble in brain and locally release a small molecule
or biologic to the peri-infarct tissue'"'3%3112,

Regeneration Does not Recapitulate Development

CNS tissue regeneration or repair has many similarities to neurodevelopment. In the cortex
adjacent to the stroke core, neurons lose their peri-neuronal net, show altered intracortical
inhibition and become growth factor dependent®'#"'*'"*. These are hallmarks of neurons in the
critical period of neuronal development, when cortex is uniquely plastic to environmental
alterations:in physiology and structure''®. In post-stroke neurogenesis, multi-potent neural stem
cells give rise to immature neurons which migrate long distances and mature in small numbers
into neurons with synaptic connections and long distance projections®®. This of course
resembles both pyramidal neuron development in cortex and inhibitory neuron development in
the forebrain''’. Such similarity in tissue repair in stroke to neurodevelopment has prompted
suggestions that brain regeneration recapitulates development''®. Similar comparisons to
regeneration and development have been made in other systems, such as kidney, bone, liver
and skin''%"?2,

Thisimetaphor of regeneration to development takes its impetus from a similarity in phenotype:
axonal extension and synaptogenesis, peri-neuronal net condition, growth factor dependency,
neuroblast migration. However, what is critical for the biology of regeneration and for a possible
regeneration therapeutic is whether the underlying molecular profile of CNS regeneration
recapitulates the molecular profile of neurodevelopment. Initial transcriptional profiling of
neurons that form new connections after stroke, retinal ganglion cells that regenerate an injured
axon in the optic nerve, or dorsal root ganglion cells that re-grow a connection after peripheral
nerve injury suggested some overlap to genes that are active in the developing nervous system,
but overall a distinct set of genes that is regulated in these injury responses'"'?. However,
direct comparison of the transcriptome of neurons exposed to a regenerating stimulus after
stroke and the transcriptomes of neurons at several stages of neuronal development from many
different labs clearly indicates that the molecular expression profile of regeneration is
statistically and fairly dramatically distinct from the developmental transcriptome'®. Thus, an
emergent property of neural repair is that on a molecular level regeneration does not
recapitulate development. This principle is seen in other systems. The molecular control of
regeneration is distinct from that in development in muscle repair'®*. Indeed, even in highly
regenerative animals, like the newt or salamander in which a whole limb develops after injury,
the process of regeneration is distinct from development'®.

Conclusion
Recent studies have identified 7 emergent properties in neural repair after stroke. Stroke is not
a killer but a chronic and progressively disabling disease. During the limited recovery that
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occurs after stroke, the brain activates growth programs in surviving neurons, which can form
new connections in ways that are sensitive to behavioral activity or neurorehabilitative
paradigms. These molecular programs are distinct to CNS regeneration or modified from their
context and overall signaling partners from those in neurodevelopment. Tissue repair after
stroke“occurs within transient regenerative cellular niches that communicate cues to the
regenerating cells which ultimately limit these events. The response of neurons to grow new
connections or in neural progenitors to repair damaged tissue shares molecular features with
malignant transformation of tissues and with metastasis. These emergent properties of neural
repair present opportunities for future therapeutic development and offer challenges in the
delivery of such therapies (Figure). The field of neural repair has passed its first phase: the
phenomenology of neural repair has been defined. Like walking down a summer path, the next
steps in the field of neural repair are to appreciate the sounds of the cicadas, and more
completely define how these individual neural repair phenomena interact, their emergent
properties, so as to develop new approaches to enhance recovery.
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Figure Legend

Figure.

Evolution of scientific principles in the field of neural repair in stroke.
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