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Purpose: The purpose of this educational report is to provide an overview of the present state-
of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an
emphasis on providing the user with help in understanding the challenges and pitfalls associated with
selecting and implementing a PET-AS algorithm for a particular application.
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Approach: A brief description of the different types of PET-AS algorithms is provided using a clas-
sification based on method complexity and type. The advantages and the limitations of the current
PET-AS algorithms are highlighted based on current publications and existing comparison studies. A
review of the available image datasets and contour evaluation metrics in terms of their applicability
for establishing a standardized evaluation of PET-AS algorithms is provided. The performance
requirements for the algorithms and their dependence on the application, the radiotracer used and the
evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and
implementation, as well as the complementary role of manual and auto-segmentation are addressed.
Findings: A large number of PET-AS algorithms have been developed within the last 20 years.
Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More
recently, numerous papers have proposed the use of more advanced image analysis paradigms to per-
form semi-automated delineation of the PET images. However, the level of algorithm validation is
variable and for most published algorithms is either insufficient or inconsistent which prevents rec-
ommending a single algorithm. This is compounded by the fact that realistic image configurations
with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used.
Large variations in the evaluation methods used in the literature point to the need for a standardized
evaluation protocol.
Conclusions: Available comparison studies suggest that PET-AS algorithms relying on advanced
image analysis paradigms provide generally more accurate segmentation than approaches based on
PET activity thresholds, particularly for realistic configurations. However, this may not be the case
for simple shape lesions in situations with a narrower range of parameters, where simpler methods
may also perform well. Recent algorithms which employ some type of consensus or automatic selec-
tion between several PET-AS methods have potential to overcome the limitations of the individual
methods when appropriately trained. In either case, accuracy evaluation is required for each different
PET scanner and scanning and image reconstruction protocol. For the simpler, less robust
approaches, adaptation to scanning conditions, tumor type, and tumor location by optimization of
parameters is necessary. The results from the method evaluation stage can be used to estimate the
contouring uncertainty. All PET-AS contours should be critically verified by a physician. A standard
test, i.e., a benchmark dedicated to evaluating both existing and future PET-AS algorithms needs to
be designed, to aid clinicians in evaluating and selecting PET-AS algorithms and to establish perfor-
mance limits for their acceptance for clinical use. The initial steps toward designing and building
such a standard are undertaken by the task group members. © 2017 American Association of Physi-
cists in Medicine [https://doi.org/10.1002/mp.12124]
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1. INTRODUCTION

Positron emission tomography (PET) has the potential to
improve the outcome of cancer therapy because it allows the
identification and characterization of tumors to be conducted
based on their metabolic properties,1 which are inherently
tied to cancer biology. PET is helpful in delineating the
tumor target for radiation therapy, in quantitating tumor bur-
den for therapy assessment, in determining patient prognosis
and in detecting and quantitating recurrent or metastatic dis-
ease. This is especially true when the cancer lesion bound-
aries are not easily distinguished from surrounding normal
tissue in anatomical images. Combined PET/CT (computed
tomography) and PET/MRI (magnetic resonance imaging)
provide both anatomical/morphological and functional infor-
mation in one imaging session. In addition to segmentation,
this allows for the division of the tumors into subregions
based on metabolic activity, which could potentially be used
to treat/evaluate these subregions differentially (e.g., by
increasing the dose to the more aggressive and radioresistant
sub-volumes, an approach known as “dose painting”2).
Accurate delineation of the metabolic tumor volume in PET
is important for predicting and monitoring response to ther-
apy. Aside from standardized uptake value (SUV) measure-
ments,3,4 other parameters (e.g., total lesion glycolysis
(TLG) or textural and shape features, as well as tracer
kinetic parameters) with complementary/additional predic-
tive/prognostic value can be extracted from PET images.

For radiation therapy, leaving parts of the tumor untreated,
because its extent is underestimated by anatomic imaging, or
conversely irradiating healthy tissue because boundaries
between the tumor and the adjacent normal tissue cannot be
defined, can result in suboptimal response and/or (possibly
severe) adverse side-effects. It has been shown in several clin-
ical studies that PET, using the [18F]2-fluoro-2-deoxy-D-glu-
cose (Fluorodeoxyglucose) radiotracer (18F-FDG PET), has
led to changes in clinical management for about 30% of
patients.5–7 Other studies, involving nonsmall-cell lung can-
cer (NSCLC)8,9,10 and head-and-neck (H&N) cancer11 have
demonstrated that the incorporation of PET imaging in radio-
therapy planning can result in significant changes (either
increase or decrease) in treatment volumes.

In addition, the quantitative assessment of the metaboli-
cally active tumor volume, may provide independent prog-
nostic or predictive information. This has been shown in
several malignancies, including locally advanced esophageal
cancer,12 non-Hodgkin lymphoma,13 pleural mesothelioma,14

cervical and H&N cancers,15 and lung cancer.16

These promising data impose the need to establish and
validate algorithms for the segmentation of PET metabolic
volumes before and during treatment. The gross tumor

volumes (GTV) defined by PET are intended to contain the
macroscopic extend of the tumors. Currently, inaccuracies
in defining PET-based GTV arise from variations in the
biological processes determining the radiotracer uptake, as
well as from physical and image acquisition phenomena
which affect the reconstructed PET images.4,17–22 Further-
more, uncertainty can be introduced by the segmentation
process itself. It has been shown that volume differences of
up to 200% can arise from using different GTV contouring
algorithms.23

Regardless of these uncertainties, many radiation oncol-
ogy departments have started using PET/CT for lesion delin-
eation in radiation treatment planning (RTP)1,7–9,11,24

Numerical auto-segmentation techniques can be used for
guidance in the PET delineation process, which have been
shown to reduce intra- and inter-observer variations25,26 and
some commercial vendors are now offering tools for semi-
automatic delineation of tumor volumes in PET images for
radiotherapy planning or response assessment. While these
approaches may work reasonably well when applied in con-
junction with anatomical imaging and clinical expertise, their
accuracy and limitations have not been fully assessed.

Due to the complexity of the problem of PET-based tumor
segmentation and due to the abundance of potentially applica-
ble numerical approaches, a large variety of automatic, semi-
automatic and combined PET-AS approaches have been
proposed over the past 20 years.27–30 Multiple semi-automatic
approaches derived from phantom data as well as fully auto-
mated algorithms differing in terms of the algorithmic basis,
fundamental assumptions, clinical goals, workflow, and accu-
racy have been proposed. In addition, algorithms for segment-
ing combinations of images from PET and other imaging
modalities have appeared in literature.31–34 The majority of
these approaches have been tested on either simplistic phantom
studies or patient datasets, where the ground truth is largely
unknown. Finally, only a few of these algorithms have been
tested for their ability to segment lesions with irregular shapes
or nonuniform activity distributions, which are essential for
the implementation of accurate delineation protocols. In addi-
tion, most methods have been evaluated using different data-
sets and protocols, which makes comparing the results
difficult, even impossible. As a result, in essence, there is cur-
rently no commonly adopted technique for reliable, routine,
clinical PET image auto-segmentation.

In this educational report, we provide a description with
examples of the main classes of PET-AS algorithms (section 2),
highlight the advantages and the limitations of the current tech-
niques (section 3) and discuss possible evaluation approaches
(section 4). In that section, the types of available image datasets
and the existing approaches for contour evaluation are discussed
with the intention of laying out a basis for a standard for effec-
tive evaluation of PET auto-segmentation algorithms. The clini-
cian interested in the practical aspects of PET segmentation
may find most useful section 5, which highlights the biological,
physiological, and image acquisition factors affecting the per-
formance of the PET-AS methods, as well as preliminary guide-
lines for their acceptance and implementation.
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2. DESCRIPTION AND CLASSIFICATION OF THE
ALGORITHMS

The following is a glossary of the abbreviations, defini-
tions, and notations used in this report:
Abbreviations
ARG Adaptive Region Growing
ATS Adaptive Threshold Segmentation
BTV Biological Target Volume
CT Computed Tomography
CTV Clinical Target Volume
DSC Dice Similarity Coefficient
DWT discrete wavelet transforms
FTS Fixed Threshold Segmentation
EM Expectation Maximization
FCM Fuzzy C-Means
FDG [18F]2-fluoro-2-deoxy-D-glucose

(Fluorodeoxyglucose)
FLT 18F-30-fluoro-30-deoxy- L-thymidine
FMISO 18F-fluoromisonidazole
FOM Figure of Merit
GTV Gross Tumor Volume
H&N Head and Neck
ML Maximum Likelihood
MRI Magnetic Resonance Imaging
MVLS Multi Valued Level Sets
NEMA National Electrical Manufacturers Association
NGTDM neighborhood gray-tone difference matrices
NSCLC Non-Small Cell Lung Cancer
PET Positron Emission Tomography
PET-AS PET Auto - Segmentation
PPV Positive Predictive Value
PSF Point Spread Function
PTV Planning Target Volume
PVE Partial Volume Effect
ROC Receiver Operating Characteristic
SNR Signal to Noise Ratio

Definitions

ROI (Region of Interest): A 2D or 3D region drawn on an
image for purposes of restricting and focusing analysis to its
contents. It is closely related to and often used interchange-
ably with volume of interest (VOI).

SUV (Standardized Uptake Value): A measure of the
intensity of radiotracer uptake in an object (lesion or body
region) or region of interest; measured activity in that region
is normalized to the injected activity and some measurement
of patient size, most commonly weight (mass).

TLG (Total Lesion Glycolysis): The integral of the FDG-
SUV over the volume, or the product of the mean FDG-SUV
and the volume. The same paradigm can be applied to other
radiotracers and is called for instance Total Proliferative Vol-
ume, or Total Hypoxic Volume in the case of FLT or FMISO,
respectively.

VOI (Volume of Interest): A 3D region defined in a set of
images for purposes of restricting and focusing analysis to its

contents. It is closely related to and often used interchange-
ably with region of interest (ROI).

Notations

I The image set.
IVOI The VOI in image set I that the segmented region is

taken from.
z}|{
I The segmented region from image set I.
Ii The intensity of the ith element (image pixel) from

image set I. This intensity is often normalized with
respect to activity and weight to SUV.

ξi Normalized uptake for the ith voxel (see
Appendix II).

T Threshold. Commonly used in threshold
segmentation. It defines the value at which a voxel is
segregated between one set and another.

T* The estimated segmentation threshold.
V Tð Þ Volume as a function of threshold.
Vknown The known volume of a segmented object.
xi The position of the ith voxel.
cnk The cluster center of the kth cluster at the nth

iteration.
unik The membership probability of the ith pixel in the kth

cluster at the nth iteration.
N The number of images sets/modalities.
c�i The internal/external �ð Þ mean intensities of the

enclosed contour region at level set = 0 in the ith

image set.
k�i User-defined importance weights for inclusion/

exclusion �ð Þ from a region defined by the enclosed
contour at level set in the ith image set.

/ A level set function.
Ω The domain of the image.

2.A. Possible classifications

The first objective of this document was to provide
introductory information about the different classes of PET
auto-segmentation (PET-AS) algorithms. Classifications of
PET-AS algorithms can be based on several different
aspects:

• The segmentation/image processing algorithm
employed and its assumptions and complexity;

• The use of pre- and post-processing steps;
• The level of automation;

The first classification, relying on the type of image seg-
mentation paradigm (e.g., simple or adaptive thresholding,
active contours, statistical image segmentation, clustering,
etc.), has been used in previous reviews.27,29,35,36 In most
cases, detailed descriptions of the numerical algorithms and
their assumptions and limitations are given.

The second classification is based on the use of pre- and
post-processing steps. Most algorithms do not use pre-
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processing steps, although some use either denoising or
deconvolution image restoration techniques before the seg-
mentation or as part of the algorithm itself.37,38 Other algo-
rithms require either an image-based database39,40 to build a
classifier (i.e., learning algorithms), or phantom acquisitions
for the optimization of parameters (i.e., adaptive threshold
algorithms).

Regarding the third classification based on automation,
Udupa, et al.41 divide image segmentation into two pro-
cesses: recognition and delineation, and point to the “essen-
tial” need of “incorporation of high-level expert knowledge
into the computer algorithm, especially for the recognition
step.” For this reason, most existing algorithms rely on the
identification of the tumor first, by the user drawing a vol-
ume of interest (VOI) around the tumor to delineate (de-
noted from here onwards as “standard user interaction”, see
Table I), whereas other approaches require the identifica-
tion of the tumor after the segmentation process in the
resulting map (e.g., Belhassen, et al.28). Other examples of
manual interaction are user-definition of background
regions (used by some of the adaptive threshold algo-
rithms), manual selection of markers to initialize the algo-
rithm,42 or the manual input of parameters in case of
failure of the automatic initialization.43 Furthermore, the
level of automation can be quite difficult to assess, as fac-
tors such as the requirement of building a classifier for
each image region, the individual optimization for each
combination of scanner system/reconstruction algorithm,
the selection and validation of the parameters of the opti-
mization approach, or finally, the detection of lesions to
segment, are usually not included in these assessments. In
practice, all algorithms require some level of user interac-
tion.

In the following section, we used the first classification
scheme with emphasis on the algorithm complexity.

2.B. Classes of algorithms for PET
auto-segmentation

2.B.1. Fixed and adaptive threshold algorithms

Segmentation via a threshold is conceptually simple. It
consists of defining a specific uptake (often expressed as a
fixed fraction or percentage of SUV) between the background
and imaged object’s intensities (tracer uptake) and then using
that intensity to partition the image and recover the true
object’s boundaries. All voxels with intensities at or above
the threshold are assigned to one set while the remaining vox-
els are assigned the other (Appendix I). The details of how
the threshold and the uptake values are normalized are dis-
cussed in Appendix II.

The decision to use threshold segmentation is gener-
ally based upon its simplicity and the ease of implemen-
tation. Threshold segmentation carries a number of
implied assumptions that should be understood and
accounted for. These are:

• The true object has a well-defined boundary and uni-
form uptake near its boundary, i.e., the image is bi-
modal.

• The background intensity is uniform around the object.
• The noise in the background and in the object is small

compared to the intensity change at the tumor edge.
• The resolution is constant near the edges of the object.
• The model, used to define the threshold, is consistent

with its application, e.g., a segmentation scheme
designed for measuring tumor volume may not be
appropriate for radiation therapy and vice versa (see
section 5.B).

In practice, these assumptions rarely hold and some effort
is required to determine their validity/acceptability in the con-
text of the intended application.

Several points above are illustrated in a review of PET
segmentation by Lee.29 In this review, the effect of the
thickness of the phantom wall on estimating the segmenta-
tion threshold and the dependence of this effect on the
Point Spread Function (PSF) of the PET scanner, were
shown via mathematical analysis. This work also showed
that to obtain the correct threshold on a phantom with
cold walls (a certain thickness of material without any
uptake, such as the plastic surrounding spheres in physical
phantoms), a lower threshold is required than for the case
without walls, and that due to the limited PET spatial res-
olution, small volumes require higher thresholds. This was
further investigated recently, demonstrating the important
impact of cold walls on the segmentation approaches, and
the potential improvement brought by thin-wall inserts.44,45

A similar result was shown by Biehl, et al.,46 who con-
cluded that for NSCLC the optimal threshold for their
specific scanner and protocol was related to volume as
shown in Appendix I. Finally, it is interesting to note that,
given knowledge of the local PSF and the assumption of
uniform uptake, the threshold for the lesion’s boundary
can be estimated analytically, with the result being inde-
pendent from the tumor-to-background ratio, provided the
background has been subtracted beforehand.47

Generally, threshold segmentation can be loosely catego-
rized into two separate categories: fixed threshold segmenta-
tion (FTS) and adaptive threshold segmentation (ATS). In
FTS, a general test/model of the problem is developed and a
set of parameters is estimated by minimizing the error of the
model to deduce an “optimal” threshold, T�. The threshold
value may be dependent or not (e.g., 42% of peak lesion
activity48 or SUV = 2.549) on the tumor-to-background
ratios. Other tumor or image aspects are generally ignored.
For ATS, an objective function is chosen that generates a
threshold based upon the properties of each individual tumor/
object and PET image. In this case, rather than depending on
simple measures, such as tumor-to-background ratio, the
threshold calculation depends upon an ensemble of lesion
properties such as volume46,48,50–52 or SUV mean-value,53

and thus makes the threshold segmentation process iterative.
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Both FTS and ATS have been discussed in several recent
literature reviews of general segmentation in PET27,29,36,54

Each of these reviews provides a fairly complete literature
survey of the state of various threshold segmentation algo-
rithms. In addition, the review by Zaidi and El Naqa54 pro-
vides a brief description and summary of the rationale of
many ATS algorithms. These are summarized in Table A1 of
Appendix I.

2.B.2. Advanced algorithms

A list of some of the advanced PET-AS algorithms pub-
lished is given in Table I, with a focus on the evaluation proto-
cols that were followed. Below they are divided into three
subcategories (advanced algorithms applied directly to PET
images, approaches combined with image processing or recon-
struction, and those dealing with multiple imaging modalities),
which are discussed in separate subsections B.2 to B.4.

Gradient-based segmentation: The underlying assump-
tion in threshold-based delineation (2.B.1) is that the uptake
within the target is significantly different from that in the
background. With this idea in mind, the gradient naturally
finds the transition contour that delineates a high-uptake vol-
ume from the surrounding low uptake regions. The immedi-
ate advantage of this alternative method is that uptake inside
and outside the target need not be uniform for successful seg-
mentation, nor need it be constant along the contour.

In practice, the method consists of computing the gradient
vector for each voxel and then using it to form a new image
composed of the gradient magnitude values. Segmentation
based on gradient information is an important part of what
the human visual system does when looking at natural scenes.
The difficulty lies in interpreting the gradient image to trans-
late the relevant information into target contours. The general
idea is to locate and follow the crests of the gradient magni-
tude. The points where the gradient is the largest in magni-
tude (where the second derivative, or Laplacian, is null)
correspond to the target contours. There are several ways to
locate the crests. For instance, adaptive contours or “snakes”
with various smoothness constraints can be programmed in
such a way that the contours are attracted toward the crest.55

Another very popular way to track the gradient crests is the
watershed transform. It considers the gradient image as a
landscape in which the gradient crests are mountain chains.
Then it “floods” the landscape and keeps a record of the
boundaries of all hydrographic basins that progressively
merge as the water level rises. The hierarchy of all basins can
be displayed as a tree in a dendrogram. Clustering tools can
help in identifying the branch that gathers all basins corre-
sponding to the target.

The quality of gradient-based segmentation depends on
the accuracy and precision of the gradient information,
which can be biased by spatial resolution blur. For objects
with a concave or convex surface, the uptake spill-in and
spill-out caused by blur tends to slightly shift, smooth,

and distort the real object boundary. This effect can be
partially compensated for with deblurring methods, such
as deconvolution algorithms and some tools for Partial
Volume Effect (PVE) correction. The gradient computation
is affected by the image noise. Therefore, denoising tools
are needed as well, provided they do not decrease the
image resolution.

The algorithm described by Geets, et al.37 relies on
deblurring and denoising tools prior to segmentation. The
deblurring parameters are adjusted according to the resolu-
tion of the PET system and are therefore PET-camera depen-
dent. The watershed transform is applied to the gradient
magnitude image and a clustering technique creates a hierar-
chy of basins. The user can choose the tree branch associated
with the high-uptake region in the images expected to corre-
spond to the target volume. In the case of a low tumor-to-
background ratio (surrounding inflammation, other causes of
tracer concentration, uptake reduction due to treatment), the
hierarchy can get more complicated and the branch corre-
sponding to the target volume might be difficult to isolate.
This usually indicates that the images do not convey enough
information for the target volume to be accurately delineated.
This approach has been validated using phantom PET acqui-
sitions as well as clinical datasets of both H&N37 and lung56

tumors with tridimensional (3D) histopathology reconstruc-
tions as ground truths.

Region growing and adaptive region growing: Region
growing algorithms start from a seed region inside the object
and progressively include the neighboring voxels to the
region if they satisfy certain similarity criteria.57–59 Similarity
is often calculated based on image intensity, but can be based
on other features such as textures. Let I(x) represent the
image intensity at x. The similarity criteria can be a fixed
interval: I(x) 2 [lower, upper], or a confidence interval: I(x)
2 [m � fr, m + fr], where m and r are the mean intensity
and standard deviation of the current region, and f is a factor
defined by the user.59 Region growing with a fixed interval is
essentially a connected threshold algorithm. Small f restricts
the inclusion of voxels to only those having very similar
intensities to the mean in the current region, and thus can
result in under growth. Large f relaxes the similarity criteria,
and thus may result in over growth into neighboring regions.
It is often difficult, if not impossible to identify experimen-
tally an optimal f for all objects. For example, four different f
values were experimentally determined based on the maxi-
mum intensity and its location using phantoms by Day,
et al.60 The authors noted that these f values are specific to
their clinic.

To overcome this limitation, an adaptive region growing
(ARG) algorithm that can automatically identify f for each
specific object in PET was proposed by Li, et al.55 As illus-
trated in Fig. 1, in ARG f is varied from small to large values
so that the grown volume changes from the small seed region
to the entire image. A sharp volume increase occurs at a cer-
tain f*, where the region grows just beyond the object (e.g.,
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high activity sphere or tumor) into the background (low activ-
ity water or normal tissue). As the background typically con-
sists of large homogeneous regions, a great number of voxels
are added to the current region at this transition point. The
ARG algorithm automatically identifies f* for which the vol-
ume would be increased by more than 200% at the next itera-
tive value of f. The resulting volume V* was proven to be
quite an accurate representation of the homogeneous object.
The quality of the segmentation performed by ARG depends
mainly on the homogeneity of the background and the con-
trast between the tumor and background. The performance of
ARG in segmenting tumors with various levels of heteroge-
neous uptake still needs to be studied. The ARG algorithm
does not have any parameters that require experimental deter-
mination. It uses the intrinsic contrast between a tumor and
its neighboring normal tissue in each image to determine the
tumor boundary. Therefore, it can be directly applied to vari-
ous imaging conditions such as different scanners or imaging
protocols.

Another approach based on adaptive region growing
has been proposed by Hofheinz, et al.,61 in which the
approach was made able to deal with heterogeneous distri-
butions. The method is based on an adaptive threshold, in
which instead of a lesion-specific threshold for the whole
ROI, a voxel-specific threshold is computed locally in the
close vicinity of the voxel. The absolute threshold Tabs for
the considered voxel is then obtained based on a parame-
ter T previously determined with phantom measurements
(T = 0.39): Tabs=T9(R-Bg)+Bg, where R is a tumor

reference value (e.g., ROI maximum) and Bg is the back-
ground. Region growing algorithms use statistical proper-
ties (mean and standard deviation) of the region to stop
the iterative process.60 The algorithms, which exploit the
statistical properties of a noisy function and a noisy argu-
ment and rely on probabilistic calculations, are described
in the next subsection.

Statistical: Statistical image segmentation: Statistical
image segmentation aims at classifying voxels and creating
regions in an image or volume based on the statistical proper-
ties of these regions and voxels, by relying on probabilistic
calculations and estimation for the decision process. Numer-
ous approaches have been proposed; most are based on Baye-
sian inference. In essence, it is assumed that the observed
image Y (usually taking its values in the set of real numbers)
is a noisy and degraded version of a ground truth field X
(usually taking its values in several classes C). Therefore, X
has to be estimated from Y, assuming that X and Y can be
modeled as realizations of random variables. These algo-
rithms usually combine an iterative estimation procedure of
the parameters of interest, since parameters defining the dis-
tributions of X and Y are not known in real situations. In addi-
tion, a decision step to classify voxels (i.e., assigning a label
among the possible values of X to each voxel, based on its
observation Y) and the estimated distributions of X and Y, are
required. Hence, the voxel classification is carried out based
on the previously estimated statistical properties and the

(a)

(b) (d)

(c)

FIG. 1. An illustration of applying the adaptive region growing (ARG) algorithm to PET: (a) plot of segmented volume growing as a function of f, the arrow indi-
cates the location of the transition point f* for a spherical lesion in a PET/CT of a phantom; (b) the thin blue contour indicates the delineated volume V*; (c) – (d)
selection of f* and the corresponding delineation for an esophageal tumor. [Color figure can be viewed at wileyonlinelibrary.com]
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resulting probabilities for each voxel to belong to a specific
class or region.

Spatial and observation models: The parameters of inter-
est are usually defined within both a spatial model of X (also
called a priori model) and an observation model of Y (also
called a noise model). Most spatial models are based on
Markovian modeling of the voxels field, such as Markov
chains, fields, or trees, although simpler spatial neighboring
definitions (blind, adaptive or contextual) also exist.62 Noise
models are used to model uncertainty in the decision to clas-
sify a given voxel, and are most often defined using Gaussian
distributions, but more advanced noise models have also been
proposed, allowing for the modeling of correlated, multidi-
mensional and non-Gaussian noise distributions.63 Parame-
ters estimation is usually carried out using algorithms such as
Expectation Maximization (EM), Stochastic EM (SEM), or
Iterative Conditional Estimation (ICE), depending on the
assumptions of the model. These methods have been demon-
strated to provide robust segmentation results in several imag-
ing applications, such as astronomical, satellite, or radar
images, by selecting appropriate noise models.

Adaptation to PET image segmentation: Some of the
algorithms above, have been applied to PET image segmen-
tation. One example is the use of a multiresolution model
applied to wavelet decomposition of the PET images within
a Markov field framework.64 Another approach is a mixture
of Gaussian distributions for classification without spatial
modeling.65 Although these models are robust for noisy dis-
tributions of voxels (each voxel has an assigned label, but its
observation is noisy), they do not explicitly take into
account imprecision of the acquired data (a given voxel can
contain a mixture of different classes). Therefore, they do
not include the modeling of the fuzzy nature of PET images.
As a result, to be applied efficiently to PET images, which
are not only intrinsically noisy but also blurry due to PVE,
more recent models can be used that allow the modeling of
the imprecision within the statistical framework, using a
combination of “hard” classes and a fuzzy measure. In such
a model, the actual image, X does not take its values in a
set number of classes, but in a continuous [0,1] interval: the
fuzzy Lebesgue measure being associated with the open
interval (0,1) and the Dirac measure being associated with
{0} and {1}.66 Such a model has been proposed using Mar-
kov chains67 and fields62 and also using local neighborhoods
without Markovian modeling. These models retain the flexi-
bility and robustness of statistical and Bayesian algorithms
versus noise, with the added ability to deal with more com-
plex distributions, due to the presence of both hard and
fuzzy classes in the images. The Fuzzy Locally Adaptive
Bayesian (FLAB) method takes advantage of this model,68

which had previously been proposed within the context of
Markov chains.69 In addition, FLAB modeling has been
extended to take into account heterogeneous uptake distribu-
tions by considering three classes and their associated fuzzy
transitions instead of only two classes and one fuzzy transi-
tion. The extended FLAB model has been validated on

phantom acquisitions and simulated tumors, as well as clini-
cal datasets.70

Learning and texture-based segmentation algorithms:
For PET image segmentation, the learning task consists of
discriminating tracer uptake in lesion voxels (foreground)
from surrounding normal tissue voxels (background) based
on a set of extracted features from these images.28 Two com-
mon categories of statistical learning approaches have been
proposed: supervised and unsupervised.71,72 Supervised
learning is used to estimate an unknown (input, output) map-
ping from known (labeled) samples called the training set
(e.g., classification of lesions given a database of example
images). In unsupervised learning, only input samples are
given to the learning system without their labels (e.g., cluster-
ing or dimensionality reduction).

In machine learning and classification, there are two steps:
training and testing. In the training step, the optimal parame-
ters of the model are determined given the training data and
its best in-sample performance is assessed. This is usually
followed by a validation step, aimed at optimal model selec-
tion. The testing step then specifically aims to estimate the
expected (out-of-sample) performance of a model with
respect to its chosen training parameters. A recent example of
such a development is the ATLAAS method,73 which is an
automatic decision tree that selects the most appropriate PET-
AS method based on several image characteristics, achieving
significantly better accuracy than any of the PET-AS methods
considered alone. There are also numerous other types of
machine learning techniques that could be applied to PET
segmentation, such as random forest, support vector machi-
nes, or even deep learning techniques,74 which have been
applied to the task of image segmentation in other modalities
such as MRI or CT.75,76 Although these approaches are
promising for the future of PET image segmentation, the use
of these techniques for PET is currently rather scarce in the
literature.77 Today these techniques are exploited to classify
patients in terms of outcome based on characteristics
extracted from previously delineated tumors.78,79

PET-AS algorithms can be trained on pathological find-
ings or physician contours. The advantage of training an
algorithm using these contours is that additional information,
not present in the PET image, is taken into account since the
physician draws contours based on additional a priori infor-
mation (anatomical imaging, clinical data, etc.). On the other
hand, training algorithms using physician contours can be
biased by the particular physician’s background, goals, or
misconceptions.

One of the most used approaches to extract image features
that can be used for segmentation is texture analysis. Uptake
heterogeneity in PET images can be characterized using
regional descriptors such as textures. Unlike intensity or mor-
phological features, textures represent more complex patterns
composed of entities or sub-patterns, that have unique charac-
teristics of brightness, color, slope, size, etc.80 “Image tex-
ture” can refer to the relative distribution of gray levels within
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a given image neighborhood. It integrates intensity with spa-
tial information resulting in higher order histograms when
compared to common first-order intensity histograms. Tex-
ture-based algorithms heavily use image statistical properties;
however, since human visual perception often relies on subtle
visual properties, such as texture, to differentiate between
image regions of similar gray level intensity, they are sepa-
rated from the iterative, model-based approaches described in
the previous section.

Furthermore, the human visual system is limited in its
ability to distinguish variations in gray tone and is subject to
observer bias. Variation in image texture can reflect differ-
ences in underlying physiological processes such as vascular-
ity or ordered/disordered growth patterns. The use of
automated computer algorithms to differentiate tumor from
normal tissue based on textural characteristics may offer an
objective and potentially more sensitive algorithm of tumor
segmentation than those based on simple image thresholds.
Among the methods that have been suggested to calculate
image texture features are those based on (a) Gabor filters,
(b) discrete wavelet transforms (DWT), (c) the co-occurrence
matrix, (d) neighborhood gray-tone difference matrices
(NGTDM), and (e) run-length matrices.

Gabor filters81 and DWT82 measure the response of
images to sets of filters at varying frequencies, scales and ori-
entations. The Gabor filter (a Gaussian phasor), using a bank
of kernels for each direction, scale, and frequency, can pro-
duce a large number of nonorthogonal features, which makes
processing and feature selection difficult. DWTs take a multi-
scale approach to texture description. Orthogonal wavelets
are commonly used resulting in independent features. DWT,
however, have had more difficulty discriminating fractal tex-
tures with nonstationary scales.83

The co-occurrence matrices proposed by Haralick, et al.84

and spatial gray level dependence matrix (SGLDM) features,
are based on statistical properties derived from counting the
number of times pairs of gray values occur next to each other.
These are referred to as “second-order” features because they
are based on the relationship of two voxels at a time. The size
of a co-occurrence matrix is dependent on the number of gray
values within a region. Each row (i) and column (j) entry in
the matrix is the number of times voxels of gray values i and j
occur next to each other at a given distance and angle. Higher
order features refer to techniques that take into account spa-
tial context from more than two voxels at a time. Amadasun
and King proposed several higher order features based on
NGTDM.85 For every gray level i, the difference between this
level, and the average neighborhood around it, is summed
over every occurrence to produce the ith entry in the
NGTDM.

Another category of higher order features makes use of
“run-length matrices”. In this case, analysis of the occurrence
of consecutive voxels in a particular direction with the same
gray level is used to extract textural descriptors such as
energy, homogeneity, entropy, etc.86 However, run-length
matrices are a computationally intensive means of deriving
texture descriptors.86

Although textural features have been used to characterize
uptake heterogeneity within tumors after the segmentation
step,15,79 their use as a means of automatic segmentation can
also provide additional information beyond simple voxel
intensity that may improve the robustness of delineation crite-
ria. This has been shown in multiple modalities including
ultrasound (US)87 and MRI.88 PET and CT textures in the
lung have been used in a series of applications including dif-
ferentiating between malignant and benign nodes,89,90 judg-
ing treatment response,15,16 diagnosing diffuse parenchymal
lung disease,91–93 determining tumor staging, detection and
segmentation.94 With dual modality PET/CT systems (also
PET/MRI in the near future95,96), it is also possible to make
use of image textures from PET and CT (MRI) in combina-
tion to improve image segmentation results. However, this
leads to including anatomy for tumor volume characteriza-
tion, instead of characterizing the functional part of the tumor
only. In two separate studies, combinations of PET and CT
texture features in images of patients with H&N cancer97 and
those with lung cancer98 improved tumor segmentation with
respect to the dual modality ground truth, versus using PET
and CT separately. This is discussed in more detail in section
2.B.4 below.

Within the learning category would also fall the recent
approaches to account for a set or contours generated via
multiple automatic methods, through averaging/consensus
methods,99 statistical methods such as the “inverse–ROC (re-
ceiver operating characteristic)” approach,100 STAPLE (si-
multaneous truth and performance level estimation)-derived
methods,101 majority voting,102 or decision tree73 to generate
a surrogate of truth. Most of these methods would need some
type of “training” or preliminary determination of parameters
for the particular type of lesions and may therefore avoid the
limitations of the individual methods used.

2.B.3. Combined with image processing and/or
reconstruction

The limited and variable resolution of PET scanners,
which results in anisotropic and spatially variant blur affect-
ing PET images, leads to PVE, spill-in and spill-out of activ-
ity in nearby tissues17 and is therefore one of the main
challenges for segmentation and for uptake quantification of
oncologic lesions. In principle, all the segmentation strategies
not explicitly intended for blurred images, but widely used
for imaging modalities less affected by PVE than PET (e.g.,
thresholding, region growing, gradient-based algorithms,
etc.),103 can be applied to PET images after a PVE recovery
step.104 PVE recovery can be performed after105–109 or during
image reconstruction with algorithms taking into account a
model of the scanner PSF.110–112 These images, however,
should be handled with caution since PVE recovery tech-
niques can introduce artifacts (e.g., variance increase related
to the Gibbs phenomenon). The accuracy of PVE-recovered
images can be improved by introducing regularizations such
as a priori models, constraints, or iteration stopping rules. An
approach of this kind has been followed by Geets, et al.37
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(described in section 2.B.2), where a gradient-based segmen-
tation algorithm was applied on deblurred and denoised
images. To avoid the Gibbs phenomenon artifacts near the
edges, deconvolution was refined with constraints on the
deconvolved uptake.

An alternative approach to account for blur is to model it
explicitly in the segmentation procedure. For example,
FLAB,68 described in section 2.B.2, or FHMC (Fuzzy Hid-
den Markov Chains),69 parameterize a generic form of uncer-
tainty to assign special intermediate classes for the blurry
borders of the main classes. Such algorithms, if combined
with a post-segmentation PVE recovery technique for objects
of known dimension/shape, like recovery coefficients, geo-
metric transfer matrix17 or VOI-based deconvolution,113 may
also be able to provide an estimate of PVE-recovered lesion
uptake inside the delineated borders.114

Another means to account for PVE recovery in segmenta-
tion is to model it in an iterative process. The lesion border
estimate can be iteratively refined using the result of the PVE
recovery inside the lesion area and vice versa. Such an
approach can potentially improve the estimation accuracy
while providing a joint estimate of lesion borders and uptake.
This approach was originally proposed by Chen, et al. for
spherical objects.115 More recently, De Bernardi, et al. have
further developed the idea by proposing a strategy that com-
bines segmentation with a PVE recovery step obtained
through a targeted maximum likelihood (ML) reconstruction
algorithm with PSF modeling in the lesion area.38 A scheme
of the approach is shown in Fig. 2.

To reduce blur in the latter approach, algorithms using tran-
sition regions between lesion and background are employed.
These regions correspond to spill-out due to PVE and are
modeled by regional basis functions in the PVE recovery
reconstruction step. The reconstruction adjusts the activity
inside each region according to the ML convergence with
respect to the sinogram data. The subsequent segmentation
refinement step acts on the lesion borders in the improved
image, until borders no longer change. A requirement of the
algorithm is that a model of the scanner PSF and access to raw
data are available. Conversely, the advantage is that a joint esti-
mate of lesion borders and activity can be obtained.

In the work of De Bernardi, et al.,38 the segmentation was
obtained using k-means clustering and the refinement was
achieved by smoothing the result with the local PSF and by
re-segmenting. The algorithm, suited for the simplest case of

homogeneous lesions, was validated in a sphere phantom
study. More recently, an improved strategy was proposed, in
which the segmentation is performed with a Gaussian Mix-
ture Model and PVE recovery is performed on a mixture of
regional basis functions and voxel intensities. The algorithm
was validated on a phantom in which lesions are simulated
with zeolites (see section 4.C.1).116

2.B.4. Segmentation of multimodality images

Multimodality imaging is of increasing importance for
cancer detection, staging, and monitoring of treatment
response.117–121

In radiotherapy treatment planning, significant variability
can occur when multiple observers contour the target vol-
ume.122 This inter-observer variability has been shown to be
reduced by combining information from multimodality imag-
ing and performing single delineations on fused images, such
as CT and PET, or MRI and PET.25,123–127 However, tradi-
tional visual assessment of multimodality images is subjec-
tive and prone to variation. Alternatively, algorithms have
been proposed for integrating complementary information
into multimodality images by extending semi-automated seg-
mentation algorithms into an interactive multimodality seg-
mentation framework to define the target volume.31–34

Consequently, the accuracy of the overall segmentation
results would be improved, although, as a word of caution, it
should be emphasized that the goal may be different from
mono-modality delineation and its realization would depend
on the application endpoint combined with the clinical asso-
ciation objective of the different image modalities. For
instance, in radiotherapy planning, the main rationale behind
the use of combining several images of different modalities to
define the GTV is that they complement each other by com-
bining different aspects of the underlying biology, physiol-
ogy, and/or anatomy. However, in reality, this may not be the
case for all patients and all pathologies, for example, the
lesion may not be seen in the additional modality, or may
exhibit an artifact. In addition, misregistration between the
different modalities and respiratory motion may lead to a
potentially erroneous GTV if the images were simply fused
without careful consideration of geometric correspondence
and the logic by which the different image data are combined
(union, intersection, or other forms of fusion).

Exploitation of multimodal images for segmentation has
been applied to define myocardial borders in cardiac CT,
MRI, and ultrasound using a multimodal snake deformable
model.128 Another example is the classification of coronary
artery plaque composition from multiple contrast MRI
images using a k-means clustering algorithm.129 To define
tumor target volumes using PET/CT/MRI images for radio-
therapy treatment planning, a multivalued deformable level
set approach was used as illustrated in Fig. 3.31 This
approach was extended further later on using the Jensen
Renyi divergence as the segmentation metric.34

Mathematically, approaches that aim at simultaneously
exploiting several image modalities represent a mapping from

PET volume

Initial lesion 
segmentation

Segmentation 
refinement step     

PVE-recovery 
step 

Change?
No
Exit

Yes

Sinograms PSF modelling

FIG. 2. A schematic representation of the algorithm proposed by De Ber-
nardi, et al.,38 which combines segmentation and PVE recovery within an
iterative process. [Color figure can be viewed at wileyonlinelibrary.com]
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the imaging space to the “perception” space as identified by
experts such as radiation oncologists.130 Several segmenta-
tion algorithms are amenable to such generalization.131

Among these, algorithms are multiple thresholding, cluster-
ing such as k-means and fuzzy c-means (FCM) and active
contours. In the case of multiple thresholding, CT volumes
can be used to guide selection of PET thresholds46 or using
thresholds on the CT intensities to constrain the PET segmen-
tation.131 These conditions are typically developed empiri-
cally but could be optimized for a specific application. For
clustering, the process is carried out by redefining the image
intensities and clustering centers as vectors (with elements
being the intensities of the different modalities) in contrast to
the typical scalars used in single modality images.129 The for-
malism for FCM is given in Appendix I.B. However, both
thresholding and clustering algorithms in their basic form
suffer from loss of spatial connectivity, which is accounted
for in active contour models using a continuous geometrical
form such as the level sets. The level set provides a continu-
ous implicit representation of geometric models, which easily
allows for adaptation of topological changes and its general-
ization to different image modalities. Assuming there are N
imaging modalities, then using the concept of multivalued
level sets (MVLS)132,133 the different imaging modalities are
represented by a weighted level set functional objective of the
different modalities and the target boundary is defined at the
zero level set31 (Appendix I.B).

Finally, other approaches based on the Markov field com-
bined with graph-cut methods,32 as well as random walk seg-
mentation33 or including topology,134 were developed and

validated on clinical images for multimodal (PET, CT, MRI)
images tumor segmentation with promising results.

2.B.5. Vendor implementation examples

Here, we provide a brief summary of several vendor imple-
mentations of PET-AS methods at the time when this report
was written. Therefore, it may not describe the PET-AS meth-
ods provided by all vendors at the time of publication due to
constant evolution of vendor software. Vendors also provide
tools for manual segmentation that have been omitted for
brevity. Since the algorithms implemented by vendors are not
exactly known, the summary, and classification provided
below do carry a significant degree of uncertainty.

Gradient-based edge detection tool is avaible by MIM Soft-
ware Inc. (Cleveland, OH, see Section 2.B.2) and
Table I,135,136). VelocityAI (Varian Medical Systems|Velocity
Medical Solutions, Atlanta, GA) also point that their tool uses
“rates of spatial change” in the segmentation process. PET-AS
methods based on region growing tools (Section 2.B.2) are
available by Mirada XD (Mirada Medical, Oxford, UK) and
RayStation (RaySearch Laboratories AB, Stockholm, Sweden).

Adaptive thresholding approaches (Section 2.B.1) are
available by VelocityAI (the method by Daisne, et al.137), GE
Healthcare VCARTM system (V 1.10) (GE Healthcare Inc.,
Rahway, NJ, the method by Sebastian, et al.,138 see Table I),
and ROVER (ABX GmbH, Radeberg, Germany, an iterative
approach following Hofheinz et al26,61).

Finally, practically all vendor implementations use some
type of fixed or adaptive threshold-based method (Section

a

b c d

FIG. 3. (a) PET/CT images of a patient with lung cancer in case of atelectasis (lung collapse), with manual segmentation for CT (orange), PET (green) and fused
PET/CT (red). (b) The multivalued level sets (MVLS) algorithm initialized (white circle), evolved contours in steps of 10 iterations (black), and the final contour
(red). (c) MVLS results shown along with manual contour on the fused PET/CT. (d) MVLS contour superimposed on CT (top) and PET (bottom). Reproduced
with permission from El Naqa, et al.31 [Color figure can be viewed at wileyonlinelibrary.com]
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2.B.1). For example, Varian’s Eclipse V.10 (Varian Medical
Systems, Inc., Palo Alto, CA) as well as other vendor imple-
mentations including Philips Healthcare PinnacleTM (Philips
Healthcare, Andover, MA) and Raystation allow users to per-
form PET segmentation using thresholding in different units
(Bq/ml or different SUV definitions), and percent from peak
SUV.

3. COMPARISON OF THE PET-AS ALGORITHMS
BASED ON CURRENT PUBLICATIONS

A comparison of PET-AS algorithms based on published
reports is difficult and subject to controversy because each
algorithm has been developed and validated (and often opti-
mized) on different datasets, often using a single type of scan-
ner and/or processing software. However, some limited
conclusions can be drawn. For instance, it is possible to com-
pare the algorithms based on their level of validation as well
as those algorithms that have been applied to the same data-
sets. Table II contains a survey of various papers in which
several algorithms were compared, providing the type of
datasets and methods used, the conclusions of the study, as
well as some comments.

Most of the algorithms have been optimized/validated
on phantom acquisitions of spheres, as this is a common
tool in PET imaging to evaluate the sensitivities, noise
properties, and spatial resolution of PET scanners. On one
hand, most algorithms usually give satisfactory results in
these phantom acquisitions, even for varying levels of
noise and contrast levels. However, homogeneous spheres
on a homogeneous background are not realistic tumors.
The number of algorithms that have been successfully
applied to realistic simulated tumors or real clinical tumors
with an acceptable surrogate of truth (e.g., histopathologi-
cal measurements) is much smaller. Finally, algorithms that
have been validated for robustness against several scanner
models and their associated reconstruction algorithms are
even less numerous since the datasets are not usually made
publicly available.

It should also be emphasized that there are a few algo-
rithms that have been applied to common (although not pub-
lically available) datasets. For instance, the gradient-based
algorithm by Geets, et al.,37 the improved fuzzy c-means
(FCM) by Belhassen and Zaidi,28,139 the theory of possibility
applied to Maximum intensity projections (MIP) by Dewalle-
Vignon, et al.140 and the contourlet-based active contour
model by Abdoli, et al.141 have all been applied to a dataset
of seven patients with 3D reconstruction of the surgical speci-
men in histology (from a dataset of nine patients originally
obtained in a study by Daisne, et al.142), with 19 � 22%,
9 � 28%, 17 � 13% and 0.29 � 0.6% volume mean errors,
respectively. Similarly, the improved fuzzy c-means by Bel-
hassen, et al.,28 FLAB by Hatt, et al.70,143 and the level sets
and Jensen-R�enyi divergence algorithm by Markel, et al.34

were applied to the NSCLC tumors dataset with maximum
diameters from MAASTRO (Maastricht Radiation Oncol-
ogy)124 (with � 6% error for FLAB, � 15% for the

improved FCM and � 14.8% for the level sets approach,
respectively). In addition, most of the advanced algorithms
that have been proposed have been compared to some kind of
fixed and/or adaptive thresholding using their respective test
datasets and have, for the most part, demonstrated improve-
ments in accuracy and robustness. In particular, it was
observed that fixed and adaptive thresholding might lead to
over 100% errors in cases of small and/or low-contrast objects
and significant underestimation (�20 to �100%) in cases of
larger volumes with more heterogeneous uptake distributions,
whereas advanced methods were able to provide more satis-
factory error rates (around or below 10 to 20% errors).143,144

However, it is possible that simpler, e.g., adaptive threshold
PET-AS-methods optimized for a specific body site, may per-
form comparably well or even better than some of the more
advanced techniques.145

In the largest comparison to date, Shepherd, et al.100 seg-
mented 7 VOIs in PET using variants of threshold-, gradient-,
hybrid image-, region growing-, and watershed-based algo-
rithms, as well as more complex pipeline algorithms. Along
with manual delineations, a total of 30 distinct segmentations
were performed per VOI and grouped according to type and
dependence upon complementary information from the user
and from simultaneous CT. According to a statistical accu-
racy measure that accounts for uncertainties in ground truth,
the most promising algorithms within the wider field of com-
puter vision were a deformable contour model using energy
minimization techniques, a fuzzy c-means (FCM) algorithm,
and an algorithm that combines variants of region growing
and the watershed transform. Another important finding was
that user interaction proved in general to benefit segmentation
accuracy, highlighting the need to incorporate expert human
knowledge, and this in turn was made more effective by visu-
alization of PET gradients or CT from PET-CT hybrid
imaging.

There is little information to date concerning the compar-
ison of the performance of an algorithm using datasets from
different scanners and/or with the implementation of that
algorithm in different software packages. In one study,146 an
adaptive threshold segmentation algorithm was applied in
three centers using two similar types of scanners from the
same manufacturer. The authors demonstrated that significant
differences were observed in the optimal threshold values
depending on the center and imaging protocols, despite that
both the scanner and reconstruction method were the same.
In addition, significant differences were also observed,
depending on the reconstruction settings (Fig. 4). They con-
cluded that synchronization of imaging protocols can facili-
tate contouring activities between cooperating sites. In
another investigation, dependence of the segmentation
threshold providing the correct sphere volume on the recon-
struction algorithm was also observed for small spheres.147

In a German multicenter study,148 Schaefer, et al. evalu-
ated the calibration of their adaptive threshold algorithm
(contrast-oriented algorithm) for FDG PET-based delineation
of tumor volumes in eleven centers, using three different
scanner types from two vendors. They observed only minor
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differences in calibration parameters for scanners of the same
type, provided that identical imaging protocols were used,
whereas significant differences were found between scanner
types and vendors. After calibrating the algorithm for all
three scanners, the calculated SUV thresholds for auto-
contouring did not differ significantly.

On the other hand, the FLAB algorithm by Hatt, et al.
showed robustness to scanner type and performed well with-
out pre-optimization, on four different scanners from three
vendors (Philips GEMINI GXL and GEMINI TF, Siemens
Biograph 16 and GE Discovery LS) using a large range of
acquisition parameters such as voxel size, acquisition dura-
tion, and sphere-to-background contrast.43

While the natural incentive is to create algorithms which
perform universally well across body sites and disease types,
for at least one body site it was shown145 that simpler (e.g.,
adaptive threshold) methods may perform comparably well if
specifically optimized for these conditions. At present, there
is not a sufficient amount of published data to give specific
recommendations for each clinical site. The emerging con-
sensus99 and decision tree73 based methods, however, provide
a potential to provide adequate solution for each site if appro-
priately adapted and trained.

Given the above results, the validation of PET-AS algo-
rithms, as described in current publications, does not provide
sufficient information regarding which of the known
approaches would be most accurate, applicable, or convenient
for clinical use. In the following sections, we attempt to lay
the basis for a framework that avoids the methodological
weaknesses of the past and addresses the challenges inherent
in segmentation in PET.

4. COMPONENTS OF AN EVALUATION STANDARD

A main conclusion of the work of this task group is that a
common and standardized evaluation protocol or “bench-
mark” to assess the performance of PET–AS methods is
needed. The design of such a protocol requires:T

A
B
L
E
II
.
C
on
tin

ue
d.

N
o.

R
ef
er
en
ce

C
om

pa
re
d
m
et
ho
ds

Im
ag
es

or
ph
an
to
m
s
us
ed

R
es
ul
ts
an
d/
or

re
co
m
m
en
da
tio

ns
re
po
rt
ed

by
th
e
au
th
or
s

L
im

ita
tio

ns
an
d
co
m
m
en
ts
by

T
G
21
1

or
ot
he
rs
as

ci
te
d

3
Z
ai
di

an
d
E
lN

aq
a,

20
10

5
4

N
/A

Si
m
ul
at
ed
,e
xp
er
im

en
ta
la
nd

cl
in
ic
al
st
ud
ie
s

D
es
pi
te
be
in
g
pr
om

is
in
g,
ad
va
nc
ed

PE
T-
A
S
al
go
ri
th
m
s

ar
e
no
tu

se
d
in

th
e
cl
in
ic
.

4
H
at
t,
et

al
.2

01
14

3
N
/A

N
/A

O
nl
y
a
fe
w
al
go
ri
th
m
s
ha
ve

be
en

ri
go
ro
us
ly
va
lid

at
ed

fo
r

ac
cu
ra
cy
,r
ep
ea
ta
bi
lit
y
an
d
ro
bu
st
ne
ss
.

Se
e
th
e
th
re
e
la
st
co
lu
m
ns

of
Ta
bl
e
I

5
K
ir
ov

an
d
Fa
nc
ho

n,
20
14
,17

6
N
/A

C
lin

ic
al
im

ag
es

w
ith

pa
th
ol
og
y

de
ri
ve
d
gr
ou
nd

tr
ut
h.

A
rt
ic
le
s
co
m
pa
ri
ng

PE
T-
A
S
m
et
ho

ds
ar
e
su
m
m
ar
iz
ed

se
pa
ra
te
ly

fo
r
le
si
on
s
in

fi
ve

gr
ou
ps

ba
se
d
on

lo
ca
tio

n
in

th
e
bo

dy
w
ith

a
fo
cu
s
on

th
e
ac
cu
ra
cy
,u

se
fu
ln
es
s

an
d
th
e
ro
le
of

th
e
pa
th
ol
og

y-
va
lid

at
ed

PE
T
im

ag
e
se
ts
.

6
Fo

st
er
,e
t
al
.2

01
43

6
N
/A

N
/A

“
al
th
ou
gh

th
er
e
is
no

PE
T
im

ag
e
se
gm

en
ta
tio

n
m
et
ho
d

th
at
is
op

tim
al
fo
r
al
la
pp
lic
at
io
ns

or
ca
n
co
m
pe
ns
at
e

fo
r
al
lo

f
th
e
di
ff
ic
ul
tie
s
in
he
re
nt

to
PE

T
im

ag
es
,

de
ve
lo
pm

en
to

f
tr
en
di
ng

im
ag
e
se
gm

en
ta
tio

n
te
ch
ni
qu
es

w
hi
ch

co
m
bi
ne

an
at
om

ic
al
in
fo
rm

at
io
n
an
d

m
et
ab
ol
ic
ac
tiv

iti
es

in
th
e
sa
m
e
hy
br
id

fr
am

ew
or
ks

(P
E
T-
C
T,

PE
T-
C
T,

an
d
M
R
I-
PE

T-
C
T
)
is
en
co
ur
ag
in
g

an
d
op

en
to

fu
rt
he
r
in
ve
st
ig
at
io
ns
.”

M
os
te
xh

au
st
iv
e
re
vi
ew

of
th
e
st
at
e-

of
-t
he
-a
rt
in

20
14
.U

se
s
a
si
m
ila
r

cl
as
si
fi
ca
tio

n
of

m
et
ho

ds
as

in
th
e

pr
es
en
tr
ep
or
t.

FIG. 4. Variation in the optimal threshold value (y axis) obtained according
to different settings of the PET reconstruction with varying number of itera-
tions and subsets (from two iterations one subset to eight iterations eight sub-
sets, colored bars), and for spheres of different volumes (x axis) and a
sphere-to-background ratio of 3.5, for one single scanner model. Reproduced
with permission from Ollers, et al.146 [Color figure can be viewed at wileyon-
linelibrary.com]
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• Selection of evaluation endpoint and definition of per-
formance criteria;

• Selection of a set of images;
• Selection of contour evaluation tools;

4.A. Evaluation endpoints

For radiation therapy the PET image is most often used to
segment the so-called gross tumor volume (GTV) which
contains the macroscopically observable (demonstrable)
disease.149 Based on the GTV is later generated the clinical
target volume (CTV), which is supposed to include additional
volume with a high probability of microscopic tumor exten-
sions.149 The planning target volume (PTV) encompasses the
CTV and adds an additional margin for set-up error and organ
motion.149 The sub-target volume (sub-GTV) lies within the
GTV and locates one or more metabolically distinct sub-
volumes such as tumor growth, burden, or hypoxia. Segmen-
tation of the sub-GTV assumes availability of additional
functional information, which can come from PET or from
other imaging modalities.2 Within this context, the smallest
number of cells with uptake that is possible to image using
PET has been assessed as 105 cells.150

The endpoint for evaluating PET-AS algorithms can be
selected at different levels of approximation of the tumor bor-
der. We consider the following three levels of approximation
ordered from least to most accurate:

(a) The PET avid tumor volume in the PET image as
obtained through standard reconstruction, which typi-
cally leaves some of the physical artifacts (such as lim-
ited spatial resolution, motion), not routinely and/or
fully corrected;

(b) The PET avid tumor volume after optimal correction of
more subtle artifacts such as resolution, motion and
noise;

(c) The spatial distribution of the biological quantity of
clinical interest (e.g., the distribution of cells exhibiting
a certain metabolic trait, e.g., proliferation).

The ideal endpoint for evaluating PET-AS algorithms if
they are to facilitate reaching the clinical goal is (c). However,
variations in the biological environment of the lesion (e.g.,
perfusion and inflammation) and other biological and physi-
cal uncertainty in PET images decrease the accuracy of
numerical algorithms in aiming at the clinical endpoint (e.g.,
the GTV). The less ambitious endpoint (b) of contouring the
volume based on the real tracer distribution is feasible, pro-
vided that important factors, such as PVE, motion and noise
are accurately taken into account or corrected with state-of-
the-art approaches (either within reconstruction or post-
reconstruction).

Finally, most algorithms have been and can be evaluated
against the activity as seen in the standard PET image (a).
This case concerns standard acquisitions with routine clinical
systems for which some of the physical artefacts (attenuation,

scattered and random events, etc.) are corrected, but no cor-
rection is applied for others (e.g., spatial resolution, motion,
statistical noise, and post-filtering). This method is currently
widely used. Nevertheless, for future standardized evaluation
protocols, our task group recommends considering the three
endpoints listed above.151 Such future work should also con-
sider segmenting radiotherapy targets using multispectral
images from hybrid imaging studies31,33,34,97 dynamic imag-
ing152,153 and/or multitracer PET images.154

4.B. Definition of performance criteria: accuracy,
precision (reproducibility and repeatability)
efficiency and robustness

In instrumental science any measurement tool can be
characterized by its accuracy (degree of closeness to the
true value) and precision (degree to which repeated mea-
surements under unchanged conditions give the same
results). Precision can be further stratified into repeatabil-
ity and reproducibility. Reproducibility often implies that
tools or operators are different, whereas repeatability relies
on experimental conditions that are kept as identical as
possible. For complex tools such as segmentation algo-
rithms, stratification into reproducibility and repeatability
is not necessary and precision suffices, provided all
parameters are identified, including those for which the
operator has control, e.g., the region of an image used to
characterize the background tracer uptake.

For a given segmentation algorithm we define accuracy as
the correctness of retrieving the true 3D object spatial extent,
shape, and volume based on the reconstructed activity distri-
bution in a PET image, irrespective of the correlation
between this distribution and the underlying physiological
process. This means that an image segmentation algorithm is
not expected to differentiate specific from nonspecific tracer
uptake (e.g., inflammation and tumor in the case of FDG) if
they are of the same intensity.

Within the context of this report, repeatability* is defined
as the ability of a given algorithm to reach the same result
when applied multiple times on a single image replicate (sin-
gle acquisition), given potentially differing algorithmic ini-
tializations.43 In such a task, deterministic, fixed threshold
approaches will always give the same result when applied to
a given image. On the other hand, more advanced algorithms
are susceptible to providing different results when applied
with multiple runs on the same image because they could rely
on more complex initializations or estimation processes,
including random ones.

We define robustness as the ability of a given algo-
rithm to generate consistent, segmented volumes under
varying acquisition and image reconstruction conditions,

*The term reproducibility or repeatability is also used to denote the
variability assessed using double baseline PET scan acquisitions (re-
peated acquisitions at a few days interval without treatment). This
“physiological” reproducibility is a different topic than the repeata-
bility/reproducibility of the PET-AS algorithm discussed here.

Medical Physics, 44 (6), June 2017

e19 Hatt et al.: PET auto-segmentation methods e19



including issues related to statistical counts and multiple
replicates (multiple acquisition of the same object) due to
noise.43 This robustness is determined as the variability
in the segmentation results when a PET-AS algorithm is
applied on images of the same object acquired using var-
ious scanners, and for each scanner, under various con-
trast and noise conditions, using different reconstruction
and associated correction algorithms.

Finally, an important parameter of the algorithms is their
efficiency, which may determine their practical viability.41

Efficiency includes workflow and computational complexity
required for completion of the segmentation task. Consider-
ing the computing power evolution and possibilities (parallel
computing, graphical processing units, etc.), the main limit-
ing factor is workflow and human interaction.

Below is laid out, the vision of the task group for a future
standard for PET-AS method evaluation. It has two main
components: (a) Benchmark image set; (b) Performance eval-
uation criteria.

4.C. Benchmark image sets

This section is dedicated to the selection of the benchmark
images, which should cover a realistic range of parameters so
that it ensures that the tested PET-AS algorithms can meet
the challenges that may be encountered in various clinical
cases. However, to allow for a practical and realistic evalua-
tion and interpretation of the results, the number of images
and datasets should be kept to a minimum. Therefore, the
images that are likely to offer the most realistic, rigorous way
to assess the performance of the various algorithms should be
selected. A classification of the possible types of benchmark
images is given in Table III.

The advantages and disadvantages of the different classes
of datasets and of particular published image sets are dis-
cussed in more detail below. The various phantoms consid-
ered for a common PET-AS evaluation protocol are
summarized in Appendix III.

4.C.1. Physical phantoms

The main advantage of physical phantoms is that their
PET images contain the same degradations, namely resolu-
tion, noise, scatter, etc., as clinical PET scans, while also
ensuring that the ground truth is both reproducible and
known for repeated testing using prescribed conditions.

Most PET-AS algorithms are initially developed and opti-
mized against simple phantoms containing uniform activity
spheres or cylinders. Therefore, these phantoms are essential
in evaluating segmentation accuracy for well-defined, sim-
ple-shaped objects. However, spherical targets oversimplify
the segmentation problem and can erroneously favor an algo-
rithm that would break down in the presence of a complex
topology or heterogeneous tracer uptake distribution seen in
real tumors. Testing the PET-AS algorithms against these
images can nevertheless provide: (a) assurance that the algo-
rithms compared are trustworthy for simple cases; (b) T
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agreement limits for initial, basic evaluation; (c) opportunity
for verifying algorithm operation over time (e.g., routine
quality assurance), and (d) a convenient tool for testing the
robustness of the algorithms under different experimental
conditions using for instance the National Electrical Manu-
facturers Association (NEMA) image quality phantom
(Fig. T.A2.1 in Appendix III),155 available in most PET cen-
ters. However, with few exceptions156,157 these phantoms con-
tain objects with cold walls in a homogeneous
background.155 Furthermore, most of the algorithms have
already been optimized and assessed on these simplistic,
physical phantom acquisitions at the development stage.

More realistic phantoms are of interest for more demand-
ing evaluations with respect to the activity distribution end-
point. The contribution by Zito, et al.158 regarding the use of
phantoms containing zeolites (microporous, aluminosilicate
minerals commonly used as commercial adsorbents, which
can absorb aqueous solutions of (18)F-FDG) is promising.
This phantom allows tumor-like objects to be generated with
any desired shape, size, and contrast levels without cold
walls. They also provide ground truth with sub-voxel resolu-
tion that is available from the associated co-registered CT
images.

A limitation of these images (e.g. obtained from zeolite
phantoms) is the lack of control and knowledge of the poten-
tial heterogeneity of the tracer uptake in the background and
the “tumor.” Several alternatives allow experimental model-
ing of nonuniform activity inside the lesions and in the back-
ground. These phantoms include structures generated by
stacking paper sheets containing PET images printed with
radioactive ink159,160 (see Fig.T.A2.6. in Appendix III), or 3D
printers using radioactive ink.161 Another option for generat-
ing nonuniform uptake distributions is the use of thin sheets
to displace activity (see Fig.T.A2.7 in Appendix III).162

4.C.2. Simulated images

Virtual or numerical phantoms associated with a PET
image generation process represent an inexpensive, precise
way to test PET software and clinical methodologies.163 One
definition of a virtual or numerical PET simulation frame-
work corresponds to any computer-generated object that is
processed to produce a PET-like image. It should be clear that
virtual phantoms are distinct from the resulting PET images
and represent a reference source distribution from which the
PET-like image is produced. To be useful the resulting image
needs to be representative of what is observed in the images
produced by a real PET camera.

Generating PET-like images for virtual phantoms can be
done in several ways. Below we describe methods that range
from simple to complex, as more realism is included in the
simulation, and therefore, in the produced images.

Inserted tumor PET-like images: The simplest method
is to insert an object with added noise, representing a
tumor, directly into an existing PET image.164 However,

this method requires considerable effort to blend the
noise and edge characteristics of the lesion into the
image to avoid obvious edges from threshold or texture
mismatches. This method is the least realistic of the vari-
ous approaches for generating PET-like images. Because
of these weaknesses and the difficulties in accurately
matching the noise/spatial resolution properties of real
PET images, it is not further discussed.

Forward projected tumors: Alternatively, a more robust
method is to consider a synthetic lesion that can be forward
projected, have noise added and then inserted into the noise-
less forward-projection of an existing PET image that is
scaled appropriately to match the desired noise level of the
tumor. The projection data can then be reconstructed to pre-
serve the basic characteristics of the original image. Care
must be taken to ensure that the forward and backward pro-
jectors are matched, i.e., adjoint, that the original PET image
is sufficiently oversampled and that the reconstruction pro-
cess does not greatly alter the underlying PET image.
Although this process is conceptually simple, its realism is
limited by inaccuracies introduced in modeling the spatial
variation in the PSF, the noise model and the effects of the
reconstruction process.

Forward projected phantom images: Forward projected
phantoms and tumors represent a middle ground between full
Monte Carlo PET simulations of phantoms and directly
inserting tumors into PET images. This has been imple-
mented in an open source simulation tool165 and used in sev-
eral PET studies, as it is a standard means for evaluating
image reconstruction methods.166,167

In this method, noiseless tumor and phantom images are
forward projected and scaled to produce a similar number of
total counts as would be seen in the equivalent projection
data and then fused, which represents the reference images.
Noise is then added to the resulting projection data via a Pois-
son distribution to create PET-like projection data. These data
are then reconstructed to produce the PET-like images of the
original virtual phantom. Additional realism can be included
by blurring the images with a PSF (derived from physical
parameters: positron range, annihilation photon noncollinear-
ity, detector solid angle, block effects, etc.), adding attenua-
tion, random, and scatter counts and altering the fidelity of
the projection matrix or the type of reconstruction. This pro-
cess is described in Fig. T.A2.8. in Appendix III. Motion can
also be simulated by applying the appropriate motion-blur-
ring kernel to the image prior to forward projecting the image
into sinogram space. This method can be extended to insert
realistic tumors into existing PET images.165

Monte Carlo simulations: The most realistic data can be
obtained by simulating the entire positron emission, annihila-
tion, interaction, and detection processes with Monte Carlo
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(MC) simulations. The subsequent projection data can be
reconstructed to produce very realistic images.

Using recent, state-of-the-art anthropomorphic phantoms
such as the XCAT (4D NURBS-based Cardiac-Torso)168 or
Zubal phantoms168,169 and MC simulators such as SORTEO
(Simulation Of Realistic Tridimensional Emitting Objects),170

GATE (Geant4 Application for Tomography Emission)171,172

or SimSET (Simulation System for Emission Tomogra-
phy),173 combined with scanner system modeling (geometry,
detectors, etc.),174 can provide highly realistic simulations,
including respiratory motion144 with regular or irregular res-
piratory signals. Simulated tumors can be placed in various
anatomical locations and generated with nonspherical shapes
and complex uptake distributions, including realistic “activity
gradients” (see Fig. T.A2.9 in Appendix III). PET data are
then simulated by assigning an uptake to each organ/tumor of
the anatomical phantom. Parameters such as tumor-to-back-
ground ratio or intra-tumor heterogeneities can be varied
within any desired range. Similarly, it is possible to generate
various noise realizations, as well as various SNR ratios, by
selecting different parts of the overall simulated list mode
data (lines of response) before reconstruction. It is therefore
also possible to select lines of response corresponding to true
coincidences only, or including the random and scattered
data. Different scanner designs and reconstruction algorithms
and/or parameters (number of iterations, post-filtering
smoothing, voxel dimensions, etc.) can also be modeled if
detailed information about the scanner is available; hence,
this method allows the assessment of robustness and “univer-
sality” of the PET-AS algorithms.

Simulated data can provide a high level of realism without
the disadvantages and inconveniences of real phantom acqui-
sitions. It is possible to increase the number of activity levels
to realistic numbers approximating ground truth to the voxel
level achievable by some experimental approaches.161,162 This
however can increase the complexity and time required for
the design of the simulation.

4.C.3. Clinical images

In patients, the “ground truth” is defined by the actual
underlying extent of disease; however, the true biological
margins are usually unknown. This is in contrast to phan-
toms, where the ground truth is clearly defined by the
phantom design and therefore well-known. For clinical
images the following surrogates of truth can be used: (a) a
consensus of several physicians or expert-drawn contours
and/or (b) histopathological measurements of lesions
resected within a reasonably short timeframe after the
image acquisition and for which special precautions are
taken as described below.

Consensus of several physician-drawn contours: If the
clinical endpoint is selected as the decision basis in the
absence of histopathology information, consensus of several

physician-drawn contours is sometimes used as a surrogate of
truth. When the segmentation contours can potentially be
used in different clinical applications, images contoured by
several experts or physicians from different specializations
(e.g., the study by Bayne et al.175 in which two radiologists,
two radiation oncologists and two nuclear medicine physi-
cians contoured five NSCLC patients), might reduce bias due
to personal and specialty-based preferences at the price of a
likely slightly higher inter-observer variability due to differ-
ences in training and habits. On the other hand, when consid-
ering a specific clinical application, such an approach may be
less accurate than using consensus of contours drawn by sev-
eral specialists in this specific application. Indeed, contouring
by physicians from only one specialty, e.g., radiation oncolo-
gists,25 may provide more reliable estimates for an endpoint
corresponding to the goals of this specific sub-specialty (tar-
get volume definition in this case).

The use of the consensus-based methods discussed at the
end of section 2.B.2, which can account for a set of manual
contours, may be expected to reduce errors under certain
assumptions about the operators, as differences in perfor-
mance or training can be taken into account (e.g., within the
STAPLE framework).

Histopathological validation of PET image
segmentation: This type of PET-AS validation can be car-
ried out using PET images of tumor specimens for which
histopathological characterization is also available. In this
case, PET-AS contours can be tested directly against the
histopathology-derived contours. At present, these data serve
as the most clinically relevant ground truth of tumor extent.
However, there are several sources of errors that limit the
accuracy of this surrogate of truth for PET-AS validation: (a)
variable amount of deformation of the surgical specimen after
excision, (b) time difference between the PET scan and the
specimen excision, (c) uncertainty associated with manual
delineation (usually by a single observer) of the tumor bound-
aries in digitized histopathology, and (d) imperfect co-regis-
tration of histopathology slices and PET volumes. While
these errors can potentially limit the validity of the compar-
ison, histopathological validation is an important part of thor-
ough PET-AS evaluation. At present, there are several
datasets in which effort was made to minimize these errors.176

Examples are: the lung tumor dataset from the MAASTRO
(Maastricht Radiation Oncology) team with pathology-vali-
dated maximum diameters,124 the tumor datasets used in the
study from the Jefferson Medical College (max. diameter),177

the HNSCC (Head and Neck Squamous Cell Carcinoma),142

the NSCLC56 full 3D volumes reconstruction datasets from
the Universit�e Catholique de Louvain studies and the lobec-
tomy-based dataset from The Netherlands Cancer Institute
(NKI).178 Despite the challenges with respect to the accuracy
of the reference contours, these pathology-validated
images provide an important test for PET-AS methods. This
justifies the need for further improvement of the current
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experimental approaches, as well as development of new
techniques to improve the accuracy of histopathological
validation.176,179,180

It is important to note that because histopathological vali-
dation of PET image segmentation is carried out for a partic-
ular tissue and tracer pair, it cannot be implied that the results
apply to alternative PET tracer/tissue combinations; hence,
one should exercise care when using PET-AS algorithms to
segment tracer/tissue pair images different from those for
which they were validated. It should be noted that evaluating
PET segmentation against anatomic or surgical delineation
could be potentially misleading since biodistribution of a par-
ticular PET radiotracer may not conform to these structures.
This is especially true for non-FDG tracers such as hypoxia
probes where the entire tumor volume is not expected to dis-
play uptake.

4.C.4. Blind study and updates

To facilitate the training and validation of PET-AS algo-
rithms, it would be optimal to separate the images of the
future standard into two groups: (a) With ground truth given
to the PET-AS developers for learning/training and (b) Blind
study (without ground truth) for testing. The rationale behind
(a) is that some algorithms, e.g., the learning algorithms may
need to be trained, whereas (b) will ensure more objective
evaluation and validation. Simple geometrically shaped phan-
toms naturally fall in the first category, whereas clinical
images are a natural candidate for the second group. Simu-
lated images, or complex shape experimental phantoms, can
be distributed among the two.

Since both experimental and numerical phantoms are cur-
rently in rapid development, it is important to make provi-
sions for updating and expanding the set of images. The
benchmark’s goal can be better reached if it can facilitate and
encourage the sharing of new acquired datasets by contribut-
ing users. As new data and PET-AS algorithms become avail-
able, the evaluation process can be organized so that the new,
shared datasets become gradually included in the standard.
For example, a rule may be considered according to which, a
certain fraction of the images (e.g., ~60%) must have been
used for evaluating at least ten algorithms.

4.D. Figures of merit

Choosing the best set of Figures of Merit (FOM) depends
on the complexity of the segmentation problem as well as on
the evaluated endpoint. For example, when using spheres in a
standard compartmental phantom, shape modifications and
volume translations are unlikely to be observed. In this case,
simple volumetric differences may be enough. In more realis-
tic images, inaccuracies in shape or location are more likely
and need to be detected with a more complex FOM. A statis-
tical approach can further distinguish between two types of
errors with respect to assigning a voxel to a lesion or normal
tissue: Type I — false positives and Type II — false

negatives. The various FOMs are discussed in detail in
Appendix IV. The FOMs listed in Table IV are considered for
use in a future standard.

Most of these FOMs have advantages and drawbacks,
some of which are listed in Table IV. For example, opti-
mizing sensitivity alone would favor methods that encom-
pass and therefore overestimate the true volume.
Similarly, optimizing positive predictive value alone
would instead favor methods that underestimate the true
volume. Other criteria are not strict enough (e.g., volume
difference), computationally expensive (e.g., Hausdorff
distance181), or unable to distinguish between the two
error types (false positive and false negative, e.g., Jaccard
and DSC). Therefore, we caution against using a single
performance metric for segmentation evaluation and rather
suggest reporting several FOMs such as the combination
of sensitivity and positive predictive value, to convey
complementary information.

Notice that the Type I/II error distinction in sensitivity and
PPV requires the knowledge of which of the two volumes is
the actual ground truth, whereas other measures treat both
volumes in the same way. In the absence of a ground truth
volume (neither A nor B is preferred), then the Dice similarity
coefficient can be used instead of Sensitivity + PPV.

As discussed in section 4.B, some image datasets, e.g.,
simulated and experimental images, may have more accu-
rately defined ground truth than others, (e.g., clinical images
accompanied by pathological results or manual contours). In
the case of a less accurately defined ground truth, the inverse-
ROC approach, used by Shepherd, et al.,100 can give a reli-
able evaluation of the algorithms, provided a set of contours
(e.g., manual delineations) that encompass the ground truth
contour exist.

Due to the complexity of the PET segmentation problem,
more appropriate evaluation metrics could be defined based
on the clinical endpoint. In the case of radiotherapy treatment
planning, an example would be the geometrical concordance
of the delivered dose distributions to the PET segmentation

TABLE IV. A comparison of various volume/contour agreement measures
and their sensitivities to the properties of the segmented lesions. The impor-
tant properties are whether they account for volume differences, shape dis-
crepancies, false positive vs. false negative. The computational complexity is
graded between easy (+) and complicated (+++), although none of the met-
rics are particularly slow to compute using modern toolkits and computers
(Barycenter distance is the distance between the centers of mass of two sets).

Evaluation metrics Location Size Shape Type I/II Complexity

Volume difference no yes no no +

Barycenter distance yes no no no ++

Jaccard similarity
coefficient

yes yes yes no ++

Dice similarity
coefficient (DSC)

yes yes yes no ++

Hausdorff distance yes no yes no +++

Sensitivity + Positive
Predictive Value (PPV)

yes yes yes yes ++
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contour and the treatment outcome. Tools which can account
for such information have recently been proposed.182

5. DISCUSSION OF SEGMENTATION LIMITATIONS,
DEPENDENCIES, AND IMPLEMENTATION

5.A. Biological limitations of the segmentation
concept

It has long been realized that cancer is an abnormal
growth caused by unregulated cell proliferation. Cancerous
tissue morphology is highly irregular and characterized by
chaotic vascularization, resulting in a unique pattern of blood
flow for every tumor, which modifies PET tracer availability
and uptake in a way unique for each patient. Also, different
parts of the same tumor can have very different micro-envir-
onmental status, including different levels of glucose metabo-
lism. Other factors affecting intratumoral PET tracer
distribution are the presence of necrosis and stromal tissue
intertwined with cancer cells. As a result, the intratumoral
pattern of FDG uptake is highly heterogeneous.

While it is possible to carry out in vitro studies to relate
PET tracer binding/uptake to environmental parameters of
the cells in culture, direct in vivo application of such data is
highly speculative and lacks strong foundation due to the rea-
sons listed above. The uniqueness and stochastic nature of
the factors governing PET tracer uptake and its intratumoral
distribution in each patient represents one of the biggest chal-
lenges for PET image segmentation. The complexity of the
problem hampers the widespread adoption of auto-segmenta-
tion tools for routine clinical use.

Other factors can also potentially affect PET-based lesion
segmentation. Tumors may lack a well-defined boundary sep-
arating them from the surrounding normal tissues. Micro-
scopic cancer extensions can produce additional blurring of
this idealized, macroscopic boundary. Furthermore, in addi-
tion to heterogeneities of tracer uptake in the lesion, sur-
rounding normal structures are likely to be characterized by
different levels of tracer uptake. Inflammation, if present, can
result in further complications by significantly increasing
FDG uptake. Correspondingly, the biological meaning of the
segmented volume should be interpreted in the context of all
these biological factors governing image formation in PET.
Therefore, both PET image segmentation as well as interpre-
tation of the segmentation result are very nontrivial tasks and
should be approached with caution. However, for situations
where tumor delineation is needed, e.g., radiation therapy
treatment planning, the right choice of properly validated
PET-AS methods used as a guidance tool by the physician
can result in increased target definition accuracy and better
treatment.

5.B. Dependence on segmentation task

There may be significant differences in terms of tumor
segmentation algorithm parameterization and use, depending
on the task. At the same time, it should be emphasized that

most published methods have been proposed either as a gen-
eral PET segmentation approach, which can be used in any
application (although rarely tested or validated for all), or as
a method developed and validated for a specific clinical
application (e.g., radiotherapy planning, without being tested
in another setting).

In treatment planning the PET information can be used in
two ways:183

• Target volume delineation: The PET-based GTV
should safely encompass the entire tumor volume
without missing regions with low radiotracer accumu-
lation. To avoid cancer under treatment, even equivo-
cal voxels would usually be included. However, to
avoid over irradiation of too large a volume of normal
tissue, the GTV should not be larger than needed. To
account for microscopic disease the radiation oncolo-
gist then draws the CTV by adding a margin to the
GTV (section 4.A).

Uncertainties to the tumor contour for external radiother-
apy may be generated based on the accuracy of the method
as determined during the evaluation stage. The delineation
uncertainty can be approximated as a shell or annular
volume around the segmented volume. The thickness of the
annular shell could, for example, be derived from the
average thickness of the annular volume between the over-
lap and union volumes of the segmentation and reference
surfaces determined during the evaluation stage. Other
options are to use distance metrics between these surfaces,
which can be based on the Hausdorff distance or similar
methods.184

• Target substructure determination: In contrast, PET-
based definition of tumor sub-volumes for so-called
biologically conformal radiotherapy or dose painting2

requires a different approach. In dose painting, radia-
tion is shaped according to the PET uptake, theoreti-
cally delivering higher dose to the radiation resistant
and/or tumor-rich parts of the tumor. To achieve this
goal, one needs to rely on a detailed understanding of
the underlying tumor biology and PET signal (e.g.,
PET tracer uptake and retention mechanisms), as well
as how to determine the dose prescription function
based on the PET signal. In that specific context,
radiotracers different than FDG have been investi-
gated, e.g., use of FMISO-PET might indicate
hypoxic regions and the use of FLT-PET might indi-
cate tumor proliferative regions, where increased dose
is needed. In such cases, PET-AS methods would
need to be able to define both the entire tumor vol-
ume as well as sub-volumes with different levels of
activity. In some rare cases, multitracer datasets can
be available and the images combined to define a bio-
logical target volume (BTV). Methods based on infor-
mation fusion have been proposed to address this
specific challenge.154,185–187
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For treatment response assessment:

• Segmentation can be used for the estimation of various
uptake measurements (mean SUV, total SUV, hetero-
geneity of uptake using, e.g., histogram-derived first-
order features or more complex second and third order
textural features), which may correlate better with the
clinical outcome than less comprehensive metrics, such
as maximum or peak SUV.

• Automatic segmentation can be used for more consis-
tent longitudinal tracking of treatment response to vari-
ous cancer therapies. Repeatability and reproducibility
of segmentation in this case could be more important
than absolute accuracy, especially within the context of
the known relatively high test–retest variability in PET
scan imaging188,189

The PET avid volume and/or on tumor-to-background
ratio may change as a result of therapy. Therefore, for PET-
AS methods which are dependent on these parameters (e.g.,
some adaptive threshold methods23,52) use of the same
method for segmentation of PET images before and after
therapy without proper adjustment of parameters may result
in incorrect and inconsistent segmentation. This may then
affect the accuracy of the metrics derived from the segmented
volume. In general, using FDG for adaptive radiation therapy
may be problematic due to change in the SNR as a result
from reduction in the tumor uptake and/or inflammation.
This means that, for example, a threshold set to 42% of peak
activity may provide erroneous results if the tumor/back-
ground ratio changes substantially or if the PET avid volume
decreases under a certain value.48 This volume was found to
be about 1.5 mL for older PET scanners but will be partial
volume and therefore scanner dependent. Similarly, if the
PET avid volume has an irregular shape with both wide and
thin parts, the threshold may have to be adapted to the effec-
tive size of these parts of the volume.

The time saved using automatic segmentation is also
important; lack of time in daily practice is one of the major
limitations preventing investigators from using ROI-based
methods for treatment response assessment in cases where
volume (or volume-derived) information is important. As a
result, in current practice, SUVmax and SUVpeak, which are
less dependent on accurate edge and volume definition, are
more widely used for response assessment. Automatic seg-
mentation provides consistency and time efficiency in lon-
gitudinal studies. However, consistency is harder to achieve
for PET measures dependent on the segmented volume
(e.g., SUVmean, SUVtotal), compared to measures that do
not depend on it, but simply follow the voxel(s) with high-
est activity concentration anywhere within the GTV (e.g.,
SUVmax, SUVpeak).

In addition, even for a single clinical goal (e.g., radiation
treatment planning), the PET-AS methods may meet different
requirements for different disease types and body sites. This
may profoundly affect the method evaluation process. For
example, this may result in favoring relatively simple, e.g.,

adaptive threshold methods, optimized for each lesion type
versus more complex advanced methods, which may do
equally well in different parts of the body. During the devel-
opment of a future evaluation standard, this possibility may
be investigated by sorting the performance results of the PET-
AS methods between body sites and tumor types.

5.C. Dependence on scanner, image acquisition,
and reconstruction protocol

One major consideration in PET image analysis is the lack
of standardization of clinical imaging protocols resulting
from hardware and software variability, as well as the varia-
tion in procedures between clinical centers (injected dose,
delay between injection, and acquisition, acquisition dura-
tion, etc.). Thus, every post-acquisition, post-reconstruction
analysis, and extraction of relevant parameters from PET
images depend on the actual qualitative and quantitative char-
acteristics of the analyzed PET image (e.g., resolution and
noise), which are strongly influenced by the acquisition pro-
tocol. For this reason, users are cautioned to always evaluate
and validate published PET-AS methods for their specific
clinical application and scanning protocol before clinical use.

Recently, there have been several efforts to propose ways
for the standardization of imaging procedures. These efforts
have sought to minimize the impact of acquisition protocols
on the resulting visual quality and quantitative accuracy and
consistency of PET images4,190–192 One of the main reasons
is to help improve consistency in multicenter trials that com-
bine images acquired from different clinical centers, scan-
ners, and imaging protocols.

These efforts are to be encouraged. By reducing the exist-
ing variability in PET images encountered in clinical practice,
they will contribute toward improved data consistency, which
will facilitate the use of PET-AS algorithms across different
centers and thus allow the use of advanced quantitative tools
for treatment assessment. This will also contribute to reducing
the dependence of PET defined tumor volumes on the specific
instrumentation and protocols in a given clinical center.

The quality of an image is defined by several parameters,
which may have different importance for different tasks.193–196

Segmentation differs from typical diagnostic tasks in that it
seeks to identify the boundary locations and therefore uses a
much larger parameter space. Based on this, there is an
expectation that this problem is more ill-posed and requires
less noisy data to reduce errors.

This can be achieved by modifying the injected activity,
uptake period, acquisition, and image reconstruction. Increas-
ing the injected activity may improve the noise equivalent
count rate. Typically, for radiation therapy simulation the
injected activity is unaltered from that used for diagnostic
imaging and it is possible that the risk from therapy is large
enough that it outweighs the risks associated with injecting a
larger amount of activity. For the case of FDG-PET, a 1-hour
post-injection delay is used; however, the contrast ratio of
uptake to background continues to increase with time. This
1 h selection is due to tradeoffs between workflow,
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consistency, diagnostic efficacy, etc. Increased dwell times
over the tumor regions and/or additional spot scans can also
be used to improve the images.

Increasing the number of counts in the data using these
approaches would allow achieving higher resolution image
by increasing the number of iterations while preserving the
noise level.197,198 Beyond this, some penalized image recon-
struction methods with edge preserving prior models have
been developed.199–203 These may produce images with edges
that are more easily segmented. These trade-offs may be con-
sidered for future protocol optimizations together with the
risks associated with higher doses related to therapy.

5.D. Dependence on tracer type and physical
isotope

Current investigations are dominated by FDG and 18F-
based tracers. This is understandable because FDG remains
the most widely used radiotracer in oncologic imaging.
However, there is a growing interest in non-FDG tracers,
including radiolabeled amino acids such as L-methyl-11C-
methionine (MET) or O-(2-18F-fluoroethyl)-L-tyrosine (FET)
for brain tumor delineation, proliferation markers such as
18F-30-fluoro-30-deoxy-L-thymidine (FLT) or hypoxia tracers
such as 18F-fluoromisonidazole (FMISO). At least some of
these agents show a lower intensity of uptake in tumor lesions
than FDG (e.g., FLT and FMISO), and thus physicians may
apply different criteria for what constitutes significant radio-
tracer uptake (for instance in comparison to background refer-
ence regions or blood activity). In fact, little attention has
been given to the question of how the use of these alternate
radiotracers can affect the accuracy of the various segmenta-
tion algorithms. Most of the segmentation approaches have
been designed for FDG-PET. Also most fixed and adaptive
threshold-based methods are optimized for a specific range of
tumor-to-background ratios. However, some methods have
been used successfully on different radiotracers204,205 For
some tracers, a lower target-to-background ratio may lead to
significant problems in the use of threshold-based algo-
rithms. Tracers other than FDG may be of great interest for
dose painting and contouring of tumor sub-volumes. How-
ever, for isotopes other than 18F, differing physical parame-
ters, such as positron range and emission of cascade gamma
rays, may degrade image quality and must be taken into
account. This emphasizes the need for more robust algo-
rithms that can deal with varying contrast and noise levels in
reconstructed images. Histological validation of such tracer
accumulation is necessary to determine sensitivity,
specificity, and detection limits before these agents can be
considered for dose modulation.

It should be noted that multitracer datasets have been
acquired in research protocols and clinical trials to investigate
the complementary value of different tracers. Since the acqui-
sition and investigation of multitracer data is currently in its
dawn and their segmentation is a very specific and challeng-
ing task outside common clinical practice, we are limiting
their discussion only to this paragraph. Several novel methods

have been developed to segment such data, usually with the
goal of deriving a single biological target volume (BTV)
from multitracer images. The use of information fusion has
been suggested to achieve this as early as 2011185–187 and
some recent fusion-based methods have been evaluated with
promising results.154

New, more sophisticated pattern recognition/machine
learning algorithms are also on the horizon; these may make
use of more subtle image characteristics, including noise dis-
tribution, underlying PSF, and nominal biological distribu-
tion. Such algorithms will require training sets of expert
identified and segmented data and will only be valid for the
type of data they were trained to process (see section 2.B.2).
Therefore, while at present most segmentation schemes are
radiotracer/isotope agnostic, this may rapidly change, as more
sophisticated image-processing techniques become available.

5.E. Effect of motion

Motion can have an important impact on the apparent size,
shape, and contrast of lesions in PET images, especially in the
thoracic area, due to respiratory motion. There has been a sig-
nificant advancement of respiratory motion correction algo-
rithms based on breath hold, external or internal gating,
deformation corrections and post-frame summing, blur decon-
volution and others.206–223 Of these, the data driven gating
approaches of PET images promise to yield comparable results
with less discomfort for the patients than hardware driven
approaches.219–221 Recent works have highlighted their applic-
ability in clinical settings.224,225 The development of synergis-
tic algorithms, which encompass entire workflows226, or
account for motion simultaneously with segmentation, are also
expected.227–229

In the context of stereotactic body radiotherapy (SBRT), it
has been shown that it may be useful to derive respiratory
correlated target volumes from gated (4D) PET/CT scans in
addition to 4D-CTs.228,230,231 However, the current common
practice still is to segment the PET volume integrated over
the scan time. If PET-AS algorithms are evaluated on clinical
images against the activity as seen in the uncorrected PET
image, endpoint a) as described in section 4.A, the potential
effect of breathing motion in these images is disregarded. If
the CT images are also used in the segmentation process, the
uncorrected PET images should not be used for cases poten-
tially affected by motion due to possible misalignment
between the CT and PET.

5.F. Guidelines for acceptance and implementation
for PET auto-segmentation algorithms

Vendors have adapted and further developed some of the
PET-AS methods when implementing them in commercial soft-
ware. However, the number of published algorithms is much
larger than the number of those implemented (see section 2.B).
The algorithms implemented by vendors, while being adapta-
tions of published algorithms, may have modifications and
enhancements that have a “black box” quality if vendors are
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reluctant to disclose proprietary techniques. Therefore, the ven-
dors may have specific recommendations on how to test their
PET-AS algorithms, which the user should address first.

An additional factor to consider is the variability in imple-
mentations in the various commercial software visualization
and analysis platforms. As it has been recently demonstrated,
even for very simple metrics such as SUVmax, considerable
variability has been shown to exist across various vendors
and software, likely due to implementation errors, as well as
different interpretation of, or assumptions about the data.232

The developed digital reference object is a very useful tool
that will allow verification and validation of the vendor’s
implementation. Similar observations were made regarding
contours and volumes that were substantially modified when
transferred from one station to another.233 It is, indeed, not
uncommon to transfer segmentation results such as contours
from one station to another (e.g., a nuclear medicine-dedi-
cated analysis station to a radiotherapy planning station) and
the user should verify their consistency. In that respect, con-
siderable standardization efforts are needed to ensure that
adopted PET-AS methods will be correctly implemented and
the results are compatible across the various platforms of dif-
ferent vendors.

Following vendor suggested acceptance testing, this task
group envisions a three phase procedure (Table V) for the
implementation of segmentation algorithms that reflect
the different level of closeness to reality of the PET images
(see section 4). The images to be used in the three stages
would contain lesions represented by; (a) spherical/cylindri-
cal objects, (b) irregularly shaped objects, and (c) human
datasets. Since each of these image types may present a dif-
ferent evaluation endpoint (4.A) and specific challenges that
depend on how it was generated, this will allow a more thor-
ough evaluation of PET-AS methods.

Most current implementation tests typically stop with the
first phase, incorrectly assuming that the PET-AS algorithm

would be sufficiently accurate for realistic clinical images.
For the first phase, phantoms with spherical inserts (diameter:
1 cm–4 cm) imaged at varying object-to-background ratios
(e.g., 2:1 to 10:1) can be used. In addition, iodinated contrast
can be used to aid in segmenting the ground truth volumes
and in excluding the wall of the objects in the CT images.
Simple shape (e.g., spherical) objects in uniform background,
preferably without cold wall,156–158 are also most convenient
for robustness evaluation across scanners and reconstruction
schemes.

For the second phase, a combination of physical phantoms
capable of constructing irregularly shaped objects100,158 and
nonuniform activity distributions,162 as well as numerically
simulated phantoms that contain irregular shaped objects
and/or nonuniform uptake, can be selected among the family
of phantoms discussed in 4.C.1 and 4.C.2. Finally, for the
third phase for which we suggest using clinical images, the
main limitation is insufficient knowledge of the ground truth.
As discussed in 4.C.3, ground truth surrogates such as
pathology findings of excised specimens and/or statistical
consensus from several manually drawn contours (preferably
by different experts) can be used. Since both ground truth
surrogates have a fair degree of uncertainty, the benchmark
dataset should ideally comprise both of these image types.

The evaluation metrics for assessment of the segmentation
accuracy are described in 4.D. While several of these tools
can be used, a combined metric, e.g., including sensitivity,
positive predictive value and Hausdorff distance is expected
to provide a more reliable method assessment. However, fur-
ther investigations are needed to generate a combined evalua-
tion metric that is not affected by biases of the metrics or
correlations between them. We suggest that the results of the
evaluation stage be used to estimate the contouring uncer-
tainty as discussed in section 5.B.

A standard, which will provide access to the selected bench-
mark datasets and various performance metrics, is currently

TABLE V. Stages of evaluation of PET auto-segmentation (PET-AS) methods. DSC (Dice Similarity Coefficient), PPV (Positive Predictive Values), HD (Haus-
dorff Distance).

Step 1. Vendor acceptance 2. Basic evaluation 3. Phase two evaluation: 4. Phase three evaluation 5. Impact evaluation

Objective Proper functioning
of software

Accuracy for clinic-
specific images;
robustness to image
properties

Accuracy, repeatability and
robustness for realistic
shapes and variable uptake;

Accuracy, repeatability and
robustness for clinical
images from the intended
application

Evaluation of clinical
impact

Datasets Vendor recommendation Simple objects in
uniform background;
repeated acquisitions

Irregular shape and/or
nonuniform uptake lesions in
experimental or digital
phantoms without cold wall;
multiple realizations

Clinical images Clinical images, treatment
plans and follow-up
records

Ground
truth

Vendor recommendation CT defined voxel level
accuracy.

High resolution CT or digital
ground truth defined at voxel
level accuracy.

Digitized histopathology and/
or consensus of several
manual delineations

Treatment outcome data

Metrics Vendor recommendation Volume errors, DSC DSC, Sensitivity, PPV, HD DSC, Sensitivity, PPV, HD,
Statistical evaluation of
clinical endpoint (prognostic/
predictive value)

Statistical multiparameter
treatment outcome
analysis
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under construction by members of the task group.151,234,235 As
pointed out in the last column of Table V, the ultimate evalua-
tion of segmentation will be analyzing the outcome of treat-
ments using the respective segmentation approach.

Ideally, a segmentation algorithm would be portable
across different scanners with their individual and sometimes
proprietary reconstruction schemes and parameters. Since
this may not always be realistic for many PET-AS algorithms,
the implementation should be appropriately tagged as being
optimized for specific scanner types and protocols.

The minimum requirements for an algorithm depend on
the intended application goal: diagnostic, therapy planning,
or treatment/prognostic assessment. For diagnosis, the most
important aspect of the PET-AS method is its ability to iden-
tify the tumor (not necessarily exact extents/boundaries) for a
large range of tumor sizes on either original or PVE corrected
images, to provide the most accurate volume and the associ-
ated activity.

For radiotherapy planning, the minimum requirements
include the PET-AS’s accuracy in the delineation of the gross
tumor volume and the ability to identify sub-volumes (for
dose boosting/painting/redistribution applications), as is its
ability to achieve a high sensitivity (to be sure to include the
entire target) with minimal loss of specificity (to reduce irra-
diation of healthy tissues and organs at risk).

In the case of response assessment, the main requirement
is that the portion of the tumor image that maximizes the pre-
dictive power of the particular parameter (biomarker) used, is
correctly segmented. As a result, for this type of segmenta-
tion task, the link to the physical aspects of the tumor and
imaging system are difficult to convincingly establish, and
the need for the clinical impact evaluation step (Step 4,
Table V) is especially important.236

Also in most cases, for follow-up and therapy assessment
applications, the PET-AS algorithm will have to be applied to
serial scans independently, although developments dedicated
to consider simultaneously sequential scans are also being
developed.185,186,237–240 Therefore, its robustness versus dif-
ferent contrast, heterogeneity and tumor size is extremely
important to provide nonbiased results regarding the evolu-
tion of tumors during therapy. AAPM Task Group 174
(Utilization of 18F-Fluorodeoxyglucose Positron Emission
Tomography (FDG-PET) in Radiation Therapy) is working
toward standardizing the methodology used for sequential
scanning (or even inter-patient scanning for clinical trial
patients), so as to allow segmentation techniques to be used
for fair comparison between the pre- and intra/post-treatment
PET scans.

Type of disease and body site dependence of the perfor-
mance of PET-AS methods should also be expected. This
means that the user should evaluate the chosen PET-AS algo-
rithm for the intended body site. Furthermore, within the con-
text of multicentric studies, it is important that the chosen
algorithm be validated for robustness against the varying
noise and texture properties associated with different scanner
models and reconstruction algorithms and their associated
parameters (voxel sizes, etc.). Alternatively, the algorithm

should be easy to adapt/optimize to the characteristics of each
individual center/scanner. Scanning the same phantom at the
involved institutions and comparing PET-AS method perfor-
mance is suggested. The limitations of the selected phantom
need to be well-understood as discussed in 4.C.

5.G. The complementary role of manual and
auto-segmentation for PET

To satisfy the requirements laid out in the previous sec-
tions, PET-AS algorithms need to accurately account for the
physical and technical sources of bias and uncertainty in the
PET images. In addition, the ideal PET-AS algorithm should
be able to account for anatomical, physiological, and other
clinical information not present in a PET image, which can
alter the location of a contour. Although some of the algo-
rithms listed in Table I promise to answer most of the physi-
cal requirements, accounting for clinical information not
present in the PET image is beyond the capabilities of the
available PET-AS algorithms. As a result, there is a need for
active physician involvement in the segmentation process.
Therefore, at present and in the near future, automatically
generated contours can be used only as a starting point for
GTV delineation by the physician, who may decide to change
them based on his/her knowledge. It is likely that human
supervision will remain necessary, both before and after the
process of automatic contouring, although this rule may
change in the future.241 A recent work has presented a
method for head-and-neck, in which user interaction is kept
minimal but exploited nonetheless so that the user can pro-
vide simple cues to guide the segmentation algorithm in an
efficient and intuitive manner.242

Before auto-contouring: Because automatic contouring
algorithms cannot distinguish between malignant and benign
tissue tracer uptake, the selection of the lesion, i.e., the diag-
nostic decision to regard a certain region of elevated tracer
uptake as malignant, must be done by a knowledgeable physi-
cian. This step includes all forms of diagnostic decision mak-
ing, considering clinical information not present in the image,
topography, pattern, and anatomical location of the suspected
uptake, as well as the probability for malignant spread.

After auto-contouring: The review and editing of the final
contour is required for consistency with known diagnostic
information, including findings by other imaging modalities,
endoscopy results and clinical knowledge. The contours
drawn on the same lesion may differ if the goal is therapeutic
(need to include all malignant tissue) compared to the case
when the goal is diagnostic (need to mark structures contain-
ing tumor with a high probability).

To ensure a smooth workflow in daily practice, the con-
touring software should facilitate both automatic contouring
and user interactions for lesion selection and contour editing
or algorithm guidance (by providing better initialization, for
example204). It is also necessary to enable co-viewing or fus-
ing of the PET scan with other imaging modalities to include
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all diagnostic information in the contouring process. In this
context, beyond the application of well-designed and thor-
oughly evaluated algorithms for automatic contouring, the
use of multimodality imaging and collaboration between
radiation oncologists and/or oncologists, and imaging spe-
cialists (e.g., diagnostic radiologist and/or nuclear medicine
expert) are necessary to ensure better understanding of plan-
ning images.

6. CONCLUSIONS

Given the large number of published PET-AS algorithms,
their different level of validation and because most of these
published algorithms are not yet implemented in commer-
cially available software, recommending a single PET-AS
method is challenging and premature. Furthermore, even if
such a recommendation could be made it may become obso-
lete considering the rapid development of the field. Instead,
we have provided basis for understanding the logic and the
limitations of the main classes of approaches and a frame-
work for their rigorous evaluation and comparison, which we
believe will be of greater value for future developments.

As reviewed in this report, there is accumulating evidence
in the literature pointing to the higher accuracy and robust-
ness of the approaches based on more advanced image seg-
mentation and analysis paradigms, when supplemented with
manual and visual verification, compared to simple thresh-
old-based approaches. These advantages, however, come at
the expense of the ease of implementation and understanding
of the simpler algorithms. At the same time, it is possible that
simpler (e.g., adaptive threshold) methods may perform com-
parably well, if not better, for a certain body site/disease type
if specifically optimized for these conditions. Recent algo-
rithms which employ some type of consensus or automatic
selection between several PET-AS methods have a potential
to overcome the limitations of the individual methods when
appropriately trained. In either case, accuracy evaluation is
required for each different PET scanner and scanning and
image reconstruction protocol. For the simpler, less robust
approaches, adaptation to scanning conditions, tumor type
and tumor location by optimization of parameters is neces-
sary. The results from the method evaluation stage can be
used to estimate the contouring uncertainty. All PET-AS con-
tours should be critically verified by a physician.

Clearly, further research for solving the dilemma of PET
image segmentation is needed, and one potential solution for
going forward is the creation of a standardized protocol (i.e.,
a benchmark) for consistent evaluation and comparison of the
PET-AS methods. This task group suggests the following
considerations for generating such a standard:

• The evaluation endpoints need to be clearly separated
based on algorithmic accuracy and clinical relevance. In
order of increasing clinical relevance the reference
choices are: (a) the unmodified PET images; (b) the tra-
cer distribution corrected for image artifacts; (c) the
underlying histopathology.

• At present, the benchmark needs to consist of several
image datasets of different types: experimental (phan-
toms), numerically simulated and clinical, to compen-
sate for the deficiencies of each of them. Also, a
complete set of images should include images from all
body sites, since algorithm performance may depend on
local tracer uptake specifics.

• The performance of the methods needs to be evaluated
using different metrics, which include volume overlap
measures, classification evaluation tools as well as
voxel-to-voxel distance metrics.

These considerations are the core of the guidelines for
PET-AS algorithm evaluation presented in more details in
section 5.F.

A standard that conforms to these requirements will pro-
vide a more objective comparison of the algorithms by miti-
gating the large variability in image sets and metrics used for
evaluation. At present, a benchmark following these recom-
mendations is under development within the task group. Dif-
ferent PET-AS methods are currently being tested within this
framework to evaluate the benchmark design and compo-
nents.151,234,235 A publicly available tool such as this should
aid users in evaluating current algorithms to increase confi-
dence in selecting the most adequate PET-AS method to use
for a particular application under physician supervision and
to provide reference criteria to evaluate future methods.
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APPENDIX I. PET-AS FORMALISM EXAMPLES

A) FIXED AND ADAPTIVE THRESHOLD
ALGORITHMS

Thresholding could be expressed as follows:

z}|{
I 2 !TðIiÞ ¼

1; Ii � T ;

0; Ii\T;

�
Ii 2 IVOI (A1)

where !T :ð Þ the indicator function for threshold T,
z}|{
I the seg-

mented subset of the voxels within a Volume of Interest
(VOI) in image I, and Ii. is the uptake value (generally nor-
malized to SUV) at voxel i.

The optimal thresholds for performing segmentation are
often found by minimizing the difference between known vol-
umes, Vknown, (typically a phantom study) and the volumes
defined by applying different thresholds, V Tð Þ. This often is
described as,
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T� ¼ argminT Vknown � V Tð Þð Þ2 (A2)

which could be solved by a least-squares estimation tech-
nique. In addition, it is possible to add some topological con-
straints to

z}|{
I ensure its connectedness and/or that it is simply

connected, to avoid islands or holes within the segmentation

ROI. In case of NSCLC, the optimal threshold for a specific
scanner and protocol46 was related to volume via,

T Vð Þ ¼ Imax 59 log10V
z}|{
I
� �� 18

� �
; Ii 2

z}|{
I (A3)

where Imax. is the maximum uptake in the segmented subset
and V

z}|{
I
� �

the segmented volume. The functional forms of
various threshold segmentation schemes are given in
Table A1.

B) SEGMENTATION OF MULTIMODALITY
IMAGES

In the case of Fuzzy C-Means (FCM) multimodality seg-
mentation, a fuzzy membership function and the cluster cen-
ter cnk are updated according to

unik ¼
jjxi � cnk jj�2PK
k¼1 jjxi � cnk jj�2 ; c

nþ1
k ¼

PN
i¼1 unik

� �b
xiPN

i¼1 unik
� �b (A4)

where unik is the fuzzy membership probability that image
pixel xi belongs to cluster k at iteration n, cnk is the updated
cluster center intensity and b is real number greater or equal
to 1103,139.

In the case of Multi Valued Level Sets (MVLS), the objec-
tive functional for N imaging modalities could be presented as:

infc JðC;cþ;c�Þ/ 1
N

X
m

�
kþm

Z
X

ImðxÞ� cþm
�� ��2H /ðxÞð Þdx

þk�m

Z
X

ImðxÞ� c�m
�� ��2 1�H /ðxÞð Þð Þdx

�
;

(A5)

where Im xð Þ is the intensity from imaging modality m at
image location x, / is the level set function. cþm c�m

� �
cor-

responds to the pixel intensity mean values inside (out-
side) of the contour Cm. H is the Heaviside function and
kþm ; k

�
m

� �
are user-defined parameter pairs providing rela-

tive importance weights for each of the imaging modalities
m. The target boundary is defined at the zero level
/ Cð Þ ¼ 0ð Þ and the integrals are over the space Ω of each
image type.

APPENDIX II. UPTAKE NORMALIZATION AND
THRESHOLD PARAMETER ESTIMATION

UPTAKE NORMALIZATION

Preprocessing the uptake data is important for inter-patient
comparisons and for defining a segmentation scheme. The
most common uptake preprocessing is the conversion into
SUV. The use of it or something similar is essential to making
the selection of a threshold activity independent and applicable
across patients and institutions.47 SUV itself comes in many
flavors, with normalization being carried out with respect to
total body mass, lean body mass, body surface area, etc.

TABLE A1. Functional forms of various threshold segmentation schemes gen-
eralized for common representation and to reduce patient dependence.

Comments Threshold Estimator

Drever, et al.’s single-parameter FTS
fit257: It is most notable for its use of
the histogram’s mode for more
stable estimation of the background.

T ¼ a Imax � Ibkg
� �þ Ibkg

Nestle, et al.’s single-parameter FTS
fit23: This fit uses the mean of voxels
greater than 70% of the lesion’s
maximum. The use of the mean
instead of the maximum uptake
reduces the variability.

T ¼ a Imean;70%max þ Ibkg

Daisne, et al.’s show a two-parameter
FTS fit model137: The scaling
parameter, Imax, can be recast as a
mean-value or volume-based
measure for an ATS algorithm.258

T ¼ aþ b Ibkg
Imax

Schaefer, et al.’s two-parameter FTS
fit30: This fit is extended from
Nestle’s scheme above.23

T ¼ a Imean;70%maxþb Ibkg
Imax

Erdi, et al.’s two-parameter FTS fit48.
It was noted that a fixed threshold of
42% worked well for large lung
tumors, however, the authors go on
to say that its use should be limited
to homogeneous uptake
distributions.

T ¼ a e�bV Tð Þ

Black, et al.’s two-parameter ATS
fit53: The use of the mean SUV to
make the algorithm more stable to
noise requires a threshold for its
calculation.

T ¼ aþ b Imean V Tð Þð Þ

Biehl, et al.’s two-parameter ATS
fit46: The volume is the GTV
defined by CT. This algorithm was
shown to work for a range of tumor
volumes in NSCLC.

T ¼ Imax aþ b ln CTGTVð Þð Þ

Jentzen, et al.’s three-parameter ATS
fit51: The parameters were fitted
from phantom data. The volume
parameter requires a threshold.

T ¼ a
V Tð Þ þ b Ibkg

Imax
þ c

Nehmeh, et al.’s four-parameter ATS
fit52: The fit used Monte Carlo
simulation results to avoid cold wall
effects.

T ¼ Imax aþ b VcðTÞed=vðTÞ� �

Burger, et al.’s Background
Subtracted Lesion (BSL)259: Not
meant as segmentation but rather a
volume estimation scheme, an
equivalent volume threshold can be
found (Li et al.260) Note that this
method tends to overestimate the
volume by including spill-out.

Procedure:
T, such that the
volume from this threshold
matches the BSL volume derived
from histogram analysis
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Beyond SUV, it has been advocated normalizing patient data
to the aortic arch (RTOG 1106)261,262 or to mean liver uptake.
For inter-patient comparisons these normalizations are likely
sufficient, but for segmentation, the tumors themselves may
need additional and individual normalization.

For segmentation, further normalizing the intensity within
the images or VOI allows for greater consistency between dif-
ferent image sets. Although several segmentation algorithms
based on contour detection or region determination through
contrast measurements do not require nor benefit from any
SUV conversion, such SUV normalization is often used for
segmentation. Many algorithms23,30,53,257,258,263 rely on sub-
tracting the background activity from the images. In such
cases, the segmentation effectively uses a function of this
form:

ni ¼ n Ii; Ibkg; Iref
� � ¼ Ii � Ibkg

� �
Iref � Ibkg
� � ; (A6)

where Iref is a reference voxel value and Ibkg is the back-
ground value, often Iref ¼ Imax. As a further simplifica-
tion, the image can be normalized solely to Iref under
the assumption that Ibkg is small and does not vary much
between images. The maximum contrast results in
nmax ¼ 1 and all voxels for which ni � T within the VOI
are included in the segmented volume. While alternatives
to the equation above exist, the various values that com-
pose it are often similar. As a result, some discussion
regarding their choice is useful.

In choosing the values used to define the equation above,
some care is necessary to ensure that they are relatively insen-
sitive to the segmentation region and image noise.264 In the
case of the background value, Ibkg is often taken to be the
mean intensity over a large region, where the mean is taken
from voxels that are far enough from the edge of the object to
avoid PVE. Alternatively, when using a histogram approach
the mode (the most frequent value) of the voxels’ intensity
distribution can be chosen instead of the mean, since it has
the advantage of being less susceptible to PVE.263,265. In
either case, both the mean and the mode are typically well-
defined and relatively insensitive to image noise.

On the other hand, for the reference uptake value, Iref , the
choice of the maximum intensity voxel in the object tends to
be sensitive to the image noise thus using Imax is problem-
atic.23,30,53,258 Virtually all phantom-based threshold models
assume that the activity is uniform in the lesion. Yet the max-
imum intensity voxel of a region is sensitive to the size of the
object; large objects may exhibit a larger variation in their
maximum SUV than small ones. In patient data this is less
clear due to tumor heterogeneity, but it has prompted the use
of alternative definitions to maximum SUV for characterizing
tumor uptake, such as peak SUV, a grouping of the 10 highest
uptake voxels, or similar.266 One approach described in Nes-
tle, et al.23 and later expanded on by Schaefer, et al.30 is to
define the reference value as the mean of a region defined by
a percent threshold of the maximum voxel (in both papers
70% max SUV). This approach helps reduce the noise

associated with a single voxel and provides some stability to
the measurement. Using mean uptake as an argument makes
the threshold a function of the segmentation boundary and
requires an iterative solution.

APPENDIX III. PET PHANTOMS

APPENDIX IV. EVALUATION METRICS FOR
SEGMENTATION TOOLS

AGREEMENT BETWEEN SETS OF VOXELS

Let A and B be two volumes lying in space S composed of
voxels. This space can be the 3D image matrix or the field of
view of a scanner. Volumes A and B are subsets of this space.
A and B are therefore sets of voxels.

The measured volume of A is equal to v|A|, where v is the
voxel size expressed in volume units and |A| denotes the car-
dinality of A. The voxel size does not need to be specified
and the volume of A can be expressed by its cardinality with-
out loss of generality.

The agreement between A and B basically depends on the
cardinality of their intersection A \ Bj j. The disagreement is
reflected by the two set differences AnBj j and BnAj j, i.e., ele-
ments of A that are not elements of B and vice versa, respec-
tively. There are therefore two types of errors. These are also
absolute errors. The simplest normalization factor is
jA [ Bj�1. In this case, we have

A \ Bj j
A [ Bj j þ

AnBj j
A [ Bj j þ

BnAj j
A [ Bj j ¼ 1 (A7)

The first term is known as the Jaccard similarity coeffi-
cient, which varies between 0 and 1. For example, let us
assume that A and B are different volumes but Aj j ¼ Bj j and
A \ Bj j ¼ Aj j=2. Given this then we have A [ Bj j ¼ 3=2 Aj j
and the Jaccard coefficient is equal to 1/3, whereas the over-
lap actually represents 50% of A. This distortion of the intu-
itive perception of the overlap is addressed by the Dice
Similarity Coefficient (DSC), which is defined as

Dice A;Bð Þ ¼ 2 A \ Bj j
Aj j þ Bj j : (A8)

The normalization factor is the inverse of the average vol-
ume. In the same example as above, the DSC is equal to 1/2
and concurs with the intuition. It can easily be verified that
the DSC varies between 0 and 1.

At this point, both A and B have been considered on the
same footing. Let us now define A as representing some
ground truth (i.e. a reference volume) and that B is defined as
an observation of A with some inaccuracies. In this case,
AnBj j and BnAj jare the numbers of false negatives (FN) and
false positives (FP), respectively. This, and the above infor-
mation, can be written in a confusion matrix as
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A \ Bj j AnBj j
BnAj j Sn A [ Bð Þj j

� 	
; (A9)

where Sn A [ Bð Þj j is the number of true negatives (TN),
which is obviously of little interest, as it depends primarily
on the unimportant volume of space S, contrary to true posi-
tives (TP) in A \ Bj j. The most natural normalization factor
here is |A|. The ratio A \ Bj j= Aj j is closely related to the
DSC, provided we have Bj j ¼ Aj j. We have here a single
equality given by

A \ Bj j
Aj j þ AnBj j

Aj j ¼ Aj j
Aj j ¼ 1 (A10)

because

A \ Bj j
Aj j þ BnAj j

Aj j ¼ Bj j
Aj j (A11)

can obviously be larger than 1 as soon as Bj j[ Aj j. This
issue can be addressed using the specificity and sensitivity,
defined by

spec: ¼ TNj j
TNj j þ FPj j and sens: ¼ TPj j

TPj j þ FNj j : (A12)

Because the number of true negatives depends on the space
volume, the specificity makes little sense and only the sensi-
tivity conveys useful information. The specificity can be
replaced with the positive predictive value (PPV) (see Fig.A1
for visual illustration of sensitivity and PPV), defined as

PPV ¼ A \ Bj j
Bj j ¼ TPj j

TPj j þ FPj j (A13)

All quantities described above assume that set operations
can be computed. If only the cardinalities Aj j and Bj j are
known, then only the volume difference Aj j � Bj j can be
found. The normalization factor can be either Aj j or
Aj j þ Bj jð Þ=2. The volume difference has two critical short-

comings. First, there is no possibility of distinguishing Type
I and Type II errors, aside from the difference sign. Second,
the volume difference is overly optimistic: it can be optimal
Aj j � Bj j ¼ 0ð Þ with actually no overlap ( Aj j ¼ Bj j but
A \ Bj j ¼ 0). The overlap can be approximated with the dis-
tance between the centroids (or barycenters) of A and B, for
instance.

HAUSDORFF DISTANCE

If set A is rewritten as aif g and set B as bj

 �

, then
d ai; bj
� �

can denote the distance between voxels ai and bj.
This distance can be the Euclidean distance from the center
of ai to the center of bj. Starting from this voxel-to-voxel dis-
tance, the Hausdorff distance is defined as:271

HD A;Bð Þ ¼ max maxi min j d ai; bj
� �

;max j min i d ai; bj
� ��

:

�

(A14)

The first term calculates the maximum of the distances
from each element of A to the closest element of B. TheT
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second term performs the symmetric computation, with
respect to B instead of A. The maximum of these two
quantities is the Hausdorff distance and they can be consid-
ered separately to extract information about errors of Types
I and II.

The main shortcoming of the Hausdorff distance is its
(relative) computational complexity. Notice also that the
maximum and minimum operators involved in the defini-
tion are very sensitive to image noise. A straightforward
variant of the Hausdorff distances addresses this issue by
replacing the max operators with averages. This leads to a
modified Hausdorff distance272:

MHD A;Bð Þ ¼ 1
Aj j

X
imin jd ai;bj

� �þ 1
Bj j

X
jmin id ai;bj

� �
(A15)

The Hausdorff distance is good at reflecting translations
between A and B, as well as shape discrepancies. Its interpre-
tation, in terms of volumetric changes, is less obvious. In that
sense, it is complementary to the volume difference and to
overlap indexes.

The Hausdorff distance can be computed on contours and
surfaces as well, instead of sets of voxels. However, in this
case the implementation is more specific and requires the
user to make some specific choices and/or to adjust addi-
tional parameters.

It can be noted that all quantities described above
depend on the image matrix or voxel grid. The finer the
grid is, the closer the estimated quantities will be to their
actual value.

a)Author to whom correspondence should be addressed. Electronic mail:
kirova@mskcc.org.
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