CHEMISTRY A European Journal

Supporting Information

From Heteroaromatic Acids and Imines to Azaspirocycles: Stereoselective Synthesis and 3D Shape Analysis

Sarah J. Chambers, Graeme Coulthard, William P. Unsworth, Peter O'Brien, and Richard J. K. Taylor* ${ }^{*[a]}$
chem_201600823_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents Page
(1) General information S2
(2) Literature procedures for acid and imine substrates S2
(3) General procedures S3
(4) Solvent and temperature screen of spirocyclisation reaction S4
(5) Synthesis of acid substrates S5
(6) Synthesis of imine substrates S18
(7) Acid scope in the DIA spirocyclisation reaction S22
(8) Imine scope in the DIA spirocyclisation reaction S31
(9) Other heterocycle scope in the DIA spirocyclisation reaction S40
(10) Procedures for the modification of spirocycles $\mathbf{8 a}$ and $\mathbf{8 g}$ S43
(11) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S49
(12) 3-Dimensional shape analysis of spirocyclic products and FDA approved drugs S97
(13) References S99

(1) General Information

Except where stated, all reagents were purchased from commercial sources and used without further purification. Except where stated, all experimental procedures were carried out under an atmosphere of argon. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were obtained from an Innovative Inc. PureSolv ${ }^{\circledR}$ solvent purification system. Anhydrous THF was obtained by distillation over sodium benzophenone ketyl immediately before use. Chloroform was used as supplied without additional drying. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECX400 or JEOL ECS400 spectrometer, operating at 400 MHz and 100 MHz , respectively. All spectral data were acquired at 295 K . Chemical shifts (δ) are quoted in parts per million (ppm). The residual solvent peaks, $\delta_{\mathrm{H}} 7.26$ and $\delta_{\mathrm{C}} 77.0$ for CDCl_{3} and $\delta_{\mathrm{H}} 2.50$ and $\delta_{\mathrm{C}} 39.5$ for DMSO-d6 were used as a reference. Coupling constants (J) are reported in Hertz (Hz) to the nearest 0.5 Hz . The multiplicity abbreviations used are: s singlet, d doublet, t triplet, q quartet, m multiplet. Signal assignment was achieved by analysis of DEPT, COSY, NOESY, HMBC and HSQC experiments where required. Infrared (IR) spectra were recorded on a PerkinElmer UATR two spectrometer as a thin film. Mass-spectra (low and high-resolution) were obtained by the University of York Mass Spectrometry Servive, using electrospray ionisation (ESI) on a Bruker Daltonics, Micro-TOF spectrometer. The melting points were determined using Gallenkamp apparatus and are uncorrected. Thin layer chromatography was carried out on Merck silica gel $60 \mathrm{~F}_{254}$ pre-coated aluminium foil sheets and were visualised using UV light (254 nm) and stained with either basic aqueous potassium permanganate or ethanolic p-anisaldehyde as appropriate. Flash column chromatography was carried out using slurry packed silica gel $\left(\mathrm{SiO}_{2}\right)$, 35-75 $\mu \mathrm{m}$ particle size, $60 \AA$ pore size, under a light positive pressure, eluting with the specified solvent system. Petrol refers to petroleum ether $40-60^{\circ} \mathrm{C}$. Microwave experiments were carried out using sealed vessels in a CEM Discover microwave reactor with variable power output ($0-200 \mathrm{~W}$). Pressure was recorded by the cavity lid, which resisted the deformation of the vial cap as pressure increased.

(2) Literature procedures for the preparation of indole acid and imine substrates

Acids $\mathbf{5 a}$ and $\mathbf{5 g}$ are commercially available and were used as supplied. Acids $\mathbf{5} \mathbf{c}^{1}$ and $\mathbf{5} \mathbf{h}^{2}$ and imines $\mathbf{6 a},{ }^{3} \mathbf{6 c},{ }^{4} \mathbf{6 f},{ }^{5}$ and $\mathbf{6 g}{ }^{6}$ were prepared by the literature methods cited.

(3) General procedures

General Procedure A: Spirocycle synthesis from \boldsymbol{N}-acyliminium ions

DIPEA ($1.85 \mathrm{eq}, 245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P ($1.5 \mathrm{eq}, 725 \mathrm{mg}$ of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol) were added to a stirred solution of imine ($1 \mathrm{eq}, 0.762 \mathrm{mmol}$) and acid ($1.2 \mathrm{eq}, 0.909 \mathrm{mmol}$) in solvent (4 mL) at a specified temperature. The resulting solution was stirred in a sealed vessel for a specified time. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and poured into sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}(10 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure B: NaBH4 reduction of spirocyclic indolenine

NaBH_{4} ($4 \mathrm{eq}, 1.32 \mathrm{mmol}$) was added portionwise (CARE: effervescence) to a stirred solution of imine (1 eq, 0.33 mmol$)$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The reaction mixture was heated to reflux and stirred for 3.5 h and then allowed to cool to rt . The solvent was evaporated under reduced pressure and the resulting residue taken up in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

General Procedure C: LiAlH_{4} reduction of spirocyclic indoline

LiAlH_{4} ($4 \mathrm{eq}, 2.00 \mathrm{mmol}$) was added to a stirred solution of amide ($1 \mathrm{eq}, 0.50 \mathrm{mmol}$) in dry THF (15 mL) at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting suspension was heated to reflux and stirred for 2.5 h , then the reaction was allowed to cool to rt. The reaction was diluted with EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ was carefully added until effervescence ceased. NaSO_{4} was added and the resulting suspension stirred for 30 min , then the mixture was filtered and the solvent evaporated under reduced pressure to give the crude product.

(4) Solvent and temperature screen of spirocyclisation reaction

General procedure A was followed, using imine 6a ($50 \mathrm{mg}, 0.381 \mathrm{mmol}$) and acid $\mathbf{5 a}(87 \mathrm{mg}, 0.457$ $\mathrm{mmol})$ in the specified solvent $(2 \mathrm{~mL})$ for 16 h at a specified temperature. The diastereomeric ratio was determined by analysis of the unpurified reaction by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography using EtOAc as eluent provided $\mathbf{8 a}$ and $\mathbf{9 a}$ to give a combined yield (Table 1).

Table 1: Solvent screen conditions and results

Entry	Solvent	Temp	d.r.	Yield (\%)
1	CHCl_{3}	RT	$6: 1$	95
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	$7.5: 1$	91
3	Toluene	RT	$7: 1$	79
4	MeCN	RT	$5.5: 1$	61
5	THF	RT	$9: 1$	82
6	$2-\mathrm{MeTHF}$	RT	$7.8: 1$	74
7	TBME^{2}	RT	$1: 1.1$	42
8	$\mathrm{Et}_{2} \mathrm{O}$	RT	$1: 1.4$	40
9	THF	$0{ }^{\circ} \mathrm{C}^{\mathrm{a}}$	$10.3: 1$	44
10	THF	$40^{\circ} \mathrm{C}$	$8.5: 1$	91
11	THF	$60^{\circ} \mathrm{C}$	$7: 1$	82

${ }^{\text {a }}$ Reaction run for 3 hours.

(5) Synthesis of the acid substrates

(5-Methoxy-2-methyl-1 H -indol-3-yl)acetic acid (5b)

The following procedure was adapted from a literature protol. ${ }^{7}$ A mixture of methyl 4-oxopentanoate (354 $\mu \mathrm{L}, 2.86 \mathrm{mmol}$) and 4-methoxyphenylhydrazine hydrochloride ($500 \mathrm{mg}, 2.86 \mathrm{mmol}$) in $2 \mathrm{M} \mathrm{HCl} / \mathrm{EtOH}$ $(20 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature the solvent was concentrated until a solid precipitate was observed. The precipitate was removed by filtration and the filtrate concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}$ (50 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organics were dried (MgSO_{4}) and concentrated under reduced pressure. Purification by flash column chromatography on silica with hexane-acetone (9:1 then 8:2) as eluent gave indole ethyl ester SI-1 ($404 \mathrm{mg}, 57 \%$) as a brown oil. R_{f} (8:2 hexane/acetone) 0.10 ; $v_{\max }($ (thin film $) / \mathrm{cm}^{-1} 3397(\mathrm{NH}), 2982,1724(\mathrm{C}=\mathrm{O}), 1627,1592,1485$, 1216, 1174, 1031, 799; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.24$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.0(\mathrm{C}=\mathrm{O}), 154.1(\mathrm{C}), 133.4(\mathrm{C}), 130.1(\mathrm{C}), 129.0(\mathrm{C}), 111.0$ $(\mathrm{CH}), 110.9(\mathrm{CH}), 104.6(\mathrm{C}), 100.5(\mathrm{CH}), 60.6\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{CH}_{3}\right), 30.6\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right), 11.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 248.1281$, found 248.1274 (+3.0 ppm error). These data were consistent with the literature values. ${ }^{8}$

1 M NaOH (10 mL) was added to a stirred solution of ethyl 2-(5-methoxy-2-methyl- 1 H -indol-3-yl)acetate SI-1 ($395 \mathrm{mg}, 1.60 \mathrm{mmol}$) in $1: 1 \mathrm{THF} / \mathrm{MeOH}(40 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 16 h . The reaction mixture was concentrated under reduced pressure and the resulting solid residue dissolved in water (5 mL). The solution was acidified ($\sim \mathrm{pH} 1$) using conc. HCl resulting in the formation of an oily residue. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(40 \mathrm{~mL})$ were added and the two layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the indole acetic acid $\mathbf{5 b}$ (331 mg , 95%) as a green/brown solid, $\mathrm{mp} 141-143{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{9} 162{ }^{\circ} \mathrm{C}$ (from EtOH)); $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 3353$
(NH), $3104(\mathrm{OH}), 2903,1723(\mathrm{C}=\mathrm{O}), 1589,1485,1309,1209,1167,1016,804,647 ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}-d_{6}\right)$ $12.03(\mathrm{~s}, 1 \mathrm{H}), 10.65(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.5,2.5,1 \mathrm{H})$, 3.72 (s, 3H) $3.52(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO-d d_{6}; 173.3 (C=O), 153.0 (C), 133.7 (C), $130.1(\mathrm{C}), 128.7(\mathrm{C}), 110.9(\mathrm{CH}), 109.5(\mathrm{CH}), 103.8(\mathrm{C}), 100.1(\mathrm{CH}), 55.3\left(\mathrm{OCH}_{3}\right), 29.9\left(\mathrm{CH}_{2}\right), 11.4$ $\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 220.0968$, found 220.0967 (+0.6 ppm error). These data are consistent with the literature values. ${ }^{9}$
(5-Fluoro-2-methyl-1H-indol-3-yl)acetic acid (5c)

SI-2 was synthesised following a literature procedure. ${ }^{1}$ A mixture of methyl 4-oxopentanoate ($136 \mu \mathrm{~L}$, 1.10 mmol) and 4-fluorophenylhydrazine hydrochloride ($163 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(120 \mu \mathrm{~L})$ was stirred for 10 min at $120^{\circ} \mathrm{C}$ in a microwave synthesiser. After being allowed to cool to room temperature, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification by flash column chromatography on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent gave the substituted indole SI-2 (194 mg , 87%) as a pale yellow oil, $\mathrm{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.30 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 10.99(\mathrm{~s}, 1 \mathrm{H}), 7.22$ (dd, $J=9.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (ddd, $J=9.0,9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~s}$, $3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 171.9(\mathrm{C}=\mathrm{O}), 156.8(\mathrm{~d}, J=230.5 \mathrm{~Hz}, \mathrm{C}), 135.6$ (C), 131.6 (C), 128.6 (d, $J=10.0 \mathrm{~Hz}, \mathrm{C}$), 111.2 (d, $J=10.0 \mathrm{~Hz}, \mathrm{CH}$), 107.9 (d, $J=25.5 \mathrm{~Hz}, \mathrm{CH}$), 103.7 (d, $J=4.5$ $\mathrm{Hz}, \mathrm{C}), 102.4(\mathrm{~d}, J=23.5 \mathrm{~Hz}, \mathrm{CH}), 51.5\left(\mathrm{OCH}_{3}\right), 29.8\left(\mathrm{CH}_{2}\right), 11.4\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , d6DMSO) $\delta-125.50$ (ddd, $J=10.0,10.0,4.5 \mathrm{~Hz}$); HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 222.0925 , found 222.0932 (-3.3 ppm error). These data are consistent with the literature values. ${ }^{1}$
$1 \mathrm{M} \mathrm{NaOH}_{\text {(aq) }}(10 \mathrm{~mL})$ was added to a stirred solution of methyl 2-(5-fluoro-2-methyl- 1 H -indol-3yl)acetate SI-2 (448 mg, 2.03 mmol) in $1: 1 \mathrm{THF} / \mathrm{MeOH}(40 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 16 h . The reaction mixture was concentrated under reduced pressure and the resulting solid residue dissolved in water $(5 \mathrm{~mL})$. Conc. HCl was added dropwise until a solid precipitate was observed. The solid was isolated by vacuum filtration, washed with water (5 mL) and hexane (5 mL)
and air dried to give the indole acetic acid 5c (369 mg, 87\%) as a pale orange solid, $\mathrm{mp} 164-166{ }^{\circ} \mathrm{C}$ [lit. ${ }^{10} 179-182{ }^{\circ} \mathrm{C}($ from MeCN$\left.)\right] ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3411(\mathrm{NH}), 2908(\mathrm{OH}), 2736,2631,1715(\mathrm{C}=\mathrm{O})$, 1587, 1481, 1241, 920, 840, 605; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 12.11$ (s, 1H), 10.94 (s, 1H), 7.22 (dd, $J=9.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, $J=10.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (ddd, $J=9.0,9.0,2.5,1 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;$ $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 173.1(\mathrm{C}=\mathrm{O}), 156.8(\mathrm{~d}, J=230.5 \mathrm{~Hz}, \mathrm{C}), 135.3(\mathrm{C}), 131.6$ (C), 128.7 (d, $J=$ $10.0 \mathrm{~Hz}, \mathrm{C}), 111.1(\mathrm{~d}, J=10.0 \mathrm{~Hz}, \mathrm{CH}), 107.8(\mathrm{~d}, J=26.0 \mathrm{~Hz}, \mathrm{CH}), 104.4(\mathrm{~d}, J=4.5 \mathrm{~Hz}, \mathrm{C}), 102.5(\mathrm{~d}, J$ $=23.0 \mathrm{~Hz}, \mathrm{CH}), 29.8\left(\mathrm{CH}_{2}\right), 11.4\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-125.70(\mathrm{ddd}, J=10.0,10.0,4.5$ Hz); HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})^{+} 208.0768$, found 208.0771 (-1.4 ppm error).

(2,5,7-Trimethyl-1H-indol-3-yl))acetic acid (5d)

SI-3
 20 h , rt

5d

The following procedure was adapted from a literature protol. ${ }^{11,12}$ A mixture of 4-oxopentanoic acid (0.59 $\mathrm{mL}, 5.79 \mathrm{mmol}$) and 3,5-dimethylphenylhydrazine hydrochloride ($1.00 \mathrm{~g}, 5.79 \mathrm{mmol}$) in 2 M $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{EtOH}(40 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was allowed to cool to rt and the solvent was evaporated under reduced pressure. The resulting residue was diluted with water (20 mL) and extracted into EtOAc (50 mL). The two layers were separated and the aqueous extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organics were washed with sat. $\mathrm{NaHCO}_{3 \text { (aq) }}(10 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent gave the indole ester $\mathbf{S I}-\mathbf{3}(1.035 \mathrm{~g}, 72 \%)$ as a pale yellow solid, $\mathrm{mp} 84-86^{\circ} \mathrm{C}$ (lit. ${ }^{13} 101-102{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.33$; $v_{\text {max }}$ (thin film)/ $/ \mathrm{cm}^{-1} 3353(\mathrm{NH})$, 2978, 2909, 1710 (C=O), 1624, 1467, 1442, 1330, 1302, 1233, 1157, 1027, 828; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.75$ (s, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.7(\mathrm{C}=\mathrm{O}), 135.7(\mathrm{C}), 132.0(\mathrm{C})$, $130.7(\mathrm{C}), 129.1(\mathrm{C}), 124.6(\mathrm{C}), 123.1(\mathrm{CH}), 108.3(\mathrm{CH}), 104.7(\mathrm{C}), 60.6\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right)$, $19.8\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+} 246.1489$, found 246.1494 (-2.1 ppm error).
$1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(20 \mathrm{~mL})$ was added to a stirred solution of the dimethyl-indole ester SI-3 $(930 \mathrm{mg}, 3.79$ $\mathrm{mmol})$ in $1: 1 \mathrm{MeOH}-\mathrm{THF}(80 \mathrm{~mL})$ at rt . The resulting solution was stirred at rt for 20 h and then the solvent was evaporated under reduced pressure to give the crude product. The residue was taken up in a minimum volume of water (5 mL) and conc. $\mathrm{HCl}_{(\mathrm{aq})}$ was added dropwise until a solid precipitate was observed. The solid was isolated by vacuum filtration, washed with water (5 mL) and hexane (5 mL) and air dried to give the indole acetic acid $\mathbf{5 d}(651 \mathrm{mg}, 79 \%)$ as a pale red solid, $\mathrm{mp} 190-192{ }^{\circ} \mathrm{C}$ (lit. ${ }^{13} 203.5-$ $204.5^{\circ} \mathrm{C}$); $v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3398(\mathrm{NH}), 2918,1706(\mathrm{C}=\mathrm{O}), 1622,1561,1467,1436,1400,1215,843$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, ~ D M S O-d_{6}\right) 10.62(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.1(\mathrm{C}=\mathrm{O}), 135.6(\mathrm{C}), 132.2(\mathrm{C}), 128.7(\mathrm{C}), 128.0(\mathrm{C}), 124.6(\mathrm{C})$, $121.9(\mathrm{CH}), 108.4(\mathrm{CH}), 104.2(\mathrm{C}), 31.2\left(\mathrm{CH}_{2}\right), 21.2\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$218.1176, found 218.1175 (+0.4 ppm error).
(5-Bromo-2-methyl-1H-indol-3-yl)acetic acid (5e)

The following procedure was adapted from a literature protol. ${ }^{14}$ A mixture of 4-oxopentanoic acid (0.46 $\mathrm{mL}, 4.47 \mathrm{mmol}$) and 4-bromophenylhydrazine hydrochloride ($1.00 \mathrm{~g}, 4.47 \mathrm{mmol}$) in a solution of EtOH $(6 \mathrm{~mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})(0.45 \mathrm{~mL})$ was stirred at reflux for 16 h . The reaction mixture was allowed to cool to room temperature, then water (20 mL) and EtOAc (20 mL) was added. The two layers were separated and the aqueous layer was extracted with EtOAc $(1 \times 10 \mathrm{~mL})$. The combined organic phases were washed with $10 \% \mathrm{HCl}(10 \mathrm{~mL})$ and then sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification by flash column chromatography on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent gave the indole ester SI-4 (834 mg, 63\%) as an orange solid, mp 59-61 ${ }^{\circ} \mathrm{C}\left[\right.$ lit. $\left.{ }^{15} 65-68{ }^{\circ} \mathrm{C}\right] ; \mathrm{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 0.30 ; $\nu_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3355(\mathrm{NH}), 2981,2901,1716(\mathrm{C}=\mathrm{O}), 1578,1469,1434,1368,1304,1260$, $1162,1030,793 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.8(\mathrm{C}=\mathrm{O}), 134.1(\mathrm{C}), 133.7(\mathrm{C}), 130.2(\mathrm{C}), 123.9(\mathrm{CH}), 120.7(\mathrm{CH}), 112.7(\mathrm{C})$, $111.6(\mathrm{CH}), 104.3(\mathrm{C}), 60.8\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{2}\right), 11.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14}{ }^{79} \mathrm{BrNO}_{2}(\mathrm{M}+\mathrm{H})^{+} 296.0281$, found 296.0279 (+0.7 ppm error). These data are consistent with the literature values. ${ }^{16}$
$1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(10 \mathrm{~mL})$ was added to a stirred solution of bromo-substituted indole ester SI-4 (622 mg , $2.10 \mathrm{mmol})$ in $1: 1 \mathrm{THF} / \mathrm{MeOH}(42 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 8 h . The reaction mixture was concentrated under reduced pressure and the residue dissolved in water (5 mL). The solution was made acidic ($\sim \mathrm{pH} 1)$ with conc. HCl resulting in the formation of a gummy precipitate. The resulting mixture was extracted into EtOAc (30 mL) and the two layers separated. The aqueous was extracted into EtOAc ($2 \times 20 \mathrm{~mL}$) and the combined organics dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the indole acid $\mathbf{5 e}(513 \mathrm{mg}, 91 \%)$ as a brown solid, $\mathrm{mp} 159-161{ }^{\circ} \mathrm{C}\left[\mathrm{lit} .,{ }^{10}\right.$ $\left.189-191^{\circ} \mathrm{C}\right] ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, ~ D M S O-d_{6}\right) 12.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 11.08(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 173.0$ (C=O), 135.0 (C), 133.7 (C), 130.2 (C), 122.4 (CH), 120.0 (CH), 112.4 (CH), 111.0 (C), 103.9 (C), 29.7 $\left(\mathrm{CH}_{2}\right), 11.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{79} \mathrm{BrNO}_{2}(\mathrm{M}+\mathrm{H})^{+} 267.9968$, found $267.9982(+0.7$ ppm error). These data are consistent with the literature values. ${ }^{17}$

(7-Bromo-2-methyl-1H-indol-3-yl)acetic acid (5f)

The following procedure was adapted from a literature protol. ${ }^{18} \mathrm{~A}$ mixture of 4-oxopentanoic acid (0.46 $\mathrm{mL}, 4.47 \mathrm{mmol}$) and 2-bromophenylhydrazine hydrochloride ($1.0 \mathrm{~g}, 4.47 \mathrm{mmol}$) in a solution of EtOH (6 $\mathrm{mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq) $(0.45 \mathrm{~mL})$ was stirred at reflux for 16 h . The reaction mixture was allowed to cool to rt and water $(20 \mathrm{~mL})$ was added. The resulting mixture was extracted into EtOAc (20 mL), the two layers separated and the aqueous extracted with EtOAc (10 mL). The combined organics were washed with $10 \% \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and sat. $\mathrm{NaHCO}_{3(\mathrm{aq})}(10 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent gave the indole ester SI-5 ($550 \mathrm{mg}, 42 \%$) as an orange solid, mp 64-66 ${ }^{\circ} \mathrm{C}$; R_{f} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.44 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 2980,2912,1718(\mathrm{C}=\mathrm{O}), 1623,1583,1491,1446,1368$, $1304,1296,1151,1030,772 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}$, $1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.7(\mathrm{C}=\mathrm{O}), 133.7(\mathrm{C}), 133.5(\mathrm{C}), 129.6(\mathrm{C}), 123.5(\mathrm{CH}), 120.7(\mathrm{CH})$,
$117.4(\mathrm{CH}), 106.0(\mathrm{C}), 103.9(\mathrm{C}), 60.8\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 11.8\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14}{ }^{79} \mathrm{BrNO}_{2}(\mathrm{M}+\mathrm{H})^{+} 296.0281$, found 296.0275 (+1.8 ppm error). These data are consistent with the literature values. ${ }^{19}$
$1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(8 \mathrm{~mL})$ was added to a stirred solution of the bromo-substituted indole ester SI-5 (459 mg , 1.55 mmol) in $1: 1 \mathrm{MeOH}-\mathrm{THF}(30 \mathrm{~mL})$ at rt . The resulting solution was stirred at rt for 8 h and then the solvent was evaporated under reduced pressure to give the crude product. The residue was taken up in a minimum amount of water (5 mL) and the resulting solution was taken to pH 1 with conc. $\mathrm{HCl}_{(\text {(qq })}$ resulting in an oily mixture. The resulting mixture was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the two layers separated. The aqueous was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organics dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the indole acid $\mathbf{5 f}(360 \mathrm{mg}, 86 \%)$ as a brown solid, mp $128-131{ }^{\circ} \mathrm{C}\left(\right.$ lit. $^{20} 160-161^{\circ} \mathrm{C}$); $v_{\text {max }}\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 3380(\mathrm{NH}), 2902,2634,1690(\mathrm{C}=\mathrm{O})$, $1625,1590,1558,1456,1401,1225,1191,768 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) 12.13 (br s, 1H), $11.02(\mathrm{~s}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}$ (100.6 MHz , DMSO- d_{6}) 173.0 (C=O), 135.0 (C), 133.4 (C), 130.0 (C), 122.6 (CH), 119.8 (CH), 117.1 $(\mathrm{CH}), 105.5(\mathrm{C}), 103.3(\mathrm{C}), 29.9\left(\mathrm{CH}_{2}\right), 11.24\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{79} \mathrm{BrNO}_{2}(\mathrm{M}+$ $\mathrm{H})^{+} 267.9968$, found 267.9974 (-2.4 ppm error).

3-(2-Methyl-1H-indol-3-yl)propanoic acid (5i)

SI-6

$5 i$

The following procedure was adapted from a literature protol. ${ }^{7}$ A mixture of 5-oxohexanoic acid (0.83 $\mathrm{mL}, 6.92 \mathrm{mmol}$) and phenylhydrazine hydrochloride ($1.0 \mathrm{~g}, 6.92 \mathrm{mmol}$) in a $2 \mathrm{M} \mathrm{HCl} / \mathrm{EtOH}$ solution (6 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 4.5 h . The reaction mixture was allowed to cool to rt and the solvent was evaporated under reduced pressure. The resulting mixture was diluted with water (200 mL) and extracted into EtOAc (100 mL). The two layers were separated and the aqueous extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent gave the indole ester SI-6 ($948 \mathrm{mg}, 59 \%$) as an orange oil, $\mathrm{R}_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.30$; $v_{\text {max }}$ (thin film)/ $\mathrm{cm}^{-1} 3398(\mathrm{NH})$,

2980, 2919, 1712 (C=O), 1622, 1362, 1443, 1371, 1299, 1159, 1049, 859; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.76$ (br $\mathrm{s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $173.5(\mathrm{C}=\mathrm{O})$, 135.1 (C), 131.3 (C), 128.1 (C), $120.8(\mathrm{CH}), 119.0(\mathrm{CH}), 117.7(\mathrm{CH}), 110.2(\mathrm{CH}), 109.9$ (C), $60.3\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ $(\mathrm{M}+\mathrm{H})^{+} 232.1332$, found $232.1334(-0.7 \mathrm{ppm}$ error). These data are consistent with the literature values. ${ }^{21}$
$1 \mathrm{M} \mathrm{NaOH}_{\text {(aq) }}(20 \mathrm{~mL})$ was added to a stirred solution of the dimethyl-indole ester SI-6 (888 mg, 3.84 $\mathrm{mmol})$ in $1: 1 \mathrm{MeOH}-\mathrm{THF}(80 \mathrm{~mL})$ at rt . The resulting solution was stirred at rt for 8 h and then the solvent was evaporated under reduced pressure. The resulting residue was taken up in a minimum amount of water (5 mL) and the resulting solution was taken to pH 1 with conc. $\mathrm{HCl}_{(\mathrm{aq})}$ resulting in an oily residue. Water (40 mL) was added and the resulting mixture was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the two layers separated. The aqueous was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organics dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica using hexane-EtOAc-AcOH (60:39.5:0.5) as eluent gave the indole acid $\mathbf{5 i}$ ($476 \mathrm{mg}, 61 \%$) as a yellow solid, $\mathrm{mp} 121-123{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{22} 132-134{ }^{\circ} \mathrm{C}$); $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1}$ 3384 (NH), 2929, 2634, 1692 (C=O), 1464, 1406, 1308, 1294, 1211, 920; δ_{H} (400 MHz , DMSO- d_{6}) 12.02 $(\mathrm{s}, 1 \mathrm{H}), 10.68(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.91 (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=7.5,2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}(100.6$ MHz, DMSO- d_{6}) 174.2 (C=O), 135.2 (C), 131.7 (C), 127.9 (C), 119.9 (CH), 118.1 (CH), 117.3 (CH), $110.4(\mathrm{CH}), 108.9(\mathrm{C}), 35.1\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{2}\right), 11.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}(\mathrm{M}+$ $\mathrm{H})^{+}$204.1019, found $204.1014(+2.5 \mathrm{ppm}$ error $)$.

The following procedure was adapted from a literature protol. ${ }^{1}$ A mixture of methyl 4-oxopentanoate (136 $\mu \mathrm{L}, 1.08 \mathrm{mmol}$) and 5-hydrazinyl-2-methoxypyridine SI-7 (synthesised following a literature procedure, ${ }^{23}$ $140 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4(\text { aq })}(120 \mu \mathrm{~L})$ was placed in a suitable microwave vessel. The vessel was sealed and the mixture stirred for 10 min at $120^{\circ} \mathrm{C}$ in a microwave synthesiser. After being allowed to cool to rt, the mixture was diluted with $\operatorname{EtOAc}(20 \mathrm{~mL})$ and washed with $10 \% \mathrm{aq}$. $\mathrm{HCl}(20 \mathrm{~mL})$. The two layers were separated and the aqueous layer was taken to pH 7 with sat. $\mathrm{NaHCO}_{3 \text { (aq). }}$. The aqueous layer was extracted into EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the indole ester $\mathbf{S I - 8}$ (181 mg , 77%) as a brown oil, $v_{\max }\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 3344(\mathrm{NH}), 2949,1722(\mathrm{C}=\mathrm{O}), 1619,1579,1475,1436,1288$, $1241,1166,1100,1023,803 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.1(\mathrm{C}=\mathrm{O})$, $159.6(\mathrm{C}), 142.4(\mathrm{C}), 135.9(\mathrm{C}), 123.6(\mathrm{C}), 120.8(\mathrm{CH}), 104.6(\mathrm{C}), 103.4(\mathrm{CH}), 53.3\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right)$, $28.4\left(\mathrm{CH}_{2}\right), 12.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$235.1077, found 235.1083 (-2.6 ppm error).
$1 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(4 \mathrm{~mL})$ was added to a stirred solution of the azaindole ester SI-8 $(183 \mathrm{mg}, 0.781 \mathrm{mmol})$ in 1:1 MeOH-THF (15 mL) at rt. The resulting solution was stirred at rt for 16 h and then the solvent was evaporated under reduced pressure. The resulting residue was taken up in a minimum amount of water (5 $\mathrm{mL})$ and the resulting solution was taken to pH 7 with $5 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$. The mixture was extracted into EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organics dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give azaindole acid $\mathbf{1 0}(140 \mathrm{mg}, 81 \%)$ as a yellow solid, $191-193{ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3192(\mathrm{NH})$,

2968, 1697 (C=O), 1623, 1581, 1447, 1405, 1315, 1250, 1107, 1017, 818, $592 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $12.08(\mathrm{~s}, 1 \mathrm{H}), 10.91(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$, 2.32 ($\mathrm{s}, 3 \mathrm{H}$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 173.1$ (C=O), 158.6 (C), 142.3 (C), 136.3 (C), 123.3 (C), 121.0 (CH), $104.3(\mathrm{C}), 102.7(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{2}\right), 12.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ $(\mathrm{M}+\mathrm{H})^{+} 221.0921$, found $221.0922(-0.6 \mathrm{ppm}$ error $)$.

(3,5-Dimethyl-1H-pyrrol-2-yl)acetic acid (12)

2,4-Dimethylpyrrole ($1.00 \mathrm{~g}, 10.5 \mathrm{mmol}$) and ethyl diazoacetate ($1.20 \mathrm{~g}, 1.11 \mathrm{ml}, 10.5 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resulting solution cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{Cu}(\mathrm{OTf})_{2}(190 \mathrm{mg}, 0.526 \mathrm{mmol})$ was added in portions and effervescence noted. After complete addition the reaction was stirred at r.t. for 1 h . The reaction mixture was concentrated and purification by column chromatography ($9: 1$ hexane:EtOAc) gave the ester SI-9 ($831 \mathrm{mg}, 44 \%$) as an orange oil, $\mathrm{R}_{f}\left(9: 1\right.$ hexane:EtOAc) 0.30 ; $v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3384$, 2981, 2924, 2868, 1720, 1399, 1368, 1300, 1239, 1163, 1114, 1027, 782, 638; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.16 (br s, 1H), $5.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.5(\mathrm{C}=\mathrm{O}), 126.5(\mathrm{C}), 117.7(\mathrm{C}), 115.9(\mathrm{C}), 107.7(\mathrm{CH}), 60.9$ $\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right), 10.6\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$182.1176, found 182.1175 (-0.2 ppm error).
$2 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}(20 \mathrm{~mL})$ was added to a stirred solution of the pyrrole ester $\mathbf{S I}-9(600 \mathrm{mg}, 3.31 \mathrm{mmol})$ in 1:10 MeOH-THF $(2.5: 25 \mathrm{~mL})$ at rt and the resulting solution was stirred at rt for $1 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the reaction was washed with $\operatorname{EtOAc}(50 \mathrm{~mL})$. The aqueous layer was acidified (pH 1) with conc. $\mathrm{HCl}_{(\mathrm{aq})}$ and extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the pyrrole acid $\mathbf{1 2}$ as a brown oil; (310 mg), $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$. The unpurified acid $\mathbf{1 2}$ was used directly in the subsequent spirocyclisation with imine $\mathbf{6 a}$, using general procedure A.

A solution of acetophenone $(2.00 \mathrm{~g}, 1.94 \mathrm{~mL}, 16.6 \mathrm{mmol})$ and allylamine $(4.75 \mathrm{~g}, 6.24 \mathrm{~mL}, 83.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{TiCl}_{4}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ solution ($10.7 \mathrm{~mL}, 10.7 \mathrm{mmol}$) was added dropwise over 40 min . The reaction mixture was then stirred at room temperature for 2 h and the resultant precipitate filtered. The filtrate was washed with sat. $\mathrm{NaCl}(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the imine $\mathbf{S I - 1 0}(2.57 \mathrm{~g}, 97 \%)$ as an orange liquid, $\nu_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.19-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{ddt}, J=17.0,1.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.16(\mathrm{ddt}, J=10.5,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.2$ $(\mathrm{C}=\mathrm{N}), 141.1(\mathrm{C}), 136.0(\mathrm{CH}), 129.5(\mathrm{CH}), 128.2(2 \times \mathrm{CH}), 126.6(2 \times \mathrm{CH}), 115.1\left(\mathrm{CH}_{2}\right), 54.6\left(\mathrm{CH}_{2}\right)$, $15.6\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 160.1121$, found 160.1126. These data are consistent with the literature values. ${ }^{24}$

Following a modified procedure of Yoshikai; ${ }^{24}$ Imine SI-10 $(2.50 \mathrm{~g}, 15.7 \mathrm{mmol})$ was placed in a round bottomed flask with a stirrer bar and the flask flushed with O_{2}. Toluene (18.8 mL) and DMSO (1.88 mL) were added followed by $\operatorname{Bu}{ }_{4} \mathrm{NBr}(5.06 \mathrm{~g}, 15.7 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(106 \mathrm{mg}, 1.57 \mathrm{mmol})$. The flask was flushed a few times with O_{2} and then the flask was sealed with a suba seal and a balloon of O_{2} put in place. The reaction was stirred at $35{ }^{\circ} \mathrm{C}$ for 14 h . Water (100 mL) was added to the reaction and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give the crude product. Purification by column chromatography (9:1 hexane:EtOAc) gave the pyrrole SI-11 ($959 \mathrm{mg}, 39 \%$) as a pink solid, $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48-7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.40-6.36(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 3 \mathrm{H})$;

HRMS (ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$158.0964, found 158.0962. These data are consistent with the literature values. ${ }^{24}$

Pyrrole SI-11 ($750 \mathrm{mg}, 4.77 \mathrm{mmol}$) and ethyl diazoactetate ($544 \mathrm{mg}, 502 \mu \mathrm{~L}, 4.77 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and stirred at $0^{\circ} \mathrm{C} . \mathrm{Cu}(\mathrm{OTf})_{2}(86.3 \mathrm{mg}, 0.239 \mathrm{mmol})$ was added carefully in portions. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to room temperature being concentrated to give the crude product. This was purified by column chromatography ($9: 1$ hexane:EtOAc) to give the ester SI-12 ($390 \mathrm{mg}, 34 \%$) as a pink solid, $\mathrm{R}_{f}\left(9: 1\right.$ hexane:ethyl acetate) 0.30 ; $v_{\max }$ (thin film)/ $\mathrm{cm}^{-1} 3362$, 2977, 2936, 2865, 1704 (C=O), 1593, 1517, 1471, 1291, 1260, 1168, 1126, 1027, 805, 795, 757, 695; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.3(\mathrm{C}=\mathrm{O}), 132.7(\mathrm{C}), 130.7(\mathrm{C}), 128.7(2 \times \mathrm{CH}), 125.8(\mathrm{CH}), 123.4(2 \times \mathrm{CH}), 120.8(\mathrm{C})$, $117.6(\mathrm{C}), 107.5(\mathrm{CH}), 61.1\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 10.8\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 244.1332$, found 244.1334 (-0.9 ppm error).

Ester SI-12 (340 mg, 1.397 mmol) was dissolved in THF (1.79 mL) and MeOH ($199 \mu \mathrm{~L}$) and 2M KOH $(2.98 \mathrm{~mL})$ was added. The reaction was stirred for 16 h at rt , water $(10 \mathrm{~mL})$ was added and the reaction washed with $\operatorname{EtOAc}(10 \mathrm{~mL})$. The aqueous layer was acidified (pH 1) with conc. $\mathrm{HCl}_{(\mathrm{aq})}$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the crude product. Flash column chromatography on silica using EtOAc as eluent gave the pyrrole acid 13 ($194 \mathrm{mg}, 64 \%$) as a yellow oil, $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.35$; $\mathrm{v}_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1}$ 3424, 2912, 2866, 1696, 1518, 1390, 1264, 1221, 918, 809, 761, 694, 523; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.63$ (br s, 1H), 7.48-7.41 (m, 2H), 7.38-7.31 (m, 2H), 7.22-7.15 (m, 1H), 6.32 (d, J = 3.0 Hz, 1H), 3.70 (s, $2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.9(\mathrm{C}=\mathrm{O}), 132.6(\mathrm{C}), 131.1(\mathrm{C}), 128.8(2 \times \mathrm{CH}), 126.0(\mathrm{CH})$, $123.5(2 \times \mathrm{CH}), 119.9(\mathrm{C}), 118.3(\mathrm{C}), 107.7(\mathrm{CH}), 31.3\left(\mathrm{CH}_{2}\right), 10.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 238.0838$, found 238.0838.

SI-13

$\mathrm{NaOAc}(3.2 \mathrm{eq})$, $\mathrm{Zn}(3.4 \mathrm{eq})$
$\mathrm{AcOH}, 80$ to $100^{\circ} \mathrm{C}$

SI-15

16

Following a modified procedure of Lightner and Holmes; ${ }^{25}$ Diketo ester SI-13 ${ }^{26}$ ($4.43 \mathrm{~g}, 23.788 \mathrm{mmol}$) was dissolved in acetic acid $(12.6 \mathrm{~mL})$ and the solution stirred at $80^{\circ} \mathrm{C}$. At this temperature $\mathrm{NaOAc}(6.24$ $\mathrm{g}, 76.122 \mathrm{mmol}, 3.2 \mathrm{eq}$.) and zinc dust ($5.29 \mathrm{~g}, 80.880 \mathrm{mmol}, 3.4 \mathrm{eq}$.) were added as solids. The reaction temperature was increased to $95^{\circ} \mathrm{C}$ and at this temperature a solution of diethyl oximinomalonate SI-14 ${ }^{27}$ ($4.50 \mathrm{~g}, 23.788 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(5.71 \mathrm{~mL} / 2.38 \mathrm{~mL})$ was added dropwise over 30 min . The reaction mixture was then heated at $100{ }^{\circ} \mathrm{C}$ for 1 h before being allowed to cool. Ice was added and the reaction mixture shaken and then stored in a fridge overnight. The resultant solids were filtered and washed with $\mathrm{H}_{2} \mathrm{O}$. Purification by column chromatography ($9: 1$ to $4: 1$ hexane:EtOAc) gave the pyrrole SI-15 ($1.67 \mathrm{~g}, 28 \%$) as a white solid, mp $82-82{ }^{\circ} \mathrm{C}\left[\right.$ lit., ${ }^{25} 93-95{ }^{\circ} \mathrm{C}$ (from EtOH)]; R_{f} (4:1 hexane:EtOAc) 0.25; $v_{\text {max }}\left(\right.$ (thin film) $/ \mathrm{cm}^{-1} 3294,2984,2956,2903,1729,1663(\mathrm{C}=\mathrm{O}), 1444,1264$, $1252,1218,1170,1093,1022,918,774,751$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.13(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.8(\mathrm{C}=\mathrm{O}), 161.7(\mathrm{C}=\mathrm{O}), 130.8(\mathrm{C}), 127.5(\mathrm{C}), 117.1(\mathrm{C}), 114.5$ (C), $60.6\left(\mathrm{CH}_{2}\right), 59.7\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 14.5\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 10.6\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$276.1206, found 276.1201. These data are consistent with the literature values. ${ }^{25}$

The pyrrole diester SI-15 was dissolved in water (3.2 mL) and EtOH (1.6 mL) and heated to $70^{\circ} \mathrm{C}$. The reaction was stirred for 30 min then allowed to cool to $\mathrm{rt} .10 \% \mathrm{HCl}_{(\mathrm{aq})}(10 \mathrm{~mL})$ and the reaction was extracted with EtOAc (3 x 10 mL). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the acid 16 (192 mg, 54\%) as a brown solid, $\mathrm{mp} 160-162{ }^{\circ} \mathrm{C}$ (lit. ${ }^{25} 194-196{ }^{\circ} \mathrm{C}$) $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.55$; $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3304,2985,2917,1706,1670$ (C=O), 1444, $1274,1218,1172,1091,770,722,699,623 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 12.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 11.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.19 (q, J = 7.0 Hz, 2H), 3.24 ($\mathrm{s}, 2 \mathrm{H}$), 2.15 ($\mathrm{s}, 3 \mathrm{H}$), 2.11 ($\mathrm{s}, 3 \mathrm{H}$), 1.26 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, DMSO- d_{6}) $173.0(\mathrm{C}=\mathrm{O}), 160.9(\mathrm{C}=\mathrm{O}), 131.5(\mathrm{C}), 126.5(\mathrm{C}), 116.0(\mathrm{C}), 114.6(\mathrm{C}), 58.8\left(\mathrm{CH}_{2}\right), 29.7$
$\left(\mathrm{CH}_{2}\right), 14.6\left(\mathrm{CH}_{3}\right), 10.9\left(\mathrm{CH}_{3}\right), 10.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 248.0893$, found 248.0892 . These data were consistent with the literature. ${ }^{25}$

(6) Synthesis of the imine substrates

6,7-Dimethoxy-3,4-dihydroisoquinoline (6b)

6b
N-Bromosuccinimide ($840 \mathrm{mg}, 4.72 \mathrm{mmol}$) was added portionwise to a stirred solution of 6,7-dimethoxy-$1,2,3,4$-tetrahydroisoquinoline $\mathbf{6 b}(830 \mathrm{mg}, 4.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{NaOH}_{(\mathrm{aq})}(30 \% \mathrm{w} / \mathrm{v}, 9 \mathrm{~mL})$ was added and the reaction was stirred at rt for 2 h . The two layers were separated and the organic layer was washed with water (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica using EtOAc-MeOH (98:2) as eluent gave the imine $\mathbf{6 b}$ ($766 \mathrm{mg}, 93 \%$) as a pale yellow oil, $\mathrm{R}_{f}(95: 5 \mathrm{EtOAc}-\mathrm{MeOH}) 0.15 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.23(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.67$ (s, 1H), $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 159.6$ $(\mathrm{C}=\mathrm{N}), 151.1(\mathrm{C}), 147.8(\mathrm{C}), 129.8(\mathrm{C}), 121.5(\mathrm{C}), 110.3(\mathrm{CH}), 110.3(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 56.0\left(\mathrm{CH}_{3}\right), 47.3$ $\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right)$. These data are consistent with the literature values. ${ }^{28}$

4,5-Dihydrothieno[2,3-c]pyridine (6d)

3-Thiophene acetic acid ($3.80 \mathrm{~g}, 26.7 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ and stirred at room temperature. Oxalyl chloride ($2.49 \mathrm{~mL}, 29.4 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added and the reaction stirred at room
temperature overnight. Aqueous ammonium hydroxide (16 mL) was added slowly, in portions. Water $(100 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and EtOAc (200 mL) were added. The organic phase was isolated and the aqueous phase was extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give the amide $\mathbf{S I - 1 6}(3.19 \mathrm{~g}, 85 \%)$ as a white solid, $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.30$; $\nu_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3344,3159,1631(\mathrm{C}=\mathrm{O}), 1409,1282,1243,831,783,734,648,596,585 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{br} \mathrm{s}$, 1 H), $5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$142.0321, found 142.0319 (+1.3 ppm error). These data are consistent with the literature values. ${ }^{29}$

A suspension of amide SI-16 ($2.00 \mathrm{~g}, 14.2 \mathrm{mmol}$) in THF (12 mL) was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BH}_{3} \cdot \mathrm{THF}(1 \mathrm{M})$ ($70.8 \mathrm{~mL}, 70.8 \mathrm{mmol}, 5$ eq.) was added in portions. The reaction was stirred at $35^{\circ} \mathrm{C}$ overnight before being allowed to cool to room temperature. $\mathrm{MeOH}(50 \mathrm{~mL}$) was added (note: effervescence) followed by $6 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and the reaction mixture stirred for 2 h . The reaction was then diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the resulting solution washed with EtOAc $(50 \mathrm{~mL})$. The aqueous phase was isolated, made basic with 2 M NaOH , and extracted with EtOAc $(4 \times 50 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give the crude product, which contained amine SI-17, as a colourless oil $(1.10 \mathrm{~g}), \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.29(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=5.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{6} \mathrm{H} 9 \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+} 128.0528$, found 128.0534. These data are consistent with the literature values. ${ }^{30}$

The crude material, containing amine SI-17, was dissolved in ethyl formate (25 mL) and stirred at reflux for 5 h . The reaction mixture was concentrated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with $10 \% \mathrm{HCl}$ $(50 \mathrm{~mL})$ and then sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give the crude product, which contained formate SI18, as a brown oil (616 mg), $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.

The crude material, containing formate SI-18, was dissolved in MeCN (8.57 mL). $\mathrm{POCl}_{3}(429 \mu \mathrm{~L})$ was added and the reaction mixture stirred at room temperature for 4 h . The reaction mixture was concentrated, dissolved in EtOAc (50 mL), and washed with sat. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The organic phase was dried (MgSO_{4}), filtered, and concentrated to give the imine $\mathbf{6 d}$ ($351 \mathrm{mg}, 18 \%$ over 3 steps) as a brown oil, δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.29(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{td}, J=8.5,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 152.5(\mathrm{CH}), 140.7(\mathrm{C}), 129.5(\mathrm{C}), 127.7(\mathrm{CH})$,
$126.6(\mathrm{CH}), 47.6\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; HRMS (ESI): calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+}$138.0372, found 138.0376 (-3.1 ppm error). These data are consistent with the literature values. ${ }^{31}$

1-Methyl-6,7-dihydro-1H-pyrrolo[3,2-c]pyridine (6e)

N-Methyl-2-pyrrole carboxaldehyde ($10.0 \mathrm{~g}, 91.634 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{OAc}\left(3.91 \mathrm{~g}, 47.650 \mathrm{mmol}\right.$), and MeNO_{2} (50 mL) were stirred at reflux for 2 h . The mixture was allowed to cool and the MeNO_{2} removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with water ($2 \times 100 \mathrm{~mL}$), dried (MgSO_{4}), filtered, and concentrated to give the crude product (14.9 g), which contained nitrostyrene SI19, $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.00(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.81$ (dd, $J=4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI): calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 175.0478$, found 175.0483. These data are consistent with the literature values. ${ }^{32}$

Following a modified procedure of Glennon; ${ }^{33}$ the crude material from above, containing nitroalkene SI19 ($14.9 \mathrm{~g}, 97.930 \mathrm{mmol}$) was dissolved in THF (400 mL) and $\mathrm{LiAlH}_{4}(11.15 \mathrm{~g}, 293.789 \mathrm{mmol}, 3.0 \mathrm{eq}$. was added in portions very carefully. The resulting mixture was stirred at room temperature for 5 h . TLC at this stage showed the starting material to be consumed. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched very carefully with $\mathrm{H}_{2} \mathrm{O}$ before being filtered through a pad of celite. The celite was washed with $\mathrm{EtOAc}(2 \times 200 \mathrm{~mL})$. The filtrate was treated with 10% aq. $\mathrm{HCl}(200 \mathrm{~mL})$ and the aqueous phase isolated. This was basified with 2 M NaOH and extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give the crude product, which contained amine SI-20, as a brown oil, $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.57(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.06(\mathrm{~m}, 1 \mathrm{H})$,
5.95-5.92(m, 1H), $3.56(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$; HRMS (ESI): calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$125.1073, found 125.1068 . These data are consistent with the literature values. ${ }^{34}$

The crude material, containing amine SI-20, was dissolved in ethyl formate (10 mL) and stirred at reflux for 5 h . The reaction mixture was concentrated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed with $10 \% \mathrm{HCl}$ $(25 \mathrm{~mL})$ and then sat. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give the crude product (8.21 g), as a brown oil. Purification by column chromatography (EtOAc) gave the formate SI-21 ($2.33 \mathrm{~g}, 17 \%$ over 3 steps), $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.16$ (s, 1H), 6.59 (m, $1 \mathrm{H}), 6.08(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$); HRMS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$175.0842, found 175.0839. These data are consistent with the literature values. ${ }^{33}$

Following a modified procedure of Glennon; ${ }^{33}$ formate SI-21 ($500 \mathrm{mg}, 3.285 \mathrm{mmol}$) was dissolved in toluene (15.0 mL). The reaction was heated to reflux and $\mathrm{POCl}_{3}(500 \mu \mathrm{~L})$ added dropwise. The reaction was stirred at reflux for 1 h . The mixture was allowed to cool and washed with hot water ($3 \times 25 \mathrm{~mL}$) . The combined aqueous layers were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$ and basified by the addition of KOH . This alkaline aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give imine $\mathbf{6 e}(115 \mathrm{mg}, 26 \%)$ as a yellow film, $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.21(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.63(\mathrm{~m}$, 2 H); HRMS (ESI): calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$135.0917, found 135.0918. These data are consistent with the literature values. ${ }^{33}$

(7) Acid scope in the DIA spirocyclisation reaction

($1^{\prime} R^{*}, 10 b^{\prime} R^{*}$)-2-Methyl-5', 6^{\prime}-dihydro-2' H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)one (8a) and ($1^{\prime} R^{*}, 10 b^{\prime} S^{*}$)-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]$\mathbf{3}^{\prime}\left(10 b^{\prime} H\right)$-one (9a)

8a

9a

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 a}$ ($172 \mathrm{mg}, 0.909 \mathrm{mmol}$), DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained 11:1 mixture of 8a:9a based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished $\mathbf{9 a}(18 \mathrm{mg}, 8 \%)$, a 1:3.3 mixture of $\mathbf{9 a}: \mathbf{8 a}(27 \mathrm{mg}, 12 \%)$ and $\mathbf{8 a}(166 \mathrm{mg}, 72 \%)$. Total combined yield of 8a and 9a: $211 \mathrm{mg}, \mathbf{9 2 \%}$. 8a was recrystallised from EtOAc and an X-ray crystal structure obtained. CCDC 1436464 contains the supplementary crystallographic data for this paper The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

9a: Yellow oil, $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.25$; $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3070,2920$, 2855, $1690(\mathrm{C}=\mathrm{O}), 1578,1458,1424$, $1305,925,758,731 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 1 \mathrm{H}), 5.93$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 3 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 182.4(\mathrm{C}=\mathrm{N}), 170.0(\mathrm{C}=\mathrm{O}), 154.8(\mathrm{C}), 140.2(\mathrm{C})$, $133.0(\mathrm{C}), 132.0(\mathrm{C}), 129.3(\mathrm{CH}), 129.1(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 126.3(\mathrm{CH}), 123.7(\mathrm{CH}), 121.6$ $(\mathrm{CH}), 120.6(\mathrm{CH}), 61.7(\mathrm{C}), 61.6(\mathrm{CH}), 40.1\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 303.1492$, found 303.1497 (-1.8 ppm error).

8a: Yellow solid, mp 177-179 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.15 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3070,2921,1690(\mathrm{C}=\mathrm{O}), 1577$, $1458,1429,1414,1305,909,726 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{ddd}, J=7.5,7.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.82-$
$2.77(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, CDCl ${ }_{3}$) $180.4(\mathrm{C}=\mathrm{N}), 170.4$ (C=O), 153.7 (C), 140.3 (C), 133.3 (C), $132.0(\mathrm{C}), 129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 127.1(\mathrm{CH}), 126.6(\mathrm{CH})$, $125.5(\mathrm{CH}), 123.5(\mathrm{CH}), 120.9(\mathrm{CH}), 120.1(\mathrm{CH}), 63.3(\mathrm{C}), 60.4(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right), 16.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 303.1492$, found $303.1496(-1.4 \mathrm{ppm}$ error).
($1^{\prime} R^{*}, 10 \mathrm{~b}^{\prime} \mathbf{R}^{*}$)-5-Methoxy-2-methyl-5',6'-dihydro-2' H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]$3^{\prime}\left(10 b^{\prime} H\right)$-one (8b) and ($1^{\prime} R^{*}, 10{ }^{\prime} S^{*}$)-5-methoxy-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9b)

8b

9b

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 b}(199 \mathrm{mg}, 0.907 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $6: 1$ mixture of $\mathbf{8 b}: \mathbf{9 b}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished $\mathbf{9 b}$ ($38 \mathrm{mg}, 15 \%$), a $1: 3$ mixture of $\mathbf{9 b}: \mathbf{8 b}(18 \mathrm{mg}, 7 \%)$ and $\mathbf{8 b}(160 \mathrm{mg}, 63 \%)$. Total combined yield of $\mathbf{8 b}$ and $\mathbf{9 b}$: $216 \mathrm{mg}, 85 \%$.

9b: Pale orange solid, $\mathrm{mp} 168-171^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.25$; $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 2923,2836,1690(\mathrm{C}=\mathrm{O})$, $1596,1576,1473,1431,1305,1026,909,727 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.02(\mathrm{~m}, 3 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.2(\mathrm{C}=\mathrm{N}), 170.0(\mathrm{C}=\mathrm{O}), 158.7(\mathrm{C}), 148.3(\mathrm{C})$, 141.8 (C), $133.0(\mathrm{C}), 132.1(\mathrm{C}), 129.2(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 123.8(\mathrm{CH}), 121.0(\mathrm{CH}), 113.4$ $(\mathrm{CH}), 108.4(\mathrm{CH}), 61.9(\mathrm{C}), 61.7(\mathrm{CH}), 55.8\left(\mathrm{CH}_{3}\right), 40.5\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 17.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 333.1598$, found 333.1594 (+0.3 ppm error)

8b: Pale orange solid, $m p 121-124^{\circ} \mathrm{C}$; R_{f} (EtOAc) 0.15; $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1}$ 2934, 2836, 1689, 1610, $1579,1470,1431,1305,1178,907,724 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}$,
$2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.25(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.11-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~d}$, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.0(\mathrm{C}=\mathrm{N}), 170.4(\mathrm{C}=\mathrm{O}), 157.8(\mathrm{C}), 147.5(\mathrm{C}), 141.8(\mathrm{C})$, $133.2(\mathrm{C}), 132.0(\mathrm{C}), 129.0(\mathrm{CH}), 127.1(\mathrm{CH}), 126.7(\mathrm{CH}), 123.6(\mathrm{CH}), 120.3(\mathrm{CH}), 113.2(\mathrm{CH}), 107.5$ $(\mathrm{CH}), 63.3(\mathrm{C}), 60.7(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 40.0\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 16.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 333.1598$, found 333.1595 (+0.8 ppm error).
(1 ' $R^{*}, 10 \mathrm{~b}^{\prime} R^{*}$)-5-Fluoro-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]$3^{\prime}\left(10 b^{\prime} H\right)$-one (8c) and ($1{ }^{\prime} R^{*}, 10 b^{\prime} S^{*}$)-5-fluoro-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9c)

8c

9c

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 c}(188 \mathrm{mg}, 0.907 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $6: 1$ mixture of $\mathbf{8 c}: 9 \mathrm{c}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished $\mathbf{9 c}(21 \mathrm{mg}, 9 \%)$ and $\mathbf{8 c}(177 \mathrm{mg}, 72 \%)$. Total combined yield of $\mathbf{8 c}$ and $\mathbf{9 c}: 198$ $\mathrm{mg}, 81 \%$.

9c: Yellow oil, $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.25 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 2925,1696(\mathrm{C}=\mathrm{O}), 1601,1466,1421,1306,1156$, $732 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}$, 3H), 6.93-6.89 (m, 1H), 5.96 (d, J = 8.0 Hz, 1H), $5.32(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 3 \mathrm{H})$, $2.90-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 182.3(\mathrm{C}=\mathrm{N})$, 169.7 (C=O), 161.6 (d, $J=245.5 \mathrm{~Hz}, \mathrm{CF}), 150.7(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{C}), 142.2$ (d, $J=8.5 \mathrm{~Hz}, \mathrm{C}), 133.1$ (C), $131.8(\mathrm{C}), 129.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.4(\mathrm{CH}), 123.6(\mathrm{CH}), 121.5(\mathrm{~d}, J=8.5 \mathrm{~Hz}, \mathrm{CH}), 115.8(\mathrm{~d}, J=23.5$ $\mathrm{Hz}, \mathrm{CH}), 109.5(\mathrm{~d}, J=25.0 \mathrm{~Hz}, \mathrm{CH}), 62.1(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{C}), 61.6(\mathrm{CH}), 40.1\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 28.5$ $\left(\mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.00(\mathrm{ddd}, J=8.5,8.5,4.5 \mathrm{~Hz}$); HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 321.1398$, found $321.1383(+4.5 \mathrm{ppm}$ error).

8c: Yellow solid, mp 193-196 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.15 ; \mathrm{v}_{\max }\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 2924,1694$ ($\mathrm{C}=\mathrm{O}$), 1598, 1462, $1415,1178,920,727 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.33$ (dd, $\left.J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.78$ $(\mathrm{m}, 2 \mathrm{H}), 6.68(\mathrm{dd}, J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.12-$ $2.96(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.3$ $(\mathrm{C}=\mathrm{N}), 170.1(\mathrm{C}=\mathrm{O}), 160.8(\mathrm{~d}, J=245.5 \mathrm{~Hz}, \mathrm{CF}), 149.8(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{C}), 142.1(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{C})$, 133.3 (C), 131.6 (C), $129.3(\mathrm{CH}), 127.3(\mathrm{CH}), 126.8(\mathrm{CH}), 123.4(\mathrm{CH}), 120.8(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{CH}), 115.1$ (d, $J=23.5 \mathrm{~Hz}, \mathrm{CH}), 108.9(\mathrm{~d}, J=25.5 \mathrm{~Hz}, \mathrm{CH}), 63.8(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{C}), 60.3(\mathrm{CH}), 39.8\left(\mathrm{CH}_{2}\right), 37.3$ $\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 16.4\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.90(\mathrm{ddd}, J=8.5,8.5,4.5 \mathrm{~Hz}$); HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 321.1398$, found 321.1384 (+4.3 ppm error).
(1 ' $R^{*}, 10 \mathrm{~b}^{\prime} \mathbf{R}^{*}$)-2,4,6-Trimethyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]$3^{\prime}(10 b ' H)$-one ($8 d$) and ($\left.1^{\prime} R^{*}, 10{ }^{\prime} S^{*}\right)$-2,4,6-trimethyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9d)

8d

9d

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 d}(197 \mathrm{mg}, 0.907 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol) , in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $9: 1$ mixture of $\mathbf{8 d}: 9 \mathrm{~d}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished a mixture of $\mathbf{9 d}$ with minor contaminants ($24 \mathrm{mg}, 10 \%$) and $\mathbf{8 d}$ ($198 \mathrm{mg}, 78 \%$).

8d: Pale orange solid, mp 128-130 ${ }^{\circ} \mathrm{C}$; R_{f} (EtOAc) 0.10; $v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3055$, 2923, $1688(\mathrm{C}=\mathrm{O})$, $1626,1593,1459,1433,1305,1264,851,729 ; \delta_{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.16 ($\mathrm{s}, 1 \mathrm{H}$), 7.02-6.97 (m, $2 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.08$ $(\mathrm{m}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 182.5(\mathrm{C}=\mathrm{N}), 170.6(\mathrm{C}=\mathrm{O}), 154.9(\mathrm{C}), 138.3$ (C), 136.1 (C), 133.2 (C), 132.8 (C), 132.7 (C), 128.9 (CH), $128.8(\mathrm{CH}), 127.1(\mathrm{CH}), 126.2(\mathrm{CH}), 125.0(\mathrm{CH}), 118.7$ $(\mathrm{CH}), 61.3(\mathrm{C}), 59.7(\mathrm{CH}), 37.9\left(2 \times \mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 331.1805$, found 331.1803 (+0.6 ppm error).
($1^{\prime} R^{*}, 10 b^{\prime} R^{*}$)-5-Bromo-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]$3^{\prime}\left(10 b^{\prime} H\right)$-one (8e) and ($\left.1^{\prime} R^{*}, 10 b^{\prime} S^{*}\right)$-5-bromo-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9e)

8 e

9e

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 e}(243 \mathrm{mg}, 0.906 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $12: 1$ mixture of $\mathbf{8 e}: \mathbf{9 e}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished $\mathbf{9 e}(28 \mathrm{mg}, 9 \%)$ and $\mathbf{8 e}(250 \mathrm{mg}, 87 \%)$. Total combined yield of $\mathbf{8 e}$ and $\mathbf{9 e}: 278$ $\mathrm{mg}, 96 \% .9 \mathrm{e}$ was recrystallised from EtOAc and an X-ray crystal structure obtained.

9e: Orange oil; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.25$; $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2926,2867,1696(\mathrm{C}=\mathrm{O}), 1604,1578,1455,1423$, $1305,1186,735 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.57-4.52$ $(\mathrm{m}, 1 \mathrm{H}), 3.15-3.02(\mathrm{~m}, 3 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 183.0(\mathrm{C}=\mathrm{N}), 169.6(\mathrm{C}=\mathrm{O}), 153.8(\mathrm{C}), 142.4(\mathrm{C}), 133.1(\mathrm{C}), 132.7(\mathrm{CH}), 131.7(\mathrm{C}), 129.4$ $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.4(\mathrm{CH}), 125.1(\mathrm{CH}), 123.6(\mathrm{CH}), 122.0(\mathrm{CH}), 119.8(\mathrm{C}), 62.0(\mathrm{C}), 61.4(\mathrm{CH}), 40.0$ $\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 381.0597$ found 381.0598 (-0.1 ppm error).

8e: Orange solid, $\mathrm{mp} 164-16{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.15 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 2918,2852,1695(\mathrm{C}=\mathrm{O}), 1648$, $1604,1572,1449,1423,1410,1302,1246,1193,803,760,739 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.28-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ $(\mathrm{s}, 1 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.13-2.97(\mathrm{~m}, 3 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.8(\mathrm{C}=\mathrm{N}), 170.0(\mathrm{C}=\mathrm{O}), 152.7(\mathrm{C}), 142.3(\mathrm{C}), 133.3(\mathrm{C}), 131.5(\mathrm{CH}), 131.4$ (C), $129.3(\mathrm{CH}), 127.5(\mathrm{CH}), 126.8(\mathrm{CH}), 124.3(\mathrm{CH}), 123.3(\mathrm{CH}), 121.4(\mathrm{CH}), 119.2(\mathrm{C}), 63.9(\mathrm{C}), 60.4$
$(\mathrm{CH}), 39.7\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 16.5\left(\mathrm{CH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}(\mathrm{M}+$ $\mathrm{H})^{+} 381.0597$, found 381.0597 (-0.1 ppm error).
(1'R*,10b' R^{*})-7-Bromo-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]$3^{\prime}(10 b ' H)$-one ($8 f$) and (1 ' $R^{*}, 10 b^{\prime} S^{*}$)-7-bromo-2-methyl-5',6'-dihydro-2' H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9f)

$8 f$

9f

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 f}(243 \mathrm{mg}, 0.906 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $13: 1$ mixture of $\mathbf{8 f}: \mathbf{9 f}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished $\mathbf{9 f}(24 \mathrm{mg}, 8 \%)$, a 1:2.3 mixture of $\mathbf{9 f}: \mathbf{8 f}(11 \mathrm{mg}, 4 \%)$ and $\mathbf{8 f}(227 \mathrm{mg}, 78 \%)$. Total combined yield of $\mathbf{8 f}$ and $\mathbf{9 f}: 262 \mathrm{mg}, \mathbf{9 0 \%}$.

9f: Orange oil, $\mathrm{R}_{f}(4: 1 \mathrm{EtOAc}-$ hexane $) ~ 0.25 ; ~ v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2933,2861,1690(\mathrm{C}=\mathrm{O}), 1575,1458$, $1421,1306,1181,783,736 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.22 (m, 1H), 7.15-7.10 (m, 2H), 6.94-6.90 (m, 1H), 5.95 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (s, 1H), 4.57$4.52(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.01(\mathrm{~m}, 3 \mathrm{H}), 2.89-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 184.0(\mathrm{C}=\mathrm{N}), 169.6(\mathrm{C}=\mathrm{O}), 153.1(\mathrm{C}), 142.0(\mathrm{C}), 133.0(\mathrm{C}), 132.6(\mathrm{CH}), 131.7$ (C), 129.4 $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6(\mathrm{CH}), 123.5(\mathrm{CH}), 120.6(\mathrm{CH}), 114.5(\mathrm{C}), 63.4(\mathrm{C}), 61.5(\mathrm{CH}), 40.2$ $\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 17.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{17}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}$ 403.0416 found 403.0400 (+4.1 ppm error) .

8f: Orange solid, mp 190-192 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}\left(4: 1\right.$ EtOAc-hexane) 0.15 ; $v_{\max }$ (thin film)/cm ${ }^{-1}$ 2940, 2858, 1692, $1571,1456,1431,1417,1302,1195,803,760 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.93$ (m, 2H), $6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.11-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.41$
(d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 182.1(\mathrm{C}=\mathrm{N}), 169.9(\mathrm{C}=\mathrm{O}), 151.9(\mathrm{C}), 142.0(\mathrm{C}), 133.2(\mathrm{C})$, $131.8(\mathrm{CH}), 131.6(\mathrm{C}), 129.1(\mathrm{CH}), 127.3(\mathrm{CH}), 126.9(\mathrm{CH}), 126.8(\mathrm{CH}), 123.4(\mathrm{CH}), 119.9(\mathrm{CH}), 113.9$ (C), $64.9(\mathrm{C}), 60.3(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 16.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 381.0597$, found 381.0597 (0.0 ppm error).
$\left(1^{\prime} R^{*}, 10 \mathrm{~b}^{\prime} R^{*}\right)-5^{\prime}, 6^{\prime}-$ Dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (8g) and ($\left.1^{\prime} R^{*}, 10 b^{\prime} S^{*}\right)-5^{\prime}, 6^{\prime}$-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9g)

8g

9g

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 g}(159 \mathrm{mg}, 0.908 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $11: 1$ mixture of $\mathbf{8 g}: \mathbf{9 g}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished a mixture of $\mathbf{9 g}$ and a minor contaminant ($18 \mathrm{mg}, 8 \%$) and $\mathbf{8 g}(160 \mathrm{mg}, 73 \%)$. Total combined yield of $\mathbf{8 g}$ and $\mathbf{9 g}$: $178 \mathrm{mg}, 81 \%$.

9g: Pale yellow solid, mp $155-158{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.20$; $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3026,2925,1687(\mathrm{C}=\mathrm{O})$, $1608,1458,1431,1415,1306,923,768,730 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18 (ddd, $J=7.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 4 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50$ (s, 1H), 4.58-4.54 (m, 1H), 3.32 (dd, $J=16.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 173.2 (C=N), 170.0 (C=O), 154.6 (C), 139.3 (C), 133.5 (C), 131.8 (C), $129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 127.2(\mathrm{CH}), 126.7(\mathrm{CH}), 126.6(\mathrm{CH}), 123.7(\mathrm{CH}), 121.4$ $(\mathrm{CH}), 121.2(\mathrm{CH}), 63.3(\mathrm{C}), 58.7(\mathrm{CH}), 37.9\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 289.1335$, found 289.1333 (+0.9 ppm error).
($1^{\prime} R^{*}, 10 b^{\prime} S^{*}$)-2-Phenyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9h) and ($11^{\prime} R^{*}, 10 \mathrm{~b}^{\prime} \mathbf{R}^{*}$)-2-phenyl-5',6'-dihydro-2' H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]$\mathbf{3}^{\prime}(\mathbf{1 0 b} \mathbf{H})$-one (8h)

8h

9h

General procedure A was followed using imine $\mathbf{6 a}(53 \mathrm{mg}, 0.404 \mathrm{mmol})$, acid $\mathbf{5 h}(125 \mathrm{mg}, 0.497 \mathrm{mmol})$, DIPEA ($132 \mu \mathrm{~L}, 0.758 \mathrm{mmol}$) and T3P (394 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 0.619 mmol), in THF (2 mL) for 16 h at RT. The unpurified reaction mixture contained $8: 1$ mixture of $\mathbf{9 h}: 8 \mathrm{~h}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc-hexane (1:1) as eluent sequentially furnished a $1: 1.1$ mixture of $\mathbf{8 h}: \mathbf{9 h}(57 \mathrm{mg}, \mathbf{3 8 \%}$) and $\mathbf{9 h}(49 \mathrm{mg}, \mathbf{3 3 \%}$). Total combined yield of $\mathbf{8 h}$ and $\mathbf{9 h}: 106 \mathrm{mg}, \mathbf{7 1 \%} . \mathbf{9 h}$ was recrystallised from EtOAc and an X-ray crystal structure was obtained. CCDC 1436405 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Diagnostic signals for $\mathbf{8 h}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 4.68-4.64(\mathrm{~m}, 1 \mathrm{H})$.

9h: Cream solid, mp 201-203 ${ }^{\circ} \mathrm{C}$; R_{f} (EtOAc) 0.20; $v_{\text {max }}$ (thin film)/ $/ \mathrm{cm}^{-1} 3062$, 2931, 1689 ($\mathrm{C}=\mathrm{O}$), 1522, $1494,1458,1420,1307,910,754,694 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.0,8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09-7.06$ (m, 2H), 6.99 (dd, $J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=17.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=13.0,13.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=16.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80$ (ddd, $J=16.5,13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 181.0(\mathrm{C}=\mathrm{N}), 170.7$ (C=O), 154.4 (C), 141.5 (C), 134.7 (C), $134.1(\mathrm{C}), 131.6(\mathrm{C}), 130.1(\mathrm{CH}), 129.3(\mathrm{CH}), 128.5(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 127.4$ $(\mathrm{CH}), 127.0(\mathrm{CH}), 126.7(\mathrm{CH}), 123.6(\mathrm{CH}), 121.6(\mathrm{CH}), 121.4(\mathrm{CH}), 62.8(\mathrm{C}), 62.7(\mathrm{CH}), 40.9\left(\mathrm{CH}_{2}\right)$, $37.0\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 365.1648$, found $365.1646(+0.6$ ppm error).
($1^{\prime} R^{*}, 11 \mathrm{~b}^{\prime} R^{*}$)-2-Methyl-2', $3^{\prime}, 6^{\prime}, 7^{\prime}-$ Tetrahydrospiro[indole-3,1'-pyrido[2,1-a]isoquinolin]-4'(11b'H)one (8 ii) and ($\mathbf{1}^{\prime} \mathbf{R}^{*}, 11 \mathrm{~b}^{\prime} \mathrm{S}^{*}$)-2-methyl-2', 3',6',7'-tetrahydrospiro[indole-3,1'-pyrido[2,1a]isoquinolin]-4'(11b'H)-one (9i)

$8 \mathbf{i}$

$9 i$

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 i}$ ($184 \mathrm{mg}, 0.905 \mathrm{mmol}$), DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $4: 1$ mixture of $\mathbf{8 i} \mathbf{9 i}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc-MeOH (98:2) as eluent sequentially furnished a $4.8: 1$ mixture of $\mathbf{8 i} \mathbf{i} \mathbf{9 i}$ ($96 \mathrm{mg}, 40 \%$) and $\mathbf{8 i}(77 \mathrm{mg}, 32 \%$). Total combined yield of $\mathbf{8 i}$ and $\mathbf{9 i}$: $173 \mathrm{mg}, 72 \%$.

8i: Yellow solid, mp $156-158{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(98: 2 \mathrm{EtOAc}-\mathrm{MeOH}) 0.20$; $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 2928,2867,1640$ $(\mathrm{C}=\mathrm{O}), 1577,1455,1432,1410,1247,1047,731 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H})$, 6.82-6.78 (m, 1H), $6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.64-$ $2.60(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{ddd}, J=13.5,9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{dd}, J=13.5,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 183.0 (C=N), 169.3 (C=O), 154.2 (C), 139.1 (C), 135.7 (C), 132.4 (C), 128.7 $(\mathrm{CH}), 128.3(\mathrm{CH}), 126.9(\mathrm{CH}), 126.0(\mathrm{CH}), 125.0(\mathrm{CH}), 123.6(\mathrm{CH}), 123.0(\mathrm{CH}), 120.3(\mathrm{CH}), 61.8(\mathrm{C})$, $60.4(\mathrm{CH}), 39.7\left(\mathrm{CH}_{2}\right)$, $29.2\left(2 \times \mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 17.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ $(\mathrm{M}+\mathrm{H})^{+} 317.1648$ found $317.1646(+1.1 \mathrm{ppm}$ error).

Diagnostic peaks for 9i: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 317.1648$, found 317.1645 (+0.8 ppm error).
(1'R*, 10b' R^{*})-8',9'-Dimethoxy-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1$a]$ isoquinolin] $-3^{\prime}\left(10 b^{\prime} H\right)$-one (8 j) and ($\left.1^{\prime} \mathbf{R}^{*}, 10 \mathrm{~b}^{\prime} S^{*}\right)$-8',9'-dimethoxy-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9j)

8j

9j

General procedure A was followed using imine $\mathbf{6 b}(145 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 a}(172 \mathrm{mg}, 0.909 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $3: 1$ mixture of $\mathbf{8 j}: \mathbf{9 j}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc-MeOH (98:2) as eluent sequentially furnished $\mathbf{9 j}$ ($44 \mathrm{mg}, \mathbf{1 6 \%}$), a $1: 3$ mixture of $\mathbf{9 j} \mathbf{j} \mathbf{8 j}$ and $\mathbf{8 j}$ ($143 \mathrm{mg}, 52 \%$). Total combined yield of $\mathbf{8 j}$ and $\mathbf{9 j}$: $202 \mathrm{mg}, \mathbf{7 2 \%}$.

9j: Yellow oil, $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.25 ; \nu_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 2932,2853,1692$ (C=O), 1518, 1457, 1433, 1256, 1027, 800; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.43$ (ddd, $\left.J=7.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37$ (ddd, $J=$ $7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}$, $3 \mathrm{H}), 3.13-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{c}}(100.6 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 182.9(\mathrm{C}=\mathrm{N}), 170.1(\mathrm{C}=\mathrm{O}), 155.0(\mathrm{C}), 148.3(\mathrm{C}), 147.3(\mathrm{C}), 140.0(\mathrm{C}), 129.2(\mathrm{CH}), 126.3(\mathrm{CH})$, $124.9(\mathrm{C}), 123.5(\mathrm{C}), 121.8(\mathrm{CH}), 120.4(\mathrm{CH}), 111.3(\mathrm{CH}), 105.7(\mathrm{CH}), 61.9(\mathrm{C}), 61.8(\mathrm{CH}), 55.8\left(\mathrm{CH}_{3}\right)$, $55.0\left(\mathrm{CH}_{3}\right), 39.7\left(\mathrm{CH}_{2}\right)$, $37.1\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right)$, $17.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+$ $\mathrm{H})^{+} 363.1703$, found $363.1688(+4.3 \mathrm{ppm}$ error $)$.

8j: Yellow solid, mp 163-165 ${ }^{\circ} \mathrm{C}$; R_{f} (EtOAc) 0.15; $v_{\max }$ (thin film)/ $/ \mathrm{cm}^{-1} 2933,2835,1693$ ($\mathrm{C}=\mathrm{O}$), 1518, $1457,1256,1124,770,730 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.94-$ $6.87(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}$, 3H), 3.12-3.08 (m, 2H), 2.95 (ddd, $J=13.5,13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.69$ (m, 1H), 2.62 (s, 3H), 2.47 (d, J $=16.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 181.0(\mathrm{C}=\mathrm{N}), 170.4(\mathrm{C}=\mathrm{O}), 153.8(\mathrm{C}), 147.7(\mathrm{C}), 147.6(\mathrm{C})$, $140.5(\mathrm{C}), 128.6(\mathrm{CH}), 125.8(\mathrm{CH}), 125.5(\mathrm{C}), 124.0(\mathrm{C}), 121.4(\mathrm{CH}), 120.1(\mathrm{CH}), 111.1(\mathrm{CH}), 105.9$
$(\mathrm{CH}), 63.1(\mathrm{C}), 60.2(\mathrm{CH}), 55.6\left(\mathrm{CH}_{3} \times 2\right), 39.8\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 16.4\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 363.1703$, found 363.1694 (+2.5 ppm error).
(1'R*,10b'S*)-7',10'-Dibromo-8',9'-dimethoxy-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (8k) and ($\left.1^{\prime} R^{*}, 10 b^{\prime} R^{*}\right)$-7', 10'-dibromo-8',9'-dimethoxy-2-methyl-5',6'-dihydro-2'H-spiro[indole-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (9k)

8k

9k

General procedure A was followed using imine $\mathbf{6 c}(210 \mathrm{mg}, 0.602 \mathrm{mmol})$, acid $\mathbf{5 a}(136 \mathrm{mg}, 0.719 \mathrm{mmol})$, DIPEA ($193 \mu \mathrm{~L}, 1.11 \mathrm{mmol}$) and T3P (572 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 0.899 mmol), in THF (3.2 mL) for 1 h at $70{ }^{\circ} \mathrm{C}$. The unpurified reaction mixture contained $9: 1$ mixture of $\mathbf{8 k}: 9 \mathbf{k}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished $\mathbf{9 k}(27 \mathrm{mg}, 8 \%)$ and $\mathbf{8 k}(222 \mathrm{mg}, 71 \%)$. Total combined yield of $\mathbf{8 k}$ and 9k: $249 \mathrm{mg}, 79 \%$.

9k: Yellow solid, mp $149-151^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.35$; $v_{\text {max }}($ (thin film $) / \mathrm{cm}^{-1} 2927,2854,1698(\mathrm{C}=\mathrm{O}), 1576$, $1459,1408,1293,1025,979,772 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.35 (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.65-4.57(\mathrm{~m}, 1 \mathrm{H})$, 3.87 (s, 3H), 3.71 (s, 3H), 3.05-2.97 (m, 2H), 2.92-2.84 (m, 2H), 2.59 (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.5(\mathrm{C}=\mathrm{N}), 170.7(\mathrm{C}=\mathrm{O}), 154.3(\mathrm{C}), 150.4(\mathrm{C}), 150.1(\mathrm{C}), 144.4(\mathrm{C}), 134.0(\mathrm{C})$, $131.3(\mathrm{C}), 128.6(\mathrm{CH}), 126.2(\mathrm{CH}), 121.5(\mathrm{CH}), 120.4(\mathrm{CH}), 120.2(\mathrm{C}), 117.1(\mathrm{C}), 63.4(\mathrm{CH}), 61.8(\mathrm{C})$, $60.9\left(\mathrm{CH}_{3}\right)$, $60.7\left(\mathrm{CH}_{3}\right)$, $40.8\left(\mathrm{CH}_{2}\right)$, $37.4\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 16.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{20}{ }^{79} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 518.9913$, found 518.9928 (-2.7 ppm error).
$\mathbf{8 k}$: Yellow solid, mp 156-158 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.10$; $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 2936,1693(\mathrm{C}=\mathrm{O}), 1579,1526$, $1456,1401,1295,1114,1023,756 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (ddd, $J=7.5$, $7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.61-4.51(\mathrm{~m}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) 183.2$ ($\mathrm{C}=\mathrm{N}$), 170.9 (C=O), 154.4 (C), 149.9 (C), 149.5 (C), 140.3 (C), 133.6 (C), 131.1 (C), $128.1(\mathrm{CH}), 124.9(\mathrm{CH}), 121.3(\mathrm{CH}), 120.2(\mathrm{CH}), 119.9(\mathrm{C}), 117.8(\mathrm{C}), 61.9(\mathrm{C}), 61.8(\mathrm{CH}), 60.7\left(\mathrm{CH}_{3}\right)$, $60.6\left(\mathrm{CH}_{3}\right), 40.0\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 16.5\left(\mathrm{CH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{20}{ }^{79} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ $(\mathrm{M}+\mathrm{H})^{+} 518.9913$, found 518.9937 (-4.6 ppm error).
($3 R^{*}, 9 \mathbf{a ' S}^{\prime} \mathbf{S}^{*}$)-2-Methyl-8',9a'-dihydro-4'H-spiro[indole-3,9'-thieno[3,2-g]indolizin]-7'(5'H)-one 81 and ($3 S^{*}, 9 \mathrm{a}^{\prime} \mathrm{S}^{*}$)-2-methyl-8',9a'-dihydro-4'H-spiro[indole-3,9'-thieno[3,2-g]indolizin]-7'(5'H)-one 91

81

91

General procedure A was followed using imine $\mathbf{6 d}(105 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 a}(172 \mathrm{mg}, 0.909 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained 9:1 mixture of $\mathbf{8 1 : 9 1}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent furnished an unknown mixture of diastereoisomers $\mathbf{8 1}$ and $\mathbf{9 1}(190 \mathrm{mg}, 81 \%)$. Repeated chromatography furnished a small amount of separated diastereoisomers for characterisation purposes only.

81: Yellow solid, mp $178-181{ }^{\circ} \mathrm{C}$ (from 2:3 hexane/EtOAc); R_{f} (EtOAc) 0.20; $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1}$ 3081, 2969, 2933, 2900, 2839, 1695, 1684 (C=O), 1574, 1424, 1406, 1313, 1248, 887, 879, 759, 745; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H})$, 4.65-4.57 (m, 1H), 3.14-3.03 (m, 1H), 3.13 (dd, $J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$, $2.49(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 179.1(\mathrm{C}=\mathrm{N}), 170.5(\mathrm{C}=\mathrm{O}), 154.1(\mathrm{C}), 139.5(\mathrm{C})$, $134.4(\mathrm{C}), 130.0(\mathrm{C}), 128.6(\mathrm{CH}), 126.4(\mathrm{CH}), 125.5(\mathrm{CH}), 124.3(\mathrm{CH}), 121.2(\mathrm{CH}), 120.1(\mathrm{CH}), 63.1$ (C), $59.9(\mathrm{CH}), 39.6\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 16.3\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}$309.1056, found 309.1047 (+2.8 ppm error).

91: Yellow oil, R_{f} (EtOAc) 0.25; $v_{\max }($ thin film $) / \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.51-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.65-$ $4.57(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=17.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~d}, J=17.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 181.8(\mathrm{C}=\mathrm{N}), 170.3(\mathrm{C}=\mathrm{O}), 155.2(\mathrm{C}), 137.7(\mathrm{C}), 134.4(\mathrm{C})$, $129.5(\mathrm{CH}), 129.1(\mathrm{C}), 126.6(\mathrm{CH}), 126.2(\mathrm{CH}), 124.9(\mathrm{CH}), 121.6(\mathrm{CH}), 120.6(\mathrm{CH}), 61.6(\mathrm{CH})$, $39.5\left(\mathrm{CH}_{2}\right)$, $37.1\left(\mathrm{CH}_{2}\right)$, $25.2\left(\mathrm{CH}_{2}\right)$, $17.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}$ 309.1056 , found 309.1042 (+4.4 ppm error).
(3R*, $\mathbf{9 a}^{\prime} \mathbf{R}^{*}$)-2,3'-Dimethyl-4',5',8',9a'-tetrahydrospiro[indole-3,9'-pyrrolo[2,3-g]indolizin]-7'(3'H)one (8 m) and ($3 R^{*}, 9 \mathrm{a}^{\prime} S^{*}$)-2,3'-dimethyl-4',5',8',9a'-tetrahydrospiro[indole-3,9'-pyrrolo[2,3$g]$ indolizin]-7'(3'H)-one (9m)

8m

9m

General procedure A was followed using imine $\mathbf{6 e}(105 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{5 a}(172 \mathrm{mg}, 0.909 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained $5: 1$ mixture of $\mathbf{8 m}: 9 \mathrm{~m}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc then EtOAc-MeOH (95:5) as eluent furnished a $3.5: 1$ mixture of $\mathbf{8 m}$ and $\mathbf{9 m}(190 \mathrm{mg}, 81 \%)$ as a yellow solid. Recrystallization from EtOAc enabled isolation of the major diastereoisomer as a yellow solid.

8m: Yellow solid, mp $168-170{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}) \mathrm{R}_{f}$ (ethyl acetate) 0.15 ; $v_{\max }$ (thin film)/ $\mathrm{cm}^{-1} 3385,2916$, 2847, 1688 (C=O), 1577, 1422, 1299, 1218, 751, 709; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ ($\mathrm{s}, 1 \mathrm{H}$), $4.95(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 183.2(\mathrm{C}=\mathrm{N})$, $170.7(\mathrm{C}=\mathrm{O}), 154.9(\mathrm{C}), 139.4(\mathrm{C}), 128.8(\mathrm{CH}), 125.8(\mathrm{CH}), 124.8(\mathrm{C}), 122.1(\mathrm{CH}), 121.6(\mathrm{CH})$, $120.2(\mathrm{CH}), 113.2(\mathrm{C}), 102.3(\mathrm{CH}), 61.2(\mathrm{C}), 60.7(\mathrm{CH}), 39.6\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{3}\right), 21.2$ $\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{3}\right) ;$ HRMS $(\mathrm{ESI}): m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 306.1601$, found $306.1612(-3.5$ ppm error).

Diagnostic signals for $9 \mathrm{~m}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.89$ $(\mathrm{m}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$,
$3.15-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.4(\mathrm{C}=\mathrm{N}), 171.0(\mathrm{C}=\mathrm{O}), 153.9(\mathrm{C}), 140.6(\mathrm{C}), 127.9(\mathrm{CH}), 125.1(\mathrm{C}), 125.0$ $(\mathrm{CH}), 122.0(\mathrm{CH}), 121.6(\mathrm{CH}), 119.7(\mathrm{CH}), 113.2(\mathrm{C}), 101.8(\mathrm{CH}), 62.7(\mathrm{C}), 59.1(\mathrm{CH}), 39.7\left(\mathrm{CH}_{2}\right), 37.1$ $\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{2}\right), 16.3\left(\mathrm{CH}_{3}\right)$.
$\left(1^{\prime} R^{*}, 8 a^{\prime} R^{*}\right)-8$ ', 8^{\prime}-Dibenzyl-2-methyl-6', $7^{\prime}, 8^{\prime}, 8 a^{\prime}-$ tetrahydro-2' H-spiro[indole-3,1'-indolizin]$3^{\prime}\left(5^{\prime} H\right)$-one (8n) and ($\left.1^{\prime} R^{*}, 8 a^{\prime} S^{*}\right)-8^{\prime}, 8^{\prime}$-dibenzyl-2-methyl-6',7',8',8a'-tetrahydro-2' H-spiro[indole-3,1'-indolizin]-3'(5'H)-one (9n)

8n

9n

General procedure A was followed using imine $\mathbf{6 f}(60 \mathrm{mg}, 0.228 \mathrm{mmol})$, acid $\mathbf{5 a}(53 \mathrm{mg}, 0.280 \mathrm{mmol})$, DIPEA ($74 \mu \mathrm{~L}, 0.425 \mathrm{mmol}$) and T3P (219 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 0.344 mmol), in toluene (1 mL) for 18 h at $90{ }^{\circ} \mathrm{C}$. The unpurified reaction mixture contained $3: 1$ mixture of $\mathbf{8 n}: 9 \mathrm{n}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with $\mathrm{EtOAc}^{2}-\mathrm{Et}_{2} \mathrm{O}$ (10:90 then 20:80 then 50:50) as eluent sequentially furnished $\mathbf{9 n}(26 \mathrm{mg}, 26 \%)$ and $\mathbf{8 n}(63 \mathrm{mg}, 63 \%)$. Total combined yield of $\mathbf{8 n}$ and $\mathbf{9 n}$: $89 \mathrm{mg}, 89 \%$. $\mathbf{8 n}$ was recrystallised from EtOAc to obtain an X-ray crystal structure. CCDC 1436396 contains the supplementary crystallographic data for this paper The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

9n: Yellow oil, R_{f} (EtOAc) 0.50; $v_{\text {max }}\left(\right.$ (thin film) $/ \mathrm{cm}^{-1} 3029,2932,1686(\mathrm{C}=\mathrm{O}), 1601,1556,1454,1441$, $1265,732,701 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20$ (m, 7H), 7.02-6.98 (m, 1H), 6.90 (dd, $J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=13.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.88(\mathrm{~m}, 4 \mathrm{H}), 2.64$ (ddd, $J=13.0,13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.1(\mathrm{C}=\mathrm{N})$, 171.3 (C=O), 152.4 (C), 145.3 (C), 136.8 (C), 135.8 (C), $131.0(\mathrm{CH}), 130.8(\mathrm{CH}), 128.9(\mathrm{CH}), 128.3$ (CH), $127.6(\mathrm{CH}), 126.82(\mathrm{CH}), 126.79(\mathrm{CH}), 126.2(\mathrm{CH}), 120.7(\mathrm{CH}), 120.4(\mathrm{CH}), 71.4(\mathrm{CH}), 61.2(\mathrm{C})$,
$42.5(\mathrm{C}), 40.9\left(\mathrm{CH}_{2}\right), 40.8\left(\mathrm{CH}_{2}\right), 39.7\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 435.2431$, found 435.2445 (-3.3 ppm error).

8n: Brown solid, mp 225-227 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) ~ 0.35 ; v_{\max }\left(\right.$ thin film) $/ \mathrm{cm}^{-1} 3028,2938,1683(\mathrm{C}=\mathrm{O}), 1589$, $1454,1422,1283,908,728 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dd, $J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (dd, $J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36-7.28 (m, 3H), 7.24-7.22 (m, 2H), 7.09-7.07 (m, 3H), 6.33-6.31 (m, 2H), $4.41(\mathrm{dd}, J=13.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.32(\mathrm{~m}, 2 \mathrm{H})$, $3.13(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J=13.0,13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.17$ ($\mathrm{m}, 1 \mathrm{H}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 185.1(\mathrm{C}=\mathrm{N}), 170.6(\mathrm{C}=\mathrm{O}), 156.1$ (C), 137.6 (C), 136.6 (C), 135.9 (C), $130.84(\mathrm{CH}), 130.75(\mathrm{CH}), 129.5(\mathrm{CH}), 128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 126.7(\mathrm{CH}), 126.7(\mathrm{CH}), 126.2(\mathrm{CH})$, $125.9(\mathrm{CH}), 125.4(\mathrm{CH}), 121.2(\mathrm{CH}), 64.8(\mathrm{CH}), 60.0(\mathrm{C}), 43.3(\mathrm{C}), 40.4\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right)$, $34.8\left(\mathrm{CH}_{2}\right)$, $31.1\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{2}\right), 16.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$ 435.2431 , found 435.2447 (-3.8 ppm error).
($2^{\prime} R^{*}, 3 R^{*}$)-2'-(4-Methoxyphenyl)-1',2-dimethylspiro[indole-3,3'-pyrrolidin]-5'-one (80) and (2'S*,3R*)-2'-(4-methoxyphenyl)-1',2-dimethylspiro[indole-3,3'-pyrrolidin]-5'-one (90)

80

90

General procedure A was followed using imine $\mathbf{6 g}(113 \mathrm{mg}, 0.757 \mathrm{mmol})$, acid $\mathbf{5 a}(172 \mathrm{mg}, 0.909 \mathrm{mmol})$, DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol) , in THF (4 mL) for 1 h at $70^{\circ} \mathrm{C}$. The unpurified reaction mixture contained $4: 1$ mixture of $\mathbf{8 0}: 9 \mathrm{o}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent sequentially furnished $\mathbf{9 o}$ ($32 \mathrm{mg}, 13 \%$) and $\mathbf{8 o}(141 \mathrm{mg}, 58 \%)$. Total combined yield of $\mathbf{8 0}$ and $\mathbf{9 0}$: $173 \mathrm{mg}, 71 \%$. 80 was recrystallised from EtOAc to obtain an X-ray crystal structure. CCDC 1436400 contains the supplementary crystallographic data for this paper The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

90: Orange oil, $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.40 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 2926,1694(\mathrm{C}=\mathrm{O}), 1612,1573,1513,1459,1396$, $1250,1176,1031,732 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}$, $1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}$, $3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 181.4(\mathrm{C}=\mathrm{N}), 173.3(\mathrm{C}=\mathrm{O}), 160.0(\mathrm{C}), 143.8(\mathrm{C}), 128.8(\mathrm{CH}), 128.2(\mathrm{C})$, $127.4(\mathrm{CH}), 127.1(\mathrm{C}), 126.3(\mathrm{CH}), 120.4(\mathrm{CH}), 120.2(\mathrm{CH}), 114.5(\mathrm{CH}), 70.4(\mathrm{CH}), 61.8(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right)$, $36.8\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{3}\right)$, $17.7\left(\mathrm{CH}_{3}\right)$; HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 321.1598$, found 321.1594 (+1.0 ppm error).

80: Orange solid, mp 166-168 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}(\mathrm{EtOAc}) 0.20 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 2910,1682(\mathrm{C}=\mathrm{O}), 1608,1583$, $1511,1455,1248,1171,1023,843,774 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (ddd, $J=$ $7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 5 \mathrm{H}), 6.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.92$ $(\mathrm{m}, 4 \mathrm{H}), 2.44(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 183.3(\mathrm{C}=\mathrm{N}), 173.1(\mathrm{C}=\mathrm{O})$, 159.7 (C), 154.4 (C), 137.1 (C), 128.4 (CH), 128.1 (CH), 127.7 (C), 125.1 (CH), 123.8 (CH), 119.7 (CH), $114.0(\mathrm{CH}), 67.0(\mathrm{CH}), 61.0(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right), 36.8\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 321.1598$, found 321.1589 (+2.6 ppm error $)$.
($2^{\prime} R^{*}, 3 R^{*}$)-2'-(4-Methoxyphenyl)-1'-methyl-2-phenylspiro[indole-3,3'-pyrrolidin]-5'-one (8p) and ($2^{\prime} S^{*}, 3 R^{*}$)-2'-(4-methoxyphenyl)-1'-methyl-2-phenylspiro[indole-3,3'-pyrrolidin]-5'-one (9p)

8p

9p

General procedure A was followed using imine $\mathbf{6 g}(45 \mathrm{mg}, 0.302 \mathrm{mmol})$, acid $\mathbf{5 h}(90 \mathrm{mg}, 0.358 \mathrm{mmol})$, DIPEA ($116 \mu \mathrm{~L}, 0.666 \mathrm{mmol}$) and T3P (286 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 0.449 mmol), in THF (1.5 mL) for 1 h at $70^{\circ} \mathrm{C}$. The unpurified reaction mixture contained $1.8: 1$ mixture of $\mathbf{8 p}: \mathbf{9 p}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with hexane-EtOAc (1:1) as eluent furnished an inseparable 1:1.2 mixture of diastereoisomers. Total yield of $\mathbf{8 p}$ and $\mathbf{9 p}$: $73 \mathrm{mg}, 76 \%$.

8p and 9p: Pale brown solid, mp $169-171{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}\left(1: 1\right.$ hexane-EtOAc) $0.20 ; v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 3060$, 2932, 1693 (C=O), 1612, 1586, 1513, 1458, 1304, 1249, 1176, 1032, 911, $731 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for
a 1.2:1 mixture of diastereoisomers 7.99-7.97 (m, 2.4H), 7.61 (m, 1H), 7.56-7.48 (m, 7.8H), 7.46-7.42 $(\mathrm{m}, 1.2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1.2 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 1.2 \mathrm{H})$, 6.71-6.64 (m, 5.8H), 6.44-6.40 (m, 2H), 6.35-6.32 (m, 2H), $3.70(\mathrm{~s}, 3.6 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.44$ (d, J= 18.0 $\mathrm{Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1.2 \mathrm{H}), 3.06(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1.2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H})$, $2.84(\mathrm{~s}, 3.6 \mathrm{H}) ; \delta_{\mathrm{H}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 179.6(\mathrm{C}=\mathrm{N}), 179.0(\mathrm{C}=\mathrm{N}), 174.4(\mathrm{C}=\mathrm{O}), 173.8(\mathrm{C}=\mathrm{O}), 159.4(\mathrm{C})$, 159.3 (C), 153.6 (C), 153.4 (C), 140.6 (C), 134.6 (C), 132.4 (C), 131.1 (CH), 130.3 (CH), 129.0 (CH), $128.96(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.89(\mathrm{CH}), 127.88(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3(\mathrm{C})$, $126.9(\mathrm{CH}), 125.7(\mathrm{CH}), 125.4(\mathrm{C}), 123.5(\mathrm{CH}), 121.1(\mathrm{CH}), 120.8(\mathrm{CH}), 120.7(\mathrm{CH}), 113.6(\mathrm{CH}), 113.3$ $(\mathrm{CH}), 71.8(\mathrm{CH}), 68.4(\mathrm{CH}), 61.7(\mathrm{C}), 61.1(\mathrm{C}), 55.2\left(\mathrm{CH}_{3}\right), 55.1\left(\mathrm{CH}_{3}\right), 39.4\left(\mathrm{CH}_{2}\right), 39.3\left(\mathrm{CH}_{2}\right), 29.7$ $\left(\mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{3}\right) ;$ HRMS $(\mathrm{ESI}) m / z$ calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 383.1754$, found $383.1743(+3.0$ ppm error).
$\left(1 S^{*}, 10 \mathrm{~b} R^{*}\right)-5 '$-Methoxy-2'-methyl-5,6-dihydro-2H-spiro[pyrrolo[2,1-a]isoquinoline-1,3'-pyrrolo[3,2-b]pyridin]-3(10bH)-one (11)

11

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{1 0}$ ($200 \mathrm{mg}, 0.908 \mathrm{mmol}$), DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in THF (4 mL) for 16 h at RT. The unpurified reaction mixture contained a $>20: 1$ mixture of $\mathbf{1 1}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent furnished 11 ($226 \mathrm{mg}, 89 \%$).

11: Yellow solid, $\mathrm{mp} 139-141^{\circ} \mathrm{C} ; \mathrm{R}_{f}(\mathrm{EtOAc}) 0.10 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 2939,1687(\mathrm{C}=\mathrm{O}), 1594,1472$, 1407, 1307, 1222, 1145, 1022, 909, 829, 645; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.92$ (m, 2H), 6.82-6.78 (m, 1H), $6.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.54(\mathrm{~m}$, $1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.2(\mathrm{C}=\mathrm{N}), 170.3(\mathrm{C}=\mathrm{O}), 162.2(\mathrm{C}), 159.2(\mathrm{C}), 140.9(\mathrm{C}), 134.6$ (C), $131.7(\mathrm{C}), 129.4(\mathrm{CH}), 128.8(\mathrm{CH}), 127.1(\mathrm{CH}), 126.5(\mathrm{CH}), 123.3(\mathrm{CH}), 109.5(\mathrm{CH}), 62.1(\mathrm{C}), 60.0$
(CH), $53.5\left(\mathrm{CH}_{3}\right), 38.0\left(\mathrm{CH}_{2}\right)$, $37.6\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right)$, $16.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 334.1550$, found $334.1550(+0.1 \mathrm{ppm}$ error).

(9) Other heterocycle scope in the DIA spirocyclisation reaction

($1^{\prime} R^{*}, 10 \mathrm{~b}^{\prime} R^{*}$)-3,5-Dimethyl-5',6'-dihydro-2' H-spiro[pyrrole-2,1'-pyrrolo[2,1-a]isoquinolin]$3^{\prime}(10 b ' H)$-one (major-14) and (1'R*,10b'S*)-3,5-dimethyl-5',6'-dihydro-2'H-spiro[pyrrole-2,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (minor-14)

major-14

minor-14

General procedure A was followed using imine $\mathbf{6 a}(48 \mathrm{mg}, 0.366 \mathrm{mmol})$, acid $12(68 \mathrm{mg}, 0.444 \mathrm{mmol})$, DIPEA ($119 \mu \mathrm{~L}, 0.683 \mathrm{mmol}$) and T3P (353 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 0.555 mmol), in $\mathrm{CHCl}_{3}(2$ mL) for 1 h at $70{ }^{\circ} \mathrm{C}$. The unpurified reaction mixture contained a $14: 1$ mixture of $\mathbf{1 4}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5) as eluent furnished $\mathbf{1 4}$ as a $13: 1$ mixture ($61 \mathrm{mg}, 62 \%$).

14: Brown oil, $\mathrm{R}_{f}\left(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right) 0.30$; $v_{\max }\left(\right.$ (thin film) $/ \mathrm{cm}^{-1} 3052$, 2921, $1687(\mathrm{C}=\mathrm{O}), 1634,1556$, $1459,1419,1305,1265,931,700 \mathrm{~cm}^{-1}$; δ_{H} for major- $\mathbf{1 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.15-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=16.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.07-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$; δ_{C} for major- $\mathbf{1 4}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 175.1(\mathrm{C}=\mathrm{N}), 170.7(\mathrm{C}=\mathrm{O}), 167.0(\mathrm{C}), 133.1(\mathrm{C}), 132.5(\mathrm{C}), 129.0$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 126.7(2 \times \mathrm{CH}), 124.5(\mathrm{CH}), 85.2(\mathrm{C}), 59.3(\mathrm{CH}), 38.8\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right)$, $18.9\left(\mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 267.1492$, found $267.1495(-1.1$ ppm error).

Diagnostic peaks for minor-14: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.94 ($\mathrm{s}, 1 \mathrm{H}$).
(1 ' $R^{*}, 10 \mathrm{~b}^{\prime} \mathbf{R}^{*}$)-3-Methyl-5-phenyl-5',6'-dihydro-2'H-spiro[pyrrole-2,1'-pyrrolo[2,1-a]isoquinolin]$3^{\prime}(10 b ' H)$-one (major-15) and ($\left.1^{\prime} R^{*}, 10 b^{\prime} S^{*}\right)$-3-methyl-5-phenyl-5',6'-dihydro-2'H-spiro[pyrrole-2,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (minor-15)

major-15

minor-15

General procedure A was followed using imine $\mathbf{6 a}(100 \mathrm{mg}, 0.762 \mathrm{mmol})$, acid $\mathbf{1 2}$ ($197 \mathrm{mg}, 0.915 \mathrm{mmol}$), DIPEA ($245 \mu \mathrm{~L}, 1.41 \mathrm{mmol}$) and T3P (725 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 1.14 mmol), in $\mathrm{CHCl}_{3}(4$ mL) for 1 h at $70^{\circ} \mathrm{C}$. The unpurified reaction mixture contained a $5.6: 1$ mixture of $\mathbf{1 5}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc as eluent furnished $\mathbf{1 5}$ as a $13: 1$ mixture ($192 \mathrm{mg}, 77 \%$). Some major- $\mathbf{1 5}$ could be isolated by recrystallization ($1: 1$ hexane-EtOAc) for characterisation. CCDC 1436465 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

15: Pale pink solid, mp $144-147{ }^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) ; \mathrm{R}_{f}(\mathrm{EtOAc}) 0.20 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 2975,2934,2913$, $2864,1696(\mathrm{C}=\mathrm{O}), 1627,1424,1409,1361,1310,766,747,690,667 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.03-$ $7.96(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.97$ (ddd, $J=7.5,7.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.44-6.43(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.61-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=16.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-2.97$ (m, 2H), 2.92-2.81 (m, 1H), $2.37(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 173.6 (C), 170.7 (C), 167.7 (C), 133.4 (C), 133.1 (C), 132.5 (C), 130.9 (CH), 128.9 (CH), 128.8 (CH), $127.7(2 \times \mathrm{CH}), 127.1(\mathrm{CH}), 126.8(\mathrm{CH}), 124.6(\mathrm{CH}), 123.6(\mathrm{CH}), 123.5(\mathrm{CH}), 86.0(\mathrm{C}), 59.7(\mathrm{CH})$, $39.2\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$ 329.1648 , found 329.1650 (-0.4 ppm error).
($1^{\prime} R^{*}, 10 \mathrm{~b}^{\prime} R^{*}$)-Ethyl 2,4-dimethyl-3'-oxo-3',5',6',10b'-tetrahydro-2'H-spiro[pyrrole-3,1'-pyrrolo[2,1-a]isoquinoline]-5-carboxylate major-17 and ($1^{\prime} R^{*}, 10{ }^{\prime} S^{*}$)-ethyl 2,4-dimethyl-3'-oxo-3', $\mathbf{5}^{\prime}, \mathbf{6}^{\prime}, 10 \mathrm{~b}^{\prime}$ -tetrahydro-2'H-spiro[pyrrole-3,1'-pyrrolo[2,1-a]isoquinoline]-5-carboxylate minor-17

major-17

minor-17

General procedure A was followed using imine $\mathbf{6 a}(34.0 \mathrm{mg}, 0.259 \mathrm{mmol})$, acid $\mathbf{1 6}(70.0 \mathrm{mg}, 0.311$ mmol), DIPEA ($83.5 \mu \mathrm{~L}, 0.479 \mathrm{mmol}$) and T3P (124 mg of a $50 \% \mathrm{w} / \mathrm{v}$ solution in THF, 0.388 mmol), in $\mathrm{CHCl}_{3}(1.4 \mathrm{~mL})$ for 1 h at $70{ }^{\circ} \mathrm{C}$. The unpurified reaction mixture contained a 3.2:1 mixture of $\mathbf{1 7}$ based on analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Purification by flash column chromatography with EtOAc then EtOAc-MeOH (9.5:0.5) as eluent sequentially furnished minor-17 ($11 \mathrm{mg}, 13 \%$) and major$\mathbf{1 7}(41 \mathrm{mg}, 47 \%)$. Total combined yield of minor-17 and major-17: $52 \mathrm{mg}, 59 \%$.

Minor-17: Thin yellow film, $\mathrm{R}_{f}(9.5: 0.5 \mathrm{EtOAc} / \mathrm{MeOH}) 0.30 ; v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3304,2927,1660$, $1633,1436,1269,1208,1174,1088,1025,919,773,729 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.21-7.11(\mathrm{~m}, 2 \mathrm{H})$, 7.11-7.05 (m, 1H), 6.47 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.53-4.33(\mathrm{~m}, 3 \mathrm{H}), 3.16-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.93-$ $2.79(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 182.3$ (C), 169.5 (C), 163.1 (C), 147.6 (C), 140.9 (C), 133.1 (C), $132.0(\mathrm{C}), 129.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 123.4(\mathrm{CH}), 67.7(\mathrm{C}), 61.1\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 37.3$ $\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$339.1703, found 339.1698 (+1.5 ppm error).

Major-17: Yellow oil, $\mathrm{R}_{f}(9.5: 0.5 \mathrm{EtOAc} / \mathrm{MeOH}) 0.20$; $v_{\max }$ (thin film)/ $\mathrm{cm}^{-1} 3301,2980,2930,1655$, $1435,1270,1213,1174,1092,910,728 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.20-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=7.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.95(\mathrm{~m}$, $2 \mathrm{H}), 2.94$ (dd, $J=17.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 180.06$ (C), 169.5 (C), 163.0 (C), 151.2 (C), 140.1 (C), $133.1(\mathrm{C}), 131.5(\mathrm{C}), 129.2(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 123.8(\mathrm{CH}), 67.4(\mathrm{C}), 60.8\left(\mathrm{CH}_{2}\right)$, $59.2(\mathrm{CH}), 37.6\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 16.2\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 11.1\left(\mathrm{CH}_{3}\right) ;$ HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 339.1703$, found 339.1688 (+4.4 ppm error).
(10) Procedures for the modification of spirocycles 8a and 8g
$\left(1 S^{*}, 2 S^{*}, 10 b^{\prime} R^{*}\right)$-2-Methyl-5',6'-dihydro-2'H-spiro[indoline-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (18)

18

Using general procedure $\mathrm{B}, \mathrm{NaBH}_{4}(50 \mathrm{mg}, 1.32 \mathrm{mmol})$ and spiroindolenine $\mathbf{8 a}(100 \mathrm{mg}, 0.331 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ at reflux for 3.5 h gave the crude product. Purification by flash column chromatography using EtOAc-hexane (9:1) as eluent gave spiroindoline 18 ($81 \mathrm{mg}, 81 \%$) as a cream solid, mp 229 $231{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}$ (EtOAc) 0.50; $v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3318(\mathrm{NH}), 3058,2924,1682(\mathrm{C}=\mathrm{O}), 1606,1578,1459$, $1305,1143,909,727 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.83$ (ddd, $J=$ $7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.18 ($\mathrm{s}, 1 \mathrm{H}$), 4.52-4.47 (m, 1H), 4.05 (br s, 1H), $4.01(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.81(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J$ $=16.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.65(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.8(\mathrm{C}=\mathrm{O})$, 149.6 (C), $134.3(\mathrm{C}), 133.2(\mathrm{C}), 132.9(\mathrm{C}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 126.7(\mathrm{CH}), 126.4(\mathrm{CH}), 125.7(\mathrm{CH})$, $122.4(\mathrm{CH}), 119.2(\mathrm{CH}), 109.4(\mathrm{CH}), 62.2(\mathrm{CH}), 61.8(\mathrm{CH}), 53.9(\mathrm{C}), 44.8\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)$, $15.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 305.1648$, found 305.1645 (+1.1 ppm error). 18 was recrystallized from EtOAc and an X-ray crystal structure obtained. CCDC 1436401 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

18: X-ray crystal structure

$\left(1 ' S *, 10 b^{\prime} R^{*}\right)-5 ', 6^{\prime}$-Dihydro-2'H-spiro[indoline-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (19)

19

Using general procedure $\mathrm{B}, \mathrm{NaBH}_{4}(52 \mathrm{mg}, 1.39 \mathrm{mmol})$ and spiroindolenine $\mathbf{8 g}(100 \mathrm{mg}, 0.347 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ at reflux for 3.5 h gave the crude product. Purification by flash column chromatography using EtOAc as eluent gave spiroindoline $19(87 \mathrm{mg}, 87 \%)$ as a cream solid, mp $211-213{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}(\mathrm{EtOAc})$ 0.30 ; $v_{\text {max }}($ thin film $) / \mathrm{cm}^{-1} 3330(\mathrm{NH}), 2924,2855,1675(\mathrm{C}=\mathrm{O}), 1606,1487,1459,1415,1306,909,729$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-$ $6.75(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.40(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 171.3 (C=O), 150.6 (C), 134.1 (C), 132.9 (C), 131.5 (C), $128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 126.7(\mathrm{CH}), 126.0$
$(\mathrm{CH}), 125.6(\mathrm{CH}), 122.4(\mathrm{CH}), 118.8(\mathrm{CH}), 109.5(\mathrm{CH}), 68.2(\mathrm{CH}), 57.6\left(\mathrm{CH}_{2}\right), 52.4(\mathrm{C}), 46.2\left(\mathrm{CH}_{2}\right)$, $35.1\left(\mathrm{CH}_{2}\right)$, $29.2\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 291.1492$, found $291.1486(+1.9$ ppm error).
$\left(1^{\prime} S^{*}, 2 S^{*}, 10 b^{\prime} R^{*}\right)$-2-Methyl-3',5',6',10b'-tetrahydro-2'H-spiro[indoline-3,1'-pyrrolo[2,1a]isoquinoline] (20)

20

Using general procedure $\mathrm{C}, \mathrm{LiAlH}_{4}(76 \mathrm{mg}, 2.00 \mathrm{mmol})$ and spiroindoline $\mathbf{1 8}(153 \mathrm{mg}, 0.50 \mathrm{mmol})$ in dry THF (15 mL) under Ar at reflux for 2.5 h gave the crude product. Purification by flash column chromatography EtOAc as eluent gave spiroindoline $20(110 \mathrm{mg}, 75 \%)$ as a white solid, $\mathrm{mp} 141-143{ }^{\circ} \mathrm{C}$; R_{f} (EtOAc) 0.45; $v_{\max }$ (thin film)/ $\mathrm{cm}^{-1} 3356(\mathrm{NH}), 2981,2897,2804,1604,1467,1330,935,762,556 ;$ $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.89-$ $6.81(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (s, 1H), 3.30-3.22 (m, 2H), 3.14-3.06 (m, 1H), 2.67 (dd, $J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 3 \mathrm{H}), 1.98-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 150.0(\mathrm{C}), 136.3(\mathrm{C}), 136.1(\mathrm{C}), 135.3(\mathrm{C})$, $128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1(\mathrm{CH}), 125.5(\mathrm{CH}), 125.2(\mathrm{CH}), 125.0(\mathrm{CH}), 118.1(\mathrm{CH}), 108.8(\mathrm{CH}), 69.4$ $(\mathrm{CH}), 63.9(\mathrm{CH}), 56.7(\mathrm{C}), 52.2\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 16.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$291.1856, found 291.1860 (-1.6 ppm error).

21

Using general procedure $\mathrm{C}, \mathrm{LiAlH}_{4}(78 \mathrm{mg}, 2.04 \mathrm{mmol})$ and spiroindoline $19(148 \mathrm{mg}, 0.51 \mathrm{mmol})$ in dry THF (15 mL) under Ar at reflux for 2.5 h gave the crude product. Purification by flash column chromatography EtOAc as eluent gave spiroindoline $21(94 \mathrm{mg}, 67 \%)$ as a yellow oil, $\mathrm{R}_{f}(\mathrm{EtOAc})$ 0.10; $v_{\max }(t h i n ~ f i l m) / \mathrm{cm}^{-1} 3291(\mathrm{NH}), 2923,2790,1638,1604,1577,1484,1264,1026,731,701 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}$, $J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 3.31-3.12(\mathrm{~m}, 3 \mathrm{H}), 2.79-2.75(\mathrm{~m}, 1 \mathrm{H})$, $2.65-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.29$ (ddd, $J=13.0,9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (ddd, $J=13.0,8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100.6$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 150.9 (C), 135.7 (C), 135.4 (C), 135.0 (C), 128.4 (CH), 127.2 (CH), $126.0(\mathrm{CH}), 125.7$ $(\mathrm{CH}), 125.2(\mathrm{CH}), 125.0(\mathrm{CH}), 118.8(\mathrm{CH}), 109.1(\mathrm{CH}), 73.1(\mathrm{CH}), 60.7\left(\mathrm{CH}_{2}\right), 55.0(\mathrm{C}), 52.7\left(\mathrm{CH}_{2}\right)$, $49.4\left(\mathrm{CH}_{2}\right)$, $42.7\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+} 277.1699$, found 277.1700 (-0.2 ppm error).
(1'S*,2R*,10b' R^{*})-2-Methyl-5',6'-dihydro-2'H-spiro[indoline-3,1'-pyrrolo[2,1-a]isoquinolin]-3'(10b'H)-one (23)

23
$\mathrm{MeMgBr}\left(3 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.59 \mathrm{~mL}, 1.77 \mathrm{mmol}\right)$ was added to a stirred solution of spiroindolenine $\mathbf{8 g}$ (170 $\mathrm{mg}, 0.59 \mathrm{mmol})$ in dry THF $(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 6 h , then quenched with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The two layers were separated and
the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography using EtOAc-hexane (9:1) as eluent gave the spiroindoline 23 ($112 \mathrm{mg}, 62 \%$) as an orange solid, mp 141-143 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}(\mathrm{EtOAc}) 0.45 ; v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3319(\mathrm{NH}), 3051,2926,1676$ $(\mathrm{C}=\mathrm{O}), 1606,1459,1415,1305,1264,730,701 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}$, 2H), 6.93-6.91 (m, 1H), 6.83 (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43-6.39(\mathrm{~m}, 2 \mathrm{H})$, $4.94(\mathrm{~s}, 1 \mathrm{H}), 4.49-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=16.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.82(\mathrm{~m}$, $2 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 171.8 ($\mathrm{C}=\mathrm{O}$), 148.9 (C), 134.6 (C), 132.8 (C), 130.7 (C), $128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 126.6(\mathrm{CH}), 126.2$ $(\mathrm{CH}), 125.7(\mathrm{CH}), 122.7(\mathrm{CH}), 118.4(\mathrm{CH}), 109.2(\mathrm{CH}), 67.6(\mathrm{CH}), 61.3(\mathrm{CH}), 56.7(\mathrm{C}), 40.4\left(\mathrm{CH}_{2}\right), 37.0$ $\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 305.1648$, found 305.1650 (-0.5 ppm error).
(1'S*,2S*,10b'R*)-2-(1H-Pyrrol-2-yl)-5',6'-dihydro-2'H-spiro[indoline-3,1'-pyrrolo[2,1a]isoquinolin]-3'(10b'H)-one (22)

22

A flask was charged with spiroindolenine $\mathbf{8 g}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ and pyrrole ($218 \mu \mathrm{~L}, 3.15 \mathrm{mmol}$). $\mathrm{AcOH}(2.5 \mathrm{~mL})$ was added and the reaction was stirred for 16 h . Sat. $\mathrm{NaHCO}_{3(\text { aq })}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) were carefully added to the reaction and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica using EtOAc as eluent gave the spirocyclic product $22(107 \mathrm{mg}, 86 \%)$ as a yellow solid, $\mathrm{mp} 234-236{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}(\mathrm{EtOAc}) 0.25$; $v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3326(\mathrm{NH}), 3180,2927,2851,1655(\mathrm{C}=\mathrm{O}), 1607,1484,1467,1249,969,729 ; \delta_{\mathrm{H}}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $10.89(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.79$ (ddd, $J=7.5,7.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{ddd}, J=7.5,7.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07-6.05(\mathrm{~m}, 1 \mathrm{H}), 6.03-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}$, $1 \mathrm{H}), 4.15(\mathrm{ddd}, J=12.5,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~d}, J=16.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.88(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.1(\mathrm{C}=\mathrm{O}), 150.2(\mathrm{C}), 134.9(\mathrm{C}), 134.0(\mathrm{C})$, $131.3(\mathrm{C}), 130.6(\mathrm{C}), 128.9(\mathrm{CH}), 127.7(\mathrm{CH}), 126.3(\mathrm{CH}), 126.2(\mathrm{CH}), 125.8(\mathrm{CH}), 122.3(\mathrm{CH}), 117.6$ $(\mathrm{CH}), 117.1(\mathrm{CH}), 108.4(\mathrm{CH}), 107.5(\mathrm{CH}), 106.3(\mathrm{CH}), 64.0(\mathrm{C}), 63.7(\mathrm{NCH}), 57.1(\mathrm{C}), 43.0\left(\mathrm{CH}_{2}\right), 36.5$ $\left(\mathrm{CH}_{2}\right)$, $29.0\left(\mathrm{CH}_{2}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 356.1757$, found 356.1746 (3.3 ppm error).
(11) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra

5d

5d

$5 i$

-174.249
-135.173
-131.730
-127.936
-119.902
$=118.115$
-117.344
-110.374
-108.906

$5 i$

$\stackrel{\circ}{\circ}$

8c

9c

$\stackrel{\circ}{\uparrow}$

8j

$\stackrel{\stackrel{\circ}{4}}{\uparrow}$

9j
j

9j

$$
\stackrel{\stackrel{\circ}{\circ}}{\tilde{i}}
$$

9n

90

[^0]

14

-59.278

14

讼泣

-171.326
-150.567

19

$\begin{aligned} & \text { N} \\ & \dot{\sigma} \\ & \dot{\top} \end{aligned}$				$\stackrel{n}{\stackrel{n}{2}}$		¢	$\stackrel{\circ}{\text { ® }}$	2		$\stackrel{\otimes \substack{\infty \\ \hdashline}}{\square}$	$\underset{\sim}{\underset{\sim}{\sim}}$

20

$\stackrel{\text { ® }}{7}$

21

pm $7.5 \quad 7.0 \quad 6.5$

4.954
0^{4}

 M

22

22

23

$\begin{aligned} & \text { ⿷⿱⿵人一口口㇒寸 } \\ & \stackrel{1}{\Lambda} \end{aligned}$			$\begin{aligned} & \stackrel{\infty}{\leftrightarrows} \\ & \stackrel{\sigma}{\circ} \end{aligned}$		$\stackrel{\circ}{0}$	$\stackrel{\circ}{\circ}$	¢		ल／ Ni

23

12) 3-Dimensional shape analysis of spirocyclic products and FDA approved drugs

3D structures were generated Pipeline Pilot 8.5.0.200, 2011, Accelrys Software Inc. Prior to conformer generation a wash step was performed, which involved ionising the molecule at pH 7.4 , adding explicit hydrogens and outputting the canonical tautomer. Conformers were generated using the BEST method in Catalyst with a maximum relative energy threshold of $20 \mathrm{kcal} \mathrm{mol}^{-1}$. These conformations were then minimised using 1000 steps of Steepest Descent with a RMS gradient tolerance of 3 and 200 steps of Conjugate Gradient with an RMS gradient tolerance of 0.1 . Minimisation was performed using the CHARMm forcefield with Momany-Rone partial charge estimation and a Generalised Born implicit solvent model. The lowest energy conformer was selected. The generated conformations were used to generate the three Principal Moments of Inertia (I1, I2 and I3) which were then normalised by dividing the two lower values by the largest (I1/I3 and I2/I3) using Pipeline Pilot built-in components.

Principal moments of inertia (PMI) about the principal axes of a molecule were calculated according to the following rules:

1. The moments of inertia are computed for a series of straight lines through the centre of mass.
2. Distances are established along each line proportional to the reciprocal of the square root of I on either side of the centre of mass. The locus of these distances forms an ellipsoidal surface. The principal moments are associated with the principal axes of the ellipsoid.
3. If all three moments are equal, the molecule is considered to be a symmetrical top. If no moments are equal, the molecule is considered to be an unsymmetrical top.

The PMI plots were then generated with this data in Excel 2013.

PMI plot of FDA approved drugs

The PMI plot of 1439 FDA approved small molecule drugs is shown in Figure 1. The compound data was taken from the DrugBank database. ${ }^{35} 23 \%$ of the compounds are found within the (NPR1 + NPR2) > 1.2 region i.e. in the blue triangle (Figure 1).

Figure 1 - PMI plot of 1439 FDA approved small molecule drugs
(1) Liedtke, A. J.; Kim, K.; Stec, D. F.; Sulikowski, G. A.; Marnett, L. J. Tetrahedron 2012, 68, 10049.
(2) Preciado, S.; Mendive-Tapia, L.; Albericio, F.; Lavilla, R. J. Org. Chem. 2013, 78, 8129.
(3) Shi, J.; Manolikakes, G.; Yeh, C.-H.; Guerrero, C. A.; Shenvi, R. A.; Shigehisa, H.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 8014.
(4) Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 7136.
(5) Unsworth, W. P.; Kitsiou, C.; Taylor, R. J. K. Org. Lett. 2012, 15, 258.
(6) Piazzi, L.; Belluti, F.; Bisi, A.; Gobbi, S.; Rizzo, S.; Bartolini, M.; Andrisano, V.; Recanatini, M.; Rampa, A. Bioorg. Med. Chem. 2007, 15, 575.
(7) Shanker, K.; Agarwal, V. K.; Selveraj, R. J.; Parmar, S. S. J. Med. Chem. 1969, 12, 324.
(8) Haag, B. A.; Zhang, Z.-G.; Li, J.-S.; Knochel, P. Angew. Chem. Int. Ed. 2010, 49, 9513.
(9) Mérour, J. Y.; J. Y. Coadou; Tatibouët, F. Synthesis 1982, 12, 1053.
(10) Lanzilotti, A. E.; Littell, R.; Fanshawe, W. J.; McKenzie, T. C.; Lovell, F. M. J. Org. Chem. 1979, 44, 4809.
(11) Menciu, C.; Duflos, M.; Fouchard, F.; Le Baut, G.; Emig, P.; Achterrath, U.; Szelenyi, I.; Nickel, B.; Schmidt, J.; Kutscher, B.; Günther, E. J. Med. Chem. 1999, 42, 638.
(12) Walton, E.; Stammer, C. H.; Nutt, R. F.; Jenkins, S. R.; Holly, F. W. J. Med. Chem. 1965, 8, 204.
(13) Stevens, F. J.; Su, H. C.-F. J. Org. Chem. 1962, 27, 500.
(14) Fanshawe, W. J.; Mckenzie, T. C.; Crawley, L. S. US4302589 (A) 1981.
(15) Dillard, R. D.; Bach, N. J.; Draheim, S. E.; Berry, D. R.; Carlson, D. G.; Chirgadze, N. Y.; Clawson, D. K.; Hartley, L. W.; Johnson, L. M.; Jones, N. D.; McKinney, E. R.; Mihelich, E. D.; Olkowski, J. L.; Schevitz, R. W.; Smith, A. C.; Snyder, D. W.; Sommers, C. D.; Wery, J.-P. J. Med. Chem. 1996, 39, 5119.
(16) McKew, J. C.; Foley, M. A.; Thakker, P.; Behnke, M. L.; Lovering, F. E.; Sum, F.-W.; Tam, S.; Wu, K.; Shen, M. W. H.; Zhang, W.; Gonzalez, M.; Liu, S.; Mahadevan, A.; Sard, H.; Khor, S. P.; Clark, J. D. J. Med. Chem. 2006, 49, 135.
(17) Elkady, M.; Nieß, R.; Schaible, A. M.; Bauer, J.; Luderer, S.; Ambrosi, G.; Werz, O.; Laufer, S. A. J. Med. Chem. 2012, 55, 8958.
(18) Company, A. C. 1981; Vol. US4302589 A1 1981, p 7.
(19) Itadani, S.; Yashiro, K.; Aratani, Y.; Sekiguchi, T.; Kinoshita, A.; Moriguchi, H.; Ohta, N.; Takahashi, S.; Ishida, A.; Tajima, Y.; Hisaichi, K.; Ima, M.; Ueda, J.; Egashira, H.; Sekioka, T.; Kadode, M.; Yonetomi, Y.; Nakao, T.; Inoue, A.; Nomura, H.; Kitamine, T.; Fujita, M.; Nabe, T.; Yamaura, Y.; Matsumura, N.; Imagawa, A.; Nakayama, Y.; Takeuchi, J.; Ohmoto, K. J. Med. Chem. 2015, 58, 6093.
(20) Stevens, F. J.; Higginbotham, D. H. J. Am. Chem. Soc. 1954, 76, 2206.
(21) Jirousek, M. R.; Paal, M.; Ruhter, G.; Schotten, T.; Takeuchi, K.; Stenzel, W. EP1266897 (A2) 2002.
(22) Patil, N. T.; Konala, A. Eur. J. Org. Chem. 2010, 2010, 6831.
(23) Jeanty, M.; Blu, J.; Suzenet, F.; Guillaumet, G. Org. Lett. 2009, 11, 5142.
(24) Chen, Z.; Lu, B.; Ding, Z.; Gao, K.; Yoshikai, N. Org. Lett. 2013, 15, 1966.
(25) Holmes, D. L.; Lightner, D. A. Tetrahedron 1995, 51, 1607.
(26) Kenny, M.; Christensen, J.; Coles, S. J.; Franckevičius, V. Org. Lett. 2015, 17, 3926.
(27) Paine, J. B.; Dolphin, D. J. Org. Chem. 1985, 50, 5598.
(28) Wendlandt, A. E.; Stahl, S. S. J. Am. Chem. Soc. 2013, 136, 506.
(29) Tinnis, F.; Lundberg, H.; Adolfsson, H. Adv. Synth. Catal. 2012, 354, 2531.
(30) Saavedra, J. Z.; Resendez, A.; Rovira, A.; Eagon, S.; Haddenham, D.; Singaram, B. J. Org. Chem. 2012, 77, 221.
(31) Huff, J. R.; Baldwin, J. J.; DeSolms, S. J.; Guare, J. P.; Hunt, C. A.; Randall, W. C.; Sanders, W. S.; Smith, S. J.; Vacca, J. P.; Zrada, M. M. J. Med. Chem. 1988, 31, 641.
(32) Rostom, S. A. F.; Farghaly, A. M.; Soliman, F. S. G.; El-Semary, M. M.; Elz, S.; Lehmann, J. Arch. Pharm. 2001, 334, 241.
(33) Khorana, N.; Smith, C.; Herrick-Davis, K.; Purohit, A.; Teitler, M.; Grella, B.; Dukat, M.; Glennon, R. A. J. Med. Chem. 2003, 46, 3930.
(34) de Carné-Carnavalet, B.; Krieger, J.-P.; Folléas, B.; Brayer, J.-L.; Demoute, J.-P.; Meyer, C.; Cossy, J. Eur. J. Org. Chem. 2015, 2015, 1273.
(35) Wishart, D. S.; Knox, C.; Guo, A. C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. Nucleic Acids Res. 2006, 34, 668.

[^0]: $\begin{array}{llllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110\end{array}$

