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Allocation with Demand Competition: Uniform, Proportional, and

Lexicographic Mechanisms

Abstract

We examine capacity allocation mechanisms in a supply chain comprising a monopolistic

supplier and two competing retailers with asymmetric market powers. The supplier allocates

limited capacity to retailers according to uniform, proportional, or lexicographic mechanism.

We study the impact of these allocation mechanisms on supplier pricing decisions and retailer

ordering behavior. With individual order size no greater than supplier capacity, we show that

all three mechanisms guarantee equilibrium ordering. We provide precise structures of retailer

ordering decisions in Nash and dominant equilibria. Further, we compare the mechanisms from

the perspective of the supplier, the retailers, and the supply chain. We show that regardless

of whether retailer market powers are symmetric, lexicographic allocation with any priority

sequence of retailers is better than the other two mechanisms for the supplier. Further,

under lexicographic allocation, the supplier gains more profit by granting higher priority to

the retailer with greater market power. We also extend our study to the case with multiple

retailers.

Key Words : capacity allocation; uniform allocation; proportional allocation; lexicographic

allocation; supply chain; Nash equilibrium.

1 Introduction

Capacity shortfall frequently occurs in various industries when retailers’ total order size

exceeds a supplier’s available capacity. For example, capacity shortages often arise in the

fashion goods, telecommunications, and electricity industries (Iyer et al. 2003). Also, it is

common practice for an automobile manufacturer to sell through multiple dealers in the same

geographic region, who compete for both the manufacturer’s limited supply capacity and

customer demand for popular vehicle models (Liu 2012). However, capacity expansion is often

costly and difficult to achieve, particularly for such products as vehicles and seasonal products.

Thus, the supplier must price and allocate scarce capacity effectively. In this work, we study
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how various allocation mechanisms affect supplier pricing and retailer ordering decisions, and

how the supplier chooses an allocation mechanism with pricing decisions to increase profit.

Specifically, we investigate a two-echelon supply chain in which a monopolistic supplier

(he) sells through two competing retailers (she) with demand competition. The capacity

allocation mechanisms considered work in the following way. First, the supplier announces

his capacity level, the unit wholesale price of this capacity, an allocation rule that defines

how capacity will be allocated as a function of retailer order sizes, and a requirement that no

order can be more than total capacity. Second, the retailers place their orders. Third, the

supplier allocates capacity to retailers using the pre-announced allocation rule. Finally, the

retailers sell the received capacity to their customers. In our framework, an allocation rule

applies within an allocation mechanism. We henceforth refer to a mechanism with a specific

rule (e.g., uniform) by its specific rule name (in this case, uniform allocation mechanism).

The problem under investigation fits within two strategic interactions in a multi-stage

noncooperative game. The vertical interaction is modeled as a Stackelberg game between

the supplier as the leader and the two retailers as followers. We assume that the supplier’s

capacity is given exogenously, and the supplier’s decisions are limited to the allocation rule and

wholesale price. The horizontal interaction captures the competition between the retailers,

who are in the same market and compete for both the supplier’s capacity and demand from a

common customer population. We consider Cournot competition, in which the two retailers

sell at retail prices as functions of the total capacity provided in the retail market by the two

retailers. The two retailers have asymmetric market powers, where the retailer with greater

market power, high-type retailer, sells at a higher price than the other low-type retailer. The

difference between the market powers of the two retailers is referred to as competitive gap.

Three widely studied allocation rules are considered: uniform, proportional, and lexico-

graphic. Under uniform allocation, if a retailer orders no more than the equal share of total

available capacity, then she receives her order and other retailers share the remaining capacity

in a similar way. Uniform allocation is individually unresponsive (IU), in that allocation is not

strictly increasing with order size. When retailers are local monopolists, uniform allocation

guarantees equilibrium orders and is truth-inducing in that it incentivizes retailers to order

their individually optimal order sizes, thus eliminating the gaming effect (Sprumont 1991,

Cachon and Lariviere 1999a,b). However, when retailers compete for customer demand, even

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
though uniform allocation still warrants equilibrium orders, it does not prevent the gaming

effect (Liu 2012, Cho and Tang 2014).

Proportional allocation is more intuitive in that it allocates capacity in proportion to

order size; it thus strictly increases with order size and is individually responsive (IR). Even

for monopolistic retailers, proportional allocation does not guarantee equilibrium orders and

is well-known for causing order inflation (Lee et al. 1997, Cachon and Lariviere 1999a,b).

Under lexicographic allocation, retailers are prioritized such that the retailer with the

highest priority always has her order filled first. Lexicographic allocation is a type of IU

allocation. Cachon and Lariviere (1999a) demonstrate that lexicographic allocation is truth-

inducing and guarantees equilibrium orders when retailers face independent demand. When

retailers compete for demand, equilibrium orders still exist under lexicographic allocation, but

the gaming effect may also occur (Chen et al. 2013). Hence, lexicographic allocation behaves

similarly to uniform allocation with respect to the existence of equilibrium orders and the

gaming effect.

Another popular IR allocation rule is linear allocation, which allocates each retailer her

order size minus a common deduction. Linear allocation performs similarly to proportional

allocation in the presence of equilibrium orders and the gaming effect (Cachon and Lariviere

1999a, Liu 2012). In fact, consistent with the findings of Liu (2012) in a similar problem

setting, linear allocation performs nearly identically to proportional allocation for our problem;

hence we omit this allocation.

The pre-specified upper bound on order size, total capacity, is practically meaningful,

since the supplier’s capacity is publicly known, and ordering more than supplier capacity

obviously exceeds the supplier’s capability to fill the order (Chen et al. 2013). Further, allowing

unbounded orders can induce arbitrarily large orders from competing retailers, leading to

unpredictable allocations (Cachon and Lariviere 1999a,b). The upper bound can also be

considered as embedded in allocation rules. That is, any order larger than the upper bound

will be truncated to the bound.

Capacity allocation is studied extensively in the operations literature. Hall and Liu (2010)

survey the problem and provide classification schemes based on whether a game is cooperative

or noncooperative, capacity is sufficient or insufficient, single or multiple types of capacity are

considered, the timing issue is addressed, and what kinds of mechanisms (including auctions,
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contracts, pricing, and rules) are used. Our problem is a type of noncooperative game with a

single type of deficient capacity allocated through rules without timing issues. We next review

the literature on this problem class.

Sprumont (1991) establishes important theories for rule-based allocations. This author

shows that for a general capacity allocation problem where each retailer has a single-

peaked preference for capacity size, uniform allocation is the unique rule that is truth-

inducing, efficient, and anonymous; here, efficiency means that if total order size is greater

(less) than the available capacity, then no retailer receives an allocation greater (less)

than her order, and anonymity means that retailers with equal orders receive the same

allocation. Lee et al. (1997) show that, despite its intuitive attraction and popularity,

proportional allocation can lead to order inflation and contributes to the well-known bullwhip

effect. Cachon and Lariviere (1999a,b) analyze equilibrium ordering decisions, supplier

capacity choice, and supply chain performance under various allocation mechanisms, including

linear, proportional, lexicographic, and uniform. These authors find that, with asymmetric

information, proportional allocation is not resistant to the gaming effect and may distort

supplier capacity selection. Uniform and lexicographic allocations are both truth-inducing,

but may result in lower profit for supply chain members. Cachon and Lariviere (1999c)

investigate a two-period allocation using a turn and earn mechanism, where allocation in

the current period is based on sales in the preceding period. These authors show that this

mechanism can increase the supplier’s profit at the cost of the retailers, and even the supply

chain. Chen et al. (2012) study the gaming effect caused by proportional allocation, using

laboratory experiments. These authors find that retailers often order much less than the

Nash equilibrium. They propose a bounded rationality model and find that retailers learn

to be more rational through repeated games, but their orders still may not converge to Nash

equilibrium.

A common assumption in the above-mentioned literature is that each retailer is a local

monopolist and her demand is independent from other retailers. To our knowledge, only four

papers consider capacity allocation with demand competition. Liu (2012) considers demand

competition between two competing retailers where retail prices are linear functions of sales

volume. This author investigates how different allocations affect supplier, retailers, and supply

chain profits. Liu finds that a supplier can sell more with less capacity, and retailers may earn
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more when the supplier has less capacity. Cho and Tang (2014) extend Liu (2012) to a case

with multiple retailers, focusing on the gaming effect caused by uniform allocation. These

authors identify exact conditions under which the gaming effect is present. They then propose

a competitive allocation that eliminates the gaming effect under demand competition. Chen

et al. (2013) analyze supplier wholesale pricing decisions under proportional and lexicographic

allocations, with retailers possessing identical market power in demand competition. These

authors show that lexicographic allocation can bring higher profit to both the supplier and

the supply chain. Yang et al. (2016) consider a supplier who sells both by himself and through

a retailer, and thus allocates capacity between himself and the retailer. These authors find

that the supplier, the retailer, and consumers may simultaneously benefit from the supplier’s

limited capacity.

We now clarify our contribution relative to Cachon and Lariviere (1999b), Liu (2012),

Chen at al. (2013), and Cho and Tang (2014). First, Cachon and Lariviere (1999b) assume

local monopolistic retailers, while we consider the case where retailers engage in demand

competition such that a retailer’s profit depends on allocations to all retailers. Besides, we

endogenize the supplier’s wholesale price as his decision variable. Second, Liu (2012) and

Cho and Tang (2014) consider demand competition among retailers, but do not consider

lexicographic allocation or wholesale pricing decisions, as we do. Third, Chen et al. (2013)

consider identical retailers, while our consideration of asymmetric retailers is more general,

and we study uniform allocation that is not considered in Chen et al. (2013).

Overall, using a more general model setting, we regard our contribution as unifying

and generalizing various results from the literature on capacity allocation with demand

competition, as follows:

• We endogenize the supplier’s wholesale price as a decision variable and consider all three

common allocation mechanisms: uniform, proportional, and lexicographic.

• We consider demand competition among retailers with asymmetric market powers.

• We consider cases with two and multiple retailers, and analytically characterize the

relative performance of the three mechanisms for the supplier, the retailers, and the

supply chain.

Specifically, we show that under uniform or proportional mechanism, when the wholesale

This article is protected by copyright. All rights reserved.
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price is relatively low, each retailer places an order equal to the pre-specified upper bound,

and thus receives half the capacity. However, lexicographic mechanism performs differently;

although both retailers prefer greater allocation, the retailer with higher priority can receive

the entire capacity. On the other hand, if the wholesale price is sufficiently high, then under

all mechanisms considered, the retailer with lower market power would be driven out of the

market. For the supplier, we find that the wholesale pricing decision is sensitive to his capacity

level and the competitive gap. Among the three mechanisms, lexicographic allocation is best

for the supplier, and proportional allocation outperforms uniform allocation. Specifically,

for any given wholesale price, the supplier can sell at least the same size of capacity from

lexicographic allocation as from the other two allocations. Further, employing lexicographic

allocation, the supplier can sell more capacity by granting higher priority to the high-type

retailer, especially when the competitive gap is large. We also extend our study to the case

with multiple retailers. We analytically show that proportional allocation dominates uniform

allocation and lexicographic allocation with a priority sequence of retailers in nonincreasing

market powers dominates proportional allocation from the perspective of the supplier for any

number of retailers. We numerically show that lexicographic allocation with any priority

sequence of retailers dominates uniform allocation for any number of retailers. With multiple

retailers, for the supplier, the relative performance of lexicographic allocation compared with

proportional allocation depends on the priority sequence of retailers: lexicographic allocation

may outperform (underperform) proportional allocation if priority is given to retailers with

higher (lower) market power. We also analytically characterize the relative performance of

the three allocation mechanisms for both the retailers and the supply chain.

This paper proceeds as follows. In Section 2, we formally describe our model, specifically

with two retailers. Sections 3 and 4 conduct equilibrium analysis for retailer ordering

and supplier wholesale pricing decisions under uniform, proportional, and lexicographic

mechanisms, respectively. In Section 5, we compare the three mechanisms from the perspective

of the supplier, the retailers and the supply chain. Results are developed for extended cases

with multiple retailers in Section 6. Section 7 summarizes our work. All proofs are in the

Appendix.
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2 The Model

Consider a two-echelon supply chain consisting of a single supplier and two downstream

retailers. The retailers order a single type of product from the supplier, who has a fixed

capacity in the quantity of K. Each retailer will receive her ordered quantity if capacity

is ample. However, when the supplier’s capacity is limited such that it cannot satisfy the

sum of orders, an allocation rule should be implemented to allocate the capacity between the

two retailers. Suppose retailer i, who places an order with quantity ri (i = 1, 2) receives an

allocation with quantity qi(r1, r2). Without loss of generality, the supplier’s production cost

associated with unit capacity is normalized to zero for succinctness. The supplier charges

a wholesale w for each unit of capacity sold. As discussed in Section 1 and as discussed

in Chen et al. (2013), we do not allow a retailer’s order size to exceed total capacity, i.e.,

we require ri ≤ K. After receiving allocations, the retailers in turn sell the product to the

same market and compete for customer demand. Following widely adopted convention in the

capacity allocation literature, we assume that information is symmetric and complete for all

parties, i.e., supplier capacity, unit capacity wholesale price, the allocation rule, the upper

bound for each individual order, and the customer demand functions are common knowledge

of the supplier and retailers.

Let pi be the retail price of retailer i (i = 1, 2). The retail price is determined by a linear

demand function

pi = zi − q1(r1, r2)− q2(r1, r2),

where zi represents retailer i’s market power, which may capture retailer i’s comparative

advantage over the other retailer because of certain factors, such as ease of access, customer

preference, and brand equity. Without loss of generality, we assume z1 ≥ z2, and refer to

retailer 1 as a high-type retailer and retailer 2 as a low-type retailer.

Note that we characterize a duopoly model of two retailers, and it is necessary to have

z2 > (z1 + w)/2 to retain both retailers in the market when the supplier has ample capacity;

otherwise, retailer 2 cannot survive in competition with retailer 1. Such an assumption is

adopted by Liu (2012) and Cho and Tang (2014). However, in our problem w is a decision

variable of the supplier, and it would be artificial to impose a lower bound on w other than

0. Henceforth, we assume z2 > z1/2.

This article is protected by copyright. All rights reserved.
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We next describe the sequence of events and decisions. First, before the selling season

starts, the supplier announces his capacity level, unit wholesale price of the capacity, an

allocation rule, and an upper bound equal to his capacity size for any order. Second,

the retailers place their orders. Third, the supplier allocates capacity to retailers using

the preannounced allocation rule. Finally, the retailers sell the allocated capacity to their

customers. This is a Stackelberg game in which the supplier is the leader and the retailers are

followers. For a given capacity level and allocation rule, the supplier’s problem is to choose a

wholesale price w to maximize his profit:

Πs = max
w

{w · (q1(r1, r2) + q2(r1, r2))}.

Given the wholesale price, capacity level, and allocation rule, the retailers’ problems are

Πi(rj, w) = max
ri

{(zi − qi(ri, rj)− qj(ri, rj)− w) · qi(ri, rj)},

where i, j = 1, 2 and i ̸= j.

Here, we consider three commonly used allocation rules: uniform, proportional, and

lexicographic allocations. First, consider two retailers under uniform allocation. A retailer

receives her order if she orders less than half of the capacity, and the other retailer receives

the minimum of her order and the remaining capacity; if the retailer with smaller order size

orders more than half the capacity, then she will share the capacity equally with the other

retailer. Formally, uniform allocation with two retailers is defined as follows:

qi(ri, rj) =


ri if ri + rj ≤ K,

min{ri, K/2} if ri + rj > K, ri ≤ rj,

max{K − rj, K/2} if ri + rj > K, ri > rj,

where i, j = 1, 2 and i ̸= j.

Under proportional allocation, a retailer receives the allocation size she orders if the

capacity is sufficient; otherwise, she obtains allocation in proportion to her order size. Hence,

qi(ri, rj) =

{
ri if ri + rj ≤ K,
Kri
ri+rj

if ri + rj > K,

where i, j = 1, 2 and i ̸= j.

Under lexicographic allocation, the supplier grants priority to one of the retailers and

satisfies her order first as far as possible; the supplier then allocates the remaining capacity

This article is protected by copyright. All rights reserved.
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to the other retailer. Suppose priority is given to retailer i and ri, rj ≤ K. We have

qi(ri, rj) = ri and

qj(ri, rj) =

{
rj if ri + rj ≤ K,

K − ri if ri + rj > K,

where i, j = 1, 2 and i ̸= j.

Before examining the allocation mechanisms, we first derive order/allocation sizes in

equilibrium when the supply of product is unlimited. In this case, retailer i’s order quantity

equals her capacity allocation size. We do not allow capacity to be withheld by retailers, and

the allocation size is the same as the selling quantity to the market. Such an assumption is

used by Cachon and Lariviere (1999b), Liu (2012), Chen et al. (2013), and Cho and Tang

(2014). From retailer i’s profit function πi(r1, r2) = (zi − w − r1 − r2)ri, i = 1, 2, we obtain

the equilibrium order quantity without capacity constraint:

r∗1 =
2z1 − z2 − w

3
, and r∗2 =

2z2 − z1 − w

3
.

In addition, q∗i = r∗i , and the total allocated capacity is q∗1 + q∗2 = z1+z2−2w
3

.

For convenience, in our analysis we adopt the following notations. First, we map real value

interval to nonnegative interval as

[a, b] =


∅ if b < a or b < 0;

[0,b] if b > 0 and a < 0;

[a,b] if 0 ≤ a ≤ b.

Also, we denote [x1, x2] × [y1, y2] orders (a, b) for any x1 ≤ a ≤ x2 and y1 ≤ b ≤ y2. In

addition, we define x1 ∧ x2 = min{x1, x2} and x1 ∨ x2 = max{x1, x2}.

This article is protected by copyright. All rights reserved.
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3 Uniform Allocation

We first examine uniform allocation mechanism. Given the supplier’s wholesale price and

capacity level, we express the retailers’ optimization problems as:

Π̃i(rj, w) = max
ri≤K

{(
zi − q̃i(ri, rj)− q̃j(ri, rj)− w

)
· q̃i(ri, rj)

}
,

= max
ri≤K

{
Π̃1

i = max
ri≤K−rj

(
zi − w − ri − rj

)
ri,

Π̃2
i = max

ri>K−rj ;ri≤rj

(
zi − w − (ri ∧

K

2
)−

(
(K − ri) ∨

K

2

))
·
(
ri ∧

K

2

)
,

Π̃3
i = max

ri>K−rj ,ri>rj

(
zi − w −

(
(K − rj) ∨

K

2

)
− (rj ∧

K

2
)

)
·
(
(K − rj) ∨

K

2

)}
,

where i, j = 1, 2 and i ̸= j. The following lemma characterizes the retailers’ best response

functions and associated profits.

Lemma 1. Given retailer j’s order quantity rj, let r̃i(rj) be retailer i’s best response function

(i, j = 1, 2 and i ̸= j). Define α̃i = zi − w −
√

2K(zi − w −K), we then have:

(i) w ∈ (0, zi − 2K]:

if rj < K/2, then r̃i(rj) ∈ [K − rj, K] with Π̃i(rj, w) = (zi − w −K)(K − rj);

if rj ≥ K/2, then r̃i(rj) ∈ [K/2, K] with Π̃i(rj, w) = (zi − w −K)K/2.

(ii) w ∈ (zi − 2K, zi − 3K/2]:

if rj ≤ 2K − zi + w, then r̃i(rj) = (zi − w − rj)/2 with Π̃i(ri, w) = (zi − w − rj)
2/4;

if 2K − zi + w < rj ≤ K/2, then r̃i(rj) ∈ [K − rj, K] with Π̃i(rj, w) = (zi − w −K)(K − rj);

if rj > K/2, then r̃i(rj) ∈ [K/2, K] with Π̃i(rj, w) = (zi − w −K)K/2.

(iii) w ∈ (zi − 3K/2, zi −K]:

if rj ≤ α̃i, then r̃i(rj) = (zi − w − rj)/2 with Π̃i(rj, w) = (zi − w − rj)
2/4;

if rj > α̃i, then r̃i(rj) ∈ [K/2, K] with Π̃i(rj, w) = (zi − w −K)K/2.

(iv) w ∈ (zi −K, zi):

if rj ≤ zi − w, then r̃i(rj) = (zi − w − rj)/2 with Π̃i(rj, w) = (zi − w − rj)
2/4;

if rj > zi − w, then r̃i(rj) = 0 with Π̃i(rj, w) = 0.

The results show that a retailer’s best response order quantity directly depends on the

supplier’s wholesale price and the other retailer’s order size. In line with the definition of

uniform allocation, a very intuitive observation is that retailer i would always receive the
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same allocation K/2 by ordering from K/2 to K (the maximum allowed order) if retailer j’s

order size is no less than K/2. This explains the last part of (i), (ii), and (iii). However, if

the wholesale price is very high, then the retailers cannot afford it and order nothing (see the

second part of (iv)). Further, given an appropriate wholesale price, if the competitor orders

a reasonably small quantity such that total capacity is sufficient for both retailers, then the

best response function is the same as in the case without capacity limit. The first parts of

(ii), (iii), and (iv) illustrate this effect. On the other hand, from the second part of (i), we

can see that if the wholesale price is very low, together with the fact that the other retailer’s

order quantity is less than K/2, then retailer i will order from K− r2 to K and gain the same

resulting allocation K − r2.

3.1 Equilibrium Analysis under Uniform Allocation

In this section, our objective is to characterize retailer order sizes in equilibrium and

the optimal wholesale pricing for the supplier. Using backward induction, under uniform

allocation, we first derive the retailers’ equilibrium orders given any wholesale price, and then

examine the supplier’s wholesale pricing decisions.

The following theorem characterizes Nash equilibria of the retailers’ order quantities.

Theorem 1. Suppose the Nash equilibrium orders are (r̃∗1, r̃
∗
2) under uniform mechanism.

Define w̃+ = 2z2 − z1 − 9
4
K + 3

4

√
K2 + 8K(z1 − z2), then we have

(I) K ≤ z1 − z2:

(i) if w ∈ (0, z2 − 3K/2], then any point in [K/2, K]× [K/2, K] is a Nash equilibrium;

(ii) if w ∈ (z2 − 3K/2, z2 −K], then any point in [α̃2, K]× [K/2, K] is a Nash equilibrium;

(iii) if w ∈ (z2 −K, z1 − 2K], then there exists a unique Nash equilibrium (r̃∗1, r̃
∗
2) = (K, 0);

(iv) if w ∈ (z1−2K, z1), then there exists a unique Nash equilibrium (r̃∗1, r̃
∗
2) = ((z1−w)/2, 0).

(II) K > z1 − z2:

(i) if w ∈ (0, z2 − 3K/2], then any point in [K/2, K]× [K/2, K] is a Nash equilibrium;

(ii) if w ∈ (z2 − 3K/2, w̃+], then any point in [α̃2, K]× [K/2, K] is a Nash equilibrium;

(iii) if w ∈ (w̃+, z1 − 3K/2], then (r̃∗1, r̃
∗
2) = ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a Nash

equilibrium and any point in [α̃2, K]×[K/2, K] is also a Nash equilibrium. Further, the former

equilibrium dominates the latter by generating greater profits for both retailers;

(iv) if w ∈ (z1 − 3K/2, z2 −K], then (r̃∗1, r̃
∗
2) = ((2z1 − z2 −w)/3, (2z2 − z1 −w)/3) is a Nash
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equilibrium and any point in [α̃2, K]× [α̃1, K] is also a Nash equilibrium. Further, the former

equilibrium dominates the latter one by generating greater profits for both retailers;

(v) if w ∈ (z2 − K, 2z2 − z1], then there exists a unique equilibrium (r̃∗1, r̃
∗
2) = ((2z1 − z2 −

w)/3, (2z2 − z1 − w)/3);

(vi) if w ∈ (2z2 − z1, z1), then there exists a unique equilibrium (r̃∗1, r̃
∗
2) = ((z1 − w)/2, 0).

Theorem 1 presents equilibrium orders when the two retailers compete for demand with

different market powers. Equilibrium analysis is conducted for the cases K ≤ z1 − z2 and

K > z1 − z2 separately. The results are quite intuitive. First, when capacity is no greater

than z1 − z2, if the wholesale price is fairly low, with w ∈ (0, z2 −K], then both retailers seek

to gain higher allocations, but any one of them can receive only K/2 by ordering no less than

K/2. Second, as the wholesale price increases, the low-type retailer cannot afford it and thus

is driven out of the game. As a result, the problem reduces to a simple capacity allocation

consisting of a single supplier and a single retailer. In this special case, the high-type retailer’s

profit function is Π̃1 = (z1−w− q̃1)q̃1. Taking the first-order condition with respect to q̃1, the

optimal order follows that q̃∗1 = (z1 − w)/2 without capacity constraint. Consequently, (a) if

w ≤ z1 − 2K, i.e., K ≤ (z1 −w)/2, which implies that the capacity is limited for the retailer,

then the equilibrium orders and the allocations are both (K, 0); (b) if w > z1 − 2K, i.e.,

K > z1−w
2

, where the capacity is sufficient to satisfy the retailer’s order, then the equilibrium

orders and allocations are both ((z1 − w)/2, 0).

Moreover, when the capacity level exceeds the value z1 − z2, certain results are similar

to the case with K ≤ z1 − z2 when the wholesale price is very low or sufficiently high. We

also find several other interesting results. In particular, when w ∈ (z2 − 3K/2, w̃+], since

2z2 − z1 − 3K/2 < (z1 + z2 − 3K)/2, it follows that if 2q∗2 < q∗1 + q∗2 < K < K(w̃+), where

K(w̃+) = (z2 − w +
√
(z2 − w)2 − 8(2z2 − z1 − w)2/9)/2, then the low-type retailer would

inflate her order size to be no less than K/2 so as to gain more profit from the allocations

(K/2, K/2) than from the ideal allocations ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3). This result

reflects the fact that uniform mechanism has potential to favor the low-type retailer by offering

an opportunity to diminish her competitive gap relative to the high-type retailer. Note that

when w ∈ (w̃+, z2 − K], though there exist multiple equilibrium orders, the equilibrium

(r̃∗1, r̃
∗
2) = ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) dominates other equilibria by generating more

profits for both retailers.
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Liu (2012) and Cho and Tang (2014) also study equilibrium ordering under uniform

allocation. Cho and Tang (2014) mostly study whether the gaming effect presents under

uniform allocation and does not provide complete equilibrium orders under different conditions

of K and w. The analysis in Lemma 1 and Theorem 1 makes the following major distinctions

comparing with Liu (2012): (1) we assume an upper bound (supplier’s capacity K) on

order size, while Liu (2012) assumes no upper bound on order size; (2) Liu (2012) assumes

z2 > (z1 + w)/2, while in our problem w is a decision variable of the supplier, and it

would be artificial to impose a lower bound on w other than 0, thus our paper relax the

assumption as z2 > z1/2; (3) we provide complete and precise structures for retailers’ ordering

decisions in Nash and dominant equilibrium in Theorem 1, while Liu (2012) focuses on

allocations in stead of equilibrium orders and only provides a representative equilibrium

when multiple equilibria result in the same allocation. In addition, Liu (2012) classifies

equilibria based on capacity level K, while we classify equilibria based on wholesale price

w, for the ease of subsequent analysis of the supplier’s wholesale pricing decision, which

Liu (2012) does not consider. In fact, if we transform from w̃(K) to K(w̃), it follows

that K = (z2 − w)/2 + (
√
−8z21 + 32z1z2 − 23z22 − 16z1w + 14z1w + 14z2w + w2)/6, which is

actually the threshold K+
2 used in Liu (2012). Therefore, our results essentially are consistent

with the results in Liu (2012), and are more complete from the perspective of equilibrium

analysis.

3.2 Supplier’s Decisions under Uniform Allocation

Now we consider the supplier’s decisions on wholesale price. By anticipating the retailers’

best response order quantities and the allocations they will receive, the supplier chooses an

optimal wholesale price to maximize his profit.

First we establish the supplier’s profit function. Note that when K ≤ z1 − z2, if w ∈

(0, z1 − 2K], then the total allocated capacity is K; thus in this scenario the supplier’s profit

is Kw. Otherwise, if w ∈ (z1−2K, z1), then retailer 2 would be driven out of the market, and

thus the supplier’s profit would be w(z1−w)/2. Therefore, the supplier’s maximum profit can

be characterized as max{Π̃1
s, Π̃

2
s}, where

Π̃1
s = max

w∈(0,z1−2K]
Kw, Π̃2

s = max
w∈(z1−2K,z1)

w(z1 − w)

2
.

Similarly, when K > z1 − z2, the supplier’s problem is maxw{Π̃3
s, Π̃

4
s, Π̃

5
s}, where
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Π̃3

s = max
w∈(0,w̃+]

Kw, Π̃4
s = max

w∈(w̃+,2z2−z1]

w(z1 + z2 − 2w)

3
, Π̃5

s = max
w∈(2z2−z1,z1)

w(z1 − w)

2
.

Table 1: Supplier’s Pricing Decisions and Profits under Uniform Allocation.

K (0, z1
4
] ( z1

4
, z1 − z2] (z1 − z2, K̃

+
2 ] (K̃+

2 ,+∞) -

w̃∗ z1 − 2K z1/2 argmax
w∈{w̃+,z1/2}

max{Kw̃+, z21/8} z1
2
< z2 ≤ 5z1

7

Π̃∗
s K(z1 − 2K) z21/8 max{Kw̃+, z21/8}

w̃∗ z1 − 2K z1/2 argmax
w∈{w̃+,z1/2}

max{Kw̃+, z21/8} argmax
w∈{w̃+,(z1+z2)/4,z1/2}

max{Kw̃+, (z1 + z2)
2/24, z21/8} 5z1

7
< z2 ≤ 3z1

4

Π̃∗
s K(z1 − 2K) z21/8 max{Kw̃+, z21/8} max{Kw̃+, (z1 + z2)

2/24, z21/8}
w̃∗ z1 − 2K argmax

w∈{w̃+,2z2−z1}
max{Kw̃+, (2z2 − z1)(z1 − z2)} argmax

w∈{w̃+,(z1+z2)/4,2z2−z1}
max{Kw̃+, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)} 3z1
4

< z2 < z1

Π̃∗
s K(z1 − 2K) max{Kw̃+, (2z2 − z1)(z1 − z2)} max{Kw̃+, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)}

K̃+
2 = 3z2−z1

8
+ 1

24

√
−191z21 + 506z1z2 − 311z22 , w̃

+ = 2z2 − z1 − 9
4
K + 3

4

√
K2 + 8K(z1 − z2); the three w̃∗’s and Π̃∗

s ’s are the

supplier’s optimal wholesale prices and the corresponding maximum profits under different levels of K, z1, and z2, respectively.

To determine the optimal wholesale price w̃∗ and the corresponding profit Π̃∗
s for the

supplier, we need to compare Π̃1
s, Π̃

2
s and Π̃3

s, Π̃
4
s, Π̃

5
s. The corresponding results are in

Proposition 1 in the Appendix. We illustrate the supplier’s optimal wholesale pricing decisions

in Table 1, where the first row presents different levels of the capacity K where a full range of

K > 0 is covered, and the last column denotes the competitive gap between the two retailers’

market powers where a full range of z1/2 < z2 < z1 is covered. For any capacity level K and

competitive gap between z1 and z2, the optimal wholesale price w̃∗ and associated profit Π̃∗
s

are listed in the corresponding cells of the tables. We can see that under different conditions,

the supplier can strategically alter the wholesale price to maximize his profit.

4 Proportional and Lexicographic Allocations

First we investigate proportional allocation. Under this mechanism, the retailers’ optimization

problem can be expressed as

Π̂i(rj, w) = max
ri≤K

{(zi − q̂i(ri, rj)− q̂j(ri, rj)− w) · q̂i(ri, rj)}

= max
ri≤K

{
zi −

( Kri
ri + rj

∧ ri

)
−

( Krj
ri + rj

∧ rj

)
− w

}
·
( Kri
ri + rj

∧ ri

)
,

where i, j = 1, 2 and i ̸= j.

Due to space limit, retailers’ best response functions and equilibrium ordering decisions

are provided in Lemma 2 and Proposition 2 in the Appendix. Using the same approach as

for uniform allocation, we derive the supplier’s optimal wholesale price and the associated
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maximum profit under proportional allocation, as shown in Table 2, in a similar structure as

Table 1. Table 2 shows that proportional allocation performs similar uniform allocation with

respect to the supplier’s pricing decision. Specifically, the supplier’s capacity level and the

competitive gap between the two retailers’ market powers both directly affect the supplier’s

pricing decisions.

Table 2: Supplier’s Pricing Decisions and Profits under Proportional Allocation.

K (0, z1
4
] ( z1

4
, z1 − z2] (z1 − z2, K̂

+
2 ] (K̂+

2 ,+∞) -

ŵ∗ z1 − 2K z1/2 argmax
w∈{ŵ−,z1/2}

max{Kŵ−, z21/8} z1
2
< z2 ≤ 5z1

7

Π̂∗
s K(z1 − 2K) z21/8 max{Kŵ−, z21/8}

ŵ∗ z1 − 2K z1/2 argmax
w∈{ŵ−,z1/2}

max{Kŵ−, z21/8} argmax
w∈{ŵ−,(z1+z2)/4,z1/2}

max{Kŵ−, (z1 + z2)
2/24, z21/8} 5z1

7
< z2 ≤ 3z1

4

Π̂∗
s K(z1 − 2K) z21/8 max{Kŵ−, z21/8} max{Kŵ−, (z1 + z2)

2/24, z21/8}
ŵ∗ z1 − 2K argmax

w∈{ŵ−,2z2−z1}
max{Kŵ−, (2z2 − z1)(z1 − z2)} argmax

w∈{ŵ−,(z1+z2)/4,2z2−z1}
max{Kŵ−, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)} 3z1
4

< z2 < z1

Π̂∗
s K(z1 − 2K) max{Kŵ−, (2z2 − z1)(z1 − z2)} max{Kŵ−, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)}

K̂+
2 = z1+z2

12
+ 1

24

√
−136z21 + 304z1z2 − 136z22 , ŵ

− = 3K + z1+z2
2

− 3
2

√
8K2 + (z1 − z2)2; the three w̃∗’s and Π̃∗

s ’s are the

supplier’s optimal wholesale prices and the corresponding maximum profits under different levels of K, z1, and z2, respectively.

Now we consider lexicographic allocation. Suppose priority is given to retailer i; then the

retailers’ profit function can be rewritten as:

Π̌i(rj, w) = max
ri≤K

{
(zi − w − q̌i(ri, rj)− q̌j(ri, rj) · q̌i(ri, rj)

}
,

= max
ri≤K

{
Π̌1

i = max
ri≤K−rj

(zi − ri − rj − w) · ri, Π̌2
i = max

ri>K−rj
(zi −K − w) · ri

}
,

Π̌j(ri, w) = max
rj≤K

{
(zj − q̌i(ri, rj)− q̌j(ri, rj)− w) · q̌j(ri, rj)

}
,

= max
rj≤K

{
Π̌1

j = max
rj≤K−ri

(zj − w − ri − rj) · rj, Π̌2
j = max

rj>K−ri
(zj −K − w) · (K − ri)

}
,

where i, j = 1, 2 and i ̸= j.

Due to space limits, equilibrium analysis and the correspondent discussions for lexicograph-

ic allocation are provided in Proposition 3 in the Appendix. We only present the supplier’s

wholesale pricing associated with the profits in Table 3.

5 Comparisons of Three Mechanisms

We have investigated uniform, proportional, and lexicographic allocations with regard to how

they affect the supplier’s whole pricing decision in a duopoly model with demand competition.

An interesting question is which of the three allocations is preferred by the supplier, the

retailers and the supply chain when the total order size exceeds the available capacity. Because
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Table 3: Supplier’s Pricing Decisions and Profits under Lexicographic Allocation.

K (0, z1
4
] ( z1

4
, z1 − z2] (z1 − z2, Ǩ

+
i ] (Ǩ+

i ,+∞) -

w̌∗ z1 − 2K z1/2 argmax
w∈{w̌+

i ,z1/2}
max{Kw̌+

i , z
2
1/8} z1

2
< z2 ≤ 5z1

7

Π̌∗
s K(z1 − 2K) z21/8 max{Kw̌+

i , z
2
1/8}

w̌∗ z1 − 2K z1/2 argmax
w∈{w̌+

i ,z1/2}
max{Kw̌+

i , z
2
1/8} argmax

w∈{w̌+
i ,(z1+z2)/4,z1/2}

max{Kw̌+
i , (z1 + z2)

2/24, z21/8} 5z1
7

< z2 ≤ 3z1
4

Π̌∗
s K(z1 − 2K) z21/8 max{Kw̌+

i , z
2
1/8} max{Kw̌+

i , (z1 + z2)
2/24, z21/8}

w̌∗ z1 − 2K argmax
w∈{w̌+

i ,2z2−z1}
max{Kw̌+

i , (2z2 − z1)(z1 − z2)} argmax
w∈{w̌+

i ,(z1+z2)/4,2z2−z1}
max{Kw̌+

i , (z1 + z2)
2/24, (2z2 − z1)(z1 − z2)} 3z1

4
< z2 < z1

Π̌∗
s K(z1 − 2K) max{Kw̌+

i , (2z2 − z1)(z1 − z2)} max{Kw̌+
i , (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)}

Ǩ+
i =

3zi−zj
8

+ 1
24

√
−91z2i + 226zizj − 115z2j , w̌

+
i = 2zi − zj − 9

2
K + 3

2

√
5K2 − 4K(zi − zj), i, j = 1, 2, i ̸= j; the three w̃∗’s

and Π̃∗
s ’s are the supplier’s optimal wholesale prices and the corresponding maximum profits under different levels of K, z1, and

z2, respectively.

the supplier is the Stackelberg leader in the capacity allocation game, in this section we first

compare the performances of the three allocations from the perspective of the supplier, then

from the perspectives of the retailers and the supply chain, respectively.

For notational convenience, for any given capacity level, we denote the maximum profit

of the supplier obtained from uniform allocation, proportional allocation, and lexicographic

allocation–1 (order priority to high-type retailer), and lexicographic allocation–2 (order

priority to low-type retailer) by U , P , L1, and L2, respectively. To elaborate the comparisons

of U , P , L1, and L2, we establish a benchmark by considering the case where the two retailers’

market powers are symmetric. Let z1 = z2 = z. Comparing the supplier’s profits between

uniform and proportional allocation (Tables 1 and 2), we obtain the results as: (i) If K < z/3,

then the supplier’s profits under uniform and proportional allocations are Π̃∗
s = K(z − 3K/2)

and Π̂∗
s = K[z − 3(

√
2 − 1)K)], respectively. It is easy to check that Π̂∗

s > Π̃∗
s, and therefore

the latter allocation rule is a better choice for the supplier; and (ii) If z/3 ≤ K < (2+
√
2)z/6,

then recall that Π̃∗
s = z2/6 and Π̂∗

s = K(z − 3K/2) (clearly, proportional allocation still

outperforms uniform allocation, since Π̂∗
s > Π̃∗

s); and (iii) If capacity is sufficiently large,

then Π̃∗
s = Π̂∗

s = z2/6, which implies that the two allocation mechanisms are indifferent in

allocating capacity from the supplier’s perspective. Hence, we conclude that proportional

mechanism is better than uniform allocation, independent of the supplier’s capacity level.

Chen et al. (2013) show that lexicographic allocation is better than proportional allocation

for the supplier, through earning greater profit, in the symmetric case with z1 = z2 and

L1 = L2. Hence, we have that U ≤ P ≤ L2 = L1, not affected by the supplier’s capacity level.

Now we consider the case when the retailers’ market powers are asymmetric with z1 > z2.
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Note that we assume z2 > z1/2. Tables 1, 2 and 3 show that from the perspective of the

supplier, it is indifferent among the three mechanisms when the capacity level is below the

threshold level z1−z2. This result is intuitive. Within a limited capacity, the two retailers both

order large quantities such that the supplier’s capacity is fully sold. Consequently, the supplier

maximizes his profit by charging the same wholesale price under all the three mechanisms.

However, when K > z1 − z2, the problem becomes more complex. Take uniform and

proportional mechanisms, for example. Observing the supplier’s profit functions under the

two allocations, since ŵ− > w̃+, the profits are different only when w is in the interval

[w̃+, ŵ−]. Recall that Π̃s = (z1 + z2 − 2w)w/3, and Π̂s = Kw. To show Π̃s < Π̂s, it

suffices to show (z1 + z2 − 2w)/3 < K, which is equivalent to w > (z1 + z2 − 3K)/2. When

w ∈ [w̃+, ŵ−], it is easy to verify that w̃+ > (z1 + z2 − 3K)/2. Hence, this implies that

proportional mechanism outperforms uniform allocation by generating more profit for the

supplier. Equivalently, we may conclude that the supplier can sell more under proportional

mechanism than under uniform mechanism at a given wholesale price in this problem setting.

Similarly, it is not difficult to verify that for the supplier, lexicographic mechanism performs

at least equally well as proportional mechanism.

Further, it is interesting to find that, for the supplier, lexicographic allocation that grants

order priority to the high-type retailer outperforms the case that grants priority to the low-

type retailer. We interpret this finding as follows. In general, as the wholesale price increases,

retailers will shrink their order sizes, and consequently the supplier may have excess capacity.

To earn more profit, the supplier would like his capacity to be fully sold with higher profit.

When w ∈ (0, w̌+
i ], (i = 1, 2), the retailer with order priority orders the entire capacity and

there is no excess capacity. Since w̌+
1 > w̌+

2 , the supplier can sell more when priority is given

to the high-type retailer.

In summary, we have the following result.

Theorem 2. U ≤ P ≤ L2 ≤ L1, for any capacity level.

We note that Lemma 3 and Remark 1 by Liu (2012) indicate the result U ≤ P in

Theorem 2. To verify our findings and gain further insight, we conduct numerical studies, as

shown in the Appendix. Upon examining the results, we have the following observations. First,

when the supplier’s capacity is relatively small or sufficiently large, the supplier is indifferent

among the three allocation mechanisms. Second, the supplier’s optimal wholesale price is
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not necessarily decreasing with the capacity level, and the associated profit is not necessarily

increasing with the capacity level. Third, lexicographic allocation (especially when priority is

given to the high-type retailer) can be evidently more profitable for the supplier than uniform

and proportional allocations for any given capacity level and competitive gap. Fourth, the

advantage of the superior allocation in each comparison becomes more obvious as downstream

demand competition grows.

Now we compare the total retailer and total supply chain profits under the three allocation

mechanisms, respectively.

Theorem 3. Let Π̃∗
r, Π̂

∗
r and Π̌∗

ri (i = 1, 2) be the total retailer profits, and Π̃∗
sc, Π̂

∗
sc and Π̌∗

sci

(i = 1, 2) be the total supply chain profits under uniform, proportional and lexicographic (with

order priority giving to retailer i) mechanisms, respectively. We have

(I) K ≤ z1 − z2:

(i) When w ≤ z2 −K, Π̌∗
r2 ≤ Π̃∗

r = Π̂∗
r ≤ Π̌∗

r1 and Π̌∗
sc2 ≤ Π̃∗

sc = Π̂∗
sc ≤ Π̌∗

sc1.

(ii) When w > z2 −K, Π̃∗
r = Π̂∗

r = Π̌∗
r2 = Π̌∗

r1 and Π̃∗
sc = Π̂∗

sc = Π̌∗
sc2 = Π̌∗

sc1.

(II) K > z1 − z2:

(i) When w ≤ w̃+, Π̌∗
r2 ≤ Π̃∗

r = Π̂∗
r ≤ Π̌∗

r1 and Π̌∗
sc2 ≤ Π̃∗

sc = Π̂∗
sc ≤ Π̌∗

sc1.

(ii) When w̃+ < w ≤ ŵ−, Π̃∗
r ≥ Π̂∗

r, Π̌
∗
r1 ≥ Π̂∗

r ≥ Π̌∗
r2, Π̌

∗
sc1 ≥ Π̂∗

sc ≥ Π̌∗
sc2; Π̌

∗
r1 ≥ Π̃∗

r if and

only if 2w2 − 2(z1 + z2 −K)w + 5z21 + 5z22 − 8z1z2 − 9(z1 −K)K ≤ 0; and Π̌∗
sc1 ≥ Π̃∗

sc if and

only if 4w2 − (z1 + z2)w − 5(z21 + z22) + 8z1z2 +
9
2
K(z1 −K) ≥ 0.

(iii) When ŵ− < w ≤ w̌+
2 , Π̃

∗
r = Π̂∗

r, Π̃
∗
sc = Π̂∗

sc; Π̌
∗
ri ≥ Π̃∗

r(Π̂
∗
r) if and only if 2w2 − 2(zi + zj −

K)w+5(z2i + z2j −K)−9(zi−K)K ≤ 0; and Π̌∗
sci ≥ Π̃∗

sc(Π̂
∗
sc) if and only if 4w2− (zi+ zj)w−

5(z2i + z2j ) + 8zizj +
9
2
K(zi −K) ≥ 0.

(iv) When w̌+
2 < w ≤ w̌+

1 , Π̃
∗
r = Π̂∗

r = Π̌∗
r2, Π̌

∗
sc2 = Π̃∗

sc = Π̂∗
sc; Π̌

∗
r1 ≥ Π̃∗

r(Π̂
∗
r, Π̌

∗
r2) if and only

if 2w2 − 2(z1 + z2 −K)w + 5z21 + 5z22 − 8z1z2 − 9(z1 −K)K ≤ 0; and Π̌∗
sc1 ≥ Π̃∗

sc(Π̂
∗
sc, Π̌

∗
r2) if

and only if 4w2 − (z1 + z2)w − 5(z21 + z22) + 8z1z2 +
9
2
K(z1 −K) ≥ 0.

(v) When w > w̌+
1 , Π̃

∗
r = Π̂∗

r = Π̌∗
r2 = Π̌∗

r1 and Π̃∗
sc = Π̂∗

sc = Π̌∗
sc2 = Π̌∗

sc1.

The first part of Theorem 3 has intuitive explanations. When K ≤ z1 − z2, if the

wholesale price is sufficiently low, then each retailer will order as much as possible for her

best interest. Under uniform and proportional allocations, the Nash equilibrium orders are

(K,K), resulting in allocations (K/2, K/2), i.e., the two retailers have the same profit. While

under lexicographic allocation, the retailer with higher order priory will obtain the entire
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capacity K. Since the retailer with greater market power can sell with a higher retail price,

with allocation K she can earn more profit than the total retailer profit under the other two

mechanisms. Therefore, the total retailer profit is the highest under lexicographic allocation

with order priority to the high-type retailer. Note that the total allocated capacity is K

under all the three allocations, and thus the total supply chain profit is also the highest under

lexicographic allocation with order priority to the high-type retailer. On the other hand, if

the wholesale price is sufficiently high, then each retailer has no incentive to order more than

her ideal allocation. Thus, the three allocation mechanisms result in the same total retailer

profit and total supply chain profit. When K > z1 − z2 and w is neither very low nor very

high, lexicographic allocation may bring the retailers and the supply chain either more or less

profit than the other two mechanisms.

6 Extensions: An Arbitrary Number of Retailers

A key finding in earlier sections is the analytical characterization on the supplier’s preference

ranking of capacity allocation rules with two competing retailers, as in Theorem 2: 1)

lexicographic with priority to high-type retailer; 2) lexicographic with priority to low-type

retailer; 3) proportional; and 4) uniform. An interesting question is whether the finding still

holds with an arbitrary number of retailers. We precede to answer the question in this section.

Suppose there are n(n ≥ 3) retailers with market power vector z = (z1, z2, ..., zn).

Without loss of generality, we assume z1 ≥ z2 ≥ . . . ≥ zn. Suppose that retailer i with

order quantity ri receives allocation qi, i = 1, 2, ..., n. Also, for notational convenience,

let r−i = (r1, r2, ..., ri−1, ri+1, ..., rn), R−i = Σn
j=1,j ̸=irj, q−i = (q1, q2, ..., qi−1, qi+1, ..., qn), and

Q−i = Σn
j=1,j ̸=iqj.

Similar to the case with two competing retailers, without capacity constraint, from retailer

i’s profit function Πi(ri, r−i) = (zi−w−ri−R−i)ri, i = 1, 2, ..., n, we can obtain the equilibrium

order quantity for each retailer r∗i = ((n + 1)zi − Σn
j=1zj − w)/(n + 1). In this case, every

retailer’s order will be satisfied with ideal allocation q∗i = r∗i , and the total allocated capacity

is Q∗ = (Σn
j=1zj − nw)/(n+ 1).

In Section 2, we describe uniform, proportional, and lexicographic allocation rules for the

case with two competing retailers, which can be easily extended to the case with n retailers

and readers can refer to Hall and Liu (2010) for more details. Our objective is to find the
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supplier’s preference of these rules. We next achieve this objective through comparison of total

allocated capacity: for any given capacity K and wholesale price w, the more the supplier sells

under a mechanism, the better the mechanism performs from the perspective of the supplier.

Under all the three allocation mechanisms considered, our previous analysis shows two

intuitive results regarding the total allocated capacity with a given wholesale price: (i) if the

supplier’s capacity level is sufficiently low, then the total order quantity exceeds the capacity

and the total allocated capacity is K; (ii) if the supplier’s capacity is sufficiently high, then

every retailer will order her ideal allocation and the total allocated capacity is Q∗. That is,

when the supplier’s capacity level is either too low or too high, the three allocation mechanisms

perform the same for the supplier.

However, when the supplier’s capacity is at a medium level, which can be even sufficient

to supply the total ideal allocation, i.e., K ≥ Q∗, the three allocation mechanisms provide

different incentives for retailers with demand competition to inflate their order quantities

to obtain more than ideal allocation. Specifically, under each allocation mechanism, there

is a threshold K∗ such that, (i) if K < K∗, then the total allocated capacity is K; (ii) if

K ≥ K∗, then the total allocated capacity is Q∗. Because of order inflation, we have Q∗ ≤ K∗.

Observation that for any given capacity K and wholesale price w, the larger the threshold K∗

under an allocation mechanism, the more the supplier can sell under the mechanism. Let the

thresholds under uniform, proportional and lexicographic mechanisms be K∗
u, K

∗
p , and K∗

lt
,

respectively, where t ∈ {1, 2, ..., n!} denotes one permutation, i.e., priory sequence, of the n

retailers. Specifically, let l∗ denote the priority sequence 1 → 2 → . . . n, i.e., the sequence of

retailers in nonincreasing market powers.

Theorem 4. For any wholesale price w, we have K∗
u ≤ K∗

p ≤ K∗
l∗.

Theorem 4 means that the lexicographic allocation with priority sequence of retailers in

nonincreasing market powers dominates proportional allocation, and proportional allocation

dominates uniform allocation, from the perspective of the supplier, for any number of retailers.

Analytical results for lexicographic allocation with all sequences are more difficult to obtain

since there are n! priority sequences of n retailers that can be used. Next we compare

the performance of the three allocation mechanisms through numerical study, in terms of

threshold K∗. Note that it is not only hard to find closed-form for K∗, but also hard to

compute K∗ numerically. We provide in the Appendix a method for computing K∗ for
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the considered mechanisms. To compare all the priority sequences used by lexicographic

allocation, we consider n = 3, with (z1, z2, z3) = (100, 85, 80). There are 3! = 6 priority

sequences of the three retailers can be used under lexicographic allocation, denoted l1 =

(80, 85, 100), l2 = (80, 100, 85), l3 = (85, 80, 100), l4 = (85, 100, 80), l5 = (100, 80, 85), l6 =

(100, 85, 80), respectively. To insure that each retailer’s ideal allocation is positive, i.e.,

q∗i = r∗i = ((n+ 1)zi − Σn
j=1zj − w)/(n+ 1) > 0, i = 1, 2, 3, we consider w ≤ 55.

For wholesale prices w = 5, 10, . . . , 55, Table 4 summarizes the results of the thresholds

K∗ under different mechanisms. Consistent with Theorem 4, we have K∗
p > K∗

u for any

w considered. Also, we see K∗
l > K∗

u for any wholesale price considered and any priority

sequence of retailers, consistent with Theorem 2, theoretical result for the case with two

retailers. In addition, we have K∗
l1

< K∗
p when w ≤ 40, K∗

l1
> K∗

p when w ≥ 45, and

K∗
lt

> K∗
p for any w, for t = 2, . . . , 6. That is, with three or more retailers, the relative

performance of lexicographic allocation compared with proportional allocation depends on

priority sequence of retailers: lexicographic allocation may outperform (underperform, resp.)

proportional allocation if priority is given to retailers with high (low, resp.) market powers.

Table 4: Thresholds K∗ under Different Allocations, n = 3
.

w K∗
u K∗

p K∗
l1

K∗
l2

K∗
l3

K∗
l4

K∗
l5

K∗
l6

5 69.20 75.43 75.11 79.16 75.97 77.36 82.15 82.15

10 65.22 70.88 70.55 74.58 71.30 72.71 77.38 77.38

15 61.22 66.32 65.99 70.01 66.63 68.03 72.61 72.61

20 57.20 61.73 61.41 65.42 61.95 63.33 67.82 67.82

25 53.16 57.13 56.84 60.82 57.28 58.60 63.00 63.00

30 49.10 52.51 52.25 56.21 52.60 53.81 58.16 58.16

35 45.01 47.84 47.66 51.59 47.92 48.96 53.27 53.27

40 40.88 43.14 43.06 46.94 43.23 44.00 48.33 48.33

45 36.72 38.37 38.44 42.28 38.55 38.86 43.32 43.32

50 32.51 33.51 33.80 37.57 33.85 33.85 38.17 38.17

55 28.23 28.51 29.15 32.81 29.15 29.15 32.81 32.81

For a clearer view of the relative performance of different mechanisms, we directly compare

the allocated capacities in Figure 1. The total allocated capacities under uniform, proportional

and lexicographic (with priority sequence l6) mechanisms are depicted by lines O-A-D-G (Q∗
u),
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•
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•
D

•
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•
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•C

•
F

Q∗
l6

Q∗
p

Q∗
u

Q∗

K∗
l6

K∗
pK∗

u
O

K

Q

G

Figure 1: Total Allocated Capacities under Different Mechanisms, as Capacity Changes.

O-B-E-G (Q∗
p), O-C-F-G (Q∗

l6
), respectively. On one hand, under all mechanisms, when the

capacity is below the respective threshold K∗, the suppliers’ total selling quantity is equal to

the available capacity K. On the other hand, when the capacity level exceeds the respective

threshold K∗, the total selling quantity is equal to Q∗.

Table 5: Thresholds K∗ under Different Allocations, n = 5.

w K∗
u K∗

p K∗
l1

K∗
l2

K∗
l3

K∗
l4

K∗
l5

10 75.96 84.51 84.40 84.80 85.49 86.16 86.80

20 67.52 75.01 74.45 75.09 75.77 76.44 77.09

30 59.05 65.49 65.18 65.37 66.06 66.73 67.37

40 50.55 55.98 55.63 55.66 56.35 57.01 57.64

50 42.01 46.46 46.07 46.07 46.63 47.29 47.92

60 33.41 36.94 36.51 36.51 36.92 37.57 38.19

70 24.71 27.39 27.00 27.00 27.20 27.85 28.44

80 16.01 17.81 17.63 17.63 17.63 18.12 18.67

Our numerical studies show that with more retailers, there exist more priority sequences

with which proportional mechanism outperforms lexicographic mechanism. For example, with

n = 5 with (z1, z2, z3, z4, z5) = (100, 99, 98, 97, 96), results with lexicographic allocation with

priority sequences l1 = (96, 97, 98, 99, 100), l2 = (97, 96, 98, 99, 100), l3 = (98, 96, 97, 99, 100),
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l4 = (99, 96, 97, 98, 100), and l5 = (100, 99, 98, 97, 96) are summarized in Table 5, where

proportional mechanism outperforms lexicographic mechanism with priority sequences l1, l2

and l3. Note that lexicographic mechanism performs better for the supplier when giving higher

priority to retailers with higher market power. When there are more retailers, the gap between

retailers’ market powers is relatively large and lexicographic mechanism becomes less efficient

when giving higher priority to retailers with lower market power, which makes the mechanism

outperformed by proportional mechanism with n ≥ 3.

Next we compare the total retailer and total supply chain profits under the three allocation

mechanisms, respectively.

Theorem 5. Let Π̃∗
r, Π̂

∗
r and Π̌∗

r be the total retailer profits, and Π̃∗
sc, Π̂

∗
sc and Π̌∗

sc be the total

supply chain profits under uniform, proportional and lexicographic (with priority sequence of

retailers nonincreasing in market power) mechanisms. We have

(i) When K ≤ K∗
u, Π̃

∗
r = Π̂∗

r ≤ Π̌∗
r and Π̃∗

sc = Π̂∗
sc ≤ Π̌∗

sc.

(ii) When K∗
u < K ≤ K∗

p , Π̃
∗
r ≥ Π̂∗

r, Π̌
∗
r ≥ Π̂∗

r, Π̌
∗
sc ≥ Π̂∗

sc; Π̌
∗
r ≥ Π̃∗

r if and only if K2 − (z1 −

w)K+
∑n

i=1(zi−w−Q∗)q∗i ≥ 0; and Π̌∗
sc ≥ Π̃∗

sc if and only if K2−z1K+
∑n

i=1(zi−Q∗)q∗i ≥ 0.

(iii) When K∗
p < K ≤ K∗

l∗, Π̃
∗
r = Π̂∗

r, Π̃
∗
sc = Π̂∗

sc; Π̌
∗
r ≥ Π̃∗

r(Π̂
∗
r) if and only if K2− (z1−w)K+∑n

i=1(zi−w−Q∗)q∗i ≥ 0; and Π̌∗
sc ≥ Π̃∗

sc(Π̂
∗
sc) if and only if K2− z1K +

∑n
i=1(zi−Q∗)q∗i ≥ 0.

(iv) When K > K∗
l∗, Π̃

∗
r = Π̂∗

r = Π̌∗
r and Π̃∗

sc = Π̂∗
sc = Π̌∗

sc.

Similar to the case with two retailers, for any wholesale price, when capacity level is

sufficiently low, lexicographic mechanism with priority sequence of retailers nonincreasing in

market power generates the highest total profit for the retailers and the supply chain among

the three mechanisms. On the other extreme, if the capacity level is sufficiently high, then

the three mechanisms perform the same. When the capacity is at a medium level, whether

lexicographic mechanism with priority sequence of retailers nonincreasing in market power

dominates the other two mechanisms depends on conditions specified in Theorem 5.

7 Conclusions

In the practice of production and operations, capacity allocation is an important problem

when retailer total order quantity exceeds supplier available capacity. This paper analyzes

three capacity allocation mechanisms, uniform, proportional and lexicographic allocations, in
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the presence of demand competition between retailers in a two-echelon decentralized supply

chain. We consider the supplier’s wholesale pricing decision together with his choice of

allocation mechanisms, for any given capacity level. The pricing decision is important, since

with exogenously given scarce capacity and the supplier’s anticipation of retailers’ ordering

behavior, it can be more or profitable for the supplier to adjust his wholesale price.

From a modelling perspective, we consider both horizontal and vertical interactions

between the supplier and two retailers. Specifically, in the horizontal interaction, the two

competing retailers compete for demand from the same group of customers and the supplier’s

capacity simultaneously. Their desired orders are determined by Cournot competition under

complete information. In the vertical interaction, the supplier acts as a leader who first

announces his capacity, wholesale price, and an allocation rule with upper bound restriction on

order size. Then, the retailers determine their order quantities. Finally, capacity is allocated

and market demand is realized. Our analysis focuses particularly on the impact of allocation

mechanisms on supplier pricing decisions and retailer order behavior.

Our results show that there may exist multiple Nash equilibria as the wholesale price

changes under each allocation mechanism considered. Via equilibrium analysis, we identify

exact conditions under which the gaming effect is present. Also, in our model, equilibrium

orders are guaranteed under all mechanisms considered. This allows us to exactly compare

the three mechanisms at any capacity level with regard to the supplier, the retailers and the

supply chain.

From the perspective of the supplier, and in the asymmetric case, we show that when

the capacity level is either very low or sufficiently high, the supplier is indifferent among

the three mechanisms. The result is intuitive. When capacity is very small, retailers order

large quantities and the supplier’s capacity is fully sold under all mechanisms considered. As

a result, the supplier can sell the total capacity K by charging the same reasonably high

wholesale price under all three mechanisms. On the other hand, when the capacity level

is sufficiently high, each retailer would like to order her ideal order size as if capacity is

unlimited. However, for an intermediate range in capacity level, the supplier can sell more

from lexicographic allocation than from uniform or proportional allocation, especially when

giving order priority to the high-type retailer. Our further numerical studies verify this finding.

We find that the advantage of lexicographic allocation becomes more obvious as the low-type
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retailer’s market power is closer to that of the high-type retailer.

For the case with three or more retailers, we analytically prove that proportional allocation

dominates uniform allocation and lexicographic allocation with priority sequence of retailers

in nonincreasing market powers dominates proportional allocation from the perspective of the

supplier. Also, we numerically show that lexicographic allocation with any priority sequence

of retailers dominates uniform allocation for any number of retailers. With three or more

retailers, the relative performance of lexicographic allocation compared with proportional

allocation depends on priority sequence of retailers: lexicographic allocation may outperform

(underperform, respectively) proportional allocation if priority is given to retailers with

higher (lower, respectively) market powers. Further, we compare the mechanisms from the

perspective of the retailers and the supply chain. We hope that these findings can provide a

reference for suppliers in their selection of allocation mechanism and for their efficient pricing

decisions.

In a two-echelon supply chain with a single supplier and multiple competing retailers, this

paper examines the impact of capacity allocation mechanisms on supplier pricing decisions and

retailer ordering behavior. This model provides a foundation for future studies, for example,

extending the supply chain to be more general, e.g., some retailers have an alternative supplier

or multiple suppliers with multiple retailers. Also, it is important to study how the supplier

plans production if the down stream retailers face uncertainty of market demand. Further,

incorporation of other allocation mechanisms, different kinds of market demand competition,

and risk aversion for supply chain members, are interesting research questions.
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Proof of Lemma 1

Because the ordering decisions are symmetric between the two retailers, to obtain retailer i’s

best response function ri(rj), we only need to consider retailer 1’s optimal problem:

Π̃1(r2, w) = max
r1∈[0,K]

{
max

r1≤K−r2
Π̃1

1, max
r1>K−r2;r1≤r2;r1<

K
2

Π̃2,1
1 ,

max
r1>K−r2;r1≤r2;r1≥K

2

Π̃2,2
1 , max

r1>K−r2,r1>r2;r2<
K
2

Π̃3,1
1 , max

r1>K−r2,r1>r2;r2≥K
2

Π̃3,2
1

}
,

where Π̃1
1 = (z1 − w − r1 − r2) · r1; Π̃2,1

1 = (z1 − w −K) · r1; Π̃2,2
1 = (z1 − w −K) · K

2
;

Π̃3,1
1 = (z1 − w −K) · (K − r2); Π̃3,2

1 = (z1 − w −K) · K
2
.

The five subproblems can be solved as follows:

r̃1∗1 = arg max
r1∈[0,K−r2]

Π̃1
1 =


0, if z1−w−r2

2
< 0,

z1−w−r2
2

, if 0 ≤ z1−w−r2
2

≤ K − r2,

K − r2, if z1−w−r2
2

> K − r2.

(1)

Π̃1∗
1 = max

r1∈[0,K−r2]
Π̃1

1 =


0, if z1−w−r2

2
< 0,

(z1−w−r2)2

4
, if 0 ≤ z1−w−r2

2
≤ K − r2,

(z1 − w −K)(K − r2), if z1−w−r2
2

> K − r2.

(2)

r̃23∗1 = arg max
r1∈(K−r2,K]

{
Π̃2,1

1 , Π̃2,2
1 , Π̃3,1

1 , Π̃3,2
1

}
=


(K − r2, K], if r2 <

K
2
, w ≤ z1 −K,

[K
2
, K], if r2 ≥ K

2
, w ≤ z1 −K,

0, if w > z1 −K.

(3)

Π̃23∗
1 = max

r1∈(K−r2,K]

{
Π̃2,1

1 , Π̃2,2
1 , Π̃3,1

1 , Π̃3,2
1

}
=


(z1 − w −K)(K − r2), if r2 <

K
2
, w ≤ z1 −K,

(z1 − w −K)K
2
, if r2 ≥ K

2
, w ≤ z1 −K,

0, if w > z1 −K.

(4)

(i) Consider the case when w ∈ (0, z1−2K]. Since w ≤ z1−2K, it follows that (z1−w−r2)/2 >

K−r2, from Equations (1) and (2), we have r̃1∗1 ∈ (K−r2, K] and Π̃1∗
1 = (z1−w−K)(K−r2).

Furthermore, since w ≤ z1−2K < z1−K, from Equations (3) and (4), we have (a) if r2 < K/2,

then r̃23∗1 ∈ (K−r2, K] with Π̃23∗
1 = (z1−w−K)(K−r2); (b) if r2 ≥ K/2, then r23∗1 ∈ [K/2, K]

with Π̃23∗
1 = (z1 − w −K)K/2. Note that (z1 − w −K)(K − r2) ≤ (z1 − w −K)K/2 due to

r2 ≥ K/2, thus Lemma 1(i) is easily verified.

(ii) To prove the remaining results of Lemma 1, let us first establish some useful results in the

following lemma.
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Lemma A1. Define α̃1 = z1−w−

√
2K(z1 − w −K), β = z1−w+

√
2K(z1 − w −K), if

w ∈ (z1−3K/2, z1−K], then α̃1 and β are real numbers with K/2 < α̃1 < 2K+w−z1 ≤ K ≤ β.

Proof: Given any w ∈ (z1 − 3K/2, z1 − K], we have 2K + w − z1 − K/2 = w − (z1 −

3K/2) < 0, thus 2K + w − z1 > K/2. To show α̃1 > K/2 is equivalent to show (z1 −

w − K/2) −
√

2K(z1 − w −K) > 0, or [2(z1 − w) − K]2 > 8K(z1 − w − K). We can

derive that [2(z1 − w) − 3K]2 > 0, and thus we have α̃1 > K/2. Similarly, to show α̃1 <

2K + w − z1 − K/2, which is equivalent to 2(z1 − w − K) −
√

2K(z1 − w −K) < 0, or

2(z1 − w − K) <
√

2K(z1 − w −K), it suffices to show
√
2(z1 − w −K) <

√
K. Since

z1 − w − 3K/2 > 0, then we have α̃1 < 2K + w − z1. Furthermore, to verify α̃1 < K is the

equivalent to show α̃1 −K = z1 −w−K −
√
2K(z1 − w −K) < 0, or

√
z1 − w −K <

√
2K.

Since z1 − 3K − w < z1 − 2K − w < 0, we have α̃1 < K. Similarly, we have β − K =

z1 − w −K +
√
2K(z1 − w −K) ≥ 0, thus β ≥ K. Hence, Lemma A1 is proved.

Lemma A2. Suppose w ∈ (z1 − 3K/2, z1 − 2K], then we have:

(a) if r2 ≤ α̃1, then (z1 − w − r2)
2/4 ≥ (z1 − w −K)K/2,

(b) if r2 > α̃1, then (z1 − w − r2)
2/4 < (z1 − w −K)K/2.

Proof: Through simple algebra, we obtain (z1 − w − r2)
2/4 − (z1 − w − K)K/2 = 1

4
(r2 −

α̃1)(r2 − β), thus the lemma follows from Lemma A1.

Now we discuss the scenario as w ∈ (z1− 2K, z1− 3K/2]. Consider three cases: (a) if r2 ≤

2K−z1+w, or equivalently (z1−w−r2)/2 ≤ K−r2, then it follows that r1∗1 = (z1−w−r2)/2

and Π̃1∗
1 = (z1 − w − r2)

2/4. On the other hand, if r2 ≤ 2K − z1 + w ≤ K/2, then we have

r23∗1 ∈ (K − r2, K] and Π̃23∗
1 = (z1 − w − K)(K − r2). Comparing Π̃1∗

1 with Π̃23∗
1 , we have

Π̃1∗
1 − Π̃23∗

1 = (r2 + z1 − w − 2K)2 ≥ 0. Hence, we can derive the results as follows: (a) if

r2 ≤ 2K− z1+w, then r1(r2) = r1∗1 = (z1−w− r2)/2 and Π̃1(r2, w) = Π̃1∗
1 = (z1−w− r2)

2/4;

(b) if 2K − z1 + w < r2 ≤ K/2, or equivalently (z1 − w − r2)/2 > K − r2, it follows that

r1∗1 = r23∗1 ∈ (K − r2, K] and Π̃1∗
1 = Π̃23∗

1 = (z1 − w − K)(K − r2); (c) if r2 > K/2, then

(z1 − w − K)(K − r2) < (z1 − w − K)K/2, and r1(r2) = r23∗1 ∈ [K/2, K] with Π̃1(r2, w) =

Π̃23∗
1 = (z1 − w −K)K/2. Using the same procedure, we can verify Lemma 1(iii).

(iv) w ∈ (z1 − K, z1). Since w > z1 − K, from Equation 4, we know that Π̃23∗
1 = 0, so we

only need to consider Π̃1∗
1 from Equations (1) and (2). Consider two cases: (a) if r2 ≤ z1 −w,

then 0 ≤ z1−w−r2
2

≤ K − r2, and thus r1(r2) = r1∗1 = (z1 − w − r2)/2, and Π̃1(r2, w) = Π̃1∗
1 =

(z1 − w − r2)
2/4; (b) if r2 > z1 − w, then z1−w−r2

2
< 0, and thus r1(r2) = r1∗1 = 0 with
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Π̃1(r2, w) = Π̃1∗

1 = 0.

Proof of Theorem 1

To find Nash equilibrium outcome resulting from the ordering quantity game, we draw the

response curves from Lemma 1 for both retailers. First we compartmentalize the following

feasible intervals with different capacity constraints. There are five possible scenarios: (I) if

z1 − z2 < K/2, i.e., K > 2(z1 − z2), we have z2 − 2K < z1 − 2K < z2 − 3K/2 < z1 − 3K/2 <

z2 −K < z1 −K < z2 < z1; (II) if K/2 ≤ z1 − z2 < K, i.e., z1 − z2 < K ≤ 2(z1 − z2)], then

we have z2 − 2K ≤ z2 − 3K/2 < z1 − 2K < z2 −K < z1 − 3K/2 ≤ z1 −K ≤ z2 ≤ z1; (III) if

K ≤ z1 − z2 < 3K/2, i.e., 2(z1 − z2)/3 < K ≤ z1 − z2, then we have z2 − 2K ≤ z2 − 3K/2 ≤

z2 − K ≤ z1 − 2K ≤ z1 − 3K/2 < z2 ≤ z1 − K < z1; (IV) if 3K/2 ≤ z1 − z2 < 2K, i.e.,

(z1 − z2)/2 < K ≤ 2(z1 − z2)/3, then we have z2 − 2K < z2 − 3K/2 < z2 −K < z1 − 2K <

z2 ≤ z1 − 3K/2 < z1 − K < z1; (V) if z1 − z2 ≥ 2K, i.e., K ≤ (z1 − z2)/2, then we have

z2 − 2K < z2 − 3K/2 < z2 −K < z2 ≤ z1 − 2K < z1 − 3K/2 < z1 −K < z1. Next we analyze

Nash equilibrium in each scenario.

(I) K ∈ (2(z1 − z2),+∞):

(i) w ∈ (0, z2 − 2K). In this case, See Figure (A-a), it is clear that any point in [K/2, K] ×

[K/2, K] is a Nash equilibrium.
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K
2

r2

r1

Figure (A-a) w ∈ (0, z2 − 2K]

-

6

z2−w
2

2K − z2 + w

KK
2

K

K
2

r2

r1

Figure (A-b) w ∈ (z2 − 2K, z1 − 2K]

(ii) w ∈ (z2 − 2K, z1 − 2K]. Though it adds a new bound line r1 = 2K − z2 + w as

r1 ≤ 2K − z2 + w, and the response curve for retailer 2 is r2(r1) = (z2 − w − r1)/2, thus

the equilibrium orders are the same as (i).

(iii) w ∈ (z1 − 2K, z2 − 3K/2]. See Figure (A-c), any point in [K/2, K] × [K/2, K] is in

equilibrium.
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Figure (A-c) w ∈ (z1 − 2K, z2 − 3K/2]
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2

2K − z1 + w KK
2

K

K
2

r2
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Figure (A-d) w ∈ (z2 − 3K/2, z1 − 3K/2]

(iv) w ∈ (z2−3K/2, z1−3K/2]. As showed in Figure (A-d), any point in [α̃2, K]× [K/2, K] is

a Nash equilibrium. Next we determine whether the point ((2z1− z2−w)/3, (2z2− z1−w)/3)

is in equilibrium. It suffices to verify the conditions: (a) (2z1 − z2 − w)/3 ≤ α̃2; (b)

(2z2−z1−w)/3 ≤ 2K−z1+w. Note from (a), it is equivalent to w ≤ w̃− or w̃+ ≤ w ≤ 2z2−z1,

where w̃± = 2z2−z1−9K/4±3
√

K2 + 8K(z1 − z2)/4. Recall that w ∈ (z2−3K/2, z1−3K/2],

together with w̃− < z2 − 3K/2 and z2 − 3K/2 < w̃+ < z1 − 3K/2 < 2z2 − z1, simple algebra

shows that condition (a) always holds if w ∈ (w̃+, z1−3K/2]. On the other hand, for condition

(b), it satisfies w ≥ (z1+ z2− 3K)/2 if it holds. Note that (z1+ z2− 3K)/2 < w̃+, as a result,

if w ∈ (z2− 3K/2, w̃+], then any point in [α̃2, K]× [K/2, K] is a Nash equilibrium. Otherwise

if w ∈ (w̃+, z1 − 3K/2], then ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a equilibrium and any

point in [α̃2, K]× [K/2, K] is also a Nash equilibrium. Moreover, when w ∈ (w̃+, z1 − 3K/2],

in this case, retailer 2’s profit is Π̃1
2((2z2 − z1 − w)/3, w) = (2z2 − z1 − w)2/9 if the Nash

equilibrium is ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3), and Π̃2
2(K/2, w) = (z2 − w − K)K/2

if the Nash equilibrium is any point in [α̃2, K] × [K/2, K], it is easy to verify that

Π̃1
2((2z1 − z2 − w)/3, w) ≥ Π̃2

2(K/2, w), thus the former equilibrium dominates the latter

one by gaining more profits for retailer 2. Similarly, we can prove that the equilibrium

((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) dominates the other equilibrium by generating more

profits for retailer 1. Hence, ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a dominant strategy for

both retailers.

30
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Figure (A-e) w ∈ (z1 − 3K/2, z2 −K]
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Figure (A-f) w ∈ (z2 −K, z1 −K]

(v) w ∈ (z1 − 3K/2, z2 −K]. In this case (Figure A-e), it implies that K/2 ≤ (z1 −w)/2 ≤ K

and K/2 ≤ (z2 − w)/2 ≤ K. Furthermore, if r2 = K/2, then r1(K/2) = (z1 − w −K/2)/2,

it is easy to check that r1(K/2) ≤ K/2. Similarly, if r1 = K/2, it is easy to check that

r2(K/2) ≤ K/2, then there must exist a crossing point ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3)

between the two response curves. Consequently, ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a

Nash equilibrium and any point in [α̃2, K] × [α̃1, K] is also a Nash equilibrium. Similar to

(iv), we can check that the former equilibrium dominates the latter one for both retailers by

generating more profits if w ∈ (z1 − 3K/2, z2 −K].

(vi) w ∈ (z2 − K, z1 − K]. From the response curves in Figure (A-f), there exists a unique

equilibrium ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3).

-
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2z1−z2−w
3

2z2−z1−w
3

z1−w
2

z2 − w

z2−w
2

z1 − wK

K

r2

r1

Figure (A-g) w ∈ (z1 −K, 2z2 − z1]
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6

z1−w
2

z2 − w

z2−w
2

z1 − wK

K

r2

r1

Figure (A-h) w ∈ (2z2 − z1, z2)

(vii) w ∈ (z1−K, z2]. See Figure (A-g), if w ∈ (z1−K, 2z2−z1], we have (2z1−z2−w)/3 ≤ z2−w

and (2z2 − z1 − w)/3 ≤ z1 − w, thus it is clear that there exists a unique equilibrium
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((2z1 − z2 − w)/3, (2z2 − z1 − w)/3). Otherwise, the equilibrium is ((z1 − w)/2, 0) if

w ∈ (2z2 − z1, z2].

-

6

z1−w
2

z1 − w K

K

r2

r1

Figure (A-i) w ∈ (z2, z1)

(viii) w ∈ (z2, z1). In this special case, the wholesale price is so high that retailer 2 would be

driven out of the market. Therefore, see Figure (A-i), the unique equilibrium is ((z1−w)/2, 0).

Moreover, we find that when z1− z2 < K ≤ 2(z1− z2), the equilibrium orders are identical

to the case as K > 2(z1 − z2). Similarly, we use the same approach to analyze other scenarios

when K lies (0, z1− z2]. Therefore, we can summarize the results that show in Theorem 1.

Proposition 1. Under uniform allocation mechanism with asymmetric retailers, the supplier’s

optimal wholesale price w̃∗ and the associated maximum profit denoted by Π̃∗
s, are as follows:

(I) K ≤ z1 − z2 :

(i) if z2 ≤ 3z1/4, when K ≤ z1/4, the supplier’s optimal wholesale price is w̃∗ = z1 − 2K

and the maximum profit for the supplier is Π̃∗
s = K(z1 − 2K); when z1/4 < K ≤ z1 − z2, the

supplier’s optimal wholesale price is w̃∗ = z1/2 and the maximum profit for the supplier is

Π̃∗
s = z21/8;

(ii) if z2 > 3z1/4, when K ≤ z1−z2, then the supplier’s optimal wholesale price is w̃∗ = z1−2K

and the maximum profit for the supplier is Π̃∗
s = K(z1 − 2K).

(II) K > z1 − z2 :

(i) if z2 ≤ 5z1/7, when K > z1−z2, the supplier’s optimal wholesale price is w̃∗ = argmax
w∈{w̃+,z1/2}

Π̃∗
s

and the maximum profit for the supplier is Π̃∗
s = max{Kw̃+, z21/8};

(ii) if 5z1/7 < z2 ≤ 3z1/4, when z1 − z2 < K ≤ K̃+
2 , the supplier’s optimal wholesale price
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is w̃∗ = argmax

w∈{w̃+,z1/2}
Π̃∗

s and the maximum profit for the supplier is Π̃∗
s = max{Kw̃+, z21/8}.

Otherwise, the supplier’s optimal wholesale price is w̃∗ = argmax
w∈{w̃+,(z1+z2)/4,z1/2}

Π̃∗
s and the

maximum profit for the supplier is Π̃∗
s = max{Kw̃+, (z1 + z2)

2/24, z21/8}.

(iii) if z2 > 3z1/4, when z1 − z2 < K ≤ K̃+
2 , the supplier’s optimal wholesale price is w̃∗ =

argmax
w∈{w̃+,2z2−z1}

Π̃∗
s and the maximum profit for the supplier is Π̃∗

s = max{Kw̃+, (2z2−z1)(z1−z2)}.

Otherwise, the supplier’s optimal wholesale price is w̃∗ = argmax
w∈{w̃+,(z1+z2)/4,2z2−z1}

Π̃∗
s and the

maximum profit for the supplier is Π̃∗
s = max{Kw̃+, (z1 + z2)

2/24, (2z2 − z1)(z1 − z2)}.

Proof. Consider the following two cases.

Case (I): K ≤ z1 − z2 :

(i) w ∈ (0, z1 − 2K]. It is easy to show that w̃∗ = z1 − 2K with Π̃1
s = K(z1 − 2K);

(ii) w ∈ (z1− 2K, z1). (a) If z1− 2K < z1/2, which is equivalent to K > z1/4, then w̃∗ = z1/2

with Π̃2
s = z21/8. (b) if K ≤ z1/4, then w̃∗ = z1 − 2K with Π̃2

s = Π̃2
s = K(z1 − 2K). Since

z21/8−K(z1 − 2K) = (8K − z1)
2/8 ≥ 0, it follows that z21/8 ≥ K(z1 − 2K).

Case (II): K > z1 − z2 :

(i) w ∈ (0, w̃+]. It is easy to show that w̃∗ = w̃+ with Π̃3
s = Kw̃+;

(ii) w ∈ (w̃+, 2z2−z1]. (a) Consider the scenario where 2z2−z1 > (z1+z2)/4, i.e., z2 > 5z1/7. If

w̃+ < (z1+z2)/4, which is equivalent toK ≥ K̃+
2 , then w̃∗ = (z1+z2)/4 with Π̃4

s = (z1+z2)
2/24.

If w̃+ ≥ (z1 + z2)/4, then w̃∗ = w̃+ with Π̃4
s = (z1 + z2 − w̃+)w̃+/3. (b) Consider the scenario

where 2z2 − z1 ≤ (z1 + z2)/4, i.e., z2 ≤ 5z1/7. It is easy to verify that w̃∗ = 2z2 − z1 with

Π̃4
s = (2z2 − z1)(z1 − z2).

(iii) w ∈ (2z2 − z1, z1). (a) If 2z2 − z1 ≤ z1/2, i.e., z2 ≤ 3z1/4, then it follows that w̃∗ = z1/2

with Π̃5
s = z21/8. (b) If 2z2 − z1 > z1/2, i.e., z2 > 3z1/4, then it follows that w̃∗ = 2z2 − z1

with Π̃5
s = (2z2 − z1)(z1 − z2).

The proposition directly follows the above discussions.

Lemma 2. Let r̂i(rj) be retailer i’s best response order quantity given retailer j’s order (i, j =

1, 2 and i ̸= j). Define α̂i =
(
K + zi − w −

√
(zi − w −K)(zi − w + 7K)

)
/2; then we have

(i) w ∈ (0, zi − 2K]: for any rj, r̂i(rj) = K, and Π̂i(rj, w) = K2(zi −K − w)/(K + rj).

(ii) w ∈ (zi − 2K, zi −K]:

if rj ≤ α̂i, then r̂i(rj) = (zi − w − rj)/2 with Π̂i(rj, w) = (zi − w − rj)
2/4;

if rj > α̂i, then r̂i(rj) = K with Π̂i(rj, w) = K2(zi − w −K)/(K + rj).
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(iii) w ∈ (zi −K, zi):

if rj ≤ zi − w, then r̂i(rj) = (zi − w − rj)/2 with Π̂i(rj, w) = (zi − w − rj)
2/4;

if rj > zi − w, then r̂i(rj) = 0 with Π̂i(rj, w) = 0.

The proof of Lemma 2 is similar to the symmetric case (retailers have the same market power)

of Chen et al. (2013), and thus here we omit the details. Note that by involving asymmetric

market power, each retailer’s best response order size is not only affected by the wholesale

price but also by the other retailer’s order quantity. Take retailer 1 for example. We interpret

Lemma 2 as follows. First, consider the case where the wholesale price is very low; i.e., when

w ∈ (0, zi−2K]. Lemma 2(i) suggests that no matter what quantity the other retailer orders,

retailer 1 will order K to maximize her profit. This is because, when w ≤ z1 − 2K, i.e.,

K ≤ (z1 −w)/2, if the capacity level is relatively low, then retailer 1 would order as much as

possible. Second, as Lemma 2(iii) states, when the wholesale price is very high, each retailer

will not order much (≤ K): (a) retailer 1 may not order when z1 − w − K < 0 under the

condition that retailer 2 orders more than z2 −w; (b) if retailer 2’s order size is no more than

z1−w, which means that the remaining capacity is ample for retailer 1, then the best response

for retailer 1 is the same as the case without capacity constraint. Third, consider the case

where the wholesale price is in the intermediate range, i.e., w ∈ [z1 − 2K, z1). Observe from

the second part of Lemma 2(ii), if retailer 2 orders sufficiently high (> α̂i), then the remaining

capacity is scarce for retailer 1. Since the profit margin for retailer 1 remains z1−w−K ≥ 0, it

follows that her profit is increasing in her order size and thus ordering the maximum capacity

K is her best response. If retailer 2 orders no more than α̂i, then the result is consistent with

the first part of Lemma 2(iii).

Proposition 2. Let (r̂∗1, r̂
∗
2) be equilibrium orders under proportional mechanism. Define

ŵ− = 3K + z1+z2
2

− 3
2

√
8K2 + (z1 − z2)2, then we have

(I) K ≤ z1 − z2 :

(i) if w ∈ (0, z2 −K], then there is a unique Nash equilibrium (r̂∗1, r̂
∗
2) = (K,K);

(ii) if w ∈ (z2 −K, z1 − 2K], then there is a unique Nash equilibrium (r̂∗1, r̂
∗
2) = (K, 0);

(iii) if w ∈ (z1 − 2K, z1), then there is a unique Nash equilibrium (r̂∗1, r̂
∗
2) = ((z1 − w)/2, 0).

(II) K > z1 − z2:

(i) if w ∈ (0, ŵ−], then there is a unique Nash equilibrium (r̂∗, r̂∗) = (K,K);
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(ii) if w ∈ (ŵ−, z2 − K], then there exists two Nash equilibrium (K,K) and ((2z1 − z2 −

w)/3, (2z2 − z1 − w)/3). Furthermore, the latter equilibrium dominates the former one by

generating more profits for both retailers.

(iii) if w ∈ (z2 −K, 2z2 − z1], then there is a unique Nash equilibrium (r̂∗1, r̂
∗
2) = ((2z1 − z2 −

w)/3, (2z2 − z1 − w)/3);

(iv) if w ∈ (2z2 − z1, z1), then there is a unique Nash equilibrium (r̂∗1, r̂
∗
2) = (q̂∗1, q̂

∗
2) = ((z1 −

w)/2, 0).

Proof. Before the equilibrium analysis, from Lemma 2, we also obtain some critical values of

w, i.e., z1− 2K, z1−K, z2− 2K, z2−K, z1, z2. Using simple algebraic calculus, it follows that:

(I) when K > z1 − z2, we have z2 − 2K < z1 − 2K ≤ z2 −K < z1 −K < z2 < z1; (II) when

(z1−z2)/2 < K ≤ z1−z2, we have z2−2K < z2−K ≤ z1−2K < z2 ≤ z1−2K < z2 ≤ z1−K ≤

z1; and (III) when K ≤ (z1− z2)/2, we have z2−2K ≤ z2−K < z1−2K ≤ z2 < z1−K ≤ z1.

We first discuss the case when K ∈ (z1 − z2,+∞).

(i) w ∈ (0, z2 − 2K]
∪
(z2 − 2K, z1 − 2K]. See the curves of response functions pictured in

Figure (B-a) and Figure (B-b), it is easy to see that (K,K) is the unique equilibrium.
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Figure (B-a) 0 < w ≤ z2 − 2K
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Figure (B-b) z2 − 2K < w ≤ z1 − 2K

(ii) w ∈ (z1 − 2K, z2 − K]. First let us introduce a critical value ŵ−. From Lemma 1, the

sufficient and necessary conditions for the ideal equilibrium orders ((2z1 − z2 − w)/3, (2z2 −

z1−w)/3) are (2z1− z2−w)/3 ≤ α̂2 and (2z2− z1−w)/3 ≤ α̂1, which is equivalent to satisfy

ŵ− ≤ w ≤ ŵ+, where ŵ± = 3K + z1+z2
2

− 3
2

√
8K2 + (z1 − z2)2. Due to ŵ+ > z1 and the

constraint w < z1, therefore, (2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is in equilibrium if and only

if w ≥ ŵ−. Recall that (K,K) is in equilibrium as w ∈ (z1 − 2K, z2 −K], then we have the

following results: (a) if w ∈ (z1− 2K, ŵ−], there exists a unique Nash equilibrium (K,K); (b)
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otherwise, (K,K) and ((2z1−z2−w)/3, (2z2−z1−w)/3) are both in equilibrium. Figure (B-c)

and figure (B-d) illustrate the above results, respectively. Similar to the proof of Theorem 1,

we can show that ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) dominates (K,K) by generating more

profits for both retailers.
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Figure (B-c) z1 − 2K < w ≤ ŵ−
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Figure (B-d) ŵ− < w < z2 −K

(iii) w ∈ (z2 −K, z1 −K]. In this scenario, if the orders ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3)

are in equilibrium, it needs to satisfy two conditions: (2z1 − z2 − w) ≤ (z1 − w)/2 and

(2z2 − z1 − w)/3 ≤ (z2 − w)/2. And the conditions is equivalent to w ≤ 2z2 − z1. Together

with the constraint w ∈ (z2 − K, z1 − K], we obtain the results as follows: (a) when

z1 − z2 < K ≤ 2(z1 − z2), if w ∈ (z2 − K, 2z2 − z1], there exist a unique Nash equilibrium

((2z1 − z2 − w)/3, (2z2 − z1 − w)/3); otherwise, the unique equilibrium is ((z1 − w)/2, 0);

(b) when K > 2(z1 − z2), z1 − K < 2z1 − z2, then there exists a unique Nash equilibrium

((2z1−z2−w)/3, (2z2−z1−w)/3). See Figure (B-e) and Figure (B-f),respectively. Specifically,

the figure of (b) is the same as the case with (a) when w ∈ (z2 −K, 2z2 − z1].
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Figure (B-e) z2 K < w 2z2 z1
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Figure (B-f) 2z2 z1 < w z1 K
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(iv) w ∈ (z1 − K, z2]. As pictured in Figure (B-g) and Figure (B-h), we have: (a) when

z1 − z2 < K ≤ 2(z1 − z2), there exists a unique Nash equilibrium ((z1 − w)/2, 0); (b) when

K > 2(z1 − z2), if w ∈ (z1 − K, 2z2 − z1], then there exists a unique Nash equilibrium

((2z1 − z2 − w)/3, (2z2 − z1 − w)/3), otherwise, the unique equilibrium is ((z1 − w)/2, 0).

Specifically, the figure of scenario (a) is the same as the case (b) when w ∈ (2z2 − z1, z2).
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Figure (B-g) w ∈ (z1 −K, 2z2 − z1]
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Figure (B-h) w ∈ (2z2 − z1, z2]

(v) w ∈ (z2, z1). It is the same as Figure (A-i), in which the low-type retailer is driven out of

the supply chain, then there is a unique Nash equilibrium ((z1 − w)/2, 0).

Based on the above analysis, we can obtain the equilibrium outcome when K > z1 − z2 in

Theorem 2. Similarly, the remaining results follow from the same approach. As the step is

similar to the case we have analysed, here we omit the details.

We interpret Proposition 2 in conjunction with the impact of wholesale price w on orders

in equilibrium, for any given capacity level satisfying 0 < K ≤ z1 − z2. When the wholesale

price is very low, it is easy to check that the profit margin for each retailer is zi −w−K ≥ 0,

(i = 1, 2). Hence, both retailers order as much as possible (by ordering K as allowed).

Therefore, there exists a unique Nash equilibrium orders (K,K). On the other hand, when

the wholesale price is sufficiently high, retailer 2 may be driven out of the game due to her

lower market power; consequently, the equilibrium order quantity is always zero for retailer 2

in this case.

If capacity exceeds z1 − z2, then we drive the equilibrium orders in four scenarios. First,

consider the scenario with w ∈ (0, ŵ−]. Since 2z2 − z1 − 3K/2 < (z1 + z2 − 3K)/2 ≤

ŵ−, it follows that if q∗ + q∗ < K K(ŵ−), where K(ŵ−) = (z1 + z2 2w +
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√

−7z21 + 22z1z2 − 7z22 − 8w(z1 + z2 − w))/6, then gaming effect will occur, i.e., both retailers

will strategically inflate their orders from q∗i to K. As a result, unique equilibrium orders

(K,K) exist when the wholesale price is relatively low. Second, when w ∈ (ŵ, 2z2 − z1],

there exist two equilibria (K,K) and ((2z1 − z2 −w)/3, (2z2 − z1 −w)/3). It is easy to verify

that when substituting the resulted allocations into each retailer’s profit function, the latter

equilibrium dominates the former by generating higher profits for both retailers. Third, we

consider w ∈ (z2 − K, 2z2 − z1]. In this case, the capacity is regarded as ample by both

retailers, which order as in the case without a capacity limit. Fourth, we have the scenario

w ∈ (2z2 − z1, z1). In this case, retailer 2 would be driven out of the market, which results in

both equilibrium orders and allocations ((z1 − w)/2, 0).

From Proposition 2, we have the following observation. When 0 < K ≤ z1 − z2, as w

increases, the total equilibrium order quantities in the three scenarios of w are (i)2K, (ii)K,

and (iii) z1−w
2

, respectively. Simple algebra shows that 2K > K ≥ z1−w
2

. This is consistent

with the intuition that total order quantity is decreasing with wholesale price. This implies

that retailers are inclined to order more when the supplier offers a lower wholesale price, given

fixed capacity level. Moreover, the allocated capacity drops from K to z1−w
2

as the wholesale

price crosses the threshold z1−2K. Further, it is easy to confirm that when the capacity level

satisfies K > z1 − z2, if the wholesale price exceeds the threshold ŵ−, then total allocated

capacity drops from K to values strictly less than K, since K > (z1+z2−2w)/3 > (z1−w)/2.

However, it is not obvious which pricing option is most profitable for the supplier.

Proposition 3. First, suppose order priority is given to the high-type retailer (retailer 1).

Let (ř∗1, ř
∗
2) be equilibrium orders under lexicographic allocation. Define α̌1 = z1 − w −√

4K(z1 − w −K), w̌+
1 = 2z1 − z2 − 9

2
K + 3

2

√
5K2 − 4K(z1 − z2). We have

(I) K ≤ z1 − z2 :

(i) if w ∈ (0, z2 −K], then any point in {K} × [0, K] is a Nash equilibrium;

(ii) if w ∈ (z2 −K, z1 − 2K], then there is a unique Nash equilibrium (ř∗1, ř
∗
2) = (K, 0);

(iii) if w ∈ (z1 − 2K, z1), then there is a unique Nash equilibrium (ř∗1, ř
∗
2) = ((z1 − w)/2, 0).

(II) K > z1 − z2:

(i) if w ∈ (0, z1 − 2K], then any point in {K} × [0, K] is a Nash equilibrium;

(ii) if w ∈ (z1 − 2K, w̌+
1 ], then any point in {K} × [α̌1, K] is a Nash equilibrium;
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(iii) if w ∈ (w̌+

1 , z2 − K], then ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a Nash equilibrium

and any point in {K} × [α̌1, K] is also a Nash equilibrium. Further, the former equilibrium

dominates the latter by generating more profits for both retailers.

(iv) if w ∈ (z2 −K, 2z2 − z1], then there is a unique Nash equilibrium (ř∗1, ř
∗
2) = ((2z1 − z2 −

w)/3, (2z2 − z1 − w)/3);

(v) if w ∈ (2z2 − z1, z1), then there is a unique Nash equilibrium (ř∗1, ř
∗
2) = ((z1 − w)/2, 0).

Second, suppose order priority is given to the low-type retailer (retailer 2). With a slight

abuse of notation, let (ř∗1, ř
∗
2) be equilibrium orders under lexicographic allocation, and define

α̌2 = z2 − w −
√
4K(z2 − w −K), w̌+

2 = 2z2 − z1 − 9
2
K + 3

2

√
5K2 + 4K(z1 − z2). We have

(I) K ≤ z1 − z2 :

(i) if w ∈ (0, z2 −K], then any point in [0, K]× {K} is a Nash equilibrium;

(ii) if w ∈ (z2 −K, z1 − 2K], then there is a unique Nash equilibrium (ř∗1, ř
∗
2) = (K, 0);

(iii) if w ∈ (z1 − 2K, z1), then there is a unique Nash equilibrium (ř∗1, ř
∗
2) = ((z1 − w)/2, 0).

(II) K > z1 − z2:

(i) if w ∈ (0, z1 − 2K], then any point in [0, K]× {K} is a Nash equilibrium;

(ii) if w ∈ (z1 − 2K, w̌+
2 ], then any point in [α̌2, K]× {K} is a Nash equilibrium;

(iii) if w ∈ (w̌+
2 , z2 − K], then ((2z1 − z2 − w)/3, (2z2 − z1 − w)/3) is a Nash equilibrium

and any point in [α̌2, K] × {K} is also a Nash equilibrium. Further, the former equilibrium

dominates the latter by generating more profits for both retailers.

(iv) if w ∈ (z2 −K, 2z2 − z1], then there is a unique Nash equilibrium (ř∗1, ř
∗
2) = ((2z1 − z2 −

w)/3, (2z2 − z1 − w)/3);

(v) if w ∈ (2z2 − z1, z1), then there is a unique Nash equilibrium (ř∗1, ř
∗
2) = ((z1 − w)/2, 0).

The proof of Proposition 3 is similar to that of Theorems 1 and 2, and here we omit the

details. Proposition 3 is intuitive. Observe that for any given capacity level, the retailer

with order priority is allowed to obtain the entire capacity if the wholesale price is very low.

Interestingly, when the capacity level is relatively high, gaming effect also occurs. Note that

when K > z1 − z2, if w ∈ ((zi + zj − 3K)/2, w̌+
i ], satisfying q∗1 + q∗2 < K ≤ K(w̌+

i ), where

K(w̌+
i ) = zi−w

2
+ 1

6

√
−7z2i − 2ziw̌i + 5w̌2

i + 16zizj − 4z2j − 8zjw̌, then retailer i with order

priority will order K, which is more than her ideal order size r∗i . Further, if the wholesale

price lies in the interval (w̌∗
i , 2z2 − z1), then the retailers will order their ideal orders (r∗1, r

∗
2)

and lexicographic allocation is truth-inducing. However, if the wholesale price is sufficiently
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Figure 2: Comparison of Supplier’s Pricing Decisions with Symmetric Retailers.

high, then the low-type retailer will order nothing whether or not she has order priority.

Proof of Theorem 2

The theorem follows the discussions preceding the theorem in Section 5.

Numerical Examples with Two Competing Retailers

Figure 2 graphically illustrates the above finding for symmetric retailers. It is evident that as

the capacity K increases, the wholesale price in each allocation mechanism initially follows

a descending trend and then remains unchanged when capacity becomes sufficiently large.

Further, the supplier’s profit under proportional allocation is no less than that under uniform

allocation, but is no more than that under lexicographic allocation. We set forth the following

interpretations for these results. As the supplier’s capacity increases, to maximize his profit,

it is beneficial for the supplier to reduce the wholesale price so as to entice the retailers to

order more. But when the capacity is sufficiently large to meet all the retailer demand, both

the total order quantity and the supplier’s profit will stay at a constant level.

From Tables 1, 2 and Table 3, our numerical studies are based on the following data: (I)

when z1
2
< z2 ≤ 5z1

7
, we have (z1, z2) = (100, 60) or (100, 65); (II) when 5z1

7
< z2 ≤ 3z1

4
, we

have (z1, z2) = (100, 72) or (100, 74); (III) when 3z1
4

< z1 < z2, we have (z1, z2) = (100, 80) or

(100, 90). Results are depicted in Figures 3–8.

Note that as K increases, the supplier has the potential to sell more in the sense that

he could obtain more profits unless the total ordering quantity by the two retailers is not

This article is protected by copyright. All rights reserved.
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Figure 3: Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers.
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Figure 4: Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers.
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Figure 5: Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

90

100

Capacity K

S
u

p
p

lie
r’
s 

o
p

tim
a

l w
h

o
le

sa
le

 p
ri
ce

 w
*

z
1
=100     z

2
=74

Lexicographic Allocation−1
Lexicographic Allocation−2
Proportional Allocation
Uniform Allocation

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

Capacity K

S
u

p
p

lie
r’
s 

P
ro

fit
 Π

s*

z
1
=100     z

2
=74

Lexicographic Allocation−1
Lexicographic Allocation−2
Proportional Allocation
Uniform Allocation

Figure 6: Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers.
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Figure 7: Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers.
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Figure 8: Comparison of Supplier’s Pricing Decisions with Asymmetric Retailers.
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increasing any more. The supplier may change the wholesale price strategically with capacity,

as illustrated in Figures 3–8.

From Figures 3 and 4, it is evident that lexicographic allocation performs no differently

than the other two allocations. Technically, this is because, although Kw̌+
1 > Kw̌+

2 > Kŵ− >

Kw̃+, the maximum of the four values is less than z2/8 for our numerical examples. Therefore,

the supplier is indifferent among the three allocation mechanisms if the retailers’ market powers

are significantly different. However, as the low-type retailer’s market power becomes closer to

the high-type retailer’s power, we observe from Figures 5–8 that the supplier’s profit obtained

from lexicographic allocation is much higher than from uniform or proportional allocations,

especially when order priority is given to the high-type retailer. This demonstrates that

the advantage of superior mechanism in each comparison becomes more evident when the

competition between the two retailers is more intense.

Proof of Theorem 3

The proof is a similar to that of Theorem 5 and is omitted for preciseness.

Proof of Theorem 4

First, we derive the values of K∗
u, K∗

p , K∗
l∗ . Let q̃max

i , q̂max
i , q̌max

i be retailer i’s largest

received allocations under uniform, proportional and lexicographic (with priority sequence

l∗) allocations given r−i = q∗−i, respectively. Specifically, we have

q̃max
i =

1

ñ′
i + 1

(K −
∑

j=ñ′
i+1,...,n;j ̸=i

q∗j ), (5)

q̂max
i =

K

K +Q∗
−i

K, (6)

q̌max
i = K − (q∗1 + · · ·+ q∗i−1), (7)

where ñ′
i is defined as the largest integer less than i such that q∗

ñ′
i

≥ 1
ñ′

i+1
(K −∑

j=ñ′
i+1,··· ,n;j ̸=i q

∗
j ). To ensure a positive marginal profit for retailer i when the capacity

is fully utilized, we assume that zi − w − K > 0, and thus for any retailer, an upper

bound with K < zn − w is necessary for the assumption z1 > z2 > ... > zn. Let

Πi(x, y) be retailer i’s profit with retailer i’s allocation x and the other retailers’ total

allocation y. Under uniform allocation, it is obvious that if there exists any retailer i such

that Πi(q̃
max
i , K − q̃max

i ) ≥ Πi(q
∗
i , Q

∗
−i), then the supplier’s total allocated capacity is K.
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Otherwise, each retailer obtain her ideal allocation value. For notational convenience, let

δ =
∑

j=ñ′
i+1,...,n;j ̸=i q

∗
j . We next obtain the threshold Ki∗

u for retailer i as follows. Noting that

Q∗ = (Σn
j=1zj − nw)/(n + 1) and q∗i = ((n + 1)zi − Σn

j=1zj − w)/(n + 1) for their definitions,

we immediately have the following equation,

Q∗ = zi − w − q∗i . (8)

With Equation (8), we have that Πi(q̃
max
i , K − q̃max

i ) ≥ Πi(q
∗
i , Q

∗
−i), which is equivalent to

zi−w−K
ñ′
i+1

(K − δ) ≥ (zi − w −Q∗)q∗i . Therefore, we have

K2 − (zi − w + δ)K + (zi − w)δ + (ñ′
i + 1)q∗2i ≤ 0. (9)

Solving Equation(9), we have

zi − w + δ −
√

[zi − w + δ]2 − 4[(zi − w)δ + (ñ′
i + 1)q∗2i ]

2
≤ K ≤

zi − w + δ +
√
[zi − w + δ]2 − 4[(zi − w)δ + (ñ′

i + 1)q∗2i ]

2
.

Note that
zi−w+δ−

√
[zi−w+δ]2−4[(zi−w)δ+(ñ′

i+1)q∗2i ]

2
≤ Q∗ ≤ zi−w+δ+

√
[zi−w+δ]2−4[(zi−w)δ+(ñ′

i+1)q∗2i ]

2
.

Now we focus on the case with K > Q∗ in the theorem. We can obtain the threshold of retailer

i: Ki∗
u =

zi−w+δ+
√

[zi−w+δ]2−4[(zi−w)δ+(ñ′
i+1)q∗2i ]

2
and K∗

u = max{K1∗
u , K2∗

u , ..., Kn∗
u }. Similar to

the analysis in Figure 1, gaming effect occurs when K ∈ [Q∗, K∗
u].

Furthermore, we can use the same method to derive K∗
l∗ = max{K1∗

l∗ , K
2∗
l∗ , ..., K

n∗
l∗ }, where

Ki∗
l∗ =

zi−w+
∑

j=1,··· ,i−1 q
∗
j+
√

[zi−w+
∑

j=1,··· ,i−1 q
∗
j ]

2−4q∗2i
2

. Next, we need to obtain the value of K∗
p .

We know that Πi(q̂
max
i , K−q̂max

i ) > Πi(q
∗
i , Q

∗
−i), which is equivalent to (zi−w−K) K2

K+Q∗
−i

> q∗2i .

Then, we have that −K3 + (zi − w)K2 − q∗2i K − q∗2i Q∗
−i > 0. Let f(K) = −K3 + (zi −

w)K2 − q∗2i K − q∗2i Q∗
−i. It is obvious that function f(K) is monotone and decreasing when

K ∈ [Q∗, zi − w). From Equation (8), we have

f(Q∗) = −Q∗3 + (zi − w)Q∗2 − q∗2i Q∗ − q∗2i Q∗
−i

= −Q∗3 + (Q∗ + q∗i )Q
∗2 − q∗2i Q∗ − q∗2i (Q∗ − q∗i )

= q∗i (Q
∗ − q∗i )

2 > 0,

and f(zi − w) = −(zi − w)3 + (zi − w)3 − q∗2i (zi − w) − q∗2i Q∗
−i < 0. Consequently,

there exists a value Ki∗
p that belongs to [Q∗, zi − w) such that f(K) = 0. Therefore,

K∗
p = max{K1∗

p , K2∗
p , ..., Kn∗

p }.
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Next, we compare the values of K∗

u, K
∗
p , K

∗
l∗ .

(i) We prove that K∗
u ≤ K∗

p . Consider any retailer i whose profits under proportional and

uniform allocations are (zi − w − K)q̂max
i and (zi − w − K)q̃max

i , respectively. Since q̃max
i =

1
ñ′
i+1

(K −
∑

j=ñ′
i+1,...,n;j ̸=i q

∗
j ) < K

2
< K

K+Q∗
−i
K = q̂max

i , it follows that Πi(q̃
max
i , K − q̃max

i ) ≤

Πi(q̂
max
i , K − q̂max

i ). Recall that Ki∗
u satisfies Πi(q̃

max
i , K − q̃max

i ) ≥ Πi(q
∗
i , Q

∗
−i), and thus Ki∗

u

also satisfies Πi(q̂
max
i , K − q̂max

i ) ≥ Πi(q
∗
i , Q

∗
−i), for any i. As Ki∗

p is defined as upper bound of

K that satisfies Πi(q̂
max
i , K − q̂max

i ) ≥ Πi(q
∗
i , Q

∗
−i), we can derive that Ki∗

u ≤ Ki∗
p . Hence, we

have K∗
u ≤ K∗

p .

(ii) We prove that K∗
p ≤ K∗

l∗ . Note that Πi(q̂
max
i , K − q̂max

i ) ≥ Πi(q
∗
i , Q

∗
−i) is equivalent to

(zi − w − K) K2

K+Q∗
−i

− q∗2i ≥ 0 with Equation (8), and Π1(q̌
max
1 , K − q̌max

1 ) ≥ Π1(q
∗
1, Q

∗
−1) is

equivalent to (z1 − w −K)K − q∗21 ≥ 0.

Note that

(z1 − w −K)K − q∗21 ≥ (zi − w −K)
K2

K +Q∗
−i

− q∗2i ,

which is equivalent to

[z1 − w −Q∗
−i − (zi − w)]K2 + [(z1 − w)Q∗

−i − q∗21 + q∗2i ]K − (q∗21 − q∗2i )Q∗
−i ≥ 0.

Note that we have

(Q∗ − q∗1)K
2 − [(z1 − w)Q∗

−i − q∗21 + q∗2i ]K + (q∗21 − q∗2i )Q∗
−i ≤ 0.

Let g(K) = (Q∗−q∗1)K
2−[(z1−w)Q∗

−i−q∗21 +q∗2i ]K+(q∗21 −q∗2i )Q∗
−i. We can see that g(Q∗) ≤ 0

and g(zn − w) ≤ 0. Because of the convexity of g(K), we have that (z1 − w −K)K − q∗21 ≥

(zi − w − K) K2

K+Q∗
−i

− q∗2i when K ∈ [Q∗, zn − w), for any i. Thus, we conclude that if K

satisfies Πi(q̂
max
i , K−q̂max

i ) ≥ Πi(q
∗
i , Q

∗
−i), then we have that Π1(q̌

max
1 , K−q̌max

1 ) ≥ Π1(q
∗
1, Q

∗
−1),

i.e., {K|Πi(q̂
max
i , K − q̂max

i ) ≥ Πi(q
∗
i , Q

∗
−i)} ⊆ {K|Π1(q̌

max
1 , K − q̌max

1 ) ≥ Π1(q
∗
1, Q

∗
−1)}.

Consequently, if the value ofK induces the total order quantity to be no less than the supplier’s

available capacity under proportional allocation, then it also induces retailer 1 to order the

whole capacity under lexicographic allocation. Hence, we have K∗
p ≤ K∗

l∗ .

Proof of Theorem 5

(i) WhenK∗
u < K ≤ K∗

p , the capacity level is sufficiently low such that retailer i’s profit is (zi−

w−K)qi, and thus each retailer ordersK. The unique allocation vector is (K/n,K/n, ...,K/n)
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under uniform and proportional mechanisms. Because retailer 1 has the highest priority under

lexicographic allocation, the allocation vector under lexicographic allocation is (K, 0, ..., 0). In

this case, the total retailer profit Π̃r = Π̂r = Σn
i=1(zi − w −K)K

n
and Π̌∗

r = (z1 − w −K)K.

It is easy to verify that Σn
i=1(zi − w −K)K

n
≤ (z1 − w −K)K due to z1 ≥ 1

n
Σn

i=1zi. Together

with the supplier profit, we have the results as shown in case (i).

(ii) When K∗
p < K ≤ K∗

l∗, the allocation vector under uniform allocation is (q∗1, q
∗
2, ..., q

∗
n).

In the meanwhile, allocation vectors under proportional and lexicographic allocations are

(K/n,K/n, ...,K/n) and (K, 0, ..., 0), respectively. Thus, the total retailer profit can be

expressed as Π̃r = Σn
i=1(zi − w −Q∗)q∗i , Π̂r = Σn

i=1(zi − w −K)K
n
, and Π̌∗

r = (z1 − w −K)K.

Let g(K) = Σn
i=1(zi − w − Q∗)q∗i − Σn

i=1(zi − w − K)K
n
. Note that g(K) is a function

of K and is minimized at K∗ = Σn
i=1(zi − w)/(2n). We can prove that K∗ ≤ Q∗ and

g(Q∗) > 0, and it follows that g(K) is increasing in K ∈ [Q∗,∞). Thus, we have

Π̃∗
r ≥ Π̂∗

r. Similar to case (i), we have (z1 − w − K)K ≥ Σn
i=1(zi − w − K)K

n
. Since

Π̌∗
r − Π̃∗

r = K2 − K
n
Σn

i=1zi + Σn
i=1(zi − Q∗)q∗i + w(K − Q∗), taking into consideration the

difference in the supplier’s profits wQ∗−wK, we obtain the sufficient and necessary condition

for the relationships of Π̌∗
r and Π̃∗

r and of Π̌∗
sc and Π̃∗

sc as shown in case (ii) of the theorem.

(iii) When K∗
p < K ≤ K∗

l∗, the unique allocation vector from equilibrium orders under

uniform and proportional mechanisms is (q∗1, q
∗
2, ..., q

∗
n), while under lexicographic mechanism

the unique allocation vector from equilibrium orders is (K, 0, ..., 0). It is straightforward

to verify that uniform and proportional allocations generate the same total retailer profit

Π̃∗
r = Π̂∗

r. Note that under uniform and proportional allocations, the supplier sells Q∗ units

of capacity and achieves profit wQ∗. Consequently, we have Π̃∗
sc = Π̂∗

sc. Following this logic,

it is straightforward to prove the remaining results in case (iii) of the theorem.

(iv) When K > K∗
l∗, the supplier’s capacity is sufficiently high, and under all the three

mechanisms, each retailer orders her ideal order size and the resulted allocation vector is

(q∗1, q
∗
2, ..., q

∗
n). Therefore, the retailers and the supply chain obtain the same profit under the

three mechanisms, respectively.

Numerical Computation of Thresholds K∗

The thresholds K∗
u, K∗

p , K∗
lt
under uniform, proportional, and proportional (with priority

sequence lt, where retailers are indexed as 1, 2, . . . , n, without loss of generality) can be
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A
cc

ep
te

d 
A

rt
ic

le
characterized by equilibrium ordering, as follows. Given any supplier’s wholesale price w

and supplier’s capacity K ≥ Q∗,

(i) under uniform mechanism, the order quantity vector (q∗1, q
∗
2, ..., q

∗
n) is in equilibrium only if

Πi(q̃
max
i , K − q̃max

i ) ≤ Πi(q
∗
i , q

∗
−i) for any i, where q̃max

i = 1
ñ′
i+1

(K − Σ
j=ñ′

i+1,...,n;j ̸=i
q∗j ) and ñ′

i is

defined as the largest integer less than i such that q∗ñ′
i
≥ 1

ñ′
i+1

(K − Σ
j=ñ′

i+1,...,n;j ̸=i
q∗j );

(ii) under proportional mechanism, the order quantity vector (q∗1, q
∗
2, ..., q

∗
n) is in equilibrium

only if Πi

(
K2/(K + q∗−i), K −K2/(K + q∗−i)

)
≤ Πi(q

∗
i , q

∗
−i) for any i;

(iii) under lexicographic mechanism, the order quantity vector (q∗1, q
∗
2, ..., q

∗
n) is in equilibrium

only if Πi(K − Σ
j=1,...,i−1

q∗j , Σ
j=1,...,i−1

q∗j ) ≤ Πi(q
∗
i , q

∗
−i) for any i.

The results are intuitive. Under a specific allocation mechanism, when the supplier’s

wholesale price w and capacity level K are given, retailer i will order the ideal allocation q∗i if

the profit generating from the inflated allocation (i.e., ordering as much as possible) is less than

the profit resulting from the ideal allocation (q∗1, q
∗
2, ..., q

∗
n). In other words, if every retailer’s

profit satisfies this condition, then all retailers will order their ideal order quantities, i.e., the

Nash equilibrium order vector (q∗1, q
∗
2, ..., q

∗
n), and consequently the total allocation is Q∗. On

the other hand, if there exists at least one retailer i, whose profit is larger when ordering as

much as possible (i.e., K) so as to receive the maximum possible allocation given that the

total allocation is K. Accordingly, the total allocation will be equal to the available capacity

K, and any retailer will order at least K/n for her best interest. Hence, the equilibrium

allocation vector is (K/n,K/n, ...,K/n).

Under each allocation mechanism, the minimum value of K, given that K ≥ Q∗, satisfying

the correspondent condition is the threshold K∗ for the mechanism. Numerically, it is

straightforward to use a binary search to locate the threshold K∗ with specific precision for

each mechanism.
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