Supporting Information

Synthesis of Dinitrogen-Fused Spirocyclic Heterocycles via Organocatalytic 1,3-dipolar Cycloaddition of 2-Arylidene-1,3-indandiones and an Azomethine Imine

Jindian Duan, Jing Cheng, Yuyu Cheng, and Pengfei Li*[a]

ajoc_201500529_sm_miscellaneous_information.pdf
Contents

Experimental section S2
Compounds characterization S3
References S5
Copies of 1H and 13C NMR spectra of 3aa-3ka S6
Crystal structure and data for compound 3fa S17
Experimental section

General

All reactions were carried out with dry, freshly distilled solvents in anhydrous conditions. All chemicals were used without further purification as commercially available unless otherwise noted. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (300-400 mesh). NMR (400 MHz for 1H NMR, 100 MHz for 13C NMR) spectra were recorded in CDCl$_3$ with TMS as the internal standard. High resolution mass spectral (HRMS) analyses were measured using ESI techniques. UV detection was monitored at 254 nm. IR spectra were measured using IRPrestige-21.

A variety of 2-arylidene-1,3-indandiones 1 were synthesized via Knoevenagel reactions as reported in the literature,1 and azomethine imine 2 was prepared using general procedures reported in the literature.2

General procedure for the synthesis of spiro indane-1,3-dione-pyrazolidinones

To a stirred mixture of 2-arylidene-1,3-indandiones 1 (0.3 mmol) and azomethine imine 2 (0.36 mmol) in MeOH (2 mL) was added Et$_3$N (5 mol %) and then kept at room temperature for the time given, which was monitored by TLC. After removal of the solvent, the crude residue was purified by column chromatography (petroleum ether / ethyl acetate 3/1 v/v) on silica gel to give the corresponding products 3.
Compounds characterization

1',3'-Diphenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3aa)

Prepared according to general procedure to afford 3aa (120 mg, 98% yield) as a white solid; m.p. 164-165 °C; 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.97 (d, $J = 7.6$ Hz, 1H), 7.72–7.68 (m, 1H), 7.58–7.55 (m, 1H), 7.38 (d, $J = 7.6$ Hz, 1H), 7.19–7.18 (m, 2H), 7.16–7.06 (m, 8H), 5.81 (s, 1H), 4.42 (s, 1H), 3.85–3.79 (m, 1H), 3.10–3.02 (m, 2H), 2.94–2.87 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 198.3, 194.6, 172.5, 143.1, 141.3, 136.4, 135.6, 135.2, 131.6, 128.8, 128.5, 128.6, 127.8, 127.7, 125.7, 123.3, 123.2, 77.4, 72.1, 63.3, 48.2, 32.5; HRMS (ESI): m/z calcd for C$_{26}$H$_{20}$N$_2$NaO$_3$ [M+Na]$^+$ 431.1372, Found 431.1366. IR ν max: 3448, 3059 cm$^{-1}$.

3'-[(4-Fluorophenyl)-1'-phenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3ba)

Prepared according to general procedure to afford 3ba (96 mg, 75% yield) as a white solid; m.p. 155-157 °C; 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.97 (d, $J = 7.6$ Hz, 1H), 7.74–7.70 (m, 1H), 7.62–7.58 (m, 1H), 7.42 (d, $J = 7.6$ Hz, 1H), 7.19–7.16 (m, 2H), 7.12–7.06 (m, 5H), 6.87–6.82 (m, 2H), 5.76 (s, 1H), 4.40 (s, 1H), 3.85–3.78 (m, 1H), 3.11–3.01 (m, 2H), 2.94–2.85 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 198.1, 194.6, 172.6, 163.4 ($J_{C,F} = 245.2$ Hz), 143.0, 141.2, 136.4, 135.7, 131.5, 130.9 ($J_{C,F} = 3.3$ Hz), 128.9, 128.5, 127.8, 127.7 ($J_{C,F} = 8.3$ Hz), 123.3, 123.2, 115.6 ($J_{C,F} = 22.2$ Hz), 72.0, 62.7, 48.2, 32.5; HRMS (ESI): m/z calcd for C$_{28}$H$_{21}$FNNaO$_3$ [M+Na]$^+$ 449.1277, Found 449.1272. IR ν max: 3210, 3059, 2926, 1657, 1603, 1508, 1233, 758, 694 cm$^{-1}$.

3'-[(4-Chlorophenyl)-1'-phenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3ca)

Prepared according to general procedure to afford 3ca (112 mg, 85% yield) as a white solid; m.p. 157-158 °C; 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.97 (d, $J = 7.6$ Hz, 1H), 7.74–7.70 (m, 1H), 7.62–7.58 (m, 1H), 7.42 (d, $J = 7.6$ Hz, 1H), 7.18–7.09 (m, 7H), 7.05–7.03 (m, 2H), 5.75 (s, 1H), 4.39 (s, 1H), 3.85–3.79 (m, 1H), 3.11–3.01 (m, 2H), 2.93–2.85 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 197.9, 194.5, 172.7, 143.0, 141.2, 136.5, 135.7, 133.8, 133.7, 131.4, 128.9, 128.7, 128.6, 127.8, 127.3, 123.3, 77.5, 71.9, 62.6, 48.1, 32.4; HRMS (ESI): m/z calcd for C$_{26}$H$_{19}$ClN$_2$NaO$_3$ [M+Na]$^+$ 465.0982, Found
3'- (4-Bromophenyl)-1'-phenyl-6', 7'-dihydro-1' H-spiro[indene-2, 2' -pyrazolo[1, 2-a]pyrazole]-1, 3, 5' (3'H) -trione (3da)

Prepared according to general procedure to afford 3da (122 mg, 84% yield) as a white solid; m.p. 150-151 ºC; 1H NMR (400 MHz, CDCl3) δ (ppm) 7.97 (d, J = 7.6 Hz, 1H), 7.74–7.70 (m, 1H), 7.62–7.59 (m, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.29–7.26 (m, 2H), 7.18–7.14 (m, 2H), 7.11–7.09 (m, 3H), 6.99–6.97 (m, 2H), 5.73 (s, 1H), 4.39 (s, 1H), 3.85–3.80 (m, 1H), 3.08–3.03 (m, 2H), 2.93–2.87 (m, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm) 197.9, 194.5, 172.7, 142.9, 141.2, 136.5, 135.8, 134.4, 131.6, 131.4, 128.9, 128.6, 127.7, 127.6, 123.3, 121.9, 77.5, 71.9, 62.6, 48.1, 32.4; HRMS (ESI): m/z calcd for C26H19BrN2O3 [M+Na]+ 509.0477, Found 509.0471. IR ν max: 3210, 2931, 1667, 1589, 1485, 1396, 1273, 1069, 1011, 756, 694 cm⁻¹.

1'-Phenyl-3'-(4-(trifluoromethyl)phenyl)-6', 7'-dihydro-1' H-spiro[indene-2, 2' -pyrazolo[1, 2-a]pyrazole]-1, 3, 5' (3'H) -trione (3ea)

Prepared according to general procedure to afford 3ea (131 mg, 92% yield) as a white solid; m.p. 130-131 ºC; For major diastereomer (dr = 4:1): 1H NMR (400 MHz, CDCl3) δ (ppm) 8.01–7.96 (m, 1H), 7.80–7.71 (m, 1H), 7.68–7.59 (m, 1H), 7.44–7.33 (m, 4H), 7.25–7.08 (m, 6H), 5.83 (s, 1H), 4.41 (s, 1H), 3.87–3.80(m, 1H), 3.13–3.03 (m, 2H), 2.95–2.87 (m, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm) 197.8, 194.4, 173.0, 142.9, 141.2, 139.5, 136.5, 135.8, 131.2, 129.0, 128.6, 128.3, 127.8, 127.8, 126.5, 126.3, 125.6(q, J = 3.7 Hz), 123.4, 123.3, 77.6, 72.0, 62.6, 47.9, 32.2; HRMS (ESI): m/z calcd for C27H24F3N2O3 [M+H]+ 477.1426, Found 477.1421. IR ν max: 3063, 2930, 1746, 1711, 1593, 1325, 1125, 768, 735, 700 cm⁻¹.

1'-Phenyl-3'-(p-tolyl)-6', 7'-dihydro-1' H-spiro[indene-2, 2'- pyrazolo[1, 2-a]pyrazole]-1, 3, 5' (3'H) -trione (3fa)

Prepared according to general procedure to afford 3fa (105 mg, 83% yield) as a white solid; m.p. 153-154 ºC; 1H NMR (400 MHz, CDCl3) δ (ppm) 7.96 (d, J = 7.6 Hz, 1H), 7.71–7.67 (m, 1H), 7.57–7.54 (m, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.21–7.18 (m, 2H), 7.11–7.08 (m, 3H), 6.97–6.92 (m, 4H), 5.78 (s, 1H), 4.41 (s, 1H), 3.83–3.78 (m, 1H), 3.09–3.01 (m, 2H), 2.90–2.85 (m, 1H), 2.17 (s, 3H); 13C NMR (100 MHz, CDCl3) δ (ppm) 198.3, 194.8, 172.0, 143.1, 141.3, 137.5, 136.3, 135.6, 132.0, 131.6, 129.1, 128.8, 128.5, 127.8, 125.6, 123.2, 123.1, 77.4, 72.1, 63.1, 48.5, 32.8, 21.1; HRMS (ESI): m/z calcd for C27H23N2O3 [M+Na]+ 445.1528, Found 445.1523. IR ν max: 2922, 2853, 1715,
1701, 1653, 1258, 765 cm\(^{-1}\).

3'-(3-Bromophenyl)-1'-phenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3ga)

Prepared according to general procedure to afford 3ga (95 mg, 65% yield) as a white solid; m.p. 171-172 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.98 (d, \(J = 7.6\) Hz, 1H), 7.75–7.71 (m, 1H), 7.63–7.59 (m, 1H), 7.42 (d, \(J = 7.6\) Hz, 1H), 7.31–7.25 (m, 2H), 7.18–7.16 (m, 2H), 7.10–7.09 (m, 3H), 7.02–6.95 (m, 2H), 5.74 (s, 1H), 4.39 (s, 1H), 3.86–3.79 (m, 1H), 3.11–2.99 (m, 2H), 2.93–2.85 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 197.9, 194.4, 173.3, 143.0, 141.2, 137.8, 136.5, 135.8, 131.4, 131.1, 129.9, 129.1, 128.9, 128.5, 127.8, 124.5, 123.4, 123.3, 122.8, 77.5, 71.9, 62.5, 47.7, 32.1; HRMS (ESI): m/z calcld for C\(_{26}\)H\(_{19}\)BrN\(_2\)NaO\(_3\) [M+Na]\(^+\) 509.0477, Found 509.0472. IR \(\nu\) max: 3061, 2926, 1744, 1709, 1593, 1260, 1236, 767, 733 cm\(^{-1}\).

3'-(3-Nitropheny1)-1'-phenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3ha)

Prepared according to general procedure to afford 3ha (96 mg, 71% yield) as a white solid; m.p. 166-168 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 8.04–7.98 (m, 3H), 7.77–7.73 (m, 1H), 7.63–7.59 (m, 1H), 7.47–7.45 (m, 1H), 7.39–7.35 (m, 2H), 7.17–7.09 (m, 5H), 5.85 (s, 1H), 4.40 (s, 1H), 3.89–3.83 (m, 1H), 3.16–3.00 (m, 2H), 2.96–2.87 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 197.6, 194.5, 173.9, 148.2, 142.9, 141.1, 138.1, 136.7, 136.0, 132.2, 131.2, 129.5, 129.1, 128.6, 127.8, 123.6, 123.3, 123.1, 121.3, 77.7, 71.9, 62.2, 47.3, 31.7; HRMS (ESI): m/z calcld for C\(_{26}\)H\(_{19}\)BrN\(_2\)NaO\(_3\) [M+Na]\(^+\) 476.1222, Found 476.1217. IR \(\nu\) max: 2920, 2849, 1744, 1709, 1530, 1350, 1261, 1236, 766, 723, 700 cm\(^{-1}\).

**1'-Phenyl-3'-(m-tolyl)-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazol e]-1,3,5'(3'H)-trione (3ia)

Prepared according to general procedure to afford 3ia (117 mg, 93% yield) as a white solid; m.p. 142-143 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.96 (d, \(J = 8.0\) Hz, 1H), 7.72–7.68 (m, 1H), 7.59–7.55 (m, 1H), 7.41 (d, \(J = 8.0\) Hz, 1H), 7.20–7.18 (m, 2H), 7.09–7.08 (m, 3H), 6.97–6.92 (m, 4H), 5.77 (s, 1H), 4.41 (s, 1H), 3.83–3.78 (m, 1H), 3.10–3.00 (m, 2H), 2.91–2.85 (m, 1H), 2.19 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 198.3, 194.8, 171.9, 143.1, 141.3, 137.5, 136.3, 135.5, 132.0, 131.7, 129.2, 128.8, 128.5, 127.8, 125.6, 123.2, 77.4, 72.1, 63.2, 48.5, 32.8, 29.1; HRMS (ESI): m/z calcld for C\(_{25}\)H\(_{22}\)N\(_2\)NaO\(_3\) [M+Na]\(^+\) 445.1528, Found 445.1523. IR \(\nu\) max: 3059, 2922, 1744, 1709, 1591, 1260,
1182, 766, 733, 700 cm\(^{-1}\).

3'- (3-Methoxyphenyl)-1'-phenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5' (3'H)-trione (3ja)

Prepared according to general procedure to afford 3ja (108 mg, 82% yield) as a white solid; m.p. 148-150 °C; For major diastereomer (\(dr = 7:1\)): \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.97-7.95 (m, 1H), 7.73–7.69 (m, 1H), 7.61–7.57 (m, 1H), 7.43 (d, \(J = 7.6\) Hz, 1H), 7.20–7.24 (m, 6H), 6.67–6.59 (m, 3H), 5.77 (s, 1H), 4.39 (s, 1H), 3.85–3.79 (m, 1H), 3.61 (s, 3H), 3.09–3.02 (m, 2H), 2.92–2.87 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 198.3, 194.5, 172.6, 159.6, 143.2, 141.2, 136.7, 136.3, 135.5, 131.6, 129.6, 128.9, 128.5, 127.8, 125.7, 123.3, 118.1, 113.7, 111.3, 77.4, 71.9, 63.3, 55.1, 48.2, 32.5; HRMS (ESI): m/z calcd for \(\text{C}_{27}\text{H}_{22}\text{N}_{2}\text{NaO}_4\) [M+Na]\(^+\) 461.1477, Found 461.1472. IR \(\nu\) max: 3059, 2932, 1744, 1709, 1589, 1260, 1042, 768, 731, 698 cm\(^{-1}\).

1'-Phenyl-3'-(thiophen-2-yl)-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5' (3'H)-trione (3ka)

Prepared according to general procedure to afford 3ka (87 mg, 70 % yield) as a white solid; m.p. 160-161 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.97 (d, \(J = 8.0\) Hz, 1H), 7.73–7.69 (m, 1H), 7.59–7.55 (m, 1H), 7.39 (d, \(J = 7.6\) Hz, 1H), 7.20–7.06 (m, 8H), 5.81 (s, 1H), 4.42 (s, 1H), 3.85–3.79 (m, 1H), 3.10–3.03 (m, 2H), 2.94–2.84 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 198.3, 194.7, 172.4, 143.1, 141.3, 136.3, 135.6, 135.1, 131.6, 129.6, 128.9, 128.5, 128.4, 127.9, 127.8, 125.7, 123.3, 123.2, 72.1, 63.3, 48.2, 32.6; HRMS (ESI): m/z calcd for \(\text{C}_{24}\text{H}_{19}\text{N}_{2}\text{O}_3\text{S}\) [M+H]\(^+\) 415.1116, Found 415.1111. IR \(\nu\) max: 2922, 2851, 1701, 1657, 1593, 1256, 764 cm\(^{-1}\).

References

Copies of 1H and 13C NMR spectra of 3aa-ka

1',3'-Diphenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3aa)
3’-(4-Fluorophenyl)-1’-phenyl-6’,7’-dihydro-1’H-spiro[indene-2,2’-pyrazolo[1,2-a]pyrazole]-1,3,5’(3’H)-trione (3ba)
3’-(4-Chlorophenyl)-1’-phenyl-6’,7’-dihydro-1’H-spiro[indene-2,2’-pyrazolo[1,2-a]pyrazole]-1,3,5’(3’H)-trione (3ca)
3'-(4-Bromophenyl)-1'-phenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3da)
1'-Phenyl-3’-(4-(trifluoromethyl)phenyl)-6’,7’-dihydro-1'H-spiro[indene-2,2'-pyr azolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3ea)
1'-Phenyl-3'-(p-tolyl)-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3fa)
3’-(3-Bromophenyl)-1’-phenyl-6’,7’-dihydro-1’H-spiro[indene-2,2’-pyrazolo[1,2-a]pyrazole]-1,3,5’(3’H)-trione (3ga)
3'-(3-Nitrophenyl)-1'-phenyl-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-α]pyrazole]-1,3,5'(3'H)-trione (3ha)
1'-Phenyl-3'-(m-tolyl)-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3ia)
3’-(3-Methoxyphenyl)-1’-phenyl-6’,7’-dihydro-1’H-spiro[indene-2,2’-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3ja)
1'-Phenyl-3'-(thiophen-2-yl)-6',7'-dihydro-1'H-spiro[indene-2,2'-pyrazolo[1,2-a]pyrazole]-1,3,5'(3'H)-trione (3ka)
Crystal structure and data for compound 3fa
Crystal data and structure refinement for 3fa

Identification code shelx
Empirical formula C_{27}H_{22}N_{2}O_{3}
Formula weight 422.46
Temperature 293(2) K
Wavelength 1.54187 Å
Crystal system Triclinic
Space group P -1
Unit cell dimensions
a = 9.34320(10) Å a= 113.841(8)°.
b = 11.3125(2) Å b= 108.881(8)°.
c = 12.1914(8) Å g = 96.208(7)°.
Volume 1071.85(11) Å³
Z 2
Density (calculated) 1.309 Mg/m³
Absorption coefficient 0.690 mm⁻¹
F(000) 444
Crystal size 0.20 x 0.20 x 0.20 mm³
Theta range for data collection 7.267 to 89.479°.
Index ranges -11<=h<=11, -13<=k<=13, -14<=l<=14
Reflections collected 12669
Independent reflections 3796 [R(int) = 0.0440]
Completeness to theta = 67.687° 96.6 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.871 and 0.637
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 3796 / 0 / 290
Goodness-of-fit on F² 1.141
Final R indices [I>2sigma(I)] R1 = 0.0506, wR2 = 0.1244
R indices (all data) R1 = 0.0558, wR2 = 0.1300
Extinction coefficient n/a
Largest diff. peak and hole 0.238 and -0.297 e.Å⁻³