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Abstract

The purpose of this article is to develop foundational techniques from logarithmic geometry in
order to define a functorial tropicalization map for fine and saturated logarithmic schemes in
the case of constant coefficients. Our approach crucially uses the theory of fans in the sense
of K. Kato and generalizes Thuillier’s retraction map onto the non-Archimedean skeleton in
the toroidal case. For the convenience of the reader many examples as well as an introductory
treatment of the theory of Kato fans are included.
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Introduction

Tropical geometry associates to an algebraic variety Y a ”polyhedral shadow” known as
its tropicalization, whose polyhedral geometry surprisingly often corresponds to the algebraic
geometry of Y . Classically (see e.g. [37], [29], and [41]), in order to define the tropicalization
of Y , one has to choose an embedding of Y into a suitable toric variety X, and, in general, the
geometry the tropicalization of Y strongly depends on the chosen embedding Y ↪→ X.

Unfortunately, there are many varieties that do not admit a well-understood embedding into
a toric variety, such as the Deligne-Knudsen-Mumford moduli spaces Mg,n of stable n-marked
curves for g > 0 (see [15] and [34]) or the toric degenerations arising in the Gross-Siebert
approach to mirror symmetry (see e.g. [22], [23], and [24]). A common feature of these varieties
is that they are locally (in the étale topology) isomorphic to toric varieties, i.e. they canonically
carry the structure of a toroidal embedding in the sense of [33].

In this article we use techniques from Berkovich analytic spaces (see e.g. [7] and [8]) and
logarithmic geometry (see [31] and [32]) to construct a natural tropicalization map associated
to any fine and saturated logarithmic scheme X that is locally of finite type over a trivially
valued base field. We, in particular, show that this tropicalization map is functorial with respect
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to logarithmic morphisms and that it recovers Thuillier’s [47] strong deformation retraction
onto the non-Archimedean skeleton of X in the logarithmicallly smooth case (see Theorems 1.1
and 1.2 below). Using these techniques we derive a criterion for a schön variety (in the sense
of [46]) to admit a faithful tropicalization (see Corollary 1.3 below).

The main applications of the techniques developed in this article lie in the tropical geometry
of moduli spaces. In [1], as an archetypical result, the authors show that the moduli space
of stable tropical curves is isomorphic to the skeleton of the moduli space of algebraic
curves with the respect to the toroidal structure coming from the Deligne-Knudsen-Mumford
compactification (see [15] and [34]). Similar results have appeared for other moduli spaces,
such as the moduli space of admissible covers (see [12]), the moduli space of weighted stable
curves (see [11] for the case of genus g = 0 and [50] for g ≥ 0), and the moduli space of rational
logarithmic stable maps into a toric variety (see [45]).

Let us now give a short outline of this article: In Section 1 we give an overview of the historical
background, provide precise statements of our results, and discuss further developments that
have appeared in parallel or after this article has first been made available. Section 2 introduces
the basic notions of monoids and cones and the theory of locally monoidal spaces. In Section
3 we introduce the technical heart of our construction, the notion of a Kato fan, as originally
proposed in [32], and connect it with the theory of (extended) rational polyhedral cone
complexes. Section 4 gives a quick introduction to the theory of logarithmic structures in
the sense of Kato-Fontaine-Illusie (see [31]) and shows how Kato fans naturally arise in this
theory. Section 5 introduces the two different non-Archimedean analytification functors used in
this text and explains their differences using the torus-invariant open subsets of the projective
line as explicit examples. In Section 6 we construct the tropicalization map and prove our main
results. Section 7, finally, is concerned with a comparison of our construction with the well-
known embedded tropicalization for (subvarieties of) toric varieties in the sense of Kajiwara
and Payne (see [29] and [41]) and a proof of Corollary 1.3.
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1. Overview and statement of the main results

1.1. Historical background: Tropicalization of tori, toric varieties, and toroidal embeddings

Let k be a field that is endowed with a (possibly trivial) non-Archimedean absolute value
|.|, let N be a finitely generated free abelian group of dimension n, and write M for its dual
Hom(N,Z) as well as 〈., .〉 for the duality pairing between N and M .



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

FUNCTORIAL TROPICALIZATION OF LOGARITHMIC SCHEMES Page 3 of 34

1.1.1. Tropicalization is a process that associates to a closed subset Y of the split algebraic
torus T = Spec k[M ] a subset Trop(Y ) in NR = N ⊗ R, the tropicalization of Y , which can be
endowed with the structure of a rational polyhedral complex. Following [17] as well as [26]
and [27], one of the many ways of defining Trop(Y ) is by taking it to be the projection of
the non-Archimedean analytic space Y an (see Section 5 below) associated to Y into NR via a
natural continuous tropicalization map

trop : T an −→ NR .

The image trop(x) of a point x ∈ T an, given by a seminorm |.|x : k[M ]→ R extending |.| on
k, is uniquely determined by the condition

〈trop(x),m〉 = − log
∣∣χm

∣∣
x

for all m ∈M , where χm denotes the character in k[M ] corresponding to m ∈M .

1.1.2. Kajiwara [29, Section 1] and, independently, Payne [41, Section 3] define a natural
continuous extension of the above tropicalization map to a T -toric variety X = X(∆) defined
by a rational polyhedral fan ∆ in NR. For standard notation and general background on toric
varieties we refer the reader to [13] and [18].

The codomain of the tropicalization map is a partial compactification NR(∆) of NR
determined by ∆, a detailed construction of which can be found in [44, Section 3]. For a
torus-invariant open affine subset Uσ = Spec k[Sσ] of X defined by the semigroup Sσ = σ∨ ∩M
for a cone σ ∈ ∆, the compactification N(σ) is given by Hom(Sσ,R), where R = R ∪ {∞} is
endowed with the natural additive monoid structure, and the tropicalization map

trop∆ : Uanσ −→ NR(σ)

sends x ∈ Uanσ to the element trop∆(x) ∈ Hom(Sσ,R) that is determined by

trop∆(x)(s) = − log |χs|x
for all s ∈ Sσ. From an alternative point of view, one may also think of trop∆ as a non-
Archimedean analytic moment map (see [29] and [41, Remark 3.3] as well as [10, Section 4.1]
and [48, Sections 1.1 and 1.2]).

1.1.3. Suppose that |.| is the trivial absolute value, i.e. |a| = 1 for all a ∈ k∗. In this case
Thuillier [47, Section 2] constructs a closely related strong deformation retraction

p : Xi −→ Xi

from Xi onto the non-Archimedean skeleton S(X) of X using the natural action of the analytic
group Ti on Xi. By [47, Proposition 2.9] there is a natural embedding i∆ : S(X) ↪→ NR(∆)
such that the diagram

Xi p−−−−→ S(X)

⊆
y

yi∆

Xan trop∆−−−−→ NR(∆)

is commutative and the image of S(X) in NR(∆) is the closure ∆ of ∆ in NR(∆). Note that
on a torus-invariant open affine subset Uσ = Spec k[Sσ] of X, for a cone σ ∈ ∆, the image of
i∆ is given by

σ = Hom(Sσ,R≥0) ⊆ Hom(Sσ,R) ,

which is also known as the canonical compactifcation of the cone σ = Hom(S,R≥0).
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1.1.4. Suppose now that X0 ↪→ X is a toroidal embedding, i.e. an open and dense
embedding that is étale locally isomorphic to the open embedding of a big algebraic torus
into a toric variety. Using formal torus actions Thuillier [47, Section 3] is able to lift his
construction for toric varieties and obtains a strong deformation retraction

p : Xi −→ Xi

onto the non-Archimedean skeleton S(X) of X. We refer to [33, Chapter 2] and the beginning
of [47, Section 3] for the basic theory of toroidal embeddings. In [33] the authors work with
formal instead of étale neighborhoods, but by [16, Section 2] both approaches are equivalent
over algebraically closed fields.

In [1] Abramovich, Caporaso, and Payne explain how S(X) can be endowed with the
structure of a generalized extended cone complex ΣX . By [47, Proposition 3.15], if X0 ↪→ X
has no self-intersection in the terminology of [33], then ΣX is the canonical compactification of
the rational polyhedral cone complex ΣX associated to the toroidal embedding as constructed
in the end of [33, Section 2.1]. Note that other authors also use the adjectives simple or strict
to denote toroidal embeddings without self-intersection.

1.2. Tropicalization of logarithmic schemes

Let X be a fine and saturated logarithmic scheme locally of finite type over k. In this
article we associate to X a generalized cone complex ΣX , expanding on both [1] and [33],
and construct a natural continuous tropicalization map tropX : Xi → ΣX from Xi into its
canonical extension ΣX . For our definition to be reasonable we require tropX to fulfill the
following two properties:

– The tropicalization map is functorial with respect to logarithmic morphisms.
– In the logarithmically smooth case tropX recovers Thuillier’s retraction map.

To be precise, the following two theorems have to hold:

Theorem 1.1. A morphism f : X → X ′ of fine and saturated logarithmic schemes locally
of finite type over k induces a morphism Σ(f) : ΣX → ΣX′ of generalized cone complexes that
makes the induced diagram

Xi tropX−−−−→ ΣX

fi
y

yΣ(f)

(X ′)i
tropX′−−−−→ ΣX′

commute. The association f 7→ Σ(f) is functorial in f .

Suppose now that X is logarithmically smooth over k. Then X has the structure of a toroidal
embedding (see Section 4.3 below).

Theorem 1.2. If X is logarithmically smooth, then tropX has a section onto the skeleton
of X, i.e. there is a homeomorphism JX : ΣX

∼−→ S(X) such that the diagram

Xi

S(X) ΣX

pX tropX

JX

∼
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is commutative.

1.3. Tropicalizing subvarieties

Let X be a logarithmic scheme locally of finite type over k and let Y ⊆ X be a closed
subvariety. One may define the tropicalization associated to Y with respect to X by setting

TropX(Y ) = tropX(Y i) .

In [49, Theorem 1.1] we have shown that, if X is a Zariski logarithmic scheme that is
logarithmically smooth over k and if Y non-trivially intersects the open locus X0 of X where
the logarithmic structure is trivial, then TropX(Y ) ∩ ΣX also carries the structure of a cone
complex. Moreover, the further results of [49] show that one can use the polyhedral geometry
of TropX(Y ) to study properties of Y , thought of as a partial embedded compactification of
Y0 = Y ∩X, expanding on Tevelev’s theory of tropical compactifications (see [46]).

Let Y be a closed subvariety of a T -toric variety X and assume Y ∩ T 6= ∅. Then there
are two different ways to tropicalize Y : the first is to consider the classical Kajiwara-Payne
tropicalization Trop∆(Y ) (see Section 1.1.2 above); the other is to endow Y with the pullback
of the logarithmic structure from X and to consider its image in ΣX . In Section 7 we give
a detailed comparison of these two cases. These considerations together with the above two
theorems lead to the following incarnation of the principle of faithful tropicalization (see e.g.
[6], [28], and [14]).

Corollary 1.3. Suppose that Y is a proper and schön subvariety of a T -toric variety X
such that Y ∩ T 6= ∅. Then the restriction

trop∆ |Y an : Y an −→ Trop∆(Y )

of the Kajiwara-Payne tropicalization map has a unique continuous section

JY : Trop∆(Y ) −→ Y an

such that JY ◦ trop∆ : Y an → S(Y ) is the deformation retraction onto the toroidal skeleton if
and only if the intersection of Y with every T -orbit in X is non-empty and irreducible (i.e. has
multiplicity one).

1.4. The main idea of our construction

Our approach to the construction of tropX is a global version of the local tropicalization
map defined by Popescu-Pampu and Stepanov in [43, Section 6]. Fix a morphism α : P → A
from a monoid P into the multiplicative monoid of an algebra A of finite type over k (or
more generally into the quotient A/A∗) and set X = SpecA. The set σP = Hom(P,R≥0) is the
canonical compactification of the rational polyhedral cone σP = Hom(P,R≥0) and there is a
natural continuous tropicalization map

tropα : Xi −→ σP

that is defined by sending x ∈ Xi to the homomorphism tropα(x) ∈ σP = Hom(P,R≥0) given
by

p 7−→ − log
∣∣α(p)

∣∣
x

for p ∈ P .
In the global case we proceed in two steps. Associated to a Zariski logarithmic scheme

X without monodromy (see Section 4.2 below) there is an essentially unique characteristic
morphism φX : (X,OX)→ FX into a Kato fan FX , i.e. a locally monoidal space that is covered
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by affine patches SpecP for fine and saturated monoids P (see [32, Section 9] and Section
3.1 below). The set of R≥0-valued points FX(R≥0) carries the structure of an extended cone
complex ΣX and, as a heuristic, should be thought of as a ”non-Archimedean analytic space”
associated to FX . The natural continuous tropicalization map

tropX : Xi −→ ΣX

is then formally defined as the ”analytification” of the characteristic morphism φX . In the
special case that both X = SpecA and FX = SpecP are affine, we have ΣX = σP and the
tropicalization map tropX is nothing but the local tropicalization map of Popescu-Pampu and
Stepanov [43].

In general, not every logarithmic scheme X admits a characteristic morphism, a phenomenon
that is due to the presence of monodromy in the logarithmic structure (see Section 4.2). In
these cases we may still define a generalized cone complex ΣX as well as a tropicalization map
tropX : Xi → ΣX by taking colimits over all strict étale covers by logarithmic schemes without
monodromy.

1.5. Complements, applications, and further developments

1.5.1. Our approach to the tropicalization of logarithmic schemes is very much inspired by
ideas of M. Gross and Siebert that have been outlined in [25, Appendix B]; their construction
is motivated by applications to logarithmic Gromov-Witten theory in analogy with the
tropical part of an exploded manifold in the sense of [40]. Let X be a fine and saturated
Zariski logarithmic scheme locally of finite type over k. According to Gross and Siebert the
tropicalization of X is given as the space

TropGS(X) =
( ⊔

x∈X
Hom(MX,x,R≥0)

)/
∼ ,

where the equivalence relation ∼ is induced by the duals of the generization maps MX,x′ →
MX,x, whenever x′ is a specialization of x in X. In fact, from our construction one can deduce
that there is a natural homeomorphism

TropGS(X) ' ΣX

and TropGS(X) therefore naturally carries the structure of a generalized cone complex.

1.5.2. An alternative approach to the tropicalization of subvarieties of toric varieties, that
is similar in spirit to our construction, has been developed by Giansiracusa and Giansiracusa in
[20]. Let N be a free finitely generated abelian group and consider a rational polyhedral fan ∆
in NR. Then ∆ defines a toric variety X∆ over the field F1 with one element and the associated
sharp monoidal space (X,OX) = (X,OX/O∗X) turns out to be a toric Kato fan. Instead of
”analytifying” FX by considering the R≥0-valued points of X∆, the authors of [20] work in
the category of semiring scheme and consider the base change X∆ ×F1

T, where T denotes the
semi-ring of tropical numbers.

In [36], based on his theory of blueprints (see [35]), Lorscheid proposes a much larger
framework for tropicalization that generalizes both Giansiracusa and Giansiracusa’s theory
of tropical schemes and the tropical geometry of logarithmic schemes without monodromy. Let
T≥0 be the semiring of non-negative tropical numbers. Lorscheid, in particular, shows that both
Xi and ΣX (and more generally Y i and the tropicalization TropX(Y ) for a closed subset Y of
X) naturally arise as the set of T≥0-valued points of certain suitable chosen so-called ordered
blue schemes (see [36, Theorem H]). In this language the tropicalization map tropX , as defined
in this article, arises as the induced map on T≥0-valued points of an underlying morphism of
ordered blue schemes, which one can think of as an enrichment of the characteristic morphism
φX used in our construction.
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1.5.3. Let X be a Zariski logarithmic scheme that is logarithmically smooth over the base
field. In [21] A. Gross has developed a version of tropical intersection theory on (extended) cone
complexes that admit a weak embedding into a vector space generated by a lattice, expanding
on the theory developed in this article. In particular, using his approach one can enrich the
process of tropicalization to an operation on algebraic cycles on X that non-trivially intersect
X0.

In ”good” cases, his approach also allows us to identify certain natural tropical intersection
products with their algebraic counterparts. Applying these identities to the moduli space of
rational logarithmic stable maps into a toric variety, we can deduce that certain rational tropical
and algebraic (descendant) Gromov-Witten invariants agree (see e.g. [21, Section 5] and [45,
Theorem C]), which provides us with a moduli-theoretic explanation of the classical Nishinou-
Siebert correspondence theorem (see [38]).

1.5.4. In [4] and [5] (also see [3] and [51]), the authors develop the theory of Artin fans,
an incarnation of the theory of Kato fans in the category of logarithmic algebraic stacks that
is more suitable to deal with logarithmic structures that have monodromy. In particuar, for
every logarithmic scheme there is an Artin fan AX and an essentially unique strict morphism
X → AX that is a lift of the characteristic morphism to this category. For example, if X is a
T -toric variety, the Artin fan AX is the toric quotient stack

[
X
/
T
]
.

In [51, Theorem 1.1] we show that defining tropX as the ”analytification” of the characteristic
morphism is much more than a mere heuristic: There is a natural homeomorphism µX :

∣∣Ai
X

∣∣→
ΣX from the topological space

∣∣Ai
X

∣∣ underlying the non-Archimedean analytic stack Ai
X with

ΣX making the diagram

Xi

∣∣Ai
X

∣∣ ΣX

φiX tropX

µX

∼

commute. If X is a T -toric variety, this statement generalizes to the fact that the Kajiwara-
Payne tropicalization map trop∆ : Xan → NR(∆) is a stack quotient

[
Xan

/
T ◦
]
, where T ◦

denotes the affinoid torus of T , a non-Archimedean version of S1 ⊗N . This procedure,
in particular, gives every rational polyhedral cone complex Σ as well as its canonical
compactification Σ canonically the structure of a non-Archimedean analytic stack.

2. Monoids, cones, and monoidal spaces

2.1. Monoids

A monoid P is a commutative semigroup with an identity element. All monoids will be
written additively, unless noted otherwise. The non-negative real numbers together with
addition form a monoid that is denoted by R≥0. Its monoid structure naturally extends to
R≥0 = R≥0 ∪ {∞} by setting a+∞ =∞ for all a ∈ R≥0.

An ideal I in a monoid P is a subset I ⊆ P such that p+ I ⊆ I for all p ∈ P . Every monoid P
contains a unique maximal ideal mP = P − P ∗. An ideal p in P is called prime if its complement
P − p in P is a submonoid, or equivalently, if p1 + p2 ∈ p already implies p1 ∈ p or p2 ∈ p for
all pi ∈ P . The complement of a prime ideal in P is referred to as a face of P .

The localization of a monoid P with respect to a submonoid S is given by

S−1P = {p− s|p ∈ P, s ∈ S} ,
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where p− s denotes an equivalence class of pairs (p, s) ∈ P × S under the equivalence relation

(p, s) ∼ (p′, s′)⇔ ∃ t ∈ S such that p+ s′ + t = p′ + s+ t .

If S is the set N · f for an element f ∈ P we write Pf for the localization S−1P and if S is the
complement of a prime ideal p in P we denote S−1P by Pp.

A monoid P is called fine, if it is finitely generated and the canonical homomorphism into
the group P gp = P−1P = {p− q| p, q ∈ P} is injective. It is said to be saturated if, whenever
p ∈ P gp, the property n · p ∈ P for some n ∈ N>0 already implies p ∈ P . An element p ∈ P is
called a torsion element, if n · p = 0 for some n ∈ N>0; it is called a unit, if there is q ∈ P such
that p+ q = 0. Denote the subgroup of torsion elements in P by P tors and the subgroup of
units by P ∗. A fine and saturated monoid P is said to be toric, if P tors = 0; any monoid P is
said to be sharp, if P ∗ = 0. We denote the category of fine and saturated by fs−Mon and
the full subcategory of toric monoids by tor−Mon.

Lemma 2.1. Let P be a fine and saturated monoid.
(i) There is a toric submonoid P̃ of P such that P = P̃ ⊕ P tors.
(ii) There exists a sharp submonoid P of P such that P = P ⊕ P ∗.

For the convenience of the reader we provide proofs of these two well-known statements.

Proof of Lemma 2.1. The abelian group Q = P gp is finitely generated. So we can find a
finitely generated free abelian subgroup Q̃ of Q such that Q = Q̃⊕Qtors. Note that hereby
Qtors = P tors, since n · q = 0 ∈ P for q ∈ Q and some n ∈ N>0 already implies q ∈ P using
that P is saturated. Set P̃ = P ∩ Q̃. Every p ∈ P can be uniquely written as p̃+ t with p̃ ∈ Q̃
and t ∈ P tors and we have p̃ = p− t ∈ P . Thus P = P̃ ⊕ P tors. This proves part (i).

In view of (i), we may assume P ∗ = 0 for the proof of part (ii). Given q ∈ Q such that
n · q ∈ P ∗ for some n ∈ N>0, we already have q ∈ P , since P is saturated. Therefore P ∗ is a
saturated abelian subgroup in Q, i.e. Q/P ∗ is free, and we can find a subgroup Q of Q such
that Q = Q⊕ P ∗. So every element p ∈ P can be uniquely written as p+ u with p ∈ Q and
u ∈ P ∗. Set P = P ∩Q. Since p = p− u ∈ P , this implies P = P ⊕ P ∗.

In a slight abuse of notation, we write P̃ for the toric monoid P/P tors and P for the sharp
monoid P/P ∗.

2.2. Rational polyhedral cones

A strictly convex rational polyhedral cone (or short: a rational polyhedral cone) is a pair
(σ,N) consisting of a finitely generated free abelian group N and a strictly convex rational
polyhedral cone σ ⊆ NR = N ⊗ R, i.e. a finite intersection of half spaces

Hi =
{
u ∈ NR

∣∣〈u, vi〉 ≥ 0
}
,

where vi ∈M such that σ does not contain any non-trivial linear subspaces. We refer to [18,
Section 1.2] and [27, Appendix A] for the essential background on these notions. Note hereby
that Gubler [27] calls rational polyhedral cones pointed integral polyhedral cones. We denote
the relative interior of a rational polyhedral cone σ, i.e. the interior of σ in its span in NR,
by σ̊. A morphism f : (σ,N)→ (σ′, N ′) of rational polyhedral cones is given by an element
f ∈ Hom(N,N ′) such that f(σ) ⊆ σ′.

Consider now the functor σ on fs−Monop that associates to a fine and saturated monoid
P the rational polyhedral cone (σP , NP ) given by

NP = Hom(P gp,Z)
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and

σP = Hom(P,R≥0) =
{
u ∈ Hom(P gp,R)

∣∣u(p) ≥ 0 for all p ∈ P
}
⊆ (NP )R .

It is immediate that a morphism f : Q→ P of fine and saturated monoids P and Q induces a
morphism σ(f) : (σP , NP )→ (σQ, NQ) and that the association f 7→ σ(f) is functorial in f .

Proposition 2.2. The functor σ induces an equivalence between the category of toric
monoids and the category of rational polyhedral cones.

Proof. Consider the functor (.)∨ that sends (σ,N) in RPC to Sσ = σ∨ ∩M , where M =
Hom(N,Z) and

σ∨ =
{
v ∈MR

∣∣〈u, v〉 ≥ 0 for all v ∈ σ
}
.

By Gordon’s Lemma [18, Section 1 Proposition 1] the monoid Sσ is finitely generated and it
is immediate that Sσ is integral, saturated, and torsion-free. A morphism f : (σ,N)→ (σ′, N ′)
induces a homomorphism f∨ : Sσ′ → Sσ and this association is functorial in f . It is now easy
to check that (.)∨ is an inverse to σ using Lemma 2.1 (i).

By Lemma 2.1 (ii) the category of sharp toric monoids corresponds to rational polyhedral
cones (σ,N) that are sharp, i.e. those cones σ whose span in NR is equal to NR. Throughout
this article we are going to assume that all of our cones are sharp. In a slight abuse of notation
we are therefore going to denote the category of sharp cones by RPC; an object in RPC will
simply be referred to as a cone and written as σ without explicit reference to the lattice N .

A face morphism τ → σ is a morphism of cones that induces an isomorphism onto a (not
necessarily proper) face of σ. Note that we explicitly allow automorphisms of a cone σ in the
class of face morphism. If we want to τ to be isomorphic to a proper face of σ, we refer to
τ → σ as a proper face morphism.

2.3. Monoidal spaces

A locally monoidal space is a pair (X,OX) consisting of a topological space X together with
a sheaf of monoids OX . Given two locally monoidal spaces (X,OX) and (Y,OY ), a morphism
of locally monoidal spaces is a continuous map f : X → Y together with a morphism f† :
f∗OY → OX of sheaves of monoids such that the induced homomorphism f†x : OY,f(x) → OX,x
is a local homomorphism of monoids for all x ∈ X. This means that f†x(mY,f(x)) ⊆ mX,x for
the unique maximal ideals mY,f(x) and mX,x in OX,x and OY,y respectively.

Denote the category of locally monoidal spaces by LMS. A morphism f : X → Y in LMS
is said to be strict, if the induced morphism f−1OY → OX is an isomorphism of sheaves
of monoids on X. All schemes are implicitly thought of as monoidal spaces with respect to
multiplication on OX . A monoidal space (X,OX) is said to be sharp, if O∗X,x = 0 for all
x ∈ X. The category SMS of sharp monoidal spaces is a full and faithful subcategory of LMS
and the association (X,OX) 7→ X = (X,OX) with OX = OX/O∗X defines a retraction functor
onto this subcategory.

3. Kato fans, cone complexes, and their extensions

3.1. Kato fans

In [32, Section 9] K. Kato introduces the notion of a fan that serves as a geometric model
for the dual category sh−Monop of the category sh−Mon of sharp monoids (also see [19,



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Page 10 of 34 MARTIN ULIRSCH

Section 3.5] for further details). These objects should be thought of as analogues of schemes,
where, instead of rings, we allow monoids as the fundamental building blocks.

In particular, there is a functor

Spec : Monop −→ SMS

that associates to a monoid P a sharp monoidal space SpecP , called the spectrum of P . By
[32, Proposition 9.2] the spectrum SpecP is uniquely determined by representing the functor
SMS→ Sets that associates to a sharp monoidal space (X,OX) the set of homomorphisms
Hom

(
P,OX(X)

)
.

As a set SpecP is equal to set of prime ideals of P and its topology is the one generated by
the open sets D(f) = {p ∈ SpecP |f /∈ p} for f ∈ P . The structure sheaf OF on F = SpecP is
determined by the association

D(f) 7−→ Pf/P
∗
f

and, consequently, the stalk of OF at p ∈ SpecP is given by

OF,p = Pp/P
∗
p .

A morphism φ : Q→ P , induces a morphism φ# : SpecP → SpecQ that is given by the
association p 7→ φ−1(p) and the induced morphisms on the structure sheaves.

Remark 3.1. A toric monoid P defines a toric variety XP = Spec k[P ]. The affine Kato fan
SpecP is naturally homeomorphic to Ξ(XP ), the set of generic points of the T = Spec k[P gp]-
orbits in XP .

Proposition 3.2. The functor Spec defines an equivalence between the category of sharp
monoids and the category of affine Kato fans.

Proof. Given a sharp monoid P , we have OSpecP (SpecP ) = P/P ∗ = P and, conversely, for
an affine Kato fan F the identity SpecOF (F ) = F . So taking global sections of the structure
sheaf defines an inverse to Spec.

Note that the specialization relation defines a partial order on SpecP with a unique minimal
element ∅ and a unique maximal element mP = P − P ∗. In the following pictures we indicate
specialization by an arrow.

Examples 3.3.
(i) If P = R≥0, then SpecR≥0 consists of the two prime ideals ∅ and R>0 in the monoid R≥0.

0 R≥0

In this picture we indicate the stalk of the structure sheaf at each point. If P = R≥0, then
SpecR≥0 contains, in addition to ∅ and R>0, also the prime ideal {∞}.

(ii) Similarly, if P = N, then FA1 = SpecN consists of the two prime ideals ∅ and N>0 in the
monoid N.

0 N
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Note that the topological spaces underlying SpecN and SpecR≥0 are the same; the crucial
difference lies in their sheaf of functions.

(iii) Suppose P = N2. The spectrum FA2 = SpecN2 consists of the four elements ∅, N× N>0,
N>0 × N, and N2 − {0}.

0 N

N N2

This visualization immediately generalizes to P = Nk for all positive integers k.
(iv) Let P be the monoid generated by p, q, r subject to the relation p+ r = 2q. Then SpecP

has the following four points: ∅, P − N · p, P − N · r, and P − {0}.

0 N

N P

In analogy with the category of schemes that extends the dual of the category of rings, K.
Kato [32] introduces the category of Kato fans the extends the dual of the category of sharp
monoids.

Definition 3.4. A Kato fan F is a sharp monoidal space that admits a covering by open
subset Ui isomorphic to SpecPi for some monoids Pi.

In the remainder of this article, unless noted otherwise, we are going to assume that every
Kato fan is locally fine and saturated, i.e. that we may choose the Pi as above to be fine and
saturated. Denote the category of (locally fine and saturated) Kato fans by Fans.

Examples 3.5.
(i) Given two copies U0 and U1 of SpecN, we can glue them over the generic point {∅}. This

defines the Kato fan FP1 .

0 NN

(ii) Consider three copies U0, U1, and U2 of SpecN2 with coordinates p0, q0, p1, q1, and p2, q2

respectively. Glue these affine fans with respect to the isomorphisms

DU0
(p0) ' SpecN ' DU1

(q1)

DU1
(p1) ' SpecN ' DU2

(q2)

DU2
(p2) ' SpecN ' DU0

(q0)
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in order to obtain the Kato fan FP2 .

0

N

N N2

N2

N2N

Glueing k + 1 copies of SpecNk in an analogous manner, gives rise to Kato fans FPk for
all integers k.

(iii) Given four copies U1, U2, U3, and U4 of SpecN2 with generators p1, q1, p2, q2, p3, q3, and
p4, q4 respectively, we can glue these affine Kato fans via the isomorphisms

DU1
(p1) ' SpecN ' DU2

(q2)

DU2
(p2) ' SpecN ' DU3

(q3)

DU3
(p3) ' SpecN ' DU4

(q4)

DU4
(p4) ' SpecN ' DU1

(q1) .

The Kato fan obtained this way will be denoted by FP1×P1 .

0

N

N N2

N

NN2 N2

N2

An immediate generalization of this construction yields the Kato fans F(P1)k for all positive
integers k.

The notation FAn , FPn , and F(P1)n is explained in Example 4.11 below: The Kato fans
described here turn out to be the Kato fans that are naturally associated to the toric varieties
An, Pn, and (P1)n. Note, in particular, that the underlying topological spaces of these Kato
fans precisely correspond to the generic points of the torus orbits of these toric varieties (see
Remark 3.1 above).
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3.2. Cone complexes

In [32] K. Kato introduced the notion of a Kato fan in order to algebraize much more
geometric objects, so called rational polyhedral cone complexes in the terminology of [33,
Section 2.1 Definition 5] (also see [1, Section 2.1]).

Definition 3.6. A rational polyhedral cone complex Σ (or short: a cone complex) consists
of a topological space |Σ| together with a collection of rational polyhedral cones σα and
continuous maps φα : σα → |Σ| such that the following properties hold:
(i) The maps φα are injective and induce a bijection

⊔

α

σ̊α
∼−→ |Σ| .

(ii) Given a proper face τ of σα, then τ is also a member of the family (σα).
(iii) A subset A of |Σ| is closed if and only if its preimages φ−1

α (A) are closed in σα for all α.

Denote the category of cone complexes with piecewise Z-linear morphisms by RPCC. That
is, a morphism f : Σ→ Σ′ in this category is given by a continuous map |f | : |Σ| → |Σ′| together
with a family of morphisms σα → σ′β with β = β(α) such that the diagrams

σα
φα−−−−→ |Σ|

y
y|f |

σ′β
φ′
β−−−−→ |Σ′|

commute for all α.

Proposition 3.7. There is an equivalence

Fans
∼−−→ RPCC

F 7−→ ΣF

between the the category of Kato fans and the category of rational polyhedral cone complexes
such that

|ΣF | = F (R≥0) = Hom
(

SpecR≥0, F
)
.

Define the reduction map r : |ΣF | = F (R≥0)→ F by sending a morphism u : SpecR≥0 → F
to the image u(R>0) of the maximal ideal R>0 in SpecR≥0.

Proof of Proposition 3.7. Let F be a Kato fan. For an open affine subset U = SpecP in F ,
the preimage

σU = r−1(U) = Hom(P,R≥0)

is a rational polyhedral cone in |ΣF | = F (R≥0). Given an open affine subset V = SpecQ of U ,
we can assume that Q = Pp for some prime ideal p in P and we have that

σV = r−1(V ) = Hom(Q,R≥0)

is a face of σU . This, in particular, allows us to endow |ΣF | with the weak topology. That
is, a subset A ⊆ |ΣF | is closed, if and only if the A ∩ r−1(U) ⊆ Hom(P,R≥0) is closed for all
open affine subsets U = SpecP of F . These observations together with Proposition 2.2 and
Proposition 3.2 imply that RPCC and Fans are equivalent.
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3.3. Canonical extensions

Consider a Kato fan F . The results in [47] suggest to think of ΣF as the analogue of a
non-Archimedean analytic space associated of F . In fact, the correct analogue of Xi for a
scheme X locally of finite type over k is not ΣF , but rather its canonical compactification ΣF ,
as defined in [1, Section 2.2].

Definition 3.8. Let F be a Kato fan. The extended cone complex associated to F (also
known as the canonical extension of ΣF ) is the set F (R≥0) of R≥0-valued points on F , that is
the set of morphisms SpecR≥0 → F .

Define the reduction map

r : ΣF → F

by sending a morphism u : SpecR≥0 → F onto the point u(R>0) ∈ F and the structure map

ρ : ΣF → F

by sending a morphism u : SpecR≥0 → F to the point u
(
{∞}

)
∈ F . Note hereby that the

reduction map r : ΣF → F is a natural extension of the reduction map r : ΣF → F as defined
right before the proof of Proposition 3.7. We observe that for an open affine subset U = SpecP
of F the preimage

r−1(U) = Hom(P,R≥0)

is the canonical compactification σU of the cone σU = Hom(P,R≥0) as defined in [47, Section
2]. Moreover, for an open affine subset V = SpecQ of U , the extended cone σV = r−1(V ) is
a face of σU = r−1(U) and so ΣF is the colimit of all σU taken over all open affine subsets
U of F . This characterization of ΣF allows us to endow it with the weak topology: A subset
A ⊆ ΣF is closed if and only if A ∩ σU is closed for all open affine subsets U = SpecP .

Proposition 3.9. The structure map ρ : ΣF → F is continuous and the reduction map
r : ΣF → F is anti-continuous.

Proof. We only need to consider an affine Kato fan F = SpecP . Given f ∈ P , we have

ρ−1
(
D(f)

)
=
{
u ∈ Hom(P,R≥0)

∣∣u(f) 6=∞
}

as well as

r−1
(
D(f)

)
=
{
u ∈ Hom(P,R≥0)

∣∣u(f) = 0
}

and this implies the continuity of ρ as well as the anti-continuity of r.

Proposition 3.10. A morphism f : F → G of Kato fans induces a continuous map

Σ(f) : ΣF −→ ΣG

u 7−→ f ◦ u
that naturally extends the piecewise Z-linear map Σ(f) : ΣF → ΣF and makes the diagrams

ΣF
Σ(f)−−−−→ ΣG

ρ

y
yρ

F
f−−−−→ G

ΣF
Σ(f)−−−−→ ΣG

r

y
yr

F
f−−−−→ G
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commute. The association f 7→ Σ(f) is functorial in f .

Note that on open affine subsets U = SpecP and V = SpecQ of F and G respectively with
f(U) ⊆ V the map Σ(f) is given by

Hom(P,R≥0) −→ Hom(Q,R≥0)

u 7−→ u ◦ f# ,

where f# is a homomorphism Q→ P inducing f .

Proof. We only need to show the commutativity of the two diagrams. To achieve this we
observe that for u ∈ ΣF = Hom(SpecR≥0) we have

(
ρG ◦ Σ(f)

)
(u) = ρG(f ◦ u) =

= (f ◦ u)({∞}) = (f ◦ ρF )(u)

as well as
(
rG ◦ Σ(f)

)
(u) = rG(f ◦ u) =

= (f ◦ u)(R>0) = (f ◦ rF )(u) .

Recall from Section 2.3 that a morphism f : F → G of Kato fans is strict, if the natural
morphism f−1OG → OF is an isomorphism of monoid sheaves on F and note that this is
equivalent to f inducing isomorphisms f†x : OG,f(x) → OF,x for all x ∈ F .

Corollary 3.11. A morphism f : F → G of Kato fans is strict if and only if the induced
morphism Σ(f) : ΣF → ΣG maps every cone in ΣF isomorphically onto a cone in ΣG.

Proof. Denote for x ∈ F and y = f(x) ∈ G the unique minimal affine open subsets in F
and G containing x and y respectively as their maximal points by U = SpecP and V = SpecQ.
A morphism f : F → G is strict, if and only if it induces an isomorphism U ' V for all points
x ∈ F . By Proposition 3.10 this is the case if and only f also induces isomorphisms

ΣU = Hom(P,R≥0) ' ΣV = Hom(Q,R≥0)

of rational polyhedral cones.

3.4. Stratification of extended cone complexes

Let F be a Kato fan. The collection ρ−1(x) for x ∈ F defines a stratification of ΣF by locally
closed subsets. If F is irreducible, the unique open stratum ρ−1(η), where η is the generic point
of F , is equal to the set of morphisms SpecR≥0 → F , i.e. the cone complex ΣF . In this sense
we can think of ΣF as the canonical compactification of ΣF .

If F = SpecP is affine, we can formally describe this stratification following [41, Section 3]
or [44, Proposition 3.4]. Write σ for the cone Hom(P,R≥0) as well as NR(σ) = Hom(P,R).

Proposition 3.12 ([44] Proposition 3.4). There is a natural stratification
⊔

τ≺σ
NR/ Spec τ

∼−−→ NR(σ)
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of NR(σ) by locally closed subsets homeomorphic to NR/Span τ , given by associating to [u] ∈
NR/Span τ , represented by u ∈ NR = Hom(P gp,R), the homomorphism

p 7−→
{
〈u, p〉 if p ∈ τ⊥ ∩ P
∞ else

in NR(σ) = Hom(P,R).

We may identify the stratification of ΣF = Hom(P,R≥0) ⊆ Hom(P,R) given by the
preimages ρ−1(x) of the points x in F with the stratification

⊔

τ≺σ
σ/τ

∼−−→ ΣF

induced from Proposition 3.12, where we write σ/τ for the image of σ in NR/ Span τ . Here σ/τ
is identified with a locally closed subset of ΣF by sending an element in σ/τ represented by
u ∈ σ to the homomorphism

p 7−→
{
〈u, p〉 if p ∈ τ⊥ ∩ P
∞ else

in Hom(P,R≥0).

Remark 3.13. If we think of NR(σ) = Hom(P,R) as the analogue of Xan for an affine
scheme X = SpecA of finite type over k, then ΣF = Hom(P,R≥0) is the closed subset
corresponding to Xi ⊆ Xan, the set of bounded seminorms on A (see Section 5 below).

Examples 3.14.
(i) If F = FA1 = SpecN, then ΣF = ΣA1 = R≥0. The strata are given by R≥0 and {∞}.

(ii) Suppose F = FA2 = SpecN2. Then ΣF = ΣA2 = R2

≥0 and the strata are given by R2
≥0,

R≥0 × {∞}, {∞} × R≥0, and {(∞,∞)}.

(iii) Suppose P is the monoid generated by p, q, r subject to the relation p+ r = 2q. Then
the extended cone complex ΣF associated to F = SpecP consists of the cone R≥0(1, 2) +
R≥0(1, 0), two copies of R≥0, and the point {(∞,∞)} at infinity.
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Examples 3.15.
(i) Let F = FP1 . Then the strata of the extended cone complex are given by R, {∞}, and
{−∞}.

(ii) If F = FP2 , its associated extended cone complex ΣF = ΣP2 consists of the open stratum
R2, three copies of R at infinity and three points {∞} at infinity.

(iii) If F = FP1×P1 , its associated extended cone complex ΣF = ΣP1×P1 can be visualized as
follows.

The strata of ΣP1×P1 are given by R2, {∞} × R, R× {∞}, {−∞} × R, R× {−∞},{
(∞,∞)

}
,
{

(∞,−∞)
}

,
{

(−∞,∞)
}

, and
{

(−∞,−∞)
}

.

3.5. Generalized cone complexes

In [1] the authors develop the notion of a generalized cone complex in order to describe the
combinatorial structure of a toroidal embedding that has self-intersection. Recall that a face
morphism τ → σ is a morphism of rational polyhedral cones that induces an isomorphism onto
a face of σ. This face need not be a proper face of σ; so, in particular, automorphisms of cones
are allowed.

Definition 3.16 ([1] Section 2.6). A generalized cone complex Σ is a topological space
|Σ| together with a presentation as a colimit of a diagram of face morphisms in RPC such
that

– for a proper face τ of a cone σ in Σ the proper face morphism τ ↪→ σ is also in Σ, and
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– for every automorphism of a cone σ in Σ that leaves a proper face τ of σ invariant the
induced automorphism of τ is also in Σ.

Example 3.17. Let F be a Kato fan. Then the cone complex ΣF = F (R≥0) is a generalized
cone complex, since we may take the diagram of all σU = Hom(P,R≥0) taken over open
affine subsets U = SpecP of F connected by (proper) face morphisms σV ↪→ σU whenever
V = SpecQ is an open affine subset of U .

Example 3.18. Let G be a finite group acting on a cone σ by automorphisms. Then the
quotient σ/G is a generalized cone complex (see Figure 1).

A morphism Σ→ Σ′ of generalized cone complexes is a continuous map |Σ| → |Σ′| such that
for every σ in Σ, there is a cone σ′ in Σ′ such that the composition σ → Σ→ Σ′ factors through
a morphism σ → σ′ of cones.

Of course, we may form the canonical extension of a generalized cone complex Σ by taking
the colimit of the σα instead of the σα (see Figure 1). In this case a morphism f : Σ→ Σ′ of

generalized cone complexes canonically extends to a continuous map f : Σ→ Σ
′
.

Figure 1. The quotient of R2

≥0 by the Z2-operation (x, y) 7→ (y, x) is a generalized extended
cone complex by Example 3.18.

4. Logarithmic structures and Kato fans

The main reference for logarithmic geometry is [31]. We also refer the reader to [30, Section
2-4] and [2, Section 2 and 3] for short accounts of this theory and to [19, Section 7] for a
treatment in full generality.

4.1. Logarithmic structures and charts

One of the main objectives of logarithmic geometry in the sense of K. Kato [31] is to enlarge
the category of schemes in a way that allows us to generalize many of the nice combinatorial
constructions that are naturally associated to toric varieties to more general schemes. The
geometry of a toric variety X with big torus T is governed by the T -invariant divisors. If
X = Spec k[P ] is affine, the monoid of torus-invariant Cartier divisors is given by P/P ∗. It is
exactly this observation that motivates the following definition.

Definition 4.1. Let X be a scheme and denote by Xτ either the associated Zariski site
XZar or the étale site Xet.
(i) A pre-logarithmic structure on Xτ is a pair (M,ρ) consisting of a sheaf of monoids M on

Xτ and a morphism ρ : M → OX of sheaves of monoids on X.
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(ii) A pre-logarithmic structure (M,ρ) is said to be a logarithmic structure, if ρ induces an
isomorphism ρ−1O∗X ' O∗X .

The triple (X,M, ρ) is called a logarithmic scheme. If the logarithmic structure is defined
on XZar (or on Xet), we say (X,M, ρ) is a Zariski (resp. étale) logarithmic scheme. It is very
common to conveniently suppress the reference to ρ or (M,ρ) from this notation and to denote
a logarithmic scheme just by (X,M) or X respectively. In the latter case the logarithmic
structure will be written as (MX , ρX).

Denote by π : Xet → XZar the natural morphisms of sites. As explained in [39, Appendix
A] to every Zariski logarithmic structure (M,ρ) we can associate its pullback π∗(M,ρ) to Xet

and restricting an étale logarithmic structure (M,ρ) from Xet to XZar defines an adjoint π∗
to π∗. By [39, Theorem A.1] the functor π∗ induces an equivalence between the category of
Zariski logarithmic structures on XZar and the category of étale logarithmic structures on Xet

for which the adjunction morphism π∗π∗(M,ρ)→ (M,ρ) is an isomorphism. From now on we
are going to identify a Zariski logarithmic structure (M,ρ) on XZar with its pullback to Xet.

Example 4.2 (Divisorial logarithmic structures). Let D be a divisor on a normal scheme
X. Setting

MD =
{
f ∈ OX

∣∣f |X−D ∈ O∗X
}

defines a logarithmic structure on X.

Example 4.3 (Toric varieties). Let X be a T -toric variety defined by a rational polyhedral
fan ∆ in the real vector space NR = N ⊗ R associated to the cocharacter lattice N of T . The
divisorial logarithmic structure associated to the toric boundary X − T is given by

k∗ ⊕ Sσ −→ k[Sσ]

(a, s) 7−→ aχs

on T -invariant open affine subset Uσ = SpecK[Sσ] for a cone σ in ∆.

To any pre-logarithmic structure (M,ρ) on X we can canonically associate a logarithmic
structure Ma together with a morphism M →Ma that is adjoint to the natural forgetful
functor from the category of logarithmic structures to the category of pre-logarithmic structures
on X. The sheaf Ma is defined to be the pushout of

α−1(O∗X)
⊆−−−−→ M

ρ

y

O∗X
in the category of sheaves of monoids on X with the induced morphism Ma → OX .

Given a morphism f : Y → X of schemes, the inverse image f∗M of M is defined to be the
logarithmic structure associated to f−1M → f−1OX → OY .

Definition 4.4.
(i) Let M and M ′ be pre-logarithmic structures on X. A morphism of pre-logarithmic

structures (M,ρ)→ (M ′, ρ′) is a morphism γ : M →M ′ of monoid sheaves such that
ρ′ ◦ γ = ρ. A morphism of logarithmic structures on X is a morphism of pre-logarithmic
structures.
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(ii) Let X and Y be logarithmic schemes. A morphism of logarithmic schemes f : X → Y
consists of a morphism f : X → Y of schemes together with a morphism f [ : f∗MY →MX

of logarithmic structures on X.

Definition 4.5. A chart of a logarithmic structure (MX , ρX) on X is given by a monoid
P and a morphism α : PX → OX such that MX is isomorphic to the logarithmic structure
associated to α : PX → OX , where PX denotes the constant sheaf defined by P on Xτ .

A morphism f : X → Y of logarithmic schemes is said to be strict, if f [ : f∗MY →MX is
an isomorphism. A morphism PX → OX defines a chart if and only if the induced morphism
X → SpecZ[P ] is strict.

A logarithmic scheme X is said to be quasi-coherent, if X admits a covering by étale
neighborhoods Ui of X such that for every Ui there is a monoid Pi and a chart βi : (Pi)Ui →
MUi . If all Pi can be chosen to be finitely generated (fine, saturated, etc.), we say the logarithmic
structure M is coherent (fine, saturated, etc.).

Throughout this article, the term logarithmic scheme will always mean a fine and saturated
logarithmic scheme. Given two morphisms X → Z and Y → Z of logarithmic schemes, the fiber
product exists in the category of fine and saturated logarithmic schemes. If either (or both)
of the morphisms are strict, then it is given by endowing the scheme-theoretic fiber product
X ×Z Y with the logarithmic structure associated to pr#

XMX ⊕MZ
pr#
Y MY .

4.2. Logarithmic schemes without monodromy

The characteristic sheaf of a logarithmic structure (MX , ρX) on X is defined to be the sheaf
MX = MX/M

∗
X 'MX/O∗X on X. We say a Zariski logarithmic scheme X is small, if the closed

locus of points x ∈ X where the restriction map

Γ(X,MX)
∼−−→MX,x

is an isomorphism is non-empty and connected.

Definition 4.6. A Zariski logarithmic scheme X is said to have no monodromy, if there
is a strict morphism (X,MX)→ F into a Kato fan F .

For a small Zariski logarithmic scheme X the isomorphism PX = MX,x → Γ(X,MX) induces
a morphism

φX : (X,MX) −→ SpecPX

of sharp monoidal spaces that is strict, since PX →MX locally lifts to a chart of MX by [32,
Lemma (1.6)]. So a small logarithmic scheme automatically has no monodromy.

Proposition 4.7. Suppose that X is a Zariski logarithmic scheme without monodromy.
There is a strict morphism φX : (X,MX)→ FX into a Kato fan FX that is initial among such
morphisms.

In other words, given another strict morphism φ : (X,MX)→ F into a Kato fan F , there is
a unique strict morphism FX → F making the diagram
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(X,MX) F

FX

φ

φX

commute. In a slight abuse of notation we also denote the composition (X,OX)→ (X,MX)→
FX by φX and refer to it as the characteristic morphism of X.

Proof of Proposition 4.7. Suppose first that X is small. Given a strict morphism φ :
(X,MX)→ F into a Kato fan F , the smallest open subset containing φ(x) as its unique
closed point is isomorphic to SpecPx therefore implying the universal property as above.

Now consider a general Zariski logarithmic scheme without monodromy. Choose a cover by
small open subsets Ui. The intersections Uij = Ui ∩ Uj may not be small, but we can again
choose an open cover of

⊔
ij Uij by small logarithmic schemes Vk. For every open Vk ⊆ Ui the

Kato fan FVk is an open affine subset of FUi . Since there is a strict morphism (X,MX)→ F
into some Kato fan, the diagram of FVk and FUi glues to give a Kato fan FX , which has the
desired universal property, since it is a colimit of all Ui and Vk.

Not every Zariski logarithmic scheme is without monodromy, as shown by the following
Example 4.8 that has originally appeared in [25, Appendix B].

Example 4.8 ([25] Example B.1). LetX be a logarithmic scheme whose underlying scheme
is a union C1 ∪ C2 of two copies of P1 meeting each other in two nodes p and q. Set U(p) =
X − {q} and U(q) = X − {p}, and denote the two connected components of U(p) ∩ U(q) =
X − {p, q} by V1 and V2 respectively. We define a logarithmic structure on X as follows:

– On U(p) = Spec k[x1, x2]/(x1x2) we take the logarithmic structure MU(p) associated to
the chart N4 → k[x1, x2]/(x1x2) that is given by (a1, a2, a3, a4) 7→ xa1

1 xa2
2

– Similarly, on U(q) we consider the logarithmic structure MU(q) associated to the chart

N4 → k[y1, y2]/(y1y2) given by (b1, b2, b3, b4) 7→ yb11 y
b2
2 .

– Finally, on V1 we glue the logarithmic structures along the identification N3 ' N3 given
by (a1, a3, a4) ' (b1, b3, b4), while on V2 we glue along the identification N3 ' N3 given by
(a2, a3, a4) ' (b2, b4, b3).

We obtain a diagram of four Kato fans FU(p) = SpecN4, FU(q) = SpecN4, FV1
= SpecN3, and

FV2
= SpecN3. If we try to glue those four affine Kato fans, we find (going around the circle

once) that an open affine subset SpecN2 of FU(p) would have to be identified with itself along
the swap (a3, a4) 7→ (a4, a3) and the resulting quotient is not a Kato fan.

Lemma 4.9. A morphism f : X → Y of logarithmic schemes X and Y locally of finite type
over k without monodromy induces a morphism fF : FX → FY such that the diagram

(X,OX)
φX−−−−→ FX

(f,f
[
)

y
yfF

(Y,OY )
φY−−−−→ FY

is commutative. The association f 7→ fF is functorial in f and, if f is a strict morphism, then
fF is a strict morphism.

Proof. The morphism f induces a compatible family of morphisms f [x : MY,f(x) →MX,x

for all x ∈ X and therefore there is an induced morphism fF : FX → FY that is functorial.
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Note, in particular, that a strict morphism f : X → Y induces isomorphisms MY,f(x) 'MX,x

for all x ∈ X implying that fF is strict.

4.3. Logarithmically smooth schemes

In [31] K. Kato defines the notion of logarithmically smooth morphism X → Y between
logarithmic schemes and in [31, Theorem 3.5] (also see [30, Theorem 4.1]) he gives a criterion
on how to check for logarithmic smoothness in terms of the existence of certain well-behaved
charts.

For Y = Spec k, endowed with the trivial logarithmic structure k∗ ↪→ k, this reduces to the
following: A logarithmic scheme X is logarithmically smooth over k if and only if every point
x ∈ X there is an étale neighborhood δ : U → X, a fine and saturated monoid P whose torsion
part P tors has order invertible on X, as well as a chart PU → OU of MU = δ∗MX such that
the induced morphism γ : U → Spec k[P ] is étale.

Write X0 for the locus of points x in X where the logarithmic structure is trivial, i.e. where
MX,x = OX,x. We have the following immediate Corollary 4.10 of Kato’s criterion.

Corollary 4.10. Let X be a logarithmic scheme that is logarithmically smooth over k.
Then the open embedding X0 ↪→ X is a toroidal embedding.

In other words, X is normal and for every point x ∈ X there is an étale open neighborhood
δ : U → X as well as an étale morphism γ : U → Z into a toric variety Z with big torus T such
that γ−1(T ) = U0 = δ−1(X0) (see [47, Section 2.1]). Toroidal embeddings may also be defined
using formal charts over an algebraic closure of the base field, as in [33, Section 2.1]; both of
these definitions are equivalent by [16, Section 2].

Proof of Corollary 4.10. By [32, Proposition (8.3) and Theorem (4.1)] X is normal. Choose
a splitting P = P tors ⊕ P̃ with P̃ being toric as in Lemma 2.1. Since the order of P tors is
invertible over X, the induced morphism Spec k[P ]→ Spec k[P̃ ] and therefore the composition
γ : U → Spec k[P ]→ Spec k[P̃ ] is étale. Moreover, we also have that P̃ → P → OU defines a
chart of MU = δ−1MX , because P tors is always mapped into O∗U . Therefore the morphism
γ : U → Spec k[P̃ ] is strict and we have γ−1

(
Spec k[P̃ gp]

)
= U0. Finally, since δ : U → X is a

strict étale morphism we have δ−1(X0) = U0.

Suppose that X is a logarithmic scheme that is logarithmically smooth over k. For a point
x ∈ X we denote by mX,ξ the unique maximal ideal in the local ring OX,x and by I(M,x) the
ideal in OX,x generated by MX,x −M∗X,x. Set

Ξ(X) =
{
ξ ∈ X

∣∣I(MX , ξ) = mX,ξ
}
.

By [32, Proposition (8.2) and (10.1)] we have that, if MX is defined in the Zariski
topology, the sharp monoidal space

(
Ξ(X),MX |Ξ(X)

)
is the Kato fan associated to X and the

characteristic morphism φX sends a point x ∈ X to the point φX(x) that corresponds to the
ideal I(M,x) in OX,x. So, in particular, a Zariski logarithmic scheme X that is logarithmically
smooth over k is without monodromy.

Example 4.11 (Toric varieties). Let X = X(∆) be a toric variety with big torus T . Then
the characteristic fan FX can identified with the set of generic points of the T -orbits in X and
the structure sheaf is given by M∆ = M∆/M

∗
∆. The characteristic morphism φ∆ : (X,OX)→

FX is given by sending a point x ∈ X to the generic point of the unique T -orbit containing x.
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Let X be an (étale) logarithmic scheme that is logarithmically smooth over k. The
logarithmic structure on X naturally induces a stratification of X by locally closed subsets.
For every ξ ∈ Ξ(X) we have a stratum

E(ξ) = {ξ} −
⋃

ξ→ξ′
{ξ′}

where the union on the right is running over all strict specializations of ξ′ of ξ (written as
ξ → ξ′) with ξ 6= ξ′ and {.} denotes the closure of a point in X. Note, in particular, that, if X
is connected, then X0 is the unique open stratum.

5. Non-Archimedean analytification – a reminder

5.1. Berkovich’s analytification functor

Let k be a field that is endowed with a possibly trivial non-Archimedean absolute value |.|.
In [7] Berkovich defines an analytification functor (.)an associating to a scheme X, locally of
finite type over k, a locally ringed space Xan that has desirable topological properties together
with a structure morphism ρ : Xan → X. We refer to [6, Sections 2.2 and 3] and [27, Section
2] for down-to-earth treatments of these notions and to [7] and [8] for the general theory.

Recall that, if X = Spec(A) is affine, a point x in X is given by a multiplicative seminorm

|.|x : A→ R≥0

that extends the norm on k. In this case the topology on Xan is the coarsest making the maps
Xan → R≥0, x 7→ |f |x for all f ∈ A continuous and ρ is given by x 7→ ker |.|x. In general, i.e.
if X is not affine, one can define the space Xan by choosing a covering Ui of X by open and
affine subsets and glueing the Uani over all (Ui ∩ Uj)an = ρ−1(Ui ∩ Uj).

Alternatively (see e.g. [42, Section 2.5]) we may characterize Xan as the set of pair (K,φ)
consisting of a non-Archimedean extension K of k and a morphism φ : SpecK → X modulo
an equivalence relation. Two such pairs (K,φ) and (L,ψ) are equivalent, if there is a common
non-Archimedean extension Ω of both K and L that makes the diagram

Spec Ω −−−−→ SpecL
y

yψ

SpecK
φ−−−−→ X

commute.

5.2. Thuillier’s analytification functor

For the purpose of our construction it is more convenient to work with a slightly different
analytification functor (.)i, defined by Thuillier [47, Section 1] for all schemes X that are
locally of finite type over a trivially valued field k. This functor is closely related to the generic
fiber functor in [9] on the category of schemes that are locally of finite presentation over a
valuation ring R.

If X = SpecA is affine, the analytic space Xi is the analytic domain Xi of Xan that is
characterized by |f |x ≤ 1 for all f ∈ A. In the non-affine case choose an open affine covering
Ui of X and glue the Ui

i over (Ui ∩ Uj)i = r−1(Ui ∩ Uj), where r denotes the reduction map
r : Xi → X that is induced by x 7→

{
f ∈ A

∣∣|f |x < 1
}

on affine open subsets U = Spec(A).
Similiarly to the above, every point in Xi can be represented by a pair (R,φ) where R is a
valuation ring R extending k and φ : SpecR→ X is a morphism.
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The natural inclusion (SpecA)i ⊆ (SpecA)an on the level of affine open patches induces
a morphism Xi → Xan and, in a slight abuse of notation, we denote its composition with
ρ : Xan → X by ρ as well. If X is separated over k, the morphism Xi → Xan defines an
isomorphism onto an analytic domain in Xan. If X is proper over k, all K-rational points
are already R-integral, where R denotes the valuation ring of K, by the valuative criterion of
properness. In this case the two functors (.)an and (.)i agree, that is we have Xi = Xan.

5.3. Analytification of the projective line and its torus invariant subspaces

Let k be a algebraically closed field carrying the trivial absolute value. In the following
examples we illustrate the differences between the two analytification functors (.)an and (.)i

using the affine line A1, the one-dimensional torus Gm, and the projective line P1.

Example 5.1. The analytic space (A1)an consists of all seminorms on k[x] extending the
trivial absolute value on k. They can be classified as follows:

– For every closed point a in A1 with a ∈ k we have the semi-norm |.|a,0 that is determined
by |x− a|a,0 = 0.

– The Gauss point |.|η is determined by |f |η = 1 for all f ∈ k[x].
– For every a ∈ k and 0 < r < 1 we have a seminorm |.|a,r that is uniquely determined by∣∣(x− a)

∣∣
a,r

= r.

– Finally, for every r > 1 there is a seminorm |.|∞,r determined by |x| = r.

We have limr→1 |.|a,r = limr→1 |.|∞,r = |.|η. If we associate |.|a,0 to a closed point a in A1

and the Gauss point |.|1,0 to the generic point η of A1 we can embed A1 into (A1)an. So the
analytic space (A1)an consists of compact intervals connecting a closed point a in A1 to the
Gauss point η as well as an half-open interval that connects η to ∞.

The analytic space (A1)i is the subset of (A1)an that does not contain all points of the form
|.|r for r > 1, since (A1)i only contains bounded seminorms.

0

∞

A1

η

(A1)an

0

A1

η

(A1)i

Example 5.2. The analytic space Ganm = A1 − {0} is equal to (A1)an −
{
|.|0,0

}
and

henceforth contains two half-open intervals: One connects the Gauss point η to ∞, the other
connects η to 0. The analytic space Gi

m, however, does not contain those two half-open intervals.
One may think of Gi

m as a non-Archimedean analogue of S1.
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0

∞

Gm

η

(Gm)an

Gm

η

(Gm)i

Example 5.3. The projective line P1 is proper over k and so (P1)an and (P1)i are equal.
This space compactifies (A1)an by adding a point ∞ to the half-open interval connecting η to
∞.

0

∞

A1

η

(P1)an = (P1)i

Note that the structure morphism ρ : (P1)an → P1 associates to a seminorm |.|a,0 the closed
point a in P1, to ∞ the point ∞ in P1, but to all other points in (P1)an the generic point
η of P1. The reduction morphism r : (P1)i → P1 associates only to the Gauss point |.|1,0 the
generic point of P1. All other points |.|a,r for r < 1 are mapped to the closed point a in P1,
while the points |.|r for r > 1 are mapped to ∞. It is exactly this dichotomy between ρ and r
that lies at the very heart of many applications of tropical geometry.

6. Constructing the troplicalization map

6.1. Tropicalization via Kato fans – the case without monodromy

Consider a (fine and saturated) Zariski logarithmic scheme X locally of finite type over
k without monodromy and denote its characteristic morphism from Section 4.2 by φX :
(X,OX)→ FX . As explained in Sections 3.2 and 3.3, we may associate to X the cone complex
ΣX = ΣFX and its canonical extension ΣX = ΣFX .
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Definition 6.1. The tropicalization map associated to X

tropX : Xi −→ ΣX

x 7−→ tropX(x)

is defined as follows: A point x ∈ Xi can be represented by a morphism SpecR→ X for a
valuation ring R extending k and this naturally induces a morphism x : SpecR→ (X,OX) in
SMS. Define the point tropX(x) ∈ ΣX = FX(R≥0) as the composition

SpecR≥0
val#−−−−→ SpecR

x−−−−→ (X,OX)
φX−−−−→ X

in the category SMS, where val# denotes the morphism induced by the valuation val : R→
R≥0 on R.

Note that tropX is induced by φX in analogy with the analytic morphism fi : Xi → (X ′)i

being induced by a morphism f : X → X ′ of schemes locally of finite over k.

Proposition 6.2.
(i) The tropicalization map is well-defined and continuous. It makes the diagrams

Xi tropX−−−−→ ΣX

rX

y
yrFX

(X,OX)
φX−−−−→ FX

Xi tropX−−−−→ ΣX

ρX

y
yρFX

(X,OX)
φX−−−−→ FX

commute.
(ii) A morphism f : X → X ′ of Zariski logarithmic schemes locally of finite type over k without

monodromy induces a morphism Σ(f) : ΣX → ΣX′ whose canonical extension Σ(f) makes
the diagram

Xi tropX−−−−→ ΣX

fi
y

yΣ(f)

(X ′)i
tropX′−−−−→ ΣX′

commute. The association f 7→ Σ(f) is functorial in f .

Proof. Given two representatives α : SpecR→ X and β : SpecR′ → X of the same point
x ∈ Xi, there is a valuation ring Ω extending both R and R′ that makes the diagram

Spec Ω −−−−→ SpecR′
y

yβ

SpecR
α−−−−→ X

commute. Thus we have val# ◦α = (val′)# ◦ β and so tropX is well-defined.
Suppose that both X = SpecA and FX = SpecP are both affine and choose a homomor-

phism φ# : P → A inducing the characteristic morphism φX : SpecA→ SpecP . Then the
tropicalization map

tropX : Xi −→ ΣX = Hom(P,R≥0)

is given by

x 7−→
(
p 7→ − log |φ#(p)|

)
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for x ∈ Xi. This shows that in the affine case tropX is continuous; the general case follows by
glueing, once we have established that the diagram for the reduction maps is commutative.

The commutativity of the diagrams follows from the following characterization of rX and
ρX : Given x ∈ Xi represented by a morphism x : SpecR→ X for an integral valuation ring R
extending k, the reduction map rX sends x to the point x(ηs) for the special point ηs =

{
a ∈

R
∣∣|a| < 1

}
∈ SpecR and the structure morphism ρX sends x to the point x(ηg) for the generic

point ηg =
{
a ∈ R

∣∣|a| = 0
}
∈ SpecR. Therefore we have

(φX ◦ rX)(x) = φX
(
x(ηs)

)

= (φX ◦ x)
(

val−1(R>0)
)

= rFX ◦ val# ◦φX ◦ x = (rFX ◦ tropX)(x)

as well as

(φX ◦ ρX)(x) = φX
(
x(ηg)

)

= (φX ◦ x)
(

val−1({∞})
)

= ρFX ◦ val# ◦φX ◦ x = (ρFX ◦ tropX)(x) .

Part (ii) immediately follows from Lemma 4.9, Proposition 3.10 and the definition of the
tropicalization map. Note that we hereby set Σ(f) = Σ(fF ) as well as Σ(f) = Σ(fF ).

6.2. Tropicalization in the presence of monodromy

In this section we construct and describe the tropicalization map associated to a general
étale logarithmic scheme X that is locally of finite type over k.

Proposition 6.3. There is a generalized cone complex ΣX and a continuous tropicalization
map

tropX : Xi −→ ΣX

into the canonical extension ΣX of ΣX such that for every strict surjective étale cover U → X
by a logarithmic scheme U without monodromy there is a commutative diagram

Ui tropU−−−−→ ΣUy
y

Xi tropX−−−−→ ΣX

and the pair (ΣX , tropX) is initial among all such maps.

In other words, given a continuous map τ : Xi → Σ into the canoncial extension of a
generalized cone complex Σ such that for all strict étale morphisms U → X from a logarithmic
scheme without monodromy there is a morphism ΣU → Σ making the diagram

Ui tropU−−−−→ ΣUy
y

Xi tropX−−−−→ Σ

commute, then there is a unique morphism ΣX → Σ making the diagram
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Xi Σ

ΣX

τ

tropX

commute.

Proof. For every strict étale morphism U → X from a small logarithmic scheme U with
PU = Γ(U,MU ), we have a cone σU = Hom(PU ,R≥0) as well as a continuous tropicalization
map

tropU : Ui −→ σU .

Whenever there is another strict morphism V → U from a small logarithmic scheme V to U ,
we have an induced face morphism σV → σU . Define ΣX as the colimit of all σU , taken over
all strict étale morphisms U → X from a small logarithmic scheme U .

By [1, Lemma 6.1.3] the analytic space Xi is the topological colimit of all such Ui and
therefore we may define a natural continuous tropicalization map

tropX : Xi −→ ΣX

by the universal property of colimits in the category of topological space. Since every
logarithmic scheme U without monodromy can be written as a colimit of small open subsets,
the diagram (6.3) commutes as well.

Let τ : Xi → Σ be a continuous map into the canonical extension of a generalized cone
complex Σ as above. Then the diagram

Ui tropY−−−−→ ΣUy
y

Xi τ−−−−→ Σ

commutes for all small logarithmic schemes U and therefore we obtain a unique morphism
ΣX → Σ as desired.

Proof of Theorem 1.1. Let f : X → X ′ be a morphism of logarithmic schemes. For every
strict étale morphism U ′ → X ′ from a logarithmic scheme U ′ without monodromy, the
fiber product U = X ×X′ U ′ is also without monodromy, since the composition (U,MU )→
(U ′,MU ′)→ FU ′ is strict. Therefore there is a unique morphism Σ(f) : ΣX → ΣX′ of gener-
alized cone complexes that induces a natural continuous map Σ(f) : ΣX → ΣX′ making the
diagram

Xi tropX−−−−→ ΣX

fi
y

yΣ(f)

(X ′)i
tropX′−−−−→ ΣX′

commute.

Suppose now that X is logarithmicallly smooth. For every stratum E of X the fundamental
group π1(E) operates on the (constant!) characteristic monoid ME on E and therefore on
the cone σE = Hom(ME ,R≥0). Denote by HE the image of π1(E) in Aut(ME) = Aut(σE).
Whenever E is in the closure of a stratum E′ (but not equal to E′) we have a proper face
morphism σE′ → σE that is induced by the specialization map ME →ME′ .
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Proposition 6.4 ([1] Proposition 6.2.6). Let X be a logarithmically smooth scheme locally
of finite type over k. Then the generalized cone complex of X is given as the colimit

ΣX = lim
−→

σE/HE

taken over all logarithmic strata of X.

Proof. Let U → X be a strict étale morphism from a small logarithmic scheme U . Then
there is a unique closed stratum E of X the closed stratum of U is mapped into and we have
σE = σU = Hom(PU ,R≥0). There are two classes of face morphisms in the diagram defining
ΣX :

– The operation of π1(E) induces precisely the automorphisms of σU already contained in
HE .

– Moreover, whenever E is in the closure of a stratum E′ and U ′ → U is a strict étale
morphism from a small logarithmic scheme such that the closed stratum of U ′ is mapped
into E′, the strict étale map U ′ → U induces the proper face morphism σE′ = σU ′ → σU =
σE coming from the specialization map ME →ME′ .

This gives a complete description of the diagram of face morphism that defines ΣX and so the
claim follows.

6.3. Non-Archimedean skeletons of logarithmically smooth schemes

In this section we prove Theorem 1.2. Let X be a logarithmically smooth scheme locally
of finite type over k. Then, as seen in Corollary 4.10, the logarithmic scheme X defines a
toroidal embedding X0 ↪→ X. The main result of [47] is that there is a strong deformation
retraction p : Xi → Xi onto the skeleton S(X) of Xi that depends on the toroidal structure
of X0 ↪→ X.

Suppose first that X = Spec k[P ] an affine toric variety. Here the deformation retraction map
p : Xi → Xi is given by sending x ∈ Xi to the seminorm

k[P ] −→ R≥0∑

p∈P
apχ

p 7−→ max |ap||χp|(x)

on k[P ] and so x and p(x) agree, when restricted to P . Define a section JX : ΣP → Xi of
tropP by sending u ∈ ΣP = Hom(P,R≥0) to the seminorm

JX(u) : k[P ] −→ R≥0∑

p∈P
apχ

p 7−→ max |ap|e−u(p)

and note that JX is well-defined, continuous, and fulfills tropP ◦JX = id. Every element
in S(X) arises this way and, since ΣP is compact, the tropicalization map induces a
homeomorphism JX : ΣX → S(X) making the diagram

S(X)

Xi

ΣX

p

tropX

JX

commute.
Now consider a Zariski logarithmic scheme that is logarithmically smooth over k. By [47,

Corollaire 3.13] pX is uniquely determined by its restriction to small open subsets U of X.
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Choose a strict étale morphism γ : U → Z into an affine T -toric variety Z = Spec k[P ] such
that the image of the closed stratum of U is in the closed T -orbit of Z. By [47, Proposition
3.7] the skeleton of Ui is defined as S(U) = (γi)−1

(
S(Z)

)
and γi induces a homeomorphism

S(U)
∼−→ S(Z). Since the tropicalization map naturally factors as

Ui γi
−−−−→ Zi tropZ−−−−→ Hom(P,R≥0) ,

by Theorem 1.1 this yields the claim.
Finally assume that X is an étale logarithmic scheme. Then for every strict surjective étale

morphism U → X from a Zariski logarithmic schemes U , the logarithmic scheme R = U ×X U
is also defined in the Zariski topology, i.e. without monodromy. By [47, Proposition 3.29] all
diagrams

Ui pU−−−−→ S(U)
y

y

Xi pX−−−−→ S(X)

commute and the universal property of colimits implies that there is a continuous map JX :
ΣX → S(X) such that the diagram

S(X)

Xi

ΣX

p

tropX

JX

commutes. This is a homeomorphism, since by [47, Proposition 3.31] the skeleton S(X) is the
colimit of S(R) ⇒ S(U) for every strict étale morphism U → X from a logarithmic scheme U
without monodromy.

7. Comparison with Kajiwara-Payne tropicalization

Let X = X(∆) be a normal toric variety with big torus T = Spec k[M ] determined by a
rational polyhedral fan ∆ in NR = Hom(M,R). We refer to [13] and [18] for standard notation
and background on toric varieties. Consider the Kajiwara-Payne extended tropicalization map

trop∆ : Xan −→ NR(∆)

as defined in [29, Section 1] as well as [41, Section 3] and alluded to in Section 1.1.2.

Proposition 7.1. For a toric variety X = X(∆) we have ΣX = ∆, the extended cone
complex ΣX is the closure of ∆ in NR(∆), and there is a commutative diagram

Xi tropX−−−−→ ΣX

⊆
y

y⊆

Xan trop∆−−−−→ NR(∆) .

Proof. It is enough to check the assertions on T -invariant open affine subsets Uσ =
Spec k[Sσ]. We can naturally identify

σ =
{
u ∈ Hom(Sσ,R)

∣∣u(s) ≥ 0 ∀s ∈ Sσ
}

= Hom(Sσ,R≥0)
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and Hom(Sσ,R≥0) is the closure of σ in NR(σ) = Hom(Sσ,R). Under these identifications the
identity trop∆(x) = tropX(x) holds for all x ∈ Ui

σ ⊆ Uanσ .

Let Y be a closed subset of X; for simplicity we assume Y ∩ T 6= ∅ throughout. Its associated
tropical variety Trop(Y,∆) is defined to be the image under trop∆ of the closed subspace Y an

in NR(∆); one may alternatively characterize Trop(Y,∆) as the closure of trop∆

(
(Y ∩ T )an

)

in NR(∆).

Corollary 7.2. Given a closed subset Y of X, we have the identity TropX(Y ) =
Trop(Y,∆) ∩∆.

Proof. This is an immediate consequence of Proposition 7.1.

Corollary 7.3. The closed subset Y is proper over k if and only if TropX(Y ) =
Trop(Y,∆).

Proof. If Y is proper over k, we have Y i = Y an and therefore Trop(Y,∆) ⊆ ∆. Then
Proposition 7.1 implies the claim. By [46, Proposition 2.3] (over C) and [27, Proposition
11.12] (over all base fields k) Y is proper over k, if and only if Trop(Y,∆) ⊆ ∆. So the converse
is true as well.

One may endow Y with the logarithmic structure that is given as the pullback of i∗MX via the
inclusion i : Y → X. By Theorem 1.1 there is a piecewise Z-linear morphism Σ(i) : ΣY → ΣX
such that Σ(i)

(
TropY (Y )

)
= TropX(Y ). As can be seen in the following Example 7.4 this

morphism is in general not injective.

Example 7.4. Let Y be a generic conic that intersects the toric boundary of X = P2 as
indicated below.

Y

P2

Consider Y as a logarithmic scheme with respect to the pullback logarithmic structure i∗MX .
Then the Kato fan FY is given by six copies of SpecN glued over the generic points and the
extended cone complex ΣY consists of six copies of R≥0 glued at the origin. The tropical variety
TropX(Y ) relative to X is given by collapsing each of the pairs of cones to one (with tropical
multiplicity 2) and is equal to the 1-skeleton of ΣP2 .
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ΣY

Let us now generalize the observation made in the above example. Suppose that Y is a schön
subvariety of X, i.e. assume that the multiplication map

µ : T × Y −→ X

is smooth. By [49, Proposition 2.7] this is equivalent to Y , with the logarithmic structure
induced from X, being logarithmically smooth over k.

Proposition 7.5. The induced map Σ(i) : ΣY → ΣX is an isomorphism of ΣY if and only
if the intersection of Y with every T -orbit in X non-empty and irreducible (i.e. has multiplicity
one).

Proof. The map Σ(i) : ΣY → ΣX is an isomorphism if and only if the embedding induces
a one-to-one correspondence between the logarithmic strata of Y and the T -orbits of X. This
is the case precisely when the intersection of Y with every T -orbit in X is non-empty and
irreducible.

Proof of Corollary 1.3. Since Y is proper, we have Y i = Y an and, as explained in Corollary
7.3 above, this also means that Trop∆(Y ) = ΣX . By Proposition 7.5 we have ΣY ' ΣX if and
only if the intersection of Y with every T -orbit in X is non-empty and irreducible, and therefore
Theorem 1.2 yields the claim.
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14. Maria Angelica Cueto, Mathias Häbich, and Annette Werner. Faithful tropicalization of the Grassmannian
of planes. Math. Ann., 360(1-2):391–437, 2014.

15. P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Inst. Hautes Études
Sci. Publ. Math., (36):75–109, 1969.

16. Jan Denef. Some remarks on toroidal morphisms. arXiv:1303.4999 [math], March 2013.
17. Manfred Einsiedler, Mikhail Kapranov, and Douglas Lind. Non-Archimedean amoebas and tropical

varieties. J. Reine Angew. Math., 601:139–157, 2006.
18. William Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton

University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
19. Ofer Gabber and Lorenzo Ramero. Foundations for almost ring theory – sixth release. arXiv e-print

math/0409584, September 2004.
20. Jeffrey Giansiracusa and Noah Giansiracusa. Equations of tropical varieties. Duke Math. J., 165(18):3379–

3433, 2016.
21. Andreas Gross. Intersection Theory on Tropicalizations of Toroidal Embeddings. arXiv:1510.04604 [math],

October 2015.
22. Mark Gross and Bernd Siebert. Mirror symmetry via logarithmic degeneration data. I. J. Differential

Geom., 72(2):169–338, 2006.
23. Mark Gross and Bernd Siebert. Mirror symmetry via logarithmic degeneration data, II. J. Algebraic

Geom., 19(4):679–780, 2010.
24. Mark Gross and Bernd Siebert. From real affine geometry to complex geometry. Ann. of Math. (2),

174(3):1301–1428, 2011.
25. Mark Gross and Bernd Siebert. Logarithmic Gromov-Witten invariants. J. Amer. Math. Soc., 26(2):451–

510, 2013.
26. Walter Gubler. Tropical varieties for non-Archimedean analytic spaces. Invent. Math., 169(2):321–376,

2007.
27. Walter Gubler. A guide to tropicalizations. In Algebraic and combinatorial aspects of Tropical Geometry,

volume 589 of Contemp. Math. Amer. Math. Soc., Providence, RI, 2013.
28. Walter Gubler, Joseph Rabinoff, and Annette Werner. Skeletons and tropicalizations. Adv. Math., 294:150–

215, 2016.
29. Takeshi Kajiwara. Tropical toric geometry. In Toric topology, volume 460 of Contemp. Math., pages

197–207. Amer. Math. Soc., Providence, RI, 2008.
30. Fumiharu Kato. Log smooth deformation theory. Tohoku Math. J. (2), 48(3):317–354, 1996.
31. Kazuya Kato. Logarithmic structures of Fontaine-Illusie. In Algebraic analysis, geometry, and number

theory (Baltimore, MD, 1988), pages 191–224. Johns Hopkins Univ. Press, Baltimore, MD, 1989.
32. Kazuya Kato. Toric singularities. Amer. J. Math., 116(5):1073–1099, 1994.
33. G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat. Toroidal embeddings. I. Lecture Notes

in Mathematics, Vol. 339. Springer-Verlag, Berlin, 1973.
34. Finn F. Knudsen. The projectivity of the moduli space of stable curves. II. The stacks Mg,n. Math. Scand.,

52(2):161–199, 1983.
35. Oliver Lorscheid. The geometry of blueprints: Part I: Algebraic background and scheme theory. Adv.

Math., 229(3):1804–1846, 2012.
36. Oliver Lorscheid. Scheme theoretic tropicalization. arXiv:1508.07949 [math], August 2015.
37. Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, volume 161 of Graduate Studies

in Mathematics. American Mathematical Society, Providence, RI, 2015.
38. Takeo Nishinou and Bernd Siebert. Toric degenerations of toric varieties and tropical curves. Duke Math.

J., 135(1):1–51, 2006.
39. Martin C. Olsson. Logarithmic geometry and algebraic stacks. Ann. Sci. École Norm. Sup. (4), 36(5):747–
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