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Key Points.

◦ We introduce an analytic formulation for the spatial distribution of the

bedrock depth

◦ Bayesian analysis reconciles our model with field data and quantifies pre-

diction and parameter uncertainty

◦ The use of a distributed parametrization recognizes geologic hetero-

geneities

Abstract. The depth to bedrock controls a myriad of processes by in-

fluencing subsurface flow paths, erosion rates, soil moisture and water up-

take by plant roots. As hillslope interiors are very difficult and costly to il-

luminate and access, the topography of the bedrock surface is largely unknown.

This essay is concerned with the prediction of spatial patterns in the depth

to bedrock (DTB) using high-resolution topographic data, numerical mod-

eling and Bayesian analysis. Our DTB model builds on the bottom-up con-

trol on fresh-bedrock topography hypothesis of Rempe and Dietrich [2014]

and includes a mass movement and bedrock-valley morphology term to ex-

tent the usefulness and general applicability of the model. We reconcile the

DTB model with field observations using Bayesian analysis with the DREAM

algorithm [Vrugt et al., 2008, 2009]. We investigate explicitly the benefits of

using spatially distributed parameter values to account implicitly, and in a

relatively simple way, for rock mass heterogeneities that are very difficult,

if not impossible, to characterize adequately in the field. We illustrate our

method using an artificial data set of bedrock depth observations and then

evaluate our DTB model with real-world data collected at the Papagaio river
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basin in Rio de Janeiro, Brazil. Our results demonstrate that the DTB model

predicts accurately the observed bedrock depth data. The posterior mean

DTB simulation is shown to be in good agreement with the measured data.

The posterior prediction uncertainty of the DTB model can be propagated

forward through hydromechanical models to derive probabilistic estimates

of factors of safety.
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1. INTRODUCTION

The depth to bedrock (DTB) controls a large array of geomorphologic, hydrologic,

geochemical, ecologic and atmospheric processes, yet is large unknown as hillslope interiors

are very difficult and costly to illuminate and access. The regolith thickness determines

groundwater flow [Freer et al., 2002; Lanni et al., 2012], infiltration and redistribution

[Kosugi et al., 2006], subsurface saturation [Tromp-van Meerveld and McDonnell , 2006b;

Ebel et al., 2007; Liang and Uchida, 2014], runoff generation [Troch et al., 2002; Tromp-

van Meerveld and McDonnell , 2006a], storage capacity [Ohnuki et al., 2008], the shape of

the hydrograph [Hopp and McDonnell , 2009], and variably saturated water flow [Fujimoto

et al., 2008]. The bedrock topography is also of paramount importance in geotechnical

engineering as it determines slope stability [Mukhlisin et al., 2008; Ho et al., 2012; Kim

et al., 2015], pore pressure responses to infiltration [Vargas Jr. et al., 1990; Askarinejad

et al., 2012; Lanni et al., 2013], and landslide potential [Borja and White, 2010; Milledge

et al., 2014; Bellugi et al., 2015]. An accurate characterization of the DTB is thus a

prerequisite to describe adequately many different Earth-surface processes.

Spatial patterns in the bedrock depth arise from complex interactions between a myr-

iad of biologic [Jenny , 1941], (geo)chemical [Lebedeva and Brantley , 2013], and hydrologic

[Rempe and Dietrich, 2014] processes, and factors including surface topography, lithology

[Catani et al., 2010], climate [Anderson et al., 2013], and long-term human activities [Kuri-

akose et al., 2009]. As a consequence, the thickness of the regolith can vary considerably

within a hillslope and watershed, thereby complicating tremendously the characterization

and point prediction of the bedrock depth topography [Catani et al., 2010]. Until hillslope
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interiors are more readily accessible through geophysical imaging or extensive deep drilling

the transition of the underlying fresh bedrock will remain largely unknown [Rempe and

Dietrich, 2014].

During the past decades a great deal of research has been devoted to characterization

of the soil and regolith depth in headwater hillslopes and catchments. That research has

focused primarily on four different issues: (1) the development of specialized measure-

ment techniques for (in)direct observation of the bedrock depth, (2) the application and

use of interpolation methods to predict the bedrock depths from sparse direct observa-

tions and/or secondary data, (3) the development and application of empirico-statistical

methods that predict the spatial continuum of the regolith depth with the help of eas-

ily measurable environmental covariates, and (4) the development of landscape evolution

models that predict the soil/regolith depth by solving numerically or analytically the soil

mass conservation equation.

Research into measurement methods has led to the development and use of direct and

indirect sensing techniques to determine the bedrock depth at point and larger support.

Examples of direct measurement methods include rod penetrometers [Kuriakose et al.,

2009; Tesfa et al., 2009; Fu et al., 2011; Lanni et al., 2012; Lucà et al., 2014], excavated

pits [Boer et al., 1996; Heimsath et al., 2001; Pelletier and Rasmussen, 2009; Catani et

al., 2010; Pelletier et al., 2011], hand and gasoline or electric-powered augers [Fernandes

et al., 1994; Ziadat , 2010; Liu et al., 2013], road cuts and erosion gullies [Kuriakose et

al., 2009; Wilford and Thomas , 2013], and dynamic cone penetrometers [Kosugi et al.,

2006, 2009; Fujimoto et al., 2008; Ohnuki et al., 2008; Tsuchida et al., 2011; Askarinejad et

al., 2012;Wiegand et al., 2013; Athapaththu et al., 2014; Liang and Uchida, 2014]. This last
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measurement device is particularly promising as it can help delineate soil stratigraphy and

layers with contrasting hydraulic properties [Eguchi et al., 2009; Masaoka et al., 2012].

Examples of indirect bedrock depth measurement methods include the use of gravity

survey [Stewart , 1980; Bohidar et al., 2001], geophysical exploration [Dahlke et al., 2009],

seismic refraction [Zhou and Wu, 1994], electrical resistivity tomography [Zhou et al.,

2000; Lucà et al., 2014], and airborne electromagnetic [Christensen et al., 2015]. These

latter five measurement methods make it possible to determine noninvasively the physical

properties of the subsurface, yet inversion methods are required to interpret these indirect

observations of the bedrock depth. Much effort is required to use these measurement

methods to characterize bedrock depth variations at the spatial scale of a hillslope or

watershed.

Research into interpolation methods has led to the development and use of (non)linear

regression methods to derive regolith depth maps compatible with the application scale

of hydrologic and/or geotechnical models. These methods can be classified in two main

groups including deterministic and geostatistical interpolation approaches. Deterministic

interpolation techniques create a bedrock depth map from measured DTB observations,

based on either the extent of similarity between nearby regolith depth observations or the

degree of smoothing. Examples include the use of triangulated irregular networks [Kim

et al., 2015], inverse distance weighting [Stewart , 1980] and radial basis functions, and

these approaches work well in the absence of spatial correlation between the measured

regolith depth data [Freer et al., 2002; Wiegand et al., 2013]. Geostatistical interpolation

techniques capitalize on the spatial structure and semi-variance of the measured bedrock

depth data [Goovaerts , 1997]. Examples include ordinary kriging [Sitharam et al., 2008;
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Tye et al., 2011], cokriging [Chung and Rogers , 2012], and regression-kriging [Odeh et

al., 1995; Sarkar et al., 2013]. These methods can incorporate topographic control points

derived from digital elevation models and other primary (topographic variables) and sec-

ondary (other covariates) variables. Conditional stochastic (Gaussian) simulation can be

used to better represent the short-range regolith depth variability derived from geostatis-

tical interpolation [Kuriakose et al., 2009; Lucà et al., 2014]. Interpolation methods are

easy to use in practice but require large amounts of field data to derive high-resolution

and high-fidelity maps of the bedrock surface topography [Dietrich et al., 1995; Catani et

al., 2010; Liu et al., 2013].

Research into empirico-statistical methods has led to the development of multivariate

linear/nonlinear or logistic regression methods that predict the bedrock depth from envi-

ronmental covariates deemed important in soil and regolith formation. These soil-forming

factors have been discussed by Jenny [1941] in his infamous equation and include cli-

mate, organisms, relief, parent material, and time. Topographic variables (terrain and

landform), bedrock properties (geology and geochemistry) and climatologic characteris-

tics (radiation, precipitation and temperature) have all been used as predictors of the

regolith depth in regression models [DeRose et al., 1991; Boer et al., 1996; Ziadat , 2010;

Wilford and Thomas , 2013; Yang et al., 2014]. Other regression-type methods published

in the geomorphologic literature include the use of artificial neural networks [Zhou and

Wu, 1994; Mey et al., 2015], principal component analysis and maximum likelihood clas-

sification [Boer et al., 1996; Ziadat , 2005], canonical correspondence analyses [Odeh et al.,

1991], support vector machines [Sitharam et al., 2008], and generalized additive models

and random forests [Tesfa et al., 2009; Shafique et al., 2011]. These latter two methods

D R A F T March 15, 2016, 11:10am D R A F T

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
GOMES ET AL.: BAYESIAN INFERENCE FOR BEDROCK MAPPING X - 9

use secondary data of land cover and other soil attributes derived from remote sensing

products. Although regression methods have the advantage of being practical and rela-

tively easy to use, the relationship between the regolith depth and exogenous variables

(covariates) is empirical and poorly rooted in geomorphologic theory. This complicates

their application to out-of-sample prediction in areas outside the domain spanned by the

observations.

Research into modeling approaches has led to the development of landscape evolution

models that solve the soil mass-balance equation over geological time scales using forward

[Dietrich et al., 1995; Roering , 2008] or backward simulation [Pelletier et al., 2011]. These

geomorphic models simulate processes such as tectonic uplift, regolith production by the

underlying bedrock, colluvial transport of the unconsolidated material, erosion and sed-

imentation, and have shown to be particularly useful for validation of field observations

and hypothesis testing of different soil transport equations. However, the output of land-

scape evolution models is subject to considerable uncertainty due to errors in the initial

states (e.g. topography one or more relief replacement times ago), boundary conditions

(climate and tectonic forcing), geologic characterization (e.g. bedrock properties), param-

eter values, model structure and equations. If conditions of dynamic equilibrium between

soil production and erosion are assumed, then simple closed-form parametric solutions

can be derived for the soil thickness by solving analytically the soil conservation equa-

tion for certain specific formulations of the soil transport equation and/or soil production

function [Bertoldi et al., 2006; Saco et al., 2006; Pelletier and Rasmussen, 2009]. These

analytic solutions allow for predictive mapping of the soil thickness from high-resolution

topographic data and field-based calibration [Pelletier and Rasmussen, 2009]. Examples
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include the nonlinear slope-dependent, nonlinear depth- and slope-dependent, and non-

linear area- and slope-dependent transport functions of Pelletier and Rasmussen [2009].

These analytic models describe accurately thin soil depth beneath hillslope ridges, but

it has yet to be established whether they can predict adequately concave hillslopes with

relatively thin soils. This may give preference instead to simulation of instantaneous DTB

maps using high-resolution topographic data [Saulnier et al., 1997; Bertoldi et al., 2006;

Catani et al., 2010].

In a separate line of research, Catani et al. [2010] have proposed an empirical

geomorphology-based model to predict the bedrock depth at the catchment scale using

relative position, hillslope gradient and curvature. This model was shown to describe ac-

curately the observed regolith depths of Italian watersheds. Liu et al. [2013] have derived

a simple analytic expression of the soil mass balance equation for humid and semi-humid

climates without tectonic activity in the immediate geological past. The simulated soil

depths of this model match closely the observed bedrock depths at the 7.9 ha Shale Hills

catchment in the USA with root mean square error of 0.39 m and R2 = 0.74. These

closed-form analytic models of the regolith thickness are much easier to implement and

use in practice than numerical landscape evolution models requiring only a high-resolution

topographic map and some calibration against observed regolith depth data to predict the

bedrock surface. Recently, Rempe and Dietrich [2014] have introduced an alternative an-

alytic model that predicts the hillslope form and the vertical extent of the weathered rock

underling soil-mantled hillslopes using physical parameters such as permeability of the

intact rock mass, porosity, and the rate of channel incision at the base of the hillslope.

This model builds on the assumption that once the fresh bedrock, saturated with nearly
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stagnant fluid, is advected into the near surface through uplift and erosion, channel inci-

sion produces a lateral head gradient within the fresh bedrock inducing drainage toward

the channel. The slow drainage of the fresh bedrock exerts an bottom-up control on the

advance of the weathering front, suggesting that bedrock discontinuities and fractures can

play a major role in regolith production [Clair et al., 2015]. The model of Rempe and

Dietrich [2014] produces thick weathered zones beneath ridges and thin regolith depths

beneath valleys, and has the advantage of being fully testable. Most of the model param-

eters can be measured directly in the laboratory or field using experiments on soil and

rock mass samples, and the simulated variables can be verified using cosmogenic nuclide

measurements, geophysical imaging, topographic surveying, and drilling.

Whereas much progress has been made on the development and use of models for pre-

diction of the regolith thickness, surprisingly little attention has been given to inference

of their parameters. Many of the parameters in these models cannot be measured directly

in the field but can only be meaningfully inferred from field data. What is more, some

parameters might be depth-dependent or vary spatially depending on hillslope position

and lithology. In this paper, we build on the ideas of Pelletier and Rasmussen [2009],

Catani et al. [2010] and Rempe and Dietrich [2014] and introduce a Bayesian framework

for DTB model parameter estimation. The Bayesian paradigm provides a simple way to

address systematically different sources of uncertainty within a single cohesive, integrated

framework [Vrugt et al., 2008]. We use Markov chain Monte Carlo (MCMC) simulation

with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm [Vrugt et al.,

2008, 2009] to infer the parameters of the DTB model from spatially distributed regolith

depth observations. This model builds on the bottom up control of fresh bedrock hy-
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pothesis of Rempe and Dietrich [2014] and uses a slope-dependency and a bedrock-valley

shape term to extent the usefulness and general applicability of the model. The DREAM

algorithm has been applied to many different fields of study involving lumped [He et

al., 2011; Scharnagl et al., 2011] and spatially distributed, high-dimensional, parameter

spaces [Keating et al., 2010; Laloy et al., 2013; Linde and Vrugt , 2013; Lochbühler et al.,

2014]. We investigate explicitly the benefits of using spatially distributed DTB parame-

ter values for the prediction of bedrock depths. Such parameterization provides a means

to account implicitly, and in a relatively simple way, for system heterogeneities that are

difficult, or impossible, to characterize adequately in the field. We illustrate our method

using synthetic bedrock depth observations and validate our approach with real-world

data collected at the Papagaio river basin (PRB) in Rio de Janeiro, Brazil. The PRB

watershed has been the subject of much study in the literature [Guimarães et al., 2003;

Fernandes et al., 2004; Vieira and Fernandes , 2004; Gomes et al., 2008, 2013] but this

previous work has focused primarily on unraveling the mechanisms of mass movement

rather than modeling of the bedrock depth.

The remainder of this paper is organized as follows. Section 2 reviews the basic building

blocks of the DTB model. Then in section 3, we evaluate the sensitivity of each of the DTB

model parameters to the simulated bedrock surface for a synthetic hillslope topography.

This section will help build awareness and intuition on how the different DTB model

parameters affect the simulated bedrock profiles. This is followed in section 4 with a short

introduction to Bayesian analysis (inversion) for inference of the DTB model parameters.

In this section we are especially concerned with the description of the DREAM algorithm

used to sample the posterior parameter distribution. We then proceed with a discussion
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of the DTB inversion results for a synthetic (section 5) and real-world (section 6) regolith

depth data set using lumped and spatially distributed parameter values. Section 7 of this

paper discusses the implications of our results for hydrologic and geotechnical modeling

and engineering. Finally, section 8 concludes this paper with a summary of the main

findings.

2. MODEL DESCRIPTION

In this section, we introduce the different building blocks of our DTB model which

is used herein to predict the hillslope form and the vertical extent of the weathered

rock underling soil-mantled hillslopes from a high-resolution topographic map of the soil

surface. We assume herein that regolith thickness depends on the interplay between

erosion, which removes unconsolidated material from the ground surface, and weathering,

which promotes rock fragmentation in the soil-bedrock interface. Our model builds on

the bottom-up control on fresh-bedrock hypothesis of Rempe and Dietrich [2014] and

calculates the thickness of the weathered zone from the difference between the measured

surface topography and predicted groundwater profile derived from analytic solution of

the one-dimensional steady-state Boussinesq equation [Bear , 2013]. Two additional terms

are used to characterize adequately the morphology of the bedrock surface beneath the

drainage valley, and the regolith thickness on steep slopes subject to an increased sediment

flux due to mass movement.

The regolith thickness, h [L] of a soil-mantled hillslope can be derived by calculating

the difference between the elevation of the ground surface, Zs [L] and the underlying
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topography, Zb [L] of the fresh bedrock

h(x, y) = Zs(x, y)− Zb(x, y), (1)

where the coordinates (x, y) are used to denote spatial location. Spatial maps of Zs are

readily available from digital elevation models (DEMs), yet the topography of the fresh

bedrock, Zb is largely unknown as the interior of a hillslope is very difficult and costly

to access. Relatively few publications can be found in the geomorphologic literature that

have documented directly the depth to the fresh bedrock underlying ridge and valley

topography [Ruxton and Berry , 1959; Thomas , 1966]. Those studies that have mapped

Zb have illuminated that the weathered zone is thickest at the ridge top and to get pro-

gressively thinner downslope [Ruxton and Berry , 1959; Thomas , 1966; Ruddock , 1967;

Feininger , 1971]. What is more, detailed studies of weathering profiles published many

decades ago have identified that groundwater can impede chemical weathering thereby re-

stricting the depth of the weathered zone [Ruxton and Berry , 1959; Thomas , 1966]. These

early experimental findings, have stimulated Rempe and Dietrich [2014] to suggest a new

hypothesis for rock mass weathering underlying soil-mantled hillslopes. This hypothesis

assumes that the groundwater exerts a bottom-up control on fresh bedrock topography,

and explains published experimental findings of progressively thinner weathered zones

downslope. This hypothesis is diametrically opposed to the classic top-down hypothesis

that is used by many soil depth models. The top-down hypothesis links the soil thick-

ness to processes taking place at the ground surface by assuming that the thickness of

the weathered zone is set by the relative rates of erosion and the soil production in the

weathering front.
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The bedrock depth model of Rempe and Dietrich [2014] builds on the one-dimensional,

steady-state form of the Boussinesq equation for groundwater flow [Bear , 2013]

1

2
K

∂2Z2
b

∂x2
+ ϕCo = 0, (2)

where K [LT−1] denotes the saturated hydraulic conductivity of the bedrock, x [L] is the

horizontal distance from the ridge, ϕ [-] signifies the saturated drainable pore space of the

bedrock (= porosity), and Co [LT
−1] represents the channel incision rate at the base of the

hillslope. By assuming strictly horizontal flow, topographic symmetry about the ridge,

and a channel elevation at the bottom of the hillslope, the following closed-form equation

can be derived for the elevation of the transition from fresh to weathered bedrock

Zb(x) =

√
ϕCo

K
(L2 − x2), (3)

where L [L] is the hillslope length, and the term (L2−x2) can be interpreted as distance to

the drainage channel. A step-by-step derivation of Equation (3) is given in the supporting

information of Rempe and Dietrich [2014], and thus will not be repeated herein. Equation

(3) predicts that the depth of the weathered zone decreases from the hilltop to the valley

floor with convexity and depth of the bedrock surface determined by the parameters ϕ,

Co, K.

Our DTB model uses as basic building block the analytic solution of Equation (3) but

includes two important extensions that enhance applicability of the model to watersheds

with convex and/or concave bedrock surfaces underneath the drainage valley and thin

weathered zones and/or exposed rock on steep hillslopes subject to mass movement. This

DTB model solves for the bedrock depth at two spatial coordinates, x and y and con-

tains two new variables, Ψ and Λ whose values are derived from the slope angle and
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drainage distance, respectively, and three additional (quasi)-physical parameters. The

basic formulation of the DTB model is given by the following closed-form equation

Zb(x, y) =
Ψ

Λ

√
ΦL2

d(x, y), (4)

where Ψ [-] measures the effect of mass movement on the bedrock surface, Λ [-] determines

the shape and depth of the bedrock valley, and is hereafter also referred to as the bedrock-

valley shape term, Ld [L] denotes the horizontal distance from the drainage, and Φ =

ϕC0/K [-] is a scalar that summarizes conveniently the combined effect of rock porosity,

permeability, and the channel incision rate on the elevation of the fresh bedrock, Zb. The

scalar variables Λ and Ψ are bounded between zero and one and determine the regolith

thickness underneath valleys and steep slopes. The drainage distance, Ld(x, y), of each

spatial location in the watershed is derived from the surface topography using recursive

DEM computation [Tesfa et al., 2009; Catani et al., 2010]. No distinction has to be made

between drainage lines and hillslope lines to predict Zb(x, y) underneath the watershed.

Thus a single call to Equation (4) suffices to derive the elevation of the bedrock surface

for given (x, y) coordinates.

Mass movement is described in analogy with the nonlinear slope-dependent model of

Roering et al. [1999]

Ψ = 1−min
[
1, (|∇Zs|/Sc)

2
]
, (5)

where ∇Zs [-] denotes the slope gradient of the surface topography and Sc [-] signifies the

critical slope angle beyond which mass movement is initiated. We follow Perron [2011],

and calculate the norm |∇Zs| using

|∇Zs| =
√
Z2

s,x + Z2
s,y , (6)
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where Zs,x and Zs,y are the gradients of the slope in the x and y direction, respectively.

Equation (5) predicts regolith loss on hillslopes steeper than the threshold angle Sc. This

movement of mass (due to landslides) gives rise to exposed rock.

The variable Λ in Equation (4) determines the hillslope-to-valley transition morphology

and is computed as follows

Λ = exp
[
− λ1(1− L̄d)

λ2
]
, (7)

where L̄d denotes the normalized drainage distance, and λ1 and λ2 are shape parameters

that determine the bedrock shape (curvature) and depth in the valley at the base of the

hillslope. This provides a mechanism to better describe the topographic signature of valley

incision by debris flow and landslides [Tarolli and Fontana, 2009]. Table 1 summarizes

the main variables and parameters of the DTB model. The effects of the variables Ψ and

Λ on the predicted spatial distribution of the regolith thickness is discussed in the next

section.

3. PARAMETER SENSITIVITY ANALYSIS

To test the predictive capability of the DTB model, we confront the model with regolith

depth data of a typical hillslope of Rio de Janeiro. We first benchmark the model using

an artificial topographic surface derived from ns different sine waves

Zs(x) =
ns∑
i=1

ωi sin(βix+ χi), (8)

where x [L] is the horizontal distance along the hillslope, and ω, β, and χ are unitless

coefficients that signify the amplitude, frequency, and phase of each individual sine wave.

The synthetic surface topography used herein was derived by setting ns = 2 and using

values of the coefficients of Equation (8) listed in Table 2.

D R A F T March 15, 2016, 11:10am D R A F T

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
X - 18 GOMES ET AL.: BAYESIAN INFERENCE FOR BEDROCK MAPPING

Figure 1 now presents a sensitivity analysis of the parameters of the DTB model. The

four different horizontal panels show the DTB model predicted regolith profiles underneath

the artificial hillslope for different values of the parameters Φ (top), λ1 (top-middle), λ2

(bottom-middle), and Sc (bottom). The artificial topography (surface) of Equation (8)

is separately indicated in each plot with the black line. The results of Figure 1 will help

build intuition and insights on how the different parameters of the DTB model affect the

simulated bedrock surface topography. The landscape elements ”hilltop”, ”sideslope” and

”drainage” are used herein to discuss our findings. Their position is indicated in 1A.

Before we proceed with the main findings of the sensitivity analysis, we first interpret all

the simulated bedrock depth profiles of the DTB model displayed in Figure 1. Regardless

of the parameter values used in the DTB model, the weathered zone appears largest at

the hilltop and then progressively thins downwards. This profile of the bedrock depth

underneath the hillslope is in agreement with field observations of upland and lowland

areas [Liang and Uchida, 2014; Kim et al., 2015] and mimics qualitatively the output of

the Rempe and Dietrich [2014] model. The effect of the parameter Sc (regolith movement

due to landslides) on the output of the DTB model is shown in Figure 1(G) and (H)

and reduces, as expected, the thickness of the weathered zone along the sideslope. The

effect of the DTB variable Λ (hillslope-to-valley morphology) is visibile in most of the

displayed bedrock depth profiles with a shape and curvature of the bedrock surface in the

valley (drainage) that deviates considerably from the concave drainage profiles simulated

exclusively by Equation (3) of Rempe and Dietrich [2014].

We now move on to the results of the sensitivity analysis. The top panel in Figure 1(A)

shows that larger values of the parameter Φ increase the thickness of the unweathered
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zone underneath the hillslope. This increase in bedrock depth is largest at the hilltop

(as explained by for instance a high rock permeability), and gets progressively smaller

downslope towards the base of the hillslope (drainage). The morphology of the bedrock

surface in the valley appears gently convex, but assumes a concave shape when the value

of parameter λ1 is increased from 0.5 to 2 (see Figure 1(B)).

The top-middle panel (second from top) of Figure 1 illustrates the effect of λ1 on the

simulated bedrock depth profiles. It is evident that this parameter affects only the bedrock

depth topography and curvature in the valley. For λ1 = 0.5 in Figure 1(C) and (D), the

unweathered zone in the valley (drainage) is really thin and the bedrock surface is almost

exposed at the center of the channel. As will be shown in the next panel (bottom-middle)

this result is independent on the value of λ2. A convex curvature emerges of the bedrock

surface below the channel when Ψ is increased from 0.005 in Figure 1(C) to 0.02 in Figure

1(D). For larger values of λ1 the thickness of the unweathered zone increases with a smooth

bedrock-valley shape for λ1 = 1.5 and V-shape bedrock surface for λ1 = 2.5.

The bottom-middle panel in Figure 1 displays how parameter λ2 affects the predicted

elevation of the bedrock surface topography. The DTB simulated bedrock depth on the

hilltop and sideslope appears insensitive to parameter λ2. Indeed, values of λ2 of 10, 20,

and 50 give an exactly similar bedrock elevation underneath the sideslope and hilltop.

The same holds true for the thickness of the weathered zone exactly at the mid-point of

the drainage channel. The elevation of the fresh bedrock at this lowest point of the surface

topography is fixed for different values of λ2. Beyond this center-point the bedrock depth

varies as function of λ2, the extent to which depends on the value of λ1. As is evident

from Figure 1(E), for relatively low values of λ1 the bedrock topography simulated by the
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DTB model does not depend on λ2. However, this sensitivity of the DTB model output to

λ2 increases for larger values of λ1. Indeed, Figure 1(F) shows an increasingly V-shaped

morphology of the bedrock surface underneath the drainage valley. The results presented

herein demonstrate that the shape and depth of the bedrock surface underneath the valley

is determined by parameters λ1 and λ2 and thus the value of Λ in Equation (4) of the

DTB model. The elevation and curvature of the bedrock surface in the valley might be

explained by the horizontal stress field [Clair et al., 2015].

The bottom panel in Figure 1 shows the effect of Sc on the simulated regolith profiles.

The effect of mass movement is most noticeable for the bedrock topography underneath

the sideslope as the depth of the weathered zone at the hilltop and the drainage valley

appear unaffected. The larger the value of the critical slope angle, the more unlikely mass

movement will take place, and thus the more similar the DTB model simulated depth to

bedrock underneath the slope. Indeed, the bedrock profiles for Sc = 1 and Sc = 1.3 are in

excellent agreement and follow closely the shape of the topographic surface. For smaller

values of Sc, however the slope angle simulated by the DTB model approaches a critical

threshold of about 27◦ and the thickness of the weathered zone beneath the hillslope

decreases considerably. This is readily visible in Figure 1(H) (dotted red line). The

thickness of the regolith has decreased substantially in the steepest part of the hillslope just

below the hilltop, and the weathered zone approaches an approximately fixed depth from

the inflection point downwards towards the drainage valley. This trend is in agreement

with our field knowledge from hillslopes in Rio de Janeiro, Brazil. We therefore posit that

our DTB model can be used for hillslopes with steep gradients whose underlying fresh-

bedrock surface is determined by rock properties (low values of Φ in Fig.1(G)) and surface
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steeping (Fig.1(H)). Note that for Sc = 0.65 the DTB model predicts a rather peculiar

bedrock depth at the sideslope. At this point, it is not clear whether this constitutes a

structural limitation (epistemic error) of Equation (4) or whether this highlights an issue

with the parameter values.

In summary, the parameter Φ (rock properties) determines the depth to bedrock un-

derneath the hillslope and hilltop. The parameter Sc (critical slope angle) can activate

the process of mass movement (if set sufficiently small) and this affects the angle of the

bedrock surface and depth of the regolith beneath the sideslope. The parameters λ1

and λ2 determine the shape (convex/concave) and depth of the bedrock surface in the

drainage valley. With these four fitting parameters the DTB model as proposed herein,

can simulate the bedrock surface of convergent and divergent hillslopes.

A final remark about the results of the sensitive analysis is appropriate. The bedrock

depths shown in Figure 1 suggest that the parameters λ1 and λ2, as they appear in

Equation (7), might be correlated as they both determine the topography of the valley-

bedrock surface. We will revisit this issue of parameter identifiability (and lack thereof) in

section 5.1 of this paper. We are now left with a treatment of the DTB model parameters.

Their values are catchment (hillslope)-dependent and need to be derived by fitting the

model against spatially distributed observations of DTB.

4. INVERSE MODELING

The DBT model contains several coefficients that are difficult to be measured directly in

the field at the application scale of interest, and thus have to be determined by calibration

instead using some spatially distributed map of regolith depth observations. If we denote
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with F Equation (4) then we can write our DTB model as follows

H← F(θ,∇Zs,Ld) + e, (9)

where H = {h1, . . . , hn} is a n-vector of simulated bedrock depths at spatial coordi-

nates, (x1, y1) . . . (xn, yn), θ = {Φ, λ1, λ2, Sc} signifies the d-vector of model parameters,

Ld = {Ld(x1, y1), . . . , Ld(xn, yn)} stores the n-values of the drainage distance of each

measurement location, and e = {e1, . . . , en} represents the vector of observation errors.

The vector e includes observation error as well as error due to the fact that the DTB

model, F(·) may be systematically different from reality, ℑ(θ) for the parameters θ. The

latter may arise from an improper model formulation (epistemic errors) and topographic

uncertainty (due to DEM measurement errors and/or inadequate resolution).

If we adopt a Bayesian formalism then we can derive the posterior distribution of the

parameters, p(θ|H̃), by conditioning the spatial behavior of the model on the n-measured

values of the bedrock depth, H̃ = {h̃1, . . . , h̃n} using

p(θ|H̃) =
p(θ)p(H̃|θ)

p(H̃)
, (10)

where p(θ) is the prior parameter distribution, L(θ|H̃) ≡ p(H̃|θ) denotes the likelihood

function, and p(H̃) signifies the evidence. This latter variable is a constant that is inde-

pendent of the parameter values and acts as a normalization constant (scalar) so that the

posterior distribution integrates to unity

p(H̃) =

∫
Θ

p(θ)p(H̃|θ)dθ =

∫
Θ

p(θ, H̃)dθ, (11)

over the parameter space, θ ∈ Θ ∈ Rd. In practice, p(H̃) is not required for posterior

estimation as all statistical inferences about p(θ|H̃) can be made from the unnormalized
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density

p(θ|H̃) ∝ p(θ)L(θ|H̃). (12)

We conveniently assume that the prior distribution, p(θ) is uniform, p(θ) ∝ c, where c is

a constant. This means that we a-priori do not favor any values of the model parameters,

and instead use uniform prior ranges. The main culprit now resides in the definition

of the likelihood function, L(θ|H̃), used to summarize the distance between the model

simulations, H(θ), and corresponding observations, H̃. If we assume the error residuals of

the observed and simulated bedrock depths to be normally distributed and uncorrelated,

then the likelihood function can be written as

L(θ|H̃) =
n∏

i=1

1√
2πσ̂2

i

exp

−1

2

(
h̃i − hi(θ)

σ̂i

)2
 , (13)

where σ̂i is an estimate of the standard deviation of the measurement error of the

ith soil depth observation. This formulation allows for homoscedastic (constant vari-

ance) and heteroscedastic measurement errors (variance dependent on magnitude of each

data point). If homoscedasticity is expected and the variance of the error residuals,

s2 = 1
n−1

∑n
t=1

(
et(x)

)2
is taken as sufficient statistic for σ2, then one can show that the

likelihood function simplifies to

L(θ|H̃) ∝
n∑

i=1

|h̃i − hi(θ)|−n. (14)

Once the prior distribution and likelihood function have been defined, what is left in

Bayesian analysis is to summarize the posterior distribution. For models such as Equation

(4) which is nonlinear in its parameters, the posterior distribution p(θ|H̃) cannot be

obtained by analytic means nor by analytic approximation. We therefore resort to iterative

methods that approximate the posterior probability density function by generating a large
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sample from this distribution. The most powerful of such sampling methods is Markov

chain Monte Carlo (MCMC) simulation using the Metropolis algorithm [Metropolis et al.,

1953]. The basis of MCMC simulation is a Markov chain that generates a random walk

through the search space and successively visits solutions with stable frequencies stemming

from a stationary distribution, π(·). To explore the target distribution, π(·), a MCMC

algorithm alternates between three basic steps. First, a proposal θp is generated from the

current state of the Markov chain, θt using some jumping distribution, q(θt → θp). Next,

this proposal is accepted with Metropolis probability

Pacc(θt → θp) = min

[
1,

p(θp)q(θp → θt)

p(θt)q(θt → θp)

]
. (15)

Finally, if the proposal is accepted, the chain moves to θp, and thus θt+1 = θp, other-

wise the current position is retained, θt+1 = θt. Repeated application of these three steps

results in a Markov chain which, under certain regularity conditions, has a unique station-

ary distribution with posterior probability density function, π(·). In practice, this means

that if one looks at the values of θ sufficiently far from the arbitrary initial value, that is,

after a burn-in period, the successively generated states of the chain will be distributed

according to π(·), the d-dimensional posterior probability distribution of θ. Burn-in is

required to allow the chain to explore the search space and reach its stationary regime.

If a symmetric jumping distribution is used, that is q(θt → θp) = q(θp → θt), then

Equation (15) simplifies to

Pacc(θt → θp) = min

[
1,

p(θp)

p(θt)

]
. (16)

This selection rule has become the basic building block of the random walk Metropolis

(RWM) algorithm, the earliest MCMC method. This RWM algorithm can be coded in
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just a few lines and requires only a jumping distribution, a function to generate uniform

random numbers, and a function to calculate the probability density of each proposal,

which is simply equivalent to the product of the prior distribution and likelihood function

of Equation (14).

The efficiency of the RWM algorithm is determined by the choice of the proposal dis-

tribution, q(·) used to create trial moves (transitions) in the Markov chain. When the

proposal distribution is too wide, too many candidate points are rejected, and therefore

the chain will not mix efficiently and converge only slowly to the target distribution. On

the other hand, when the proposal distribution is too narrow, nearly all candidate points

are accepted, but the distance moved is so small that it will take a prohibitively large num-

ber of updates before the sampler has converged to the target distribution. The choice of

the proposal distribution is therefore crucial and determines the practical applicability of

MCMC simulation in many fields of study [Vrugt , 2016].

In this paper, MCMC simulation of the DTB model has been performed using the

DREAM algorithm [Vrugt et al., 2008, 2009]. This multi-chain MCMC simulation algo-

rithm automatically tunes the scale and orientation of the proposal distribution, q(·) en

route to the target distribution. This is one of the reasons DREAM exhibits excellent

sampling efficiencies on complex, high-dimensional, and multi-modal target distributions.

The use of multiple chains offers a robust protection against premature convergence, and

opens up the use of a wide arsenal of statistical measures to test whether convergence to

the posterior distribution has been achieved. We evaluate the DTB model using lumped

and spatially distributed parameter values. These values are stored in the d-vector θ.
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5. BAYESIAN INFERENCE WITH DREAM: SYNTHETIC DATA

We now proceed with fitting of the DTB model parameters using Bayesian inference

with DREAM. To be able to benchmark our findings we start with a synthetic record of

regolith depth observations created on a regular DEM. This DEM is presented in Figure

2 and simply copies Equation (8) to the y-direction of the xy plane using 100 different

replicates of the topographic surface with ∆y = 2. This DEM is now sampled at random

100 different times (see black dots in Fig. 2(A)) and the regolith depth at each sampled

(x, y) location of the grid is computed using

h̃(x, y) = Zs(x, y)− α1 [α2 + Ld(x , y)/max(Ld)]
2 + ϵm, (17)

where Zs(x, y) [L] is the elevation of the surface topography at spatial coordinates x, y,

and α1 [L] and α2 [-] are two coefficients whose values determine the borehole depth, and

ϵm [L] denotes the measurement data error of the bedrock depth data. Thus, the regolith

depth at any location in the DEM is computed by subtracting from the surface elevation

the borehole depth and adding a measurement error.

We assume that α1 = 8 and α2 = 0.1 and draw the measurement data error from a

normal distribution with a = 0 mean and standard deviation b = 1/2σ̂Zb
, or ϵm ∼ N (a, b),

where σ̂Zb
denotes the standard deviation of the n = 100 bedrock depth observations

before their corruption with a measurement error. Table 3 summarizes the statistical

properties of the resulting bedrock depth data set, including sample size and the minimum,

maximum, mean and standard deviation of the regolith thickness. This latter statistic

determines the measurement error of the bedrock depth observations, σ̂Zb
= 1.43 [m] and

provides a benchmark of the ”best-fit” attainable by the DTB model (of which more later).

The final data set of bedrock depth observations is stored in the n-vector H̃ = {h̃1, . . . , h̃n}
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and is now used to calibrate the DTB model using lumped and spatially distributed

parameter values.

5.1. DTB Model with Lumped Parameter Values

The DTB model has four parameters θ = {Φ, λ1, λ2, Sc} whose values are difficult to

be measured directly in the field and hence require calibration against observed bedrock

depth data. In the absence of detailed geologic data, we conveniently hypothesize the

underlying rock mass to be homogeneous and use spatially invariant values of the DTB

parameters, θ. We will revisit this hypothesis in the next section of this paper using

spatially distributed parameter values. We adopt the likelihood function of Equation

(14) and use a multivariate uniform prior distribution for the DTB model parameters.

With such noninformative prior, the posterior density in Equation (16) is then simply

proportional to Equation (14) and used herein for inference of the DTB model parameters.

The prior ranges of the parameters are listed in Table 4. The minimum and maximum

value of parameter Φ are set to 10−4 and 10−1, respectively. These ranges are rather

wide, and with a bedrock porosity of ϕ = 0.1 and values for the hydraulic conductivity

of consolidated crystalline rocks that range between 10−8 and 10−13 m/s, gives values of

the channel incision rate, Co of 0.03 to 3 mm/year. These ranges of Co are in agreement

with values reported in Rempe and Dietrich [2014]. The prior ranges of λ1 ∈ [0.1, 3] and

λ2[1, 20] are derived from the results of section 3, and the bounds of Sc ∈ [0.8, 1.5] are

inspired from the literature.

Figure 3 presents a scatter plot matrix of the posterior samples derived with the DREAM

algorithm. The main diagonal displays histograms of the marginal distribution of each

individual DTB model parameter, whereas the off-diagonal graphs display bivariate scat-
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ter plots of the posterior samples. The x-axes matches exactly the prior ranges of the

parameters (except for the parameter Φ) and the maximum a-posteriori (MAP) solution

is separately indicated in each histogram with the blue cross. These parameter values are

associated with the highest value of the likelihood function of Equation (14) of all pos-

terior samples generated by DREAM, and this MAP solution coincides almost perfectly

with the posterior median values.

The posterior histogram of the DTB model parameter Φ centers nicely around its MAP

solution and follows an approximately normal distribution. The marginal distribution of

this parameter occupies a (very) small portion of its uniform prior distribution, which

demonstrates that this parameter is very well defined by calibration against the observed

(synthetic) bedrock depth data. The posterior histograms of the two bedrock-valley shape

parameters, λ1 and λ2 are not particularly well identifiable. The marginal distribution

of λ1 in Figure 3(F) exhibits normality, although the histogram is somewhat skewed to

the left and occupies a large part of the prior distribution. The MAP solution of λ1

between 1 and 2 indicates that the bedrock surface in the valley does not reach the

ground surface (see Figure 1). In other words, the valley is mantled with a thin layer

of soil. The marginal distribution of parameter λ2 deviates considerably from normality

and is much better described with an uniform distribution. Note that the histogram of

λ2 appears truncated at the upper end by its prior distribution. As the probability mass

is distributed mainly at higher values of λ2, we conclude that the shape of the bedrock

surface in the valley follows closely that of the surface topography in the channel. The

parameter Sc follows a log-normal distribution and is truncated at the lower boundary

of its prior distribution. That relatively low values of Sc are perhaps not that surprising
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as the artificially generated bedrock depth observations were made close to the ground

surface in a relatively steep hillslope. We will revisit the posterior distribution of Sc later

in this paper. The bivariate scatter (off-diagonal) plots highlight negligible the presence of

some correlation between the DTB parameters. For instance, consider the (Ψ, Sc) scatter

plots (top right, bottom left) which depicts a somewhat nonlinear dependency between

these two parameters.

The performance of the DTB model is now evaluated using two statistical metrics

including the the root mean squared error (RMSE) and the Pearson product moment

correlation coefficient, or ρ-statistic. Mathematical formulas for both are readily found

in statistics textbooks. The RMSE measures the average distance between the observed

and simulated bedrock depth data. This statistic has a similar unit as the observations

themselves. The lower the value of the RMSE the closer the model predictions to the data.

The ρ-statistic measures the strength and direction of a linear relationship between two

variables. It is used herein to quantify how well the DTB model predicted bedrock depths

fall on the (1:1) line with their observed values. Table 5 summarizes the performance of

the DTB model using the posterior mean parameter values. The calibrated DTB model

has a ρ-value of 0.86 and RMSE of approximately 1.52 m. This value of the RMSE is

much lower than that derived from an uncalibrated DTB model (not shown) and of similar

magnitude as the measurement data error, σ̂ = 1.43 m. This latter finding is particularly

important and demonstrates the ability of the DTB model to describe accurately the

observed bedrock depth data with spatially invariant parameter values.

The assumption of parameter homogeneity is convenient but might not be borne out

by the actual properties of the hillslope or watershed which can exhibit significant system
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heterogeneities at different spatial scales. Much effort would be required to characterize

adequately the rock mass properties such as discontinuities, saturated permeability and

porosity for a reasonably sized watershed. The use of spatially distributed parameter

values provides a means to account implicitly, and in a relatively simple way, for system

heterogeneities that are difficult, or sometimes impossible, to characterize adequately in

the field. For example, if the value of the parameter Φ is varied spatially, then the DTB

model will assume spatially varying permeability and/or porosity values, given measured

values of the channel-incision rate, Co.

In the next section of this paper, we will investigate the benefits of using a distributed

DTB parameterization. This distributed approach is of particular relevance to real-world

data sets, but cannot be expected a-priori to improve significantly upon the fitting results

of our lumped DTB parameterization for the synthetic data set which already achieved

posterior RMSE values close to the measurement data error. Any further improvements

in quality of fit of the DTB model must be carefully interpreted.

5.2. DTB Model with Spatially Distributed Parameter Values

The use of a distributed parameterization requires some changes to the setup of the

DTB model. This is depicted schematically in Figure 4 which summarizes the setup of

the DTB model for an invariant (lumped) and variant (distributed) parametrization. The

top panel displays the surface of an idealized DEM consisting of P cells (pixels). To

simplify notation we use a single variable, i = {1, . . . , P} to denote the xy coordinates

of a DEM cell. The input data of the DTB model in Equation (4) differs per grid cell

and is stored in the vector, Ui = {∇Zbi , Ldi}. If a lumped parameterization of the

DTB model is used then it suffices to use the same parameter values, θ = {Φ, λ1, λ2, Sc}
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for each cell of the xy grid. This approach is most convenient and widespread in the

geomorphologic literature. A distributed DTB parameterization uses different parameter

values for each region of the DEM. This approach increases significantly the dimensionality

of the parameter estimation problem and the required CPU-time for DTB calibration.

Also, the spatially distributed framework requires the user to define a spatial pattern for

each of the model parameters. For example, in Figure 4 we assume a simple block pattern

of r = 16 equal-sized squares for each of the parameters. Each individual square thus

consists of four different grid cells. In a distributed parameterization, the values of the

parameters of the first square (top left) are thus assigned to grid cells 1, 2, 9 and 10.

After the parameterization of the DTB model has been defined, the DREAM algorithm

proceeds with statistical inference of the model parameters using distributed observations

of the bedrock depth. Both implementations use the same source code of the DTB model

but differ in their assignment of the parameter values.

We are now left with the question of how to distribute the values of Φ, λ1, λ2 and Sc over

the grid domain of interest. Care should be exercised not to use too many parameters in

lieu of overfitting. Two main approaches can be used to determine the spatial distribution

of the parameter values. The first approach fixes a-priori the spatial structure of the

parameters and then determines the actual values of this pattern by fitting the DTB

model to the observed bedrock depth data. An example of this approach is found in Fig.

2(B) for a block pattern and this design is used herein for illustrative purposes. One

can also link the spatial structure of θ to properties of the DEM to guide the spatial

structure of the parameter values. The topographic position index [Tesfa et al., 2009;

Reu et al., 2013] can be used as guiding metric to determine the spatial structure of the
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parameters. This approach fixes a-priori the spatial structure of the DTB parameters, and

this pattern might therefore not necessarily honor the underlying bedrock heterogeneity.

Alternatively, one can use so-called model-reduction techniques and let the actual regolith

depth observations determine simultaneously the pattern and values of the DTB model

parameters. Examples of such model-reduction approaches include the discrete cosine

transform [Linde and Vrugt , 2013; Lochbühler et al., 2015], wavelet transform [Davis and

Li , 2011; Jafarpour , 2011], and singular value decomposition [Laloy et al., 2012; Oware et

al., 2013]. We have tested this alternative approach in the present study but found little

improvements in the quality of fit of the DTB model (not shown).

We now illustrate the results of the DTB model using two different distributed pa-

rameterizations of Φ. In our first trial, we divide the xy plane of the DEM into r = 4

equal-sized rectangles and assume a different value of Φ for each oblong. The remaining

parameters (λ1, λ2 and Sc) continue to take on a single lumped value that pertains to

the entire spatial domain (Figure 4). The parameter dimensionality has increased from

d = 4 in the first case study to d = 7 in the present study. In the second trial, we increase

the number of square blocks for the parameter Φ to 25 as shown in Figure 2(B). This

then leaves us with a total of d = 28 parameter values that require calibration against the

observed bedrock depth data using the DREAM algorithm.

Figure 5 displays trace plots of the R̂-statistic of Gelman and Rubin [1992] for each

of the model parameters (d = 28) using the last 50% of the samples stored in each of

the N = 15 Markov chains. This convergence diagnostic compares the within-chain and

between-chain variance of each parameter j = {1, . . . , d} of the DTB model. The different

parameters are color coded. Convergence to a stationary distribution can be declared if
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the R̂j-statistic of each of the d = 28 parameters drops below the critical value of 1.2.

Results demonstrate that about 50,000 DTB model evaluations are required for DREAM

to converge successfully to a stationary distribution and satisfy the convergence threshold.

This rather large number of model evaluations involves a rather low computational effort

due to the relative CPU-efficiency of the DTB model. If desired, each Markov chain

sampled with DREAM can be evaluated on a different processor permitting inference of

CPU-demanding transient models. Most of the DTB parameters appear well defined by

calibration to the observed bedrock depth data (not shown). We will investigate this

further in the next section of this paper using real-world observations of the depth to

bedrock.

To determine which of the model complexities is best supported by the available regolith

depth data we use Akaike’s Information Criterion (AIC) [Akaike, 1974]. This metric takes

into consideration model complexity (= parameter dimensionality) and the goodness of

fit. Hence, AIC provides a means for model selection. The value of AIC is computed as

follows

AIC = −2 ln{L(θMAP|H̃)}+ 2d, (18)

where L(θMAP|H̃) is the maximum value of the likelihood function derived from the MAP

(= best) parameter values. Given a collection of models for the data, AIC estimates the

quality of each model, relative to each of the other models. Models with lower AIC values

are preferred statistically. Note, AIC does not give a warning if all models fit poorly, and

hence this metric has to be interpreted jointly with other model performance criteria.

Table 5 summarizes the performance of the DTB model with a distributed parameteri-

zation of Φ. The RMSE has reduced from 1.52 (lumped: d = 4) to 1.47 m (distributed:
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d = 7) and the ρ-statistic has slightly increased from 0.86 to 0.87. The results of the

second trial (d = 28) show a further reduction of the RMSE and another increase of the

ρ-statistic. In fact, the RMSE is now slightly lower than the (Gaussian) measurement

error of σ̂Zb
= 1.43 used to corrupt the n = 100 bedrock depth observations.

To understand whether these improvements in fit are statistically warranted, we also

list, in the last column of Table 5, the AIC values for each of the three DTB model

parameterizations. The lowest value of the AIC is found for the first distributed parameter

case with d = 7. This constitutes a marginal improvement over the value of AIC = 192.30

for the lumped parameterization with d = 4. This suggest that Φ is better characterized

with the use of spatially distributed values. The second distributed case with d = 28

parameters, albeit having the lowest value of the RMSE and highest ρ-statistic, has a

value of AIC = 221.43 which is much larger than the other two model parameterizations.

These results caution against the use of an excessive number of parameters due to potential

problems of overfitting. Indeed, a lumped or a spatially distributed parameterization (d =

7) of the DTB model suffices for this synthetic data set, and any further improvements

in fit are not warranted by the available bedrock depth observations.

Thus far, we have focused our attention on the posterior parameter distributions of the

DTB model and summary statistics of the quality of fit of the mean solution. We now

turn our attention to the simulated output of the DTB model and plot in Figure 6 the

bedrock surface of the posterior mean solution of the lumped (solid red) and distributed

(dashed red) parameterization for a synthetic hillslope transect. The dark and light gray

regions display the 95% prediction uncertainty ranges of the simulated bedrock depths

using lumped (d = 4) and distributed (d = 7) parameter values, respectively. The to-
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pographic surface is indicated with the black line, and the observed regolith depth data

are separately indicated with the solid blue dots. The posterior mean simulation of the

lumped and distributed parameter case appears rather similar (as expected from Table

5) and tracks closely the observed bedrock depth data. The simulated bedrock surface

is much smoother than expected from the observed data and does not fit the malicious

small-scale variations of the regolith thickness induced by the measurement error. These

erroneous small-scale variations in the bedrock depth appear to be largest at the sideslope,

generating a thin regolith thickness in this region. This might explain why the marginal

distribution of Sc in Figure 3(P) favors relatively small values. The prediction uncer-

tainty of the lumped DTB calibration is much smaller than its counterpart derived from

a distributed parametrization, except at the drainage channel. This is a common finding

and highlights a trade-off between model complexity (=parameter dimensionality) and

prediction uncertainty. We will discuss later the implications of this bedrock prediction

uncertainty on hydrologic and geotechnical analysis.

6. BAYESIAN INFERENCE WITH DREAM: APPLICATION TO THE

PAPAGAIO RIVER BASIN

We now apply the DTB model to a real-world data set. In the next sections we de-

scribe the experimental field site, data collection and present the results of DTB model

calibration and evaluation for a lumped and distributed parameter case.

6.1. Experimental Field Site

Field investigations were carried out in two adjacent watersheds in the Papagaio river

basin in Rio de Janeiro, Brazil. These two watersheds have been studied extensively by

many different authors in the literature after mass movement occurred in 1996 [Guimarães
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et al., 2003; Fernandes et al., 2004; Vieira and Fernandes , 2004; Gomes et al., 2008, 2013]

(among others). A detailed description of the field site appears in these cited publications,

and thus will not be repeated herein. The geographic location of the field sites is depicted

with a red cross in Figure 7 which also presents (left hand side) the topography of the two

experimental basins. The white dots signify the measurement locations, and the hillslope

transects AA’ and BB’ are of particular interest herein. The elevation in the surveyed

region ranges between 190 and 360 meters above sea level with slopes that vary between

0 to 57◦.

The local bedrock consists of high-grade metamorphic rocks (Archer gneiss is most

frequent) with granite intrusions of coarse-medium granular texture [Fernandes et al.,

2004; Vieira and Fernandes , 2004]. Human impact in the region has been limited to a few

small areas used for agricultural activities [Gomes et al., 2008] and the vegetation (Atlantic

forest) has been preserved in most parts of the basin. DTB observations were made at

n = 137 different locations in the two watersheds using a light dynamic cone penetrometer

(DPL). These locations were carefully selected to maximize information retrieval about

the underlying bedrock surface and include a rich sample of convex, concave, planar,

convergent and divergent slopes. Statistical properties of the regolith depth observations

are listed in Table 3.

Our definition of soil-bedrock interface using DPL tests follows many approaches pub-

lished in the literature [Kosugi et al., 2006, 2009; Fujimoto et al., 2008; Ohnuki et al.,

2008; Askarinejad et al., 2012; Wiegand et al., 2013; Athapaththu et al., 2014; Liang and

Uchida, 2014]. The test consists of a steel cone (10 cm2 area) that is driven into the soil by

the falling energy of a 10 kg hammer. The hammer transmits an exact amount of energy
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(of a fixed height of 50 cm) to a set of 1 m length steel rods. With the hammer impact,

the set of rods penetrates vertically and number of blows to advance 10 cm is computed.

The definition of the regolith depth depends on DPL type and site specific conditions.

Each one of the cited publications above have adopted a different approach to measure

bedrock topography. In this paper, we implement the following procedure to measure the

bedrock-depth surface: (1) 100 blows to advance 10 cm; (2) 80 or more blows to advance 3

consecutive segments of 10 cm; (3) 60 or more blows to advance 5 consecutive segments of

10 cm; and (4) depth greater than 12∼13 meters. DPL has a limitation to achieve depths

greater than 13 m, since the extraction of the rods may be compromised. However, our

field experiments demonstrated that measured regolith depth was predominantly in the

range between 0 and 13 meters. What is more, our criteria used to define the soil-bedrock

boundary is consistent with approaches adopted in the literature.

The smallest of the two experimental watersheds was used primarily to study small-

scale variations in the depth to bedrock. This requires the use of neighboring boreholes

that measure DTB within a few meters of each other. The southerly and larger watershed

was populated more uniformly with different boreholes to investigate more deeply the

bedrock surface along a hillslope. This difference in objective is readily apparent in the

areal view of the two catchments in Fig. 7. The borehole pattern of the larger watershed

in the south appears much more uniform and organized than its counterpart from the

northerly watershed (left), which contains many more adjacent boreholes. A differential

GPS system was used to determine as accurately and consistently as possible the {x, y, z}

location of each borehole. We estimate the remaining location error to be on the order of

0.5 m for all the n = 137 different boreholes.
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6.2. Model Input Data

The topographic surface is one of the most important input variables of the DTB model.

Some correction of this surface is usually required to remove small-scale imperfections

arising from (among others) three throw, animal burrows, and LiDAR measurement errors

[Pelletier and Rasmussen, 2009]. Such DEM errors can otherwise corrupt the results of

models which rely heavily on the first and second-order derivative of the topography (slope

and curvature of DEM) in their calculation of the soil/bedrock depths. Indeed, when a

DEM is differentiated, the small-scale variability of the topographic data is amplified

relative to large-scale topographic variations that define the overall shape of the hillslope.

Even the most accurate and advanced topographic surveying methods such as high

resolution LiDAR exhibit measurement errors that can introduce small-scale defects in the

DEM and deteriorate the simulated bedrock depths by introducing erratic and malicious

spikes and dips in first and higher-order topographic derivatives used by different models.

A generally practiced method to avoid this issue is a smoothing approach [Saco et al.,

2006; Pelletier and Rasmussen, 2009]. We here smooth the DEM prior to application of

the DTB model using

Zk
i,j =

[
Zk−1

i,j + w
(
Zk−1

i,j−1 + Zk−1
i,j+1 + Zk−1

i−1,j + Zk−1
i+1,j

) ]
/(1 + 4w), (19)

where Zi,j = elevation of a spatial location given by coordinates i and j [L]; k = iteration;

and w = empirical weight [-]. The degree of smoothing can be controlled by the iteration

number k and by w ∈ (0, 1]. The exact value of the weight is not particularly important as

the degree of smoothing can be controlled by iteration number. The smaller the value of

the weight the more iterations are required to reach a certain smoothed topography. The

D R A F T March 15, 2016, 11:10am D R A F T

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
GOMES ET AL.: BAYESIAN INFERENCE FOR BEDROCK MAPPING X - 39

number of iterations required to remove small-scale topographic imperfections depends

on the accuracy of the LiDAR observations, and is thus data set dependent.

To better understand how the number of iterations affects the smoothed topographic,

please consider Figure 8 which plots the outcome of Equation (19) for different values of k

and w = 0.2 using a cross section of the DEM of the PRB. The plot shows the topographic

surface for values of k = 5 (blue), k = 10 (green), k = 30 (red) and k = 50 (cyan). The

original LiDAR measured (non-smoothed) surface is separately indicated with the dashed

black line. The large black rectangles are zoomed insets of the smaller rectangles of the

footslope (depositional area) and sideslope (steepest gradient) and much better demon-

strate the effect of the different iterations on the topographic surface. A few iterations (5

to 10) with the smoothing kernel of Equation (19) is sufficient to remove the small-scale

defects (roughness) so clearly visible in the insets but does not affect the main properties

of the DEM. The use of a larger number of iterations (k > 10) compromises unnecessarily

the DEM and introduces topographic discrepancies in the drainage and hilltop regions

of the hillslope. In summary, a value of k ∈ [5, 10] is sufficient to correct for small-scale

topographic imperfections and maintains the overall integrity and characteristics of the

measured DEM. For other values of w ∈ (0, 1] the same analysis can be repeated to

determine a suitable value for k.

Different approaches have been used in the literature to remove the pit-and-mound

topography captured by LiDAR DEM but also retain the hillslope scale pattern [Saco

et al., 2006; Pelletier and Rasmussen, 2009]. Recent studies have attempted to extract

relevant scales for smoothing high-resolution surfaces [Roering et al., 2010; Hurst et al.,

2012]. However, a discussion about different smoothing methods is outside the scope of
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the present paper and we refer to these publications for further information. We now use

the smoothed DEM as input to DTB model and fit the model against observed bedrock

depth data using a lumped and distributed parameterization with the DREAM algorithm.

6.3. DTB Model with Lumped Parameter Values

The method proposed in section 5.1 is now applied to the borehole observations at the

experimental site. The bedrock data set is split randomly into two parts, designated for

DTB-model calibration (75%) and evaluation (25%). The observations that were affected

by tree roots and boulders were removed from the data set. A pixel size of the DEM

of 4 m was deemed an acceptable trade-off between model accuracy and computational

efficiency. We now estimate the posterior distribution of the DTB model parameters,

θ = {Φ, λ1, λ2, Sc} using Bayesian inference with DREAM. The prior ranges for the

parameters are listed in Table 4. We now discuss the results.

Figure 9 presents a scatter plot matrix of the posterior samples derived from DREAM.

The graphs on the main diagonal present marginal distributions of each of the parameters,

whereas the off-diagonal elements display bivariate scatter plots of the posterior samples.

The posterior distribution of the parameter Φ follows closely a normal distribution with

median posterior solution that is in excellent agreement with the MAP value, separately

indicated in the histogram with the blue cross symbol (A). The posterior histogram of

Φ has many elements in common with its counterpart derived in the synthetic study

case (Figure 9(A)). Indeed, the marginal distribution extends only a small portion of the

uniform prior distribution, which demonstrates that this parameter is well defined by

calibration against the real-world bedrock depth data. The marginal distributions of the

other three parameters occupy almost their entire prior distribution, which suggest that
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these parameters are poorly defined by calibration against our bedrock depth observations.

The relatively low values of the parameter λ1 (including the MAP value) suggest that the

bedrock is close to the surface in the channel zone with a thin soil mantle overlying a

weathered bedrock zone (Figure 9(F)). The high MAP value for λ2 (Figure 9(K)) signifies

that the bedrock valley topography approximates a smooth concave shape (see Figure 1).

The marginal distribution of parameter Sc is quite different from its synthetic case (Figure

9(P)). Indeed, Sc now attains much higher values, demonstrating the presence of a much

thicker regolith zone underneath steep slopes. The bivariate scatter plots (off-diagonal)

highlight the presence of some negligible correlation between the DTB parameters, Φ and

λ2 and Φ and Sc as in section 5.1.

The posterior mean parameter values derived from the calibration are now used to de-

termine the performance of the DTB model on the independent evaluation data set. The

performance of the DTB model is summarized in Table 5. The listed value of the RMSE

of 1.80 m and the ρ-statistic of 0.83 can be considered acceptable for the PRB experi-

mental watershed. These performance metrics might be improved upon if a distributed

parameterization of the DTB model is used. We therefore turn our attention again to the

assumption that the parameter Φ might contain information about rock heterogeneity not

explicitly accounted for in the DTB model formulation. We discuss the results of such

distributed parameterization in the next section.

6.4. DTB Model with Spatially Distributed Parameter Values

In a previous section of this paper we have shown (see Fig. 1) that the DTB model

simulates a smooth bedrock surface from the hilltop to the drainage channel in the val-

ley. Such regular surface does not do justice to the rather dynamic variations of the
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regolith thickness at different experimental sites in Rio de Janeiro. This DTB variability

is partly explained by measurement errors of the dynamic cone penetrometer but cannot

be described and mimicked accurately with an analytic solution. The assumptions of the

DTB model are convenient in deriving analytic solutions of the bedrock surface but might

not characterize adequately three-dimensional topographic effects arising from ridge and

valley topography and vertical or lateral heterogeneities, particularly the K/ϕ relation

[Rempe and Dietrich, 2014]. What is more, the channel incision rate, Co is unlikely to be

constant over large timescales, due to (among others) a variably bedrock resistance, lat-

eral movement of the channel, and internal dynamics of stream capture at the PRB field

site. Furthermore, the bedrock is assumed to be spatially homogeneous and rock mass

discontinuities are ignored. These processes (and properties) are very difficult to charac-

terize adequately with an analytic solution, and instead warrants numerical modeling of

the bedrock depth.

We now discuss the results of the DTB model for two different distributed parameter

cases. In the first trial, a different value of Φ is assumed for each sub watershed of the PRB,

and the other three parameters (λ1, λ2 and Sc) assume lumped values over the domain of

interest (Figure 4). This involves the inference of d = 5 parameters. In the second trial,

all four DTB-model parameters are varied per sub catchment within the PRB, thereby

increasing further the model complexity to d = 8. Figure 10 presents the evolution of the

sampled R̂-values for each DTB model parameters of the distributed parameterization

with d = 8. About 10,000 DTB model evaluations are required for DREAM to converge

successfully to a stationary distribution. This requires a few minutes of calculation on a
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standard laptop computer. Parallel computing can be used to reduce further the CPU-

budget.

Table 5 summarizes the performance statistics of the two distributed parameterizations

for the evaluation data set. The listed RMSE and ρ-statistics appear very similar with

RMSE that has decreased from 1.80 m for the lumped case to 1.76 m for both distributed

parameterizations. The ρ-statistic appears rather unaffected and actually has deteriorated

somewhat from 0.83 to 0.82 when the number of parameters is increased beyond four

(lumped case) or five (first distributed case). The distributed parameterization of the

DTB model with d = 5 receives the lowest value of the AIC metric, and is thus most

supported by the available soil depth data. This value of 191.10 is somewhat lower than

its counterpart of 194.00 and 193.90 for the lumped and most distributed parameter case,

respectively. Altogether, we conclude that the distributed parameterization with d = 5 is

statistically preferred.

We now plot in Figure 11 the DTB simulated regolith thicknesses at the PRB ex-

perimental watershed using the mean posterior solution of the lumped (A: d = 4) and

distributed parameterizations (C: d = 5; E: d = 8). To simplify graphical interpretation,

a common color bar is used for all three calibration cases. The scatter plots at the right

hand side compare the observed and simulated regolith depth values at the different mea-

surement locations. The solid black line is used to denote the identity or 1:1 line. The

color coding in these regression plots matches the color bar used in the figures at the left

hand side. The simulated bedrock depth maps of the different calibration cases appear

very similar and exhibit only small differences if a distributed parameterization is used.

The DTB model predicts a smooth topography from the hilltop (thick regolith) to the
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drainage channel (thin or even exposed rock), a pattern that agrees well with field obser-

vations. These results are in agreement with theory [Rempe and Dietrich, 2014; Clair et

al., 2015] and field expertise [Liang and Uchida, 2014; Kim et al., 2015] for a geologically

similar environment with steep slopes on a granitic rock mass, and provides support for

the claim that the DTB model gives an adequate description of the bedrock surface at

the PRB field site.

We conclude this section with Figure 12, which plots the DTB simulated bedrock pro-

file of the mean posterior solution for the BB’ transect (Figure 7) using the distributed

(d = 5) parameterization. The topographic surface is indicated with the black line and

the observed bedrock depth data are indicated separately with a blue dot. The dark gray

region represents the 95% confidence intervals of the output prediction due to parameter

uncertainty, whereas the light gray region denotes the corresponding total prediction un-

certainty. The simulated posterior mean bedrock surface (solid red line) appears rather

smooth and fits nicely the observed bedrock depth observations. The 95% parameter

uncertainty bounds appear relatively small and track closely the observed regolith depth

data. The total (model + parameter) 95% prediction uncertainty intervals are rather

large and encompass the observations. The different DTB model parameterizations pre-

dict a very similar posterior mean bedrock depth surface (not shown), but the prediction

uncertainty increases (as expected) with increasing dimensionality of the parameter space.

7. DISCUSSION

The Bayesian inversion framework used herein enables synthesis of geomorphic models

with spatially distributed field observations. This approach uses MCMC simulation with

DREAM to search efficiently the model parameter space in pursuit of so called posterior
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samples that honor best the observed data. The quality of fit is quantified by a likelihood

function which takes into explicit account the calibration measurement data error. A prior

distribution can be used to constrain the ranges of each parameter and/or to favor values

in better agreement with yet available geologic data. The posterior samples of DREAM

are then visualized using marginal distributions and pairs of bivariate scatter plots. These

plots can be used to assess parameter sensitivity and correlation. Predictive uncertainty

can be assessed by evaluating the model with each posterior parameter solution. The

posterior mean simulation can then be compared to validation data to benchmark the

performance of the model and help verify the main assumptions and equations it is based

on. This step is an integral part of the scientific method and key to model (hypothesis)

refinement.

The DREAM algorithm is designed specifically to solve for the target distribution in

high-dimensional parameter spaces. Parameters whose marginal distribution is relatively

tight appear well-resolved by the available data. If, on the contrary, the marginal dis-

tribution occupies a large portion of the prior distribution, then the parameter cannot

be constrained by the calibration data and can be classified as insensitive. The use of

spatially distributed parameter values provides a means to account implicitly, and in a

relatively simple way, for system heterogeneities that are difficult, or sometimes impossi-

ble, to characterize adequately in the field. For example, the DTB model can simulate

spatially varying ϕCo/K if the value of Φ is varied over the watershed of interest. One

should be particularly careful however not to use too many distributed parameters to

characterize spatially the geomorhic processes and bedrock properties of the watershed of

interest as this increases significantly the chances of overfitting. An example of this was
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given in the first case study involving synthetically generated bedrock depth observations.

The closest match with the bedrock data is achieved with a distributed implementation

of the DTB-model involving inference of d = 28 parameters. The RMSE of this param-

eterization (1.40 m) is considerably lower than its counterpart of 1.52 m derived from a

lumped calibration, nonetheless a comparison of their AIC values (221.43 versus 192.30)

suggests that the lumped parameterization is preferred statistically. Thus among com-

peting hypothesis the one with the lowest value of the AIC should be selected. This

principle of parsimony is also known as Occam’s razor. Indeed, in both our case studies

the simplest distributed DTB-model parameterization (d = 5 for the real-world case) is

most supported by the available soil depth data.

Bayesian analysis coupled with MCMC simulation has several key advantages over stan-

dard optimization approaches, one of which is the explicitly characterization of model

simulation (prediction) uncertainty. The depth to bedrock, for instance, is a key input

variable in hydromechanical and geotechnical studies, but without underlying estimates

of uncertainty, this boundary is treated instead as a fixed entity in slope stability anal-

ysis and debris-flow studies [Guimarães et al., 2003; Fernandes et al., 2004; Gomes et

al., 2008, 2013]. As the posterior mean simulation of the bedrock depth underneath the

hillslope or watershed was shown to be in excellent agreement with the observed data, the

DTB model output should improve considerably simulation of large-scale shallow land-

slides and debris-flow events [Gomes et al., 2013]. What is more, we can also propagate

forward the bedrock depth uncertainty through hydromechanical models to quantify pre-

diction intervals of key output variables such as landslide potential and factor of safety.

The availability of an accurate bedrock depth map also makes it easier to characterize
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adequately the impact of soil hydraulic and soil strength properties on slope stability. Pre-

vious work at the PRB published in Guimarães et al. [2003] treated bedrock topography

and soil cohesion as a single variable controlling shallow landslides.

A lumped parameterization of the DTB model is warranted for a sparse data set of

regolith depth observations. The number of degrees of freedom, df = n− d then remains

sufficiently large to minimize the chances of overfitting. If a sufficiently large number of

bedrock depth measurements is available, then a distributed DTB model parameterization

can be used. The most promising results for the PRB were derived if the parameter Φ

is varied spatially per sub catchment. The parameter Sc enables simulation of varying

bedrock depths along the hillslope and allows the DTB model as proposed herein to

reproduce accurately the presence of thin soils and/or exposed rock at the steep slopes

in the upland portion of the PRB. The bedrock-valley morphology in the DTB model is

controlled by the variable Λ and inference of its parameters λ1 and λ2 allows simulation of

many different shapes and depths of the bedrock surface underneath the drainage channel.

In this paper we have used spatially distributed observations of the bedrock depth as

a calibration target. This integrated variable summarizes the cumulative history of a

myriad of different geologic processes such as climate cycles, internal dynamic, episodic

instabilities (mass movements), variable resistant rock mass and nonuniform channel in-

cision [Rempe and Dietrich, 2014]. These processes act together in the watershed, and

their complex (nonlinear) relationships with surface topography, soil and/or rock mass

properties give rise to a spatially variable bedrock depth. By using observations of the

bedrock depth at different locations in the watershed we can constrain sufficiently the

parameters (and output) of the DTB model, yet other data types are needed to verify
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whether the processes simulated by the model are adequately described. Without such

data it will be very difficult to benchmark the adequacy of the different components of

the DTB-model in pursuit of epistemic errors. It is not particularly difficult to adapt the

likelihood function of Equation (14) to include other calibration data types as well.

If the main application of our DTB model is to produce accurate maps of the bedrock

depth for geotechnical analysis, then model adequacy is not as important as long as the

simulated bedrock depths are in reasonable agreement with their point observations. High-

fidelity and high-resolution bedrock depth maps can then be generated (with estimates of

uncertainty) using a distributed parameterization of the DTB model. This does require

the availability of a relatively dense network of borehole/geophysical observations and

careful analysis of overfitting using split sampling and/or uncertainty analysis of the pos-

terior maps sampled with DREAM. The simulation result of such distributed calibration

approach was plotted in Figure 12 using a different gray color for the DTB parameter and

model uncertainties. This posterior simulation of the bedrock depth can now be used for

probabilistic geotechnical analysis to derive 95% uncertainty intervals of common metrics

of slope stability and landslide potential. This framework embraces the conclusions of

Catani et al. [2010], who used an infinite slope stability model with distributed bedrock

depths and found that the soil thickness was probably the most significant ”parameter”

controlling the factor of safety. Indeed, one would expect the explicit treatment of bedrock

depth uncertainty in geotechnical analysis to improve risk analysis and decision making.

In this paper we have used a classical residual based likelihood function to quantify

the agreement between the model and observational data. This statistical measure of

model/data similarity is not rooted properly in geologic/geomorphic theory and has little
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correspondence to specific behaviors of the system. This makes it very difficult to detect

model structural errors, our main intended goal in application of Bayesian methods. We

therefore recommend the use of summary metrics of the calibration data instead. These

statistics can be designed to measure theoretically relevant parts of system behavior, and

diagnostic evaluation then proceeds with analysis of the behavioral (signature) similarities

and differences between the system data and corresponding model simulation [Gupta et

al., 2008; Vrugt and Sadegh, 2013]. Ideally, these differences are then related to individ-

ual process descriptions, and model correction takes place by refining/improving these

respective components of the model. Recent work has shown that such an approach pro-

vides better guidance on model malfunctioning and related issues than the conventional

residual-based paradigm [Sadegh et al., 2015]. The DREAM toolbox supports the use of

summary statistics and diagnostic model evaluation [Vrugt , 2016].

The focus of our study has been only on a relatively small part of the PRB. A relatively

large monetary investment would be required to obtain a high-quality bedrock depth

data set for the entire watershed. This would also involve significant human commitment

particularly on the steepest hillslopes of the PRB which are specifically difficult to access

and dangerous to measure, even for well-trained professionals.

8. SUMMARY AND CONCLUSIONS

The depth to bedrock beneath soil-mantled landscapes controls a myriad of ecologic,

hydrologic, geomorphologic and atmospheric processes as it influences subsurface flow

paths, erosion rates, soil moisture status, water uptake by plant roots, and latent and

sensible heat fluxes. As hillslope interiors are very difficult to illuminate and access,

the direct measurement of the bedrock depth is rather time consuming, and much effort
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and human commitment would be required to characterize adequately bedrock depth

variations at spatial scales of a hillslope and watershed. Thus, a computer model that

can simulate high-resolution spatial maps of the depth to bedrock is of great value and

importance.

In this paper, we have introduced the different building blocks of a DTB model to

predict the vertical extent of the weathered rock underling soil-mantled hillslopes from a

high-resolution topographic map of the soil surface. Our model builds on the bottom-up

control on fresh-bedrock hypothesis of Rempe and Dietrich [2014] and calculates the thick-

ness of the weathered zone from the difference between the measured surface topography

and predicted groundwater profile derived from analytic solution of the one-dimensional

steady-state Boussinesq equation. Two additional terms are used in our DTB model to

characterize adequately the effect of mass movement on steep hillslopes, and the shape

and depth of the bedrock surface in the drainage valley. Most of the model parameters can

be measured directly in the laboratory or field using experiments on soil and rock mass

samples, and simulated variables can be verified using cosmogenic nuclide measurements,

geophysical imaging, topographic surveying, and drilling.

Bayesian analysis was used to reconcile the DTB-model predicted bedrock depths be-

neath hilltops, hillslopes and valleys with field observations. This approach uses MCMC

simulation with DREAM to search efficiently the model parameter space in pursuit of so

called posterior samples that best mimic the observed data. The quality of fit is mea-

sured by a likelihood function which summarizes in a single value the distance between

the observed and simulated bedrock depths. The prior distribution summarizes all our

knowledge about the model parameters before the field data is collected. This distribu-
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tion should honor soft data, geologic observations, field expertise and literature findings.

Marginal distributions and pairs of bivariate scatter plots of the posterior samples gen-

erated with DREAM are used to assess parameter sensitivity and correlation. Predictive

uncertainty can be assessed by evaluating the DTB model with each posterior parame-

ter solution. The posterior mean bedrock depth map can then be compared to observed

data to benchmark the performance of the DTB model and help verify structural weak-

nesses. This step is an integral part of the scientific method and key to model (hypothesis)

refinement.

Two case studies with synthetic and real-world regolith depth data from the Papagaio

river basin in Rio de Janeiro, Brazil were used to illustrate the usefulness and applicability

of our DTB model and methodology. Our results demonstrate that the proposed DTB

model with lumped parameters mimics reasonably well the observed regolith depth data

with root mean square error (RMSE) of the posterior mean simulation of 1.52 m and 1.80

m for the synthetic and PRB evaluation data set, respectively. The performance of the

DTB model can be enhanced if a distributed parameterization of Φ is used with RMSE

for both data sets reduced to 1.47 and 1.76 m, respectively. The use of a distributed

parameterization provides a means to account implicitly, and in a relatively simple way,

for geologic/geomorphic watershed heterogeneities that are difficult, or impossible, to

characterize adequately in the field.

The DTB simulated bedrock surface underneath the watershed can be used as input to

hydromechanical models and should improve considerably the reliability of hillslope scale

simulations of shallow landslides and debris-flow. The posterior bedrock depth simulations

of the DTB model also allow uncertainty quantification of some key output variables of
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hydromechanical models such as landslide potential and factor of safety. What is more,

the availability of an accurate bedrock depth map also makes it easier to characterize

adequately the impact of soil hydraulic and soil strength properties on slope stability.
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for help with field work and Mojtaba Sadegh for feedback on the revision process. The first

and third author greatly acknowledge research and financial support from the Brazilian

National Council for Scientific and Technological Development, CNPq. The first author

is also grateful to the Highway Department of Esṕırito Santo State in Brazil (DER-ES)
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Table 1. Summary and description of the main variables of the DTB model.

Symbol Unit Type Description

Zx [-] Model input Slope gradient in x direction

Zy [-] Model input Slope gradient in y direction

Ld [L] Model input Drainage distance

L̄d [-] Model input Normalized drainage distance

Φ [-] Model parameter Equivalent to ϕCo/K

λ1 [-] Model parameter Bedrock-valley morphology parameter

λ2 [-] Model parameter Bedrock-valley morphology parameter

Sc [-] Model parameter Critical angle of slope stability

Table 2. Parameters of the synthetic topographic surface model.

Description Symbol Index of sine wave

1 2

Amplitude ω 11,880 11,630

Frequency β 0.012 0.012

Phase constant χ 0.661 3.790

Table 3. Summary statistics of the bedrock depth observations of the synthetic and real-world

data set used herein.

Data set minimum [m] maximum [m] mean [m] σ†[m] n‡

Synthetic 0.13 11.60 4.36 2.97 100

Real-world 0.35 14.00 6.20 3.67 137

† Standard deviation.

‡ Number of point observations.
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Table 4. Prior uncertainty ranges of the DTB parameters for the artificial and observed bedrock

depth data.

Range Φ [-] λ1 [-] λ2 [-] Sc [-]

minimum 10−4 0.1 1.0 0.8

maximum 10−1 3.0 20.0 1.5

Table 5. Performance statistics of the calibrated DTB model after Bayesian inversion with the

DREAM algorithm. We list separately the results for the synthetic (case-study I: top) and real-

world (case study II: bottom) data set of bedrock depth observations using lumped and spatially

distributed parameter values. The listed values of the root mean square error (RMSE) and

correlation coefficient, ρ pertain to the calibration data set for the synthetic bedrock topography

and evaluation data set for the real-world regolith depth observations. The AIC values in the

last column are computed with Equation (5.2) using the maximum likelihood (= MAP) values

of the parameters derived from the calibration data set.

Data set Case Dimension (d) RMSE [m] ρ AIC

Synthetic Lumped 4 1.52 0.86 192.30

Distributed 7 1.47 0.87 191.74

Distributed 28 1.40 0.88 221.43

Real-world Lumped 4 1.80 0.83 194.00

Distributed 5 1.76 0.83 191.10

Distributed 8 1.76 0.82 193.90
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Figure 1. Sensitivity of the bedrock depth profile predicted by the DTB model to the values of

the parameters Φ (A and B), λ1 (C and D), λ2 (E and F), and Sc (G and H). The dotted lines in

red, blue, and gray display the simulated bedrock profiles for the listed values of the DTB-model

parameters. The surface topography is separately indicated in each plot with the solid black line.

The top-left graph (A) clarifies the position of the landscape elements ”hilltop”, ”sideslope” and

”drainage” that are used to discuss our findings.

Figure 2. Plot of the synthetic topography of the spatial domain of interest, (A) boreholes

(red line) that reach to the bedrock surface (black dot), and (B) measurement locations (red

dots). The thin black lines represent the DEM grid with pixels (cells) of 4 × 4 meters, whereas

the dark black lines represent the block pattern used in our distributed parameterization of the

DTB model.

Figure 3. Lumped DTB parametrization: Scatter-plot matrix of the posterior samples gener-

ated with the DREAM algorithm. The main diagonal plots histograms of the marginal posterior

distribution of the DTB model parameters, Φ, λ1, λ2 and Sc, respectively, and the off-diagonal

graphs present bivariate scatter plots of the posterior samples of the different parameter pairs.

The MAP solution (value associated with highest likelihood) is separately indicated in each his-

togram with the blue cross symbol. The parameters exhibit a negligible correlation by calibration

against the observed bedrock depth data.
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Figure 4. Schematic overview of the DTB modeling framework for a lumped (left) and dis-

tributed (right) parameterization of the watershed. The idealized DEM consists of P different grid

cells and each have their own specific vector, Ui, i = {1, . . . , P}, of DTB input data consisting

of slope gradient and the drainage distance. The lumped (default) DTB model parameterization

uses a single realization of the parameter values, θ = {Φ, λ1, λ2, Sc} for all P grid cells of the

DEM. This requires calibration of just a handful of parameters. A distributed parameterization,

on the contrary, assumes different parameter values for each grid cell of the DEM. A simple

block pattern is used to distribute the DTB parameters over the spatial domain of interest. The

DREAM algorithm then proceeds with statistical inference of the model parameters by fitting

the model to spatially distributed bedrock depth observations.

Figure 5. Distributed calibration case: Evolution of the R̂-convergence diagnostic of Gelman

and Rubin [1992] for each individual parameter of the DTB model (d = 28). Each parameter is

coded with a different color. The dashed black line depicts the default threshold used to diagnose

convergence to a limiting distribution.

Figure 6. Lumped and distributed calibration case: Simulated bedrock surface of the DTB

model for the lumped and distributed parameter case. The mean posterior solution is indicated

with the solid (lumped) and dashed (distributed) red line, respectively and the light and dark

gray region represent the 95% prediction intervals due to parameter uncertainty for each case.

The observed bedrock depth data are separately indicated with the blue dots.
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Figure 7. Geographic overview (right) and shaded relief image (left) of the PRB experimental

field site in Rio de Janeiro, Brazil. The PRB field site is indicated with a red cross. The white

circles (left) denote the measurement locations of the regolith depth observations using a dynamic

cone penetrometer. The transect AA’ is used to demonstrate the effects of DEM smoothing. The

transect BB’ is a cross-section in the south sub-basin and used herein to compare the simulated

bedrock profile against observations of the regolith depth to unweathered bedrock.

Figure 8. The effect of the number of iterations of the smoother algorithm on the topographic

surface. The large black rectangles are zoomed insets of the smaller rectangles of the footslope

(depositional area) and sideslope (steepest gradient). Ten iterations are deemed sufficient to

remove the small topographic defects of the DEM.

Figure 9. Lumped DTB parametrization: Scatter-plot matrix of the posterior samples gener-

ated with the DREAM algorithm. The main diagonal plots histograms of the marginal posterior

distribution of the DTB model parameters, Φ, λ1, λ2 and Sc respectively, and the off-diagonal

graphs present scatter plots of the posterior samples of the different parameter pairs. The MAP

solution (solution with highest likelihood) is separately indicated in the histograms with the blue

cross symbol. The parameters pairs exhibit a negligible correlation.

Figure 10. Distributed calibration case: Trace plot of the R̂-convergence diagnostic of Gelman

and Rubin [1992] for each individual parameter of the DTB model (d = 8). Each parameter is

coded with a different color. The dashed black line depicts the default threshold used to diagnose

convergence to a limiting distribution. About 10,000 model evaluations are needed with DREAM

to converge to the posterior distribution.
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Figure 11. Lumped and distributed calibration case: Spatial distribution of the regolith

thickness predicted at the PRB experimental watershed using a (A) lumped and (C,E) distributed

parameterization. The DTB model predicts deep soils at the hilltop and relatively thin weathered

zones in the channel, a result which is in agreement with regolith depth observations at the PRB

and field expertise of hillslopes in Rio de Janeiro. The bivariate scatter plots at the right hand

side compare the observed and simulated bedrock depths of the evaluation data set of the PRB.

Summary statistics of the goodness-of-fit (RMSE, ρ and AIC) are listed in each plot along with

the number of model parameters, d. The color coding of these regression plots matches exactly

that of the bedrock depth maps.

Figure 12. Distributed calibration case: Simulated DTB bedrock surface of the posterior mean

solution (solid red line) derived from DREAM for the transect BB’ at the PRB experimental

watershed. The dark and light gray region plot the 95% prediction intervals due to the parameter

and total simulation uncertainty. The topographic surface is indicated with the black solid line,

and the observed regolith depth data are separately indicated with the blue dots.
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