
Received: 20 September 2015 Revised: 14 October 2016 Accepted: 5 December 2016

DOI 10.1002/smr.1843

R E S E A R C H A R T I C L E

MORE: A multi-objective refactoring recommendation
approach to introducing design patterns and fixing code smells

Ali Ouni1,2 Marouane Kessentini3 Mel Ó Cinnéide4 Houari Sahraoui5

Kalyanmoy Deb6 Katsuro Inoue1

1Graduate School of Information Science and

Technology, Osaka University, Japan
2Department of Computer Science and

Software Engineering, UAE University, UAE
3Department of Computer and Information

Science, University of Michigan, U.S.A.
4School of Computer Science, National

University of Ireland, Dublin, Ireland
5Department of Computer Science and

Operations Research, University of Montreal,

Canada
6Department of Electrical and Computing

Engineering, Michigan State University, U.S.A.

Correspondence

Ali Ouni, Graduate School of Information

Science and Technology, Osaka University,

Japan.

Email: ouniaali@gmail.com

Funding information

Research Start-up (2) 2016 Grant G00002211

UAE University, Japan JSPS , Grant/Award

Number: G00002211; Grant-in-Aid for

Scientific Research (S), Grant/Award Number:

JP25220003 ; Science Foundation Ireland,

Grant/Award Number: 10/CE/I1855 to Lero.

Refactoring is widely recognized as a crucial technique applied when evolving object-oriented

software systems. If applied well, refactoring can improve different aspects of software quality

including readability, maintainability, and extendibility. However, despite its importance and ben-

efits, recent studies report that automated refactoring tools are underused much of the time by

software developers. This paper introduces an automated approach for refactoring recommen-

dation, called MORE, driven by 3 objectives: (1) to improve design quality (as defined by software

quality metrics), (2) to fix code smells, and (3) to introduce design patterns. To this end, we adopt

the recent nondominated sorting genetic algorithm, NSGA-III, to find the best trade-off between

these 3 objectives. We evaluated the efficacy of our approach using a benchmark of 7 medium

and large open-source systems, 7 commonly occurring code smells (god class, feature envy, data

class, spaghetti code, shotgun surgery, lazy class, and long parameter list), and 4 common design

pattern types (visitor, factory method, singleton, and strategy). Our approach is empirically eval-

uated through a quantitative and qualitative study to compare it against 3 different state-of-the

art approaches, 2 popular multiobjective search algorithms, and random search. The statistical

analysis of the results confirms the efficacy of our approach in improving the quality of the stud-

ied systems while successfully fixing 84% of code smells and introducing an average of 6 design

patterns. In addition, the qualitative evaluation shows that most of the suggested refactorings (an

average of 69%) are considered by developers to be relevant and meaningful.

KEYWORDS

design patterns, code smells, refactoring, search-based software engineering, software quality

1 INTRODUCTION

Software systems are continuously subject to maintenance and evo-

lution activities to add new features, to fix bugs, or to adapt to new

environmental changes.1 Such activities are often performed in an

undisciplined manner because of many reasons including time pres-

sure, poorly planned changes, or limited knowledge/experience of some

developers about the system’s design.2,3 Refactoring techniques are

a fundamental support for improving software quality that has been

practiced for many years.4 Refactoring has been defined by Fowler as

“the process of changing a software system in such a way that it does

not alter the external behavior of the code yet improves its internal

structure”.2 If applied well, refactoring brings many benefits to support

software developers in terms of understanding, changing, maintaining,

and evolving the existing software implementation. To this end, various

refactoring recommendation approaches have been proposed in the

literature.5–8

Despite its significant benefits, recent studies show that automated

refactoring tools are underused much of the time.5,9,10 One of the

possible reasons is that most of existing refactoring tools6,11,12 focus

mainly only on improving some specific aspects of a system (eg, cou-

pling, cohesion, complexity, etc). Indeed, improving some quality met-

rics in a software system does not necessary fix existing code smells.13

Thus, quality metric values can be significantly improved, but the

original program may still contain a considerable number of code

smells, which may lead to several maintenance and evolution difficul-

ties. On the other hand, design patterns are known as “good” solu-

tions to recurring design problems, conceived to increase reuse, code

quality, code readability, and, above all, maintainability and resilience

to change.14 Design patterns can be automatically introduced using

J Softw Evol Proc. 2017;29:e1843. wileyonlinelibrary.com/journal/smr Copyright © 2017 John Wiley & Sons, Ltd. 1 of 26
https://doi.org/10.1002/smr.1843

:

https://doi.org/10.1002/smr.1843
http://orcid.org/0000-0003-4708-0362

2 of 26 OUNI ET AL.

refactoring;15,16 however, most existing refactoring tools do not con-

sider the use of design patterns to fix code smells and improve the qual-

ity of software systems. To make the situation worse, applying a design

pattern where it is not needed is highly undesirable as it introduces

an unnecessary complexity to the system for no benefit.17–20 In addi-

tion, an excessive introduction of design patterns can make the system

less maintainable and understandable, and even create performance

problems.19 For instance, introducing the Strategy design pattern to an

inappropriate class will decrease the cohesion of the class and increase

the overall coupling in the system.

A further challenge is that while it may appear that introducing

design patterns, improving software quality metrics, and removing

code smells are all noncompeting goals and hence can be simultane-

ously optimized, empirical evidence indicates otherwise. Studies by

Soetens and Demeyer,21 Stroggylos and Spinellis,22 and Kannangara

and Wijayanayake23 all found little or no correlation between refactor-

ing activity and improvement in software quality metrics. In a similar

vein, Wilking et al24 found that refactored code was neither more main-

tainable nor easier to modify than unrefactored versions of the same

code. Studies by Counsell et al25 and Chatzigeorgiou and Manakos26

found no evidence to support the claim that refactoring is used to

remove code smells. Even considering software quality metrics on their

own, Ó Cinnéide et al27 found such conflict between the cohesion met-

rics they studied that it is likely that any observed correlation with a

software quality metric will not extend to other software quality met-

rics.

To address the above-mentioned challenges, we developed a

search-based refactoring recommendation approach28 to fix code

smells, introduce design patterns, and improve quality attributes of

a system while preventing semantic incoherencies in the refactored

program. This multiobjective search-based approach was embodied

in a tool called MORE, based on the nondominated sorting genetic

algorithm (NSGA-II).29 The proposed approach aims to recommend

refactoring operations to (i) improve software quality attributes (ie,

understandability, flexibility, maintainability, etc), (ii) introduce good

design practices (ie, design patterns), and (iii) fix bad design practices

(ie, code smells). In addition, MORE is based on a set of constraints, for

each refactoring operation, to ensure the semantic coherence of the

refactored program, eg, that a method is not moved to a class where it

makes no sense.

This paper extends our previous work28 that was published in the

proceedings of the North American Search Based Software Engineer-

ing Symposium (NasBASE) in 3 ways.

1. Our initial approach was based on the popular multiobjective

algorithm NSGA-II.29 In this paper, we adopt NSGA-III, a recent

many-objective search algorithm proposed by Deb et al,30 to

improve the performance of our approach.

We conduct a experiment to compare the performance of

NSGA-III against other popular multiobjective algorithms including

NSGA-II and MOEA/D, as well as random search.

2. We extend MORE to support (i) 3 additional code smell types

(shotgun surgery, lazy class, and long parameter list) and (ii) one

additional design pattern (strategy). Moreover, we provide detailed

descriptions of the refactoring transformations for each of the

considered design patterns, and the semantic constraints used to

preserve the design semantics when applying refactorings.

3. We present an empirical study based on a quantitative and qual-

itative evaluation on an extended benchmark composed of 7

real-world Java software systems of various sizes. The quanti-

tative evaluation investigates the efficacy (ability to achieve the

intended effect under experimental conditions) of our approach

in fixing 7 common code smell types (god class, feature envy,

data class, spaghetti code, shotgun surgery, lazy class, and long

parameter list), introducing 4 types of design patterns (factory

method, visitor, singleton, and strategy), and improving 6 qual-

ity attributes according to the popular software quality model

QMOOD.31 For the qualitative evaluation, we conducted a nonsub-

jective evaluation with software developers to evaluate the mean-

ingfulness and usefulness of our refactoring approach from a user’s

perspective.

The remainder of this paper is organized as follows. Section 2

describes necessary background and basic concepts related to our

approach. Section 3 introduces our search-based approach, MORE.

Section 4 describes in more detail the adaptation of NSGA-III to the

refactoring recommendation problem. Section 5 describes the design

of the empirical study we use to evaluate our approach, while in Section

6, we present and discuss the experimental results. Section 7 describes

the threats to validity and the limitations of the present study. Section

8 outlines the related work. Finally, in Section 9, we conclude and

describe our future research directions.

2 BACKGROUND

2.1 Definitions

Refactoring is the process of changing the structure of software while

preserving its external behavior. The term refactoring was introduced

by Opdyke and Johnson,32 and popularized by Martin Fowler’s book.2

The idea is to reorganize variables, classes, and methods to facili-

tate future adaptations and extensions. This reorganization is used to

improve different aspects of software quality such as maintainability,

extensibility, reusability, etc.33,34

Refactoring is widely recognized as an efficient technique to fix code

smells and reduce the increasing complexity of software systems. Code

smells, also called bad smells, design defects, design flaws, or antipat-

terns, are symptoms of poor design and implementation practices that

describe a bad solution to a recurring design problem that leads to

negative effects on code quality.13 Software developers may introduce

code smells unintentionally during initial design or during software

development because of bad design decisions, ignorance, or time pres-

sure.

Table 1 describes the studied code smells in this paper: god class, fea-

ture envy, data class, spaghetti code, shotgun surgery, long parameter

list, and lazy class. Indeed, we selected these code smell types because

(i) they are representative of problems with data, complexity, size, and

the features provided by classes and (ii) they are the most important

and frequently occurring ones in open-source and industrial projects

based on recent studies.35–39

OUNI ET AL. 3 of 26

TABLE 1 code smell types supported by MORE

Name Description

God class
It is found in design fragments where 1 large class monopolizes the behavior of a system (or part of it) and
the other classes primarily contain data. It is a large class that declares many fields and methods with low
cohesion.2,40,41

Feature envy
It is found when a method heavily uses attributes from 1 or more external classes, directlyor via accessor
methods.2

Data class
It contains only data and performs no processing on this data. It is typically composed of highly cohesive fields
and accessors.13

Spaghetti code

It is code with a complex and tangled control structure. This code smell is characteristic of procedural
thinking in object-oriented programming. Spaghetti code is revealed by classes with no structure, declar-
ing long methods with few or no parameters, and utilizing global variables. Names of classes and methods
may suggest procedural programming. Spaghetti code does not exploit, and indeed prevents, the use of
object-oriented mechanisms such as polymorphism and inheritance.13

Shotgun surgery
It occurs when a method has a large number of external operations calling it, and these operations are spread
over a significant number of different classes. As a result, the impact of a change in this method will be large
and widespread.2

Long parameter list

It is found when a method signature declares numerous parameters. Long parameter lists are prone to con-
tinuous change, difficult to use, and hard to understand and maintain. In object-oriented programming, one
should use objects instead of passing a large number of parameters.2

Lazy class
It refers to a class that is not doing enough to justify its existence. It represents a class having very small
dimensions, few methods and with low complexity.2

TABLE 2 Design pattern types supported by MORE

Name Description

Visitor
The visitor pattern represents an operation to be performed on the elements of an object structure. In essence, the visitor
pattern allows a new method to be added to a family of classes without modifying the classes themselves; instead, one creates
a visitor class that implements all of the appropriate specializations of the dynamically-bound method.14

Factory method
Factory method is a creational pattern that uses factory methods to deal with the problem of creating objects without specifying
the exact class of object that will be created. It defines an interface for creating an object, but defers to subclasses the decision
as to exactly which class to instantiate.14

Singleton
It restricts the instantiation of a class to 1 single object. This is useful when exactly 1 object is needed to coordinate actions
across the system. The concept is sometimes generalized to systems that operate more efficiently when only 1 object exists.14

Strategy

It defines a family of algorithms, encapsulates each one, and makes them interchangeable at runtime. Strategy lets the algorithm
vary independently from clients that use it. There are common situations when classes differ only in their behavior. In this case,
best design practice suggests isolating the algorithms in separate classes to have the ability to select different algorithms at
runtime.14

On the other hand, design patterns are good solutions to recurring

design problems, conceived to increase reuse, code quality, code read-

ability, and, above all, maintainability and resilience to change.14 We

focus in this paper on 4 of the Gamma et al design patterns namely

factory method, visitor, singleton, and strategy.14 Table 2 provides def-

initions and characteristics of these design patterns. We choose these

patterns because they are partially automatable,16 and also because

they address problems related to classes and their associations and

are commonly used to improve the structure of an object-oriented

software design.

2.2 Search-based software engineering

Our approach is largely inspired by contributions in the field of

Search-based software engineering (SBSE). The term SBSE was coined

by Harman and Jones in 2001, and the goal of the field is to

move software engineering problems from human-based search to

machine-based search, using a variety of techniques from the meta-

heuristic search and evolutionary computation paradigms.42 The idea is

to exploit human creativity with machine tenacity and reliability, rather

than requiring humans to perform the more tedious, error-prone, and

thereby costly aspects of the engineering process.

In 2007, Harman reviewed the state of the SBSE field43 and found

a strong adoption of a variety of metaheuristic search techniques (eg,

hill climbing, genetic algorithms, simulated annealing, etc) by software

practitioners to solve different software engineering problems. In later

studies, Harman et al44,45 observed that multiobjective evolutionary

optimization techniques (NSGA-II, MOGA, etc) were becoming popu-

lar. In fact, this new tendency to adopt multiobjective search techniques

to software engineering is justified by the new challenges that soft-

ware practitioners face to solve more complex software engineering

problems.

3 APPROACH

This section describes our approach, its components and the semantic

constraints used.

3.1 The General architecture of MORE

The general structure of our approach is described in Figure 1. It takes

as input the source code of the program to be refactored; and as out-

put, it recommends a sequence of refactorings that should provide a

near-optimal trade-off between: (i) improving quality; (ii) fixing code

smells, and (iii) introducing design patterns. The proposed approach

comprises 7 main components:

A. Source code parser and analyzer (label A). This component

is responsible for parsing and analyzing the source code of the

program being refactored. Our approach is based on Soot,46 a

4 of 26 OUNI ET AL.

FIGURE 1 Overview of MORE architecture

Java optimization framework. The original source code is ana-

lyzed to extract from it the relevant code elements (ie, classes,

methods, attributes, etc) and the existing relationships between

them. The outputs are (i) the parsed code in a specific represen-

tation that is simple to manipulate during the search process and

(ii) a call graph for the entire program that will be used for cal-

culating semantic constraints and software metrics (eg, coupling,

cohesion, etc).

B. Code smell detector (label B). This component scans the entire

software program to find existing code smell instances using a set

of code smell detection rules.37 Detection rules are expressed in

terms of metrics and threshold values. Each rule detects a specific

code smell type (eg, god class, feature envy, etc) and is expressed as

a logical combination of a set of quality metrics/threshold values.

These detection rules are generated from real instances of code

smells using genetic programming.37

C. Design pattern detector (label C). This component is responsi-

ble for detecting existing design pattern instances in the code being

refactored. Extensive research has been devoted to develop tech-

niques to automatically detect instances of design patterns both at

code and design levels. In our approach, we use a detection mech-

anism that is inspired by the work of Heuzeroth et al.47 A design

pattern P is defined by a tuple of program elements such as classes

and methods conforming to the restrictions or rules of a certain

design pattern. The detection strategy47 is based on static and

dynamic specifications of the pattern. In MORE, we use only the

static specifications, along with a postprocessing step to eliminate

redundancies. Static specifications are based on predicates to iden-

tify the types of code elements, eg, classes, methods, calls, etc, and

relates them to the roles in the pattern.

D. Code quality evaluator(label D). This component consists of a

set of software metrics that serves to evaluate the software design

improvement achieved by refactoring. Indeed, the expected ben-

efit from refactoring is to enhance the overall software design

quality as well as fixing code smells.2 In our approach, we use

the QMOOD (Quality Model for Object-Oriented Design) model31

to estimate the effect of the suggested refactoring solutions on

quality attributes.

E. List of refactorings (label E). MORE currently supports the fol-

lowing refactoring operations: move method, move field, pull up

field, pull up method, push down field, push down method, inline

class, extract method, extract class, move class, extract superclass,

extract subclass, and extract interface.2 We selected these refac-

torings because they are the most frequently used refactorings, and

they are implemented in most contemporary IDEs such as Eclipse

and Netbeans. In addition, we considered 4 specific blocks of refac-

torings to automatically introduce different types of design pattern

instances: factory method refactoring, visitor pattern refactoring,

singleton pattern refactoring, and strategy pattern refactoring. We

referred to some guidelines from the literature for introducing

instances of design patterns.17,34,48 MORE currently supports the

following 4 design pattern types: visitor, factory method, singleton,

and strategy.

OUNI ET AL. 5 of 26

• Visitor pattern refactoring. To introduce a visitor pattern, we should

apply a sequence of refactoring operations in the right order.

Algorithm 1 illustrates the necessary refactorings to be applied to

introduce a visitor. The starting point is a class hierarchy H that has a

superclass/interface SC and a set of subclasses CC. The first step is

to create, for each functional method, a corresponding visitor class

(lines 6-11). Then, functional code fragments should be moved from

the class hierarchy H to the visitor classes. To this end, we apply the

extract method refactoring to extract the functional code from the

functional methods (line 15). The original method will now simply

delegate the new extracted one (at a later stage, these methods can

be deleted and their call sites updated to use the appropriate visitor).

The extracted method will be moved from the class hierarchy to the

appropriate newly created visitor class (line 16). The new methods

in visitor classes are named “visit*" using a rename method refactor-

ing (line 18). An abstract visitor class is introduced as a superclass

for all the created visitors using an extract superclass refactoring

(line 21). Now, an “accept" method is introduced in all the subclasses

CC in H by extracting it from the initial methods, using an extract

method refactoring (line 24). All functional methods now call the

accept method with an instance of the appropriate visitor subclass.

Therefore, their definition can be pulled up to the SC class by using

a pull up method refactoring.

• Factory method refactoring. As described in Algorithm 2, which uses

the approach developed by Ó Cinnéide and Nixon,17 a factory

method pattern can be introduced starting from a Creator class

that creates instances ofProduct class(es). The first step is to apply

an extract interface refactoring (line 3) to abstract the public meth-

ods of the Product classes into an interface. All references to the

Product classes in the Creator class are then updated to refer to

this interface (lines 4-7). Then, for each constructor in each of the

Product classes, a similar method is added in the Creator class

that returns an instance of the corresponding Product class (lines

9-16). Finally, all creations ofProductobjects in theCreator class

are updated to use these new methods (lines 17-20).

• Singleton pattern refactoring. Our formulation for the singleton pat-

tern is derived from other studies.3,49 Algorithm 3 describes the

basic steps to introduce the singleton pattern. A singleton class can

be introduced starting from a candidate class Singleton. The first

step (line 3) is to apply the classic refactoring operation, defined in

Fowlers catalogue,2 replace constructor with factory method. The

aim of this step is to make the constructor private. Then access to

this class will be performed via the newly generated static method

getSingleton(), which will be the global access point to the

Singleton instance. The second step is to create a static fieldsin-

gleton of type singleton with access level private (line 4) that will

be initialized to new Singleton() in the body of the new method

getSingleton() (line 6). The selection statement ensures that

the field singleton is instantiated only once, ie, when it is null.

• Strategy pattern refactoring. Algorithm 4 describes the main steps to

introduce a strategy pattern. The starting point of a strategy pattern

is a method m. m can be turned into a strategy pattern by creating

a new interface i (called with same name as m followed by “_Strat-

egy") (Line 3), where the strategy methodm is moved to (line 4). Then

for each “if” statement in m, a concrete class is created (line 6) to

implement the interface i (line 8). An extract method refactoring is

applied to move the correspondent code fragment from the corre-

spondent “if” statement (line 7). A field of the concrete class type is

added to the original class implementing m.

We selected these 4 design patterns because they are frequently

used in practice, and it is widely believed that they embody good design

practice.14 Note that the 4 algorithms apply a typical implementation of

the pattern, and leave some unfinished work to the developer to com-

plete. Furthermore, if an atomic refactoring fails due to a non-satisfied

precondition, the whole refactoring sequence that applies the design

pattern will be rejected.

F. Semantic constraints checker (label F). The aim of this compo-

nent is to prevent arbitrary changes to code elements. Most refac-

torings are relatively simple to implement, and it is straightforward

to show that they preserve behaviour assuming their preconditions

are true.33 However, until now, there has been no consensual way

6 of 26 OUNI ET AL.

to investigate whether a refactoring operation is semantically feasi-

ble and meaningful.50 Preserving behavior does not mean that the

coherence of the refactored program is also preserved. For instance,

a refactoring solution might move a method calculateSalary()

from the class Employee to the class Car. This refactoring could

improve program structure by reducing the complexity and coupling of

the class Employee while preserving program behavior. However, hav-

ing a method calculateSalary() in the class Car does not make

sense from the domain semantics standpoint. To avoid this kind of

problem, we use a set of semantic coherence constraints that must be

satisfied before applying a refactoring to prevent arbitrary changes to

code elements. This will be described further in Section 3.2.

G. Search process (label G). Our approach is based on multiobjective

optimization search using the recent NSGA-III algorithm30 to formu-

late the refactoring recommendation problem. We selected NSGA-III

because it is a recent improvement of its previous version NSGA-II,29

which is widely-used in the field of multiobjective optimization, and

demonstrates good performance compared to other existing meta-

heuristics in solving many software engineering problems.51 Thus,

our approach can be classified as search based software engineer-

ing (SBSE)42,44,45 for which it is established best practice to define a

representation, fitness functions, and computational search algorithm.

Referring to Figure 1, the search process (NSGA-III) takes as input

the source code that is then parsed into a more manipulable repre-

sentation (label A), a set of code smell detectors (label B), a set of

design patterns detectors (label C), a code quality evaluator (label D)

that evaluates postrefactoring software quality, a set possible refac-

toring operations to be applied (label E), and set of constraints (label

F) to ensure semantic coherence of the code after refactoring. As

output, our approach suggests a list of refactoring operations that

should be applied in the appropriate order to find the best compromise

between fixing code smells, introducing design patterns, and improving

code quality.

3.2 Semantic Constraints

MORE defines and uses a set of semantic constraints to prevent arbi-

trary changes that may affect the semantic coherence of the refactored

program. Indeed, applying a refactoring where it is not needed is highly

undesirable as it may introduce semantic incoherence and unnecessary

complexity to the original design. To this end, we have defined the fol-

lowing semantic constraints to steer the evolutionary process toward

meaningful and useful refactoring solutions.

Vocabulary-based similarity constraint (VS). This kind of constraint

is interesting to consider when moving methods, fields, or classes. For

example, when a method has to be moved from 1 class to another,

the refactoring would make sense if both actors (source class and tar-

get class) use similar vocabularies.50,52 The vocabulary can be used as

an indicator of the semantic similarity between different actors (eg,

method, field, class, etc) that are involved when performing a refac-

toring operation. We start from the assumption that the vocabulary of

an actor is derived from the domain terminology and therefore can be

used to determine which part of the domain semantics is encoded by

an actor (eg, class, method, package, interface, etc). Thus, 2 actors are

likely to be semantically similar if they use similar vocabularies.

The vocabulary can be extracted from the names of methods, fields,

variables, parameters, types, etc. Tokenisation is performed using the

camel case splitter, which is one of the most used techniques in soft-

ware maintenance tools for the preprocessing of identifiers. A more

pertinent vocabulary can also be extracted from comments, commit

information, and documentation. We calculate the semantic similar-

ity between actors using information retrieval-based techniques (eg,

cosine similarity). Equation 1 calculates the cosine similarity between 2

actors. Each actor is represented as a n dimensional vector, where each

dimension corresponds to a vocabulary term. The cosine of the angle

between 2 vectors is considered as an indicator of similarity. Using

cosine similarity, the conceptual similarity between two actors c1 and

c2 is determined as follows:

Sim(c1, c2) = Cos(−→c1,
−→c2) =

−→c1.
−→c2||−→c1|| × ||−→c2||

=

n∑
i=1

(wi,1 × wi,2)√
n∑

i=1
(wi,1)2 ×

n∑
i=1

(wi,2)2

∈ [0,1],
(1)

where −→c1 = (w1,1, … ,wn,1) is the term vector corresponding to actor

and c1 and −→c2 = (w1,2, … ,wn,2) is the term vector corresponding

to c2. The weights wi,j can be computed using information retrieval

based techniques such as the term frequency—Inverse term frequency

(TF-IDF) method.

Dependency-based similarity constraint (DS). This constraint aims

at approximating semantics closeness between actors starting from

their mutual dependencies. The intuition is that actors that are strongly

connected (ie, having dependency links) are semantically related. As

a consequence, refactoring operations requiring semantic closeness

between involved actors are likely to be successful when these actors

are strongly connected. We consider 2 types of dependency link:

• Shared method calls (SMC) can be captured from call graphs derived

from the whole program using CHA (class hierarchy analysis).53 A

call graph is a directed graph that represents the different calls (call

in and call out) among all methods of the entire program. Nodes rep-

resent methods, and edges represent calls between these methods.

CHA uses a basic call graph that considers class hierarchy informa-

tion, eg, for a call c.m(…), it assumes that any m(…) is reachable

that is declared in a subclass of the declared class of c. For a pair of

actors, shared calls are captured through this graph by identifying

shared neighbours of nodes related to each actor. We consider both

shared call out and shared call in. Equations 2 and 3 are used to mea-

sure respectively the shared call out and the shared call in between

2 actors c1 and c2 (2 classes, for example).

SharedCallOut(c1, c2) =
|callOut(c1) ∩ callOut(c2)||callOut(c1) ∪ callOut(c2)| ∈ [0,1] (2)

SharedCallIn(c1, c2) =
|callIn(c1) ∩ callIn(c2)||callIn(c1) ∪ callIn(c2)| ∈ [0,1], (3)

where callOut(c) returns the set of methods called by the methods of

the class c, and callIn(c) returns the set of external methods that call

any method in the class c. Shared method calls (SMC) is then defined

as the average of shared call in and call out.

OUNI ET AL. 7 of 26

• Shared field access (SFA) can be calculated by capturing all field ref-

erences uncovered using static analysis to identify dependencies

based on field accesses (read or modify). We assume that 2 software

elements are semantically related if they read or modify the same

fields. The rate of shared fields (read or modified) between 2 actors

c1 and c2 is calculated according to Equation 4. In this equation,

fieldRW(ci) returns the set of fields that may be read or modified by

each method of the actor ci. Thus, by applying suitable static program

analysis to the whole method body, all field references that occur

could be easily computed.

sharedFieldRW(c1, c2) =
|fieldRW(c1) ∩ fieldRW(c2)||fieldRW(c1) ∪ fieldRW(c2)| ∈ [0,1] (4)

Implementation-based similarity constraint (IS). Methods that have

similar implementations in all subclasses of a superclass should usu-

ally be moved to the superclass using the pull up method refactoring,2

assuming certain constraints are satisfied. The implementation simi-

larity between methods is investigated at 2 levels: signature level and

body level. To compare the signatures of methods, we applied a seman-

tic comparison algorithm that takes into account the methods names,

the parameter lists, and return types. Let Sig(mi) be the set of elements

in the signature of method mi. The signature similarity for 2 methods

m1 and m2 is computed as follows:

sig_sim(m1,m2) =
|Sig(m1) ∩ Sig(m2)||Sig(m1) ∪ Sig(m2)| ∈ [0,1] (5)

To compare method bodies, MORE compares the statements in the

body, the used local variables, the exceptions handled, the call out, and

the field references. Let Body(m) (set of statements, local variables,

exceptions, call-out, and field references) be the body of method m. The

body similarity for 2 methods m1 and m2 is computed as follows:

body_sim(m1,m2) =
|Body(m1) ∩ Body(m2)||Body(m1) ∪ Body(m2)| ∈ [0,1] (6)

The IS score between 2 methods corresponds to the average score of

their sig_sim and body_sim values. Although we simply used Jaccard sim-

ilarity to compute the IS constraint to reduce the computational time

of MORE, further improvement of the IS could be based on code clone

detection techniques.54

Feature inheritance usefulness constraint (FIU). This constraint is

useful when applying refactorings such as push down method or push

down field operations. In general, when a method or field is used by only

few subclasses of a superclass, it is better to move it, ie, push it down,

from the superclass to the subclasses using it.2 To do this for a method,

we need to assess the usefulness of the method in the subclasses in

which it appears. We use a call graph and consider polymorphic calls

derived using XTA (separate type analysis).55 XTA is more precise than

CHA as it yields a more local view of what types are available. We use

Soot46 as a standalone tool to implement and test all the program anal-

ysis techniques required in our approach. The inheritance usefulness of

a method is given by Equation 7:

FIU(m, c) = 1 −

n∑
i=1

call(m, i)

n
∈ [0,1], (7)

where n is the number of subclasses of the superclass c, m is the method

to be pushed down, and call is a function that returns 1 if m is used

(called) in the subclass i, and 0 otherwise.

For the refactoring operation push down field, a suitable field refer-

ence analysis is used. The inheritance usefulness of a field is given by

Equation 8:

FIU(f, c) = 1 −

n∑
i=1

use(f, ci)

n
∈ [0,1], (8)

where n is the number of subclasses of the superclass c, f is the field to

be pushed down, and use is a function that returns 1 if f is used (read or

modified) in the subclass ci, and 0 otherwise.

Furthermore, we introduced other semantic constraints related to

the introduction of design patterns. Before introducing a design pat-

tern to a particular design fragment, the basic intent of the pattern

should exist in that design fragment already. This starting point is

termed a precursor in the nomenclature of Ó Cinnéide and Nixon17

and is not taken into account in much of the existing work in auto-

mated refactoring. MORE formulates the notion of precursor as a set

of semantic constraints that should be satisfied before introducing a

design pattern.

Factory method constraint (FMC). The semantic constraint we use

for the factory method pattern is that the Creator class must create

a concrete instance of a Product class.17 This situation could require

the application of the factory method pattern, if the developer decides

that the Creator class should be able to handle several different types

of product. MORE analyzes, using Soot,46 all the method bodies of a

candidate Creator class to retrieve statements containing the operator

“new” that occur within its functional methods’ bodies. If the candidate

Creator class does not create instances of the Product class, then there

is no need to introduce a factory method pattern.

Visitor pattern constraint (VPC).

The semantic constraints for the Visitor pattern involve the situation

when a class do not support additional behavior. This relates in general

to complex hierarchies that have a large number of inherited meth-

ods or with God classes that can be detected.17 The goal is to increase

the ability to add new operations to existing object structures without

modifying those structures.

Singleton pattern constraint (SPC). The semantic constraints we use

for the Singleton pattern is that the class under refactoring (the can-

didate Singleton) (i) has only one instance, (ii) does not employ inheri-

tance, and (iii) provides a global point of access to it, ie, a method called

from other classes in the system.3 These 2 constraints can be checked

using static program analysis. Using Soot, all class instances, method

calls, and field accesses can be captured; thus, classes that are instan-

tiated once or accessed through static methods or fields are potential

candidates for the Singleton pattern refactoring. Dynamically, we can

simply check if at most 1 instance of the candidate singleton class

is created during runtime. That would ensure that there are no false

positives.

Strategy pattern constraint (StPC). The semantic constraint for

the Strategy pattern is when a class defines many behaviors, and

these appear as multiple conditional statements in its methods. Con-

sider the situation where a method is structured as one large “if”

8 of 26 OUNI ET AL.

statement. This situation suggests that Strategy could be applied by

extracting each branch of the if statement into its own class, where

each class implements a common interface. The decision on which

class to use can be moved to the original class, and made settable by

the client.

4 SEARCH-BASED REFACTORING USING
NSGA-III

This section shows how the refactoring problem can be addressed using

NSGA-III. We first present an overview of NSGA-III; then we provide

the details of our approach.

4.1 NSGA-III Overview

NSGA-III is a recent many objective search algorithm proposed by Deb

et al.30 The basic framework remains similar to the original NSGA-II

algorithm29 with significant changes in its selection mechanism.

Algorithm 5 gives the pseudocode of the NSGA-III procedure for

a particular generation t. First, the parent population Pt (of size N)

is randomly initialized in the specified domain, and then the binary

tournament selection, crossover, and mutation operators are applied

to create an offspring population Qt. Thereafter, both populations are

combined and sorted according to their domination level and the best

N members are selected from the combined population to form the

parent population for the next generation. The fundamental difference

between NSGA-II and NSGA-III lies in the way the niche preservation

operation is performed. Unlike NSGA-II, NSGA-III starts with a set of

reference points Zr. After nondominated sorting, all acceptable front

members and the last front Fl that could not be completely accepted

are saved in a set St. Members in St/Fl are selected right away for

the next generation. However, the remaining members are selected

from Fl such that a desired diversity is maintained in the population.

The original NSGA-II algorithm uses the crowding distance measure

for selecting a well-distributed set of points; however, in NSGA-III,

the supplied reference points (Zr) are used to select these remaining

members (cf, Figure 2). To accomplish this, we first normalized objec-

tive values and reference points so that they have an identical range.

Thereafter, orthogonal distance between a member in St and each of

the reference lines (joining the ideal point and a reference point) is

computed. The member is then associated with the reference point

having the smallest orthogonal distance. Next, the niche count for each

reference point, defined as the number of members in St/Fl that are

associated with the reference point, is computed for further process-

ing. The reference point having the minimum niche count is identified,

and the member from the last front Fl that is associated with it is

included in the final population. The niche count of the identified ref-

erence point is increased by 1, and the procedure is repeated to fill

up population Pt + 1.

It is worth noting that a reference point may have 1 or more pop-

ulation members associated with it, or need not have any popula-

tion member associated with it. Let us denote this niche count as 𝜌j

for the jth reference point. We now devise a new niche preserving

operation as follows. First, we identify the reference point set Jmin =
{j : argminj(𝜌j)} having minimum 𝜌j. In case of multiple such reference

points, one (j*∈Jmin) is chosen at random. If 𝜌j∗ = 0 (meaning that there

is no associated Pt + 1 member to the reference point j*), 2 scenarios

can occur. First, there exists 1 or more members in front Fl that are

already associated with the reference point j*. In this case, the one hav-

ing the shortest perpendicular distance from the reference line is added

to Pt + 1. The count 𝜌j∗ is then incremented by 1. Second, the front Fl

does not have any member associated with the reference point j*. In

this case, the reference point is excluded from further consideration for

the current generation. In the event of 𝜌j∗ ⩾ 1 (meaning that already 1

member associated with the reference point exists), a randomly cho-

sen member, if exists, from front Fl that is associated with the ref-

erence point Fl is added to Pt + 1. If such a member exists, the count

𝜌j∗ is incremented by 1. After 𝜌j counts are updated, the procedure

is repeated for a total of K times to increase the population size

of Pt + 1 to N.

Note that the set of reference points can either be predefined in a

structured manner or supplied preferentially by the user. Our adopted

version of NSGA-III in this paper is based on Das and Dennis’s56

systematic approach that automatically places points on a normal-

ized hyper plane—an (M-1)-dimensional unit simplex—which is equally

FIGURE 2 Normalized reference plane for a 3-objective problem with
p = 4

OUNI ET AL. 9 of 26

inclined to all objective axes and has an intercept of one on each

axis (cf, Figure 2). If p divisions are considered along each objective,

the total number of reference points (H) in an M-objective problem

is given by

H =
(

M + p − 1
p>

)
(9)

For our refactoring recommendation problem, which is a 3-objective

problem (M = 3), the reference points are created on a triangle with

apex at (1, 0, 0), (0, 1, 0), and (0, 0, 1). If 4 divisions (p = 4) are chosen for

each objective axis, H =
(

3 + 4 − 1
4

)
, or 15 reference points will be

created. For clarity, these reference points are shown in Figure 2, where

each axis f1, f2, and f3 corresponds to an objective function, code smells

correction ratio, quality metrics improvement, and the number of intro-

duced patterns. Note that all fitness values are normalized in the range

[0..1] so that they have an identical range with the reference points.

4.2 NSGA-III Adaptation for the Refactoring

Recommendation Problem

4.2.1 Problem formulation

The refactoring problem involves searching for a near-optimal refac-

toring solution among the set of candidate ones, which constitutes a

huge search space. A refactoring solution is a sequence of refactoring

operations where the goal is to apply the sequence to a software system

S so as to (i) minimize the number of code smells in S, (ii) maximize the

number of design patterns, and (iii) improve the overall quality (using

software metrics). This formulation is given as follows:

{
Minimize F(x, S) = [f1(x, S), f2(x, S), f3(x, S)]
Subject to x = (x1, x2, … , xn) ∈ X,

where X is the set of all legal refactoring sequences starting from S

that satisfy the semantic constraints described in Section 3.2, xi is the

ith refactoring operation, and fk(x, S) is the kth objective. Note that

we formulate the refactoring problem as a minimization multiobjective

problem (MOP) and observe that maximization can be easily turned to

minimization based on the duality principle.

4.2.2 Solution approach

This subsection describes how we adapted NSGA-III to the problem

of refactoring recommendation in terms of solution representation,

variation, and evaluation.

Solution representation. As defined in the previous section, a solu-

tion consists of a sequence of n refactoring operations applied to dif-

ferent code elements in the source code. To represent a candidate solu-

tion (individual/chromosome), we use a vector-based representation.

As depicted in Figure 3, each vector’s dimension represents a refactor-

ing operation where the order of applying these refactoring operations

corresponds to their positions in the vector. For each of these refac-

toring operations, we specify preconditions in the style of Opdyke33

to ensure the feasibility of their application. The initial population is

FIGURE 3 Example of solution representation in MORE

TABLE 3 Semantic constraints considered for each refactoring operation

Refactorings VS DS IS FIU FMC VPC SPC StPC

Move method x x

Move field x x

Pull up field x x x

Pull up method x x x

Push down field x x x

Push down method x x x

Inline class x x

Extract class x x

Move class x x

Extract interface x x

Visitor pattern refactoring x

Factory method refactoring x

Singleton pattern refactoring x

Strategy pattern refactoring x

10 of 26 OUNI ET AL.

generated by assigning randomly a sequence of refactorings to some

code fragments. To apply a refactoring operation, we need to spec-

ify which actors, ie, code fragments, are involved/impacted by this

refactoring and which roles they play in performing the refactoring

operation. An actor can be a package, class, field, method, parameter,

statement, or variable.

Moreover, each refactoring operation should comply with its seman-

tic constraints to be considered valid. In Table 3, we specify, for

each refactoring operation, which semantic constraints are taken into

account to ensure that the refactoring operation preserves design

coherence.

Solution variation. In each search algorithm, the variation operators

play the key role of moving within the search space with the aim of

driving the search towards optimal solutions. For crossover, we use the

1-point crossover operator. It starts by selecting and splitting at ran-

dom 2 parent solutions. Then, this operator creates 2 child solutions

by putting, for the first child, the first part of the first parent with the

second part of the second parent, and vice versa for the second child

(cf, Figure 4). This operator must ensure to respect the length limits

by eliminating randomly some refactoring operations. It is important

to note that in multiobjective optimization, it is better to create chil-

dren that are close to their both parents to have a more efficient search

process.30 For this reason, we control the cutting point k of the 1-point

crossover operator by restricting its position to be either belonging to

the first third of the refactoring sequence or belonging to the last third,

ie, k ∈]0, 0.33], or k ∈ [0.66, 1[, respectively. For example, in Figure 4,

k = 0.3, which corresponds to cutting 30% of Parent 1, and there-

fore the point-cut position is 2 in the vector of each parent solution.

For mutation, we use the bit-string mutation operator. As depicted in

Figure 5, the mutation operator picks probabilistically 1 or more refac-

toring operations from the associated sequence and replaces them by

other ones from the initial list of possible refactorings.

Solution evaluation. To evaluate the fitness of each refactoring solu-

tion x to a system S, we used 3 objective functions according to each

objective.

1. Code smells objective function: It calculates the ratio of the number of

corrected code smells to the initial number of code smells using the

code smells detector component. The code smells correction ratio

(CCR) is given by Equation 10:

CCR(x, S) = number of corrected code smells
initial number of code smells

(10)

2. Design patterns objective function: It calculates the number of pro-

duced design pattern instances (NP) using the design patterns

detector component. NP is given by Equation 11:

NP(x, S) = DPA − DPB (11)

where DPA and DPB are the number of design patterns, respectively,

after and before refactoring. The NP values are then normalized in

the range [0, 1] using min–max normalization.

3. Quality objective function: It calculates the change in software

quality using the QMOOD (Quality Model for Object-Oriented

FIGURE 4 Example of crossover operator used

FIGURE 5 Example of mutation operator used

OUNI ET AL. 11 of 26

TABLE 4 Program statistics

System Release #Classes KLOC #code smells #Design patterns

Xerces-J v2.7.0 991 240 97 36

JFreeChart v1.0.9 521 170 84 23

GanttProject v1.10.2 245 41 56 16

AntApache v1.8.2 1191 255 112 38

JHotDraw v 6.1 585 21 26 18

Rhino v1.7R1 305 42 74 16

ArtOfIllusion v2.8.1 459 87 63 13

Design) model31 to estimate the effect of the suggested refactor-

ing solutions on quality attributes. We calculate the overall quality

gain (QG) for the 6 QMOOD quality factors (reusability, flexibil-

ity, understandability, effectiveness, functionality, and extendibil-

ity) that are formulated using 11 low-level design metrics. Full

details about these metrics are defined in Bansiya and Davis original

work.31 Let Q = {q1, q2, …q6} and Q′ = {q′
1
,q′

2
, … q′

6
} be respec-

tively the set of quality attribute values before and after applying

the suggested refactorings, and W = {w1, w2,…w6} the weights

assigned to each of these quality factors. Then the total quality gain

(QG) is estimated as follows:

QG(x, S) =
6∑

i=1

wi × (q′
i − qi) (12)

Creation of the initial population of solutions. To generate an initial

population, we start by defining the maximum vector length (maximum

number of operations per solution). The vector length is proportional

to the number of refactorings that are considered and the size of the

program to be refactored. A higher number of operations in a solution

do not necessarily mean that the results will be better. Ideally, a small

number of operations should be sufficient to provide a good trade-off

between the fitness functions. This parameter can be specified by the

user or derived randomly from the sizes of the program and the given

refactoring list. During the creation, the solutions have random sizes

inside the allowed range. To create the initial population, we normally

generate a set of solutions (PopSize) randomly in the solution space.

5 THE DESIGN OF THE EMPIRICAL STUDY

In this section, we present our experimental study to evaluate the effi-

cacy of our approach in fixing code smells, introducing design patterns

and improving design quality.

5.1 Research Questions

Our study aims at addressing the following 3 research questions:

• RQ1. (Sanity check) How does the proposed approach perform com-

pared to random search and other existing mataheuristic search

methods?

• RQ2. (Efficacy) To what extent can the proposed approach improve

the quality of software systems?

• RQ3. (Comparison to state-of-the-art) How does our approach per-

form compared to existing search-based refactoring approaches?

5.2 Software Systems Studied

We applied our approach to a set of seven well-known and

well-commented industrial-size open source Java projects: Xerces-J*,

JFreeChart†, GanttProject‡, Apache Ant§, JHotDraw¶, Rhino‖, and

ArtofIllusion**. Xerces-J is a family of software packages for parsing

XML. JFreeChart is a powerful and flexible Java library for generating

charts. GanttProject is a cross-platform tool for project scheduling.

Apache Ant is a build tool and library specifically conceived for Java

applications. JHotDraw is a GUI framework for drawing editors. Rhino

is a JavaScript interpreter and compiler written in Java and developed

for the Mozilla/Firefox browser. Finally, ArtOfIllusion is a 3D-modeler,

renderer, and raytracer written in Java.

We selected these systems for our validation because they came

from 7 different organizations, involved different kinds of software

engineering development and had different sizes, ranging from 245

to 1191 classes with a large number of both design pattern and code

smell instances. Table 4 provides some descriptive statistics about these

seven programs.

Furthermore, as we previously note, in these corpora, we consid-

ered 7 different types of code smell (god class, feature envy, data class,

spaghetti code, shotgun surgery, long parameter list, and lazy class)

and 4 design patterns (abstract method factory, visitor, singleton and

strategy).

5.3 Evaluation methodology

To answer our research questions, we conducted a set of experiments to

apply MORE to our benchmark of 7 medium and large-size open source

software systems. Each experiment is repeated 31 times, and the

obtained results are subsequently statistically analyzed with the aim of

comparing our approach with existing multiobjective search algorithms

as well as state-of-the-art refactoring recommendation approaches.

NSGA-III returns a set of near-optimal solutions instead of a single

one; however, for our validation, we require that MORE proposes 1 sin-

gle solution. To this end, and to fully automate our approach, MORE

extracts and suggests only 1 optimal solution from the returned set

of solutions. To this end, we used a technique based on Euclidean dis-

tance as described in 1 study.37 Equation 13 is used to choose the

*http://xerces.apache.org/xerces&LWx02010;j
† http://www.jfree.org/jfreechart
‡ www.ganttproject.biz
§ http://ant.apache.org/
¶ http://www.jhotdraw.org/
‖http://www.mozilla.org/rhino
** www.artofillusion.org

http://xerces.apache.org/xerces&LWx02010;j
http://www.jfree.org/jfreechart
www.ganttproject.biz
http://ant.apache.org/
http://www.jhotdraw.org/
http://www.mozilla.org/rhino
www.artofillusion.org

12 of 26 OUNI ET AL.

solution that corresponds to the best trade-off between (i) CCR, (ii) NP,

and (iii) QG. The ideal solution should have the best CCR, NP, and QG

scores (ideally, their normalized score equals to 1). Hence, we select the

nearest suggested solution to the ideal solution in terms of Euclidean

distance. Let PF the set of solutions in the Pareto front, then the best

solution to be returned by MORE is defined as follows:

BestSol = min
∀s∈PF

√
(1 − CCR(s))2 + (1 − NP(s))2 + (1 − PF(s))2) (13)

5.3.1 Research method for RQ1.

To answer RQ1, we compared our NSGA-III formulation against random

search (RS)57 in terms of search space exploration. The goal is to make

sure that there is a need for an intelligent method to explore our huge

search space of possible refactoring solutions. In addition, to justify the

adoption of NSGA-III, we compared our approach against 2 other pop-

ular search algorithms, namely, NSGA-II29 and MOEA/D.58 RQ1 serves

the role of a sanity check and standard “baseline” question asked in any

attempt at an SBSE formulation.42

Unlike mono-objective search algorithms, multiobjective evolution-

ary algorithms return as output a set of “non-dominated” (also called

Pareto optimal) solutions obtained so far during the search process. A

number of performance metrics for multiobjective optimization have

been proposed and discussed in the literature, which aim to evaluate

the performance of multiobjective evolutionary algorithms. Most of the

existing metrics require the obtained set to be compared against a spec-

ified set of Pareto optimal reference solutions. In this study, the gen-

erational distance (GD)59 and inverted generational distance (IGD)60

are used as the performance metrics since they have been shown to

reflect both the diversity and convergence of the obtained nondomi-

nated solutions.

• Generational Distance (GD) computes the average distance

between the set of solutions, S, from the algorithm measured and

the reference set RS. The distance between S and RS in an n objective

space is computed as the average n-dimensional Euclidean distance

between each point in S and its nearest neighboring point in RS. GD

is a value representing how far S is from RS (an error measure).

• Inverted Generational Distance (IGD) is used as a performance indi-

cator since it has been shown to reflect both the diversity and

convergence of the obtained nondominated solutions.60 The IGD

corresponds to the average Euclidean distance separating each ref-

erence solution set (RS) from its closest nondominated 1 S. Note

that for each system, we use the set of Pareto optimal solutions

generated by all algorithms over all runs as reference solutions.

5.3.2 Research method for RQ2.

To answer RQ2, we conducted a quantitative and qualitative study.

Quantitative evaluation.

The quantitative study evaluates the efficacy of our approach for (i)

fixing code smells, (ii) introducing design patterns, and (iii) improving

software quality.

• To evaluate the efficacy of our approach in fixing code smells,

we calculated the code smells correction ratio (CCR) as given by

Equation 10 on our benchmark.

• To evaluate the efficacy of our approach in introducing design pat-

terns, we calculated the number of new design pattern instances

(NP) that are introduced as given by Equation 11.

• To evaluate the efficacy of our approach for improving software

quality, we calculated the overall quality gain (QG) using the

QMOOD (Quality Model for Object-Oriented Design) model31 as

given by Equation 12.

Qualitative evaluation.

In addition to the quantitative evaluation, which is widely used to eval-

uate existing refactoring approaches,6,11,12,38 it is important to qual-

itatively evaluate the applicability and meaningfulness of the recom-

mended refactorings from developer’s perspective. That is, the rec-

ommended refactorings can be successfully applied, improve the code

quality, but this can lead to arbitrary changes that affect the seman-

tic coherence of the refactored program. Hence, the recommended

refactoring operations should not only remove code smells and improve

quality but, most importantly, should be meaningful from a developer’s

point of view.

To this end, we conducted a qualitative evaluation with potential

users of our technique. Our evaluation is based on a survey to col-

lect the feedback of developers about MORE’s recommendations. Our

study is conducted as follows:

Subjects: Our study involves 7 volunteer participants to conduct our

experiments; 5 participants are PhD students in software engineering

at the University of Michigan, and 2 participants are working at General

Motors as senior software developers. Participants were first asked

to fill out a prestudy questionnaire containing 6 questions. The aim of

the questionnaire is to collect background information of (i) their pro-

gramming experience, (ii) their familiarity with software refactoring,

(iii) their knowledge about code smells,(iv) their knowledge about deign

patterns, (v) their experience with quality assurance and software met-

rics, and (vi) their experience with the studied open-source systems.

The participants had a programming experience in Java ranging from 4

to 11 years. All participants were familiar with refactoring, code smells,

and design patterns. They have also an experience with some of the

studied systems.

Process: All the participants who agreed to participate to the study

received a questionnaire, a guide that advises on how to fill out the

questionnaire, and the source code of the studied systems, to evaluate

the relevance of the recommended refactorings to apply. The question-

naire is organized in an Excel file with hyperlinks to visualize the source

code of the affected code elements easily. Participants were aware that

they are going to evaluate the semantic coherence of refactoring oper-

ations, but do not know the particular experimental research questions

(the approaches and algorithms being compared). We asked the partic-

ipants to manually evaluate, for each system, 10 refactoring operations

that are selected at random from the suggested list of refactoring solu-

tions of each approach. Participants are asked to assign a correctness

score for each refactoring according to its relevance and meaningful-

ness. Possible answers follow a 5-point Likert scale61 to express their

OUNI ET AL. 13 of 26

level of agreement by a score in the range [0,5]: (i) not at all rele-

vant, (ii) slightly relevant, (iii) moderately relevant, (iv) eelevant, and

(v) extremely relevant. Note that no neutral option was offered, as we

require that developers form and express an opinion regarding each

evaluated refactoring.

Since the application of refactorings is a subjective process that

depends on the developer’s intention, it is normal that not all the par-

ticipants have the same opinion. To this end, we consider a refactoring

operation as meaningful if its assigned score is⩾ 3. Then for each refac-

toring operation, we consider the majority of votes (at least 4 out of 7 of

the participants) to determine if a recommended refactoring is relevant

or not. We therefore define the metric refactoring meaningfulness (RM)

that corresponds to the number of relevant refactoring operations over

the total number of refactorings given to the participants to evaluate.

RM is given by Equation 14.

RM = # meaningful refactorings
evaluated refactorings

(14)

Note that the questionnaire is completed anonymously thus ensuring

confidentiality. During the entire process, participants were encour-

aged to think aloud and to share their opinions, issues, detailed expla-

nations, and ideas with the organizers of the study (1 graduate student

and 1 faculty from the University of Michigan) and not only answer-

ing the questions. In addition, a brief tutorial session was organized for

every participant around refactoring to make sure that all of them have

a minimum background to participate in the study. All the developers

performed the experiments in a similar environment: similar configu-

ration of the computers, tools (Eclipse, Excel, etc), and facilitators of

the study. We also added a short description of this instruction for the

participants. The average time required to finish all the questions was

4hours and 20 minutes divided into 2 sessions.

5.3.3 Research method for RQ3.

To answer RQ3, we compared MORE results against 3 state-of-the-art

refactoring approaches: Seng et al,11 Jensen et al,18 and Kessentini

et al,62 in terms of CCR, NP, and QG. These approaches are designed

each for a specific purpose. Seng et al’s approach11 aims to find a

sequence of refactoring operations that improves specific quality met-

rics in the program being refactored. Jensen et al18 aim to find a combi-

nation of refactorings that introduces new design patterns to the initial

software system, while Kessentini et al’s approach62 aims to find refac-

toring solutions that minimize as much as possible the number of code

smells in the code being refactored. To make the comparison fair, we

apply the refactorings suggested by each approach, and then calculate

our evaluation metrics (CCR, NP, and QG).

5.4 Algorithms Parameter Tuning

An important aspect of metaheuristic search algorithms lies in param-

eter selection and tuning, something that is necessary to ensure not

only fair comparison, but also potential replication. The initial popu-

lation/solution of NSGA-III, NSGA-II, MOEA/D, and RS is completely

random. The stopping criterion is when the maximum number of fitness

evaluations, set to 350,000, is reached. After several trial runs of the

simulation, the parameter values of the 4 algorithms are fixed to 100

solutions per population (popSize) and 3500 iterations. For the variation

operators, the crossover rate, pc , is set to 0.9 and mutation, pm, to a prob-

ability of .4. We used a high mutation rate to ensure the diversity of the

population and to avoid premature convergence.63 After several trial

runs of the simulation, these parameter values are fixed. For instance,

the popSize parameter was tested with several values including 50, 100,

150, 200, 300, 500, and 1000; both pc and pm were tested with different

values in the range [0,1] with a step equal to 0.1; the number of itera-

tions was tested with values of 200 000, 250 000, 300 000, 350 000,

400 000, and 500 000. Indeed, there are no general rules to determine

these parameters, and thus we set the combination of parameter val-

ues by trial-and-error, a method that is commonly used by the SBSE

community.64,65

5.5 Inferential Statistical Tests Used

Because of the stochastic nature of the used algorithms, they may pro-

duce different results when applied to the same problem instance over

different runs. To cope with this stochastic nature, the use of statisti-

cal testing is essential to provide support and draw statistically sound

conclusions derived from analyzing such data.64 To this end, we used

the Wilcoxon rank sum test in a pairwise fashion66,67 to detect sig-

nificant performance differences between the algorithms under com-

parison. The Wilcoxon test does not require that the data sets fol-

low a normal distribution since it operates on values’ ranks instead of

operating on the values themselves. We set the confidence limit, 𝛼, at

0.05. In these settings, each experiment is repeated 31 times, for each

algorithm and for each system. The obtained results are subsequently

statistically analyzed with the aim to compare our NSGA-III approach

with NSGA-II, MOEA/D, and random search (RS). Furthermore, we

used the Bonferroni68 correction to reduce the chances of obtaining

false-positive results when multiple pair wise tests are performed on a

single set of data to compare NSGA-II, NSGA-III, and MOEA/D.

While the Wilcoxon rank sum test verifies whether the results are

statistically different or not, it does not give any idea about the differ-

ence magnitude. To this end, we investigate the effect size using Cliff’s

delta statistic.69 The effect size is considered (i) negligible if |d|<0.147,

(ii) small if 0.147 ⩽ |d| < 0.33, (iii) medium if 0.33 ⩽ |d| < 0.474, or (iv)

high if |d| ⩾ 0.474.

6 RESULTS

This section reports the results of our empirical study. We first start by

answering our research questions. We then present further discussions

on the obtained results.

6.1 Results for RQ1: Sanity check

Tables 5 and 6 present, respectively, the results of the metric indi-

cators GD and IGD, and the results of the statistical significance and

effect size tests. We observe that NSGA-III clearly outperforms RS in

all the 7 studied systems with a Cliff’s delta effect size of “high” in both

performance indicators GD and IGD. This is mainly due to the large

14 of 26 OUNI ET AL.

TABLE 5 Median values of the quality indicators GD and IGD for the four compared algorithms NSGA-III, NSGA-II, MOEA/D and RS (best values
are in bold)

GD IGD

System NSGA-III NSGA-II MOEA/D RS NSGA-III NSGA-II MOEA/D RS

Xerces-J 4.077E-03 4.705E-03 7.682E-03 5.012E-03 6.912E-02 8.864E-02 7.542E-02 6.687E-01

JFreeChart 5.6139E-02 4.491E-01 4.657E-01 1.701E+00 5.591E-04 8.815E-04 7.687E-04 4.091E-02

GanttProject 7.636E-03 6.385E-03 2.645E-02 4.278E-01 3.827E-03 2.912E-03 4.336E-03 8.827E-02

AntApache 4.777E-03 6.118E-03 8.301E-03 1.528E-01 3.592E-02 6.392E-02 7.110E-02 4.705E-01

JHotDraw 5.337E-03 3.318E-02 1.947E-02 8.594E-02 6.231E-02 7.684E-02 5.816E-02 7.439E-01

Rhino 5.398E-02 2.906E-02 7.150E-02 8.0613E-01 2.002E-03 7.846E-03 7.123E-03 4.005E-01

ArtOfIllusion 7.583E-03 1.06677E-02 3.090E-02 5.529E-01 4.603E-03 8.440E-02 8.529E-02 6.756E-01

TABLE 6 Statistical significance p-value (𝛼 = 0.05) and effect size comparison results of NSGA-III
against NSGA-II, MOEA/D and RS. A statistical difference is accepted at p ⩽ 0.05

NSGA-III vs NSGA-II NSGA-III vs MOEA/D NSGA-III vs RS

System GD IGD GD IGD GD IGD

Xerces-J
p-value 0.06062 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

effect size medium high high high high high

JFreeChart
p-value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

effect size high high high high high high

GanttProject
p-value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

effect size high high high high high high

AntApache
p-value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

effect size high high high high high high

JHotDraw
p-value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

effect size high high high medium high high

Rhino
p-value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

effect size high high high high high high

ArtOfIllusion
p-value < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

effect size mehuim high high high high high

FIGURE 6 Boxplots for the quality measures GD and IGD results over 31 independent simulation runs of NSGA-III, NSGA-II, and MOEA/D: A,
Generational distance (GD): B, Inverted generational distance (IGD)

OUNI ET AL. 15 of 26

search space to explore to find suitable combinations of refactoring

operations. This requires a heuristic-based search rather than random

search.

In more detail, Figure 6 and Table 6 report our results for RQ1. We

observe that over 31 runs, NSGA-III outperforms NSGA-II, in terms of

GD, in 5 out of 7 systems with high effect size. In the cases of Xerces-J

and ArtOfIllusion the effect size was medium. Similarly, NSGA-III sig-

nificantly outperforms MOEA/D in the 7 systems with a high effect size

in 6 out of 7 cases; for JHotDraw, the effect size was medium. In terms

of IGD, NSGA-III provides better performance than both NSGA-II and

MOEA/D in 5 out of 7 systems with high effect size. NSGA-II provides

better IGD results for GanttProject with high effect size, and MOEA/D

achieved better results on JHotDraw with medium effect size. Over-

all, we observed that NSGA-III tends to achieve better performance for

large software systems when comparing to NSGA-II and MOEA/D.

Furthermore, we can also get a more informative sense of the distri-

butions of results for the 3 competitive algorithms from the boxplots

shown in Figure 6. From these boxplots, we can see that the variance

in the results from NSGA-III is lower for both GD and IGD than the

other 2. The obtained results suggest that this is because there are

simply fewer solutions that converge toward the last generation of

NSGA-III. In addition, because IGD and GD metrics combine the infor-

mation of convergence and diversity, the results indicate that NSGA-III

has the best overall performance. This is very promising in multiobjec-

tive search problems, and it would be interesting to adopt it in solving

other software engineering problems.

To conclude, the obtained results provide evidence that NSGA-III

is the best search technique for the refactoring recommendation

problem, particularly for the larger systems that we studied. Conse-

quently, we can conclude that there is empirical evidence that our

formulation passes the sanity check (RQ1).

6.2 Results for RQ2: efficacy

The results for RQ2 are summarized in Table 7. After applying the refac-

toring operations proposed by MORE using NSGA-III, we found that, on

average, 84% of the detected code smells were fixed (CCR) for all the 7

studied systems. This high score is considered significant in improving

the quality of the refactored systems by fixing the majority of exist-

ing code smells of varying types (god class, feature envy, data class,

spaghetti code, shotgun surgery, long parameter list, and lazy class; as

described in Table 1). It is worth observing that we found the majority of

nonfixed code smells are related to the god class type. Indeed, this type

of code smell usually requires a large number of refactoring operations

and is known to be very difficult to fix.

Moreover, MORE succeeded in introducing a reasonable number of

instances of design patterns. Table 7 shows the number of new design

pattern instances, NP, introduced for each system. MORE successfully

introduced an average of 6 design patterns (NP) per system, covering

all types of supported design patterns: factory method, visitor, single-

ton, and strategy. The recommended refactorings can support soft-

ware developers who might be interested in automatically introducing

new design patterns to make their software systems more understand-

able, flexible, and maintainable. The lowest NP value was recorded for

JHotDraw (NP = 3). JHotDraw was developed by Erich Gamma and

Thomas Eggenschwiler14 as a design exercise to promote design pat-

terns, so it is to be expected that many design patterns already exist

in JHotDraw and there is little opportunity to add new design pattern

instances.

It should be noted that introducing a design pattern does not nec-

essarily imply that the design has been improved, and frequently

the result of excessive pattern application is an over-engineered,

hard-to-maintain system.70 The fact that only a limited number of

design patterns were introduced to each application suggests that

our multiobjective approach, coupled with the semantic constraints of

Section 3.2, did indeed prevent the blind application of many useless

pattern instances. Whether or not the design patterns introduced by

MORE make sense to a developer is assessed in the qualitative evalua-

tion conducted with developers.

In terms of quality improvement (QG), as reported in Table 7, MORE

succeeded in improving the quality of all the studied systems, with an

average QG score of 0.4 in terms of QMOOD quality attributes. In

more detail, Figure 7 shows the QG values for each QMOOD qualit

TABLE 7 CCR, # Patterns, and QG median values of 31 independent
runs of MORE, Seng et al, Jensen et al, and Kessentini et al

System Approach CCR (%) # Patterns QG

Xerces-J MORE 90 12 0.49

Seng et al 23 0 0.54

Jensen et al 14 31 0.41

Kessentini et al 88 0 0.32

JFreeChart MORE 88 6 0.54

Seng et al 21 0 0.59

Jensen et al 24 19 0.42

Kessentini et al 86 0 0.41

GanttProject MORE 88 7 0.35

Seng et al 24 1 0.33

Jensen et al 33 14 0.35

Kessentini et al 84 0 0.21

AntApache MORE 86 4 0.51

Seng et al 7 0 0.52

Jensen et al 12 28 0.51

Kessentini et al. 87 0 0.39

JHotDraw MORE 83 3 0.17

Seng et al 38 0 0.19

Jensen et al 25 9 0.14

Kessentini et al 88 0 0.1

Rhino MORE 72 4 0.51

Seng et al 12 0 0.54

Jensen et al 18 11 0.32

Kessentini et al 78 0 0.36

ArtOfIllusion MORE 83 6 0.26

Seng et al 10 0 0.29

Jensen et al 17 12 0.18

Kessentini et al 90 0 0.21

Average (all systems) MORE 84 6 0.4

Seng et al 26 0.14 0.43

Jensen et al 20 18 0.31

Kessentini et al 86 0 0.29

16 of 26 OUNI ET AL.

FIGURE 7 QMOOD quality factors gain obtained for MORE

FIGURE 8 The average refactoring meaningfulness score (RM) of
different types of recommended refactorings by MORE: (a) The RM
results obtained for each refactoring type (b) The RM results obtained
for each design pattern refactoring type

attribute after applying the recommended refactorings by MORE, for

each studied system. We found that the systems quality increase across

the 6 QMOOD quality factors. We observe that understandability is

the quality factor that has the highest QG score; whereas, the effec-

tiveness quality factor has the lowest one. This finding can be explained

in 2 possible ways: (i) the majority of nonfixed code smells are god

class and spaghetti code, which are known to increase the coupling

(DCC) within classes (which heavily affect the quality index calculation

of the effectiveness factor); (ii) the vast majority of suggested refactor-

ing types were move method, move field, and extract class (Figure 8)

that are known to have a high impact on coupling (DCC), cohesion

(CAM), and the design size in classes (DSC) that serves to calculate the

understandability quality factor. Furthermore, we noticed that JHot-

Draw produced the lowest quality increase for the 4 quality factors.

This can be justified by the fact that JHotDraw is known to be of high

quality because of its exemplary design, its development model, and

its widespread use. Indeed, it contains a few number of code smells

comparing to the 6 other studied systems (cf, Table 4).

We can also get a more qualitative sense; we assess the rele-

vance/meaningfulness of the suggested refactoring solutions from

developers’ perspective. To this end, we report in Figure 9 the results of

FIGURE 9 MORE comparison against Seng et al, Jensen et al, and
Kessentini et al in terms of refactoring meaningfulness (RM). A
refactoring operation is considered meaningful if its assigned score is
⩾ 3

the empirical study conducted with 7 participants to evaluate the rec-

ommended refactorings on our studied systems. We observe from the

figure that most of the recommended refactorings are evaluated as rel-

evant with an average of 69% of the proposed refactoring operations

being considered as semantically meaningful. The lowest RM value was

59% for Xerces. In fact, Xerces is known for its high-change frequency

and its complex design that have led to extensive refactoring activities

in the coiurse of the past 15 years.71 Moreover, we observed that, in

general, for large-size programs (eg, AntApache and JFreeChart, but

excluding Xerces), the performance in terms of RM achieved by MORE

is more notable than it is for the smaller programs.

Looking at this in more detail, Figure 10 shows the relevance (mean-

ingfulness) of the recommended refactorings achieved by MORE for

each refactoring type. Only less than 13% of recommended refactor-

ings were marked as not at all relevant (score = 1) by the participants,

and an average of 18% of recommended refactorings are assessed as

slightly relevant. An average of 28.64% are marked as moderately rel-

evant, 29.71% as relevant and 10.64% as extremely relevant. This con-

firms the importance of the recommended refactorings for developers,

and shows that they recognize that these refactorings can be useful in

improving the quality of the studied software systems.

On the negative side, 31% of MOREs recommendations (13% def-

initely not at all relevant and 18% slightly relevant) were rejected by

the participants. Indeed, we believe that it is difficult to automatically

understand the semantics of source code through predefined heuris-

tics and semantic constraints. The role of the developer remains funda-

mental to decide whether a refactoring could be applied or not.

To better evaluate the relevance of the recommended refactorings,

we investigated the types of refactorings that developers might con-

sider more or less meaningful than others. Figure 8 shows that move

method, extract class, and move class are considered as the extremely

relevant refactorings. In addition, the recommended inline class and

move field are also considered relevant and meaningful. This can be

explained by the fact that the developers are more focusing on qual-

ity issues that are related to class size, feature distribution, and cou-

pling/cohesion problems. Additionally, the vocabulary-based similarity

OUNI ET AL. 17 of 26

FIGURE 10 The average relevance score (RM) of the recommended refactorings by MORE. (1) not at all relevant, (2) slightly relevant, (3)
moderately relevant, (4) relevant, and 5 extremely relevant

constraint (VS) was pertinent to prevent incoherent refactorings espe-

cially for move method and move class. On the other hand, pull up

field, extract interface, and visitor pattern refactoring recorded the

lowest values for “extremely relevant.” One possible explanation is that

approving such refactorings requires in general that several coupled

classes be investigated and studied, and this is likely to be a more com-

plex task for the developer.

It is also worth to notice that the worst results was obtained with

singleton pattern refactoring where the RM score was relatively poor

compared to the other refactorings. The reason might be due to inten-

tion to identify the singleton opportunity based only on static analysis.

Dynamically, we can check if at most 1 instance of the candidate single-

ton class is created during runtime. That would ensure that there are

no false positives. As future work, we plan to combine both static and

dynamic analysis to improve the recommendation of singleton patterns

refactorings.

6.3 Results for RQ3: comparison to state-of-the-art

The results for RQ3 are presented in Table 7, that presents the median

values of CCR, NP, and QG over 31 independent simulation runs after

applying the refactoring operations proposed by MORE, Seng et al,

Jensen et al, and Kessentini et al.

As described in Table 7, after applying the refactoring operations pro-

posed by MORE, we found that more than 84% of detected code smells

were fixed (CCR) as an average across all the 7 studied systems. For

instance, for GanttProject, 75% (9 out of 12) of god classes, 86% (6 out

of 7) of feature envy, 94% (15 out of 16) of spaghetti code, and 93% (13

out of 14) of data classes are fixed. This score is comparable to the cor-

rection score achieved Kessentini et al (an average of 86%). However,

MORE achieved a significantly higher results than those of Seng et al

and Jensen et al having respectively only 26% and 20% on average for

all the studied systems.

In terms of introduced design patterns (NP), Jensen et al achieves

the highest score by introducing on average 18 design patterns for the

seven systems. This score is higher than the 1 obtained by MORE (an

average of 6 patterns per system). This can be explained by the fact

that Jensen et al apply design patterns without considering whether

the design pattern is needed or not in that code fragment, ie, the sole

aim is to add as many design patterns as possible. From our perspective,

this is unlikely to be useful and efficient in practice. For Seng et al and

Kessentini et al, we found that they are not able to produce design pat-

terns (only 0.14 and 0 pattern per system, respectively). This might be

mainly because of the lists of generic refactorings they use, which are

not geared for the introduction of design patterns.

Furthermore, MORE achieves a QG score of 0.4, which is slightly less

that the value of 0.43 achieved by Seng et al. This is mainly because

of the fact that quality metrics improvement is the main component

in the objective function of Seng et al. Furthermore, MORE provides

comparable QG results to those of Jensen et al (0.4). On the other

18 of 26 OUNI ET AL.

FIGURE 11 An example of one of MORE’s refactoring suggestions for Xerces-J: move the method fillXMLAttributes() from the class
SchemaContentHandler to the class XMLAttributesImpl

hand, Kessentini et al turns out to be the worst approach with a QG

score of 0.29. Indeed, the approach of Kessentini et al is driven only

by code smell correction and not directed at improving quality met-

rics. This interesting result confirms that fixing code smells does not

always mean that quality metrics will also be significantly improved.

On the other hand, despite the significant improvement in terms of QG

for Seng et al (the highest score among the 4 compared approaches),

it is not effective at fixing code smells (only 26% of code smells are

fixed). Thus, these results provide further evidence that improving qual-

ity metrics does not necessarily mean that existing code smells are

fixed. Indeed, the link between code smells and software metrics is

not obvious.72

In terms of refactoring meaningfulness (RM) from a developers per-

spective, Figure 9 reports the achieved results for the 7 studied sys-

tems. We observe that MORE achieved 69% of RM, which is signifi-

cantly superior compared to Seng et al, Kessentini et al, and Jensen

et al having, respectively, only 39%, 38%, and 34% as RM scores. This

is mainly because of semantic constraints that are required to be sat-

isfied before recommending refactorings, hence preventing arbitrary

changes, unlike Seng et al, Kessentini et al, and Jensen et al who do

not consider the semantics of the program being refactored. Another

reason can be that MORE provides a diversified sequence of refactor-

ings to cover as much as possible the detected code smells and other

quality issues.

This finding has actionable conclusions for software developers con-

ducting software refactoring. Providing a trade-off between differ-

ent conflicting quality objectives from different perspectives, ie, code

smells, design patterns, and quality metrics, is required, which is one

of the main purposes of MORE. Thus, developers who are interested

mainly in fixing code smells can select solutions from the Pareto surface

that provide high CCR values independently from the 2 other objec-

tives. If the developer seeks to introduce design pattern instances to

their code then they need to focus on the part of the Pareto surface that

provides high NP values. Similarly, the developer who seeks to improve

quality metrics of the code can the ignore the parts of the Pareto sur-

face related to code smells and design patterns, and select a solution

from the Pareto surface that maximizes the value of QG. If the devel-

oper seeks a trade-off between all the objectives, they should focus

their attention on the middle part of the Pareto surface. Hence, as the

3 objectives are conflicting, maximizing the code smell correction score

is indeed possible, but only at the cost of sacrificing some of the other

objectives.

6.4 Discussions

To get more qualitative sense, we asked some of the participants to com-

ment on their decisions to get a deeper view of the achieved results

and to help us in future improvements of MORE. One of the refactor-

ing operations suggested by MORE for Xerces-J is to move the method

fillXMLAttributes() (cf, Figure 11) from the class SchemaCon-

tentHandler to the class XMLAttributesImpl. One of the par-

ticipants comment on this as follows: “I would strongly recommend

apply this refactoring as the method fillXMLAttributes()manip-

ulates objects of type XMLAttributesImpl and calls three of the

methods of this type which are: removeAllAttributes(), addAt-

tributeNS() and setSpecified()." Furthermore, the participant

commented that the latter 2 methods are called by the original method

within a for loop, which may, in their opinion, significantly increase

coupling. On the other hand, fillXMLAttributes() accesses only

one service (fillQName()) from its current class. The participant

explained that this method is in charge of removing all of the XML

attributes along with all its associated entities. Then it adds a set of new

attributes; each added attribute will be marked as specified in the XML

instance document unless set otherwise using the setSpecified()

method. It is clear that both source and target classes share several

common identifiers (vocabulary) and therefore they are semantically

related. Thus, it makes more sense to move the method fillXMLAt-

tributes() to XMLAttributesImpl.

We asked another participant to justify their decision to accept

(with a relevant vote) an extract class refactoring suggest by MORE

for the class GanttGraphicArea in GanttProject††. MORE suggests

to extract the following attributes: margY, drag, arrayColor, and

myUIConfiguration along with the following methods: paint-

Tasks(), paintATaskBilan(), paintATaskFather(), and

paintATaskchild(). The participant confirmed that the class

†† http://sourceforge.net/projects/ganttproject/files/OldFiles/ganttproject&LWx02010;1.10.
2.zip

http://sourceforge.net/projects/ganttproject/files/OldFiles/ganttproject&LWx02010;1.10.2.zip
http://sourceforge.net/projects/ganttproject/files/OldFiles/ganttproject&LWx02010;1.10.2.zip

OUNI ET AL. 19 of 26

proposed to be extracted describes a separate entity, which aims to

draw different tasks in a specified graphic area. It is worth noting

that MORE recommended another extract class refactoring for the

same class GanttGraphicArea. This second extract class refactor-

ing suggests extracting the following set of methods: zoomMore(),

zoomLess(), getZoom(), setZoom(), and the attributes zoom-

Value and oldDate to a new class. The participant mentioned that

although the first extract class would not be enough to fix the god class

GanttGraphicArea, it is interesting to reapply other refactorings

to the same smelly entity until the code smell is fixed. Furthermore,

the participant commented: “I would apply these two recommended

refactorings as they would, in my opinion, significantly improve the

understandability and flexibility of this badly implemented class

GanttGraphicArea.” An interesting observation is that the partici-

pant indicated that even if some methods and attributes do not clearly

describe a new concept, they can still be extracted into a new class only

if they are structurally related, ie, cohesive.

For the same class GanttGraphicArea depicted in Figure 12,

MORE recommended applying a strategy pattern refactoring to the

method paintTasks(). Indeed, strategy pattern is used when we

have multiple algorithms for a specific task and the client should decide

the actual implementation to be used according to the context. For this

refactoring, the participant commented that “paintTasks() would

be a nice application of the strategy pattern that the original developers

of GanttProject clearly missed.” This method aims at deciding, which

paint method to execute for a GanttTask object (ie, task) from 3

FIGURE 12 An example of MORE’s refactoring recommendation for GanttProject: the strategy pattern refactoring to be applied to the method
paintTasks() in the class GanttGraphicArea

20 of 26 OUNI ET AL.

possible options: paintATaskBilan(), paintATaskFather(), or

paintATaskChild(). Thus, this method could be easily turned into

a strategy by extracting each branch of the “if” statement into its own

class such that each class implements a common interface, and the deci-

sion on which one to use can be moved to the original class. Introducing

several decision statements can obscure any calculation and make it

likely to be misunderstood by others and harder to maintain, debug,

and extend, as shown in Figure 12. As recommended by MORE and val-

idated by the participants, the strategy refactoring applied to paint-

Tasks() is a suitable design solution that deals well with this situation.

This refactoring may lighten the original method by moving the condi-

tional calculation logic to a small collection of independent calculation

objects (strategies), each of which can handle one of the various ways

of doing the calculation, making the design easier to understand and

maintain.

Another example of MORE’s suggestions for the Rhino project is

depicted in Figure 13. This refactoring involves moving the method

initFunction() from the class IRFactory to the class Func-

tionNode. Another participant commented on this refactoring: “Look-

ing at the initFunction() method which is implemented in

IRFactory but it does not access any service in its original class;

instead it uses services from the class FunctionNode. This method

is calling the following methods from the class FunctionNode:

addChildToBack(), getFunctionCount(), and getFunction-

Name(), and 2) access/modify two attributesitsFunctionType and

itsNeedsActivation.” This might in turn cause a high coupling, and

there is no doubt that this method suffers from the feature envy code

smell. For these reasons, the participant accepted the application of this

refactoring.

To conclude, it was clear to our participants that MORE can pro-

vide useful refactoring recommendations that improve the design of

the program under study. The refactoring of large systems can be time

consuming and involves the improvement of several quality issues. We

asked the participants to provide additional feedback. First, MORE

does not provide any ranking to prioritize the suggested refactorings.

In fact, in practice, developers are unlikely to have enough time to

understand, evaluate, and apply all the suggested refactorings; rather,

they prefer to focus only on the most severe quality issues. Second,

MORE does not provide support to fix or replace refactoring solutions

that are not approved by the developer. Finally, most of participants

FIGURE 13 An example of MORE’s refactoring suggestion for Rhino: move the method initFunction() from the class IRFactory to the class
FunctionNode

OUNI ET AL. 21 of 26

mention that they prefer to include a procedure to automatically

applies regression testing and generates test cases for the modified

code fragments after refactoring. This is an interesting future research

direction to explore in extending MORE.

7 THREATS TO VALIDITY

Several factors can bias the validity of empirical studies. In this section,

we discuss the different threats that can limit the validity of our study

based on 4 types of threats, namely, construct, conclusion, internal, and

external validity.

Construct validity: It concerns the methodology employed to con-

struct the experiment. The experiment conducted with the participants

to evaluate the suggested refactorings represents a construct threat.

As previously explained, we selected 7 experienced participants in

our study based on their programming experience with refactoring,

code smells, design patterns, and software quality metrics. Further-

more, we diversified our participants from PhD students in software

engineering to senior developers. To mitigate the diffusion threat, we

instructed the participants not to share information about the expe-

rience prior to the completion of the study. We also randomized the

ordering in which the refactorings were shown to the participants, to

mitigate any sort of learning or fatigue effect. Another threat can be

related to the number of evaluated refactoring operations. Applying

a long sequence of refactoring operations can be a time-consuming

task for participants who should understand the entire design of the

systems being refactored, which range in size from 245 classes to

1191 classes as reported in Table 4. In addition, the participants are

asked to evaluate 4 solutions for each system, 1 solution per approach.

Consequently, the task of evaluating the whole sequences of refactor-

ings may potentially bias our experiments as fatigue threats to validity

may arise, and can negatively affect their human judgement. To deal

with this situation, we decided to focus on evaluating a random sam-

ple of the suggested solutions for each approach, which we believe a

feasible and realistic scenario for the 7 studied systems. Additionally,

our results were compared to 3 other state-of-the-art approaches

applied to the same subject systems and participants with the

same settings.

Conclusion validity: Because of the stochastic nature of the imple-

mented algorithms, we used the Wilcoxon rank sum test and effect size

measures over 31 repeated runs of the algorithms with a 95% con-

fidence level. The aim is to test whether significant differences exist

between the measurements for different treatments. This test makes

no assumption on the data distribution and is suitable for ordinal data.

We are thus confident that the observed statistical relationships are

significant.

Internal validity: It concerns the possible biases in the way in which

the results were obtained. A possible threat to the internal validity con-

cerns the technique used for detecting code smells, which may lead to a

small number of false positives. While the employed detection rules are

able to detect code smells with more than 90% of precision and recall

scores as shown in,37 false positives/negatives may have an impact

on the results of our experiments. To mitigate this threat, we manu-

ally inspect and validate each detected code smells. Moreover, our

refactoring tool configuration is flexible and can support other

state-of-the-art detection rules.

External validity: It concerns the possible biases related to the choice

of experimental subjects/objects. Although we were able to select a set

of subject systems that have a good degree of diversity in size, applica-

tion domains, and project teams, we cannot claim that our results can

be generalized beyond these subject systems to other industrial con-

texts, other programming languages, and to other practitioners. More-

over, even if our approach succeeded in introducing 4 different design

patterns (factory method, visitor, singleton, and strategy) and 7 code

smell types (god class, feature envy, data class, spaghetti code, shotgun

surgery, lazy class, and long parameter list), we cannot generalize the

results for other design pattern and code smell types.

In addition to these threats, and despite our encouraging results, our

approach presents some limitations that should be addressed. First,

some design pattern instances are difficult to implement and require

an extra manual effort from the developer to tailor the implementation

to fit the context. Second, some refactoring solutions require a signif-

icant number of code changes, which may take the code away from its

initial design. To address this issue, we plan to consider new criteria to

reduce the amount of code changes when recommending refactoring.

Furthermore, in large-scale systems, the number of code smells to fix

can be very large and not all of them can be fixed automatically. Thus,

the prioritization of the list of detected code smells is required based

on different criteria such as the severity and the risk.

8 RELATED WORK

Search-based software engineering (SBSE) has been successfully

used to automate many software engineering tasks44, including the

problem of automated refactoring to improve various aspects of the

software.6,7,11,18,36,37,73 These approaches cast refactoring as an opti-

mization problem using a variety of optimization techniques such as

hill climbing, genetic algorithms, simulated annealing, etc. Most existing

automated refactoring approaches can be classified into 3 main cate-

gories depending on the goal: (i) to improve quality factors; (ii) to fix

code smells; and (iii) to introduce design patterns.14 We explore each of

these areas in the subsections below.

8.1 Automated Improvement of Design Quality

The majority of existing search-based refactoring approaches use

software metrics as objective function(s) to find a good sequence

of refactorings. This problem was initially studied by O’Keeffe and

Ó Cinnéide,7,74 who proposed an automated search-based refactor-

ing approach for improving the quality of object-oriented programs

based on standard software metrics from the QMOOD design quality

model.31 They conducted experiments on several medium-sized Java

applications, where they found a significant and minimal improvements

in “Understandability” and “Flexibility,” respectively,7 but discovered

that the “Reusability” function, as defined in the QMOOD suite, is

unsuitable for a search-based refactoring process as it resulted in the

addition of a large number of featureless classes.

22 of 26 OUNI ET AL.

Seng et al11 propose a single-objective optimization approach that

uses a genetic algorithm to suggest a list of refactorings to improve

software quality. The search process uses a single fitness function to

maximize a weighted sum of several quality metrics (coupling, cohesion,

complexity, and stability). In contrast to fully-automated approaches,

it is the designer’s responsibility to take the decision that a suggested

refactoring should be applied to the system or not.

Contrary to the aforementioned approaches that use a

weighted-sum approach to combine metrics into a single objective

fitness function, Harman and Tratt6 use Pareto optimality to combine

2 metrics, CBO (coupling between objects) and SDMPC (standard

deviation of methods per class), into a single fitness function. They

demonstrated that this approach has several advantages over the

weighted-sum approach in detecting opportunities to apply the Move

Method refactoring.

Fatiregun et al75 showed how search-based transformations could

be used to reduce code size and construct amorphous program slices.

However, they use small atomic level transformations, rather than

refactorings. In addition, their aim was to reduce program size rather

than to improve its structure/quality.

Recently Simons et al76 conducted a survey with professionals to

investigate the relationship between popular SBSE refactoring metrics

and the subjective opinions of software engineers. The empirical study

results suggest that (i) there is a little or no correlation between the

two and (ii) a simple static view of software is insufficient to assess

software quality, and that software quality is dependent on factors

that are not amenable to measurement via metrics. To address these

issues, we introduced a set of semantic constraints to better drive the

search process towards the optimal refactoring solutions. In addition,

we evaluated our results from developers point of view as only met-

rics improvement would not be enough to guarantee that a suggested

refactoring is good.

Although the approaches cited above are indeed powerful enough to

improve quality as expressed by software quality metrics, this improve-

ment does not mean that they are successful in removing actual

instances of code smells.

8.2 Automated Correction of Code Smells

Search-based refactoring has been used to correct code smells by

several authors. Kessentini et al62 proposed an approach using a

mono-objective genetic algorithm to find a sequence of refactorings

that attempts to minimize the number of code smells detected in the

source code. Ouni et al50 proposed a multiobjective formulation of

refactoring to find the best compromise between fixing code smells

and semantic coherence using 2 heuristics related to vocabulary simi-

larity and structural coupling. The idea behind these 2 heuristics is to

avoid violations of semantic coherence when moving methods/fields

between classes. Jdeodorant38,77,78 is a well-known tool for detecting

and repairing code smells, and currently supports 4 types of code smell.

In a recent study,77 they propose a technique for detecting opportuni-

ties to apply the Extract Method refactoring and find in their study that

in 42% of cases the applied refactoring resolved (or helped resolve) a

code smell, usually Long Method or Duplicated Code.

Batova et al52 propose a technique based on relational topic mod-

els to identify Move Method refactoring opportunities and remove the

Feature Envy smell from source code. A study with industrial devel-

opers indicated that their approach could provide meaningful recom-

mendations for Move Method refactoring operations. In related work,

these authors78 also propose a method for automating the Extract

Class refactoring by analyzing both structural and semantic relation-

ships between the methods in a class to identify sets of strongly related

methods, which are then used to define new classes with higher cohe-

sion than the original class. They empirically evaluated this approach

on Blobs in open source systems, and found that it outperformed the

previous state-of-the-art and was found to be useful by industrial devel-

opers. Recently, Ouni et al, explored antipatterns detection and refac-

toring in service-oriented architectures79–82

Furthermore, there are different research works related to our

vocabulary-based similarity measure that have studied the semantic

relatedness of source code elements, also called “conceptual coupling.”

Poshyvanyk et al83 first introduced the conceptual coupling measure,

to capture new dimensions of coupling based on semantic informa-

tion encoded in source code identifiers and comments. Later, Mar-

cus et al84 introduced a new measure for the cohesion of classes in

object-oriented software systems based on the analysis of the unstruc-

tured information embedded in the source code, such as comments and

identifiers to construct models for predicting software faults. Bavota

et al85 investigated several coupling measures including structural,

dynamic, semantic, and logical coupling measures with respect to devel-

oper perception of coupling. An interesting result of this study indicates

that the peculiarity of the semantic coupling measure allows it to better

estimate the mental model of developers than other coupling mea-

sures, because interactions between classes are mostly encapsulated in

the source code vocabulary. In common with,78 we show in MORE that

the vocabulary in source code provides valuable information to guide

the refactoring recommendation task.

8.3 Automated Introduction of Design Patterns

In one of the earliest works in this area, Eden et al86 noted that

many design patterns could be described in terms of a common set of

micropatterns. They implemented transformations for these micropat-

terns, thus creating a prototype “patterns wizard” that could apply a

number of design patterns to an Eiffel program. Another early work in

the automated introduction of design patterns was that of Ó Cinnéide

and Nixon15,17 who presented a methodology for the development

of design pattern transformations in a behavior preserving fashion.

They identified a number of “pattern aware” composite refactorings

called minitransformations that, when composed, can create instances

of design patterns. They defined a starting point for each pattern trans-

formation, termed a precursor, which is where the basic intent of the

pattern is present in the code, but not in its most flexible pattern form.

In more recent work, Jensen and Cheng18 developed the first

search-based refactoring approach that makes the introduction of

design patterns a primary goal of the refactoring process. They used

genetic programming, software metrics, and the set of minitransforma-

tions identified by Ó Cinnéide and Nixon17 to identify a sequence of

OUNI ET AL. 23 of 26

minitransformations that introduces the maximum number of design

patterns to a software design.

Recently, Ajouli et al48 have described how to use refactoring tools

(IntelliJ and Eclipse) to transform a Java program conforming to the

Composite design pattern into a program conforming to the Visitor

design pattern with the same external behavior, and vice versa. They

consider several variations on each of the patterns, and validate their

approach with a study of the JHotDraw system.

El Boussaidi and Mili87 define a formal representation for the

problem solved by a design pattern, the design pattern solution itself,

and a transformation that converts an instance of the problem into an

instance of the solution. They found that only 13 of the 23 Gamma et al

design patterns could be represented using this approach, and even

where a pattern could be represented, the codification of the solution

was found to be too simplistic. In their conclusions, they suggest that

this could be due to textbook pattern examples being “too perfect” or

patterns being more widely applicable than their authors envisaged.

8.4 Related Refactoring Research

Researchers have examined various ways to improve automated refac-

toring. For instance, Murphy-Hill et al5,88–90 proposed several tech-

niques and empirical studies to support refactoring activities. In pre-

vious studies,89,90 the authors proposed new tools to assist software

engineers in applying refactoring manually such as selection assis-

tant, box view, and refactoring annotation based on structural informa-

tion and program analysis techniques. Recently, Ge and Murphy-Hill91

proposed a new refactoring tool called GhostFactor that allows the

developer to transform code manually, but check the correctness of

their transformations automatically. However, the correction is based

mainly on the structure of the code and does not consider its seman-

tics. Mens et al formalize refactoring by using graph transformations.92

Bavota et al93 automatically identify method chains and refactor them

to cohesive classes using the Extract Class refactoring. The aim of these

approaches is to provide specific refactoring strategies; the aim of our

approach is to provide a generic and automated refactoring framework

to help developers to refactor their code.

Several works have taken a scripting approach to applying

refactorings,94,95 the most recent of these being the work of Kim

et al,16 which is relevant to our research as it also focuses on design

patterns. They created a Java package to automate the creation of

classical design patterns and encoded 18 out of the 23 Gang-of-Four

design patterns14 in their Java-based scripting language. In their exper-

iments with a six real-world, nontrivial Java applications, they found

that their approach could apply a complex pattern in a fraction of the

time it would take a developer to perform the same process. This work

does not attempt to find where a pattern should be applied however.

By contrast, MORE applies a design pattern only when it is beneficial

to do so, taking into account overall software quality, existing code

smells in the code, and overall design coherence of the code base.

In summary, the area of identification of refactoring opportunities is

a lively one96 and significant contributions have been made in each of

the areas on which we focus: design quality improvement, code smell

removal, and introduction of design patterns. Our work is the first to

our knowledge that combines all these research strands into a single

coherent refactoring recommendation system.

9 CONCLUSION AND FUTURE WORK

This paper presented a search-based refactoring approach called

MORE, which takes into consideration multiple perspectives to recom-

mend refactoring solutions to (i) improve software quality, (ii) fix code

smells, and (iii) introduce design patterns. The selection of refactorings

to propose is also guided by a set of semantic constraints to preserve

the semantic coherence of the original program. MORE succeeded in

finding near-optimal trade-offs between these multiple perspectives

while providing more semantic and meaningful refactorings. To evalu-

ate our approach, we conducted an empirical evaluation on 7 medium

and large-size open-source systems, and compared our results to 3

state-of-the-art approaches and 2 popular multiobjective algorithms as

well as random search. Our empirical study shows the efficacy of our

approach in improving the quality of the studied systems while success-

fully fixing 84% of code smells and introducing an average of 6 design

patterns. In addition, the qualitative evaluation shows that most of the

suggested refactorings (an average of 69%) are considered as relevant

and meaningful by software developers.

As future work, we are planning to conduct an empirical study

to investigate the correlation between fixing code smells, introduc-

ing design patterns, and improving quality metrics to better under-

stand the nature of relationship between them. We also plan to extend

MORE to include other code smells and design pattern types and eval-

uate our approach in an industrial context. In addition, we are plan-

ning to include a procedure to automatically apply regression testing

techniques and generate test cases for the modified code fragments

after refactoring.

ACKNOWLEDGEMENTS

The authors would like to thank all the participants to this study.

This work was supported by the Research Start-up (2) 2016 Grant

G00002211 funded by UAE University, and by Japan Society for the

Promotion of Science, Grant-in-Aid for Scientific Research (S) Collect-

ing, Analyzing, and Evaluating Software Assets for Effective Reuse

(grant JP25220003). This work was also supported, in part, by the Sci-

ence Foundation Ireland grant 10/CE/I1855 to Lero - the Irish Software

Engineering Research Centre.

REFERENCES

1. Lehman MM, Belady LA. Program Evolution: Processes of Software
Change. San Diego, CA, USA: Academic Press Professional, Inc.; 1985.

2. Fowler M. Refactoring: Improving the design of existing code. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.; 1999.

3. Kerievsky J. Refactoring to Patterns. Einbeck, Germany: Pearson
Deutschland GmbH; 2005.

4. Murphy-Hill E, Parnin C, Black AP. How we refactor, and how we know
it. IEEE Trans Software Eng. 2012;38(1):5–18.

5. Ge X, Murphy-Hill E. Benefactor: a flexible refactoring tool for eclipse.
ACM International Conference Companion on Object Oriented Program-
ming Systems Languages and Applications Companion; 2011:19–20.

24 of 26 OUNI ET AL.

6. Harman M, Tratt L. Pareto optimal search based refactoring at the
design level. 9th Annual Conference on Genetic and Evolutionary Compu-
tation; 2007:1106–1113.

7. OKeeffe M, Cinnéide MO. Search-based refactoring for software main-
tenance. J Syst Software. 2008;81(4):502–516.

8. Ouni A, Kessentini M, Sahraoui H, Inoue K, Hamdi MS. Improving
multi-objective code-smells correction using development history. J
Syst Software. 2015;105(0):18–39.

9. Negara S, Chen N, Vakilian M, Johnson RE, Dig D. A comparative study
of manual and automated refactorings. Object-Oriented Programming
(ECOOP): Springer, Montpellier, France; 2013:552–576.

10. Kim M, Zimmermann T, Nagappan N. A field study of refactoring chal-
lenges and benefits. ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering; 2012:50.

11. Seng O, Stammel J, Burkhart D. Search-based determination of refac-
torings for improving the class structure of object-oriented sys-
tems. 8th Annual Conference on Genetic and Evolutionary Computation;
2006:1909–1916.

12. Bavota G, De Lucia A, Marcus A, Oliveto R, Palomba F. Supporting
extract class refactoring in eclipse: the aries project. 34th International
Conference on Software Engineering (ICSE); 2012:1419–1422.

13. Brown WJ, McCormick HW, Mowbray TJ, Malveau RC. Antipatterns:
Refactoring Software, Architectures, and Projects in Crisis. New York:
Wiley; 1998.

14. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of
Reusable object-Oriented Software. USA: Pearson Education; 1994.

15. Cinnéide MO. Automated application of design patterns: a refactoring
approach. Ph.D. Thesis, 2001.

16. Kim J, Batory D, Dig D. Scripting parametric refactorings in java to
retrofit design patterns. IEEE International Conference on Software Main-
tenance and Evolution (ICSME); 2015:211–220.

17. Cinnéide M, Nixon P. A methodology for the automated introduction of
design patterns. IEEE International Conference on Software Maintenance
(ICSM); 1999:463–472.

18. Jensen AC, Cheng BH. On the use of genetic programming for auto-
mated refactoring and the introduction of design patterns. 12th Annual
Conference on Genetic and Evolutionary Computation; 2010:1341–1348.

19. Khomh F, Gueheneuc YG. Do design patterns impact software qual-
ity positively? 12th European Conference on Software Maintenance and
Reengineering (CSMR); 2008:274–278.

20. Ververs F, Pronk C. On the interaction between metrics and patterns.
Proceedings of the International Conference on Object Oriented Informa-
tion Systems. Dublin: IEEE Computer Society; 1995:303–314.

21. Soetens Q, Demeyer S. Studying the effect of refactorings: A com-
plexity metrics perspective. Seventh International Conference on the
Quality of Information and Communications Technology (QUATIC’2010);
2010:313–318.

22. Stroggylos K, Spinellis D. Refactoring–does it improve software qual-
ity? 5th International Workshop on Software Quality, WoSQ ’07, IEEE
Computer Society, Minneapolis, MN, USA; 2007:10–10.

23. Kannangara SH, Wijayanayake W. An Empirical Evaluation of Impact of
Refactoring on Internal and External Measures of Code Quality. Int J
Software Engineer Appl. 2015;6(1):51–67.

24. Wilking D, Khan U, Kowalewski S. An Empirical Evaluation of Refactor-
ing. E-Inf Software Eng J. 2007;1(1):27–42.

25. Counsell S, Hierons RM, Hamza H, Black S, Durrand M. Exploring the
Eradication of Code Smells: An Empirical and Theoretical Perspective.
Adv Software Eng. 2010;2010:1–12.

26. Chatzigeorgiou A, Manakos A. Investigating the Evolution of Bad
Smells in Object-Oriented Code. International Conference on the
Quality of Information and Communications Technology (QUATIC);
2010:106–115.

27. Ó Cinnéide M, Tratt L, Harman M, Counsell S, Hemati Moghadam I.
Experimental assessment of software metrics using automated refac-
toring. International Symposium on Empirical Software Engineering and
Measurement, ESEM ’12; 2012:49–58.

28. Ouni A, Kessentini M, Sahraoui H, Ó Cinnéide M, Deb K, Inoue K. A
multi-objective refactoring approach to introduce design patterns and
fix anti-patterns. 2015 North American Search Based Software Engineer-
ing Symposium (NasBASE); 2015.

29. Deb K, Pratap A, Agarwal S, Meyarivan TAMT. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput.
2002;6(2):182–197.

30. Deb K, Jain H. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part
i: Solving problems with box constraints. IEEE Trans Evol Comput.
2014;18(4):577–601.

31. Bansiya J, Davis CG. A hierarchical model for object-oriented design
quality assessment. IEEE Trans Software Eng. 2002;28(1):4–17.

32. Opdyke WF. Refactoring: An aid in designing application frameworks
and evolving object-oriented systems. Symposium on Object-Oriented
Programming Emphasizing Practical Applications (SOOPPA); 1990.

33. Opdyke WF. Refactoring object-oriented frameworks. Ph.D. Thesis,
1992.

34. Mens T, Tourwé T. A survey of software refactoring. IEEE Trans Software
Eng. 2004;30(2):126–139.

35. Mantyla M, Vanhanen J, Lassenius C. A taxonomy and an initial empiri-
cal study of bad smells in code. IEEE International Conference on Software
Maintenance (ICSM); 2003.

36. Ouni A, Kessentini M, Sahraoui H, Inoue K, Deb K. Multi-criteria
code refactoring using search-based software engineering: An
industrial case study. ACM Trans Software Eng Method. 2016;25(3):
23:1–23:53.

37. Ouni A, Kessentini M, Sahraoui H, Boukadoum M. Maintainability
defects detection and correction: a multi-objective approach. Autom
Software Eng. 2013;20(1):47–79.

38. Fokaefs M, Tsantalis N, Stroulia E, Chatzigeorgiou A. Jdeodorant: iden-
tification and application of extract class refactorings. 33rd Interna-
tional Conference on Software Engineering (ICSE); 2011:1037–1039.

39. Li W, Shatnawi R. An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution. J Sys
Software. 2007;80(7):1120–1128.

40. Wirfs-Brock R, McKean A. Object Design: Roles, Responsibilities, and Col-
laborations. Boston, USA: Addison-Wesley Professional; 2003.

41. Riel AJ. Object-Oriented Design Heuristics, vol. 338. Switzerland:
Addison-Wesley Reading; 1996.

42. Harman M, Jones BF. Search-based software engineering. Inf Software
Technol. 2001;43(14):833–839.

43. Harman M. The current state and future of search based software engi-
neering. Future of software engineering (fose). IEEE, Dubrovnik, Croatia;
2007:342–357.

44. Harman M, Mansouri SA, Zhang Y. Search-based software engi-
neering: Trends, techniques and applications. ACM Comput Surv.
2012;45(1):1–61.

45. Harman M, Mansouri S, Zhang Y. Search based software engineer-
ing: A comprehensive analysis and review of trends techniques
and applications, Kings College, London, UK, Tech. Rep. TR-09-03;
2009.

46. Lam P, Bodden E, Lhoták O, Hendren L. The soot framework for java
program analysis: a retrospective. Cetus users and Compiler Infastructure
Workshop (CETUS), IEEE, Portland, Oregon, USA; 2011:8.

47. Heuzeroth D, Holl T, Hogstrom G, Lowe W. Automatic design pat-
tern detection. Program Comprehension, 2003. 11th IEEE International
Workshop on, IEEE, Portland, Oregon, USA; 2003:94–103.

48. Ajouli A, Cohen J, Royer JC. Transformations between composite

and visitor implementations in java. 39th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA);
2013:25–32.

49. Ajouli A. Vues et transformations de programmes pour la modularité
des évolutions. Ph.D. Thesis, 2013.

OUNI ET AL. 25 of 26

50. Ouni A, Kessentini M, Sahraoui H, Hamdi MS. Search-based refactor-
ing: Towards semantics preservation. 28th IEEE International Conference
on Software Maintenance (ICSM); 2012:347–356.

51. Harman M, Mansouri SA, Zhang Y. Search-based software engineer-
ing: Trends, techniques and applications. ACM Comput Surv (CSUR).
2012;45(1):11.

52. Bavota G, Oliveto R, Gethers M, Poshyvanyk D, De Lucia A. Method-
book: Recommending move method refactorings via relational topic
models. IEEE Trans Software Eng. 2014;40(7):671–694.

53. Dean J, Grove D, Chambers C. Optimization of object-oriented pro-
grams using static class hierarchy analysis. 9th European Conference on
Object-Oriented Programming (ECOOP); 1995:77–101.

54. Rattan D, Bhatia R, Singh M. Software clone detection: A systematic
review. Inf Software Technol. 2013;55(7):1165–1199.

55. Bacon DF, Sweeney PF. Fast static analysis of c++ virtual func-
tion calls. 11th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA); 1996:
324–341.

56. Das I, Dennis JE. Normal-boundary intersection: A new method for
generating the pareto surface in nonlinear multicriteria optimization
problems. SIAM J Optim. 1998;8(3):631–657.

57. Karnopp DC. Random search techniques for optimization problems.
Automatica. 1963;1(2):111–121.

58. Li H, Zhang Q. Multiobjective optimization problems with com-
plicated pareto sets, moea/d and nsga-ii. IEEE Trans Evol Comput.
2009;13(2):284–302.

59. Van Veldhuizen DA, Lamont GB. Multiobjective evolutionary algorithm
research: A history and analysis; 1998.

60. Coello CAC, Cortés NC. Solving multiobjective optimization prob-
lems using an artificial immune system. Genet Program Evolvable Mach.
2005;6(2):163–190.

61. Chisnall PM. Questionnaire design, interviewing and attitude mea-
surement. J Market Res Soc. 1993;35(4):392–393.

62. Kessentini M, Kessentini W, Sahraoui H, Boukadoum M, Ouni A. Design
defects detection and correction by example. 19th International Confer-
ence on Program Comprehension (ICPC); 2011:81–90.

63. Deb K, Goel T. Controlled elitist non-dominated sorting genetic algo-
rithms for better convergence. Evolutionary multi-criterion optimization:
Springer, Zurich, Switzerland; 2001:67–81.

64. Arcuri A, Briand L. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. 33rd Inter-
national Conference on Software Engineering (ICSE): IEEE, Zurich,
Switzerland; 2011:1–10.

65. Eiben AE, Smit SK. Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm Evol Comput. 2011;1(1):19–31.

66. Demšar J. Statistical comparisons of classifiers over multiple data sets.
J Mach Learn Res. 2006;7:1–30.

67. Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York,
New York, USA: Academic press; 1988.

68. Nakagawa S. A farewell to bonferroni: the problems of low statistical
power and publication bias. Behav Ecol. 2004;15(6):1044–1045.

69. Cliff N. Dominance statistics: Ordinal analyses to answer ordinal ques-
tions. Psychological Bull. 1993;114(3):494.

70. Wendorff P. Assessment of design patterns during software reengi-
neering: lessons learned from a large commercial project. 5th Euro-
pean Conference on Software Maintenance and Reengineering (CSMR);
2001:77–84.

71. Olbrich S, Cruzes DS, Basili V, Zazworka N. The evolution and impact
of code smells: A case study of two open source systems. 3rd Inter-
national Symposium on Empirical Software Engineering and Measurement;
2009:390–400.

72. Kessentini W, Kessentini M, Sahraoui H, Bechikh S, Ouni A. A
Cooperative Parallel Search-Based Software Engineering Approach
for Code-Smells Detection. IEEE Trans Software Eng. 2014;40(9):
841–861.

73. Ouni A, Kessentini M, Sahraoui H, Inoue K, Hamdi MS. Improving
multi-objective code-smells correction using development history. J
Syst Software. 2015;105:18–39.

74. O’Keeffe M, Ó Cinnéide M. A stochastic approach to automated design
improvement. 2nd International Conference on Principles and Practice of
Programming in Java, Computer Science Press, Inc.; 2003:59–62.

75. Fatiregun D, Harman M, Hierons R. Evolving transformation sequences
using genetic algorithms. 4th International Workshop on Source Code
Analysis and Manipulation, SCAM ’04, Los Alamitos, California, USA;
2004:65–74.

76. Simons C, Singer J, White DR. Search-based refactoring: Metrics are
not enough. In: Barros Márcio, Labiche Yvan, eds. Search-based software
engineering, Lecture Notes in Computer Science, vol. 9275: Springer
International Publishing, Bergamo, Italy; 2015:47–61.

77. Fokaefs M, Tsantalis N, Chatzigeorgiou A. Jdeodorant: Identification
and removal of feature envy bad smells. IEEE International Conference on
Software Maintenance (ICSM); 2007:519–520.

78. Tsantalis N, Chatzigeorgiou A. Identification of extract method refac-
toring opportunities for the decomposition of methods. J Syst Software.
2011;84(10):1757–1782.

79. Bavota G, Lucia A, Marcus A, Oliveto R. Automating extract class refac-
toring: an improved method and its evaluation. Empirical Software Eng.
2014;19(6):1617–1664.

80. Ouni A, Kessentini M, Inoue K, O Cinneide M. Search-based web ser-
vice antipatterns detection. IEEE Trans Serv Comput. 2015;PP(99):14
(to appear).

81. Ouni A, Gaikovina Kula R, Kessentini M, Inoue K. Web service
antipatterns detection using genetic programming. Genetic and evo-
lutionary computation conference, GECCO’15, ACM, Madrid, Spain;
2015:1351–1358.

82. Ouni A, Salem Z, Inoue K, Soui M. SIM: an automated approach to
improve web service interface modularization; 2016:91–98.

83. Wang H, Kessentini M, Ouni A. Bi-level identification of web ser-
vice defects. 14th International Conference on Service-Oriented Com-
puting ICSOC, Springer International Publishing, Banff, AB, Canada;
2016:352–368.

84. Poshyvanyk D, Marcus A. The conceptual coupling metrics for
object-oriented systems. 22nd IEEE International Conference on Software
Maintenance (ICSM), Washington, DC, USA; 2006:469–478.

85. Marcus A, Poshyvanyk D, Ferenc R. Using the conceptual cohesion
of classes for fault prediction in object-oriented systems. IEEE Trans
Software Eng. 2008;34(2):287–300.

86. Bavota G, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A. An
empirical study on the developers’ perception of software coupling.
International Conference on Software Engineering (ICSE); 2013:692–701.

87. Eden AH, Yehudai A, Gil J. Precise specification and automatic appli-
cation of design patterns. 12th International Conference on Automated
Software Engineering (Formerly: KBSE), ASE ’97. Washington, DC, USA:
IEEE Computer Society; 1997:143–.

88. El Boussaidi G, Mili H. Understanding design patterns what is the
problem?Software: Pract Experience. 2012;42(12):1495–1529.

89. Murphy-Hill E, Black AP. Refactoring tools: Fitness for purpose. IEEE
Software. 2008;25(5):38–44.

90. Murphy-Hill E, Black AP. Breaking the barriers to successful refac-
toring: Observations and tools for extract method. 30th International
Conference on Software Engineering (ICSE), ICSE ’08. New York, NY, USA:
ACM; 2008:421–430.

91. Murphy-Hill E, Black A. Programmer-friendly refactoring errors. IEEE
Trans Software Eng. 2012;38(6):1417–1431.

92. Ge X, Murphy-Hill E. Manual refactoring changes with automated
refactoring validation. 36th International Conference on Software Engi-
neering (ICSE), New York, NY, USA; 2014:1095–1105.

93. Mens T, Van Eetvelde N, Demeyer S, Janssens D. Formalizing refactor-
ings with graph transformations: Research articles. J Software Mainte-
nance Evol. 2005;17(4):247–276.

26 of 26 OUNI ET AL.

94. Bavota G, De Lucia A, Marcus A, Oliveto R. A two-step technique
for extract class refactoring. IEEE/ACM International Conference on
Automated Software Engineering. New York, NY, USA: ACM; 2010:
151–154.

95. Verbaere M, Ettinger R, de Moor O. Jungl: a scripting language for
refactoring. 28th International Conference on Software Engineering (ICSE).
New York, NY, USA: ACM Press; 2006:172181.

96. Steimann F, Kollee C, von Pilgrim J. A refactoring constraint
language and its application to eiffel. 25th European Conference
on Object-Oriented Programming (ECOOP). Berlin, Heidelberg:
Springer-Verlag; 2011:255–280.

97. Dallal JA. Identifying refactoring opportunities in object-oriented
code: A systematic literature review. Inf Software Technol.
2015;58:231–249.

How to cite this article: Ouni A, Kessentini M, Ó Cinnéide M,

Sahraoui H, Deb K, Inoue K. MORE: A multi-objective refac-

toring recommendation approach to introducing design pat-

terns and fixing code smells. J Softw Evol Proc. 2017;29:e1843.

https://doi.org/10.1002/smr.1843.

https://doi.org/10.1002/smr.1843

	MORE: A multi-objective refactoring recommendation approach to introducing design patterns and fixing code smells
	Abstract
	Introduction
	Background
	Definitions
	Search-based software engineering

	Approach
	The General architecture of MORE
	Semantic Constraints

	Search-based Refactoring Using NSGA-III
	NSGA-III Overview
	NSGA-III Adaptation for the Refactoring Recommendation Problem
	Problem formulation
	Solution approach

	The design of the empirical study
	Research Questions
	Software Systems Studied
	Evaluation methodology
	Research method for RQ1.
	Research method for RQ2.
	Quantitative evaluation.
	Qualitative evaluation.

	Research method for RQ3.

	Algorithms Parameter Tuning
	Inferential Statistical Tests Used

	Results
	Results for RQ1: Sanity check
	Results for RQ2: efficacy
	Results for RQ3: comparison to state-of-the-art
	Discussions

	Threats to Validity
	Related Work
	Automated Improvement of Design Quality
	Automated Correction of Code Smells
	Automated Introduction of Design Patterns
	Related Refactoring Research

	Conclusion and Future Work
	References

