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Key Points: 
 

- Observed long-lasting high-m poloidal waves associated with second 

harmonics of field line resonances during a major magnetic storm. 

- Demonstrated global spatial extent of storm-time poloidal FLR region 

using observations from a constellation of widely spaced satellites  
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- Revealed discrete spatial structures of resonant L-shells with step-like 

frequency changes  
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Abstract (143 of 150 Words) 

We report global observations of high-m poloidal waves during the recovery phase of 

the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of 5 

missions including MMS, Van Allen Probes, THEMIS, Cluster, and GOES. The 

combined observations demonstrate the global spatial extent of storm-time poloidal 

waves.  MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode 

identification indicates the waves are associated with the second harmonic of field-line 

resonances. The wave frequencies exhibit a decreasing trend as L increases, 

distinguishing them from the single frequency global poloidal modes normally observed 

during quiet times. Detailed examination of the instantaneous frequency reveals discrete 

spatial structures with step-like frequency changes along L. Each discrete L-shell has a 

steady wave frequency and spans about 1 RE, suggesting that there exist a discrete 

number of drift-bounce resonance regions across L-shells during storm times. 
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1. Introduction 

Magnetospheric ultra-low-frequency (ULF) pulsations with high azimuthal wave 

numbers (m > ~ 15), or small azimuthal wavelengths, are typically of the poloidal mode 

with periods 100 s or longer, which is the field line resonance (FLR) eigenmode with 

magnetic field perturbations in the radial direction and electric field perturbations in the 

azimuthal direction [Sugiura and Wilson, 1964]. Although disturbances both external and 

internal to the magnetosphere can drive magnetospheric ULF waves, internal plasma 

instabilities caused by non-Maxwellian ion distributions or phase space density radial 

gradient are generally regarded to be the energy source of high-m poloidal waves.  They 

include the drift-bounce resonant instability due to pressure gradients and the magnetic 

field gradient and curvature [Southwood et al., 1969; Chen and Hasegawa, 1988, 1991] 

and drift mirror instability due to temperature anisotropy [Hasegawa and Chen, 1989; 

Chen and Hasegawa, 1991]. Ring current populations are considered to be the dominant 

energy source for storm-time poloidal waves. High-m poloidal waves have received 

considerable attention recently because they can exchange energy with energetic particles 

and thus are of potential importance to the dynamics of the inner magnetosphere [Zong et 

al., 2009].  

Since high-m waves are difficult to detect on the ground due to the atmospheric 

screening effect, satellite observations are essential to study these waves [Hughes and 

Southwood, 1976; Kokubun et al., 1989]. Statistical surveys of satellite data indicate that 
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poloidal waves frequently occur in the outer ring current region (L ~ 5-9) in both 

geomagnetically quiet and active times, and have been observed at all local times 

[Kokubun et al., 1989; Anderson et al., 1990; Zhu and Kivelson, 1991; Hudson et al., 

2004; Liu et al;, 2009; Dai et al., 2015]. The azimuthal wave numbers for poloidal waves 

were first determined directly using measurements from two or three spacecraft with 

small azimuthal separations and confirmed to be high m (~ 40-120) [Hughes et al., 1979; 

Takahashi et al., 1985a]. More recently, multiple satellite missions have provided more 

opportunities for direct determination of m-numbers and occurrence statistics [e.g., 

Eriksson et al., 2005; Schäfer et al., 2007; Liu et al., 2009; Le et al., 2011; Takahashi et 

al., 2013; Chi and Le, 2015].  

Although previous surveys have established the global occurrence of high-m poloidal 

waves, they rarely provide information about the radial and azimuthal extent of the waves 

at the time of occurrence. These wave characteristics are tied to their generation 

mechanisms. Determining the spatial extent of the waves requires extended coverage of 

wave region by multiple satellites with simultaneous measurements. Studies of large-

scale properties of high-m waves using widely spaced satellites have been scarce. Zong et 

al. [2009] studied shock-excited waves using 9 satellites and observed both poloidal and 

toroidal waves with comparable intensity at L=4.4, but only toroidal waves at 

geosynchronous orbit. Korotova et al. [2016] observed poloidal waves occurred 

simultaneously over a local time extent of ~10 hours during the recovering phase of a 
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magnetic storm. In this paper, we report a rare example in which storm-time high-m 

poloidal waves are observed globally by 15 satellites from 5 missions including 

Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and 

Macroscale Interactions During Substorm (THEMIS), Cluster, and Geostationary 

Operational Environmental Satellites (GOES), covering L-values between ~ 4 and 12 as 

well as local times from the morning, noon, afternoon and post-dusk local time 

sectors. The long-lasting waves occur on 23-25 June, during the recovery phase of a 

major magnetic storm that started on 22 June 2015. In the next sections, we will present 

global observations of waves properties and discuss their implications for wave 

generation.  

 

2. Observations 

A strong and long-lasting magnetic storm was triggered on 22 June 2015 by joint 

forces of three coronal mass ejections from the Sun [Liu et al., 2015]. Figure 1 shows the 

IMF and solar wind conditions from ACE as well as the SYM_H index (the 1-min high-

resolution global storm index) for 22 through 25 June. The storm main phase lasted for 

about 1/2 day and the Dst minimum reached to -207 nT at the end of the storm main 

phase, ~0425 UT on 23 June. The recovery phase lasted for about one week.  The event 

of interest occurred in the early recovery phase, from ~ 14 UT on 23 June to the end of 25 

June.  During this interval, 15 satellites from MMS, Van Allen Probes, GOES, Cluster, 
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and THEMIS missions all observed, at times, poloidal waves in the frequency band ~ 3-

30 mHz.  

Figure 2 presents an overview of the global occurrence characteristics of the poloidal 

waves as observed by the fleet of satellites during the early recovery phase.  The dynamic 

power spectrograms for the poloidal component of the magnetic field cover the time 

period in the recovery phase, from 12 UT on 23 June to the end of 25 June. For MMS, 

Cluster, and THEMIS (A/D/E) missions, we only show the spectrogram from one of the 

satellites for each mission because of the similarity among the closely spaced satellites. 

The poloidal component, bν, is radially outward and perpendicular to the background 

magnetic field (calculated by moving averages with a 5-minute window). The wave 

power displayed is associated with the first difference of the poloidal magnetic field 

component. The gaps in the spectrograms correspond mostly to the times when the 

satellites are either outside the magnetosphere or inside L = 2, but also to a few short 

intervals of bad data points.  

We identify the poloidal wave intervals in the data based on the narrow-banded peaks 

in ~ 3-30 mHz frequency range in the spectrograms and mark them as horizontal bars 

under each spectrogram. If the spectral peaks are present in both poloidal and toroidal 

components, the waves are considered to be poloidal mode only if the poloidal wave 

power is stronger than the toroidal power. It is evident in the spectrograms that all the 

satellites observed poloidal waves at times during this interval. The waves were first 
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observed by MMS and GOES at ~1550 UT on June 23 and later by all other spacecraft. 

We believe that the wave onset time is ~ 1550 UT. 

The locations of the satellites are shown in top-left panel of Figure 2. The thin black 

traces are the trajectories of the satellites mapped to the magnetic equator along the 

dipole field lines in Solar Magnetic (SM) coordinates. The two dashed circles are for L=4 

and L=10, respectively. In the orbit plot, the colored segments along the orbit tracks are 

the satellite locations corresponding to the poloidal wave intervals identified in the 

spectrograms. They include the wave intervals from all 15 satellites but the same color is 

used for all satellites in the same mission. The distribution of these wave intervals shows 

that the poloidal waves have been observed in the region with L-values from ~ 4 to 12 

within a large local time range spanning the entire dayside and into the pre-midnight 

sector. In particular, MMS observed the waves in the same region in three consecutive 

orbits on June 23-25. These observations, and those from the other missions during these 

three days, strongly suggest that the wave activities persisted for the entire period.  

The highly precise magnetic field measurements by MMS can well resolve the phase 

shifts in the poloidal magnetic field components (bν) among the four satellites despite 

their close separations, allowing for the determination of the azimuthal wavenumbers (m) 

of the waves. The top panel of Figure 3 shows the time series for 45 minutes of the wave 

magnetic field from MMS (1545-1630 UT on June 23), including the compressional (bμ), 

poloidal (bν), and azimuthal (bφ) components. The poloidal waves are highly 
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compressional and consist of wave packets with variable amplitudes. The magnetic fields 

observed by the four satellites appear to be almost identical, but small and clear time lags 

are found among the satellites. For any two satellites that are separated longitudinally, the 

azimuthal phase shift of the wave can be measured due to such separation. Four MMS 

satellites can provide six of such measurements. The bottom panels show the observed 

phase shifts (time lags) as a function of longitudinal separations for the six pairs formed 

by MMS satellites for three selected waves intervals. The time lag is determined by 

cross-correlation analysis of the poloidal components (bν) observed by each pair. The red 

lines are the least square fits. The fitted slopes in the three examples are −28, −12, and 

−24, and the wave periods are 74 s, 72 s, and 72 s, respectively. These results imply that 

the m numbers of the adjacent poloidal waves are −135, −62, and −119, respectively. The 

negative sign of the wavenumber indicates that the azimuthal wave vector k is directed 

westward, which is in the same direction of the proton drift. The estimated values of m 

numbers, on the order of 100, confirm that they are indeed high-m poloidal waves. 

The identification of even or odd modes of the standing field line resonance can be 

directly inferred from the phase difference between the magnetic and electric field 

perturbations [Singer et al., 1982; Takahashi et al., 2011]. For a field line with two 

footpoints in the northern and southern ionosphere, the odd harmonics of field line 

resonance will have the magnetic field nodes (bν=0) and electric field antinodes 

(maximum Eφ) at the equator. For even harmonics, the electric field nodes (Eφ=0) and 
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magnetic field antinodes (maximum bν) are at the equator, which better explain the 

intense poloidal waves observed. A field line resonance always involves a 90° phase 

difference between Eφ and bν everywhere along the field line, but the sign of this phase 

difference varies with the observer’s location and the harmonic number. For a spacecraft 

located slightly north of the equator, bν lags Eφ for the even harmonic, whereas bν leads 

Eφ for the odd harmonic. Figure 4 shows two 10-min intervals of the magnetic field and 

electric field perturbations observed by Van Allen Probes, which were located slightly 

north of the equator. The magnetic wave bν lagged the electric wave Eφ by 90°, indicating 

clearly the wave is associated with an even harmonic. The observed frequency is in the 

range of ~ 10-20 mHz at Van Allen Probes near the apogee. The analysis of the toroidal 

component of the waves (not shown) indicates that the observed poloidal frequency is 

that of the second harmonic.  This is also consistent with previous Van Allen Probes 

observations of the second harmonic FLR frequencies at similar locations [Nose et al., 

2015].  

Although the observed high-m poloidal waves were present over a large region in the 

inner magnetosphere, we observed noticeable spatial variations of wave frequencies. In 

the spectrograms in Figure 2, we note that the wave frequencies change (either increase 

or decrease) with time. This is most evident in the MMS data where intense waves were 

observed over an extended period across a large range of L values. Apparently the wave 

frequencies are a function of L as they decrease with increasing L values consistently, as 
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shown in Figure 5a. The points in Figure 5a represent the average frequencies of the 

wave packets within the poloidal wave intervals identified in Figure 2. If a wave interval 

is longer than 20 min, multiple points are plotted, each for a 20-min segment.  

A detailed analysis of the instantaneous wave frequency reveals discrete poloidal 

mode structures along L.  In Figure 5b, the top panel shows nearly two hours of bν from 

the outbound pass of MMS-1 on 23 June 2015, covering the region with L from ~ 6.8 to 

~ 9.2 in post-dusk local times. The bottom panel is the time-frequency representation 

estimated from the Wigner-Ville Distribution (WVD). Chi and Russell [2008] provides 

detailed discussions about WVD and its application to different types of ULF waves. 

Since WVD does not contain a windowing function, as those in Fourier and wavelet 

frameworks, by correlating the signal with a time- and frequency-translated version of 

itself, it provides the highest possible resolution in the time-frequency plane. This 

approach is very effective in detecting changing characteristics of non-stationary signals, 

but also comes with a well-known tradeoff of the interference terms that can be seen in 

the spectrogram. The instantaneous frequencies as shown the lower panel of Figure 5b 

suggest that there are discrete structures of poloidal waves along the spacecraft orbit, i.e., 

the wave frequency changes discretely with L. Inside each discrete structure, the wave 

frequency is nearly constant, and the frequency abruptly changes when the spacecraft 

moves to the next structure. Each discrete structure has a radial extent of ~ 1 RE. The Van 

Allen Probes also observed similar discrete frequency structures at L-values between 5.7 
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and 6.1 (not shown). To our knowledge, this is the first observation of discrete structures 

of poloidal waves in the radial direction. 

Spatial variations in the azimuthal direction are also apparent, as the waves are 

stronger in the dusk and post-dusk sectors. This is most evident in the spectrograms of 

MMS, Van Allen Probes and GOES data. The most intense waves occurred in ~ 18-21 

LT sector where the partial ring current peaks during storm times.  

 

3. Discussion and Conclusions 

Using the observations from widely spaced satellites associated with five missions, 

we examine high-m poloidal waves that occurred during the recovery phase of 22 June 

2015 magnetic storm. Our observations reveal distinct features in the spatial 

characteristics of storm-time high-m poloidal waves, which are new and not available 

from any previous statistical surveys. First, our multi-satellite observations have clearly 

demonstrated that storm-time high-m poloidal waves can occur “globally,” i.e., the region 

of field-line resonance has a large spatial extent in the inner magnetosphere which spans 

many L shells and local time sectors. The resonance region in our observations is much 

more extended than previously reported cases with 1.5-8 hours in the azimuthal extent 

[Engebreston et al., 1992] and up to 1.7 RE radial extent [Singer et al., 1982; Takahashi et 

al., 1985b]. This global extent of the resonance region should not be confused with the 

global distributions of the wave occurrence rates obtained from statistical surveys based 
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on single-satellite observations [e.g., Hudson et al., 2004; Liu et al., 2009; Dai et al., 

2015]. While these statistical surveys established the global occurrence of the waves, the 

spatial distribution of the wave occurrence rate does not imply a similar spatial extent of 

the resonance region at any given time.  

Secondly, the spatial structures within the resonance region for storm-time high-m 

poloidal waves provide new insight into their generation mechanisms.  For toroidal mode 

waves with magnetic field perturbations in the azimuthal direction, ideal MHD predicts 

that field line resonance is radially singular and each field line oscillates independently 

with its own eigenfrequency [Chen and Hasegawa, 1974; Southwood, 1974; Cheng et al., 

1993; Denton et al., 2003].  Thus, the frequency of toroidal waves changes with L in the 

magnetosphere due to the gradual changes in the length of the field line and the plasma 

mass density. On the other hand, poloidal mode waves have field lines that oscillate 

radially, meaning that their frequency cannot change with L easily. Phase mixing and 

efficient damping of the waves would occur if radial oscillations of neighboring L-shells 

were not in sync.  Observations indeed show that poloidal mode waves often exhibit 

nearly constant frequency across L shells [e.g., Takahashi et al., 1987; Chi and Le, 2015]. 

For example, in our previous observations at low altitudes using Space Technology 5 

data, we found that high-m poloidal mode waves could maintain a steady Pc 5 frequency 

across L-shells from L ~ 4 to 8 [Chi and Le, 2015]. The mechanism often invoked to 

explain such constant frequency for poloidal waves is the so-called global poloidal mode 
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theory in which a poloidal mode can be trapped in a region where the poloidal frequency 

has a dip with respect to L [Vetoulis and Chen, 1994, 1996; Denton and Vetoulis, 1998]. 

Using spacecraft observations of poloidal wave events (all observed during quiet times), 

Denton et al. [2003] calculated the poloidal frequency as a function of L and confirmed 

that these waves did occur in association with the poloidal frequency dip.  

The frequency characteristics of the storm-time poloidal waves presented in this study 

are quite peculiar. On one hand, it is evident that the frequency of the poloidal waves 

exhibits a decreasing trend as a function of L (Figure 5a), which is different from the 

single-frequency global poloidal mode waves observed during quiet times. On the other 

hand, the poloidal waves also exhibit discrete structures in L, where the frequency 

remains constant in each discrete structure and changes only when entering into another 

discrete structure. The radial extent of the discrete structures is ~ 1 RE. These 

observations show new features that have not been reported before, probably because 

Fourier analysis does not offer adequate temporal and frequency resolution in the power 

spectrogram.  The likely explanation for such observations is that, during storm times, 

there are ample supplies of energetic particles that can provide free energy to poloidal 

waves at the local FLR frequency for a wide range of L shells. As these waves oscillate in 

the poloidal direction and interact with their counterparts in neighboring L-shells, waves 

will rapidly undergo destructive interference if they are at different frequencies. In other 

words, poloidal waves in neighboring L-shells need to oscillate at a constant frequency to 
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be able to survive. However, they can maintain a constant frequency only within a limited 

range of L-shells to be compatible with locally excited poloidal FLRs. Our observations 

also clearly demonstrate the difference in the radial profile of wave frequency between 

storm-time and quiet-time poloidal waves. Future studies should contrast the plasma and 

energetic particle characteristics associated with storm-time and quiet-time poloidal mode 

waves to understand their generation mechanisms and provide guidance to numerical 

modeling and simulations.  

In summary, we present multi-mission, global observations of high-m poloidal waves 

during the recovery phase of the major magnetic storm starting on 22 June 2015. The data 

came from a constellation of 15 satellites from 5 missions including MMS, Van Allen 

Probes, THEMIS, Cluster, and GOES, covering L-values between ~ 4 and 12 as well as 

all local times. The observations by such a constellation of widely spaced satellites 

demonstrate that storm-time high-m poloidal waves are long lasting and can occur 

“globally.” Highly accurate magnetic field data from the four MMS satellites enable us to 

detect the azimuthal phase shifts and determine the m numbers to be ~ 100. Simultaneous 

measurements of electric and magnetic fields from Van Allen Probes have enabled us to 

determine that the poloidal waves are associated with the second harmonic FLR. The 

wave frequencies range from 8 to 22 mHz, with a decreasing trend as the L-value 

increases. The L-dependent frequencies indicate that they are of different type from the 

global poloidal mode, which is common during periods of low geomagnetic activity and 
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would be nearly monochromatic across different L-shells. The storm-time high-m 

poloidal waves in our observations show discrete spatial structures. Each structure has a 

steady wave frequency and spans about 1 RE in the radial direction, suggesting that there 

exist a discrete number of drift-bounce resonance regions across L-shells for storm-time 

global poloidal waves. 
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Figure Captions 

 

Figure 1. The IMF and solar wind data from ACE as well as the SYM_H index for the 22 

June 2015 storm. 

Figure 2. Spectrograms of poloidal component of the magnetic field  (bν) observed by 

MMS, Val Allen Probes, GOES-13/15, Cluster, and THEMIS from 1200 UT, 23 June to 

the end of 25 June. Horizontal bars indicate the poloidal wave intervals. In the top-left 

panel, the black traces are the satellite orbits and color-coded segments are the locations 

of the wave intervals.  

Figure 3. (Top) MMS wave magnetic field in field-aligned (μ), poloidal (ν), and toroidal 

(φ) directions. The three horizontal bars indicate the time intervals selected for estimating 

the azimuthal wavenumbers. (Bottom) The observed time lags in bν versus longitudinal 

separations between MMS satellites. 

Figure 4. Poloidal component of the magnetic field (red) and azimuthal component of the 

electric field (blue) for two wave intervals observed by Van Allen Probes A and B, 

respectively. Vertical dotted lines are placed at peaks of bv for guides only. 

Figure 5. (a) Average wave frequency as a function of L. (b) Poloidal component of the 

magnetic field (top) and the instantaneous wave frequencies estimated from Wigner-Ville 

Distribution (bottom) for the outbound pass of MMS-1 on 23 June 2015, covering the 

region with L from ~ 6.8 to ~ 9.2 in post-dusk local times.  
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Figure 1. The IMF and solar wind data from ACE as well as the SYM_H index for the 22 

June 2015 storm. 
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Figure 2. Spectrograms of poloidal component of the magnetic field  (bν) observed by 
MMS, Val Allen Probes, GOES-13/15, Cluster, and THEMIS from 1200 UT, 23 June to 
the end of 25 June. Horizontal bars indicate the poloidal wave intervals. In the top-left 
panel, the black traces are the satellite orbits and color-coded segments are the locations 
of the wave intervals.  
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Figure 3. (Top) MMS wave magnetic field in field-aligned (μ), poloidal (ν), and toroidal 
(φ) directions. The three horizontal bars indicate the time intervals selected for estimating 
the azimuthal wavenumbers. (Bottom) The observed time lags in bν versus longitudinal 
separations between MMS satellites. 
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Figure 4. Poloidal component of the magnetic field (red) and azimuthal component of the 

electric field (blue) for two wave intervals observed by Van Allen Probes A and B, 

respectively. Vertical dotted lines are placed at peaks of bv for guides only. 
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Figure 5. (a) Average wave frequency as a function of L. (b) Poloidal component of the 
magnetic field (top) and the instantaneous wave frequencies estimated from Wigner-Ville 
Distribution (bottom) for the outbound pass of MMS-1 on 23 June 2015, covering the 
region with L from ~ 6.8 to ~ 9.2 in post-dusk local times.  
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