ASIAN JOURNAL OF ORGANIC CHEMISTRY

Supporting Information

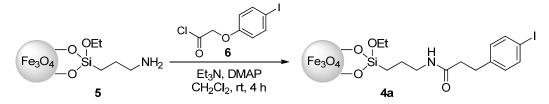
Recyclable Magnetic Nanoparticle-Supported Iodoarene Catalysts for Oxidation of 4-Alkoxyphenols to Quinones

Hisanori Nambu, Ikumi Shimokawa, Tomoya Fujiwara, and Takayuki Yakura*^[a]

ajoc_201600036_sm_miscellaneous_information.pdf

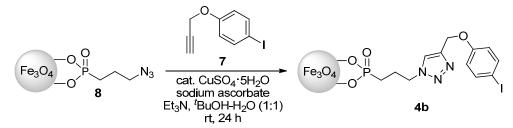
Contents:

Experimental Section	
General	S2
I. Preparation of magnetic nanoparticle-supported iodoarene catalysts	S3–S4
II. Preparation of phenols	S4–S5
III. Oxidation of 4-alkoxyphenol 1a to <i>p</i> -quinone 2a	
III-1. Typical procedure for the oxidation of p -alkoxyphenols 1 using magnetic name	noparticle-
supported iodoarene catalyst	S 6
III-2. The recovered catalyst 4b after 8 cycles	S6
III-3. Recyclability of the catalyst 4b with a reductive treatment	S 7
III-4. The catalyst 4b after treatment with Oxone in the absence of substrate 1a	S 7
IV. Oxidation of 4-alkoxyphenols 1 to <i>p</i> -quinones 2	S8–S10
References	S10
IR spectra of Fe_3O_4 and silica-coated catalyst 4a	S11
IR spectra of azide 8 and phosphonic acid-coated catalyst 4b	S12
IR spectra of the recovered catalyst 4b after 8 cycles and the catalyst 4b after treat	ment with
Oxone in the absence of substrate 1a	S13
¹ H and ¹³ C NMR spectra of 1i , 2a–g	


Experimental Section

General. Melting points are uncorrected. IR spectra were recorded on a JASCO FT/IR-460 Plus spectrophotometer and absorbance bands are reported in wavenumber (cm⁻¹). ¹H NMR spectra were recorded on JEOL JNM-ECX400P (400 MHz) spectrometer. Chemical shifts are reported relative to internal standard (tetramethylsilane at $\delta_{\rm H}$ 0.00 or CDCl₃ at $\delta_{\rm H}$ 7.26). Data are presented as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant and integration. ¹³C NMR spectra were recorded on JEOL JNM-ECX400P (100 MHz) spectrometer. The following internal reference was used (CDCl₃ at δ 77.0). All ¹³C NMR spectra were determined with complete proton decoupling. Column chromatography was performed on Silica Gel 60 PF₂₅₄ (Nacalai Tesque) and Kanto silica gel 60 N (63–210 mesh) under pressure. Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F₂₅₄ plates. Visualization was accomplished with UV light and phosphomolybdic acid stain solution followed by heating.

All reagents such as hydroquinone (**1b**), 4-methoxyphenol (**1c**), 4-ethoxyphenol (**1d**), 3-*tert*-butyl-4-hydroxyanisole (**1e**), Oxone[®] and 0.1 M-phosphate buffer solution were commercially available and were purchased from suppliers such as Sigma-Aldrich Co.; Wako Pure Chemical Industries, Ltd.; Tokyo Chemical Industry Co., Ltd.; Nacalai Tesque, INC. 2-Hydroxy-5-methoxybenzyl 2,2-dimethylpropanoate (**1a**)^[1], 2-azidomethyl-4-methoxyphenol (**1f**)^[1], 2-(*tert*-butyldiphenylsilyloxymethyl)-4-methoxyphenol (**1g**)^[1] and ethyl 2-hydroxy-5-methoxyphenylpropanoate (**1h**)^[2] were prepared according to literature procedures.

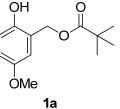

I. Preparation of magnetic nanoparticle-supported iodoarene catalysts

Silica-coated iodoarene catalyst 4a

Magnetic nanoparticle-supported amine **5** was prepared according to literature procedure.^[3] **5** (1.50 g) and 2-(4-iodophenoxy)acetyl chloride (249 mg, 0.84 mmol) were treated with Et₃N (255 mg, 2.52 mmol) in CH₂Cl₂ (8 mL). The reaction mixture was stirred at room temperature using mechanical stirrer for 4 h. The particles were collected at the bottom of the flask using an external magnet, and the supernatant carefully decanted. The catalyst was washed five times with EtOH. The particles were dried in vacuo to provide **4a** (1.51 g) as brown particles. The loading of **4a** was 0.087 mmol/g as determined by elemental analysis of iodine (1.11%). Magnetite (Fe₃O₄): IR (KBr, cm⁻¹) v 3444 (OH), 1633, 633 (Fe–O–Fe), 592 (Fe–O–Fe). Silica-coated iodoarene catalyst **4a**: IR (KBr, cm⁻¹) v 3339 (OH), 2980, 2952, 1488 (aryl), 1280 (NH₂), 1236 (Si–O–C, Si–C), 1056 (Si–O–C), 935 (Fe–O–Si), 847, 629 (Fe–O–Fe), 581(Fe–O–Fe).

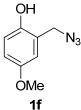
Phosphonic acid-coated iodoarene catalyst 4b

Magnetic nanoparticle-supported azide $8^{[4]}$ and 1-iodo-4-(prop-2-ynyloxy)benzene (7)^[5] were prepared according to literature procedures. 8 (2.83 g) and 7 (924 mg, 3.58 mmol) were treated with CuSO₄•5H₂O (41 mg, 5 mol%), sodium ascorbate (97 mg, 15 mol%) and Et₃N (0.9 mL, 6.50 mmol) in *t*-BuOH–H₂O (1:1, 14 mL). The reaction mixture was stirred at room temperature using mechanical stirrer for 24 h. The particles were collected at the bottom of the flask using an external magnet, and the supernatant carefully decanted. The catalyst was washed five times with EtOH, three times with acetone, and three times with Et₂O. After the particles were dried in vacuo, washed again three times with H₂O, three times with EtOH, three times with acetone, and three times with Et₂O. The particles were dried in vacuo to provide **4b** (2.38 g) as brown particles. The loading of 4b was 0.33 mmol/g as determined by elemental analysis of iodine (4.2%).

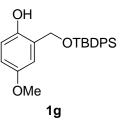

Magnetic nanoparticle-supported azide **8**: IR (KBr, cm⁻¹) v 3422 (OH), 2938, 2105 (N₃), 1629, 1445, 1410, 1348, 1303, 1285, 1248 (P=O), 1051 (Fe–O–P, P=O), 634 (Fe–O–Fe), 576 (Fe–O–Fe).

Phosphonic acid-coated iodoarene catalyst **4b**: IR (KBr, cm⁻¹) v 3434 (OH), 2943, 2100 (N₃), 1627, 1583 (aryl), 1485 (aryl), 1462, 1404, 1281, 1239 (P=O), 1176, 1058 and 999 (Fe–O–P, P=O), 821, 631 (Fe–O–Fe), 591 (Fe–O–Fe).

II. Preparation of phenols

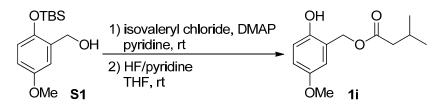

2-Hydroxy-5-methoxybenzyl 2,2-dimethylpropanoate (1a)^[1] (Table 1, Table 2 and Table 3, entry 1)

Mp 66.0–66.5 °C; IR (KBr, cm⁻¹) v 3363, 2967, 1686, 1509, 1469, 1433, 1292, 1260, 1210, 1182, 1037, 948, 851, 830, 714; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 6.88 (d, *J* = 8.7 Hz, 1H), 6.85 (d, *J* = 2.8 Hz, 1H), 6.82 (dd, *J* = 8.7, 2.8 Hz, 1H), 5.07 (s, 2H), 3.77 (s, 3H), 1.91 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 180.9, 153.3, 149.3, 122.5, 118.6, 116.5, 63.4, 55.7, 38.9, 27.1.


2-Azidomethyl-4-methoxyphenol (1f)^[1] (Table 3, entry 6)

Mp 35.0–37.0 °C; IR (KBr, cm⁻¹) v 3330, 2998, 2120, 1513, 1435, 1343, 1271, 1216, 1198, 1161, 1048, 932, 863, 811, 719; ¹H NMR (400 MHz, CDCl₃) δ 6.81–6.76 (m, 3H), 5.06 (br s, 1H), 4.39 (s, 2H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 148.1, 122.6, 116.9, 115.3, 114.9, 55.8, 51.0.

2-(*tert*-Butyldiphenylsilyloxymethyl)-4-methoxyphenol (1g)^[1] (Table 3, entry 7)

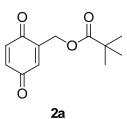

IR (film, cm⁻¹) v 3395, 2932, 2857, 1499, 1465, 1428, 1377, 1241, 1154, 1114, 1041, 821, 742, 703, 611; ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.67 (m, 4H), 7.61 (br s, 1H), 7.46–7.38 (m, 6H), 6.85 (d, *J* = 8.7 Hz, 1H), 6.75 (dd, *J* = 8.7, 2.8 Hz, 1H), 6.34 (d, *J* = 2.8 Hz, 1H), 4.84 (s, 2H), 3.68 (s, 3H), 1.07 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.2, 135.5, 132.0, 130.1, 127.9, 124.5, 117.2, 114.1, 112.4, 66.5, 55.7, 26.7, 19.1.

Ethyl 2-hydroxy-5-methoxyphenylpropanoate (1h)^[1] (Table 3, entry 8)

IR (film, cm⁻¹) v 3714, 2939, 2834, 1710, 1509, 1433, 1375, 1209, 1111, 1042, 859, 810, 713; ¹H NMR (400 MHz, CDCl₃) δ 6.90 (br s, 1H), 6.82 (d, *J* = 8.7 Hz, 1H), 6.68 (dd, *J* = 8.7, 2.7 Hz, 1H), 6.64 (d, *J* = 2.7 Hz, 1H), 4.14 (q, *J* = 7.3 Hz, 2H), 3.75 (s, 3H), 2.87 (t, *J* = 6.9 Hz, 2H), 2.71 (t, *J* = 6.9 Hz, 2H), 1.23 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 153.7, 148.1, 128.3, 118.1, 115.7, 112.9, 61.3, 55.7, 35.3, 24.7, 14.1.

2-Hydroxy-5-methoxybenzyl 3-methylbutanoate (1i) (Table 3, entry 9)

Isovaleryl chloride (0.23 mL, 1.88 mmol) and DMAP (7.7 mg, 0.063 mmol) were added to a solution of 2-(*tert*-butyldimethylsilanyloxy)-5-methoxybenzylalcohol (**S1**)^[6] (336 mg, 1.253 mmol) in pyridine (1.9 mL). After stirring at room temperature for 2 h, the reaction was quenched by addition of aqueous 10% HCl (2 mL), and the resulting mixture was extracted with Et₂O (3 x 10 mL). The combined organic layers were washed with aqueous 10% HCl (20 mL), H₂O (20 mL) and brine (20 mL), and dried over anhydrous Na₂SO₄. Filtration was concentrated in vacuo to provide crude product (424 mg), which was used in the next step without further purification.


HF/pyridine (50 drops) was added to a solution of crude product in THF (12 mL). After stirring at room temperature for 19 h, the reaction was quenched by addition of saturated aqueous NaHCO₃ (15 mL), and the resulting mixture was extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with H₂O (20 mL) and brine (20 mL), and dried over anhydrous Na₂SO₄. Filtration was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, 20% EtOAc in hexane) to provide **1i** (269 mg, 90%) as a colorless oil: IR (film, cm⁻¹) v 3386, 2960, 2872, 2835, 1728, 1704, 1509, 1466, 1434, 1380, 1355, 1295, 1266, 1203, 1162, 1120, 1099, 1045, 1004, 981, 815, 742, 714; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (br s, 1H), δ 6.88 (d, *J* = 8.8 Hz, 1H), 6.84 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.80 (d, *J* = 2.8 Hz, 1H), 5.08 (s, 2H), 3.77 (s, 3H), 2.23 (d, *J* = 6.8 Hz, 2H), 2.09 (m, 1H), 0.92 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 153.3, 149.3, 122.4, 118.7, 116.8, 116.5, 63.0, 55.7, 43.1, 25.7, 22.3; HRMS (EI) *m*/z calcd for C₁₅H₁₂O (M⁺) 238.1205, found 238.1188.

III. Oxidation of 4-alkoxyphenol 1a to p-quinone 2a

III-1. Typical procedure for the oxidation of *p*-alkoxyphenols 1 using magnetic nanoparticle-supported iodoarene catalyst:

3,6-Dioxocyclohexa-1,4-dienylmethyl 2,2-dimethylpranoate (2a)^[1] (Table 2, cycle 1 and Table 3, entry 1)

Magnetic nanoparticle-supported iodoarene catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) was added to a solution of 2-hydroxy-5-methoxybenzyl 2,2-dimethylpropanoate (**1a**) (95 mg, 0.40 mmol) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M phosphate buffer (2.0 mL, 1:2). The reaction mixture was stirred at room temperature using mechanical stirrer

for 4 h. The catalyst **4b** was collected at the bottom of the flask using an external magnet, and the supernatant carefully decanted. The catalyst **4b** was washed three times with EtOAc, three times with H₂O, three times with acetone, two times with Et₂O, and dried in vacuo. Then, the recovered catalyst **4b** was reused in the next reaction cycle. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **2a** (71 mg, 80%) as a yellow crystals: mp 70.0–72.0 °C; IR (KBr, cm⁻¹) v 3060, 2987, 2946, 2878, 1735, 1658, 1484, 1440, 1328, 1278, 1085, 1038, 924; ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, *J* = 10.0 Hz, 1H), 6.77 (dd, *J* = 10.0 , 2.3 Hz, 1H), 6.65 (q, *J* = 2.3 Hz, 1H), 4.99 (d, *J* = 2.3 Hz, 2H), 1.27 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 186.1, 177.5, 143.6, 136.6, 136.5, 131.1, 59.4, 38.9, 27.2.

III-2. The recovered catalyst 4b after 8 cycles

The loading of the catalyst **4b** after 8 cycles was 0.043 mmol/g as determined by elemental analysis of nitrogen (0.18%). [Elemental analysis of iodine could not be performed.]

The recovered catalyst **4b** was also analyzed by using IR spectroscopy. The bands that are characteristic of the catalyst **4b** were much weaker than those obtained from the original catalyst **4b**. Therefore, the loading of the recovered catalyst **4b** is very low.

IR (KBr, cm⁻¹) v 3400 (OH), 2963, 1634, 1262 (P=O), 1042 (Fe–O–P, P=O), 804, 628 (Fe–O–Fe), 563 (Fe–O–Fe)

III-3. Recyclability of the catalyst 4b with a reductive treatment

OH OF OMe 1a	PivCF ₃	4b (10 mol%) Oxone (1 eq) CH ₂ OH-buffer (1:2) com temperature	OPiv OPiv O 2a
With a reductiv	ve treatment usi	ng sat. Na ₂ S ₂ O ₃ solution	l
Cycle	Time (h)	Yield (%)	Recovery of 4b (%)
1	3.5	79	95
2	5.5	85	97
3	7.5	84	99
4	7.5	78	96
5	11.5	82	99
Without a redu	ctive treatment		
Cycle	Time (h)	Yield (%)	Recovery of 4b (%)
1	4	80	98
2	4	81	97
3	5.5	80	98
4	7.5	82	96
5	8	82	96

Table S1.

The reactivity of the recovered catalyst **4b** with a reductive treatment using sat. $Na_2S_2O_3$ solution was almost the same as that of **4b** without a reductive treatment. Therefore, a reductive treatment after the reaction is not necessary.

III-4. The catalyst 4b after treatment with Oxone in the absence of substrate 1a

The IR spectrum of the recovered catalyst **4b** after treatment with Oxone in the absence of substrate **1a** for 4 h was almost the same as that of the original catalyst **4b**. This result indicated that the structure of the catalyst **4b** was almost unchanged by using Oxone.

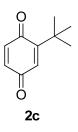
IR (KBr, cm⁻¹) v 3434 (OH), 2106 (N₃), 1632, 1574 (aryl), 1486 (aryl), 1405, 1302, 1248 (P=O), 1048 (Fe–O–P, P=O), 823, 634 (Fe–O–Fe), 592 (Fe–O–Fe).

IV. Oxidation of 4-alkoxyphenols 1 to *p*-quinones 2

1,4-Benzoquinone (2b) (Table 3, entry 2)

According to the typical procedure for the oxidation of *p*-alkoxyphenols, hydroquinone (**1b**) (44 mg, 0.40 mmol) was treated with catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M phosphate buffer (2.0 mL, 1:2). After stirring at room temperature for 0.5 h, the product **2b** (35 mg, 81%) was provided as yellow crystals, which was directly identical to the commercial sample supplied by Nacalai Tesque, INC: IR (KBr, cm⁻¹) v 3056, 1655, 1591, 1505, 1307, 1211, 1085, 943, 896; ¹H NMR (400 MHz, CDCl₃): δ 6.79 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 187.2 ,136.5.

1,4-Benzoquinone (2b) (Table 3, entry 3)


According to the typical procedure for the oxidation of *p*-alkoxyphenols, 4-methoxyphenol (1c) (50 mg, 0.40 mmol) was treated with catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M phosphate buffer (2.0 mL, 1:2). After stirring at room temperature for 2 h, the product **2b** (41 mg, 95%) was provided as yellow crystals.

1,4-Benzoquinone (2b) (Table 3, entry 4)

According to the typical procedure for the oxidation of *p*-alkoxyphenols, 4-ethoxyphenol (**1d**) (55 mg, 0.40 mmol) was treated with catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M phosphate buffer (2.0 mL, 1:2). After stirring at room temperature for 3 h, the product **2b** (40 mg, 93%) was provided as yellow crystals.

2-tert-Butyl-1,4-benzoquinone (2c) (Table 3, entry 5)

According to the typical procedure for the oxidation of *p*-alkoxyphenols, 3-*tert*-butyl-4-hydroxyanisole (**1e**) (72 mg, 0.40 mmol) was treated with catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M phosphate buffer (2.0 mL, 1:2). After stirring at room temperature for 2.5 h, the crude product was purified by column chromatography

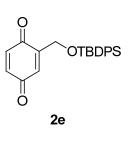
(silica gel, 5% EtOAc in hexane) to provide **2c** (48 mg, 73%) as yellow crystals, which was directly identical to the commercial sample supplied by Tokyo Chemical Industry Co., Ltd.: mp 53.0–54.5 °C; IR (KBr, cm⁻¹) v 3060, 2999, 2961, 2872, 1656, 1590, 1485, 1462, 1367, 1339, 1289, 1108, 1013, 934, 923, 834; ¹H NMR (400 MHz, CDCl₃): δ 6.68 (s, 2H), 6.60 (s, 1H), 1.29

(s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 188.4, 187.4, 156.0, 138.7, 134.9, 131.5, 35.2, 29.1.

2-Azidomethyl-1,4-benzoquinone (2d)^[1] (Table 3, entry 6)

According to the typical procedure for the oxidation of *p*-alkoxyphenols, 2-azidomethyl-4-methoxyphenol (**1f**) (72 mg, 0.40 mmol) was treated with catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M phosphate buffer (2.0 mL, 1:2). After stirring at room temperature for 2.5 h, the crude product was purified by column **2d** chromatography (silica gel, 10% EtOAc in hexane) to provide **2d** (44 mg, 68%) as yellow crystals: mp 63.0–64.5 °C; IR (KBr, cm⁻¹) v 2103, 1661, 1602, 1316, 1292, 1271, 1129, 1070, 934, 911; ¹H NMR (400 MHz, CDCl₃) δ 6.83–6.77 (m ,3H), 4.29 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 186.9, 186.3, 142.8, 136.8, 136.4, 132.7, 48.5.

2-(*tert*-Butyldiphenylsilyloxymethyl)-1,4-benzoquinone (2e)^[1] (Table 3, entry 7)


According to the typical procedure for the oxidation of *p*-alkoxyphenols, 2-(*tert*-butyldiphenylsilyloxymethyl)-4-methoxyphenol (**1g**) (157 mg, 0.40 mmol) was treated with catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M phosphate buffer (2.0 mL, 3:1). After stirring at room temperature for 4 h, the crude product was purified by column chromatography (silica gel, 10% EtOAc

in hexane) to provide **2e** (119 mg, 79%) as yellow crystals: mp 79.0–80.0 °C; IR (KBr, cm⁻¹) v 3040, 2947, 2887, 2858, 1656, 1470, 1429, 1324, 1281, 1137, 1110, 1043, 920, 834, 705, 617, 501; ¹H NMR (400 MHz, CDCl₃): δ 7.65–7.63 (m ,4H), 7.44–7.37 (m ,6H), 7.04 (td, *J* = 2.8, 2.4 Hz, 1H), 6.74 (dd, *J* = 10.4, 2.8 Hz, 1H), 6.69 (d, *J* = 10.4 Hz, 1H), 4.58 (d, *J* = 2.4 Hz, 2H), 1.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 187.7, 187.1, 148.0, 136.6, 136.4, 135.4, 132.5, 130.6, 130.0, 127.9, 59.8, 26.8, 19.3.

Ethyl 3-(3,6-dioxocyclohexa-1,4-dienyl)propanoate (2f) (Table 3, entry 8)

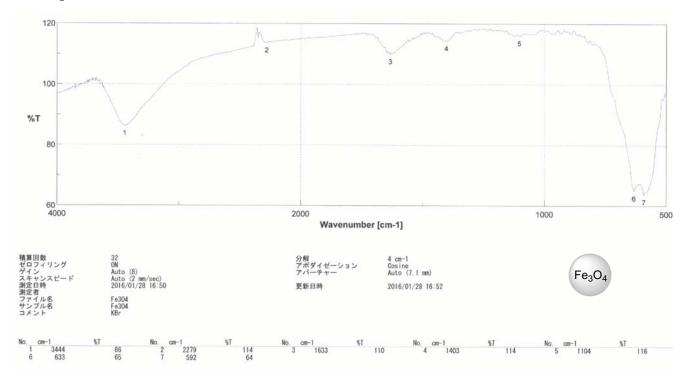
According to the typical procedure for the oxidation of *p*-alkoxyphenols, ethyl 2-hydroxy-5-methoxyphenylpropanoate (**1h**) (90 mg, 0.40 mmol) was treated with catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M phosphate buffer (2.0 mL,

OEt OEt

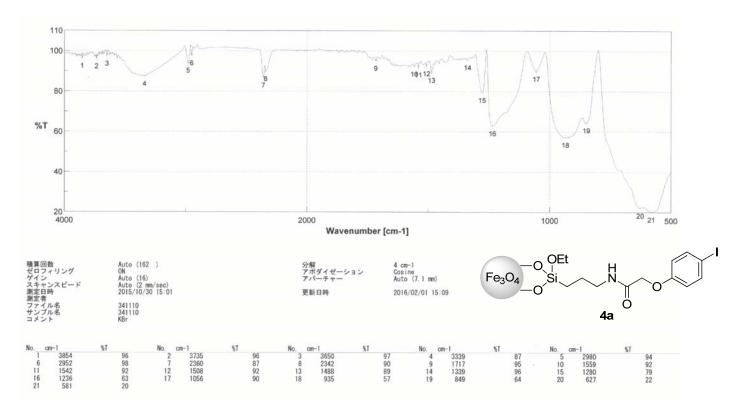
1:2). After stirring at room temperature for 3 h, the crude product was purified by column chromatography (silica gel, 20% EtOAc in hexane) to provide **2f** (62 mg, 75%) as yellow oil: IR (film, cm⁻¹) v 2983, 2934, 1734, 1657, 1601, 1374, 1295, 1188, 1084, 1039, 909; ¹H NMR (400 MHz, CDCl₃): δ 6.78 (d, *J* = 10.1 Hz, 1H), 6.73 (dd, *J* = 10.1, 2.3 Hz, 1H), 6.60 (dt, *J* = 2.3, 1.4 Hz, 1H), 4.14 (q, *J* = 7.3 Hz, 2H), 2.77 (td, *J* = 7.3, 1.4 Hz, 2H), 2.57 (t, *J* = 7.3 Hz, 2H), 1.25 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 187.4, 187.1, 171.9, 147.5, 136.8, 136.4, 133.0, 60.8, 32.0, 24.6, 14.2; HRMS (EI) *m/z* calcd for C₁₅H₁₂O (M⁺) 208.0888, found 208.0888.

3,6-Dioxocyclohexa-1,4-dienylmethyl 3-methylbutanoate (blattellaquinone) (2g)^[7] (Table 3, entry 9)

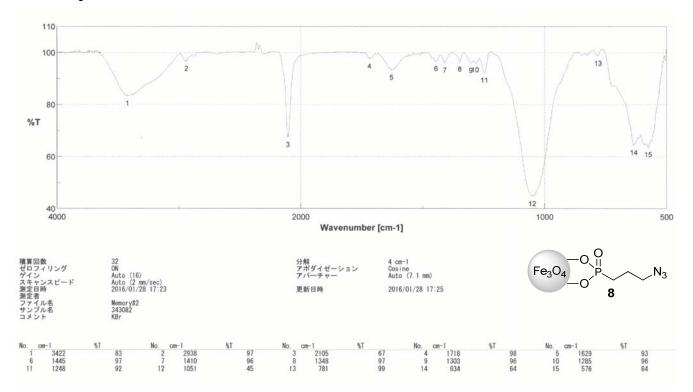
According to the typical procedure for the oxidation of *p*-alkoxyphenols, ethyl 2-hydroxy-5-methoxyphenylpropanoate (**1i**) (90 mg, 0.40 mmol) was treated with catalyst **4b** (121 mg, 0.04 mmol, 10 mol%) and Oxone (246 mg, 0.40 mmol) in CF₃CH₂OH–0.1 M

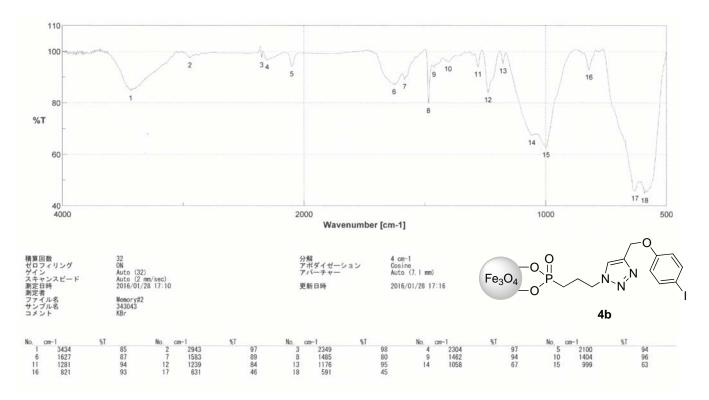

0 0 2g

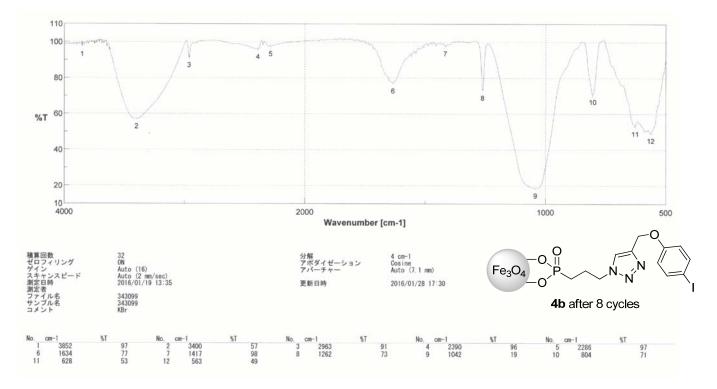
phosphate buffer (2.0 mL, 1:2). After stirring at room temperature for 4 h, the crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **2g** (68 mg, 76%) as yellow crystal: IR (film, cm⁻¹) v 3059, 2961, 2873, 1744, 1649, 1602, 1470, 1422, 1359, 1326, 1286, 1181, 1168, 1135, 1086, 1011, 927; ¹H NMR (400 MHz, CDCl₃): δ 6.80 (d, *J* = 10.8 Hz, 1H), 6.77 (dd, *J* = 10.8, 2.0 Hz, 1H), 6.69 (br q, *J* = 2.0 Hz, 1H), 5.00 (d, *J* = 2.0 Hz, 2H), 2.30 (d, *J* = 6.8 Hz, 2H), 2.14 (m, 1H), 0.99 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 187.0, 186.1, 172.1, 143.3, 136.6, 136.5, 131.5, 59.2, 43.0, 25.6, 22.4.


References

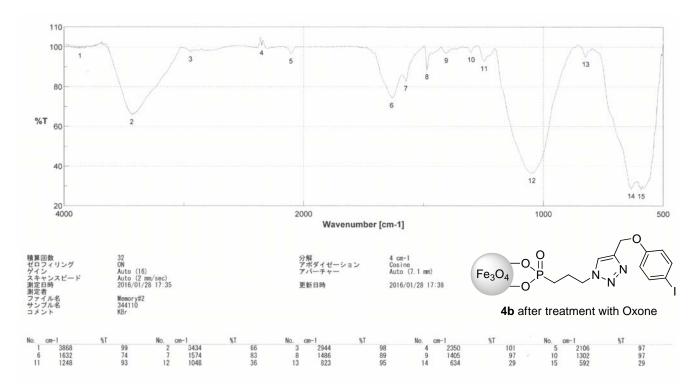
- [1] T. Yakura, Y. Tian, Y. Yamauchi, M. Omoto, T. Konishi, Chem. Pharm. Bull. 2009, 57, 252-256.
- [2] C. D. Gutsche, B. A. M. Oude-Alink, J. Am. Chem. Soc. 1968, 90, 5855-5861.
- [3] K. Fujita, S. Umeki, H. Yasuda, Synlett 2013, 24, 947-950.
- [4] A. K. Tucker-Schwartz, R. L. Garrell, Chem. Eur. J. 2010, 16, 12718–12726.
- [5] a) M. Pal, K. Parasuraman, K. R. Yeleswarapu, Org. Lett. 2003, 5, 349–352; b) D. James, J.-M. Escudier, E. Amigues, J. Schulz, C. Vitry, T. Bordenave, M. Szlosek-Pinaud, E. Fouquet, Tetrahedron Lett. 2010, 51, 1230–1232.
- [6] R. Manetsch, L. Zheng, M. T. Reymond, W.-D. Woggon, J.-L. Reymond, Chem. Eur. J. 2004, 10, 2487–2506.
- [7] a) S. Nojima, C. Schal, F. X. Webster, R. G. Santangelo, W. L. Roelofs, *Science* 2005, 307, 1104–1106; b) T. Yakura, M. Omoto, Y. Yamauchi, Y. Tian, A. Ozono, *Tetrahedron* 2010, 66, 5833–5840.

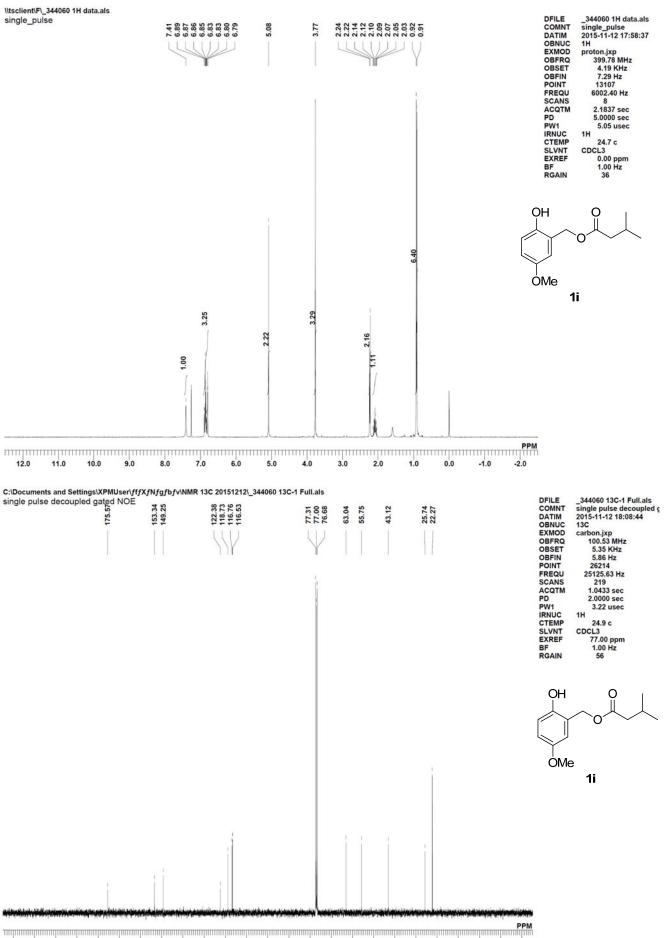

IR spectrum of Fe₃O₄


IR spectrum of silica-coated catalyst 4a

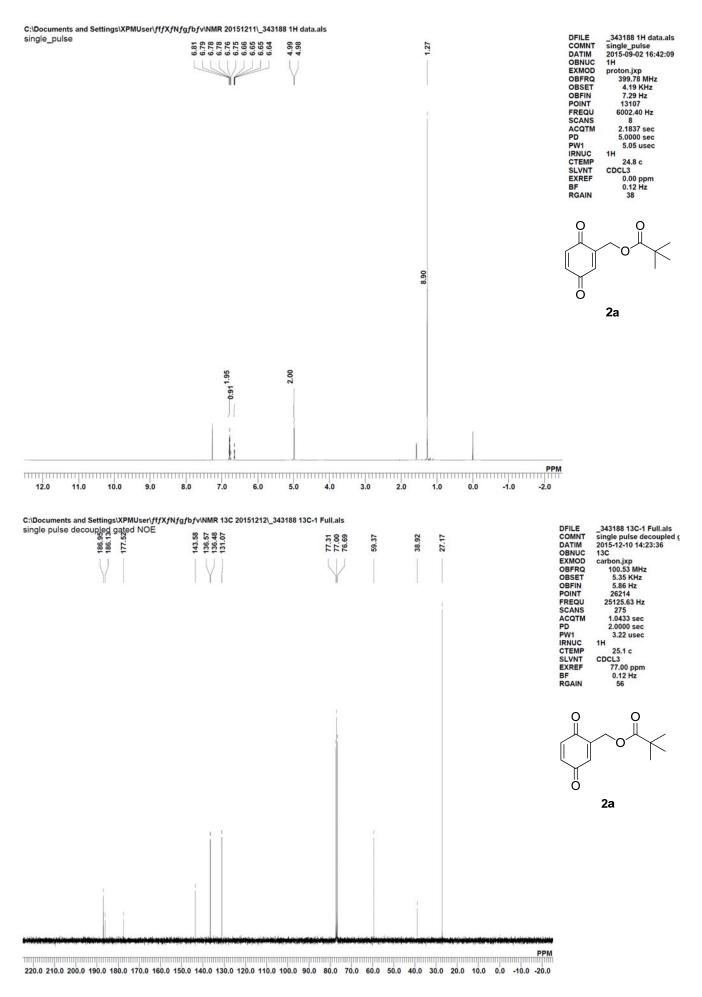


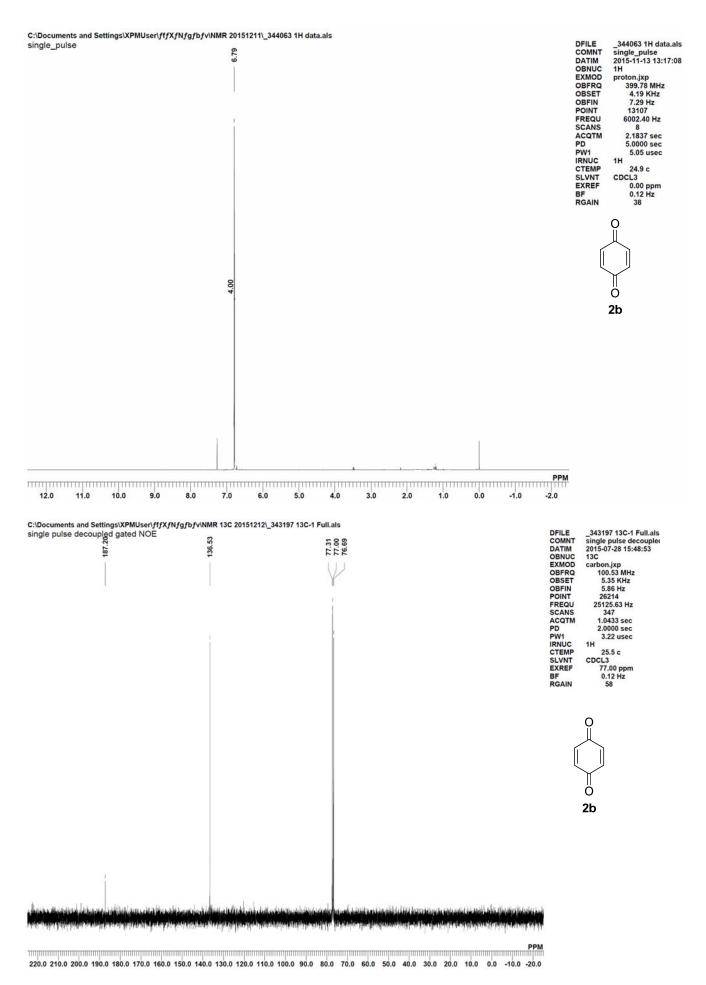
IR spectrum of azide 8

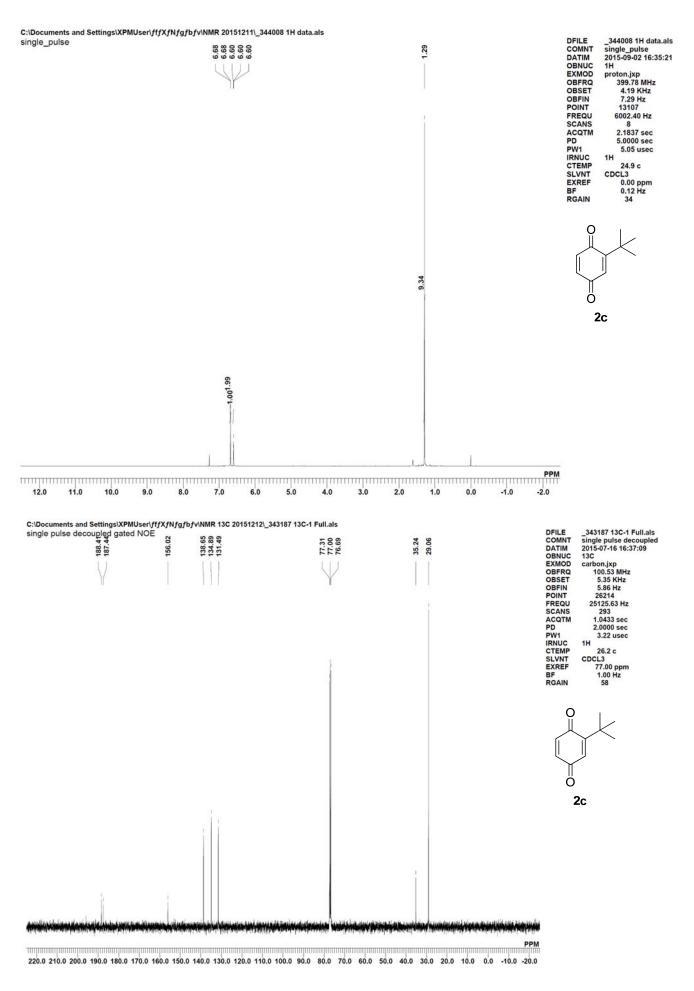

IR spectrum of phosphonic acid-coated catalyst 4b

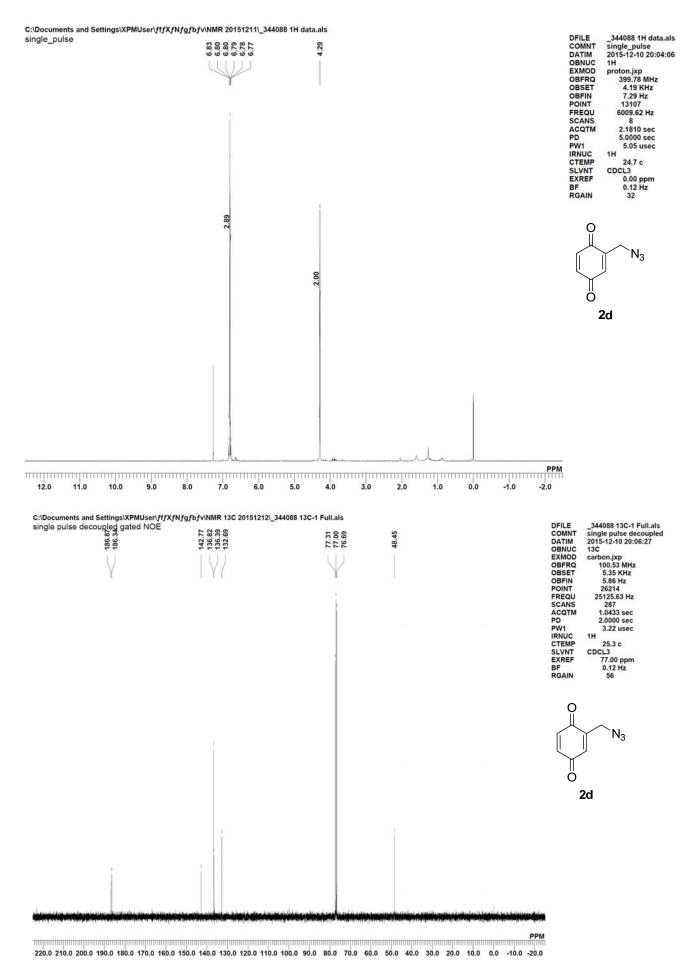


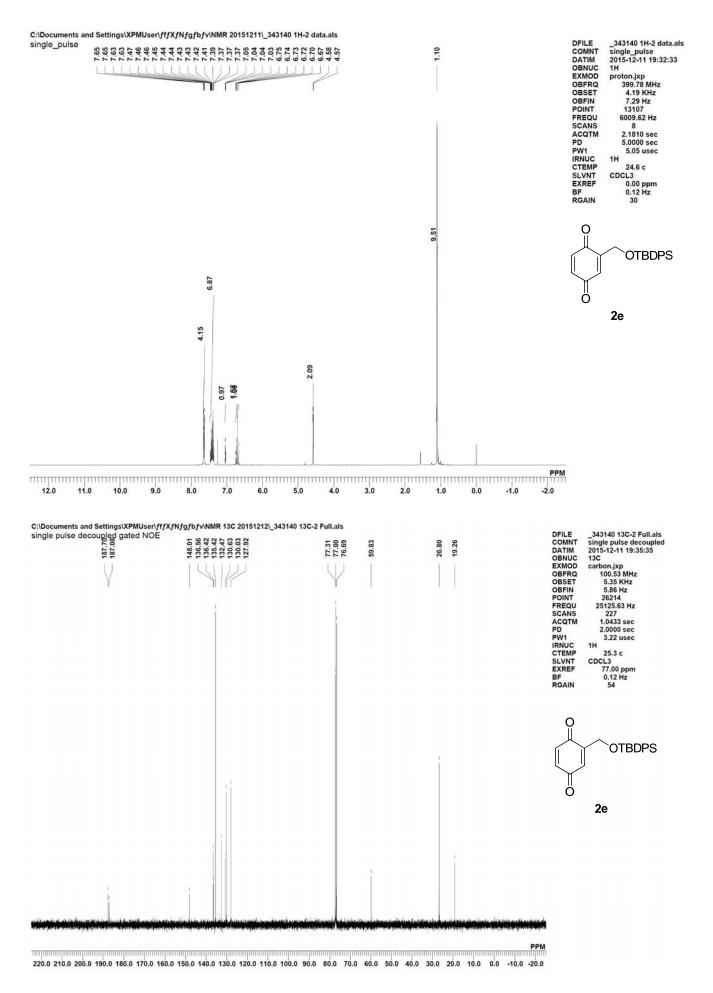
IR spectrum of the recovered catalyst 4b after 8 cycles

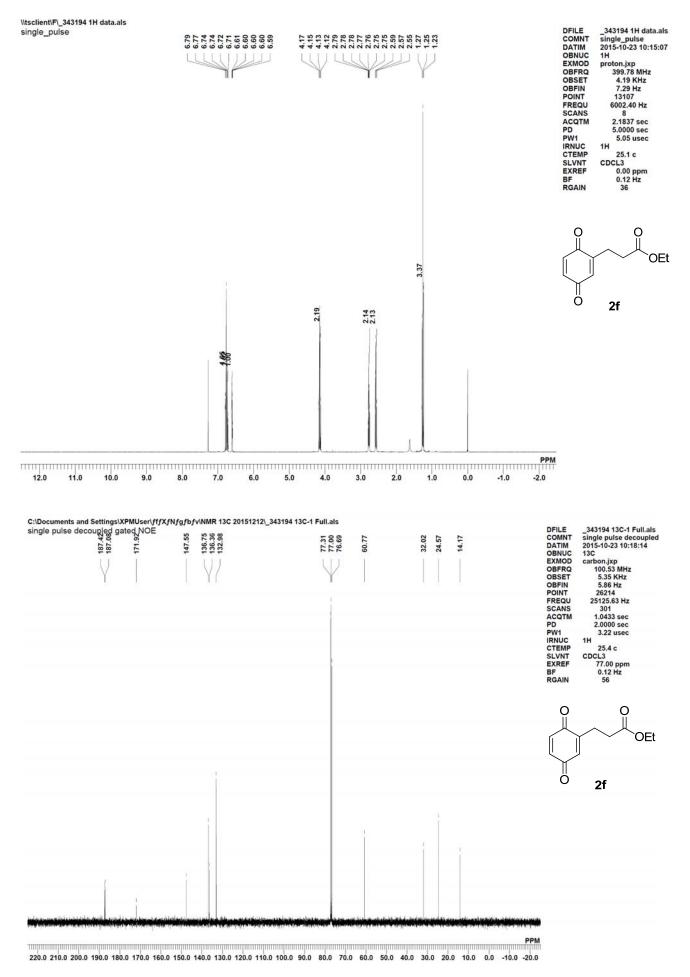

IR spectrum of the catalyst 4b after treatment with Oxone in the absence of substrate 1a

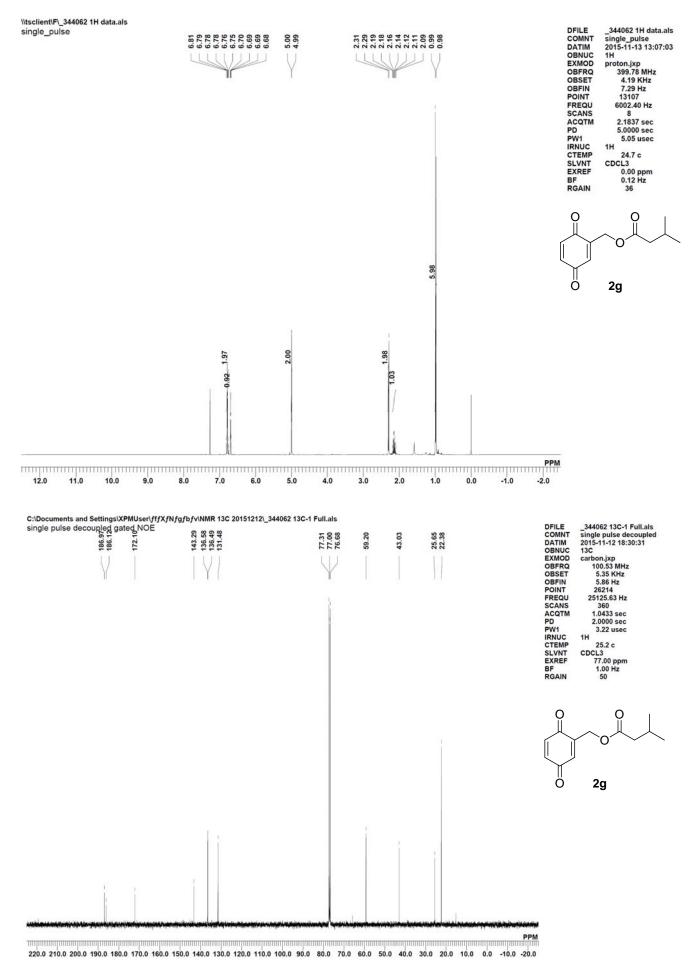





220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 -10.0 -20.0


S14





S19

