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W e consider a revenue management problem wherein the seller is endowed with a single type resource with a finite
capacity and the resource can be repeatedly used to serve customers. There are multiple classes of customers arriv-

ing according to a multi-class Poisson process. Each customer, upon arrival, submits a service request that specifies his ser-
vice start time and end time. Our model allows customer advanced reservation times and services times in each class to be
arbitrarily distributed and correlated. Upon arrival of each customer, the seller must instantaneously decide whether to
accept this customer’s service request. A customer whose request is denied leaves the system. A customer whose request is
accepted is allocated with a specific item of the resource at his service start time. The resource unit occupied by a customer
becomes available to other customers after serving this customer. The seller aims to design an admission control policy that
maximizes her expected long-run average revenue. We propose a policy called the e-perturbation class selection policy (e-
CSP), based on the optimal solution in the fluid setting wherein customers are infinitesimal and customer arrival processes
are deterministic, under the restriction that the seller can utilize at most (1 � e) of her capacity for any e 2 (0, 1). We prove
that the e-CSP is near-optimal. More precisely, we develop an upper bound of the performance loss of the e-CSP relative to
the seller’s optimal revenue, and show that it converges to zero with a square-root convergence rate in the asymptotic
regime wherein the arrival rates and the capacity grow up proportionally and the capacity buffer level e decays to zero.

Key words: algorithms; revenue management; loss network; advanced reservation; blocking probability; reusable resources
History: Received: May 2015; Accepted: November 2016 by Qi Annabelle Feng, after 2 revisions.

1. Introduction

In the past several decades, revenue management has
received extensive attention and has achieved huge
success in a wide range of domains, such as hotel
management, cloud computing, workforce manage-
ment, call center service, and car rental management.
As one example, in the hospitality industry, a hotel
uses a finite number of rooms to dynamically accom-
modate customers who plan to stay. A customer who
plans to stay in the hotel may book in advance by
specifying the check-in and check-out dates. A room
occupied by a customer becomes available after this
customer checks out. The hotel dynamically makes the
admission decision for each customer who submits the
booking request. As another example, in the cloud
computing industry, a cloud computing firm, such as
Google, uses her limited computing capability to serve
customer computing requests that dynamically arrive

to the firm. A customer who plans to receive computa-
tional service may submit his request in advance by
specifying the time periods during which he wants his
job to be processed. The computing resource used in
processing a customer’s job becomes available after
the job is finished. The firm dynamically determines
whether to accept a customer’s computing request. As
the third example, in the workforce management, a
firm, such as IBM, uses her finite workforce to work
on client projects that dynamically arrive to the firm.
A client who submits a project specifies when the firm
can start to access to the project and when the firm has
to complete the project. The workforce resource used
in working on one project is released to service other
clients after this project is completed. The firm dynam-
ically determines whether to accept a client’s project.
The commonalities of examples above motivate us

to study a more general revenue management problem
wherein the seller is endowed with a limited number
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of resource that are reusable over time and a customer
may reserve his service in advance. To be specific, we
consider the following model: The monopolist seller is
endowed with a homogeneous pool of a single type of
reusable resource with a known fixed capacity before
the start of the selling season. The seller uses her
resource to deliver service to customers over an infi-
nite horizon. The resource occupied by a customer
becomes available to other customers after finishing
serving this customer. Customers are segmented into
multiple classes. In each class, customers dynamically
arrive to the system according to a Poisson process.
Each arriving customer, at his time of arrival, submits
a request for the service that specifies his service start
time and end time. A customer is allowed to make an
advanced reservation that the service may start after
he submits the request. In each class, customers have
the same per unit of time value for the service, but
their advanced reservation times and service times
may be potentially heterogeneous and arbitrarily cor-
related. For each arriving customer, the seller can
observe which class this customer falls into and instan-
taneously decides whether to accept this customer’s
service request. The seller may accept a customer’s ser-
vice request only if serving this customer will not
drive the seller to run out of resource capacity during
the periods in which this customer requests to reserve.
A customer whose request is denied permanently
leaves the system. A customer whose request is
accepted is allocated with a specific item of the
resource at his service start time, rather than his arrival
time. The seller aims to devise an admission control
policy that maximizes her expected long-run average
revenue.
The seller faces the following challenges when com-

puting the optimal policy:

1. Limited information. Deriving the optimal solu-
tion requires the seller to have the perfect
information about the distributions and corre-
lations of customer advanced reservation
times and services times. However, the seller
may lack such information.

2. Curse of dimensionality. Suppose the seller per-
fectly knows the information above. Then the
seller needs to solve a dynamic optimization
problem to compute the optimal policy. How-
ever, even in special cases (e.g., no advanced
reservation allowed and with exponentially dis-
tributed service times), the resulting dynamic
program seems computationally intractable
because the corresponding state space grows up
very fast.

We, therefore, seek a heuristic policy that can be
readily implemented and also yield provably-good
performance.

1.1. Main Contributions
We propose an e-perturbation class selection policy (e-
CSP). This policy, defined later in optimization prob-
lem (1), is the optimal solution in the fluid setting
wherein customers are infinitesimal and customer
arrival processes are deterministic, under the restric-
tion that the seller can use at most (1 � e) 9 100% of
her capacity. This policy has the following appealing
features:

1. Simple implementation. Under the e-CSP, the
seller’s admission decision is only based on a
customer’s class and whether the resource
during the periods that a customer requests
for is available. The seller always admits a
customer as long as this customer is in some
certain classes and the seller has available
resource to serve this customer during his
requested service periods. Otherwise, a cus-
tomer’s request is always rejected.

2. Robustness. Under the e-CSP, while deciding
whether to admit a customer into the system,
the seller does not need to have any informa-
tion about the distributions or the correlations
of customer advanced reservation times and
services times. Therefore, the seller avoids
taking the risk of misspecifying customer
demand models.

3. Buffer for uncertainty. The reason that we
require the seller to reserve e 9 100% of
capacity for not selling to customers in the
fluid model is as follows. Recall from queu-
ing theory that in a service system with
demand uncertainty, such as customer arrival
uncertainty and service time uncertainty, if
the system’s average utilization ratio is 1,
then either customers wait in the system for
extremely long times or a large fraction of
customers are not admitted into the system
due to non-availability of the resource. How-
ever, such bad situations can be significantly
improved if the system has even only a small
capacity buffer, e 9 100% of capacity not
used in the fluid model, to deal with various
uncertainties (e.g., uncertainties in customer
arrival times, advanced reservation times,
and service times) in our stochastic model.

Our main results about the performance of the e-
CSP are as follows:

1. Finite upper bound. The expected long-run
average revenue loss of the e-CSP has a finite
upper bound. (This result is formally stated
later in Theorem 1.)

2. Asymptotic optimality. In the asymptotic regime
wherein the customer arrival rates and the
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seller’s capacity proportionally grow large
(multiplied by a sufficiently large number n)
and the capacity buffer level e goes down to
zero with an appropriate speed (scaled by n as
well), the e-CSP is optimal. In addition, the per-
formance loss of the e-CSP relative to the seller’s
optimal revenue decays to zero in the speed that
is almost as fast as 1=

ffiffiffi
n

p
. This relative perfor-

mance loss in the asymptotic regime only
depends on the capacity buffer level e, rather
than any other information, such as the seller’s
capacity level or any information about cus-
tomer arrivals, advanced reservation times, or
service times. (This result is formally stated later
in Theorem 2.)

3. Numerical optimality. Our numerical experi-
ments show that the e-CSP performs within a
few percentages of the optimality for a large
set of parameters (even in the non-asymptotic
regime).

We develop a novel approach to analyze the per-
formance of the e-CSP. We first show that the e-CSP
induces a well-structured stochastic process called a
loss network system with advanced reservations
(specifically, a M/G/C/C loss system with
advanced reservations). Loss network systems are
concerned with the setting in which customers
stochastically arrive to the system and are being
served as long as there is available capacity. Cus-
tomers who find a fully utilized system are lost (see
the survey by Kelly 1991). We are able to derive
explicit upper bounds on the steady-state blocking
probability (i.e., the probability that a random cus-
tomer at the steady state will find a fully utilized
system), and analyze them asymptotically in the
above regimes. As seen from our literature review
below, there have been relatively few successful
attempts to characterize the blocking probabilities
for loss network models with advanced reserva-
tions. Models with advanced reservations are signif-
icantly harder to analyze than those without
advanced reservations. One of the major difficulties
in models with advanced reservations is the fact
that a randomly arriving customer effectively
observes a non-homogeneous Poisson process that
is induced by the already reserved service intervals.
Moreover, analyzing the blocking probability of an
arriving customer requires considering the entire
requested service interval instead of the instanta-
neous load of the system. Analyzing the load over
an interval immediately introduces correlation that
is hard to analyze. The upper bound on the block-
ing probability is obtained by considering an identi-
cal system with infinite capacity, where all
customers are admitted (a M/G/∞ system with

advanced reservations). The probability of having
more than C customers reserved in the infinite
capacity system provides an upper bound on the
blocking probability in the original system; we call
this the virtual blocking probability. We obtain an
exact analytical expression for this virtual blocking
probability and then analyze it asymptotically. The
analysis of the virtual blocking probability is tight
and constitutes a contribution to the analysis of
M/G/∞ systems with advanced reservations. The
analysis approaches significantly depart from the
existing literature, and we believe that they can be
effective in analyzing other core models in
operations management.
The remainder of the study is organized as follows.

Section 1.2 provides a literature review. Section 2 pre-
sents our model. Section 3 establishes an upper
bound of the seller’s optimal revenue and formally
defines the e-CSP. Section 4 analyzes the performance
of the e-CSP. Section 5 extends our model to a pricing
model. Section 6 presents the dynamic programming
formulation and demonstrates the empirical effec-
tiveness of our policy. Section 7 concludes the study
with some future research directions. The proofs of
technical lemmas and propositions are provided in
Appendix A.

1.2. Relevant Literature
Our work is closely related to the following two
streams of literature: loss network systems and rev-
enue management.

1.2.1. Loss Network Systems. Loss network sys-
tems without advanced reservation are well-known,
and have been studied extensively, primarily in the
context of communication networks (e.g., the survey
by Kelly 1991) and recently other application
domains. Two of the major issues in the literature on
loss networks have been the study and design of
heuristics for admission control (e.g., Fan-Orze-
chowski and Feinberg 2006, Hunt and Laws 1997,
Kelly 1991, Key 1990, Miller 1969, Puhalskii and
Reiman 1998, Ross and Tsang 1989), and the devel-
opment of approximations and bounds as well as sensi-
tivity analysis of blocking probabilities with respect
to input parameters and resource capacities (e.g.,
Adelman 2006, Burman et al. 1984, Erlang 1917,
Kaufman 1981, Kelly 1991, Kumar et al. 1998, Louth
et al. 1994, Ross and Yao 1990, Sevastyanov 1957,
Whitt 1985, Zachary 1991).
However, there have been relatively few successful

attempts to analyze loss network systems with
advanced reservation. Luss (1977) and Virtamo and
Aalto (1991) analyze models for accepting and reject-
ing customer reservations for a discrete-time model.
In their models, all customers arrive before the start
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of a finite service horizon and request a reservation
for a start time that is uniformly distributed over the
horizon. Closer to our setting, Greenberg et al. (1999)
and Wischik and Greenberg (1998) consider a loss
network system with advanced reservations in the
context of large-bandwidth resource sharing in
telecommunication. They consider instantaneous
request calls as well as book-ahead calls. Their admis-
sion control policy is based on determining, under the
assumption that the new call is admitted, whether the
probability that a call in progress will eventually need
to be interrupted exceeds a threshold value. Srikant
and Whitt (2001) subsequently extend the model and
results to cover multiple classes of instantaneous
request calls. The interrupt and blocking probabilities
are calculated by a normal approximation based on
the central limit theorem. There are two major points
of departure between the aforementioned works and
ours. First, their instantaneous request calls have an
unspecified (random) holding time, and could be
interrupted during the service. In contrast, the service
or holding times of our instantaneous requests are
determined (drawn from a given distribution) upon
arrival, and the service cannot be interrupted once
admitted into the system. We remark that the service
interruptions are common in large communication
systems, but they are typically not allowed in many
other service systems, such as hotel room manage-
ment or car rental management. Second, their algo-
rithms are based on approximating the interrupt and
blocking probabilities, which work very well in simu-
lation but do not admit any tractable analytical
bounds. In contrast, we develop an explicit upper
bound on the blocking probabilities and study its
asymptotic behavior with a provable convergence
rate.
Closer to our work, Coffman et al. (1999) derive

explicit formulae for the limiting blocking probabili-
ties for several special cases, for instance, in a setting
where the reservation distribution is uniform and all
requested intervals have unit length. They extend
the result to more general reservation distributions
by relating the problem to an online interval packing
problem. Lu and Radovanovic (2007) study the
asymptotic blocking probabilities when the capacity
of the system approaches infinity with sub-exponen-
tial resource requirements. van de Vrugt et al. (2014)
characterize the blocking probabilities for a single-
server queue with deterministic short notice (time
between arrival and starting service time) as well as
discrete notice times. Maillardet and Taylor (2016)
bound the blocking probability via calculating the
transient and stationary distributions for several per-
formance measures for the infinite-server queue.
From a technical viewpoint, our work is also related
to the stream of literature approximating blocking

probabilities for the Mt=G=1 queue as well as
Mt=G=C=C loss systems where the arrival process is
non-homogeneous Poisson (e.g., Eick , et al. 1993a, b,
Massey 1985), and the stream of literature analyzing
queues with future information (e.g., Spencer et al.
2014, Xu 2015).
The counterpart systems with a deterministic

sequence of arrivals and advanced reservation have
been extensively considered in the appointment
scheduling literature (see the survey by Gupta and
Denton 2008). Their objective is typically minimizing
the expected costs of waiting and idle times (see, e.g.,
Begen and Queyranne 2011, Begen et al. 2012, Ge
et al. 2013, Kaandorp and Koole 2007, Kong et al.
2013, Mak et al. 2014). In contrast to this stream of
literature, our model incorporates stochastic arrivals
over time, and does not model waiting lines (as we
consider loss queues). They focus on developing
methods in stochastic programming, which is quite
different from our work.
The theoretical results in the loss network systems

with advanced reservation find interesting applica-
tions in a class of revenue management problems.
The most relevant prior work in these applications is
Levi and Radovanovic (2010) which use a simple
knapsack-type linear program (LP) to devise a con-
ceptually simple admission control policy called class
selection policy (CSP) for the models without
advanced reservation (i.e., all customers wish to start
service upon arrival). The optimal solution obtained
by solving the LP guides the policy to select the
more profitable classes of customers. The LP pro-
vides an upper bound on the optimal expected long-
run average revenue and can be used to analyze the
performance of the CSP. The analysis is based on the
fact that the CSP induces a stochastic process that
can be reduced to a classical loss network model
without advanced reservation. They develop explicit
expressions for the resulting blocking probabilities
induced by the CSP, and then show that the CSP is
guaranteed to achieve at least half of the optimal
long-run revenue. Also, the CSP is shown to be
asymptotically optimal when the capacity goes to
infinity. The knapsack-type LP considered by Levi
and Radovanovic (2010) has been previously dis-
cussed by several other researchers (see, e.g., Hunt
and Laws 1997, Key 1990). In fact, a variant of the
CSP has been discussed by Key (1990) and Kelly
(1991), who analyze the randomized thinning policy.
Moreover, Key (1990) has shown that the variant of
the CSP for the single resource case without
advanced reservation is asymptotically optimal in
the critically loaded regime. Iyengar and Sigman
(2004) have also used an identical LP to devise expo-
nential penalty function control policies to approxi-
mately maximize the expected reward rate in a loss
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network. All of these works have considered models
without advanced reservation.

1.2.2. Revenue Management. Revenue manage-
ment is today a robust area of study with applications
ranging from traditional domains such as hospitality
to more modern ones, such as cloud computing. The
text by Talluri and van Ryzin (2005), €Ozer and Phil-
lips (2012), den Boer (2015) provides excellent over-
views of this area.
A number of revenue management literature

studies settings in which the seller uses a finite
number of reusable resources to serve customers.
Maglaras (2006) studies a setting wherein the seller
is endowed with a single unit of resource that can
be repeatedly used to serve customers. There are
multiple classes of customers. Customers in each
class arrive to the system according to a Poisson
process, with the arrival rate modulated by the sell-
er’s dynamically posted prices for the service. Cus-
tomer service times are exponentially distributed. A
customer waits in the system till the resource is idle
and the seller decides to serve this customer. The
seller dynamically determines prices for each class
of customers and the serving priority sequence of all
classes. The seller earns revenue from serving cus-
tomers and incurs customer waiting costs and the
server operating cost. The seller aims to find a joint
pricing and sequencing policy that maximizes her
long-run expected profit. Maglaras (2006) proposes
a policy that is the optimal solution of the corre-
sponding fluid model, and shows that this heuristic
policy performs well. Based on this study, Besbes
and Maglaras (2009) study a setting wherein the
seller cannot observe the customer arrival rate. Lei
and Jasin (2016) propose two heuristic pricing poli-
cies. The first heuristic pricing policy is static that is
optimal of an associated deterministic fluid model.
The second heuristic pricing policy is constructed
based on the static pricing policy by frequently mak-
ing adjustments on previous demand realizations.
They show that both heuristic pricing policies are
asymptotically optimal. Nadarajah et al. (2015)
study a setting wherein a customer is allowed to
make a reservation in advance and request to use
the resource for multiple periods. They show that
pricing multiple-period usage as a bundle yields a
higher revenue than pricing resource on each period
separately and charge the sum of these prices over a
multiple-period usage. The paper by Borgs et al.
(2014) considers a setting where a firm with time-
varying capacity sets prices over time to maximize
revenues in the face of forward-looking customers.
Inventory cannot be carried over from one epoch to
the next. This study assumes that customer arrival
times, deadlines and valuations are assumed known

by the firm. The focus of the study is thus on the
dynamic optimization problem that arises in this
setting and the authors contribute a surprising
dynamic programming formulation. Chen and Shi
(2016) consider a setting with forward-looking cus-
tomers. They allow customer arrival times, serve
start times, service end times, service valuations,
and waiting disutilities to be customer private infor-
mation and heterogeneous among different cus-
tomers. They adopt a mechanism design approach
to show that a pricing policy that simply posts a sta-
tic price for each period performs asymptotically
optimal.

2. Model

We consider a monopolist seller who uses a single
type resource to serve customers over an infinite hori-
zon. At time zero, the seller is endowed with the
capacity of C units of the resource. The capacity does
not change over the course of the season. The resource
is reusable that the resource occupied by a customer
becomes available to other customers after finishing
serving this customer.
There are M different classes of customers. Class

k 2 {1, . . ., M} customers arrive to the system accord-
ing to an independent Poisson process with a class-
dependent rate �k. Each class-k customer who arrives
at time tk, at his time of arrival, requests to reserve one
unit of the capacity for a specified service that starts at
time tk þ dk and finishes at time tk þ dk þ sk, where
the advanced reservation time dk 2 f0; 1; . . .; ug is dis-
crete with mean mk and variance r2d;k, and the service
time sk 2 f0; 1; . . .; vg is discrete with mean lk and
variance r2s;k. We use capital letters Dk and Sk to
denote the distributions of class-k customer advanced
reservation times and service times, respectively (see
Figure 1). We assume that for customers in each class
k, Dk and Sk are independent of customer arrival pro-
cess and between customers; however, per customer,
Dk and Sk could be arbitrarily correlated.
Upon each customer’s request, the seller has to

instantaneously decide whether to accept his request.
For a customer who arrives at time t and requests to

time
arrival requested service

Dk Sk

rkreward rateλ kPoisson rate

Accept/Reject: whether to commit 
a resource unit to this customer's  
service in the future

Allocation: choose which specific  
resource unit to serve this customer

Figure 1 Reservation Distributions and Service Distributions

Chen, Levi, and Shi: Revenue Management with Advanced Reservations
840 Production and Operations Management 26(5), pp. 836–859, © 2016 Production and Operations Management Society



get the service during time interval [t + d, t + d + s),
the seller accepts his request only if upon his arrival
at time t, there is at least one unit of capacity that is
available (i.e., not reserved before time t) throughout
the entire requested interval [t + d, t + d + s), i.e.,
this request can only be satisfied if the maximum
number of already reserved resource units over
[t + d, t + d + s) is strictly smaller than the capacity
C. However, the seller may also reject a customer’s
request if capacity is always available throughout the
service time interval that this customer requests for.
Doing so might possibly enable the seller to serve
more profitable customers with the limited resource.
A customer whose request is not accepted upon his

arrival permanently leaves the system without
receiving any service throughout the season. Each
accepted customer request cannot be canceled or
changed during the season. For each class-k customer
whose request is accepted, the seller collects revenue
from this customer with rk per unit of the service
time.
For each customer whose request is already

accepted, at his service start time, rather than his ser-
vice request time, a specific unit among C units of the
resource that is idle at that point of time is allocated to
serve him. If more than one customer whose requests
are accepted have the same service start time, at their
common service start time, idle units among C units
of the resource are allocated to these customers in a
random order. This is usually the case in practice. For
instance, a hotel typically assigns a room to a reserved
customer only when he checks in the hotel. Also, a car
rental company typically assigns a car to a reserved
customer only when he arrives at the rental car pick-
up location (e.g., the airport).
Denote Π to be the collection of all feasible admis-

sion policies with the resource allocation rule speci-
fied above. Every policy p 2 Π guarantees that an
accepted customer can keep on using the same unit
of the resource during his entire requested service
interval. This avoids the undesirable situation in
which an accepted customer is forced to switch to
another resource unit during his requested service
interval. We provide a formal proof of this result
below.

PROPOSITION 1. Under every policy p 2 Π, for a custo-
mer who arrives at time t and requests to get the service
during time interval [t + d, t + d + s), if his request is
accepted, then he is guaranteed to keep on using the same
unit of the resource during [t + d, t + d + s).

Denote RpðTÞ to be the revenue that the seller
achieves over the interval [0, T] under policy p 2 Π.
Denote the expected long-run average revenue under
policy p 2 Π as

RðpÞ, lim inf
T!1

1

T
E½RpðTÞ�:

The seller aims to find a policy that maximizes
her expected long-run average revenue (with the
optimal revenue denoted by RðOPTÞ):

p� 2 argmax
p2P

RðpÞ:

It is typically quite challenging to solve this stochas-
tic optimization problem optimally. Reasons are as
follows:

1. Limited information. Deriving the optimal solu-
tion requires the seller to have the perfect
information of the distributions and correla-
tions of customer advanced reservation times
and service times. However, our model does
not require the seller to have such knowledge.

2. Curse of dimensionality. Suppose the informa-
tion above is available to the seller, then the
seller needs to solve a dynamic program.
However, even in special cases (e.g., no
advanced reservation allowed and with expo-
nentially distributed service times), the result-
ing dynamic program seems computationally
intractable because the corresponding state
space grows up very fast.

Therefore, in the rest of this study, rather than
deriving the optimal solution to the above revenue
maximization problem, we seek a heuristic policy that
can be readily implemented and guarantee a good
performance.

3. e-Perturbation Class Selection Policy

We describe a simple deterministic linear program
(LP) that provides an upper bound on (1 � e) times
the achievable expected long-run average revenue for
every small positive e. The LP conceptually resembles
to the one used by Levi and Radovanovic (2010), Key
(1990) and Iyengar and Sigman (2004) who study
models without advanced reservation. It is also simi-
lar in spirit to the one used by Adelman (2007) in the
queueing network framework with unit resource
requirements again without advanced reservation.
We shall show how to use the optimal solution of the
LP to construct a simple admission control policy that
is called e-perturbation class selection policy (e-CSP). The
original class selection policy is first analyzed by Levi
and Radovanovic (2010) in models without advanced
reservation. In the end of this section, we present our
main results of the study about the performance of
the e-CSP in the stochastic setting that we introduce
in section 2. We establish an upper bound of the rev-
enue loss under the e-CSP relative to the optimal
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revenue. We show that the relative revenue loss
under the e-CSP diminishes to zero in the asymptotic
(high volume) regime wherein customer arrival rates
f�k : k ¼ 1; . . .; Mg and the seller’s capacity C grow
up proportionally and e is scaled down to converge to
zero with an appropriate speed. We also characterize
the speed that the relative revenue loss converges to
zero in the asymptotic regime.
At any point of time t, the state of the system is

specified by the entire booking profile consisting of
the class, reservation and service information of each
customer in the booking system as well as the cus-
tomers currently served. Without loss of generality,
we restrict our attention to state-dependent policies. Note
that each state-dependent policy induces a Markov
process over the state-space. Moreover, by following
similar arguments as in Lu and Radovanovic (2007)
and Sevastyanov (1957), one can show that the
induced Markov process has a unique stationary dis-
tribution which is ergodic. (The detailed proof of
ergodicity can be found in Levi and Shi 2015). Since
any state-dependent policy induces a Markov process
on the state-space of the system that is ergodic, for a
given state-dependent policy p, there exists a long-run
stationary probability apdsk for accepting a class-k cus-
tomer who wishes to start service in d units of time for
s units of time, which is equal to the long-run propor-
tion of accepted customers of this type while running
the policy p. In other words, any state-dependent pol-
icy p is associated with the stationary probabilities apdsk
for all possible reservation time d, service time s and
class k. The mean arrival rate of accepted class-k cus-
tomers with reservation time d and service time s is
apdsk�dsk, where �dsk,�kPðDk ¼ d; Sk ¼ sÞ is the arri-
val rate of a subset of class-k customers who wishes to
start service in d units of time for s units of time. By
applying Little’s Law and the PASTA property (see
Karlin and Taylor 1981), the expected number of class-
k customers with reservation time d and service time s
being served in the system under state-dependent pol-
icy p is apdsk�dsks. It follows that under policy p the
expected long-run average number of resource units
being used to serve customers can be expressed as
RM
k¼1Rd;sapdsk�dsks. Fix a small e 2 (0, 1), this gives rise

to the knapsack LP below:

max
fap

dsk
g

XM
k¼1

X
d;s

rka
p
dsk�dsks; ð1Þ

s.t.
XM
k¼1

X
d;s

apdsk�dsks�ð1� eÞC;

0� adsk � 1; 8d; s; k:

Note that for each feasible state-dependent policy p,
the vector ap ¼ fapdskg is a feasible solution for the

LP with objective value equal to the expected
long-run average revenue of policy p.

LEMMA 1. Let fa�dskg be the optimal solution of Equation
(1). Then the optimal objective value of Equation (1) is at
least (1 � e) times the optimal expected revenue, i.e.,

XM
k¼1

X
d;s

rka
�
dsk�dsks�ð1� eÞRðOPTÞ:

The LP defined in Equation (1) can be solved greed-
ily. Without loss of generality, assume that classes are
re-numbered such that r1 � r2 � � � � � rM. An opti-
mal solution to Equation (1) is as follows: there exists
a classM0 � M such that

a�k,a�dsk ¼

1 if k�M0 � 1;

min
ð1�eÞC�

PM0�1

k¼1
�klk

� �
�M0lM0 ;1

8<
:

9=
; if k¼M0;

0 if k�M0 þ 1:

8>>>><
>>>>:

This solution from solving the LP gives rise to the e-
CSP:

1. For each k ¼ 1; . . .; M0 � 1, accept the cus-
tomer upon arrival if there is sufficient unre-
served capacity throughout the requested
service interval.

2. If k ¼ M0, accept with probability a�M0 2 ð0; 1� if
there is sufficient unreserved capacity through-
out the requested service interval.

3. For k ¼ M0 þ 1; . . .; M, reject.

Without loss of generality, we assume that there is
no fractional variable in the optimal solution a�, i.e.,
for each k ¼ 1; . . .; M0, a�k ¼ 1. (If a�M0 is fractional, we
think of class M0 as having an arrival rate
�0
M0 ¼ a�M0�M0 and then eliminate the fractional vari-

able from a�.)
We denote by

q,
XM
k¼1

a�k�klk

the average number customers that are in service
per unit of time. Therefore,

q ¼ min ð1� eÞC;
XM
k¼1

�klk

( )
: ð2Þ

The e-CSP has the following salient features

1. Simple implementation. The e-CSP can be easily
implemented by simply checking whether a
customer’s class k � M0 and whether the
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resource during the periods that a customer
requests for is available. The seller always
admits a customer as long as this customer is
in some certain classes and the seller has
available resource to serve this customer dur-
ing his requested service period. Otherwise, a
customer’s request is always rejected.

2. Robustness. While deciding which classes of
customers to admit into the system, the seller
does not need to have any knowledge about
the distributions or correlations of customer
advanced reservation times and services
times. Therefore, the e-CSP avoids the seller
to take the risk of misspecifying customer
demand models.

3. Buffer for uncertainty. The reason that we do
not allow the seller to fully utilize the capac-
ity in the fluid model is as follows. Recall
from queuing theory that in a service system
with demand uncertainty, such as customer
arrival uncertainty and service time uncer-
tainty, if the system’s average utilization
ratio is 1, then either customers wait in the
system for extremely long times or a large
fraction of customers are not admitted into
the system due to non-availability of
resources. However, such bad situations can
be significantly improved if the system has
even only a small capacity buffer, e 9 100%
of capacity not used in the fluid model, to
deal with various uncertainties (e.g., uncer-
tainties in customer arrival times, advanced
reservation times, and service times) in our
stochastic model.

We can assume that without loss of generality
a�M0 ¼ 1. (If it is fractional, we can simply consider the
a�M0-thinned Poisson arrival process.) If the M0-class
arrival processes are merged, the merged arrival
process has an aggregate rate � ¼ RM0

k¼1�k, and a cus-
tomer upon arrival has probability of �k=� to be a
class-k customer. Define v ¼ maxk vk and
u ¼ maxk uk. Let S (with finite discrete support [1, v]
and mean l) and D (with finite discrete support
[0, u]) be the merged service and reservation distribu-
tions. The joint probability mass function of S and D
is fD;Sðd; sÞ,PðD ¼ d; S ¼ sÞ ¼ RM0

k¼1�k=� � PðDk ¼ d;
Sk ¼ sÞ, for d 2 [0,u] and s 2 [1,v]. Similarly, the
marginal probability mass functions of S and
D are fSðsÞ,PðS ¼ sÞ ¼ RM0

k¼1�k=� � PðSk ¼ sÞ and
fDðdÞ,PðD ¼ dÞ ¼ RM0

k¼1�k=� � PðDk ¼ dÞ, respectively,
for s 2 [0, u] and d 2 [1, v]. It is sufficient for our
analysis to use only the marginal probability mass
functions. This allows for arbitrary correlation
between the reservation and service distributions of a
given customer.

Now, we present our main results of this study
about the performance of the e-CSP. We introduce
the following notation to state our main results.
Define

d, e
1� e

� logð1þ qÞ
q log h�1

 !þ
; ð3Þ

where the traffic intensity q is given in Equation (2),
and 1 � h is the minimal non-zero reservation prob-
ability, i.e.,

h,1� min
M02f1;���;Mg
s2½1;v�; d2½0;u�

P D� djk�M0; S ¼ sð Þ
����

P D� djk�M0; S ¼ sð Þ[ 0

8>><
>>:

9>>=
>>;: ð4Þ

The following theorem establishes a finite upper
bound of the revenue loss of the e-CSP.

THEOREM 1. Consider the revenue management model
with reusable resources and advanced reservations. The
expected long-run average revenue loss of the e � CSP
relative to the optimal expected long-run average revenue
has the following finite upper bound:

Rðe� CSPÞ
RðOPTÞ � 1� 1

q
� ed

ð1þ dÞ1þd

 !q !
1� eð Þ; ð5Þ

where q is given in Equation (2) and d is given in Equa-
tion (3).

This finite bound spells out explicitly the depen-
dence on the traffic intensity q and the buffer size e.
More importantly, this finite bound enables us to
characterize the convergence rate to optimality when
we scale both the arrival rate and the capacity simul-
taneously. The next theorem shows that the e-CSP is
asymptotically optimal with a provable convergence
rate.

THEOREM 2. Consider the revenue management model
with reusable resources and advanced reservations. Con-
sider a sequence of problems where in the nth problem,
�
ðnÞ
k ¼ n�k for all k 2 {1, . . ., M}, CðnÞ ¼ nC, and

eðnÞ ¼ e=
ffiffiffiffiffiffiffiffiffi
n1�a

p
with a 2 (0,1). We have

RðnÞðeðnÞ � CSPÞ
RðnÞðOPTÞ � 1� effiffiffiffiffiffiffiffiffi

n1�a
p þ o

1ffiffiffiffiffiffiffiffiffi
n1�a

p
� �

: ð6Þ

In the asymptotic regime, for the sequence of
problems as defined in the above theorem, the e-
CSP is optimal. In addition, the relative perfor-
mance loss Equation (6) decays to zero in the speed
that is arbitrarily close to 1=

ffiffiffi
n

p
as a is sufficiently

small. The relative performance loss in the
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asymptotic regime only depends on the capacity
buffer level e, rather than any other information,
such as the seller’s capacity level C or any informa-
tion about customer arrivals, advanced reservation
times, or service times.
In the next section, we are devoted to proving

this theorem about the performance of the e-CSP in
the stochastic setting introduced in section 2. The
key idea is as follows. Since the e-CSP accepts the
profitable classes 1 to M0 and rejects the non-profit-
able classes M0 þ 1 to M, it induces a well-struc-
tured stochastic process called loss network
systems with advanced reservation. Each class
k = 1, . . ., M induces a Poisson arrival stream with
respective rate a�k�k. Thus, for each class k with
a�k ¼ 1, the arrival process is identical to the origi-
nal process, each class k with a�k ¼ 0 can be
ignored. The key aspect of the performance analy-
sis of the e-CSP boils down to finding an upper
bound on the blocking probabilities in these loss
network models.

4. Analysis of Blocking Probabilities

We analyze the performance of the e-CSP in the
stochastic setting introduced in section 2. We will
prove the performance loss (5) and its asymptotic
behavior (6).
Before delving into details, we first give an over-

view of our analysis. Analyzing the original capaci-
tated system as introduced in section 2 (i.e., a M/G/C/
C system with advanced reservation) seems rather
difficult. Instead, we consider the counterpart system
with infinite capacity (i.e., a M/G/∞ system with
advanced reservation) while keeping all other prob-
lem parameters fixed. In this counterpart system, all
customers are admitted since there are an infinite
number of resources. It is not hard to see that, for each
sample path and each time t, the admitted customers
reserved to get service in the original capacitated sys-
tem are a subset of those reserved in the infinite
capacity counterpart system. Consider now a cus-
tomer arriving at some random time t in the counter-
part system with infinite capacity requesting service
interval [t + d, t + d + s]. Define the virtual blocking
probability to be the probability that the maximum
reserved capacity over the requested service interval
[t + d, t + d + s] just prior to time t is larger than C.
Since the set of served customers in the infinite capac-
ity system is always a superset of that served in the
original capacitated system, it follows that the virtual
blocking probability is in fact an upper bound on the
blocking probability in the original capacitated sys-
tem. It makes sense to analyze the upper bounds of
the virtual blocking probabilities, which, in turn, pro-
vides us upper bounds on the blocking probabilities

in the original capacitated system. Let us start with
the simplest non-trivial case (which gives us some
insights into how to analyze such complex models),
and gradually develop our main results for the
general case.

4.1. The Simplest Non-trivial Case: Two-point
Distribution
We will start the analysis with the simplest non-tri-
vial case, and then extend it gradually to the more
general case. Suppose that S takes only one value
s = 1 deterministically. Then the traffic intensity is
q = kl = k. In addition, assume that D follows a
two-point distribution,

D ¼ 0 w.p. c;
1 w.p. 1� c;

�

i.e., fDð0Þ ¼ c and fDð1Þ ¼ 1 � c. That is, an arriving
customer either wants to start the service immedi-
ately or in one unit of time. Consider the counterpart
system with an infinite number of servers in the
steady state (note that the steady state exists due to
the induced semi-Markov process). Upon a customer
arrival to the system at some time t, all the starting
service times of the customers who had arrived prior
to t are already known. For ease of exposition, we
call these starting service times pre-arrivals. Similarly,
we call all the starting service times of the customers,
who will arrive after t post-arrivals. Note that the pre-
arrivals and post-arrivals are always defined with
respect to the current time t. It is important to
observe that the virtual blocking probability at time t
(as well as the blocking probability in the original
capacitated system) is independent of post-arrivals.
Without loss of generality, we assume that t = 0 and
the system reaches equilibrium.
Lemma 2 below characterizes the pre-arrival pro-

cesses (i.e., the booking profile) observed by a cus-
tomer arriving at time 0 in the steady state. Let ⌈r⌉ be
the smallest integer not less than r.

LEMMA 2. Consider the counterpart system with an infi-
nite number of servers. Then a customer arriving at the
system at time 0 in the steady state, observes that the
pre-arrivals follow a non-homogeneous Poisson process
with piecewise rate g(r) at time r, where

gðrÞ ¼
q; if r� 0;
ð1� cÞq; if r 2 ð0; 1�;
0; if r[ 1:

8<
:

The proof of Lemma 2 is simple by using Poisson
splitting arguments. In order to figure out how likely
this customer (arriving in equilibrium) gets blocked,
it is important to know the entire booking profile
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(consisting of committed services not yet started) at
the moment of his arrival. Lemma 2 gives a compact
description of this pre-arrival process as seen from
t = 0.
Let NdðrÞ, where r 2 [0, 1] be the Poisson counting

process of the number of pre-arrivals over the interval
[d � 1, d] as seen from time 0. The corresponding rates
of this Poisson counting process are given by Lemma
2. Next, we introduce the notion of mirror image of a
Poisson counting process. The mirror image of a Pois-
son counting process NdðrÞ, denoted by ~NdðrÞ, is a
backward counting process of NdðrÞ. More formally,
~NdðrÞ ¼ Ndð1Þ � Ndð1 � rÞ for each r 2 [0, 1]. It is
evident that ~Nd is also a Poisson process with the
same rate as Nd. We will use ~NdðrÞ to model the
departure process over the interval [d, d + 1] in
reverse time.
Now let B be the event that a customer arriving at

time 0 in the steady state is virtually blocked. The con-
ditional long-run virtual blocking probability
Pd ,PðBjD ¼ dÞ, for each d = 0, 1. Lemma 3 below
characterizes P0 and P1 based on the counting pro-
cesses introduced above. Figure 2 gives a schematic
representation of the two processes as observed a ran-
dom customer arriving at t = 0. For clarity, we also
use Ndð�; qÞ to denote a Poisson counting process with
a given rate q.

LEMMA 3. Consider the counterpart system with an infi-
nite number of servers. If a customer arrives at time 0
in the steady state and requests service S = 1

deterministically to commence in D units of time (D = 0
or 1 with probabilities c and 1 � c, respectively), the
conditional virtual blocking probabilities are given by

P0,PðBjD ¼ 0Þ
¼ Pðmax

r2½0;1�
~N0ð1� r; qÞ þN1ðr; ð1� cÞqÞ	 
�CÞ;

P1,PðBjD ¼ 1Þ ¼ P ~N1ð1; ð1� cÞqÞ�C
� �

;

where Nd (d = 0, 1, 2) is a Poisson counting process with
rate qd and ~Nd (d = 0, 1) is the mirror image of Nd with
the same rate qd. Moreover, q0 ¼ q, q1 ¼ ð1 � cÞq and
q2 ¼ 0.

Lemma 3 essentially tells us that the virtual block-
ing probability can be expressed in terms of the maxi-
mum of the sum of these two Poisson counting
processes running toward each other (see Figure 3),
one of which representing the pre-arrival process (the
committed services not yet started) and the other one
representing the departure process. The random pro-
cess (inside the max operator) is hard to analyze,
which is very different than merging two Poisson
counting processes running in the same direction.
To analyze the above blocking probabilities, we

shall prove a more general statement that will be the
key building block in our analysis of the general case.

PROPOSITION 2. Let N0, N1 and N2 be Poisson counting
processes (mutually independent) with rates q, h1q and
h2q, respectively, where 1 [ h1 � h2 � 0 are fixed
constants. Let ~N0 and ~N1 be the mirror images of N0 and
N1, respectively. Define two random variables X and Y
as follows,

X,max
r2½0;1�

~N0ð1� r; qÞ þN1ðr; h1qÞ
	 


;

Y,max
r2½0;1�

~N1ð1� r; h1qÞ þN2ðr; h2qÞ
	 


:
ð7Þ

Figure 2 One-Class Departure and Pre-Arrival Processes

Figure 3 Two Poisson Counting Processes Running Toward Each Other [Color figure can be viewed at wileyonlinelibrary.com]
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Then,

max PðX�CÞ;PðY�CÞf g� 1

q
þ ed

ð1þ dÞ1þd

 !q

;

where

d ¼ e
1� e

� log q

q log h�1
1

 !þ
:

Note that P0 and P1 (in Lemma 3) can be obtained
by simply setting h1 ¼ ð1 � cÞ and h2 ¼ 0 in X and Y
above. To prove Proposition 2, we provide an alterna-
tive characterization of X and Y above based on a
downward-drifting asymmetric random walk process
that takes a down-step, for each departure, and an
up-step, for each pre-arrival. We would like to show
that asymptotically the maximum level of the random
walk stays relatively close to its starting position by
showing that the rate of the random walk going up is
sublinear in

ffiffiffi
q

p
.

Consider the merged process induced on [0, 1] by

the two Poisson counting processes ~N0 and N1. Let

N ¼ ~N0ð1; qÞ þ N1ð1; h1qÞ denote the total number
of occurrences (pre-arrivals and departures) over
[0, 1] of the two independent Poisson counting pro-

cesses of ~N0 and N1. Note that since ~N0 and N1 are
independent of each other, N is a Poisson random
variable with rate ð1 þ h1Þq. Conditioning on N ¼ n,
the induced merged process has n points uniformly
distributed over the interval [0, 1]. By the splitting
argument applied to the merged process, each of
these n points has independent probability

p ¼ h1q
ð1þ h1Þq ¼ h1

1þ h1
\ 1

2 to be from the process N1 and

probability q = 1 � p from the process ~N0. If we asso-
ciate +1 with each point from N1, and �1 with each

point from ~N0, then each configuration of these n
points induces a downward-drifting asymmetric ran-
dom walk of length n. The random walk starts at the
origin 0, with up probability p and down probability q.

LEMMA 4. Let Rn denote the corresponding random
walk of length n described above, and Mn denote the
maximum level attained by Rn, and Gn denote the overall
number of down-steps taken by Rn. Also let
Xn , ðXjN ¼ nÞ with X defined in Equation (7). Then,
Xn ¼ Gn þ Mn almost surely.

However, it should be noted that Mn and Gn are
correlated. To address the correlation between Mn

and Gn, we will replace Mn by M1. However, first we
would like to obtain an expression for the hitting
probability of a downward-drifting asymmetric ran-
dom walk. This is done in Lemma 5 given below.
Lawler (2006) provides a proof in Chapter 2,

Section 2.2; for completeness, we present a shorter
proof.)

LEMMA 5. Consider a random walk defined by a sequence
of independent random variables fEig, where Ei takes value
1 with probability p and 0 with probability q = 1 � p. Let
Sn ¼ Rn

i¼1Ei. Define M1 2 ½0; 1ÞSf1g to be the
maximum level attained by the random walk (i.e.,
M1 ¼ maxn Sn). Given that 0 ≤ p < q ≤ 1 (downward
drifting), then the probability that the random walk ever
hits above level b is PðM1 � bÞ ¼ ðp=qÞb:

Proposition 2 can be proved by using Lemma 5.
The complete proof of Proposition 2 can be found in
Appendix A.

4.2. The General Case
Next we extend the simple model to allow for an arbi-
trary finite discrete reservation distribution D with
marginal probability mass function fDðdÞ. We still
assume that the service distribution remains fixed at
S = 1, deterministically. Now let cd , fDðdÞ for
d 2 [0, u]. Thus, cd 2 ½0; 1� and Ru

d¼0cd ¼ 1. Then the
traffic intensity is q ¼ �ðRu

d¼0cdÞl ¼ �. Lemma 6
below is a generalization of Lemma 2. The proofs of
all lemmas and propositions in this subsection can be
found in Appendix A.

LEMMA 6. Consider the counterpart system with an infi-
nite number of servers. Then a customer arriving at the
system at time 0 in the steady state, observes that the
pre-arrivals follow a non-homogeneous Poisson input
process with piecewise rate g(r) at time r, where

gðrÞ ¼
q; if r� 0;

q 1�P rd e�1
d¼0 cd

� �
; if r[ 0:

(

Define Nd (for d 2 [0, u]) to be the process of pre-
arrivals prior to t over (d � 1, d]. This process induces
a departure process over the interval (d, d + 1], and
let ~Nd denote its mirror image. Figure 4 shows the
pre-arrival and departure processes with general
reservation distribution. The conditional virtual
blocking probabilities are given in Lemma 7 below,
which is a generalization of Lemma 3.

LEMMA 7. Consider the counterpart system with an infi-
nite number of servers. If a customer comes at time 0 in the

Figure 4 One-Class Departure and Pre-Arrival Processes with General
Reservation Distribution
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steady state and requests service (S = 1) deterministically
to commence in D units of time (D 2 [0, u]), then the
conditional virtual blocking probability is given by

Pd,PðBjD ¼ dÞ
¼ Pðmax

r2½0;1�
f ~Ndð1� r; qdÞ

þNdþ1ðr; qdþ1Þg�CÞ; 8d 2 ½0; u�;

where Nd is a Poisson counting process with rate
qd ¼ qð1 � Rd�1

i¼0 ciÞ, and ~Nd is a mirror image of Nd

with the same rate qd.

Proposition 3 is a generalization of Proposition 2
with general distribution functions of customer
advanced reservation times.

PROPOSITION 3. Let the service distribution S = 1
deterministically, and the reservation distribution D be
discrete with marginal probability mass function fDðdÞ ¼ cd
and bounded support [0, u]. Then for all d 2 [0, ,u],

Pd � 1

q
þ ed

ð1þ dÞ1þd

 !q

;

where d is defined by Equation (3).

Next we extend the model further to allow for an
arbitrary finite discrete service distribution. The total
admitted customer arrival rate is k, and the reserva-
tion distribution D is defined on [0, u] defined as
above. Now assume that the service time S is a gen-
eral finite discrete distribution on [1, v]. More specifi-
cally, let fSð�Þ be the marginal probability mass
function with fSðsÞ ¼ PðS ¼ sÞ, js. Thus, for each
s 2 [1, v], js 2 ½0; 1� and Rv

s¼1js ¼ 1.
We partition the arriving customers according to

their requested service times, i.e., customers are parti-
tioned into v disjoint sets numbered 1, . . ., v according
to their requested service times. For each s 2 [1, v], the
arrival process of customers in set s follows a thinned
Poisson process with rate js�. Moreover, these pro-
cesses are independent of each other. Now, for each
set s 2 [1, v], let the conditional reservation probabil-
ity mass function be csd ,PðD ¼ djS ¼ sÞ for
d 2 [0, u]. Note that Ru

d¼0c
s
d ¼ 1, for each s 2 [1, v].

Consider the counterpart system with an infinite
number of servers. If a customer of set s (s 2 [1, v])
arrives at time 0 in the steady state and requests s
units of service time to commence after d units of time
(d 2 [0, u]), the conditional virtual blocking probabil-
ity is defined as Ps

d ,PðBjD ¼ d; S ¼ sÞ. In addition,
the traffic intensity is q ¼ Rv

s¼1sjs� ¼ l�, where
l ¼ Rv

s¼1sjs is the mean service time.

Let Ns
d (for s 2 [1, v] and d 2 [0, u]) denote the pre-

arrival process of set-s customers over (i.e., customers
requesting s units of service time) the interval
(d � s, d � s + 1]. This induces a departure process over
the interval (d, d + 1], and let ~Ns

d denote its mirror image.
The rate ofNs

d and
~Ns
d are given in Lemma 8 below.

LEMMA 8. Let Ns
d and ~Ns

d be defined as above. Then, for
each s 2 [1, v] and each d 2 [0, u], Ns

d and ~Ns
d are

Poisson processes with the same rate

qsd ¼ qs0 1�
Xd�s

i¼0

csi

 !
¼ jsq 1�

Xd�s

i¼0

csi

 !
: ð8Þ

Moreover, Ns
d is independent of Ns0

d0 for d 6¼ d0 or s 6¼ s0.

First assume that ∃s 2 [1, v] such that cs0 [ 0, i.e.,
the probability of an arriving customer requesting to
start the service immediately upon arrival is strictly
positive. This assumption can be dropped later. Let
Ad be the maximum number of customers in the sys-
tem over the interval (d, d + 1] for d 2 [0, u]. In fact,
one can derive an exact mathematical expression of
each Ad for d 2 [0, u],

Ad ¼
Xv
s¼2

Xdþs�1

i¼dþ1

Ns
i ð1; qsi Þ

þ max
r2½0;1�

Xv
s¼1

~Ns
dð1� r; qsdÞ þ

Xv
s¼1

Ns
dþsðr; qsdþsÞ

( )
:

ð9Þ
For r 2 [0, 1], the term Rv

s¼1
~Ns
dð1 � r; qsdÞ captures

all the departures over (d + r, d + 1], the term
Rv
s¼1N

s
dþsðr; qsdþsÞ captures all the pre-arrivals over

(d, d + r], and the term Rv
s¼2R

dþs�1
i¼dþ1N

s
i ð1; qsi Þ captures

all the customers being served over (d, d + 1]. The
sum captures exactly all the customers being served
at time d + r. It is important to note that since ~Ns

i

and Ns
i do not simultaneously appear in Ad, for each

i 2 [0, u] and s 2 [1, v], all the Poisson counting
processes in the expression of Ad are independent of
each other (see Lemma 8).
We shall further explain (9) by providing the fol-

lowing example when v = 2 (refer to Figure 5),

A0 ¼ N2
1ð1; q21Þ þ max

r2½0;1�
f ~N1

0ð1� r; q10Þ þ ~N2
0ð1� r; q21Þ

þN1
1ðr; q11Þ þN2

2ðr; q22Þg;
A1 ¼ N2

2ð1; q22Þ þ max
r2½0;1�

f ~N1
1ð1� r; q11Þ þ ~N2

1ð1� r; q21Þ

þN1
2ðr; q12Þ þN2

3ðr; q23Þg; and so on.

More specifically, A0 represents the maximum cus-
tomers in the system over the interval (0, 1]. At time
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r 2 (0, 1], the number of departures over (r, 1] is equal
to ~N1

0ð1 � r; q10Þ þ ~N2
0ð1 � r; q20Þ, capturing cus-

tomers in both sets starting before 0 and still in the sys-
tem at time r. (Note that the service time is at least 1.)
In addition, the number of pre-arrivals over (0, r] is
equal to N1

1ðr; q11Þ þ N2
2ðr; q22Þ, capturing pre-arrivals

of customers with service time 1 and 2, respectively,
starting service over (0, r]. Finally, N2

1 captures set-2
customers with service time 2 who started service
within (�1, 0]. These customers will continue service
over the entire interval (0, 1]. Therefore N2

1ð1; q21Þ
appears in the expression A0 outside the max. The
same reasoning applies to Ai for each i 2 [1, u].
Now for each d 2 [0, u] and s 2 [1, v], we have

Ps
d ¼ PðmaxðAd; . . .; Adþs�1Þ � CÞ. It should be noted

that Ad and Ad0 can be correlated. To analyze the
upper bound of P

j
i, we first analyze the upper bound

of PðAd � CÞ, for each d 2 [0, u].

LEMMA 9. Assume that there exists s 2 [1, v] such that
cs0 [ 0. Then,

PðA0 �CÞ� 1

q
þ ed

ð1þ dÞ1þd

 !q

;

where d is defined by Equation (3).

PROPOSITION 4. Let the service distribution S be discrete
with marginal probability mass function fSðsÞ ¼ js and
bounded support [1, v], and the reservation distribution
D be discrete with marginal probability mass function
fDðdÞ ¼ cd and bounded support [0, u]. The traffic
intensity is given by q ¼ Rv

s¼1sjs� ¼ Rv
s¼1s�

s
0 ¼ l�.

Then for all d 2 [0, u] and s 2 [1, v],

Ps
d �

1

q
þ ed

ð1þ dÞ1þd

 !q

;

where d is given by Equation (3).

Now, we prove the main results of this study, Theo-
rems 1 and 2.

PROOF OF THEOREM 1. The expected long-run average

revenue of the e-CSP is RM0
k¼1Rd;srk�dsksð1 � QdskÞ,

where Qdsk is the stationary probability of blocking a
class-k customers with reservation time d and ser-

vice time s. However, RM0
k¼1Rd;srk�dsks is the optimal

value of the LP defined in Equation (1), which is an
upper bound on ð1 � eÞRðOPTÞ for small positive e
by Lemma 1. Thus, a key aspect of the performance
analysis of the e-CSP is to obtain an upper bound on
the probabilities fQdskg. Specifically, if Qdsk � n, for
each d, s, and k, then

Rðe�CSPÞ¼
XM0

k¼1

X
d;s

rk�dsksð1�QdskÞ

�
XM0

k¼1

X
d;s

rk�dsksð1�nÞ

�ð1�nÞð1� eÞRðOPTÞ:

By Proposition 4, we have

n� 1

q
þ ed

ð1þ dÞ1þd

 !q

:

Therefore,

Rðe� CSPÞ
RðOPTÞ � 1� 1

q
� ed

ð1þ dÞ1þd

 !q !
1� eð Þ:

h

PROOF OF THEOREM 2. Consider a sequence of pro-

blems where in the nth problem, �
ðnÞ
k ¼ n�k for all

k 2 {1, . . ., M}, CðnÞ ¼ nC, and eðnÞ ¼ e=
ffiffiffiffiffiffiffiffiffi
n1�a

p
with

a 2 (0, 1).

Following Equation (2), we have

qðnÞ ¼ min 1� eðnÞ
� �

CðnÞ;
XM
k¼1

�
ðnÞ
k lk

( )

� min 1� eð ÞCðnÞ;
XM
k¼1

�
ðnÞ
k lk

( )

¼ nmin 1� eð ÞC;
XM
k¼1

�klk

( )
¼ nq;

where the first inequality follows the property that
eðnÞ � e.
Thus,

dðnÞ ¼ eðnÞ

1� eðnÞ
� logð1þ qðnÞÞ

qðnÞ log h�1

 !þ
¼ eðnÞ þ o eðnÞ

� �
¼ effiffiffiffiffiffiffiffiffi

n1�a
p þ o

1ffiffiffiffiffiffiffiffiffi
n1�a

p
� �

:

Figure 5 Two-Service-Set Departure and Pre-Arrival Processes
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We have

ed
ðnÞ

ð1þdðnÞÞ1þdðnÞ

 !qðnÞ

¼ exp log
ed

ðnÞ

ð1þdðnÞÞ1þdðnÞ

 !qðnÞ
0
@

1
A

0
@

1
A

¼ exp qðnÞ dðnÞ � 1þdðnÞ
� �

log 1þdðnÞ
� �� �� �

¼ exp qðnÞ � dðnÞ
� �2

þo dðnÞ
� �2� �� �� �

� exp nq � dðnÞ
� �2

þo dðnÞ
� �2� �� �� �

¼ exp �naqe2
� �þo exp �nað Þ� �

:

Thus,

1� 1

qðnÞ
� ed

ðnÞ

ð1þ dðnÞÞ1þdðnÞ

 !qðnÞ

� 1� 1

nq
� exp �naqe2

� �þ o exp �nað Þ� �
¼ 1� 1

nq
þ o

1

n

� �
:

The equality follows the property that for a > 0,

lim
n!1

exp �naqe2
� �
1=n

¼ 0:

Therefore,

RðnÞðeðnÞ �CSPÞ
RðnÞðOPTÞ � 1� 1

qðnÞ
� ed

ðnÞ

ð1þdðnÞÞ1þdðnÞ

 !qðnÞ
0
@

1
A 1� eðnÞ
� �

� 1� 1

nq
þ o

1

n

� �� �
1� effiffiffiffiffiffiffiffiffi

n1�a
p

� �

¼ 1� effiffiffiffiffiffiffiffiffi
n1�a

p þ o
1ffiffiffiffiffiffiffiffiffi
n1�a

p
� �

:

The equality follows the property that for a 2 (0,1),

lim
n!1

1=n

1=
ffiffiffiffiffiffiffiffiffi
n1�a

p ¼ 0: h

We note that the above performance analysis (on
blocking probabilities) for the model with customer
advanced reservation is completely different from the
one used in Levi and Radovanovic (2010) for models
without advanced reservation. In the following, we
also discuss the key distinction of our results from
two related models.

4.2.1. Key Distinction from the Models without
Advanced Reservation. In contrast to models with-
out advanced reservation (e.g., Levi and Radovanovic
2010), the major challenge in analyzing the blocking
probabilities in loss network systems with advanced

reservation is that the blocking event depends on the
maximum reserved capacity over a particular
requested service interval. This requires the character-
ization of the booking profile (i.e., the pre-reserved
arrival and departure processes) over the service
interval. As a simple example with capacity C = 2
shown in Figure 6, in the models without advanced
reservation, it suffices to check the instantaneous load
of the system upon arrival of a customer. However, in
the models with advanced reservation, we cannot
guarantee one’s request by merely checking the
instantaneous load of the system at his starting ser-
vice time upon his arrival, because his request may be
potentially blocked by reserved slots of those cus-
tomers who booked prior to him but will start services
after him. (In this simple example, the system has
only one customer in service when his service begins;
however, during his requested service interval, there
is a point in time that the system has three customers
(who were reserved before him). Thus, he has to be
rejected by the system.) This introduces much diffi-
culty in handling this correlation issue between the
incoming requests and the booking profiles.

4.2.2. Key Distinction from the Tandem Queues
of Two Stations. Tandem queueing model is closely
related to our model since one may regard the origi-
nal system with advanced reservation as a tandem
queueing model of two stations, where the advance
reservation is spent in the first station and the service
is spent in the second station. The first station has infi-
nite capacity and the second station has finite capac-
ity, customers first enter the system from the first
station, but if the second station is full when cus-
tomers arrive, they will be rejected or lost. Note that
the decision whether a customer is blocked is made

Figure 6 Challenges in Analyzing the Blocking Probabilities in Loss
Queues with Advanced Reservation
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only after the service in the first station is over. How-
ever, in our model, we have to make the decision as
soon as the customer enters the first station. The criti-
cal difference is that in the tandem queueing model it
suffices to check the instantaneous load of the second
station to determine if the customer is blocked, while
in our model we have to check the maximum occu-
pancy over the entire requested service interval as
seen from the moment the customer arrives. When we
relax the finite capacity assumption on the second
station, the blocking probability can seemingly be
approximated by the probability that the number of
customers in the second station is bigger than C (see,
e.g., Boxma 1984, Schmidt 1987). However, this
approximation cannot be used to upper bound the
blocking probabilities in our system due to the differ-
ence in system dynamics. It may serve as an approxi-
mation of the blocking probabilities but we are
unsure how good the approximation is, since the sta-
tionary distribution can no longer be expressed as a
product-form.

5. Pricing Extensions

We present an interesting pricing extension, in which
the arrival rates of the different classes of customers
are affected by prices. Specifically, consider a two-
stage decision. At the first stage, we set the respective
prices r1; . . .; rM for each class. This determines the
respective arrival rates �1ðr1Þ; . . .; �MðrMÞ. (The rate of
class-k customers is affected only by price rk.) Then,
given the arrival rates, we wish to find the optimal
admission policy that maximizes the expected long-
run revenue rate. In particular, we assume that �kðrkÞ
is non-negative, differentiable, and decreasing in rk
for each k 2 {1, . . ., M}. In addition, we assume that
all prices are non-negative real numbers and that
there exists a price r1 such that, for each i = k, . . ., M,
we have �kðr1Þ ¼ 0. (The latter condition is required
to guarantee that the problem has an optimal solu-
tion.)
For the model with price-driven demand we use

the following nonlinear program (NLP1):

max
fadsk;rkg

XM
k¼1

X
d;s

rkadsk�dskðrkÞs; ð10Þ

s.t.
XM
k¼1

X
d;s

adsk�dskðrkÞs�ð1� eÞC;

0� adsk � 1; 8d; s; k;
0� rk � 1; 8k:

In particular, it can be verified that any optimal
solution of (NLP1) has only non-negative prices.
Also, observe that for any fixed prices r1; . . .; rM, the

corresponding solution of fadskg has the same knap-
sack structure defined in section 2 above. Let
ðr�; a�Þ ¼ frk; adskg be the corresponding optimal
solution. Note that if one can solve (NLP1) and
obtain the solution ðr�; a�Þ then one can construct a
similar e-CSP that will be amenable to the same per-
formance analysis discussed in § 4 above. However,
solving (NLP1) directly may be computationally
hard. Next, we show that one can reduce (NLP1) to
an equivalent nonlinear program that is more tract-
able; we denote it by (NLP2). (By equivalent we
mean that they have the same set of optimal solu-
tions.) Consider the following nonlinear program
(NLP2):

max
frkg

XM
k¼1

X
i;j

rk�dskðrkÞj; ð11Þ

s.t.
XM
k¼1

X
d;s

�dskðrkÞs�ð1� eÞC;

0� rk � 1; 8k:

It can be readily verified that as long as �dskðrkÞ is
non-negative (and decreasing) it is always optimal
to have non-negative prices, so the non-negativity
constraints can be dropped.

THEOREM 3. The programs (NLP1) and (NLP2) are
equivalent.

Theorem 3 implies that we can solve (NLP2) instead
of solving (NLP1). However, (NLP2) is computation-
ally more tractable and can be solved relatively easily
in many scenarios. Specifically, Lagrangify (dualize)
the constraint in (NLP2) with some Lagrange multi-
plier Θ and consider the unconstraint problem
maxrk2½H; r1Þ R1� k�MRd;sðrk � HÞ�dskðrkÞs, which is sep-
arable in r1; . . .; rM0 . In fact, one aims to find the mini-
mal Θ for which the resulting solution satisfies the
constraint in (NLP2). This can be done by applying
bi-section search on the interval ½0; p1�. The complex-
ity of this procedure depends on the complexity of
maximizing R1� k�MRd;sðrk � HÞ�dskðrkÞs for each
k 2 {1, . . ., M}. It is not hard to check that there are at
least two tractable cases: (i) �dskðrkÞ is a concave func-
tion on ½0; r1Þ, for each k 2 {1, . . ., M}; (ii) �dskðrkÞ is
convex, but rk�dskðrkÞ is concave function on ½0; r1Þ,
for each k 2 {1, . . ., M}.

6. Numerical Experiments

We examine the empirical performance of the pro-
posed e-CSP to the optimal solution provided by the
benchmark linear program (1). Solving the e-CSP
solutions is extremely efficient and our extensive
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simulation results show that the e-CSP performs
near-optimal in the heavy traffic regime (with aver-
age optimality gap <4%), and is also very robust
with respect to different input distributions and
parameters. This is consistent with our theoretical
development of the proposed policy. Additionally,
the numerical results suggest that the e-CSP per-
forms quite well even in the light or medium traffic
regimes (with average optimality gap less than 10%).
All the simulations were implemented in an Intel
Xeon 3.50GHz PC.

6.1. Design of Experiments
We first describe a baseline model, and then vary
the distributions and parameters of the baseline
model to comprehensively study the empirical per-
formance of the e-CSP. The baseline model (e.g., in
a hotel room management setting) is constructed as
follows: the number classes of customers M = 8, the
total capacity C = 40 units, and the buffer size
e = 0.001. In addition, the class-dependent arrival
rates, revenue rates, advanced reservation and ser-
vice distributions for the baseline model are speci-
fied in Table 1 below. Note that Nða; bÞ denotes the
truncated normal distribution with mean a and
variance b.
In our numerical experiments, we use the scaling

factor n = {1, 2, . . ., 20} to scale the arrival rate and
the capacity simultaneously. More specifically, for a
given scaling factor n, the arrival rate is �ðnÞ ¼ n�
(where k is given in Table 1), and the capacity is
CðnÞ ¼ nC ¼ 40n. For convenience, we refer to the
settings with n = 1, 2, 3 as light traffic, n = 3, 4, 5 as
medium traffic, and n ≥ 6 as heavy traffic. In particu-
lar, the baseline model corresponds to the light traffic
setting with n = 1.
Besides using different scaling factors, we also con-

duct our simulations by experimenting with different
values for the load factors, the mean and variance of
the advanced reservation distribution, the mean and
variance of the service distribution, as well as the cor-
relation coefficient between these two distributions.
We refer readers to section 6.3 for the detailed numer-
ical results and discussions.

6.2. Performance Measure
We compare the long-run average revenue of the e-
CSP with the optimal solution provided by the bench-
mark linear program (1). The performance ratio is
defined as follows.

Performance Ratio

, Rðe�CSPÞ
The optimal objective value of (1)

� Rðe�CSPÞ
RðOPTÞ :

Note that the above-defined performance ratio of
the e-CSP is conservative in the sense that it under-
states the relative revenue ratio of the e-CSP to the
optimal policy. The actual performance of the e-CSP
is better than the performance ratio.

6.3. Numerical Results
Figure 7 shows that the performance ratio of the e-
CSP increases very quickly as the scaling factor n
increases. When n = 1 (corresponding to C = 40), the
optimality gap is around 12%. When n = 10 (corre-
sponding to C = 400), the optimality gap is reduced
significantly to <3%.
Table 2 shows the performance ratios of the e-CSP

with varying load factors, where the load factor is
defined as the ratio of �E½S� to C. (In our numerical
experiments, we change the load factors by fixing k
and varying C.) Our results show that as the resource
capacity decreases while keeping all other parameters
fixed, the performance ratio drops steadily in the low
traffic regime but drops sluggishly in the high traffic
regime.
Tables 3–7 show the performance ratios of the e-

CSP by varying parameters of the advance

Table 1 Parameters for the Baseline Model with n = 1

Class
no.

Arrival
rate

Advanced
reservation Service time

Revenue
rate ($)

1 2 Short �Nð3; 12Þ Short �Nð3; 12Þ 150
2 3 Short � Nð3; 12Þ Long � Nð10; 22Þ 140
3 2 Long � Nð30; 102Þ Short � Nð3; 12Þ 130
4 2 Long � Nð30; 102Þ Long � Nð10; 22Þ 120
5 1 Short � Nð3; 12Þ Short � Nð3; 12Þ 110
6 2 Short � Nð3; 12Þ Long � Nð10; 22Þ 100
7 3 Long � Nð30; 102Þ Short � Nð3; 12Þ 90
8 1 Long � Nð30; 102Þ Long � Nð10; 22Þ 80
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Figure 7 Performance Ratios as the Scaling Factor n Increases [Color
figure can be viewed at wileyonlinelibrary.com]
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Table 2 Performance Ratios for Varying Load Factors

Load factor nn 1 2 3 4 5 6 7 8 9 10

1.15 91.9% 94.3% 95.6% 96.4% 97.0% 97.5% 98.0% 98.4% 98.6% 99.0%
1.50 90.7% 93.6% 95.1% 95.9% 96.5% 97.0% 97.7% 98.0% 98.3% 98.6%
1.85 89.3% 92.6% 94.1% 95.0% 95.8% 96.4% 96.9% 97.4% 97.8% 98.1%
2.20 88.3% 91.7% 93.5% 94.3% 95.2% 95.8% 96.4% 97.0% 97.2% 97.8%
2.55 87.0% 90.8% 92.6% 93.8% 94.6% 95.2% 95.8% 96.4% 97.0% 97.4%
2.90 87.1% 91.0% 92.7% 93.9% 94.7% 95.4% 96.1% 96.7% 97.0% 97.5%
3.25 86.9% 90.6% 92.2% 93.6% 94.5% 95.2% 95.8% 96.3% 96.7% 97.4%
3.60 85.6% 89.8% 91.8% 93.2% 93.9% 94.8% 95.4% 96.1% 96.4% 96.9%
3.95 85.2% 89.5% 91.5% 92.9% 93.8% 94.4% 95.2% 95.7% 96.2% 96.7%
4.30 84.6% 88.9% 91.0% 92.4% 93.4% 94.1% 94.8% 95.6% 96.0% 96.6%
4.65 83.8% 88.3% 90.6% 92.0% 92.9% 93.6% 94.6% 95.0% 95.4% 96.0%
5.00 83.6% 88.1% 90.4% 91.7% 92.8% 93.4% 94.1% 94.9% 95.2% 96.1%

Table 3 Performance Ratios for Varying Advanced Reservations Means (f1 	 baseline mean)

f1 n n 1 2 3 4 5 6 7 8 9 10

1.0 87.9% 91.5% 93.3% 94.3% 95.2% 95.8% 96.3% 96.7% 97.3% 97.5%
1.1 88.0% 91.6% 93.3% 94.3% 95.1% 95.8% 96.3% 96.7% 97.2% 97.4%
1.2 88.0% 91.5% 93.2% 94.3% 95.1% 95.8% 96.4% 96.8% 97.3% 97.2%
1.3 87.8% 91.6% 93.2% 94.4% 95.0% 95.8% 96.3% 96.7% 97.3% 97.1%
1.4 88.0% 91.7% 93.2% 94.4% 95.2% 95.9% 96.4% 96.7% 97.4% 96.9%
1.5 88.0% 91.5% 93.2% 94.3% 95.0% 95.7% 96.2% 96.8% 97.2% 96.8%
1.6 88.2% 91.7% 93.3% 94.3% 95.1% 95.8% 96.3% 96.7% 97.3% 96.7%
1.7 87.9% 91.6% 93.2% 94.3% 95.3% 95.9% 96.4% 96.7% 97.1% 96.6%
1.8 88.0% 91.7% 93.1% 94.4% 95.1% 95.7% 96.4% 96.7% 97.1% 96.4%
1.9 87.7% 91.5% 93.3% 94.4% 95.1% 95.8% 96.2% 96.8% 97.0% 96.3%
2.0 87.8% 91.7% 93.3% 94.4% 95.2% 95.8% 96.3% 96.8% 96.9% 96.3%

Table 4 Performance Ratios for Varying Advanced Reservations Variances (f2 	 baseline variance)

f2 n n 1 2 3 4 5 6 7 8 9 10

1 88.1% 91.6% 93.2% 94.4% 95.1% 95.9% 96.4% 96.8% 97.3% 97.4%
0.87 87.7% 91.3% 93.2% 94.4% 95.0% 95.7% 96.3% 96.7% 97.3% 97.5%
0.88 87.6% 91.6% 93.2% 94.3% 95.1% 95.9% 96.3% 96.6% 97.3% 97.5%
0.89 87.6% 91.4% 93.2% 94.3% 95.0% 95.7% 96.2% 96.7% 97.3% 97.5%
0.90 87.8% 91.5% 93.2% 94.2% 95.1% 95.7% 96.3% 96.6% 97.3% 97.4%
0.92 87.6% 91.3% 93.1% 94.2% 95.1% 95.8% 96.3% 96.7% 97.3% 97.4%
0.95 87.6% 91.4% 93.0% 94.3% 95.0% 95.7% 96.3% 96.7% 97.4% 97.3%
0.99 87.3% 91.3% 93.1% 94.2% 95.0% 95.7% 96.2% 96.7% 97.2% 97.4%
1.04 87.5% 91.4% 93.1% 94.3% 95.0% 95.7% 96.3% 96.7% 97.3% 97.4%
1.07 87.5% 91.3% 93.0% 94.1% 95.0% 95.7% 96.3% 96.6% 97.3% 97.4%

Table 5 Performance Ratios for Varying Service Time Means (f3 	 baseline mean)

f3 n n 1 2 3 4 5 6 7 8 9 10

1.0 87.8% 91.5% 93.4% 94.4% 95.2% 95.8% 96.3% 96.7% 97.4% 97.5%
1.1 87.9% 91.5% 93.2% 94.4% 95.2% 95.8% 96.3% 96.8% 97.3% 97.6%
1.2 88.0% 91.5% 93.2% 94.4% 95.1% 95.8% 96.4% 96.8% 97.4% 97.6%
1.3 87.8% 91.6% 93.4% 94.4% 95.2% 95.9% 96.3% 96.9% 97.5% 97.8%
1.4 88.3% 91.8% 93.5% 94.6% 95.3% 96.0% 96.7% 97.0% 97.6% 97.9%
1.5 88.5% 92.0% 93.6% 94.6% 95.4% 95.9% 96.6% 97.0% 97.7% 98.0%
1.6 88.8% 92.1% 93.8% 94.9% 95.6% 96.3% 96.7% 97.2% 97.8% 98.1%
1.7 88.7% 92.0% 93.9% 94.8% 95.5% 96.1% 96.9% 97.2% 97.9% 98.2%
1.8 88.9% 92.0% 93.7% 94.8% 95.6% 96.3% 96.8% 97.1% 97.9% 98.2%
1.9 89.0% 92.2% 93.8% 95.0% 95.7% 96.1% 96.8% 97.2% 98.0% 98.2%
2.0 88.9% 92.4% 93.8% 94.9% 95.6% 96.4% 96.8% 97.4% 97.9% 98.2%
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reservation and the service time distributions (such as
their means, variances and correlation coefficients). In
summary, our results demonstrate that the e-CSP per-
forms near-optimally in the heavy traffic regime (with
average optimality gap <4%), which is consistent with
our theoretical development. Moreover, the e-CSP
performs reasonably well in the light and medium
traffic regimes as well (with average optimality gap
<10%). It is also worth noting that the performance of
the e-CSP is robust with respect to input distributions
and parameters, which could be widely adopted in
many practical scenarios.

7. Conclusion

In this study, we have studied an important class of
revenue management problems with reusable
resources and advanced reservations. We have
devised an effective and efficient admission control
policy termed the e-CSP that is proven to be asymp-
totically optimal when both the demand rate and the
capacity grow large. We have also explicitly charac-
terized its convergence rate. This class of revenue
management problems finds many applications in
real life, such as hotel management, cloud computing,
car rental, workforce management, and call centers.
In addition, the methods developed also contribute to
the existing queueing literature.
To close this study, we would like to point out three

potential research directions. (a) One may consider a
dynamic pricing model and derive similar policies.

Assume that there is a single-class time-homogenous
Poisson arrival process with rate k. Each customer’s
reservation and service-time are drawn from D and S,
respectively. The system offers a price from a fixed
price menu fr1; . . .; rng to an arriving customer with d
and s, depending on the current state. The state is
characterized by the booking profile, d, and s. More-
over, one can introduce a reservation price distribu-
tion denoted by R. The customer only accepts the
offer if the price offered falls below the reservation
price. (b) Gallego and Hu (2014) consider a competi-
tion network model of perishable resources. One
could also study a counterpart model of reusable
resources. Each firm has a fixed capacity of reusable
resources and competes in setting prices to sell them.
Assuming deterministic customer arrival rates, one
can potentially show that any equilibrium strategy
has a simple structure, and then show that there exists
a similar asymptotic equilibrium strategy in a stochas-
tic version where the arrival rates and the capacity are
scaled together to infinity. (c) To capture seasonality
of demands, one could also consider the model stud-
ied in this study with non-homogeneous Poisson arri-
vals. However, this may require new methodologies
to be developed.
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Appendix A. Omitted Proofs
of Technical Lemmas and Propositions

PROOF OF PROPOSITION 1. Consider any policy p 2 Π.
For the customer who is the nth of being allocated
with a specific item of the resource since time 0, we
denote by tðnÞ his service request time, dðnÞ his
advanced reservation time, and sðnÞ his service time.
Therefore, tðnÞ þ dðnÞ is non-decreasing in n 2 N.
Now, we prove this proposition by induction.

First, the statement of this proposition is trivially
true for the customer with index 1, since all items of
the resource have not been allocated to any cus-
tomer before this customer is allocated with a speci-
fic item.

Second, suppose the statement of this proposition
is true for customers with indexes 1, . . ., n. We now
prove that the statement of this proposition is
still true for the customer with index n + 1. For
anyt 2 ½tðnþ1Þ þ dðnþ1Þ; tðnþ1Þ þ dðnþ1Þ þ sðnþ1ÞÞ, we have

Xn
n0¼1

1 t 2 tðn
0Þ þ dðn

0Þ; tðn
0Þ þ dðn

0Þ þ sðn
0Þ

h �n o

�
Xn
n0¼1

1 tðnþ1Þ þ dðnþ1Þ 2 tðn
0Þ þ dðn

0Þ; tðn
0Þ þ dðn

0Þ þ sðn
0Þ

h �n o

¼
Xnþ1

n0¼1

1 tðnþ1Þ þ dðnþ1Þ 2 tðn
0Þ þ dðn

0Þ; tðn
0Þ þ dðn

0Þ þ sðn
0Þ

h �n o
� 1

�
X1
n0¼1

1 tðnþ1Þ þ dðnþ1Þ 2 tðn
0Þ þ dðn

0Þ; tðn
0Þ þ dðn

0Þ þ sðn
0Þ

h �n o
� 1

�C� 1:

The first inequality follows from the property that
t � tðnþ1Þ þ dðnþ1Þ � tðnÞ þ dðnÞ. The third inequality
follows from the feasibility property that under any
policy p 2 Π, given any time t, the total number of
admitted customers who use the service at time t is
no more than capacity C. Therefore, for the customer
with index n + 1, at each point of time during his ser-
vice interval ½tðnþ1Þ þ dðnþ1Þ; tðnþ1Þ þ dðnþ1Þ þ sðnþ1ÞÞ,
there is always at least one unit of resource that is
available to serve him.

In addition, we notice that since every customer
with index in {1, . . ., n} keeps on using the same
item of the resource during his service interval, at
time tðnþ1Þ þ dðnþ1Þ, an item of the resource not occu-
pied by any customer with index in {1, . . ., n} will
not be occupied by any of these customers after time
tðnþ1Þ þ dðnþ1Þ. We also notice that no customer with
index n0 [ n þ 1 is allocated with a specific item of
the resource before the customer with index n + 1 is
allocated. Therefore, any item that is not occupied
by any customer with index in {1, . . ., n} at time
tðnþ1Þ þ dðnþ1Þ can be allocated to the customer with
index n + 1 at his service start time tðnþ1Þ þ dðnþ1Þ,
with the guarantee that this item is able to serve
him during his entire service interval
½tðnþ1Þ þ dðnþ1Þ; tðnþ1Þ þ dðnþ1Þ þ sðnþ1ÞÞ. h

PROOF OF LEMMA 1. Consider the following LP

max
fap

dsk
g

XM
k¼1

X
d;s

rka
p
dsk�dsks;

s.t.
XM
k¼1

X
d;s

apdsk�dsks�C; 0� adsk � 1; 8d; s; k:
ðA1Þ

Note the LP defined in (1) differs from the LP
defined in Equation (A1) by changing the right-hand
side of the capacity constraint to (1 � e)C. Suppose
the optimal solution of the LP defined in Equation
(A1) is fâdskg. Now consider f~adskg ¼ fð1 � eÞâdskg.
Since

XM
k¼1

X
d;s

~adsk�dsks ¼ ð1� eÞ
XM
k¼1

X
d;s

âdsk�dsks�ð1� eÞC;

ðA2Þ
f~adskg is a feasible solution to (1). Then we have

XM
k¼1

X
d;s

rka
�
dsk�dsks�

XM
k¼1

X
d;s

rk~adsk�dsks

¼ ð1� eÞ
XM
k¼1

X
d;s

rkâdsk�dsks�ð1� eÞRðOPTÞ: ðA3Þ

The last inequality holds since the optimal objective
value in Equation (A1) provides an upper bound on
the optimal expected revenue rate, since the capac-
ity constraint is enforced on expectation whereas in
the original problem this capacity constraint has to
hold, for each sample path. This completes the
proof. h

PROOF OF LEMMA 2. If r ≤ 0, we focus on the interval
(⌈r⌉ � 1, ⌈r⌉] and its preceding interval (⌈r⌉ � 2,
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⌈r⌉ � 1]. The arrival process in (⌈r⌉ � 2, ⌈r⌉ � 1] fol-
lows a Poisson process with rate q. Each arrival has
c probability of starting services immediately in
(⌈r⌉ � 2, ⌈r⌉ � 1], and 1 � c probability of starting
services in 1 unit of time in (⌈r⌉ � 1, ⌈r⌉]. By the
Poisson splitting argument, the pre-arrivals in
(⌈r⌉ � 1, ⌈r⌉] follow a Poisson process with rate
(1 � c)q. Using a similar argument, we conclude
that the pre-arrival process in (⌈r⌉ � 1, ⌈r⌉] induced
by customers arriving to the system in (⌈r⌉ � 1, ⌈r⌉]
follows a Poisson process with rate cq. Note that
these two processes are independent of each other
since they are generated by customers arriving in
disjoint intervals. Now merge these two pre-arrival
processes, and the resulting pre-arrival process in
(⌈r⌉ � 1, ⌈r⌉] follows a Poisson process with rate
(1 � c)q + cq = q.

If r 2 (0, 1], focus on the interval (0, 1] and its
preceding interval (�1, 0]. By an argument similar
to the above, there is a Poisson process of pre-
arrivals with rate (1 � c)q induced by customers
arriving in (�1, 0]. There is also a Poisson process
with rate cq induced by customers arriving in
(0, 1]. However, the latter process consists of post-
arrivals. Thus, the resulting pre-arrivals at time 0
over (0, 1] follow a Poisson process with rate
(1 � c)q.
Finally, since the maximum reservation time is 1,

it is impossible for customers arriving prior to 0 to
start service at any time greater than 1. Thus, the
rate of pre-arrivals from 1 onwards is 0. This com-
pletes the proof. h

PROOF OF LEMMA 3. Suppose that a customer arrives
at time 0 in the steady state and requests the service
to commence immediately (D = 0), i.e., requesting
the service interval (0, 1]. Focus solely on the pre-
arrivals as seen from 0. By Lemma 2, the pre-arri-
vals over the time interval (�1, 0] follow a Poisson
process with rate q, denoted by N0. However, this
implies that, over the time interval (0, 1], the cus-
tomers depart the system following a Poisson pro-
cess with rate q (a shift of N0 by 1 unit of time). Let
~N0 be the mirror image of the departure process
induced by N0 over (0, 1]. By Lemma 2, we also
know that the pre-arrivals over (0, 1] follow a Pois-
son process with rate (1 � c)q. We denote this pre-
arrival process by N1. Figure 2 shows the pre-arrival
and departure processes.

Consider now the number of customers in the sys-
tem at some time r. These fall exactly into one of the
two types; customers that start service over (0, r] and
customers that start service over (r � 1, 0] and will
depart over (r, 1]. It follows that the number of

customers in service at time r 2 (0, 1] can be
expressed as ~N0ð1 � rÞ þ N1ðrÞ. Specifically, in time
r the number of departures over (r, 1] (equal to
~N0ð1 � rÞ) captures customers starting service before
0, and still in the system at time r. In addition, the
number of pre-arrivals over (0, r] (equal to N1ðrÞ) cap-
tures customers arriving before 0, starting service
over (0, r] and still being served in time r. The sum of
the two is exactly equal to the total number of cus-
tomers in the system at time r. Note that by the Pois-
son splitting argument, it follows that ~N0 and N1 are
independent of each other. The virtual blocking prob-
ability is expressed in terms of the maximum of the
sum of these two Poisson counting processes running
toward each other (see Figure 3), i.e.,

P0,PðBjD ¼ 0Þ ¼ Pðmax
r2½0;1�

f ~N0ð1� r; qÞ

þN1ðr; ð1� cÞqÞg�CÞ:

Consider now the case that the arriving customer
requests the service to commence in D = 1 unit of
time, i.e., the service will cover the interval (1, 2].
The departure process in (1, 2] is a shift of the pre-
arrival process N1 in (0, 1] by 1 unit of time, and its
mirror image is denoted by ~N1. Moreover, by
Lemma 2, the pre-arrival process N2 in (1, 2] has
rate 0. Thus, we have

P1,PðBjD¼1Þ¼Pðmax
r2½0;1�

f ~N1ð1�r;ð1�cÞqÞ

þN2ðr;0Þg�CÞ¼P ~N1ð1;ð1�cÞqÞ�C
� �

:

This completes the proof. h

PROOF OF LEMMA 4. Note again that for each
r 2 [0, 1], ~N0ð1 � r; h1qÞ þ N1ðr; qÞ is equal to the
sum of the number of occurrences of N0 over
(1 � r, 1] and the number of occurrences of N1 over
[0, r). Also observe that the value of X is obtained
either at time 0 or upon on occurrence of N1. Now
conditioning on Rn ¼ xn (a specific realization of
the random walk Rn), and consider the lth occur-
rence of N1 (l 2 {0, . . ., n}), at time, say r. Then we
have (see Figure 3),

~N0ð1� r; qÞ þN1ðr; h1qÞ
¼ ð# up-steps before and including l

þ # down-steps after lÞ
¼ ð# up-steps before and including l

� # down-steps before and including lÞ
þ ð# down-steps before and including l

þ # down-steps after lÞ:
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The first term is exactly the location of the random
walk after l steps and the second expression is exactly
Gn. Since X is the maximum of the above sum over all
arrivals l = 0, 1, . . ., n, it follows that indeed
XnjðRn ¼ xnÞ ¼ ðGn þ MnÞjðRn ¼ xnÞ, from which
the result follows. h

PROOF OF LEMMA 5. Define the stopping time s as
follows:

s, inf t� 1 : St � � a or St � bf g:

It is straightforward to check the following two con-
ditions,

EðsÞ�1; EðjEtþ1 � EtjjF tÞ� 2; 8t 2 s: ðA4Þ
The Wald’s identity (see Karlin and Taylor 1981)

GnðhÞ, ehSn

½/ðhÞ�n ðA5Þ

is a martingale where the moment generating func-
tion /ðhÞ, EðehYÞ � 1. First we compute ĥ that
solves the equation EðeĥYÞ ¼ 1, i.e.,

EðeĥYÞ ¼ peĥ þ qeĥ ¼ 1 ) eĥ ¼ q

p
: ðA6Þ

By Optional Sampling Theorem (see Karlin and Tay-
lor 1981),

E
eĥSs

½/ðĥÞ�s
" #

¼ E eĥSs
h i

¼ E eĥS0
h i

¼ 1: ðA7Þ

This leads to

PðSs � bÞ EðeĥSs jSs � bÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Eb

þ ð1� PðSs � bÞÞ EðeĥSs jSs � � aÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Ea

¼ 1:
ðA8Þ

Thus, we have

PðSs � bÞ ¼ 1� Ea

Eb � Ea
¼ 1� e�ĥa

eĥb � e�ĥa
¼

1� q
p

� ��a

q
p

� �b
� q

p

� ��a
: ðA9Þ

Let Sas , Ss be the stopping time location of the pro-
cess. Let Ba be the event that the random walk hits b
before �a. Observe that PðBaÞ ¼ PðSas � bÞ and also
note that Bi 
 Biþ1 for all i. Define B ¼ S1

i¼1 Bi, i.e.,
there exists an i that the random walk hits b before
�i. Therefore PðM1 � bÞ ¼ PðBÞ. By properties of
probability measures, we have

PðM1 � bÞ ¼ Pð
[1
i¼1

BiÞ ¼ lim
a!1PðBaÞ

¼ lim
a!1

1� q
p

� ��a

q
p

� �b
� q

p

� ��a

0
B@

1
CA ¼ p

q

� �b

: ðA10Þ

This completes the proof. h

PROOF OF PROPOSITION 2. First we establish an upper
bound for PðX � CÞ. Let M1 be the maximum level
attained by the infinite-step random walk defined
above. Since the random walk has a negative drift,
it follows from Lemma 5 above that
PðM1 � � log q= log h1Þ � 1=q: (Note that h1 \ 1, so
� log q= log h1 [ 0.) Now, we have

PðXn �CÞ ¼ P Gn þMn �Cð Þ ðA11Þ

¼P GnþMn�C
\

Mn� � logq
logh1

� �

þP GnþMn�C
\

Mn\� logq
logh1

� �

�P Mn� � logq
logh1

� �
þP Gn�Cþ logq

logh1

� �

�P M1� � logq
logh1

� �
þP Gn�Cþ logq

logh1

� �

� 1

q
þP Gn�Cþ logq

logh1

� �
:

The first equality follows from Lemma 4. The first
inequality follows from the fact that M1 � Mn

almost surely. The second inequality follows from
Lemma 5 above. Since Gn is distributed as
ð ~N0ð1; qÞjN ¼ nÞ, we get from Equation (A11) that,

PðX�CÞ ¼
X1
n¼1

PðXn �CÞPðN ¼ nÞ

� 1

q
þ
X1
n¼1

P Gn �Cþ log q
log h1

� �
PðN ¼ nÞ

¼ 1

q
þ P ~N0ð1; qÞ�Cþ log q

log h1

� �

¼ 1

q
þ P PoissonðqÞ�Cþ log q

log h1

� �

¼ 1

q
þ P PoissonðqÞ�C� log q

log h�1
1

 !

� 1

q
þ P PoissonðqÞ� q

1� e
� log q

log h�1
1

 !

� 1

q
þ P PoissonðqÞ� q

1� e
� logð1þ qÞ

log h�1
1

 !
:
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The second inequality follows Equation (2) that
q ≤ (1 � e)C. The third inequality follows the prop-
erty that q ≤ 1 + q and the property that h1 \ 1
implies log h�1

1 [ 0.
Next, we establish an upper bound for PðY � CÞ.

Note that h1 \ 1. We define

�Y ¼ max
r2½0;1�

�N1ð1� r; qÞ þN2ðr; h2qÞ
	 


:

Thus, �Y stochastically dominates Y. Following the
same argument that we make above for establishing
an upper bound for PðX � CÞ, we have

PðY�CÞ� 1

q
þP PoissonðqÞ� q

1� e
� logð1þ qÞ

logh�1
2

 !

� 1

q
þP PoissonðqÞ� q

1� e
� logð1þ qÞ

logh�1
1

 !
:

The second inequality follows the property that
h2 � h1 and the property that log (1 + q) ≥ 0.
Now, we establish an upper bound for

PðPoissonðqÞ � q
1� e � logð1þqÞ

log h�1
1

Þ. Using the formula of

Chernoff bound of the upper tail for a Poisson ran-
dom variable, we have

P PoissonðqÞ� q
1� e

� logð1þ qÞ
log h�1

1

 !

¼ P
1

q
PoissonðqÞ � qð Þ� e

1� e
� logð1þ qÞ

q log h�1
1

 !

� ed

ð1þ dÞ1þd

 !q

;

where

d ¼ e
1� e

� logð1þ qÞ
q log h�1

1

 !þ
:

Therefore,

max PðX�CÞ;PðY�CÞf g� 1

q
þ ed

ð1þ dÞ1þd

 !q

:

h

PROOF OF LEMMA 6. Lemma 6 is a generalized version
of Lemma 2. For r ≤ 0, consider the time interval
(⌈r⌉ � 1, ⌈r⌉]. By arguments similar to those used in
Lemma 2, for each l 2 [0, u], the interval
(⌈r⌉ � 1 � l, ⌈r⌉ � l] generates a stream of pre-arrivals
over (⌈r⌉ � 1, ⌈r⌉] that follow a Poisson process of rate
clq. These processes are independent of each other

and the overall merged process has rate
q ¼ c0q þ c1q þ � � � þ cuq. For ⌈r⌉ = d for d 2 [1, u],
then the pre-arrivals prior to t over (⌈r⌉ � 1, ⌈r⌉] are
induced by arriving customers over the intervals
(⌈r⌉ � l � 1, ⌈r⌉ � l], for l 2 [d, u], and the total rate is
cdq þ cdþ1q þ � � � þ cuq. Note again that the rate ciq
is induced from the Poisson arrival stream of cus-
tomers over (⌈r⌉ � l � 1, ⌈r⌉ � l] who wish to start in l
units of time. Since we only consider pre-arrivals prior
to t, the terms cd�1q; cd�2q; . . .; c0q are missing. h

PROOF OF LEMMA 7. By Lemma 6, for each
d 2 [0, u], the pre-arrival process Nd over the inter-
val (d � 1, d] follows a Poisson process with rate
qd ¼ qð1 � Rd�1

i¼0 ciÞ. This implies that over the inter-
val (d, d + 1], the customers depart the system fol-
lowing a Poisson process with rate qd (a shift of Nd

by 1 unit of time). Let ~Nd be the mirror image of the
departure process induced by Nd over (d, d + 1], and
therefore ~Nd has the same rate qd. The rest of argu-
ments are identical to that of Lemma 3. h

PROOF OF PROPOSITION 3. First we assume that
c0 [ 0. By Lemma 7, we have that q0 [ q1 and
qd � qdþ1 for each d 2 [1, u]. By Proposition 2, it fol-
lows that, for all d 2 [0, u],

Pd � 1

q
þ ed

ð1þ dÞ1þd

 !q

;

where d is defined by Equation (3).
In fact, we can relax the assumption of c0 [ 0. If

c0 ¼ 0, it implies that over the interval (0, 1] (recall
that the customer arrives at time 0 in the steady
state), the departure rate is equal to the pre-arrival
rate, i.e., q0 ¼ q1 ¼ q. Proposition 2 cannot be
applied under this case. However, the fact that
c0 ¼ 0 implies that no arriving customers will start
the service right away. Therefore, we do not have to
consider the probability P0 in the expression of P.
Let the index i ¼ minfd : cd [ 0g. Then we have
cd ¼ 0 for d 2 [0, i � 1], by the same argument, we
can ignore the probabilities P0; . . .; Pi�1. Therefore,
the above results that we prove in this proposition
still hold. This completes the proof. h

PROOF OF LEMMA 8. For each set s 2 [1, v], and
d 2 [0, u], the pre-arrivals prior to t over
(d � s, d � s + 1] (i.e., Ns

d) are induced by arriving
customers over the intervals (d � s � i, d � s � i + 1]
for i ¼ ðd � s þ 1Þþ; . . .; u, and the total rate qsd is
therefore
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csðd�sþ1Þþq
s
0 þ � � � þ csuq

s
0 ¼ qs0 1�

Xd�s

i¼0

csi

 !

¼ jsq 1�
Xd�s

i¼0

csi

 !
: ðA12Þ

Note again that the rate csi is induced from the Pois-
son arrival stream of customers over
(d � s � i, d � s � i + 1] who wish to start in i
units of time. It follows from the Poisson splitting
argument that Ns

d and Ns0
d0 are independent if

ðd; sÞ 6¼ ðd0; s0Þ. This completes the proof. h

PROOF OF LEMMA 9. The assumption cs0 [ 0 for some
s 2 [1, v] implies that in the interval (0, 1], the total
departure rate is strictly greater than the total pre-
arrival rate, i.e., Rv

s¼1q
s
0 [ Rv

s¼1q
s
s. For subsequent

intervals (d, d + 1] for d ≥ 1, we have
Rv
s¼1q

s
d � Rv

s¼1q
s
dþs. Therefore the conditions of

Proposition 2 are satisfied. Proposition 2 implies
that

PðA0 �CÞ� 1

q
þ ed

ð1þ dÞ1þd

 !q

;

where d is defined by Equation (3). This completes
the proof.

PROOF OF PROPOSITION 4. First we assume that cs0 [ 0
for some s 2 [1, v]. For each s 2 [1, v], by applying
union bound and Lemma 9, we have for all
d 2 [0, u] and s 2 [1, v],

Ps
d �

1

q
þ ed

ð1þ dÞ1þd

 !q

;

where d is defined by Equation (3).
We then drop the assumption that cs0 [ 0 for

some s 2 [1, v]. Suppose now cs0 ¼ 0 for all
s 2 [1, v]. This implies that no arriving customers at
time 0 will start the service over (0, 1], and hence
we can ignore the blocking probability over this
interval. Therefore, the above result continues to
hold by following the same arguments. h

PROOF OF THEOREM 3. First, we show that for each
solution frkg of (NLP2), we can construct a solution
of (NLP1) with the same objective value. Specifi-
cally, consider a solution fr0k; a0dskg such that r0k ¼ rk
and a0dsk ¼ 1 if and only if Rd;s�dskðrkÞs [ 0. It can be

verified that the resulting solution is feasible for
(NLP1) and has the same objective value.

Next, we show how to map optimal solution
fr�k ; a�dskg of (NLP1) to a feasible solution of (NLP2)
with the same objective function. For each
k ¼ 1; . . .; M0 � 1, set rk ¼ r�k , and for each
k ¼ M0 þ 1; . . .; M, set rk ¼ r1. It is clear that, for
each k 6¼ M0, the resulting contributions to the objec-
tive value and constraint in (NLP2) are the same as in
(NLP1). Consider now the possible fractional value
a�M0 for class M0. The respective contribution of class
M0 to the objective value is Rd;sr

�
M0a�dsM0�ijM0 ðr�M0 Þj. Simi-

larly, the contribution to constraint in Equation (1) is
Rd;sa�dsM0�dsM0 ðr�M0 Þs. Thus, it is sufficient to show that
there exists a price rM0 such that Rd;srM0

	�dsM0 ðrM0 Þs�Rd;sr
�
M0a�dsM0�dsM0 ðr�M0 Þs and Rd;s�dsM0 ðrM0 Þs

�Rd;sa�dsM0�dsM0 ðr�M0 Þs.
Since Rd;sr

�
M0�dsM0 ðr�M0 Þs � Rd;sr

�
M0a�dsM0�dsM0 ðr�M0 Þs, by

the properties of �dsM0 ðrM0 Þ, we know that there
exists �r 2 ½rM0 ; r1Þ such that Rd;s�r�dsM0 ð�rÞs
¼ Rd;sr

�
M0a�dsM0�dsM0 ðr�M0 Þj. Note that �r� r�M0 , and thus

we obtain Rd;s r�M0�dsM0 ð�rÞs � Rd;s�r�dsM0 ð�rÞs ¼ Rd;s

r�M0a�dsM0�dsM0 ðr�M0 Þs. We conclude that Rd;s�dsM0 ð�rÞs �
Rd;sa�dsM0�dsM0 ðr�M0 Þs, which completes the proof. h
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