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Abstract

We consider a revenue management problem wherein the seller is endowed with a single
type resource with a finite capacity and the resource can be repeatedly used to serve cus-
tomers. There are multiple classes of customers arriving according to a multi-class Poisson
process. Each customer, upon arrival, submits a service request that specifies his service
start time and end time. Our model allows customer advanced reservation times and ser-
vices times in each class to be arbitrarily distributed and correlated. Upon arrival of each
customer, the seller must instantaneously decide whether to accept this customer’s service
request. A customer whose request is denied leaves the system. A customer whose request
is accepted is allocated with a specific item of the resource at his service start time. The
resource unit occupied by a customer becomes available to other customers after serving this
customer. The seller aims to design an admission control policy that maximizes her expected
long-run average revenue.

We propose a policy called the ǫ-perturbation class selection policy (ǫ-CSP), based on the
optimal solution in the fluid setting wherein customers are infinitesimal and customer arrival
processes are deterministic, under the restriction that the seller can utilize at most (1 − ǫ)
of her capacity for any ǫ ∈ (0, 1). We prove that the ǫ-CSP is near-optimal. More precisely,
we develop an upper bound of the performance loss of the ǫ-CSP relative to the seller’s
optimal revenue, and show that it converges to zero with a square-root convergence rate in
the asymptotic regime wherein the arrival rates and the capacity grow up proportionally and
the capacity buffer level ǫ decays to zero.
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1 Introduction

In the past several decades, revenue management has received extensive attention and has
achieved huge success in a wide range of domains, such as hotel management, cloud computing,
workforce management, call center service, and car rental management. As one example, in
the hospitality industry, a hotel uses a finite number of rooms to dynamically accommodate
customers who plan to stay. A customer who plans to stay in the hotel may book in advance by
specifying the check-in and check-out dates. A room occupied by a customer becomes available
after this customer checks out. The hotel dynamically makes the admission decision for each
customer who submits the booking request. As another example, in the cloud computing in-
dustry, a cloud computing firm, such as Google, uses her limited computing capability to serve
customer computing requests that dynamically arrive to the firm. A customer who plans to
receive computational service may submit his request in advance by specifying the time periods
during which he wants his job to be processed. The computing resource used in processing a
customer’s job becomes available after the job is finished. The firm dynamically determines
whether to accept a customer’s computing request. As the third example, in the workforce
management, a firm, such as IBM, uses her finite workforce to work on client projects that
dynamically arrive to the firm. A client who submits a project specifies when the firm can start
to access to the project and when the firm has to complete the project. The workforce resource
used in working on one project is released to service other clients after this project is completed.
The firm dynamically determines whether to accept a client’s project.

The commonalities of examples above motivate us to study a more general revenue manage-
ment problem wherein the seller is endowed with a limited number of resource that are reusable
over time and a customer may reserve his service in advance. To be specific, we consider the
following model: The monopolist seller is endowed with a homogeneous pool of a single type of
reusable resource with a known fixed capacity before the start of the selling season. The seller
uses her resource to deliver service to customers over an infinite horizon. The resource occu-
pied by a customer becomes available to other customers after finishing serving this customer.
Customers are segmented into multiple classes. In each class, customers dynamically arrive
to the system according to a Poisson process. Each arriving customer, at his time of arrival,
submits a request for the service that specifies his service start time and end time. A customer
is allowed to make an advanced reservation that the service may start after he submits the
request. In each class, customers have the same per unit of time value for the service, but their
advanced reservation times and service times may be potentially heterogeneous and arbitrarily
correlated. For each arriving customer, the seller can observe which class this customer falls
into and instantaneously decides whether to accept this customer’s service request. The seller
may accept a customer’s service request only if serving this customer will not drive the seller to
run out of resource capacity during the periods in which this customer requests to reserve. A
customer whose request is denied permanently leaves the system. A customer whose request is
accepted is allocated with a specific item of the resource at his service start time, rather than his
arrival time. The seller aims to devise an admission control policy that maximizes her expected
long-run average revenue.

The seller faces the following challenges when computing the optimal policy:

1. Limited information. Deriving the optimal solution requires the seller to have the perfect
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information about the distributions and correlations of customer advanced reservation
times and services times. However, the seller may lack such information.

2. Curse of dimensionality. Suppose the seller perfectly knows the information above. Then
the seller needs to solve a dynamic optimization problem to compute the optimal policy.
However, even in special cases (e.g., no advanced reservation allowed and with exponen-
tially distributed service times), the resulting dynamic program seems computationally
intractable because the corresponding state space grows up very fast.

We, therefore, seek a heuristic policy that can be readily implemented and also yield provably-
good performance.

1.1 Main Contributions

We propose an ǫ-perturbation class selection policy (ǫ-CSP). This policy, defined later in op-
timization problem (1), is the optimal solution in the fluid setting wherein customers are in-
finitesimal and customer arrival processes are deterministic, under the restriction that the seller
can use at most (1− ǫ)× 100% percent of her capacity. This policy has the following appealing
features:

1. Simple implementation. Under the ǫ-CSP, the seller’s admission decision is only based on a
customer’s class and whether the resource during the periods that a customer requests for
is available. The seller always admits a customer as long as this customer is in some certain
classes and the seller has available resource to serve this customer during his requested
service periods. Otherwise, a customer’s request is always rejected.

2. Robustness. Under the ǫ-CSP, while deciding whether to admit a customer into the system,
the seller does not need to have any information about the distributions or the correlations
of customer advanced reservation times and services times. Therefore, the seller avoids
taking the risk of misspecifying customer demand models.

3. Buffer for uncertainty. The reason that we require the seller to reserve ǫ× 100% percent
of capacity for not selling to customers in the fluid model is as follows. Recall from
queuing theory that in a service system with demand uncertainty, such as customer arrival
uncertainty and service time uncertainty, if the system’s average utilization ratio is 1, then
either customers wait in the system for extremely long times or a large fraction of customers
are not admitted into the system due to non-availability of the resource. However, such
bad situations can be significantly improved if the system has even only a small capacity
buffer, ǫ × 100% percent of capacity not used in the fluid model, to deal with various
uncertainties (e.g., uncertainties in customer arrival times, advanced reservation times,
and service times) in our stochastic model.

Our main results about the performance of the ǫ-CSP are as follows:

1. Finite upper bound. The expected long-run average revenue loss of the ǫ-CSP has a finite
upper bound. (This result is formally stated later in Theorem 1.)
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2. Asymptotic optimality. In the asymptotic regime wherein the customer arrival rates and
the seller’s capacity proportionally grow large (multiplied by a sufficiently large number
n) and the capacity buffer level ǫ goes down to zero with an appropriate speed (scaled by
n as well), the ǫ-CSP is optimal. In addition, the performance loss of the ǫ-CSP relative
to the seller’s optimal revenue decays to zero in the speed that is almost as fast as 1/

√
n.

This relative performance loss in the asymptotic regime only depends on the capacity
buffer level ǫ, rather than any other information, such as the seller’s capacity level or any
information about customer arrivals, advanced reservation times, or service times. (This
result is formally stated later in Theorem 2.)

3. Numerical optimality. Our numerical experiments show that the ǫ-CSP performs within a
few percentages of the optimality for a large set of parameters (even in the non-asymptotic
regime).

We develop a novel approach to analyze the performance of the ǫ-CSP. We first show that the
ǫ-CSP induces a well-structured stochastic process called a loss network system with advanced
reservations (specifically, a M/G/C/C loss system with advanced reservations). Loss network
systems are concerned with the setting in which customers stochastically arrive to the system
and are being served as long as there is available capacity. Customers who find a fully utilized
system are lost (see the survey by Kelly (1991)). We are able to derive explicit upper bounds on
the steady-state blocking probability (i.e., the probability that a random customer at the steady
state will find a fully utilized system), and analyze them asymptotically in the above regimes.
As seen from our literature review below, there have been relatively few successful attempts to
characterize the blocking probabilities for loss network models with advanced reservations. Mod-
els with advanced reservations are significantly harder to analyze than those without advanced
reservations. One of the major difficulties in models with advanced reservations is the fact that
a randomly arriving customer effectively observes a nonhomogeneous Poisson process that is
induced by the already reserved service intervals. Moreover, analyzing the blocking probability
of an arriving customer requires considering the entire requested service interval instead of the
instantaneous load of the system. Analyzing the load over an interval immediately introduces
correlation that is hard to analyze. The upper bound on the blocking probability is obtained
by considering an identical system with infinite capacity, where all customers are admitted (a
M/G/∞ system with advanced reservations). The probability of having more than C customers
reserved in the infinite capacity system provides an upper bound on the blocking probability in
the original system; we call this the virtual blocking probability. We obtain an exact analytical
expression for this virtual blocking probability and then analyze it asymptotically. The analy-
sis of the virtual blocking probability is tight and constitutes a contribution to the analysis of
M/G/∞ systems with advanced reservations. The analysis approaches significantly depart from
the existing literature, and we believe that they can be effective in analyzing other core models
in operations management.

The remainder of the paper is organized as follows. §1.2 provides a literature review. §2
presents our model. §3 establishes an upper bound of the seller’s optimal revenue and formally
defines the ǫ-CSP. §4 analyzes the performance of the ǫ-CSP. §5 extends our model to a pricing
model. §6 presents the dynamic programming formulation and demonstrates the empirical
effectiveness of our policy. §7 concludes the paper with some future research directions. The
proofs of technical lemmas and propositions are provided in the Appendix.
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1.2 Relevant Literature

Our work is closely related to the following two streams of literature: loss network systems and
revenue management.

Loss Network Systems. Loss network systems without advanced reservation are well-known,
and have been studied extensively, primarily in the context of communication networks (e.g., the
survey by Kelly (1991)) and recently other application domains. Two of the major issues in the
literature on loss networks have been the study and design of heuristics for admission control
(e.g., Miller (1969), Ross and Tsang (1989), Key (1990), Kelly (1991), Hunt and Laws (1997),
Puhalskii and Reiman (1998), Fan-Orzechowski and Feinberg (2006)), and the development of
approximations and bounds as well as sensitivity analysis of blocking probabilities with respect
to input parameters and resource capacities (e.g., Erlang (1917), Sevastyanov (1957), Kaufman
(1981), Burman et al. (1984), Whitt (1985), Kelly (1991), Ross and Yao (1990), Zachary (1991),
Louth et al. (1994), Kumar et al. (1998) and Adelman (2006)).

However, there have been relatively few successful attempts to analyze loss network systems
with advanced reservation. Luss (1977) and Virtamo and Aalto (1991) analyze models for
accepting and rejecting customer reservations for a discrete-time model. In their models, all
customers arrive before the start of a finite service horizon and request a reservation for a
start time that is uniformly distributed over the horizon. Closer to our setting, Greenberg
et al. (1999) and Wischik and Greenberg (1998) consider a loss network system with advanced
reservations in the context of large-bandwidth resource sharing in telecommunication. They
consider instantaneous request calls as well as book-ahead calls. Their admission control policy
is based on determining, under the assumption that the new call is admitted, whether the
probability that a call in progress will eventually need to be interrupted exceeds a threshold
value. Srikant and Whitt (2001) subsequently extend the model and results to cover multiple
classes of instantaneous request calls. The interrupt and blocking probabilities are calculated
by a normal approximation based on the central limit theorem. There are two major points
of departure between the aforementioned works and ours. First, their instantaneous request
calls have an unspecified (random) holding time, and could be interrupted during the service.
In contrast, the service or holding times of our instantaneous requests are determined (drawn
from a given distribution) upon arrival, and the service cannot be interrupted once admitted
into the system. We remark that the service interruptions are common in large communication
systems, but they are typically not allowed in many other service systems, such as hotel room
management or car rental management. Second, their algorithms are based on approximating
the interrupt and blocking probabilities, which work very well in simulation but do not admit
any tractable analytical bounds. In contrast, we develop an explicit upper bound on the blocking
probabilities and study its asymptotic behavior with a provable convergence rate.

Closer to our work, Coffman-Jr et al. (1999) derive explicit formulae for the limiting blocking
probabilities for several special cases, for instance, in a setting where the reservation distribu-
tion is uniform and all requested intervals have unit length. They extend the result to more
general reservation distributions by relating the problem to an online interval packing prob-
lem. Lu and Radovanovic (2007) study the asymptotic blocking probabilities when the capacity
of the system approaches infinity with sub-exponential resource requirements. van de Vrugt
et al. (2014) characterize the blocking probabilities for a single-server queue with deterministic
short notice (time between arrival and starting service time) as well as discrete notice times.
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Maillardet and Taylor (2016) bound the blocking probability via calculating the transient and
stationary distributions for several performance measures for the infinite-server queue. From a
technical viewpoint, our work is also related to the stream of literature approximating blocking
probabilities for the Mt/G/∞ queue as well as Mt/G/C/C loss systems where the arrival pro-
cess is nonhomogeneous Poisson (e.g., Eick et al. (1993b,a), Massey (1985)), and the stream of
literature analyzing queues with future information (e.g., Spencer et al. (2014), Xu (2015)).

The counterpart systems with a deterministic sequence of arrivals and advanced reservation
have been extensively considered in the appointment scheduling literature (see the survey by
Gupta and Denton (2008)). Their objective is typically minimizing the expected costs of waiting
and idle times (see, e.g., Kaandorp and Koole (2007), Begen and Queyranne (2011), Ge et al.
(2013), Begen et al. (2012), Kong et al. (2013), Mak et al. (2014)). In contrast to this stream
of literature, our model incorporates stochastic arrivals over time, and does not model waiting
lines (as we consider loss queues). They focus on developing methods in stochastic programming,
which is quite different from our work.

The theoretical results in the loss network systems with advanced reservation find interesting
applications in a class of revenue management problems. The most relevant prior work in these
applications is Levi and Radovanovic (2010) which use a simple knapsack-type linear program
(LP) to devise a conceptually simple admission control policy called class selection policy (CSP)
for the models without advanced reservation (i.e., all customers wish to start service upon
arrival). The optimal solution obtained by solving the LP guides the policy to select the more
profitable classes of customers. The LP provides an upper bound on the optimal expected long-
run average revenue and can be used to analyze the performance of the CSP. The analysis is
based on the fact that the CSP induces a stochastic process that can be reduced to a classical loss
network model without advanced reservation. They develop explicit expressions for the resulting
blocking probabilities induced by the CSP, and then show that the CSP is guaranteed to achieve
at least half of the optimal long-run revenue. Also, the CSP is shown to be asymptotically
optimal when the capacity goes to infinity. The knapsack-type LP considered by Levi and
Radovanovic (2010) has been previously discussed by several other researchers (see, e.g., Key
(1990), Hunt and Laws (1997)). In fact, a variant of the CSP has been discussed by Key
(1990) and Kelly (1991), who analyze the randomized thinning policy. Moreover, Key (1990)
has shown that the variant of the CSP for the single resource case without advanced reservation
is asymptotically optimal in the critically loaded regime. Iyengar and Sigman (2004) have also
used an identical LP to devise exponential penalty function control policies to approximately
maximize the expected reward rate in a loss network. All of these works have considered models
without advanced reservation.

Revenue Management. Revenue management is today a robust area of study with applica-
tions ranging from traditional domains such as hospitality to more modern ones, such as cloud
computing. The text by Talluri and van Ryzin (2005), Özer and Phillips (2012), den Boer (2015)
provides excellent overviews of this area.

A number of revenue management literature studies settings in which the seller uses a finite
number of reusable resources to serve customers. Maglaras (2006) studies a setting wherein the
seller is endowed with a single unit of resource that can be repeatedly used to serve customers.
There are multiple classes of customers. Customers in each class arrive to the system according
to a Poisson process, with the arrival rate modulated by the seller’s dynamically posted prices

6

This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



for the service. Customer service times are exponentially distributed. A customer waits in
the system till the resource is idle and the seller decides to serve this customer. The seller
dynamically determines prices for each class of customers and the serving priority sequence of
all classes. The seller earns revenue from serving customers and incurs customer waiting costs
and the server operating cost. The seller aims to find a joint pricing and sequencing policy that
maximizes her long-run expected profit. Maglaras (2006) proposes a policy that is the optimal
solution of the corresponding fluid model, and shows that this heuristic policy performs well.
Based on this paper, Besbes and Maglaras (2009) study a setting wherein the seller cannot
observe the customer arrival rate. Lei and Jasin (2016) propose two heuristic pricing policies.
The first heuristic pricing policy is static that is optimal of an associated deterministic fluid
model. The second heuristic pricing policy is constructed based on the static pricing policy by
frequently making adjustments on previous demand realizations. They show that both heuristic
pricing policies are asymptotically optimal. Nadarajah et al. (2015) study a setting wherein
a customer is allowed to make a reservation in advance and request to use the resource for
multiple periods. They show that pricing multiple-period usage as a bundle yields a higher
revenue than pricing resource on each period separately and charge the sum of these prices over
a multiple-period usage. The paper by Borgs et al. (2014) considers a setting where a firm with
time-varying capacity sets prices over time to maximize revenues in the face of forward-looking
customers. Inventory cannot be carried over from one epoch to the next. This paper assumes
that customer arrival times, deadlines and valuations are assumed known by the firm. The
focus of the paper is thus on the dynamic optimization problem that arises in this setting and
the authors contribute a surprising dynamic programming formulation. Chen and Shi (2016)
consider a setting with forward-looking customers. They allow customer arrival times, serve
start times, service end times, service valuations, and waiting disutilities to be customer private
information and heterogeneous among different customers. They adopt a mechanism design
approach to show that a pricing policy that simply posts a static price for each period performs
asymptotically optimal.

2 Model

We consider a monopolist seller who uses a single type resource to serve customers over an
infinite horizon. At time zero, the seller is endowed with the capacity of C units of the resource.
The capacity does not change over the course of the season. The resource is reusable that the
resource occupied by a customer becomes available to other customers after finishing serving
this customer.

There are M different classes of customers. Class k ∈ {1, . . . ,M} customers arrive to the
system according to an independent Poisson process with a class-dependent rate λk. Each class-
k customer who arrives at time tk, at his time of arrival, requests to reserve one unit of the
capacity for a specified service that starts at time tk + dk and finishes at time tk + dk + sk,
where the advanced reservation time dk ∈ {0, 1, · · · , u} is discrete with mean νk and variance
σ2
d,k, and the service time sk ∈ {0, 1, · · · , v} is discrete with mean µk and variance σ2

s,k. We use
capital letters Dk and Sk to denote the distributions of class-k customer advanced reservation
times and service times, respectively (see Figure 1). We assume that for customers in each class
k, Dk and Sk are independent of customer arrival process and between customers; however, per
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customer, Dk and Sk could be arbitrarily correlated.

time
arrival requested service

Dk Sk

rkreward rateλ

Figure 1: Reservation distributions and service distributions

Upon each customer’s request, the seller has to instantaneously decide whether to accept his
request. For a customer who arrives at time t and requests to get the service during time interval
[t+d, t+d+s), the seller accepts his request only if upon his arrival at time t, there is at least one
unit of capacity that is available (i.e., not reserved before time t) throughout the entire requested
interval [t+d, t+d+s), i.e., this request can only be satisfied if the maximum number of already
reserved resource units over [t+d, t+d+s) is strictly smaller than the capacity C. However, the
seller may also reject a customer’s request if capacity is always available throughout the service
time interval that this customer requests for. Doing so might possibly enable the seller to serve
more profitable customers with the limited resource.

A customer whose request is not accepted upon his arrival permanently leaves the system
without receiving any service throughout the season. Each accepted customer request cannot
be canceled or changed during the season. For each class-k customer whose request is accepted,
the seller collects revenue from this customer with rk per unit of the service time.

For each customer whose request is already accepted, at his service start time, rather than
his service request time, a specific unit among C units of the resource that is idle at that point
of time is allocated to serve him. If more than one customer whose requests are accepted have
the same service start time, at their common service start time, idle units among C units of the
resource are allocated to these customers in a random order. This is usually the case in practice.
For instance, a hotel typically assigns a room to a reserved customer only when he checks in the
hotel. Also, a car rental company typically assigns a car to a reserved customer only when he
arrives at the rental car pick-up location (e.g., the airport).

Denote Π to be the collection of all feasible admission policies with the resource allocation
rule specified above. Every policy π ∈ Π guarantees that an accepted customer can keep on
using the same unit of the resource during his entire requested service interval. This avoids the
undesirable situation in which an accepted customer is forced to switch to another resource unit
during his requested service interval. We provide a formal proof of this result below.

Proposition 1. Under every policy π ∈ Π, for a customer who arrives at time t and requests
to get the service during time interval [t + d, t + d + s), if his request is accepted, then he is
guaranteed to keep on using the same unit of the resource during [t+ d, t+ d+ s).

8

This	article	is	protected	by	copyright.	All	rights	reserved

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



Denote Rπ(T ) to be the revenue that the seller achieves over the interval [0, T ] under policy
π ∈ Π. Denote the expected long-run average revenue under policy π ∈ Π as

R(π) , lim inf
T→∞

1

T
E[Rπ(T )].

The seller aims to find a policy that maximizes her expected long-run average revenue (with the
optimal revenue denoted by R(OPT )):

π∗ ∈ argmax
π∈Π

R(π).

It is typically quite challenging to solve this stochastic optimization problem optimally.
Reasons are as follows:

1. Limited information. Deriving the optimal solution requires the seller to have the perfect
information of the distributions and correlations of customer advanced reservation times
and service times. However, our model does not require the seller to have such knowledge.

2. Curse of dimensionality. Suppose the information above is available to the seller, then the
seller needs to solve a dynamic program. However, even in special cases (e.g., no advanced
reservation allowed and with exponentially distributed service times), the resulting dy-
namic program seems computationally intractable because the corresponding state space
grows up very fast.

Therefore, in the rest of this paper, rather than deriving the optimal solution to the above
revenue maximization problem, we seek a heuristic policy that can be readily implemented and
guarantee a good performance.

3 ǫ-Perturbation Class Selection Policy

We describe a simple deterministic linear program (LP) that provides an upper bound on (1−ǫ)
times the achievable expected long-run average revenue for every small positive ǫ. The LP con-
ceptually resembles to the one used by Levi and Radovanovic (2010), Key (1990) and Iyengar
and Sigman (2004) who study models without advanced reservation. It is also similar in spirit to
the one used by Adelman (2007) in the queueing network framework with unit resource require-
ments again without advanced reservation. We shall show how to use the optimal solution of the
LP to construct a simple admission control policy that is called ǫ-perturbation class selection
policy (ǫ-CSP). The original class selection policy is first analyzed by Levi and Radovanovic
(2010) in models without advanced reservation. In the end of this section, we present our main
results of the paper about the performance of the ǫ-CSP in the stochastic setting that we in-
troduce in §2. We establish an upper bound of the revenue loss under the ǫ-CSP relative to the
optimal revenue. We show that the relative revenue loss under the ǫ-CSP diminishes to zero in
the asymptotic (high volume) regime wherein customer arrival rates {λk : k = 1, · · · ,M} and
the seller’s capacity C grow up proportionally and ǫ is scaled down to converge to zero with an
appropriate speed. We also characterize the speed that the relative revenue loss converges to
zero in the asymptotic regime.
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At any point of time t, the state of the system is specified by the entire booking profile
consisting of the class, reservation and service information of each customer in the booking
system as well as the customers currently served. Without loss of generality, we restrict our
attention to state-dependent policies. Note that each state-dependent policy induces a Markov
process over the state-space. Moreover, by following similar arguments as in Lu and Radovanovic
(2007) and Sevastyanov (1957), one can show that the induced Markov process has a unique
stationary distribution which is ergodic. (The detailed proof of ergodicity can be found in Levi
and Shi (2015)). Since any state-dependent policy induces a Markov process on the state-space of
the system that is ergodic, for a given state-dependent policy π, there exists a long-run stationary
probability απ

dsk for accepting a class-k customer who wishes to start service in d units of time
for s units of time, which is equal to the long-run proportion of accepted customers of this type
while running the policy π. In other words, any state-dependent policy π is associated with the
stationary probabilities απ

dsk for all possible reservation time d, service time s and class k. The
mean arrival rate of accepted class-k customers with reservation time d and service time s is
απ
dskλdsk, where λdsk , λkP (Dk = d, Sk = s) is the arrival rate of a subset of class-k customers

who wishes to start service in d units of time for s units of time. By applying Little’s Law and
the PASTA property (see Karlin and Taylor (1981)), the expected number of class-k customers
with reservation time d and service time s being served in the system under state-dependent
policy π is απ

dskλdsks. It follows that under policy π the expected long-run average number of

resource units being used to serve customers can be expressed as
∑M

k=1

∑

d,s α
π
dskλdsks. Fix a

small ǫ ∈ (0, 1), this gives rise to the knapsack LP below:

max
{απ

dsk
}

M∑

k=1

∑

d,s

rkα
π
dskλdsks, (1)

s.t.

M∑

k=1

∑

d,s

απ
dskλdsks ≤ (1− ǫ)C,

0 ≤ αdsk ≤ 1, ∀d, s, k.
Note that for each feasible state-dependent policy π, the vector απ = {απ

dsk} is a feasible solution
for the LP with objective value equal to the expected long-run average revenue of policy π.

Lemma 1. Let {α∗
dsk} be the optimal solution of (1). Then the optimal objective value of (1)

is at least (1− ǫ) times the optimal expected revenue, i.e.,

M∑

k=1

∑

d,s

rkα
∗
dskλdsks ≥ (1− ǫ)R(OPT ).

The LP defined in (1) can be solved greedily. Without loss of generality, assume that classes
are re-numbered such that r1 ≥ r2 ≥ . . . ≥ rM . An optimal solution to (1) is as follows: there
exists a class M ′ ≤ M such that

α∗
k , α∗

dsk =







1 if k ≤ M ′ − 1,

min

{
(

(1−ǫ)C−
∑

M
′−1

k=1 λkµk

)

λ
M′µM′

, 1

}

if k = M ′,

0 if k ≥ M ′ + 1.

This solution from solving the LP gives rise to the ǫ-CSP:

10
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(1) For each k = 1, . . . ,M ′−1, accept the customer upon arrival if there is sufficient unreserved
capacity throughout the requested service interval.

(2) If k = M ′, accept with probability α∗
M ′ ∈ (0, 1] if there is sufficient unreserved capacity

throughout the requested service interval.

(3) For k = M ′ + 1, . . . ,M , reject.

Without loss of generality, we assume that there is no fractional variable in the optimal solution
α∗, i.e., for each k = 1, . . . ,M ′, α∗

k = 1. (If α∗
M ′ is fractional, we think of class M ′ as having an

arrival rate λ′
M ′ = α∗

M ′λM ′ and then eliminate the fractional variable from α∗.)

We denote by

ρ ,

M∑

k=1

α∗
kλkµk

the average number customers that are in service per unit of time. Therefore,

ρ = min

{

(1− ǫ)C,
M∑

k=1

λkµk

}

. (2)

The ǫ-CSP has the following salient features.

1. Simple implementation. The ǫ-CSP can be easily implemented by simply checking whether
a customer’s class k ≤ M ′ and whether the resource during the periods that a customer
requests for is available. The seller always admits a customer as long as this customer is
in some certain classes and the seller has available resource to serve this customer during
his requested service period. Otherwise, a customer’s request is always rejected.

2. Robustness. While deciding which classes of customers to admit into the system, the seller
does not need to have any knowledge about the distributions or correlations of customer
advanced reservation times and services times. Therefore, the ǫ-CSP avoids the seller to
take the risk of misspecifying customer demand models.

3. Buffer for uncertainty. The reason that we do not allow the seller to fully utilize the
capacity in the fluid model is as follows. Recall from queuing theory that in a service
system with demand uncertainty, such as customer arrival uncertainty and service time
uncertainty, if the system’s average utilization ratio is 1, then either customers wait in
the system for extremely long times or a large fraction of customers are not admitted
into the system due to non-availability of resources. However, such bad situations can
be significantly improved if the system has even only a small capacity buffer, ǫ × 100%
percent of capacity not used in the fluid model, to deal with various uncertainties (e.g.,
uncertainties in customer arrival times, advanced reservation times, and service times) in
our stochastic model.

We can assume that without loss of generality α∗
M ′ = 1. (If it is fractional, we can simply

consider the α∗
M ′-thinned Poisson arrival process.) If the M ′-class arrival processes are merged,
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the merged arrival process has an aggregate rate λ =
∑M ′

k=1 λk, and a customer upon arrival
has probability of λk/λ to be a class-k customer. Define v = maxk vk and u = maxk uk. Let
S (with finite discrete support [1, v] and mean µ) and D (with finite discrete support [0, u])
be the merged service and reservation distributions. The joint probability mass function of S
and D is fD,S(d, s) , P(D = d, S = s) =

∑M ′

k=1 λk/λ · P(Dk = d, Sk = s), for d ∈ [0, u] and
s ∈ [1, v]. Similarly, the marginal probability mass functions of S and D are fS(s) , P(S =

s) =
∑M ′

k=1 λk/λ · P(Sk = s) and fD(d) , P(D = d) =
∑M ′

k=1 λk/λ · P(Dk = d), respectively, for
s ∈ [0, u] and d ∈ [1, v]. It is sufficient for our analysis to use only the marginal probability mass
functions. This allows for arbitrary correlation between the reservation and service distributions
of a given customer.

Now, we present our main results of this paper about the performance of the ǫ-CSP. We
introduce the following notation to state our main results. Define

δ ,

(
ǫ

1− ǫ
− log(1 + ρ)

ρ log θ−1

)+

, (3)

where the traffic intensity ρ is given in (2), and 1 − θ is the minimal non-zero reservation
probability, i.e.,

θ , 1− min
M ′∈{1,··· ,M}
s∈[1,v], d∈[0,u]

{

P
(
D ≤ d | k ≤ M ′, S = s

)
∣
∣
∣
∣
P
(
D ≤ d | k ≤ M ′, S = s

)
> 0

}

. (4)

The following theorem establishes a finite upper bound of the revenue loss of the ǫ-CSP.

Theorem 1. Consider the revenue management model with reusable resources and advanced
reservations. The expected long-run average revenue loss of the ǫ-CSP relative to the optimal
expected long-run average revenue has the following finite upper bound:

R(ǫ-CSP )

R(OPT )
≥
(

1− 1

ρ
−
(

eδ

(1 + δ)1+δ

)ρ)

(1− ǫ) , (5)

where ρ is given in (2) and δ is given in (3).

This finite bound spells out explicitly the dependence on the traffic intensity ρ and the
buffer size ǫ. More importantly, this finite bound enables us to characterize the convergence rate
to optimality when we scale both the arrival rate and the capacity simultaneously. The next
theorem shows that the ǫ-CSP is asymptotically optimal with a provable convergence rate.

Theorem 2. Consider the revenue management model with reusable resources and advanced

reservations. Consider a sequence of problems where in the nth problem, λ
(n)
k = nλk for all

k ∈ {1, · · · ,M}, C(n) = nC, and ǫ(n) = ǫ/
√
n1−α with α ∈ (0, 1). We have

R(n)(ǫ(n)-CSP )

R(n)(OPT )
≥ 1− ǫ√

n1−α
+ o

(
1√
n1−α

)

. (6)

In the asymptotic regime, for the sequence of problems as defined in the above theorem,
the ǫ-CSP is optimal. In addition, the relative performance loss (6) decays to zero in the
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speed that is arbitrarily close to 1/
√
n as α is sufficiently small. The relative performance loss

in the asymptotic regime only depends on the capacity buffer level ǫ, rather than any other
information, such as the seller’s capacity level C or any information about customer arrivals,
advanced reservation times, or service times.

In the next section, we are devoted to proving this theorem about the performance of the
ǫ-CSP in the stochastic setting introduced in §2. The key idea is as follows. Since the ǫ-CSP
accepts the profitable classes 1 toM ′ and rejects the nonprofitable classesM ′+1 toM , it induces
a well-structured stochastic process called loss network systems with advanced reservation. Each
class k = 1, . . . ,M induces a Poisson arrival stream with respective rate α∗

kλk. Thus, for each
class k with α∗

k = 1, the arrival process is identical to the original process, each class k with
α∗
k = 0 can be ignored. The key aspect of the performance analysis of the ǫ-CSP boils down to

finding an upper bound on the blocking probabilities in these loss network models.

4 Analysis of Blocking Probabilities

We analyze the performance of the ǫ-CSP in the stochastic setting introduced in §2. We will
prove the performance loss (5) and its asymptotic behavior (6).

Before delving into details, we first give an overview of our analysis. Analyzing the original
capacitated system as introduced in §2 (i.e., a M/G/C/C system with advanced reservation)
seems rather difficult. Instead, we consider the counterpart system with infinite capacity (i.e.,
a M/G/∞ system with advanced reservation) while keeping all other problem parameters fixed.
In this counterpart system, all customers are admitted since there are an infinite number of
resources. It is not hard to see that, for each sample path and each time t, the admitted
customers reserved to get service in the original capacitated system are a subset of those reserved
in the infinite capacity counterpart system. Consider now a customer arriving at some random
time t in the counterpart system with infinite capacity requesting service interval [t+d, t+d+s].
Define the virtual blocking probability to be the probability that the maximum reserved capacity
over the requested service interval [t+d, t+d+s] just prior to time t is larger than C. Since the
set of served customers in the infinite capacity system is always a superset of that served in the
original capacitated system, it follows that the virtual blocking probability is in fact an upper
bound on the blocking probability in the original capacitated system. It makes sense to analyze
the upper bounds of the virtual blocking probabilities, which, in turn, provides us upper bounds
on the blocking probabilities in the original capacitated system. Let us start with the simplest
non-trivial case (which gives us some insights into how to analyze such complex models), and
gradually develop our main results for the general case.

4.1 The Simplest Non-Trivial Case: Two-Point Distribution

We will start the analysis with the simplest non-trivial case, and then extend it gradually to
the more general case. Suppose that S takes only one value s = 1 deterministically. Then the
traffic intensity is ρ = λµ = λ. In addition, assume that D follows a two-point distribution,

D =

{

0 w.p. γ,

1 w.p. 1− γ,

13
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i.e., fD(0) = γ and fD(1) = 1−γ. That is, an arriving customer either wants to start the service
immediately or in one unit of time. Consider the counterpart system with an infinite number
of servers in the steady state (note that the steady state exists due to the induced semi-Markov
process). Upon a customer arrival to the system at some time t, all the starting service times
of the customers who had arrived prior to t are already known. For ease of exposition, we call
these starting service times pre-arrivals. Similarly, we call all the starting service times of the
customers, who will arrive after t post-arrivals. Note that the pre-arrivals and post-arrivals are
always defined with respect to the current time t. It is important to observe that the virtual
blocking probability at time t (as well as the blocking probability in the original capacitated
system) is independent of post-arrivals. Without loss of generality, we assume that t = 0 and
the system reaches equilibrium.

Lemma 2 below characterizes the pre-arrival processes (i.e., the booking profile) observed by
a customer arriving at time 0 in the steady state. Let ⌈r⌉ be the smallest integer not less than
r.

Lemma 2. Consider the counterpart system with an infinite number of servers. Then a customer
arriving at the system at time 0 in the steady state, observes that the pre-arrivals follow a non-
homogeneous Poisson process with piecewise rate η(r) at time r, where

η(r) =







ρ, if r ≤ 0,

(1− γ)ρ, if r ∈ (0, 1],

0, if r > 1.

The proof of Lemma 2 is simple by using Poisson splitting arguments. In order to figure
out how likely this customer (arriving in equilibrium) gets blocked, it is important to know the
entire booking profile (consisting of committed services not yet started) at the moment of his
arrival. Lemma 2 gives a compact description of this pre-arrival process as seen from t = 0.

Let Nd(r) where r ∈ [0, 1] be the Poisson counting process of the number of pre-arrivals over
the interval [d − 1, d] as seen from time 0. The corresponding rates of this Poisson counting
process are given by Lemma 2. Next, we introduce the notion of mirror image of a Poisson
counting process. The mirror image of a Poisson counting process Nd(r), denoted by Ñd(r),
is a backward counting process of Nd(r). More formally, Ñd(r) = Nd(1) − Nd(1 − r) for each
r ∈ [0, 1]. It is evident that Ñd is also a Poisson process with the same rate as Nd. We will use
Ñd(r) to model the departure process over the interval [d, d+ 1] in reverse time.

Now let B be the event that a customer arriving at time 0 in the steady state is virtually
blocked. The conditional long-run virtual blocking probability Pd , P(B | D = d), for each
d = 0, 1. Lemma 3 below characterizes P0 and P1 based on the counting processes introduced
above. Figure 2 gives a schematic representation of the two processes as observed a random
customer arriving at t = 0. For clarity, we also use Nd(·; ρ) to denote a Poisson counting process
with a given rate ρ.

Lemma 3. Consider the counterpart system with an infinite number of servers. If a customer
arrives at time 0 in the steady state and requests service S = 1 deterministically to commence in
D units of time (D = 0 or 1 with probabilities γ and 1− γ, respectively), the conditional virtual
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Figure 2: One-class departure and pre-arrival processes

blocking probabilities are given by

P0 , P(B | D = 0) = P

(

max
r∈[0,1]

{

Ñ0(1− r; ρ) +N1(r; (1− γ)ρ)
}

≥ C

)

,

P1 , P(B | D = 1) = P

(

Ñ1(1; (1− γ)ρ) ≥ C
)

,

where Nd (d = 0, 1, 2) is a Poisson counting process with rate ρd and Ñd (d = 0, 1) is the mirror
image of Nd with the same rate ρd. Moreover, ρ0 = ρ, ρ1 = (1− γ)ρ and ρ2 = 0.

Lemma 3 essentially tells us that the virtual blocking probability can be expressed in terms
of the maximum of the sum of these two Poisson counting processes running towards each other
(see Figure 3), one of which representing the pre-arrival process (the committed services not yet
started) and the other one representing the departure process. The random process (inside the
max operator) is hard to analyze, which is very different than merging two Poisson counting
processes running in the same direction.

Figure 3: Two Poisson counting processes running towards each other

To analyze the above blocking probabilities, we shall prove a more general statement that
will be the key building block in our analysis of the general case.

Proposition 2. Let N0, N1 and N2 be Poisson counting processes (mutually independent) with
rates ρ, θ1ρ and θ2ρ, respectively, where 1 > θ1 ≥ θ2 ≥ 0 are fixed constants. Let Ñ0 and Ñ1 be
the mirror images of N0 and N1, respectively. Define two random variables X and Y as follows,

X , max
r∈[0,1]

{

Ñ0(1− r; ρ) +N1(r; θ1ρ)
}

, Y , max
r∈[0,1]

{

Ñ1(1− r; θ1ρ) +N2(r; θ2ρ)
}

. (7)
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Then,

max {P(X ≥ C),P(Y ≥ C)} ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

,

where

δ =

(
ǫ

1− ǫ
− log ρ

ρ log θ−1
1

)+

.

Note that P0 and P1 (in Lemma 3) can be obtained by simply setting θ1 = (1 − γ) and
θ2 = 0 in X and Y above. To prove Proposition 2, we provide an alternative characterization
of X and Y above based on a downward-drifting asymmetric random walk process that takes
a down-step, for each departure, and an up-step, for each pre-arrival. We would like to show
that asymptotically the maximum level of the random walk stays relatively close to its starting
position by showing that the rate of the random walk going up is sublinear in

√
ρ.

Consider the merged process induced on [0, 1] by the two Poisson counting processes Ñ0

and N1. Let N = Ñ0(1; ρ) + N1(1; θ1ρ) denote the total number of occurrences (pre-arrivals
and departures) over [0, 1] of the two independent Poisson counting processes of Ñ0 and N1.
Note that since Ñ0 and N1 are independent of each other, N is a Poisson random variable with
rate (1 + θ1)ρ. Conditioning on N = n, the induced merged process has n points uniformly
distributed over the interval [0, 1]. By the splitting argument applied to the merged process,
each of these n points has independent probability p = θ1ρ

(1+θ1)ρ
= θ1

1+θ1
< 1

2 to be from the

process N1 and probability q = 1 − p from the process Ñ0. If we associate +1 with each point
from N1, and −1 with each point from Ñ0, then each configuration of these n points induces a
downward-drifting asymmetric random walk of length n. The random walk starts at the origin
0, with up probability p and down probability q.

Lemma 4. Let Rn denote the corresponding random walk of length n described above, and Mn

denote the maximum level attained by Rn, and Gn denote the overall number of down-steps
taken by Rn. Also let Xn , (X | N = n) with X defined in (7). Then, Xn = Gn +Mn almost
surely.

However, it should be noted that Mn and Gn are correlated. To address the correlation
between Mn and Gn, we will replace Mn by M∞. However, first we would like to obtain an
expression for the hitting probability of a downward-drifting asymmetric random walk. This is
done in Lemma 5 given below. (Lawler (2006) provides a proof in Chapter 2, Section 2.2; for
completeness, we present a shorter proof.)

Lemma 5. Consider a random walk defined by a sequence of independent random variables {Ei}
where Ei takes value 1 with probability p and 0 with probability q = 1 − p. Let Sn =

∑n
i=1Ei.

Define M∞ ∈ [0,∞)
⋃{∞} to be the maximum level attained by the random walk (i.e., M∞ =

maxn Sn). Given that 0 ≤ p < q ≤ 1 (downward drifting), then the probability that the random
walk ever hits above level b is P (M∞ ≥ b) = (p/q)b .

Proposition 2 can be proved by using Lemma 5. The complete proof of Proposition 2 can
be found in the appendix.
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4.2 The General Case

Next we extend the simple model to allow for an arbitrary finite discrete reservation distribution
D with marginal probability mass function fD(d). We still assume that the service distribution
remains fixed at S = 1, deterministically. Now let γd , fD(d) for d ∈ [0, u]. Thus, γd ∈ [0, 1]
and

∑u
d=0 γd = 1. Then the traffic intensity is ρ = λ (

∑u
d=0 γd)µ = λ. Lemma 6 below is a

generalization of Lemma 2. The proofs of all lemmas and propositions in this subsection can be
found in the Appendix.

Lemma 6. Consider the counterpart system with an infinite number of servers. Then a customer
arriving at the system at time 0 in the steady state, observes that the pre-arrivals follow a non-
homogeneous Poisson input process with piecewise rate η(r) at time r, where

η(r) =

{

ρ, if r ≤ 0,

ρ
(

1−∑⌈r⌉−1
d=0 γd

)

, if r > 0.

Figure 4: One-class departure and pre-arrival processes with general reservation distribution

Define Nd (for d ∈ [0, u]) to be the process of pre-arrivals prior to t over (d − 1, d]. This
process induces a departure process over the interval (d, d+1], and let Ñd denote its mirror image.
Figure 4 shows the pre-arrival and departure processes with general reservation distribution. The
conditional virtual blocking probabilities are given in Lemma 7 below, which is a generalization
of Lemma 3.

Lemma 7. Consider the counterpart system with an infinite number of servers. If a customer
comes at time 0 in the steady state and requests service (S = 1) deterministically to commence
in D units of time (D ∈ [0, u]), then the conditional virtual blocking probability is given by

Pd , P(B | D = d) = P

(

max
r∈[0,1]

{

Ñd(1− r; ρd) +Nd+1(r; ρd+1)
}

≥ C

)

, ∀d ∈ [0, u],

where Nd is a Poisson counting process with rate ρd = ρ
(

1−∑d−1
i=0 γi

)

, and Ñd is a mirror

image of Nd with the same rate ρd.

Proposition 3 is a generalization of Proposition 2 with general distribution functions of
customer advanced reservation times.

Proposition 3. Let the service distribution S = 1 deterministically, and the reservation distri-
bution D be discrete with marginal probability mass function fD(d) = γd and bounded support
[0, u]. Then for all d ∈ [0, u],

Pd ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

,

where δ is defined by (3).
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Next we extend the model further to allow for an arbitrary finite discrete service distribution.
The total admitted customer arrival rate is λ, and the reservation distribution D is defined
on [0, u] defined as above. Now assume that the service time S is a general finite discrete
distribution on [1, v]. More specifically, let fS(·) be the marginal probability mass function with
fS(s) = P(S = s) , κs. Thus, for each s ∈ [1, v], κs ∈ [0, 1] and

∑v
s=1 κs = 1.

We partition the arriving customers according to their requested service times, i.e., customers
are partitioned into v disjoint sets numbered 1, . . . , v according to their requested service times.
For each s ∈ [1, v], the arrival process of customers in set s follows a thinned Poisson process
with rate κsλ. Moreover, these processes are independent of each other. Now, for each set
s ∈ [1, v], let the conditional reservation probability mass function be γsd , P(D = d | S = s) for
d ∈ [0, u]. Note that

∑u
d=0 γ

s
d = 1, for each s ∈ [1, v].

Consider the counterpart system with an infinite number of servers. If a customer of set s
(s ∈ [1, v]) arrives at time 0 in the steady state and requests s units of service time to commence
after d units of time (d ∈ [0, u]), the conditional virtual blocking probability is defined as
P s
d , P(B | D = d, S = s). In addition, the traffic intensity is ρ =

∑v
s=1 sκsλ = µλ, where

µ =
∑v

s=1 sκs is the mean service time.

Let N s
d (for s ∈ [1, v] and d ∈ [0, u]) denote the pre-arrival process of set-s customers over

(i.e., customers requesting s units of service time) the interval (d− s, d− s+ 1]. This induces a
departure process over the interval (d, d + 1], and let Ñ s

d denote its mirror image. The rate of
N s

d and Ñ s
d are given in Lemma 8 below.

Lemma 8. Let N s
d and Ñ s

d be defined as above. Then, for each s ∈ [1, v] and each d ∈ [0, u],
N s

d and Ñ s
d are Poisson processes with the same rate

ρsd = ρs0

(

1−
d−s∑

i=0

γsi

)

= κsρ

(

1−
d−s∑

i=0

γsi

)

. (8)

Moreover, N s
d is independent of N s′

d′ for d 6= d′ or s 6= s′.

Figure 5: Two-service-set departure and pre-arrival processes

First assume that ∃s ∈ [1, v] such that γs0 > 0, i.e., the probability of an arriving customer
requesting to start the service immediately upon arrival is strictly positive. This assumption
can be dropped later. Let Ad be the maximum number of customers in the system over the
interval (d, d+1] for d ∈ [0, u]. In fact, one can derive an exact mathematical expression of each
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Ad for d ∈ [0, u],

Ad =

v∑

s=2

d+s−1∑

i=d+1

N s
i (1; ρ

s
i ) + max

r∈[0,1]

{
v∑

s=1

Ñ s
d(1− r; ρsd) +

v∑

s=1

N s
d+s(r; ρ

s
d+s)

}

. (9)

For r ∈ [0, 1], the term
∑v

s=1 Ñ
s
d(1−r; ρsd) captures all the departures over (d+r, d+1], the term

∑v
s=1N

s
d+s(r; ρ

s
d+s) captures all the pre-arrivals over (d, d+r], and the term

∑v
s=2

∑d+s−1
i=d+1 N

s
i (1; ρ

s
i )

captures all the customers being served over (d, d + 1]. The sum captures exactly all the cus-
tomers being served at time d + r. It is important to note that since Ñ s

i and N s
i do not

simultaneously appear in Ad, for each i ∈ [0, u] and s ∈ [1, v], all the Poisson counting processes
in the expression of Ad are independent of each other (see Lemma 8).

We shall further explain (9) by providing the following example when v = 2 (refer to Figure
5),

A0 = N2
1 (1; ρ

2
1) + max

r∈[0,1]

{

Ñ1
0 (1− r; ρ10) + Ñ2

0 (1− r; ρ21) +N1
1 (r; ρ

1
1) +N2

2 (r; ρ
2
2)
}

,

A1 = N2
2 (1; ρ

2
2) + max

r∈[0,1]

{

Ñ1
1 (1− r; ρ11) + Ñ2

1 (1− r; ρ21) +N1
2 (r; ρ

1
2) +N2

3 (r; ρ
2
3)
}

, and so on.

More specifically, A0 represents the maximum customers in the system over the interval (0, 1].
At time r ∈ (0, 1], the number of departures over (r, 1] is equal to Ñ1

0 (1− r; ρ10) + Ñ2
0 (1− r; ρ20),

capturing customers in both sets starting before 0 and still in the system at time r. (Note
that the service time is at least 1.) In addition, the number of pre-arrivals over (0, r] is equal to
N1

1 (r; ρ
1
1)+N2

2 (r; ρ
2
2), capturing pre-arrivals of customers with service time 1 and 2, respectively,

starting service over (0, r]. Finally, N2
1 captures set-2 customers with service time 2 who started

service within (−1, 0]. These customers will continue service over the entire interval (0, 1].
Therefore N2

1 (1; ρ
2
1) appears in the expression A0 outside the max. The same reasoning applies

to Ai for each i ∈ [1, u].

Now for each d ∈ [0, u] and s ∈ [1, v], we have P s
d = P(max(Ad, . . . , Ad+s−1) ≥ C). It should

be noted that Ad and Ad′ can be correlated. To analyze the upper bound of P j
i , we first analyze

the upper bound of P(Ad ≥ C), for each d ∈ [0, u].

Lemma 9. Assume that there exists s ∈ [1, v] such that γs0 > 0. Then,

P(A0 ≥ C) ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

,

where δ is defined by (3).

Proposition 4. Let the service distribution S be discrete with marginal probability mass func-
tion fS(s) = κs and bounded support [1, v], and the reservation distribution D be discrete with
marginal probability mass function fD(d) = γd and bounded support [0, u]. The traffic intensity
is given by ρ =

∑v
s=1 sκsλ =

∑v
s=1 sλ

s
0 = µλ. Then for all d ∈ [0, u] and s ∈ [1, v],

P s
d ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

,

where δ is given by (3).
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Now, we prove the main results of this paper, Theorems 1 and 2.

Proof of Theorem 1. The expected long-run average revenue of the ǫ-CSP is
∑M ′

k=1

∑

d,s rkλdsks(1−
Qdsk), where Qdsk is the stationary probability of blocking a class-k customers with reservation

time d and service time s. However,
∑M ′

k=1

∑

d,s rkλdsks is the optimal value of the LP defined in
(1), which is an upper bound on (1− ǫ)R(OPT ) for small positive ǫ by Lemma 1. Thus, a key
aspect of the performance analysis of the ǫ-CSP is to obtain an upper bound on the probabilities
{Qdsk}. Specifically, if Qdsk ≤ ξ, for each d, s, and k, then

R(ǫ-CSP ) =

M ′
∑

k=1

∑

d,s

rkλdsks(1−Qdsk) ≥
M ′
∑

k=1

∑

d,s

rkλdsks(1− ξ) ≥ (1− ξ)(1− ǫ)R(OPT ).

By Proposition 4, we have

ξ ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

.

Therefore,
R(ǫ-CSP )

R(OPT )
≥
(

1− 1

ρ
−
(

eδ

(1 + δ)1+δ

)ρ)

(1− ǫ) .

Proof of Theorem 2. Consider a sequence of problems where in the nth problem, λ
(n)
k = nλk for

all k ∈ {1, · · · ,M}, C(n) = nC, and ǫ(n) = ǫ/
√
n1−α with α ∈ (0, 1).

Following Equation (2), we have

ρ(n) = min

{
(

1− ǫ(n)
)

C(n),
M∑

k=1

λ
(n)
k µk

}

≥ min

{

(1− ǫ)C(n),
M∑

k=1

λ
(n)
k µk

}

= nmin

{

(1− ǫ)C,

M∑

k=1

λkµk

}

= nρ,

where the first inequality follows the property that ǫ(n) ≤ ǫ.

Thus,

δ(n) =

(

ǫ(n)

1− ǫ(n)
− log(1 + ρ(n))

ρ(n) log θ−1

)+

= ǫ(n) + o
(

ǫ(n)
)

=
ǫ√
n1−α

+ o

(
1√
n1−α

)

.
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We have

(

eδ
(n)

(1 + δ(n))1+δ(n)

)ρ(n)

= exp



log





(

eδ
(n)

(1 + δ(n))1+δ(n)

)ρ(n)








= exp
(

ρ(n)
(

δ(n) −
(

1 + δ(n)
)

log
(

1 + δ(n)
)))

= exp

(

ρ(n)
(

−
(

δ(n)
)2

+ o

((

δ(n)
)2
)))

≤ exp

(

nρ

(

−
(

δ(n)
)2

+ o

((

δ(n)
)2
)))

= exp
(
−nαρǫ2

)
+ o (exp (−nα)) .

Thus,

1− 1

ρ(n)
−
(

eδ
(n)

(1 + δ(n))1+δ(n)

)ρ(n)

≥ 1− 1

nρ
− exp

(
−nαρǫ2

)
+ o (exp (−nα))

= 1− 1

nρ
+ o

(
1

n

)

.

The equality follows the property that for α > 0,

lim
n→∞

exp
(
−nαρǫ2

)

1/n
= 0.

Therefore,

R(n)(ǫ(n)-CSP )

R(n)(OPT )
≥



1− 1

ρ(n)
−
(

eδ
(n)

(1 + δ(n))1+δ(n)

)ρ(n)




(

1− ǫ(n)
)

≥
(

1− 1

nρ
+ o

(
1

n

))(

1− ǫ√
n1−α

)

= 1− ǫ√
n1−α

+ o

(
1√
n1−α

)

.

The equality follows the property that for α ∈ (0, 1),

lim
n→∞

1/n

1/
√
n1−α

= 0.

We note that the above performance analysis (on blocking probabilities) for the model with
customer advanced reservation is completely different from the one used in Levi and Radovanovic
(2010) for models without advanced reservation. In the following, we also discuss the key
distinction of our results from two related models.
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Key Distinction from the Models without Advanced Reservation. In contrast to
models without advanced reservation (e.g., Levi and Radovanovic (2010)), the major challenge
in analyzing the blocking probabilities in loss network systems with advanced reservation is
that the blocking event depends on the maximum reserved capacity over a particular requested
service interval. This requires the characterization of the booking profile (i.e., the pre-reserved
arrival and departure processes) over the service interval. As a simple example with capacity
C = 2 shown in Figure 6, in the models without advanced reservation, it suffices to check the
instantaneous load of the system upon arrival of a customer. However, in the models with
advanced reservation, we cannot guarantee one’s request by merely checking the instantaneous
load of the system at his starting service time upon his arrival, because his request may be
potentially blocked by reserved slots of those customers who booked prior to him but will start
services after him. (In this simple example, the system has only 1 customer in service when his
service begins; however, during his requested service interval, there is a point in time that the
system has 3 customers (who were reserved before him). Thus, he has to be rejected by the
system.) This introduces much difficulty in handling this correlation issue between the incoming
requests and the booking profiles.

Figure 6: Challenges in analyzing the blocking probabilities in loss queues with adv. reservation

Key Distinction from the Tandem Queues of Two Stations. Tandem queueing model is
closely related to our model since one may regard the original system with advanced reservation
as a tandem queueing model of two stations, where the advance reservation is spent in the first
station and the service is spent in the second station. The first station has infinite capacity and
the second station has finite capacity, customers first enter the system from the first station,
but if the second station is full when customers arrive, they will be rejected or lost. Note that
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the decision whether a customer is blocked is made only after the service in the first station is
over. However, in our model, we have to make the decision as soon as the customer enters the
first station. The critical difference is that in the tandem queueing model it suffices to check the
instantaneous load of the second station to determine if the customer is blocked, while in our
model we have to check the maximum occupancy over the entire requested service interval as
seen from the moment the customer arrives. When we relax the finite capacity assumption on the
second station, the blocking probability can seemingly be approximated by the probability that
the number of customers in the second station is bigger than C (see, e.g., Boxma (1984), Schmidt
(1987)). However, this approximation cannot be used to upper bound the blocking probabilities
in our system due to the difference in system dynamics. It may serve as an approximation of the
blocking probabilities but we are unsure how good the approximation is, since the stationary
distribution can no longer be expressed as a product-form.

5 Pricing Extensions

We present an interesting pricing extension, in which the arrival rates of the different classes of
customers are affected by prices. Specifically, consider a two-stage decision. At the first stage,
we set the respective prices r1, . . . , rM for each class. This determines the respective arrival rates
λ1(r1), . . . , λM (rM ). (The rate of class-k customers is affected only by price rk.) Then, given the
arrival rates, we wish to find the optimal admission policy that maximizes the expected long-run
revenue rate. In particular, we assume that λk(rk) is nonnegative, differentiable, and decreasing
in rk for each k ∈ {1, · · · ,M}. In addition, we assume that all prices are nonnegative real
numbers and that there exists a price r∞ such that, for each i = k, . . . ,M , we have λk(r∞) = 0.
(The latter condition is required to guarantee that the problem has an optimal solution.)

For the model with price-driven demand we use the following nonlinear program (NLP1):

max
{αdsk,rk}

M∑

k=1

∑

d,s

rkαdskλdsk(rk)s, (10)

s.t.
M∑

k=1

∑

d,s

αdskλdsk(rk)s ≤ (1− ǫ)C,

0 ≤ αdsk ≤ 1, ∀d, s, k,
0 ≤ rk ≤ 1, ∀k.

In particular, it can be verified that any optimal solution of (NLP1) has only nonnegative prices.
Also, observe that for any fixed prices r1, . . . , rM , the corresponding solution of {αdsk} has the
same knapsack structure defined in §2 above. Let (r∗, α∗) = {rk, αdsk} be the corresponding
optimal solution. Note that if one can solve (NLP1) and obtain the solution (r∗, α∗) then one can
construct a similar ǫ-CSP that will be amenable to the same performance analysis discussed in
§4 above. However, solving (NLP1) directly may be computationally hard. Next, we show that
one can reduce (NLP1) to an equivalent nonlinear program that is more tractable; we denote it
by (NLP2). (By equivalent we mean that they have the same set of optimal solutions.) Consider
the following nonlinear program (NLP2):
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max
{rk}

M∑

k=1

∑

i,j

rkλdsk(rk)j, (11)

s.t.
M∑

k=1

∑

d,s

λdsk(rk)s ≤ (1− ǫ)C,

0 ≤ rk ≤ 1, ∀k.

It can be readily verified that as long as λdsk(rk) is nonnegative (and decreasing) it is always
optimal to have nonnegative prices, so the nonnegativity constraints can be dropped.

Theorem 3. The programs (NLP1) and (NLP2) are equivalent.

Theorem 3 implies that we can solve (NLP2) instead of solving (NLP1). However, (NLP2)
is computationally more tractable and can be solved relatively easily in many scenarios. Specif-
ically, Lagrangify (dualize) the constraint in (NLP2) with some Lagrange multiplier Θ and
consider the unconstraint problem maxrk∈[Θ,r∞)

∑

1≤k≤M

∑

d,s(rk − Θ)λdsk(rk)s, which is sep-
arable in r1, . . . , rM ′ . In fact, one aims to find the minimal Θ for which the resulting solution
satisfies the constraint in (NLP2). This can be done by applying bi-section search on the in-
terval [0, p∞]. The complexity of this procedure depends on the complexity of maximizing
∑

1≤k≤M

∑

d,s(rk −Θ)λdsk(rk)s for each k ∈ {1, · · · ,M}. It is not hard to check that there are
at least two tractable cases: (i) λdsk(rk) is a concave function on [0, r∞), for each k ∈ {1, · · · ,M};
(ii) λdsk(rk) is convex, but rkλdsk(rk) is concave function on [0, r∞), for each k ∈ {1, · · · ,M}.

6 Numerical Experiments

We examine the empirical performance of the proposed ǫ-CSP to the optimal solution provided
by the benchmark linear program (1). Solving the ǫ-CSP solutions is extremely efficient and
our extensive simulation results show that the ǫ-CSP performs near-optimal in the heavy traffic
regime (with average optimality gap less than 4%), and is also very robust with respect to
different input distributions and parameters. This is consistent with our theoretical development
of the proposed policy. Additionally, the numerical results suggest that the ǫ-CSP performs quite
well even in the light or medium traffic regimes (with average optimality gap less than 10%).
All the simulations were implemented in an Intel Xeon 3.50GHz PC.

6.1 Design of Experiments

We first describe a baseline model, and then vary the distributions and parameters of the baseline
model to comprehensively study the empirical performance of the ǫ-CSP. The baseline model
(e.g., in a hotel room management setting) is constructed as follows: the number classes of
customers M = 8, the total capacity C = 40 units, and the buffer size ǫ = 0.001. In addition,
the class-dependent arrival rates, revenue rates, advanced reservation and service distributions
for the baseline model are specified in Table 1 below. Note that N (a, b) denotes the truncated
normal distribution with mean a and variance b.
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Class No. Arrival Rate Adv. Reservation Service Time Revenue Rate ($)

1 2 Short ∼ N
(
3, 12

)
Short ∼ N

(
3, 12

)
150

2 3 Short ∼ N
(
3, 12

)
Long ∼ N

(
10, 22

)
140

3 2 Long ∼ N
(
30, 102

)
Short ∼ N

(
3, 12

)
130

4 2 Long ∼ N
(
30, 102

)
Long ∼ N

(
10, 22

)
120

5 1 Short ∼ N
(
3, 12

)
Short ∼ N

(
3, 12

)
110

6 2 Short ∼ N
(
3, 12

)
Long ∼ N

(
10, 22

)
100

7 3 Long ∼ N
(
30, 102

)
Short ∼ N

(
3, 12

)
90

8 1 Long ∼ N
(
30, 102

)
Long ∼ N

(
10, 22

)
80

Table 1: Parameters for the baseline model with n = 1

In our numerical experiments, we use the scaling factor n = {1, 2, . . . , 20} to scale the arrival
rate and the capacity simultaneously. More specifically, for a given scaling factor n, the arrival
rate is λ(n) = nλ (where λ is given in Table 1), and the capacity is C(n) = nC = 40n. For
convenience, we refer to the settings with n = 1, 2, 3 as light traffic, n = 3, 4, 5 as medium
traffic, and n ≥ 6 as heavy traffic. In particular, the baseline model corresponds to the light
traffic setting with n = 1.

Besides using different scaling factors, we also conduct our simulations by experimenting
with different values for the load factors, the mean and variance of the advanced reservation dis-
tribution, the mean and variance of the service distribution, as well as the correlation coefficient
between these two distributions. We refer readers to §6.3 for the detailed numerical results and
discussions.

6.2 Performance Measure

We compare the long-run average revenue of the ǫ-CSP with the optimal solution provided by
the benchmark linear program (1). The performance ratio is defined as follows.

Performance Ratio ,
R(ǫ-CSP )

The optimal objective value of (1)
≤ R(ǫ-CSP )

R(OPT )
.

Note that the above-defined performance ratio of the ǫ-CSP is conservative in the sense that it
understates the relative revenue ratio of the ǫ-CSP to the optimal policy. The actual performance
of the ǫ-CSP is better than the performance ratio.

6.3 Numerical Results

Figure 7 shows that the performance ratio of the ǫ-CSP increases very quickly as the scaling
factor n increases. When n = 1 (corresponding to C = 40), the optimality gap is around 12%.
When n = 10 (corresponding to C = 400), the optimality gap is reduced significantly to less
than 3%.

Table 2 shows the performance ratios of the ǫ-CSP with varying load factors, where the load
factor is defined as the ratio of λE[S] to C. (In our numerical experiments, we change the load
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Figure 7: Performance ratios as the scaling factor n increases

factors by fixing λ and varying C.) Our results show that as the resource capacity decreases
while keeping all other parameters fixed, the performance ratio drops steadily in the low traffic
regime but drops sluggishly in the high traffic regime.

Tables 3–7 show the performance ratios of the ǫ-CSP by varying parameters of the advance
reservation and the service time distributions (such as their means, variances and correlation
coefficients). In summary, our results demonstrate that the ǫ-CSP performs near-optimally in
the heavy traffic regime (with average optimality gap less than 4%), which is consistent with
our theoretical development. Moreover, the ǫ-CSP performs reasonably well in the light and
medium traffic regimes as well (with average optimality gap less than 10%). It is also worth
noting that the performance of the ǫ-CSP is robust with respect to input distributions and
parameters, which could be widely adopted in many practical scenarios.

Load Factor \n 1 2 3 4 5 6 7 8 9 10

1.15 91.9% 94.3% 95.6% 96.4% 97.0% 97.5% 98.0% 98.4% 98.6% 99.0%
1.50 90.7% 93.6% 95.1% 95.9% 96.5% 97.0% 97.7% 98.0% 98.3% 98.6%
1.85 89.3% 92.6% 94.1% 95.0% 95.8% 96.4% 96.9% 97.4% 97.8% 98.1%
2.20 88.3% 91.7% 93.5% 94.3% 95.2% 95.8% 96.4% 97.0% 97.2% 97.8%
2.55 87.0% 90.8% 92.6% 93.8% 94.6% 95.2% 95.8% 96.4% 97.0% 97.4%
2.90 87.1% 91.0% 92.7% 93.9% 94.7% 95.4% 96.1% 96.7% 97.0% 97.5%
3.25 86.9% 90.6% 92.2% 93.6% 94.5% 95.2% 95.8% 96.3% 96.7% 97.4%
3.60 85.6% 89.8% 91.8% 93.2% 93.9% 94.8% 95.4% 96.1% 96.4% 96.9%
3.95 85.2% 89.5% 91.5% 92.9% 93.8% 94.4% 95.2% 95.7% 96.2% 96.7%
4.30 84.6% 88.9% 91.0% 92.4% 93.4% 94.1% 94.8% 95.6% 96.0% 96.6%
4.65 83.8% 88.3% 90.6% 92.0% 92.9% 93.6% 94.6% 95.0% 95.4% 96.0%
5.00 83.6% 88.1% 90.4% 91.7% 92.8% 93.4% 94.1% 94.9% 95.2% 96.1%

Table 2: Performance ratios for varying load factors
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ζ1 \ n 1 2 3 4 5 6 7 8 9 10

1.0 87.9% 91.5% 93.3% 94.3% 95.2% 95.8% 96.3% 96.7% 97.3% 97.5%
1.1 88.0% 91.6% 93.3% 94.3% 95.1% 95.8% 96.3% 96.7% 97.2% 97.4%
1.2 88.0% 91.5% 93.2% 94.3% 95.1% 95.8% 96.4% 96.8% 97.3% 97.2%
1.3 87.8% 91.6% 93.2% 94.4% 95.0% 95.8% 96.3% 96.7% 97.3% 97.1%
1.4 88.0% 91.7% 93.2% 94.4% 95.2% 95.9% 96.4% 96.7% 97.4% 96.9%
1.5 88.0% 91.5% 93.2% 94.3% 95.0% 95.7% 96.2% 96.8% 97.2% 96.8%
1.6 88.2% 91.7% 93.3% 94.3% 95.1% 95.8% 96.3% 96.7% 97.3% 96.7%
1.7 87.9% 91.6% 93.2% 94.3% 95.3% 95.9% 96.4% 96.7% 97.1% 96.6%
1.8 88.0% 91.7% 93.1% 94.4% 95.1% 95.7% 96.4% 96.7% 97.1% 96.4%
1.9 87.7% 91.5% 93.3% 94.4% 95.1% 95.8% 96.2% 96.8% 97.0% 96.3%
2.0 87.8% 91.7% 93.3% 94.4% 95.2% 95.8% 96.3% 96.8% 96.9% 96.3%

Table 3: Performance ratios for varying adv. res. means (ζ1×baseline mean)

ζ2 \ n 1 2 3 4 5 6 7 8 9 10

1 88.1% 91.6% 93.2% 94.4% 95.1% 95.9% 96.4% 96.8% 97.3% 97.4%
0.87 87.7% 91.3% 93.2% 94.4% 95.0% 95.7% 96.3% 96.7% 97.3% 97.5%
0.88 87.6% 91.6% 93.2% 94.3% 95.1% 95.9% 96.3% 96.6% 97.3% 97.5%
0.89 87.6% 91.4% 93.2% 94.3% 95.0% 95.7% 96.2% 96.7% 97.3% 97.5%
0.90 87.8% 91.5% 93.2% 94.2% 95.1% 95.7% 96.3% 96.6% 97.3% 97.4%
0.92 87.6% 91.3% 93.1% 94.2% 95.1% 95.8% 96.3% 96.7% 97.3% 97.4%
0.95 87.6% 91.4% 93.0% 94.3% 95.0% 95.7% 96.3% 96.7% 97.4% 97.3%
0.99 87.3% 91.3% 93.1% 94.2% 95.0% 95.7% 96.2% 96.7% 97.2% 97.4%
1.04 87.5% 91.4% 93.1% 94.3% 95.0% 95.7% 96.3% 96.7% 97.3% 97.4%
1.07 87.5% 91.3% 93.0% 94.1% 95.0% 95.7% 96.3% 96.6% 97.3% 97.4%

Table 4: Performance ratios for varying adv. res. variances (ζ2×baseline variance)

ζ3 \ n 1 2 3 4 5 6 7 8 9 10

1.0 87.8% 91.5% 93.4% 94.4% 95.2% 95.8% 96.3% 96.7% 97.4% 97.5%
1.1 87.9% 91.5% 93.2% 94.4% 95.2% 95.8% 96.3% 96.8% 97.3% 97.6%
1.2 88.0% 91.5% 93.2% 94.4% 95.1% 95.8% 96.4% 96.8% 97.4% 97.6%
1.3 87.8% 91.6% 93.4% 94.4% 95.2% 95.9% 96.3% 96.9% 97.5% 97.8%
1.4 88.3% 91.8% 93.5% 94.6% 95.3% 96.0% 96.7% 97.0% 97.6% 97.9%
1.5 88.5% 92.0% 93.6% 94.6% 95.4% 95.9% 96.6% 97.0% 97.7% 98.0%
1.6 88.8% 92.1% 93.8% 94.9% 95.6% 96.3% 96.7% 97.2% 97.8% 98.1%
1.7 88.7% 92.0% 93.9% 94.8% 95.5% 96.1% 96.9% 97.2% 97.9% 98.2%
1.8 88.9% 92.0% 93.7% 94.8% 95.6% 96.3% 96.8% 97.1% 97.9% 98.2%
1.9 89.0% 92.2% 93.8% 95.0% 95.7% 96.1% 96.8% 97.2% 98.0% 98.2%
2.0 88.9% 92.4% 93.8% 94.9% 95.6% 96.4% 96.8% 97.4% 97.9% 98.2%

Table 5: Performance ratios for varying service time means (ζ3×baseline mean)

ζ4 \ n 1 2 3 4 5 6 7 8 9 10

0.86 88.3% 91.7% 93.2% 94.4% 95.2% 95.8% 96.2% 96.7% 97.2% 97.0%
0.87 88.1% 91.6% 93.2% 94.5% 95.1% 95.8% 96.3% 96.6% 97.2% 97.0%
0.88 88.3% 91.8% 93.4% 94.3% 95.2% 95.8% 96.3% 96.7% 97.2% 97.1%
0.89 88.1% 91.6% 93.3% 94.4% 95.1% 95.9% 96.4% 96.6% 97.2% 97.1%
0.90 88.2% 91.6% 93.3% 94.4% 95.1% 95.7% 96.3% 96.7% 97.3% 97.3%
0.92 88.1% 91.6% 93.1% 94.4% 95.1% 95.7% 96.2% 96.7% 97.3% 97.4%
0.95 87.9% 91.6% 93.5% 94.2% 95.2% 95.8% 96.4% 96.7% 97.4% 97.4%
0.99 87.8% 91.5% 93.2% 94.4% 95.1% 95.7% 96.4% 96.7% 97.3% 97.4%
1.04 87.9% 91.7% 93.3% 94.3% 95.1% 95.8% 96.4% 96.8% 97.4% 97.5%
1.07 88.0% 91.5% 93.3% 94.4% 95.2% 95.9% 96.3% 96.8% 97.3% 97.7%

Table 6: Performance ratios for varying service time variances (ζ4×baseline variance)
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ζ5 \ n 1 2 3 4 5 6 7 8 9 10

-0.9 88.3% 91.8% 93.4% 94.5% 95.3% 96.0% 96.5% 97.0% 97.4% 97.9%
-0.6 87.9% 91.7% 93.3% 94.4% 95.2% 95.8% 96.4% 96.7% 97.2% 97.7%
-0.3 88.0% 91.6% 93.1% 94.1% 95.0% 95.8% 96.4% 96.7% 97.2% 97.6%
0.3 87.8% 91.5% 93.2% 94.4% 95.2% 95.8% 96.3% 96.8% 97.2% 97.7%
0.6 88.1% 91.6% 93.2% 94.2% 95.2% 95.7% 96.5% 96.7% 97.3% 97.8%
0.9 88.2% 91.9% 93.5% 94.6% 95.3% 95.9% 96.5% 96.9% 97.5% 97.9%

Table 7: Performance ratios for varying correlations between adv. res. and service times (ζ5)

7 Conclusion

In this paper, we have studied an important class of revenue management problems with reusable
resources and advanced reservations. We have devised an effective and efficient admission control
policy termed the ǫ-CSP that is proven to be asymptotically optimal when both the demand
rate and the capacity grow large. We have also explicitly characterized its convergence rate.
This class of revenue management problems finds many applications in real life, such as hotel
management, cloud computing, car rental, workforce management, and call centers. In addition,
the methods developed also contribute to the existing queueing literature.

To close this paper, we would like to point out three potential research directions. (a) One
may consider a dynamic pricing model and derive similar policies. Assume that there is a
single-class time-homogenous Poisson arrival process with rate λ. Each customer’s reservation
and service-time are drawn from D and S, respectively. The system offers a price from a fixed
price menu {r1, . . . , rn} to an arriving customer with d and s, depending on the current state.
The state is characterized by the booking profile, d, and s. Moreover, one can introduce a
reservation price distribution denoted by R. The customer only accepts the offer if the price
offered falls below the reservation price. (b) Gallego and Hu (2014) consider a competition
network model of perishable resources. One could also study a counterpart model of reusable
resources. Each firm has a fixed capacity of reusable resources and competes in setting prices
to sell them. Assuming deterministic customer arrival rates, one can potentially show that any
equilibrium strategy has a simple structure, and then show that there exists a similar asymptotic
equilibrium strategy in a stochastic version where the arrival rates and the capacity are scaled
together to infinity. (c) To capture seasonality of demands, one could also consider the model
studied in this paper with non-homogeneous Poisson arrivals. However, this may require new
methodologies to be developed.
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Appendix

Omitted Proofs of Technical Lemmas and Propositions

Proof of Proposition 1. Consider any policy π ∈ Π. For the customer who is the nth of being
allocated with a specific item of the resource since time 0, we denote by t(n) his service request
time, d(n) his advanced reservation time, and s(n) his service time. Therefore, t(n) + d(n) is
non-decreasing in n ∈ N.

Now, we prove this proposition by induction. First, the statement of this proposition is
trivially true for the customer with index 1, since all items of the resource have not been
allocated to any customer before this customer is allocated with a specific item.

Second, suppose the statement of this proposition is true for customers with indexes 1, · · · , n.
We now prove that the statement of this proposition is still true for the customer with index
n+ 1. For any t ∈

[
t(n+1) + d(n+1), t(n+1) + d(n+1) + s(n+1)

)
, we have

n∑

n′=1

1
{

t ∈
[

t(n
′) + d(n

′), t(n
′) + d(n

′) + s(n
′)
)}

≤
n∑

n′=1

1
{

t(n+1) + d(n+1) ∈
[

t(n
′) + d(n

′), t(n
′) + d(n

′) + s(n
′)
)}

=

n+1∑

n′=1

1
{

t(n+1) + d(n+1) ∈
[

t(n
′) + d(n

′), t(n
′) + d(n

′) + s(n
′)
)}

− 1

≤
∞∑

n′=1

1
{

t(n+1) + d(n+1) ∈
[

t(n
′) + d(n

′), t(n
′) + d(n

′) + s(n
′)
)}

− 1

≤ C − 1.

The first inequality follows from the property that t ≥ t(n+1) + d(n+1) ≥ t(n) + d(n). The third
inequality follows from the feasibility property that under any policy π ∈ Π, given any time t,
the total number of admitted customers who use the service at time t is no more than capacity
C. Therefore, for the customer with index n+1, at each point of time during his service interval
[
t(n+1) + d(n+1), t(n+1) + d(n+1) + s(n+1)

)
, there is always at least one unit of resource that is

available to serve him.

In addition, we notice that since every customer with index in {1, · · · , n} keeps on using
the same item of the resource during his service interval, at time t(n+1) + d(n+1), an item of
the resource not occupied by any customer with index in {1, · · · , n} will not be occupied by
any of these customers after time t(n+1) + d(n+1). We also notice that no customer with index
n′ > n+1 is allocated with a specific item of the resource before the customer with index n+1
is allocated. Therefore, any item that is not occupied by any customer with index in {1, · · · , n}
at time t(n+1)+d(n+1) can be allocated to the customer with index n+1 at his service start time
t(n+1) + d(n+1), with the guarantee that this item is able to serve him during his entire service
interval

[
t(n+1) + d(n+1), t(n+1) + d(n+1) + s(n+1)

)
.
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Proof of Lemma 1. Consider the following LP

max
{απ

dsk
}

M∑

k=1

∑

d,s

rkα
π
dskλdsks, s.t.

M∑

k=1

∑

d,s

απ
dskλdsks ≤ C, 0 ≤ αdsk ≤ 1, ∀d, s, k. (12)

Note the LP defined in (1) differs from the LP defined in (12) by changing the right hand side
of the capacity constraint to (1 − ǫ)C. Suppose the optimal solution of the LP defined in (12)
is {α̂dsk}. Now consider {α̃dsk} = {(1− ǫ)α̂dsk}. Since

M∑

k=1

∑

d,s

α̃dskλdsks = (1− ǫ)
M∑

k=1

∑

d,s

α̂dskλdsks ≤ (1− ǫ)C, (13)

{α̃dsk} is a feasible solution to (1). Then we have

M∑

k=1

∑

d,s

rkα
∗
dskλdsks ≥

M∑

k=1

∑

d,s

rkα̃dskλdsks = (1− ǫ)
M∑

k=1

∑

d,s

rkα̂dskλdsks ≥ (1− ǫ)R(OPT ). (14)

The last inequality holds since the optimal objective value in (12) provides an upper bound
on the optimal expected revenue rate, since the capacity constraint is enforced on expectation
whereas in the original problem this capacity constraint has to hold, for each sample path. This
completes the proof.

Proof of Lemma 2. If r ≤ 0, we focus on the interval (⌈r⌉ − 1, ⌈r⌉] and its preceding interval
(⌈r⌉ − 2, ⌈r⌉ − 1]. The arrival process in (⌈r⌉ − 2, ⌈r⌉ − 1] follows a Poisson process with rate
ρ. Each arrival has γ probability of starting services immediately in (⌈r⌉ − 2, ⌈r⌉ − 1], and
1− γ probability of starting services in 1 unit of time in (⌈r⌉ − 1, ⌈r⌉]. By the Poisson splitting
argument, the pre-arrivals in (⌈r⌉ − 1, ⌈r⌉] follow a Poisson process with rate (1− γ)ρ. Using a
similar argument, we conclude that the pre-arrival process in (⌈r⌉−1, ⌈r⌉] induced by customers
arriving to the system in (⌈r⌉ − 1, ⌈r⌉] follows a Poisson process with rate γρ. Note that these
two processes are independent of each other since they are generated by customers arriving
in disjoint intervals. Now merge these two pre-arrival processes, and the resulting pre-arrival
process in (⌈r⌉ − 1, ⌈r⌉] follows a Poisson process with rate (1− γ)ρ+ γρ = ρ.

If r ∈ (0, 1], focus on the interval (0, 1] and its preceding interval (−1, 0]. By an argument
similar to the above, there is a Poisson process of pre-arrivals with rate (1 − γ)ρ induced by
customers arriving in (−1, 0]. There is also a Poisson process with rate γρ induced by customers
arriving in (0, 1]. However, the latter process consists of post-arrivals. Thus, the resulting
pre-arrivals at time 0 over (0, 1] follow a Poisson process with rate (1− γ)ρ.

Finally, since the maximum reservation time is 1, it is impossible for customers arriving prior
to 0 to start service at any time greater than 1. Thus, the rate of pre-arrivals from 1 onwards
is 0. This completes the proof.

Proof of Lemma 3. Suppose that a customer arrives at time 0 in the steady state and requests
the service to commence immediately (D = 0), i.e., requesting the service interval (0, 1]. Focus
solely on the pre-arrivals as seen from 0. By Lemma 2, the pre-arrivals over the time interval
(−1, 0] follow a Poisson process with rate ρ, denoted by N0. However, this implies that, over the
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time interval (0, 1], the customers depart the system following a Poisson process with rate ρ (a
shift of N0 by 1 unit of time). Let Ñ0 be the mirror image of the departure process induced by N0

over (0, 1]. By Lemma 2, we also know that the pre-arrivals over (0, 1] follow a Poisson process
with rate (1−γ)ρ. We denote this pre-arrival process by N1. Figure 2 shows the pre-arrival and
departure processes.

Consider now the number of customers in the system at some time r. These fall exactly into
one of the two types; customers that start service over (0, r] and customers that start service
over (r − 1, 0] and will depart over (r, 1]. It follows that the number of customers in service
at time r ∈ (0, 1] can be expressed as Ñ0(1 − r) + N1(r). Specifically, in time r the number
of departures over (r, 1] (equal to Ñ0(1 − r)) captures customers starting service before 0, and
still in the system at time r. In addition, the number of pre-arrivals over (0, r] (equal to N1(r))
captures customers arriving before 0, starting service over (0, r] and still being served in time
r. The sum of the two is exactly equal to the total number of customers in the system at time
r. Note that by the Poisson splitting argument, it follows that Ñ0 and N1 are independent of
each other. The virtual blocking probability is expressed in terms of the maximum of the sum
of these two Poisson counting processes running towards each other (see Figure 3), i.e.,

P0 , P(B | D = 0) = P

(

max
r∈[0,1]

{

Ñ0(1− r; ρ) +N1(r; (1− γ)ρ)
}

≥ C

)

.

Consider now the case that the arriving customer requests the service to commence in D = 1
unit of time, i.e., the service will cover the interval (1, 2]. The departure process in (1, 2] is a
shift of the pre-arrival process N1 in (0, 1] by 1 unit of time, and its mirror image is denoted by
Ñ1. Moreover, by Lemma 2, the pre-arrival process N2 in (1, 2] has rate 0. Thus, we have

P1 , P(B | D = 1) = P

(

max
r∈[0,1]

{

Ñ1(1− r; (1− γ)ρ) +N2(r; 0)
}

≥ C

)

= P

(

Ñ1(1; (1− γ)ρ) ≥ C
)

.

This completes the proof.

Proof of Lemma 4. Note again that for each r ∈ [0, 1], Ñ0(1− r; θ1ρ) +N1(r; ρ) is equal to the
sum of the number of occurrences of N0 over (1− r, 1] and the number of occurrences of N1 over
[0, r). Also observe that the value of X is obtained either at time 0 or upon on occurrence of
N1. Now conditioning on Rn = ωn (a specific realization of the random walk Rn), and consider
the lth occurrence of N1 (l ∈ {0, . . . , n}), at time, say r. Then we have (see Figure 3),

Ñ0(1− r; ρ) +N1(r; θ1ρ) = (# up-steps before and including l +# down-steps after l)

= (# up-steps before and including l −# down-steps before and including l)

+(# down-steps before and including l +# down-steps after l).

The first term is exactly the location of the random walk after l steps and the second expression
is exactly Gn. Since X is the maximum of the above sum over all arrivals l = 0, 1, . . . , n, it
follows that indeed Xn | (Rn = ωn) = (Gn+Mn) | (Rn = ωn), from which the result follows.

Proof of Lemma 5. Define the stopping time τ as follows:

τ , inf {t ≥ 1 : St ≤ −a or St ≥ b} .
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It is straightforward to check the following two conditions,

E(τ) ≤ ∞, E(|Et+1 − Et| | Ft) ≤ 2, ∀t ∈ τ. (15)

The Wald’s identity (see Karlin and Taylor (1981))

Gn(θ) ,
eθSn

[φ(θ)]n
(16)

is a martingale where the moment generating function φ(θ) , E(eθY ) ≥ 1. First we compute θ̂

that solves the equation E(eθ̂Y ) = 1, i.e.,

E(eθ̂Y ) = peθ̂ + qeθ̂ = 1 ⇒ eθ̂ =
q

p
. (17)

By Optional Sampling Theorem (see Karlin and Taylor (1981)),

E

[

eθ̂Sτ

[φ(θ̂)]τ

]

= E

[

eθ̂Sτ

]

= E

[

eθ̂S0

]

= 1. (18)

This leads to

P(Sτ ≥ b)E(eθ̂Sτ | Sτ ≥ b)
︸ ︷︷ ︸

Eb

+(1− P(Sτ ≥ b))E(eθ̂Sτ | Sτ ≤ −a)
︸ ︷︷ ︸

Ea

= 1. (19)

Thus, we have

P(Sτ ≥ b) =
1− Ea

Eb − Ea
=

1− e−θ̂a

eθ̂b − e−θ̂a
=

1−
(
q
p

)−a

(
q
p

)b

−
(
q
p

)−a
. (20)

Let Sa
τ , Sτ be the stopping time location of the process. Let Ba be the event that the random

walk hits b before −a. Observe that P(Ba) = P(Sa
τ ≥ b) and also note that Bi ⊂ Bi+1 for all

i. Define B =
⋃∞

i=1Bi, i.e., there exists an i that the random walk hits b before −i. Therefore
P(M∞ ≥ b) = P(B). By properties of probability measures, we have

P(M∞ ≥ b) = P(

∞⋃

i=1

Bi) = lim
a→∞

P(Ba) = lim
a→∞






1−
(
q
p

)−a

(
q
p

)b

−
(
q
p

)−a




 =

(
p

q

)b

. (21)

This completes the proof.

Proof of Proposition 2. First we establish an upper bound for P(X ≥ C). Let M∞ be the
maximum level attained by the infinite-step random walk defined above. Since the random walk
has a negative drift, it follows from Lemma 5 above that P(M∞ ≥ − log ρ/ log θ1) ≤ 1/ρ. (Note
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that θ1 < 1, so − log ρ/ log θ1 > 0.) Now, we have

P(Xn ≥ C) = P (Gn +Mn ≥ C) (22)

= P

(

Gn +Mn ≥ C
⋂

Mn ≥ − log ρ

log θ1

)

+ P

(

Gn +Mn ≥ C
⋂

Mn < − log ρ

log θ1

)

≤ P

(

Mn ≥ − log ρ

log θ1

)

+ P

(

Gn ≥ C +
log ρ

log θ1

)

≤ P

(

M∞ ≥ − log ρ

log θ1

)

+ P

(

Gn ≥ C +
log ρ

log θ1

)

≤ 1

ρ
+ P

(

Gn ≥ C +
log ρ

log θ1

)

.

The first equality follows from Lemma 4. The first inequality follows from the fact that M∞ ≥
Mn almost surely. The second inequality follows from Lemma 5 above. Since Gn is distributed
as (Ñ0(1; ρ) | N = n), we get from (22) that,

P(X ≥ C) =

∞∑

n=1

P(Xn ≥ C)P(N = n)

≤ 1

ρ
+

∞∑

n=1

P

(

Gn ≥ C +
log ρ

log θ1

)

P(N = n)

=
1

ρ
+ P

(

Ñ0(1; ρ) ≥ C +
log ρ

log θ1

)

=
1

ρ
+ P

(

Poisson(ρ) ≥ C +
log ρ

log θ1

)

=
1

ρ
+ P

(

Poisson(ρ) ≥ C − log ρ

log θ−1
1

)

≤ 1

ρ
+ P

(

Poisson(ρ) ≥ ρ

1− ǫ
− log ρ

log θ−1
1

)

≤ 1

ρ
+ P

(

Poisson(ρ) ≥ ρ

1− ǫ
− log(1 + ρ)

log θ−1
1

)

.

The second inequality follows Equation (2) that ρ ≤ (1− ǫ)C. The third inequality follows the
property that ρ ≤ 1 + ρ and the property that θ1 < 1 implies log θ−1

1 > 0.

Next, we establish an upper bound for P(Y ≥ C). Note that θ1 < 1. We define

Ȳ = max
r∈[0,1]

{
N̄1(1− r; ρ) +N2(r; θ2ρ)

}
.

Thus, Ȳ stochastically dominates Y . Following the same argument that we make above for
establishing an upper bound for P(X ≥ C), we have

P(Y ≥ C) ≤ 1

ρ
+ P

(

Poisson(ρ) ≥ ρ

1− ǫ
− log(1 + ρ)

log θ−1
2

)

≤ 1

ρ
+ P

(

Poisson(ρ) ≥ ρ

1− ǫ
− log(1 + ρ)

log θ−1
1

)

.
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The second inequality follows the property that θ2 ≤ θ1 and the property that log(1 + ρ) ≥ 0.

Now, we establish an upper bound for P

(

Poisson(ρ) ≥ ρ
1−ǫ

− log(1+ρ)

log θ−1
1

)

. Using the formula

of Chernoff bound of the upper tail for a Poisson random variable, we have

P

(

Poisson(ρ) ≥ ρ

1− ǫ
− log(1 + ρ)

log θ−1
1

)

= P

(
1

ρ
(Poisson(ρ)− ρ) ≥ ǫ

1− ǫ
− log(1 + ρ)

ρ log θ−1
1

)

≤
(

eδ

(1 + δ)1+δ

)ρ

,

where

δ =

(
ǫ

1− ǫ
− log(1 + ρ)

ρ log θ−1
1

)+

.

Therefore,

max {P(X ≥ C),P(Y ≥ C)} ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

.

Proof of Lemma 6. Lemma 6 is a generalized version of Lemma 2. For r ≤ 0, consider the time
interval (⌈r⌉ − 1, ⌈r⌉]. By arguments similar to those used in Lemma 2, for each l ∈ [0, u], the
interval (⌈r⌉ − 1 − l, ⌈r⌉ − l] generates a stream of pre-arrivals over (⌈r⌉ − 1, ⌈r⌉] that follow a
Poisson process of rate γlρ. These processes are independent of each other and the overall merged
process has rate ρ = γ0ρ+ γ1ρ+ . . .+ γuρ. For ⌈r⌉ = d for d ∈ [1, u], then the pre-arrivals prior
to t over (⌈r⌉ − 1, ⌈r⌉] are induced by arriving customers over the intervals (⌈r⌉ − l− 1, ⌈r⌉ − l],
for l ∈ [d, u], and the total rate is γdρ+γd+1ρ+ . . .+γuρ. Note again that the rate γiρ is induced
from the Poisson arrival stream of customers over (⌈r⌉ − l − 1, ⌈r⌉ − l] who wish to start in l
units of time. Since we only consider pre-arrivals prior to t, the terms γd−1ρ, γd−2ρ, . . . , γ0ρ are
missing.

Proof of Lemma 7. By Lemma 6, for each d ∈ [0, u], the pre-arrival process Nd over the interval

(d − 1, d] follows a Poisson process with rate ρd = ρ
(

1−∑d−1
i=0 γi

)

. This implies that over the

interval (d, d+ 1], the customers depart the system following a Poisson process with rate ρd (a
shift of Nd by 1 unit of time). Let Ñd be the mirror image of the departure process induced by
Nd over (d, d + 1], and therefore Ñd has the same rate ρd. The rest of arguments are identical
to that of Lemma 3.

Proof of Proposition 3. First we assume that γ0 > 0. By Lemma 7, we have that ρ0 > ρ1 and
ρd ≥ ρd+1 for each d ∈ [1, u]. By Proposition 2, it follows that, for all d ∈ [0, u],

Pd ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

,

where δ is defined by (3).

In fact, we can relax the assumption of γ0 > 0. If γ0 = 0, it implies that over the interval
(0, 1] (recall that the customer arrives at time 0 in the steady state), the departure rate is equal
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to the pre-arrival rate, i.e., ρ0 = ρ1 = ρ. Proposition 2 cannot be applied under this case.
However, the fact that γ0 = 0 implies that no arriving customers will start the service right
away. Therefore, we do not have to consider the probability P0 in the expression of P . Let the
index i = min{d : γd > 0}. Then we have γd = 0 for d ∈ [0, i − 1], by the same argument,
we can ignore the probabilities P0, . . . , Pi−1. Therefore, the above results that we prove in this
proposition still hold. This completes the proof.

Proof of Lemma 8. For each set s ∈ [1, v], and d ∈ [0, u], the pre-arrivals prior to t over (d −
s, d−s+1] (i.e., N s

d) are induced by arriving customers over the intervals (d−s− i, d−s− i+1]
for i = (d− s+ 1)+, . . . , u, and the total rate ρsd is therefore

γs(d−s+1)+ρ
s
0 + . . .+ γsuρ

s
0 = ρs0

(

1−
d−s∑

i=0

γsi

)

= κsρ

(

1−
d−s∑

i=0

γsi

)

. (23)

Note again that the rate γsi is induced from the Poisson arrival stream of customers over (d −
s − i, d − s − i + 1] who wish to start in i units of time. It follows from the Poisson splitting
argument that N s

d and N s′

d′ are independent if (d, s) 6= (d′, s′). This completes the proof.

Proof of Lemma 9. The assumption γs0 > 0 for some s ∈ [1, v] implies that in the interval (0, 1],
the total departure rate is strictly greater than the total pre-arrival rate, i.e.,

∑v
s=1 ρ

s
0 >

∑v
s=1 ρ

s
s.

For subsequent intervals (d, d + 1] for d ≥ 1, we have
∑v

s=1 ρ
s
d ≥ ∑v

s=1 ρ
s
d+s. Therefore the

conditions of Proposition 2 are satisfied. Proposition 2 implies that

P(A0 ≥ C) ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

,

where δ is defined by (3). This completes the proof.

Proof of Proposition 4. First we assume that γs0 > 0 for some s ∈ [1, v]. For each s ∈ [1, v], by
applying union bound and Lemma 9, we have for all d ∈ [0, u] and s ∈ [1, v],

P s
d ≤ 1

ρ
+

(
eδ

(1 + δ)1+δ

)ρ

,

where δ is defined by (3).

We then drop the assumption that γs0 > 0 for some s ∈ [1, v]. Suppose now γs0 = 0 for all
s ∈ [1, v]. This implies that no arriving customers at time 0 will start the service over (0, 1],
and hence we can ignore the blocking probability over this interval. Therefore, the above result
continues to hold by following the same arguments.

Proof of Theorem 3. First, we show that for each solution {rk} of (NLP2), we can construct a
solution of (NLP1) with the same objective value. Specifically, consider a solution {r′k, α′

dsk}
such that r′k = rk and α′

dsk = 1 if and only if
∑

d,s λdsk(rk)s > 0. It can be verified that the
resulting solution is feasible for (NLP1) and has the same objective value.

Next, we show how to map optimal solution {r∗k, α∗
dsk} of (NLP1) to a feasible solution

of (NLP2) with the same objective function. For each k = 1, . . . ,M ′ − 1, set rk = r∗k, and
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for each k = M ′ + 1, . . . ,M , set rk = r∞. It is clear that, for each k 6= M ′, the resulting
contributions to the objective value and constraint in (NLP2) are the same as in (NLP1).
Consider now the possible fractional value α∗

M ′ for class M ′. The respective contribution of
class M ′ to the objective value is

∑

d,s r
∗
M ′α∗

dsM ′λijM ′(r∗M ′)j. Similarly, the contribution to
constraint in (1) is

∑

d,s α
∗
dsM ′λdsM ′(r∗M ′)s. Thus, it is sufficient to show that there exists a

price rM ′ such that
∑

d,s rM ′λdsM ′(rM ′)s ≥∑d,s r
∗
M ′α∗

dsM ′λdsM ′(r∗M ′)s and
∑

d,s λdsM ′(rM ′)s ≤
∑

d,s α
∗
dsM ′λdsM ′(r∗M ′)s.

Since
∑

d,s r
∗
M ′λdsM ′(r∗M ′)s ≥ ∑

d,s r
∗
M ′α∗

dsM ′λdsM ′(r∗M ′)s, by the properties of λdsM ′(rM ′),
we know that there exists r̄ ∈ [rM ′ , r∞) such that

∑

d,s r̄λdsM ′(r̄)s =
∑

d,s r
∗
M ′α∗

dsM ′λdsM ′(r∗M ′)j.
Note that r̄ ≥ r∗M ′ , and thus we obtain

∑

d,s r
∗
M ′λdsM ′(r̄)s ≤∑d,s r̄λdsM ′(r̄)s =

∑

d,s r
∗
M ′α∗

dsM ′λdsM ′(r∗M ′)s.
We conclude that

∑

d,s λdsM ′(r̄)s ≤∑d,s α
∗
dsM ′λdsM ′(r∗M ′)s, which completes the proof.
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