

Supporting Information

Boraformylation and Silaformylation of Allenes

Tetsuaki Fujihara,* Ayumi Sawada, Tatsuya Yamaguchi, Yosuke Tani, Jun Terao, and Yasushi Tsuji*

anie_201611314_sm_miscellaneous_information.pdf

1.	Instrumentation and Chemicals	S2
2.	Preparation of Materials	S 3
3.	Experimental Procedures	S7
4.	Characterization of the Products	S9
5.	NMR Charts	S15
6.	References	S43

1. Instrumentation and Chemicals

Anhydrous THF and toluene were purchased from Kanto Chemical Co., Inc or Wako Pure Chemical Industries Ltd. and further purified by passage through activated alumina under positive argon pressure as described by Grubbs et al.^[1] Unless otherwise noted, reactions were performed under an argon atmosphere using heat-gun-dried glassware on a dual-manifold Schlenk line. ¹H and ¹³C NMR spectra were recorded on a JEOL ECX-400P spectrometer or a Bruker AVANCE-500 spectrometer. Chemical shift values (δ) are reported in ppm and calibrated to tetramethylsilane (TMS, 0.00 ppm) residual protiated solvent (7.26 ppm in CDCl₃ or 7.16 ppm in C_6D_6 - d_6) for ¹H and to CDCl₃ (77.0 ppm) or C₆D₆-d₆ (128.0 ppm) for ¹³C. IR spectra were recorded on a Shimadzu IRTracer-100 FT-IR Spectrometer equipped with a Shimadzu MIRacle A (Ge) Single Reflection HATR. High-resolution mass spectra were obtained with a Thermo Fischer Scientific EXACTIVE spectrometer for ESI- and APCI-HRMS, a Thermo Fischer Scientific LTQ orbitrap XL spectrometer for MALDI-HRMS and a JEOL JMS-MS700 spectrometer for EI-HRMS. Elemental analysis was carried out at the Center for Organic Elemental Microanalysis, Graduate School of Pharmaceutical Science, Kyoto University. GC analysis was carried out using a Shimadzu GC-2014 equipped with a capillary column (GL Sciences InertCap 5, 0.25 mm \times 30 m). TLC analyses were performed on commercial glass plates bearing a 0.25 mm layer of Merck Silica gel 60F₂₅₄. Column chromatography was carried out on silica-gel (Kanto N60, spherical, neutral, 63–210 µm or 40–50 µm). In the case of boron-containing products, a boronic-aciddoped silica-gel (B-silica-gel) was used.^[2] Medium pressure liquid chromatography (MPLC) was performed on a Biotage Isorera One with a silica-gel column (Biotage SNAP Ultra 25 g or 10 g, HP-Sphere 25 µm). Microwave reaction was performed on a Biotage Initiator. .

Hexyl formate was purified by distillation. $B_2(pin)_2$ were purified by recrystallization prior to use. Unless otherwise noted, chemicals obtained from commercial suppliers were used without further purification. 3,5-XydppBz,^[3] allenes (**1a–d**, **1i**, **1k**, **1h** and **1l**)^[4] and PhMe₂Si–B(pin)^[5] were synthesized according to the literatures.

2. Preparation of Materials

2-1. Preparation of 1,2-bis[bis(3,5-di-*tert*-buthylphenyl-4-methoxyphenyl)phosphino]benzene (DTBM-dppbz)

To a 20 mL vial were added 4-bromo-2,6-di-*tert*-butylphenol (8.6 g, 30 mmol), methyl iodide (5.6 mL, 90 mmol), KOH (3.4 g, 60 mmol), and acetone (6.0 mL). The vial was sealed and stirred at 100 °C for 1.5 h under microwave irradiation. After the reaction mixture was cooled to room temperature, CH₂Cl₂ (30 mL) and H₂O (30 mL) were added. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (5 mL × 3). The combined organic layer was washed with H₂O (10 mL × 3), dried with Na₂SO₄, filtered, and then evaporated to dryness. The crude mixture was purified by silica-gel column chromatography (eluent: hexane) to give the product as slightly yellow crystals (7.3 g, 24 mmol, 82%). ¹H NMR (500 MHz, CDCl₃) δ : 7.33 (s, 2H), 3.67 (s, 3H), 1.40 (s, 18H). ¹³C NMR (125 MHz, CDCl₃) δ : 158.8, 146.0, 129.5, 116.4, 64.4, 35.9, 31.9. All the resonances in ¹H and ¹³C NMR spectra were in good agreement with literature values.⁶

To a 200 mL 2-necked round flask with a dropping funnel was added Mg (1.7 g, 68 mmol) under Ar. The apparatus was dried, then evacuated and backfilled with Ar three times. 5-Bromo-1,3-di-*tert*butyl-2-methoxybenzene (10 g, 34 mmol) was added into the dropping funnel. After THF (38 mL) was added into the dropping funnel, the THF solution was added dropwise for 15 min keeping the temperature around 35–50 °C. Then, the reaction mixture was stirred at 50 °C for 3 h to afford the corresponding Grignard reagent. To a dried 300 mL 2-necked round flask with a dropping funnel was added 1,2-bis(dichlorophosphino)benzene (1.6 g, 5.7 mmol) under Ar. Then, THF (7 mL) was added to the flask, the Grignard reagent was transferred to the dropping funnel. After the apparatus was cooled to -78 °C, the Grignard reagent was added dropwise for 15 min. The reaction mixture was stirred for 18 h from -78 °C to RT. After all volatile was removed *in vacuo*, CH₂Cl₂ (30 mL) and saturated NaHCO₃ aq. (15 mL) were added to the residue. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layer was washed with brine (10 mL × 3), dried with MgSO₄, filtered, evaporated, and then dried *in vacuo*. The residue was washed with MeOH under supersonic, and the solid was filtered and washed with MeOH. The solid was purified by silicagel column chromatography (eluent: CH₂Cl₂) to give DTBM-dppbz as white solids (4.8 g, 4.7 mmol, 84%). ¹H NMR (500 MHz, C₆D₆) δ : 7.50–7.42 (m, 10H), 7.00 (dd, *J* = 5.5, 3.4 Hz, 2H), 3.42 (s, 12H), 1.38 (s, 72H). ¹³C NMR (125 MHz, C₆D₆) δ : 160.3, 145.7 (t, *J* = 8.6 Hz), 143.7 (t, *J* = 3.8 Hz), 134.1 (t, *J* = 2.9 Hz), 133.1 (t, *J* = 11.0 Hz), 132.6 (t, *J* = 2.9 Hz), 129.0, 128.2 (t, *J* = 23.8 Hz,), 64.1, 36.1, 32.4. ³¹P NMR (202 MHz, C₆D₆) δ : -11.5. **Anal.** Calcd. for C₆₆H₉₆O₄P: C, 78.07; H, 9.53. Found: C, 77.49; H, 9.38.

2-2. Preparation of Allenes (1e-g, 1j) Preparation of allene 1e

To a 5 mL vial were added K₂CO₃ (0.15 g, 1.1 mmol), 2-allylphenol (0.15 g, 1.1 mmol), an allene^[7,8] (0.25 g, 1.0 mmol), and DMF (0.75 mL). The vial was sealed and stirred at 95 °C for 30 min under microwave irradiation. After the mixture was cooled to room temperature, Et₂O (5 mL) and H₂O (5 mL) were added. The organic layer was separated and the aqueous layer was extracted with Et₂O (5 mL × 3). The combined organic layer was dried with Na₂SO₄, filtered, and then evaporated. The residue was dried with MgSO₄, filtered, evaporated, and then dried *in vacuo*. The crude mixture was purified by MPLC (eluent: hexane/ethyl acetate = 24:1) to give **1e** as a colorless liquid (145 mg, 0.68 mmol, 68%). **¹H NMR** (500 MHz, CDCl₃) δ : 7.20–7.13 (m, 2H), 6.92–6.84 (m, 2H), 6.05–5.96 (m, 1H), 5.10–5.02 (m, 2H), 4.66–4.62 (m, 2H), 4.08 (t, *J* = 6.7 Hz, 2H), 3.40 (d, *J* = 6.7 Hz, 2H), 2.47– 2.43 (m, 2H), 1.78 (t, *J* = 3.1 Hz, 3H). ¹³C **NMR** (125 MHz, CDCl₃) δ : 206.42, 156.6, 137.1, 129.7, 128.9, 127.2, 120.5, 115.2, 111.3, 95.2, 74.5, 66.2, 34.4, 33.2, 19.0. **APCI-HRMS** (*m*/*z*): [M+H]⁺ calcd for C₁₅H₁₉O, 215.1436; found, 215.1430. **Anal.** Calcd. for C₁₅H₁₈O: C, 84.07; H, 8.47. Found: C, 83.87; H, 8.32.

Preparation of allene 1f

To a 5 mL vial were added K₂CO₃ (0.23 g, 1.6 mmol), 4-chlorophenol (0.21 g, 1.6 mmol), an allene (0.38 g, 1.5 mmol), and DMF (0.75 mL). The vial was sealed and the reaction mixture was stirred at 95 °C for 30 min under microwave irradiation. After the mixture was cooled to room temperature, Et₂O (5 mL) and H₂O (5 mL) were added. The organic layer was separated and the aqueous layer was extracted with Et₂O (5 mL × 4). The combined organic layer was dried with Na₂SO₄, filtered, and then evaporated. The residue was dried with MgSO₄, filtered, evaporated, and then dried *in vacuo*. The crude mixture was purified by MPLC (eluent: hexane/ethyl acetate = 49:1) to give **1f** as a colorless liquid (225 mg, 1.1 mmol, 72%). ¹**H NMR** (500 MHz, CDCl₃) δ : 7.22 (d, *J* = 8.9 Hz, 2H), 6.82 (d, *J* = 8.9 Hz, 2H), 4.66–4.61 (m, 2H), 4.03 (t, *J* = 6.9 Hz, 2H), 2.43–2.38 (m, 2H), 1.76 (t, *J* = 3.2 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ : 206.2, 157.6, 129.3, 125.5, 115.9, 95.0, 74.9, 66.6, 32.8, 19.1. **APCI-HRMS** (*m*/*z*): [M+H]⁺ calcd for C₁₂H₁₄ClO, 209.0733; found, 209.0724. **Anal.** Calcd. for C₁₂H₁₃ClO: C, 69.07; H, 6.28. Found: C, 68.93; H, 6.37.

Preparation of allene 1g

To a 5 mL vial were added K₂CO₃ (0.25 g, 1.8 mmol), 4-iodophenol (0.36 g, 1.6 mmol), an allene (0.38 g, 1.5 mmol), and DMF (0.75 mL). The vial was sealed and the reaction mixture was stirred at 95 °C for 30 min under microwave irradiation. After the mixture was cooled to room temperature, Et₂O (5 mL) and H₂O (5 mL) were added. After the organic layer was separated and the aqueous layer was extracted with Et₂O (5 mL × 3). The combined organic layer was dried with MgSO₄, filtered, and then evaporated. The residue was dried with MgSO₄, filtered, evaporated, and then dried *in vacuo*. The crude mixture was purified by MPLC (eluent: hexane/ethyl acetate = 19:1) to give **1g** as a colorless liquid (346 mg, 1.2 mmol, 77%). ¹**H** NMR (500 MHz, CDCl₃) δ : 7.54 (dt, *J* = 9.3, 2.6 Hz, 2H), 4.66–4.62 (m, 2H), 4.03 (t, *J* = 6.9 Hz, 2H), 2.43–2.37 (m, 2H), 1.76 (t, *J* = 3.2 Hz, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ : 206.1, 158.8, 138.1, 117.0, 94.9, 82.6, 74.9, 66.3, 32.7, 19.1. **APCI-HRMS** (*m*/*z*): [M+H]⁺ calcd for C₁₂H₁₄IO, 301.0089; found, 301.0076. **Anal.** Calcd. for C₁₂H₁₃IO: C, 48.02; H, 4.37. Found: C, 48.22; H, 4.41.

Preparation of allene 1j

To a 20 mL Schlenk tube were added CH_2Cl_2 solution (1 mL) of an allenol (0.29 g, 3.0 mmol), *N*,*N*-dimethylaminopyridine (DMAP, 18 mg, 0.15 mmol), pyridine (0.48 mL, 6.0 mmol), and CH_2Cl_2

(8 mL). After the mixture was cooled to 0 °C, 3,3-dimethylbutanoyl chloride (0.62 mL, 4.5 mmol) was added dropwise with syringe. The reaction mixture was stirred at 0 °C to room temperature for 15 h. The resulting solution was washed with 1 M HCl aq. (10 mL and 5 mL), saturated NaHCO₃ aq. (5mL × 2), and brine (5 mL). The organic layer was dried with Na₂SO₄, filtered, evaporated, and then dried *in vacuo*. The crude mixture was purified by MPLC twice (eluent: hexane/ethyl acetate =19:1 and 24:1) to give **1j** as colorless liquid (0.30 g, 1.5 mmol, 51%). ¹H NMR (500 MHz, CDCl₃) δ : 4.63–4.58 (m, 2H), 4.15 (t, *J* = 6.9 Hz, 2H), 2.28–2.23 (m, 2H), 2.18 (s, 2H), 1.70 (t, *J* = 3.1 Hz, 3H), 1.01 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ : 206.2, 172.3, 94.7, 74.8, 62.0, 48.0, 32.5, 30.6, 29.6, 18.7. APCI-HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₂H₂₁O₂, 197.1536; found, 197.1535. Anal. Calcd. for C₁₂H₂₀O₂: C, 73.43; H, 10.27. Found: C, 73.20; H, 10.18.

3. Experimental Procedures

3.1. Optimization of Reaction Condition of Boraformylation of 1a (Table 1)

To a Schlenk tube filled with Ar was added CuOAc (1.1 mg, 9.0 µmol) and ligand (12 µmol). The tube was dried, then evacuated and backfilled with Ar three times. In the case of IPrCuCl or IMesCuCl, the complex (9.0 µmol) and *t*BuOK (1M THF solution, 30 µmol) was added. Toluene (0.25 mL), 3-methyl-1,2-nonadiene (**1a**, 55 µL, 0.30 mmol), and hexyl formate (49 µL, 0.33 mmol) were added to the Schlenk tube in this order. Then, a solution $B_2(pin)_2$ (91 mg, 0.36 mmol) in toluene (0.20 mL) in a Spitz tube was added to the Schlenk tube. The system was closed, and the mixture was stirred at 50 °C for 6 h. After tridecane (50 µL) was added as an internal standard, the resulting mixture was diluted with Et₂O (10 mL), and then an aliquot of the organic phase was filtered through a pad of Celite[®]. The filtrate was analyzed by GC.

3.2. A Procedure for Boraformylation of Allene (1) (Table 2)

To a Schlenk tube filled with Ar was added CuOAc (1.1 mg, 9.0 µmol) and DTBM-dppbz (12 mg, 12 µmol). In the case of entries 5–11, $C_{11}H_{23}CO_2K$ (14 mg, 60 µmol) was also added. The tube was dried, then evacuated and backfilled with Ar three times. Toluene (0.25 mL), allene (1, 0.30 mmol), and hexyl formate (49 µL, 0.33 mmol) were added to the Schlenk tube in this order. Then, a solution $B_2(pin)_2$ (91 mg, 0.36 mmol) in toluene (0.20 mL) in a Spitz tube was added to the Schlenk tube. The system was closed, and the mixture was stirred at 50 °C for 6 h. The resulting mixture was diluted with Et₂O (10 mL) and filtered through a pad of Celite[®]. The filtrate was evaporated and then dried *in vacuo*. The residue was purified by B-silica-gel column chromatography.

3.3. A Procedure of Pd-catalyzed Suzuki-Miyaura Coupling of 2a with an Aryl Iodide (Scheme 2b)

To a Schlenk tube filled with Ar was added $PdCl_2(PhCN)_2$ (3.8 mg, 10 µmol) and DTBPF (4.7 mg, 10 µmol). The tube was dried, then evacuated and backfilled with Ar three times. THF (0.40 mL) and **2a** (29 mg, 0.10 mmol) were added, then the mixture was stirred at room temperature for 30 min. TBAF (172 µL, 0.60 mmol), H₂O (40 µL), and 1-*tert*-butyl-4-iodobenzene (26 µL, 0.15 mmol) were added in this order. The system was closed, and the mixture was stirred at 50 °C for 19 h. The resulting mixture was diluted with Et₂O (10 mL) and filtered through a pad of Celite[®]. The filtrate was evaporated and dried *in vacuo*. The residue was purified by silica-gel column chromatography.

3.4. A Procedure of Pd-catalyzed Suzuki-Miyaura Coupling of 2a with an Alkenyl Bromide (Scheme 2c)

To a Schlenk tube filled with Ar was added $PdCl_2(PhCN)_2$ (3.8 mg, 10 µmol) and DTBPF (4.7 mg, 10 µmol). The tube was dried, then evacuated and backfilled with Ar three times. THF (0.40 mL) and **2a** (29 mg, 0.10 mmol) were added, then the mixture was stirred at room temperature for 30 min. TBAF (172 µL, 0.60 mmol), H₂O (40 µL), and β -bromostyrene (19 µL, 0.15 mmol) were added in this order. The system was closed, and the mixture was stirred at 50 °C for 19 h. The resulting mixture was

diluted with Et₂O (10 mL) and filtered through a pad of Celite[®]. The filtrate was evaporated and dried *in vacuo*. The residue was purified by silica-gel column chromatography.

3.5. Horner-Wadsworth-Emmons Olefination of 2a (Scheme 2d)

The Schlenk tube was dried, then evacuated and backfilled with Ar three times. After *t*BuOK (1.0 M in THF, 0.12 mL) was added, the solution was cooled to 0 °C. Trimethyl phosphonoacetate (17 μ L, 0.12 mmol) was added, and then stirred for 15 min at 0 °C. After THF (0.18 mL) and **2a** (29 mg, 0.10 mmol) were added, then the system was closed, and the mixture was stirred at 0 °C to RT for 22 h. The resulting mixture was diluted with Et₂O (10 mL) and filtered through a pad of Celite[®]. The filtrate was evaporated and then dried *in vacuo*. The residue was purified by B-silica-gel column chromatography.

3.6. A Procedure of the reaction for eq 1

To a Schlenk tube filled with Ar was added CuOAc (1.1 mg, 9.0 μ mol) and DTBM-dppbz (12 mg, 12 μ mol). The tube was dried, then evacuated and backfilled with CO. Toluene (0.25 mL), **1a** (0.30 mmol), and hexanol (41 μ L, 0.33 mmol) were added to the Schlenk tube in this order. Then, a solution B₂(pin)₂ (91 mg, 0.36 mmol) in toluene (0.20 mL) in a Spitz tube was added to the Schlenk tube. The system was closed, and the mixture was stirred at 50 °C for 6 h. After tridecane (50 μ L) was added as an internal standard, the resulting mixture was diluted with Et₂O (10 mL), and then an aliquot of the organic phase was filtered through a pad of Celite[®]. The filtrate was analyzed by GC.

3.7. General Procedure for Silaformylation of 1b (Scheme 3)

To a Schlenk tube filled with Ar was added CuOAc (1.0 mg, 8.0 µmol) and ligand (10 µmol). The tube was dried, then evacuated and backfilled with Ar three times. THF (0.20 mL), 1,1-pentamethyleneallene (**1b**) (26 µL, 0.20 mmol), hexyl formate (32 µL, 0.22 mmol) and PhMe₂Si–B(pin) (66 µL, 0.24 mmol) were added in this order. The system was closed, and the mixture was stirred at 60 °C for 4 h. After tridecane (50 µL) was added as an internal standard, the resulting mixture was diluted with hexane (10 mL), and then an aliquot of the organic phase was filtered through a pad of Celite[®]. The filtrate was analyzed by GC.

3.8. A Procedure for the Cu-Catalyzed Silaformylation of allene (1) (Scheme 4)

To a Schlenk tube filled with Ar were added CuOAc (1.0 mg, 8.0 μ mol) and DTBM-dppbz (10 mg, 10 μ mol). The tube was dried, then evacuated and backfilled with Ar three times. THF (0.20 mL), allene (1) (0.20 mmol), hexyl formate (32 μ L, 0.22 mmol) and PhMe₂Si–B(pin) (66 μ L, 0.24 mmol) were added in this order. The system was closed, and the mixture was stirred at 60 °C for 4 h. After tridecane (50 μ L) was added as an internal standard, the resulting mixture was diluted with hexane (10 mL), and then an aliquot of the organic phase was filtered through a pad of Celite[®]. The residue was purified by silica-gel column chromatography.

4. Characterization of Products

Purified by B-silica-gel column chromatography (eluent: hexane/CH₂Cl₂/acetone = 150:10:1). Pale yellow oil (77 mg, 87%). ¹H NMR (500 MHz, CDCl₃) δ : 9.55 (s, 1H), 6.02 (d, *J* = 2.1 Hz, 1H), 5.65 (d, *J* = 2.1 Hz, 1H), 1.85–1.79 (m, 1H), 1.64–1.58 (m, 1H), 1.29–1.24 (m, 18H), 1.17–1.11 (m, 5H), 0.86 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 204.8, 130.3, 83.6, 54.5, 34.5, 31.6, 29.9, 24.7,

24.6, 23.9, 22.6, 18.2, 14.0. **ESI-HRMS** (*m*/*z*): [M+H]⁺ calcd for C₁₇H₃₂BO₃, 295.2445; found, 295.2434.

Purified by B-silica-gel column chromatography (eluent: hexane/CH₂Cl₂/acetone = 150:10:1). Yellow oil (67 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ : 9.47 (s, 1H), 6.00 (s, 1H), 5.67 (s, 1H), 2.03–1.98 (m, 2H), 1.67–1.61 (m, 2H), 1.58–1.45 (m, 3H), 1.41–1.32 (m, 2H), 1.30–1.21 (m, 13H). ¹³C NMR (125 MHz, CDCl₃) δ : 204.5, 130.7, 83.6, 54.9, 30.3, 25.7, 24.6, 22.6. APCI-HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₅H₂₅BO₃,

265.1975; found, 265.1965.

Purified by B-silica-gel column chromatography (eluent: hexane/CH₂Cl₂/acetone = 150:10:1). Colorless oil (59 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ : 9.49 (s, 1H), 6.07 (d, *J* = 2.1 Hz, 1H), 5.66 (d, *J* = 2.1 Hz, 1H), 1.75–1.65 (m, 4H), 1.32–1.23 (m, 16H), 1.16–1.05 (m, 4H), 0.87 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ : 205.2, 130.7, 83.5, 57.4, 31.5, 26.0, 24.6, 23.4, 13.9. APCI-HRMS

(m/z): $[M+H]^+$ calcd for C₁₈H₃₄BO₃, 309.2601; found, 309.2586.

Purified by B-silica-gel column chromatography three times (eluent: hexane/CH₂Cl₂/acetone = 100:10:1, hexane/CH₂Cl₂ = 3:1, and hexane/CH₂Cl₂ = 5:1). White solid (41 mg, 46%). ¹**H NMR** (500 MHz, CDCl₃) δ : 9.73 (s, 1H), 6.03 (d, *J* = 1.5 Hz, 1H), 5.64 (d, *J* = 1.5 Hz, 1H), 2.22 (tt, *J* = 12.2, 3.1 Hz, 1H), 1.78–1.73 (m, 2H), 1.68–1.63 (m, 1H), 1.54–1.50 (m, 1H), 1.30–1.20 (m, 16H), 1.08 (s, 3H),

0.87 (dq, J = 12.5, 3.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ : 205.4, 131.0, 83.7, 58.5, 41.1, 28.7, 27.3, 27.0, 27.0, 26.5, 24.8, 24.5, 13.2. APCI-HRMS (m/z): [M+H]⁺ calcd for C₁₇H₃₀BO₃, 293.2288; found, 293.2278.

Purified by B-silica-gel column chromatography three times (eluent: hexane/CH₂Cl₂ = 6:1, hexane/CH₂Cl₂/acetone = 90:10:1, and hexane/CH₂Cl₂ = 3:1). Yellow oil (86 mg, 78%). ¹**H NMR** (500 MHz, CDCl₃) δ : 9.62 (s, 1H), 7.16– 7.11 (m, 2H), 6.87 (dt, *J* = 7.3, 0.9 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.07 (d, *J* = 1.5 Hz, 1H), 5.98 (ddt, *J* = 16.8, 10.1, 6.7 Hz, 1H), 5.73 (d, *J* = 1.5 Hz, 1H), 5.07–5.01 (m, 2H), 3.98–3.93 (m, 2H), 3.37–3.34 (m, 2H), 2.30 (t, J = 6.6 Hz, 2H), 1.30 (s, 3H), 1.25 (d, J = 1.5 Hz, 12H). ¹³**C NMR** (125 MHz, CDCl₃) δ : 203.5, 156.3, 137.0, 130.7, 129.7, 128.7, 127.2, 120.5, 115.3, 111.1, 83.8, 64.3, 53.2, 34.3, 34.3, 24.7, 24.6, 18.8. **APCI-HRMS** (m/z): [M+H]⁺ calcd for C₂₂H₃₂BO₄, 371.2394; found, 371.2379.

Purified by B-silica-gel column chromatography (eluent: hexane/CH₂Cl₂/acetone = 90:10:1). White solid (80 mg, 74%). ¹**H NMR** (500 MHz, CDCl₃) δ : 9.58 (s, 1H), 7.19 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 6.05 (s, 1H), 5.69 (s, 1H), 3.98–3.87 (m, 2H), 2.32–2.19 (m, 2H), 1.26 (s, 3H), 1.24 (s, 12H). ¹³C

NMR (125 MHz, CDCl₃) δ: 203.3, 157.2, 130.5, 129.2, 125.5, 115.8, 83.8, 64.6, 53.0, 34.0, 24.6, 24.6, 18.7. **APCI-HRMS** (*m*/*z*): [M+H]⁺ calcd for C₁₉H₂₇BClO₄, 365.1691; found, 365.1680.

Purified by B-silica-gel column chromatography twice (eluent: hexane/CH₂Cl₂/acetone = 90:10:1 and hexane/CH₂Cl₂ = 3:1).White solid (71 mg, 52%). ¹**H** NMR (500 MHz, CDCl₃) δ : 9.58 (s, 1H), 7.52 (d, *J* = 8.6 Hz, 2H), 6.63 (d, *J* = 8.6 Hz, 2H), 6.05 (d, *J* = 1.4 Hz, 1H), 5.70 (d, *J* = 1.4 Hz, 1H), 3.97–

3.88 (m, 2H), 2.34–2.18 (m, 2H), 1.27 (s, 3H), 1.25 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ: 203.2, 158.5, 138.1, 130.5, 116.9, 83.8, 82.7, 64.4, 53.0, 33.9, 24.6, 24.6, 18.7. APCI-HRMS (*m/z*): [M+H]⁺ calcd for C₁₉H₂₇BIO₄, 457.1047; found, 457.1033.

Purified by B-silica-gel column chromatography three times (eluent: hexane/CH₂Cl₂/acetone = 100:10:1, hexane/CH₂Cl₂/acetone = 150:10:1, and hexane/CH₂Cl₂ = 6:1). Colorless oil (81 mg, 73%). ¹**H NMR** (400 MHz, CDCl₃) δ : 9.57 (s, 1H), 5.99 (d, *J* = 1.8 Hz, 1H), 5.65 (d, *J* = 1.8 Hz, 1H), 3.65-3.55 (m, 2H), 2.18-2.04 (m, 1H), 2.00-1.90 (m, 1H), 1.25 (s, 12H), 1.22 (s, 3H), 0.87 (s, 9H), 0.02

(s, 3H), 0.02 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ: 204.0, 129.8, 83.7, 59.4, 53.0, 37.9, 25.9, 24.7, 24.6, 18.4, 18.2, -5.4, -5.5. **ESI-HRMS** (*m*/*z*): [M+H]⁺ calcd for C₁₉H₃₇BO₄Si, 391.2452; found, 391.2435.

Purified by B-silica-gel column chromatography (eluent: hexane/CH₂Cl₂/acetone = 60:10:1). Yellow oil (87 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ : 9.51 (s, 1H), 6.09 (s, 1H), 5.77 (s, 1H), 3.92 (s, 4H), 2.19–2.13 (m, 2H), 1.95–1.88 (m, 2H), 1.71–1.58 (m, 4H), 1.25 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ : 203.3, 131.8, 108.4, 83.7, 64.2, 64.2, 54.0, 31.3, 27.4, 24.6, 24.6. APCI-HRMS (*m*/*z*): [M+H]⁺

calcd for C₁₇H₂₈BO₅, 323.2030; found, 323.2018.

O O O Zj Purified by B-silica-gel column chromatography twice (eluent: hexane/CH₂Cl₂/acetone = 30:10:1 and hexane/CH₂Cl₂/acetone = 80:10:1). Colorless oil (59 mg, 56%). ¹H NMR (500 MHz, CDCl₃) δ : 9.52 (s, 1H), 6.07 (s, 1H), 5.70 (s, 1H), 4.09–3.96 (m, 2H), 2.22–2.16 (m, 1H), 2.15 (s, 2H), 2.09–2.02 (m, 1H),

1.25 (s, 12H), 1.23 (s, 3H), 1.01 (s, 9H).¹³**C NMR** (125 MHz, CDCl₃) δ : 203.2, 172.1, 131.1, 83.8, 60.5, 53.0, 47.8, 33.1, 30.7, 29.6, 24.7, 24.6, 18.3. **MALDI-HRMS** (*m*/*z*): [M+Na]⁺ calcd for C₁₉H₃₃BNaO₅, 375.23187; found, 375.23089.

Purified by B-silica-gel column chromatography (eluent: eluent: hexane/CH₂Cl₂/acetone = 60:10:1). Pale yellow solid (49 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ : 9.52 (s, 1H), 6.12 (d, *J* = 1.4 Hz, 1H), 5.73 (d, *J* = 1.4 Hz, 1H), 3.79–3.62 (m, 2H), 3.10 (t, *J* = 11.1 Hz, 2H), 2.12 (dt, *J* = 13.6, 3.6 Hz, 2H), 1.85–1.73 (m, 2H), 1.44 (s, 9H), 1.25 (s, 12H). ¹³C NMR (100 MHz,

CDCl₃) δ: 203.0, 154.8, 132.2, 83.9, 79.5, 77.2, 53.5, 29.5, 29.5, 28.4, 24.6. **EI-HRMS** (*m*/*z*): [M+H]⁺ calcd for C₁₉H₃₂BNO₅, 365.2374; found, 365.2368.

Purified by silica-gel column chromatography (eluent: hexane/Et₂O = 30:1). Pale yellow oil (23 mg, 83 µmol, 83%). ¹H NMR (500 MHz, CDCl₃) δ : 9.53 (s, 1H), 7.30 (d, *J* = 8.5 Hz ,2H), 7.03 (d, *J* = 8.5 Hz ,2H), 5.29 (s, 1H), 5.23 (s, 1H), 1.72–1.59 (m, 2H), 1.31 (s, 9H), 1.28–1.17 (m, 11H), 0.85 (t, *J* = 6.7 Hz ,3H). ¹³C NMR (125 MHz, CDCl₃) δ : 203.4, 150.1, 149.9, 138.4, 127.6, 124.8, 117.6, 55.6, 34.4, 34.0, 31.6, 31.3, 29.7, 23.8, 22.5, 18.9, 14.0. APCI-HRMS (*m*/*z*): [M+H]⁺ calcd for C₂₁H₃₃O, 301.2531; found, 301.2517.

Purified by silica-gel column chromatography (eluent: hexane/Et₂O = 30:1). Yellow oil (16 mg, 58 µmol, 58%). ¹H NMR (500 MHz, CDCl₃) δ : 9.45 (s, 1H), 7.41–7.35 (m, 2H), 7.35–7.28 (m, 2H), 7.25–7.22 (m, 1H), 6.73 (d, *J* = 15.9 Hz, 1H), 6.57 (d, *J* = 15.9 Hz, 1H), 5.55 (s, 1H), 5.05 (s, 1H), 1.84–1.74 (m, 1H), 1.72–1.61 (m, 1H), 1.34–1.13 (m, 11H), 0.85 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 203.5, 146.1, 136.9, 130.8, 128.6, 127.8, 127.5, 126.6, 114.4, 54.6, 33.7, 31.6, 29.8, 23.6, 22.6, 18.3, 14.0.

APCI-HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₉H₂₇O, 271.2062; found, 271.2048.

Purified by B-silica-gel column chromatography (eluent: hexane/CH₂Cl₂/acetone = 120:10:1).Colorless oil (25 mg, 71 µmol, 71%). ¹H NMR (500 MHz, CDCl₃) δ : 7.15 (d, *J* = 15.9 Hz, 1H), 5.84 (d, *J* = 2.3 Hz, 1H), 5.72 (d, *J* = 15.9 Hz, 1H), 5.53 (d, *J* = 2.3 Hz, 1H), 3.72 (s, 3H), 1.75–1.64 (m, 1H), 1.62–1.52 (m, 1H), 1.24 (s, 20H), 1.20 (s, 3H), 0.86 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 167.6, 157.3, 128.1,

117.9, 83.3, 51.3, 44.8, 39.2, 31.7, 29.9, 29.6, 24.7, 24.6, 24.5, 22.8, 22.6, 14.1. **APCI-HRMS** (*m/z*): [M+H]⁺ calcd for C₂₀H₃₆BO₄, 351.2707; found, 351.2692.

Purified by column chromatography (eluent: hexane/CH₂Cl₂/acetone = 200:10:3). Colorless oil (54 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ: 9.28 (s, 1H), 7.51– 7.50 (m, 2H), 7.36–7.34 (m, 3H), 5.81 (d, J = 1.4 Hz, 1H), 5.78 (d, J = 1.4 Hz, 1H), 1.64-1.55 (m, 2H), 1.31-0.97 (m, 11H), 0.86 (t, J = 7.0 Hz, 3H), 0.43 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ: 203.4, 150.4, 138.5, 133.8, 130.6, 129.0, 127.8,

56.5, 35.0, 31.6, 29.7, 23.9, 22.5, 19.1, 14.0, -0.7, -0.8. ²⁹Si NMR (99 MHz, CDCl₃) δ: -7.7. IR (ATR): 733.0, 775.4, 819.8, 835.2, 939.3, 1111.0, 1249.9, 1427.3, 1726.3, 2856.6, 2929.9, 2955.0. **MALDI-HRMS** (m/z): $[M+Na]^+$ calcd for C₁₉H₃₀OSiNa, 325.1958; found, 325.1962.

Purified by column chromatography (eluent: hexane/CH₂Cl₂/acetone = 200:10:3). White opaque oil (47 mg, 86%). ¹H NMR (500 MHz, CDCl₃) δ:9.16 (s, 1H), 7.50–7.49 (m, 2H), 7.36–7.35 (m, 3H), 5.82 (s, 1H), 5.74 (s, 1H), 2.02–1.99 (m, 2H), 1.51–1.49 (m, 5H), 1.26–1.24 (m, 2H), 1.10–1.07 (m, 1H), 0.43 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ: 203.0, 150.2, 138.7, 133.8, 131.3, 129.0, 127.8, 57.2,

31.6, 25.4, 22.9, -0.5. ²⁹Si NMR (99 MHz, CDCl₃) δ: -7.3. IR (ATR): 733.0, 777.3, 817.8, 833.3, 906.5, 943.2, 1109.1, 1249.9, 1427.3, 1448.5, 1724.4, 2854.7, 2933.7. ESI-HRMS (m/z): [M+Na]⁺ calcd for C₁₇H₂₄OSiNa, 295.1489; found, 295.1490.

0

Purified by column chromatography (eluent: $hexane/CH_2Cl_2/acetone =$ 200:10:3). Colorless oil (54 mg, 87%). ¹H NMR (500 MHz, CDCl₃) δ: 9.24 (s, 1H), 7.53–7.49 (m, 2H), 7.37–7.32 (m, 3H), 5.85 (d, *J* = 1.2 Hz, 1H), 5.82 (d, *J* = 1.2 Hz, 1H), 1.65–1.57 (m, 4H), 1.22–0.87 (m, 8H), 0.82 (t, J = 7.3 Hz, 6H), 0.42 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ: 203.8, 149.5, 138.6, 133.8, 131.2, 129.0,

127.7, 59.8, 31.3, 25.9, 23.1, 13.9, -0.7. ²⁹Si NMR (99 MHz, CDCl₃) δ: -7.8. IR (ATR): 733.0, 775.4, 819.8, 835.2, 939.3, 1109.1, 1249.9, 1379.1, 1427.3, 1724.4, 2931.8, 2956.9. **ESI-HRMS** (*m/z*): $[M+Na]^+$ calcd for C₂₀H₃₂OSiNa, 339.2115; found, 339.2112.

Purified by column chromatography twice (eluent: $hexane/CH_2Cl_2/acetone =$ 100:5:1, and hexane/CH₂Cl₂ = 5:1). Colorless oil (41 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ: 9.33 (s, 1H), 7.51–7.44 (m, 2H), 7.38–7.31 (m, 3H), 5.91 (s, 1H), SiMe₂Ph 5.85 (s, 1H), 1.95–1.86 (m, 1H), 1.76–1.55 (m, 4H), 1.45–1.38 (m, 1H), 1.28–0.96 3d (m, 7H), 0.89–0.79 (m, 1H), 0.43 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ: 203.6, 149.8, 138.7, 133.8,

131.2, 129.0, 127.8, 60.0, 42.0, 28.6, 26.8, 26.8, 26.7, 26.5, 14.3, -0.4, -0.6. ²⁹Si NMR (99 MHz, CDCl₃) δ: -7.4. **IR** (ATR): 702.1, 734.9, 777.3, 819.8, 835.2, 906.5, 937.4, 1109.1, 1249.9, 1427.3, 1450.5, 1722.4, 2852.7, 2927.9. MALDI-HRMS (*m*/*z*): [M+Na]⁺ calcd for C₁₉H₂₈OSiNa, 323.1802; found, 323.1808.

Purified by column chromatography (eluent: hexane/CH₂Cl₂/acetone = 200:10:3). Colorless oil (61 mg, 81%). ¹**H NMR** (500 MHz, CDCl₃) δ : 9.33 (s, 1H), 7.51-7.49 (m, 2H), 7.35-7.32 (m, 3H), 7.15-7.09 (m, 2H), 6.87 (dd, *J* = 7.6,

^{3e} 7.6 Hz, 1H), 6.68 (d, J = 7.6 Hz, 1H), 5.98-5.89 (m, 1H), 5.87 (s, 1H), 5.84 (s, 1H), 5.04-5.02 (m, 1H), 5.00 (s, 1H), 3.80 (t, J = 6.6 Hz, 2H), 3.35-3.25 (m, 2H), 2.24-2.17 (m, 1H), 2.12-2.06 (m, 1H), 1.23 (s, 3H), 0.45 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ : 202.0, 156.2, 150.0, 138.1, 136.9, 133.8, 131.3, 129.7, 129.2, 128.6, 127.9, 127.1, 120.5, 115.3, 110.9, 64.0, 55.1, 34.8, 34.2, 19.6, -0.8, -0.9. ²⁹Si NMR (99 MHz, CDCl₃) δ : -7.4. IR (ATR): 702.1, 734.9, 750.3, 777.3, 817.8, 835.2, 912.3, 943.2, 997.2, 1022.3, 1047.4, 1109.1, 1240.2, 1427.3, 1454.3, 1475.5, 1492.9, 1600.9, 1724.4. ESI-HRMS (*m*/*z*): [M+Na]⁺ calcd for C₂₄H₃₀O₂SiNa, 401.1907; found, 401.1902. Anal. Calcd. for C₂₄H₃₀O₂Si: C, 76.14; H, 7.99. Found: C, 76.23; H, 7.97.

Purified by column chromatography twice (eluent: hexane/CH₂Cl₂/acetone = 200:10:3). White solid (51 mg, 68%). ¹**H NMR** (500 MHz, CDCl₃) δ : 9.31 (s, 1H), 7.50–7.48 (m, 2H), 7.35–7.33 (m, 3H), 7.18 (d, *J* = 9.2 Hz, 2H), 6.69 (d, *J* = 9.2 Hz, 2H), 5.84 (s, 1H), 5.83 (s, 1H), 3.81–3.72 (m, 2H),

2.20–2.14 (m, 1H), 2.08–2.02 (m, 1H), 1.20 (s, 3H), 0.45 (s, 3H), 0.44 (s, 3H). ¹³**C** NMR (125 MHz, CDCl₃) δ : 201.9, 157.1, 149.8, 138.1, 133.8, 131.3, 129.2, 129.2, 127.9, 125.5, 115.6, 64.4, 55.0, 34.4, 19.6, -0.8, -0.9. ²⁹Si NMR (99 MHz, CDCl₃) δ : -7.4. **IR** (ATR): 704.0, 733.0, 771.5, 785.0, 819.8, 827.5, 902.7, 950.9, 1018.4, 1030.0, 1087.9, 1109.1, 1246.0, 1290.4, 1469.8, 1494.8, 1712.8. **APCI-HRMS** (*m*/*z*): [M+H]⁺ calcd for C₂₁H₂₆ClO₂Si, 373.1358; found, 373.1378.

Purified by column chromatography three times (eluent: hexane/CH₂Cl₂/acetone = 200:10:3, hexane/CH₂Cl₂ = 5:1 to hexane/CH₂Cl₂/acetone = 50:10:3, and hexane/CH₂Cl₂ = 5:1). White solid (32 mg, 34%). ¹**H NMR** (500 MHz, CDCl₃) δ : 9.31 (s, 1H), 7.52–7.47 (m, 4H), 7.36–7.32 (m, 3H), 6.54 (d, *J* =

8.9 Hz, 2H), 5.84 (s, 1H), 5.83 (s, 1H), 3.80–3.70 (m, 2H), 2.19–2.13 (m, 1H), 2.08–2.02 (m, 1H), 1.19 (s, 3H), 0.45 (s, 3H), 0.44 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ: 201.9, 158.3, 149.8, 138.1, 138.1, 133.8, 131.3, 129.3, 127.9, 116.8, 82.7, 64.2, 55.0, 34.4, 19.6, –0.8, –0.9. ²⁹Si **NMR** (99 MHz, CDCl₃) δ: –7.4. **IR** (ATR): 702.1, 734.9, 777.3, 817.8, 835.2, 943.2, 999.1, 1020.3, 1058.9, 1111.0, 1174.7, 1242.2, 1280.7, 1400.3, 1427.3, 1475.5, 1485.2, 1585.5, 1722.4. **ESI-HRMS** (*m/z*): [M+Na]⁺ calcd for C₂₁H₂₅IO₂SiNa, 487.0561; found, 478.0554.

O O SiMe₂Ph 3i Purified by column chromatography (eluent: eluent: hexane/CH₂Cl₂/acetone = 100:10:3). Colorless oil (51.2 mg, 77%). ¹**H NMR** (500 MHz, CDCl₃) δ : 9.17 (s, 1H), 7.52–7.44 (m, 2H), 7.39–7.29 (m, 3H), 5.83 (s, 1H), 5.75 (s, 1H), 3.88 (s, 4H), 2.08–1.95 (m, 2H), 1.88–1.77 (m, 2H), 1.62–1.53 (m, 2H), 1.52–1.42 (m, 2H),

0.44 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ: 202.1, 148.9, 138.3, 133.8, 131.7, 129.1, 127.8, 108.0, 64.2, 64.2, 56.2, 31.5, 28.5, -0.7. ²⁹Si NMR (99 MHz, CDCl₃) δ: -7.1. **IR** (ATR): 731.0, 779.2, 821.7, 875.7, 945.1, 997.2, 1033.9, 1109.1, 1251.8, 1369.5, 1427.3, 1720.5, 2955.0. **ESI-HRMS** (*m/z*): [M+Na]⁺ calcd for C₁₉H₂₆O₃SiNa, 353.1543; found, 353.1538.

Purified by column chromatography twice (eluent: eluent: hexane/CH₂Cl₂/acetone = 60:10:3, and eluent: hexane/CH₂Cl₂/acetone = 100:10:3). SiMe₂Ph Colorless oil (50.6 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ : 9.24 (s, 1H), 3i 7.51–7.47 (m, 2H), 7.37–7.33 (m, 3H), 5.83 (s, 1H), 5.82 (s, 1H), 3.92 (t, *J* = 7.3 Hz, 2H), 2.12 (s, 2H), 2.01–1.91 (m, 2H), 1.17 (s, 3H), 0.99 (s, 9H), 0.44 (s, 3H), 0.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ : 201.7, 172.0, 149.4, 137.9, 133.8, 131.4, 129.2, 127.9, 60.3, 54.9, 47.8, 33.5, 30.6, 29.6, 19.3, –0.8, –0.9. ²⁹Si NMR (99 MHz, CDCl₃) δ : –7.4. IR (ATR): 702.1, 734.9, 777.3, 819.8, 835.2, 943.2, 999.1, 1111.0, 1130.3, 1228.7, 1249.9, 1323.2, 1367.5, 1429.3, 1465.9, 1728.2, 2958.8. ESI-HRMS (*m*/*z*): [M+Na]⁺ calcd for C₂₁H₃₂O₃SiNa, 383.2013; found, 383.2005. Anal. Calcd. for C₂₁H₃₂O₃Si: C, 69.95; H, 8.95. Found: C, 70.00; H, 8.96.

Purified by column chromatography three times (eluent: hexane/CH₂Cl₂/acetone = 200:10:3, hexane/acetone = 100:1, and hexane/CH₂Cl₂ = 5:1). Colorless oil (29 mg, 53%). ¹**H NMR** (500 MHz, CDCl₃) δ : 9.58 (d, *J* = 4.7 Hz, 1H), 7.55–7.44 (m, 2H), 7.41–7.29 (m, 3H), 6.05 (s, 1H), 5.88 (s, 1H), 2.97 (d, *J* = 4.7 Hz, 1H), 1.42–1.30 (m, 1H), 1.29–1.18 (m, 1H), 0.96 (s, 3H), 0.82 (s, 3H), 0.75 (t, *J* = 7.5 Hz, 3H),

0.40 (s, 3H), 0.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ: 202.1, 144.8, 137.0, 134.1, 132.4, 129.3, 127.8, 63.0, 37.9, 33.6, 24.6, 8.0, -2.8, -2.9. ²⁹Si NMR (99 MHz, CDCl₃) δ: -6.0. **IR** (ATR): 734.9, 777.3, 817.8, 833.3, 941.3, 1111.0, 1249.9, 1427.3, 1716.7, 2964.6. **APCI-HRMS** (*m*/*z*): [M+Na]⁺ calcd for C₁₇H₂₆OSiNa, 297.1645; found, 297.1639.

6. NMR Charts

S22

S35

7. References

- A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* 1996, 15, 1518.
- [2] S. Hitosugi, D. Tanimoto, W. Nakanishi, H. Isobe, Chem. Lett. 2012, 41, 972–973.
- [3] T. Hatakeyama, T. Hashimoto, Y. Kondo, Y. Fujiwara, H. Seike, H. Takaya, Y. Tamada, T. Ono, M. Nakamura, J. Am. Chem. Soc. 2010, 132, 10674–10676.
- [4] a) for 1a; J. Tsuji, T. Sugiura, I. Minami, *Synthesis*. 1987, 7, 603–606. b) for 1b and 1d; Y. Tani, T. Fujihara, J. Terao, Y. Tsuji, *J. Am. Chem. Soc.* 2014, *136*, 17706–17709; c) for 1c; T. Kippo, T. Fukuyama, I. Ryu, *Org. Lett.* 2011, *13*, 3864–3867; d) for 1h; A. Köpfer, B. Breit, *Angew. Chem. Int. Ed.* 2015, *54*, 6913–6917; e) for 1i and 1k; J. Takaya, N. Iwasawa, *J. Am. Chem. Soc.* 2008, *130*, 15254–15255; f) for 1l; K. Tatsumi, T. Fujihara, J. Terao, Y. Tsuji, *Chem. Commun.* 2014, *50*, 8476–8479.
- [5] M. Suginome, T. Matsuda, Y. Ito, *Organometallics* 2000, *19*, 4647–4649; b) M. Suginome, T. Matsuda, H. Nakamura, Y. Ito, *Tetrahedron* 1999, *55*, 8787–8800.
- [6] S. J. Nara, L. Valgimigli, G. F. Pedulli, D. A. Pratt, J. Am. Chem. Soc. 2010, 132, 863-872.
- [7] A. H. Stolland, S. B. Blakey, J. Am. Chem. Soc. 2010, 132, 2108–2109.
- [8] Z. Zhang, C. Liu, R. Kinder, X. Han, H. Qian, R. A. Widenhoefer, J. Am. Chem. Soc. 2006, 128, 9066–9073.