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SUMMARY

This paper presents a new approach to trajectory optimization for nonlinear systems. The method exploits
homotopy between a linear system and a nonlinear system and neighboring extremal optimal control, in
combination with few iterations of a convergent optimizer at each step, to iteratively update the trajec-
tory as the homotopy parameter changes. To illustrate the proposed method, a numerical example of a
three-dimensional orbit transfer problem for a spacecraft is presented. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

For most optimal control problems (OCPs) in engineering applications, it is difficult to obtain ana-
lytical or closed form solutions using Pontryagin’s maximum principle or dynamic programming.
Consequently, iterative/numerical methods are utilized for solving such OCPs [1, 2].

In this paper, we propose a new approach to trajectory optimization of a nonlinear system with
a given cost functional. The method exploits the idea of homotopy (see, e.g., [3]) to continuously
deform the trajectory from that of a linear system to that of a nonlinear system, and it uses neigh-
boring extremal optimal control (NEOC) to predict the optimal solution as the homotopy parameter
changes. Note that the method presented here is different from [4] as we, additionally, exploit the
idea of NEOC. The main motivation for our approach is that it is easier to solve OCPs for linear
systems than for nonlinear systems. Once we obtain the optimal control for the linear system, the
control is iteratively updated using NEOC theory, combined with only a few iterations of a con-
vergent optimizer at each step. We note that while the homotopy method is used in many practical
trajectory optimization methods, for example, in aerospace applications [5, 6], its use is limited to
systems with contractible state space, that is, state space with a trivial fundamental group, such as
Rn. We will briefly discuss the homotopy and NEOC next. In what follows, we will suppress the
explicit dependence of the state, costate, and control trajectories on time unless otherwise necessary.

2. HOMOTOPY

Homotopy is a topological concept (see, e.g., [7]), which can be used, typically in combination with
another optimization method, to solve OCPs. The basic idea is to start out with a simpler problem,
whose solution is easy to compute, and then gradually evolve the solution to the solution of the
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harder problem by changing the homotopy parameter. Consider an OCP, where the objective is to
minimize a cost functional given by the following:

min
u.:/

J D K.x.T //C

Z T

0

L.x.t/; u.t//dt (1)

subject to

Px.t/ D f .x.t/; u.t//; x.0/ D x0; (2)

where x.:/ 2 AC.Œ0; T �;Rn/, u.:/ 2 L1.Œ0; T �;Rm/, K W Rn ! R, L W Rn � Rm ! R,
and f W Rn � Rm ! Rn satisfy appropriate differentiability assumptions. Suppose the OCP
(1)–(2) is difficult to solve with the dynamic constraint given by the model Px.t/ D f .x.t/; u.t//

but is easier to solve with the dynamic constraint given by the model Px.t/ D g.x.t/; u.t// (e.g.,
g.x.t/; u.t// D Ax.t/ C Bu.t/ C d ), where g W Rn � Rm ! Rn also satisfies appropriate
differentiability assumptions. Then by creating a homotopy given by the following:

Px.t/ D �f .x.t/; u.t//C .1 � �/g.x.t/; u.t//; (3)

where � 2 Œ0; 1� is the homotopy parameter and under appropriate assumptions, we can solve
the original OCP (1)–(2) by changing � from 0 to 1 and re-using the solution from the previous
homotopy step as an initial guess for the solution at the next homotopy step. For the background
on homotopy methods, see [4, 8]. The survey paper [9] discusses continuation methods and their
application to OCPs. For the use of homotopy method in OCPs, see also [10–14].

3. NEIGHBORING EXTREMAL OPTIMAL CONTROL

Consider a parameter-dependent OCP, where the objective is to minimize a cost functional given by
the following:

min
u.:/

J D K.x.T /; p/C

Z T

0

L.x.t/; u.t/; p/dt (4)

subject to

Px.t/ D f .x.t/; u.t/; p/; x.0/ D x0; (5)

where x.:/ 2 AC.Œ0; T �;Rn/, u.:/ 2 L1.Œ0; T �;Rm/, p 2 Rl is a parameter, K W Rn � Rl ! R,
L W Rn � Rm � Rl ! R, and f W Rn � Rm � Rl ! Rn are functions of class C 2. Let .x�p; u

�
p/

be a solution for the OCP (4)–(5), where u�p.t/ denotes the optimal control, which satisfies the
Lagrange multiplier rule in a normal form (see, e.g., [15]). Let ‰�p be the solution corresponding to
.x; u/ D .x�p; u

�
p/ of the following costate equation:

P‰ D �Hx.x; u;‰; p/; ‰.T / D Kx.x.T /; p/;

where ‰.:/ 2 AC.Œ0; T �;Rn/, H is the Hamiltonian, and H.x; u;‰; p/ WD L.x; u; p/ C
‰T f .x; u; p/. Altogether, .x�p; u

�
p; ‰

�
p/ satisfy the following necessary conditions for optimality:

Px.t/ D f .x.t/; u.t/; p/; x.0/ D x0; (6)

P‰.t/ D �Hx.x.t/; u.t/; ‰.t/; p/; ‰.T / D Kx.x.T /; p/; (7)

0 D Hu.x.t/; u.t/; ‰.t/; p/: (8)

Suppose there is a small variation in the initial condition and/or the parameter, and we would
like to update the optimal control. Instead of solving the original OCP again, we employ a first-
order approximation of the necessary conditions for optimality around the nominal trajectory. This
approximation is given by the following (see, e.g., [16–19]):
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ı Px.t/ D
@f

@x
ıx.t/C

@f

@u
ıu.t/C

@f

@p
ıp; ıx.0/ D ıx0; (9)

ı P‰.t/ D �Hxxıx.t/ �Hxuıu.t/ �Hx‰ı‰.t/ �Hxpıp; ı‰.T / D Kxxıx.T /CKxpıp; (10)

0 D Huxıx.t/CHuuıu.t/CHu‰ı‰.t/CHupıp: (11)

Under the the second-order sufficient optimality condition (see, e.g., [17, 19]), (9)–(11) represent
the optimality condition for the following OCP (see, e.g., [16–19]):

min
ıu.:/

ı2J D
1

2

�
ıx.T /

ıp

�T �
Kxx.T / Kxp.T /

Kpx.T / 0

� �
ıx.T /

ıp

�

C
1

2

Z T

0

2
64
2
4 ıx.t/ıu.t/

ıp

3
5
T 2
4Hxx.t/ Hxu.t/ Hxp.t/Hux.t/ Huu.t/ Hup.t/

Hpx.t/ Hpu.t/ 0

3
5
2
4 ıx.t/ıu.t/

ıp

3
5
3
75 dt

(12)

subject to the perturbed dynamics

ı Px.t/ D
@f

@x
ıx.t/C

@f

@u
ıu.t/C

@f

@p
ıp; ıx.0/ D ıx0; (13)

where the matrices in the cost functional (12) and the Jacobian matrices in the dynamic constraint
(13) are evaluated at the nominal trajectories. The optimal control for the OCP (12)–(13) is given
by the following:

ıu�.t/ D �H�1uu .t/
�
Hux.t/ıx.t/C f

T
u .t/ı‰.t/CHup.t/ıp

�
; (14)

where all partial derivative matrices are evaluated at the nominal trajectories and ı‰.t/ is a
perturbation from ‰�.t/, ultimately expressible in terms of ıx.t/ and ıp.

The updated control is now calculated as the sum of u�.t/ and ıu�.t/ and can be used directly or
to warm start an optimizer for parameter pC ıp. This is the basic idea behind NEOC. For a detailed
description of NEOC, see [16]. For a mathematically rigorous introduction to NEOC, see [20].

Remark 1
The OCP (12)–(13) is known as the accessory minimum problem in the calculus of variations (see,
e.g., [21]). If there is no variation in the initial condition, that is, the initial condition remains fixed,
then ıx.0/ D 0, and similarly, if there is no variation in the parameter, that is, the parameter remains
fixed, then ıp D 0. Note that it is also possible to obtain the solution in the conventional NEOC
setting (see, e.g., [16]), by adding p as a state, with Pp D 0.

For .x�p.t/; u
�
p.t// to be a strong local minimizer for the OCP (4)–(5), the second-order sufficient

condition (strengthened Legendre–Clebsch condition) requires that Huu.t/ � 0, for a.e. t 2 Œ0; T �
and conjugate points for the OCP (12)–(13) must not exist (Jacobi condition) (see, e.g., [20]). An
indicator for the existence of conjugate points is that the Riccati equation associated with the OCP
(12)–(13) has a finite escape time (see, e.g., [20]). Existence of a solution of the Riccati equation
associated with the OCP (12)–(13) over the interval Œ0; T � is enough to rule out the existence of
conjugate points. For a modern exposition on conjugate points, see [20, 22]. For more on conjugate
points for OCPs, see [11, 16, 23–29].

We will now discuss the proposed method that combines the ideas of homotopy and NEOC.

4. METHOD DESCRIPTION

Consider a linear system and a nonlinear system given as follows:

Px D Ax C BuC d; x.0/ D x0; (15)

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2017; 38:459–469
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y D Cx; (16)

Px D f .x; u/; x.0/ D x0; (17)

where x.:/ 2 AC.Œ0; T �;Rn/, u.:/ 2 L1.Œ0; T �;Rm/, A 2 Rn�n, B 2 Rn�m, C 2 Rq�n, d 2 Rn,
and f W Rn � Rm ! Rn is a function of class C 2. Create a homotopy between the linear system
and the nonlinear system by the following:

Px D �f .x; u/C .1 � �/.Ax C BuC d/ DW F.x; u; �/; (18)

where � 2 Œ0; 1�. Note that the linear system (15) can be defined as the linearization of the nonlinear
system (17) at a selected steady-state operating point .xop; uop/, with d D f .xop; uop/ � Axop �
Buop . Consider a class of problems with a quadratic type cost defined over a finite horizon given
by the following:

J D
1

2
eT .T /Kf e.T /C

1

2

Z T

0

�
eT .t/Qe.t/C uT .t/Ru.t/

�
dt; (19)

where Kf , Q � 0, R � 0, and e.t/ D y.t/ � yd .t/, with yd .t/ being the desired trajectory.

Remark 2
While we introduce our ideas in the context of a specific OCP with cost functional (19), many
generalizations are possible. For instance, a minimum time problem can be handled using the given
approach by rescaling time and introducing final time as an additional variable to be optimized. Note
that for a minimum time problem, the optimal control is usually discontinuous (at least for control
affine systems with a box constraint on u) and for the proposed approach to be used practically,
the cost should be ‘regularized’ with a small control-dependent term to make the optimal control
continuous (see, e.g., [30, 31]). The case when the homotopy parameter enters the cost or the cost
is not quadratic can be handled as well. However, simplifications do occur in the case of quadratic
costs as is apparent from the next section.

4.1. Algorithm

The proposed algorithm is based on applying neighboring extremal updates to predict the optimal
control trajectory as p D � changes. Note the superscripts in the following discussion represent the
iteration number.

Step 1: Start with k D 0 and set �.0/ D 0. Solve the OCP with the cost functional (19) subject to
the dynamic constraint (18). The solution to this OCP is given by the following:

u�.0/ D �R�1BTPx.0/ CR�1BT r1; (20)

where P and r1 are the solutions of the differential equations

� PP D ATP C PA � PBR�1BTP C C TQC; P.T / D C TKf C; (21)

� Pr1 D
�
A � BR�1BTP

�T
r1 � Pd C C

TQyd ; r1.T / D C
TKf yd .T /: (22)

Note that (21) is a Riccati differential equation that does not depend on yd and is solved
backwards in time and (22) is a linear differential equation that is also solved backwards in
time. Obtain x�

�.0/
from Px.0/ D F.x.0/; u�.0/; �.0// D Ax.0/CBu�.0/ and u�

�.0/
from (20).

Step 2: Set k D k C 1 and �.k/ D �.k�1/ C ı�.k/, where ı�.k/ > 0 is small and solve the OCP
given in the following:

min
ıu.k/.:/

ı2J .k/ D
1

2

�
ıx.k/.T /

ı�.k/

�T �
C TKf C 0

0 0

� �
ıx.k/.T /

ı�.k/

�

C
1

2

Z T

0

2
64
2
4 ıx

.k/.t/

ıu.k/.t/

ı�.k/

3
5
T
2
64
H
.k/
xx .t/ H

.k/
xu .t/ H

.k/

x�
.t/

H
.k/
ux .t/ H

.k/
uu .t/ H

.k/

u�
.t/

H
.k/

�x
.t/ H

.k/

�u
.t/ 0

3
75
2
4 ıx

.k/.t/

ıu.k/.t/

ı�.k/

3
5
3
75 dt

(23)

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2017; 38:459–469
DOI: 10.1002/oca



COMBINED HOMOTOPY AND NEOC 463

subject to the perturbed dynamics

ı Px.k/.t/ D A.k/.t/ıx.k/.t/C B.k/.t/ıu.k/.t/CG.k/.t/ı�.k/; ıx.k/.0/ D 0; (24)

where

H .k/
xx .t/ D

@

@x

@H

@x

ˇ̌̌
ˇ�
x�
�.k�1/

.t/;u�
�.k�1/

.t/;�.k�1/
	;

H .k/
xu .t/ D

@

@u

@H

@x

ˇ̌̌
ˇ�
x�
�.k�1/

.t/;u�
�.k�1/

.t/;�.k�1/
	;

:::

A.k/.t/ D
@F

@x

ˇ̌̌
ˇ�
x�
�.k�1/

.t/;u�
�.k�1/

.t/;�.k�1/
	;

B.k/.t/ D
@F

@u

ˇ̌̌
ˇ�
x�
�.k�1/

.t/;u�
�.k�1/

.t/;�.k�1/
	;

G.k/.t/ D
@F

@�

ˇ̌̌
ˇ�
x�
�.k�1/

.t/;u�
�.k�1/

.t/;�.k�1/
	;

with H.x; u;‰; �/ WD
1

2

�
.Cx � yd /

TQ.Cx � yd /C u
TRu

�
C ‰TF.x; u; �/. The

solution to the OCP (23)–(24) is given by the following (see, e.g., [16]):

ıu�.k/ D �H�1.k/uu .t/
h
H .k/
ux .t/ıx

.k/ C BT.k/.t/ı‰.k/ CH
.k/

u�
.t/ı�.k/

i
; (25)

where ı‰.k/ D S .k/ıx.k/�r .k/2 , S .k/, and r .k/2 are the solutions of the differential equations

� PS .k/ D QAT.k/.t/S .k/CS .k/ QA.k/.t/�S .k/ QB.k/.t/S .k/C QC .k/.t/; S .k/.T / D C TKf C;
(26)

� Pr
.k/
2 D

�
QAT.k/.t/ � S .k/ QB.k/.t/

	
r
.k/
2 �

�
S .k/ QD

.k/
1 .t/C QD

.k/
2 .t/

	
ı�.k/; r

.k/
2 .T / D 0;

(27)
where

QA.k/.t/ D A.k/.t/ � B.k/.t/H�1.k/uu .t/H .k/
ux .t/;

QB.k/.t/ D B.k/.t/H�1.k/uu .t/BT.k/.t/;

QC .k/.t/ D H .k/
xx .t/ �H

.k/
xu .t/H

�1.k/
uu .t/H .k/

ux .t/;

QD
.k/
1 .t/ D G.k/.t/ � B.k/.t/H�1.k/uu .t/H

.k/

u�
.t/;

QD
.k/
2 .t/ D H

.k/

x�
.t/ �H .k/

xu .t/H
�1.k/
uu .t/H

.k/

u�
.t/:

Obtain ıx�
ı�.k/

from (24), ıu�
ı�.k/

from (25), and ı‰�
ı�.k/

D S .k/ıx�
ı�.k/
�r

.k/
2 . Calculate

x�
�.k/
D x�

�.k�1/
C ıx�

ı�.k/
, u�
�.k/
D u�

�.k�1/
C ıu�

ı�.k/
, and ‰�

�.k/
D ‰�

�.k�1/
C ı‰�

ı�.k/
.

Step 3: Repeat Step 2 until �.k/ D 1.

Following the aforementioned steps, we can obtain a sub-optimal control for a nonlin-
ear system with a given cost functional. Note that special methods exist for solving the
differential (26)–(27) efficiently (see, e.g., [32]). We consider a numerical example in the
next section.

Remark 3
Note that a sub-optimal control provides performance close to the optimal control, where the close-
ness of sub-optimal control to the optimal control performance can be controlled by controlling the
rate of change of the homotopy parameter. The proposed algorithm can also be extended (under
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appropriate assumptions, see, e.g., [17–19]) to OCPs with control input/state constraints. An alter-
native way to extend the proposed algorithm to OCPs with control input/state constraints is by
using the penalty function approach. Moreover, the weighting factor multiplying the penalty func-
tion could be treated as an additional parameter in applying neighboring extremal predictions, so
as to avoid the problem of ill-conditioning caused by starting directly with a very high value of the
weighting factor.

Recall that an indicator for the existence of conjugate points is that (26) has a finite escape time.
We will now give three sufficient conditions for the nonexistence of conjugate points, if the optimal
control is obtained at each iteration of the proposed algorithm.

Proposition 1

Assume that

�
QC .k�1/.t/ QAT.k�1/.t/
QA.k�1/.t/ � QB.k�1/.t/

�
�

�
QC .k/.t/ QAT.k/.t/
QA.k/.t/ � QB.k/.t/

�
; H

.k�1/
uu .t/ � 0, andH .k/

uu .t/ �

0; for a.e. t 2 Œ0; T � and for k 2 ZC; then S .k�1/.t/ � S .k/.t/ on the interval Œ0; T �: Moreover, if
there exists a solution S .k�1/.t/ for (26) on the interval Œ0; T �; then there exists a solution S .k/.t/
for (26) on the interval Œ0; T �:

Proof
It is easy to verify that QA.k�1/.t/, QA.k/.t/, QB.k�1/.t/, QB.k/.t/, QC .k�1/.t/, and QC .k/.t/ are inte-
grable on the interval Œ0; T �. It follows from Theorem 4.1.4 of [33] that S .k�1/.t/ � S .k/.t/
on the interval Œ0; T �. It is also easy to verify that QB.k�1/.t/ D QBT.k�1/.t/ � 0, QB.k/.t/ � 0,
QC .k�1/.t/ D QC T.k�1/.t/, and S .k�1/.t/ D ST.k�1/.t/ on the interval Œ0; T �. It follows from

Theorem 5.7 of [34] that there exists a solution S .k/.t/ for (26) on the interval Œ0; T �. �

Proposition 2
Assume that QC .k�1/.t/ � 0 andH .k�1/

uu .t/ � 0; for a.e. t 2 Œ0; T � and for k 2 ZC; then there exists
a solution S .k�1/.t/ for (26) on the interval Œ0; T �:

Proof
It is easy to verify that QA.k�1/.t/, QB.k�1/.t/, and QC .k�1/.t/ are integrable on the interval Œ0; T �. It
is also easy to verify that QB.k�1/.t/ � 0 on the interval Œ0; T �. It follows from Theorem 4.1.6 of
[33] that there exists a solution S .k�1/.t/ for (26) on the interval Œ0; T �. �

Proposition 3
Assume thatH .k�1/

uu .t/ � 0; for a.e. t 2 Œ0; T � and for k 2 ZC: In addition, assume that there exists
NS .k�1/.:/ 2 AC.Œ0; T �;Rn�n/ on the interval Œ0; T � such that

0 � PNS .k�1/ C QAT.k�1/.t/ NS .k�1/ C NS .k�1/ QA.k�1/.t/ � NS .k�1/ QB.k�1/.t/ NS .k�1/ C QC .k�1/.t/;

for a.e. t 2 Œ0; T � and NS .k�1/.T / � C TKf C; then there exists a solution S .k�1/.t/ for (26) on the
interval Œ0; T � and NS .k�1/.t/ � S .k�1/.t/ on the interval Œ0; T �.

Proof
It is easy to verify that QA.k�1/.t/, QB.k�1/.t/, and QC .k�1/.t/ are integrable on the interval Œ0; T �.
It is also easy to verify that QB.k�1/.t/ D QBT.k�1/.t/ � 0, QC .k�1/.t/ D QC T.k�1/.t/, and
S .k�1/.t/ D ST.k�1/.t/ on the interval Œ0; T �. It follows from Theorem 5.8 of [34] that there
exists a solution S .k�1/.t/ for (26) on the interval Œ0; T � and NS .k�1/.t/ � S .k�1/.t/ on the interval
Œ0; T �. �

Remark 4
Note that the proposed algorithm only gives a prediction step and not a correction step. To improve
the solution, a prediction step can be augmented by a correction step that can be implemented by a
few iterations of a convergent optimizer.

We will now present a numerical example.

Copyright © 2016 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2017; 38:459–469
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5. NUMERICAL EXAMPLE

To illustrate our combined homotopy and NEOC method, we consider a three-dimensional orbit
transfer problem for a spacecraft from an initial circular orbit of radius Ri (km) to a final circular
orbit of radius Rf (km) (see, e.g., [12]). The OCP is given as follows:

min
u.:/

J D
1

2
.x.T / � xd /

TKf .x.T / � xd /C
1

2

Z 14000

0

uT .t/u.t/dt (28)

subject to

2
666664

Px1.t/
Px2.t/
Px3.t/
Px4.t/
Px5.t/
Px6.t/

3
777775
D

2
666666666664

x2.t/

x1.t/x
2
4.t/ cos2.x5.t//C x1.t/x26.t/ �

�

x21.t/
C u1.t/

x4.t/

�
2x2.t/x4.t/

x1.t/
C 2x4.t/x6.t/ tan.x5.t//C

u2.t/

x1.t/ cos.x5.t//
x6.t/

�
2x2.t/x6.t/

x1.t/
� x24.t/ sin.x5.t// cos.x5.t//C

u3.t/

x1.t/

3
777777777775

; (29)

uT .t/u.t/ 6 10�8; (30)

where

Kf D diag.10�4; 1; 1; 1; 1; 1/;

x.0/ D x0 D

�
Re CRi 0 0

r
�

.Re CRi /3
0 0

�T
;

xd D

2
4Re CRf 0

17�

4

vuut
�

.Re CRf /3 cos2


5�

180

� 5�

180
0

3
5
T

:

In (29), x1 D r (km) (radius of orbit), x2 D Pr .km=sec/, x3 D � (rad) (azimuth angle), x4 D P�
.rad=sec/, x5 D � (rad) (elevation angle), x6 D P� .rad=sec/, u1 D ar .km=sec2/ (acceleration
in the r direction), u2 D a� .km=sec2/ (acceleration in the � direction), u3 D a� .km=sec2/
(acceleration in the � direction),Re D 6378 (km) (radius of earth), and � D 398; 600:4 .km3=sec2/
(gravitational parameter).

Instead of solving the OCP (28)–(30), we use the penalty function approach and solve the OCP
given as follows:

min
u.:/

J D
1

2
.x.T / � xd /

T Kf .x.T / � xd /C
1

2

Z 14000

0

�
uT .t/u.t/C �ˆ.h.u.t///

�
dt (31)

subject to

2
666664

Px1.t/
Px2.t/
Px3.t/
Px4.t/
Px5.t/
Px6.t/

3
777775
D

2
666666666664

x2.t/

x1.t/x
2
4.t/ cos2.x5.t//C x1.t/x26.t/ �

�

x21.t/
C u1.t/

x4.t/

�
2x2.t/x4.t/

x1.t/
C 2x4.t/x6.t/ tan.x5.t//C

u2.t/

x1.t/ cos.x5.t//
x6.t/

�
2x2.t/x6.t/

x1.t/
� x24.t/ sin.x5.t// cos.x5.t//C

u3.t/

x1.t/

3
777777777775

; (32)

where h.u/ D uT u� 10�8, .ˆ ı h/.:/ D max¹0; h.:/º4 is by choice a penalty function of class C 2

and � 2 RC is the weighting factor.
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We consider a linear system given by Px D Ax C BuC d; x.0/ D x0, which is obtained by the
linearization of (29) at a selected steady-state operating point xop D x0 and uop D Œ0 0 0�T . We
create a homotopy between the nonlinear system and the linear system and use the indirect single-
shooting method as a solver for the OCP with the cost functional (31) at each homotopy iteration.
The indirect single-shooting method converts the OCP into a root finding problem and solves for
the initial values of the costate variables.

To demonstrate the advantages of the combined homotopy and NEOC method, two cases are
considered. In the first case, we set the initial guess for the initial value of the costate variables for

Figure 1. Results. [Colour figure can be viewed at wileyonlinelibrary.com]
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the next iteration to be equal to the optimal value of the costate variables obtained from the previous
iteration (in the subsequent figure, we call this case as ‘without proposed method’). In the second
case, we use the combined homotopy and NEOC method discussed in the previous section to set
the initial guess for the initial value of the costate variables for the next iteration (in the subsequent
figure, we call this case as ‘with proposed method’). Note that [12] uses (3) to solve OCPs but
does not use neighboring extremal updates to predict the change in the initial value of the costate
variables. The MATLAB function fsolve.m has been used to solve the root finding problem, the
weighting factor is � D 1030, and � has been varied from 0 to 1 in increments of 0.1.

Figure 1. Continued.
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Figure 1. Continued.

Figure 1(a)–(f) shows the trajectory for the states of the nonlinear system, along with trajectories
for some values of �, with Ri D 600 (km) and Rf D 2000 (km). Figure 1(g)–(i) shows the control
inputs to the nonlinear system, along with trajectories for some values of �. Figure 1(j) shows the
control input constraint as � varies from 0 to 1. Figure 1(k) shows the total cost for the nonlinear
system as � varies from 0 to 1. Figure 1(l) shows the spacecraft maneuver from an initial circular
orbit of radiusRi D 600 (km) to a final circular orbit of radiusRf D 2000 (km). Figure 1(m) shows
the total number of function evaluations of fsolve.m for different spacecraft maneuvers, for the
two cases described previously. Figure 1(n) shows the total number of iterations of fsolve.m for
different spacecraft maneuvers, for the two cases described previously. From Figure 1(m)–(n), one
can see that the second case described previously needs fewer function evaluations and iterations of
fsolve.m.

6. CONCLUSIONS AND FUTURE WORK

The proposed method is based on the approach of combined use of homotopy and NEOC, which
to the authors’ knowledge has not been reported in the previous literature. This approach was illus-
trated using a numerical example, which suggested benefits of the combined application of these
techniques in terms of reducing the number of function evaluations and iterations. In the future, we
intend to investigate the use of this method for more complicated control input/state-constrained
OCPs and for other real-world applications.
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