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1 | INTRODUCTION

With theever‐growingquantityandavailabilityofhealthcaredata,many

healthscientistsare increasingly turningtoautomatedanalyticprocesses

toidentifymeaningfulpatternsinthedatatoimprovediagnosticaccuracy,

identify high‐risk patients, and extract concepts in unstructured data.1

However, some traditionalists still argue that automated algorithms are

notaviablesubstitutefor thetried‐and‐trueapproachtosolvingresearch

problems,whichreliesonamixtureofcontentexpertise,experience,intu-

ition,andultimately,conventionalstatistics(seeBreiman2foranexcellent

discussionon thediscordbetween these2 cultures).

The optimal data analysis (ODA) paradigm described by Yarnold

and Soltysik in Maximizing Predictive Accuracy3 is a machine learning

algorithm that was introduced over 25 years ago to offer an alternative

to conventional statistical methods commonly used in research.4 It

bridges the divide between data mining and statistics, easily overcom-

ing many of the concerns put forth by traditional health researchers. Its

appeal lies in its simplicity, accuracy, versatility, and transparency, com-

pared with conventional methods. By framing the relationship

between the outcome variable and independent variable as a classifi-

cation problem (ie, how accurately does the outcome variable classify

individuals as belonging to their actual level of the independent vari-

able?), ODA offers several benefits over the conventional statistical

methods typically employed in most health research studies. These

include the ability to handle an outcome variable measured on any

scale (from categorical to continuous), insensitivity to skewed data or

outliers, the use of accuracy measures that can be widely applied to

all classification analyses, and P values estimated using Monte Carlo

permutation tests.

Using this classification approach, ODA additionally offers the

unique ability to ascertain if individuals are likely to respond to the

assigned treatment (such as doses of a drug5 or adherence to behav-

ioral‐change interventions6) based on maximally accurate cutpoints

on the outcome variable, thus making this an ideal approach for evalu-

ating dose‐response relationships,7,8 or interventions with multivalued

treatments.9

Moreover, ODA accepts analytic weights, thereby allowing the

evaluation of observational studies using any algorithm that produces
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weights for covariate adjustment.9–16 Finally, ODA provides the capa-

bility to use cross‐validation in assessing the generalizability of the

model to individuals outside of the original study sample,17 or to iden-

tify solutions that cross‐generalize with maximum accuracy when

applied across multiple samples.3

Before describing the book Maximizing Predictive Accuracy in

greater detail, it would be helpful to briefly explain how an ODA model

is obtained. Assumewe are evaluating the effectiveness of an interven-

tion with 2 treatment levels (treatment and control) and a continuous

outcome variable. First, the ODA algorithm orders the outcome vari-

able from low to high. Next, ODA finds all the points along the contin-

uum of the outcome in which the next value belongs to an individual

from the alternate treatment than that of the previous value (eg, the

next value belongs to a treated subject, whereas the previous value

belongs to a control). The cutpoint thus represents the mean value of

the outcome at this point: cutpoint = (previous value + current value)/

2. Directionality defines how cutpoints are used to classify individual

observations. The 2 directions are “less than” (controls have lower

values on the outcome than treated subjects) and “greater than” (con-

trols have higher values on the outcome than treated subjects). For an

exploratory “2‐tailed” hypothesis (controls and treated subjects have

different values on the outcome), and both directions are evaluated

by the ODA algorithm. For a confirmatory “1‐tailed” hypothesis (con-

trols have lower values), only the appropriate direction (less than) is

evaluated. For each cutpoint along the continuum of the outcome,

ODA assesses howwell the model—that is, the combination of cutpoint

and direction—correctly predicts (in the current example) that controls

have values of the outcome less than or equal to the cutpoint, and

treated subjects have values of the outcome greater than the cutpoint.

Optimal data analysis relies on 3 measures of accuracy to identify

the optimal (maximum‐accuracy) model—that is, the exact combination

of cutpoint and direction that produces the most accurate predictions

possible for the sample. Sensitivity or true positive rate is the propor-

tion of actual treated subjects that are correctly predicted by the

ODA model—that is, those who have a value on the outcome that lies

above the cutpoint. Specificity or true negative rate is the proportion of

actual control subjects that are correctly predicted by the ODA model

—that is, those who have a value on the outcome that lies at or below

the cutpoint.18 The third measure of accuracy combines these 2 met-

rics and is called the effect strength for sensitivity or ESS.3,19 The

ESS is a chance‐corrected (0 = the level of accuracy expected by

chance) and maximum‐corrected (100 = perfect prediction) index of

predictive accuracy. The formula for computing ESS for a binary (2‐cat-

egory) case classification result is

ESS ¼ Mean Percent Accuracy in Classification–50ð Þ½ �=50×100%; (1)
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where

ESS ¼ Mean Percent Accuracy in Classification–50ð Þ½ �=50×100%: (2)

The ODA algorithm iterates through each successive cutpoint and

calculates ESS. The maximally accurate model is that which has the

cutpoint and direction with the highest associated value of ESS. Based

on simulation research, ESS values < 25% conventionally indicate a rel-

atively weak effect, <50% indicate a moderate effect, 50% to 75% indi-

cate a relatively strong effect, and ≥75% indicate a strong effect.3,19

The ODA also computes P values to assess the statistical reliability

(or “significance”) of the maximally accurate ODA model. P values are

estimated using Monte Carlo permutation tests. For example, in

models with a binary treatment, this involves repeatedly shuffling sub-

jects' treatment assignment at random, holding their outcome value

fixed at its true value. In each permuted data set, the ESS is recorded,

and the permutation P value represents the proportion of all permuted

data sets in which the ESS is higher than the ESS of the maximally

accurate ODA model.3,19

Finally, ODA can be implemented using cross‐validation to assess

the generalizability of the model, using leave‐1‐out cross‐validation.

Leave‐1‐out is simply n‐fold cross‐validation, where n is the number

of observations in the data set. Each observation in turn is left out,

and the model is estimated for all remaining observations. The pre-

dicted value is then calculated for the 1 hold‐out observation, and

the accuracy is determined as success or failure in predicting the out-

come for that observation. The results of all n predictions are used to

calculate the final accuracy estimates displayed in the classification

tables, which are then compared with the original estimates.20 If the

accuracy measures remain consistent with those of the original model

using the entire sample, then the model is considered generalizable.

This may be important, for example, if the goal of the analysis is to

assist health researchers identify new candidates for participation in

an ongoing intervention, or initiate the intervention in other settings.17

Other methods used for assessing reproducibility include hold‐out

validity assessment in which the model developed using a “training”

sample is applied to classify observations in one or more independent

samples, and the “generalizability” algorithm that identifies a model

that—when independently applied to 2 or more samples—maximizes

the minimum ESS value obtained across samples: the model is said to

cross‐generalize if the minimum value of ESS meets or exceeds the a

priori specification of the researcher for adequate fit.3,19

The ODA framework just described is implemented identically for

all models, regardless of variable type or number of categories. In fact,

the most sophisticated of models—classification tree analyses (CTAs)—

are nothing more than a series of linked simple ODA models. Taken

together, the ODA framework offers health researchers a powerful

machine learning alternative to conventional approaches to solving

research problems.
2 | OVERVIEW OF THE BOOK

Maximizing Predictive Accuracy unfolds in 4 major sections. The Intro-

duction consists of 3 chapters that lay the groundwork for the rest

of the work. The book begins with a brief history of the ODA
paradigm—starting with its genesis from the field of operations

research (mathematically enabling the algorithm to identify the most

accurate and parsimonious model possible for a given data set) and

evolving vis‐à‐vis its wedding to a statistical methodology for which

no distributional assumptions are required (P values are always cor-

rect). The Discussion is presented concerning how best learn the para-

digm, about publishing journal articles and teaching the paradigm to

students, and about obtaining research funding as well as powering

commercial applications. The Chapter 1 ends by describing the ulti-

mate objective of the authors—offering an improved statistical frame-

work to increase the speed and precision of research design and

statistical discovery.

Chapter 2 discusses fundamental concepts central to every

research study. First, the UniODA algorithm is clearly described and

illustrated without the use of mathematical formulas—it is demon-

strated how a maximum‐accuracy model is identified. Once the maxi-

mum‐accuracy solution is identified, the next step is assessing the

statistical reliability of the model, and once again, without the use of

formulas, the reader learns how to assess the exact probability of a

given result. Then the chapter turns to the heart of the paradigm—

defining predictive accuracy. The multivariable version of the ODA

algorithm—CTA—is then introduced. Crucial data transformations and

various methodologies for assessing the cross‐generalizability (repro-

ducibility) of models to independent samples are then discussed (and

illustrated throughout the rest of the book). The chapter ends with a

description of the Simpson paradox, which the authors argue may be

the most important challenge to and shortcoming of the published

literature.

Chapter 3 discusses aspects of measurement that “make or break”

empirical research: scales, analytic weights, precision, algorithm adapt-

ability, and instrumentation. Statistical power analysis is covered next,

followed by pragmatic issues such as data set design and construction,

missing data and residual analysis, and reporting of analytic findings in

research reports and articles.

The second section of the book consists of 2 chapters: Chapter 4

concerns categorical “attributes” (known as dependent variables in

prior statistical paradigms), and Chapter 5 concerns ordered attributes.

Both chapters feature many worked examples of optimal (maximum‐

accuracy) analogues to a myriad of earlier statistical methods. These

examples clearly demonstrate that the ODA algorithm is capable of

addressing all of these designs reflected in the myriad of legacy

methods—the universal applicability of the algorithm to any data

geometry is unique.

The third section of the book consists of 4 chapters focusing on

multivariable linearmodels. Chapter 6 describes the optimization (max-

imization of predictive accuracy) of models developed using the gen-

eral linear model paradigm. It is demonstrated how the phenomenon

of “regression toward the mean” can be remedied, and how the predic-

tive accuracy of analysis of variance and linear discriminant functions

can be maximized for any given sample. Chapter 7 addresses models

developed using the maximum likelihood paradigm, demonstrating

how to maximize the predictive accuracy of legacy methods such as

the log‐linear model, logistic regression, and probit analysis. Chapter

8 describes linear models that specifically maximize predictive accu-

racy—and achieve greater accuracy than their general linear model–
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and maximum likelihood–based counterparts. However, a host of spe-

cific algorithms are also described that yield even more accurate pre-

dictions for various forms of hypotheses that differ in specificity and

in structure. Chapter 9 concludes by demonstrating that all linear

models are susceptible to paradoxical confounding, whether attribut-

able to covariates, or to pooling of groups and/or time periods, and

shows that this problem exists even in single‐case designs.

The fourth and final section of the book consists of 3 chapters

focusing on multivariable nonlinear CTA models. Chapter 10 discusses

the first generation of CTA model, which has produced many of the

most accurate and parsimonious models ever identified in a host of

applications. It is demonstrated how this analysis can be conducted

manually using ODA software. Chapter 11 describes the second gener-

ation of CTA model, which has bested the first‐generation CTA model

in most applications that compared the methods—identifying more

accurate and typically more parsimonious solutions. This is accom-

plished by enumerating all possible orderings of the initial 3 attributes

included in the model—since these are the attributes that dominate the

ultimate predictive accuracy that is achieved by the model. At this

point, the book reveals that through all of this development, there

remain unsolved issues that exist for the optimal methods introduced

thus far, and that incurably cripple all legacy statistical methods.

Chapter 12 answers the enigma by describing the third and final

generation CTA model—the only analysis capable of identifying a glob-

ally optimal model (ie, accomplished by effectively enumerating all pos-

sible models) for a given application. It is discovered that the

relationship between X and Y is not the same as the relationship

between Y and X except in specific geometries, and that for many sam-

ples there is a discrete family of models relating X and Y, or Y and X.

The idea of a statistically ideal model—that achieves perfect accuracy

and does so with maximum possible parsimony—is defined, and a

new statistical index is introduced that allows one to compare any

model with respect to their distance from the theoretical ideal. This

is presented in the context of novometric (ie, “new measurement”) the-

ory, consisting of 4 axioms that parallel the basic axioms of quantum

mechanics, but that apply to classical rather than to atomic phenom-

ena. Exact discrete confidence intervals are described for models as

well as for chance. These methods are illustrated and show, in a study

of gender and cancer mortality for example, that there are more than 1

type (strata) of male and more than 1 type of female: not all males are

alike, and not all females are alike.
3 | COMMENT

Needless to say, learning an entirely new methodological approach is

not always easy, especially one as comprehensive as the ODA para-

digm described in this book. However, the book is well organized,

building from a simple model onward to the most sophisticated of clas-

sification algorithms available. The many brief examples are useful and

generalizable, allowing researchers from any discipline to contemplate

the application of the ODA framework to their own work.

At 396 pages in length, this book provides an encyclopedic level of

detail on maximum‐accuracy models. Yet for all that, the book is not

exhaustive. An entirely new volume could be devoted to novel
extensions of the paradigm to specific areas of research. For example,

a recent series of papers has described ways in which ODA can be

applied to improve causal inference in observational studies.7–11,21

However, CTA also has many potential applications for improving

causal inferential work. For example, CTA should be investigated as

an approach for modeling heterogeneous causal effects in observa-

tional studies. One can also envision the use of CTA to identify poten-

tial instrumental variables that may provide an unbiased estimate of

the causal effect of an intervention on the outcome (IV). An IV is a var-

iable (Z) that is correlated with the intervention (X) but not associated

with unobserved confounders of the outcome (Y).22 Potential IVs may

be identified by first generating a CTA model predicting participation

and then generating a second model predicting the outcome—allowing

the same set of covariates in both models. Covariates that appear in

the first (selection) model, but not in the second (outcome) model,

may be suggestive of potential IVs, which can then be used within

the IV framework. Similarly, CTA should be considered as an approach

for identifying causal mediation effects. A mediator is an intermediate

variable that lies on the casual pathway between treatment and out-

come.23 A CTA model would be generated to predict the outcome,

forcing the inclusion of the mediator after the treatment (to ensure

correct temporal alignment), as well as including other covariates to

control for confounding. In such a model, the extent of mediation

effects can be elucidated by assessing the ESS and P values for each

node along the pathway from treatment to outcome via the mediator.

As indicated by these examples, the application of maximum‐accuracy

techniques to improve causal inference in observational studies is

open to much further exploration. Particular emphasis should be

placed on determining the most appropriate algorithm for a given

problem—or a generalization to all algorithms, extension to outcomes

with censored data,24 and the development of specific sensitivity anal-

yses for these applications25 to ensure that the resulting models

remain robust to changes in assumptions and inputs.

In summary, I strongly recommend this book for any health

researcher interested in learning about an entirely novel approach to

evaluating their research—one that combines the power of machine

learning with permutation P values that require no distributional

assumptions, to deliver models with maximum predictive accuracy.
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