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ABSTRACT	

Computational models of the cervical spine are useful tools for research on the 
biomechanics of neck injury and the evaluation of countermeasures. This report describes 
the development of a parametric model of cervical spine geometry that is intended to 
provide input to computational modeling. Two-dimensional landmark data describing the 
outlines of the bones of the cervical spine and important head landmarks were obtained 
from lateral radiographs of volunteers in a seated posture taken	in	a	previous	study.	
After	imputation	and	a	scaling	adjustment,	principal	component	analysis	was	
performed	on	neutral-posture	landmark	data	from	140	men	and	women	with	a	wide	
range	of	age	and	body	size.	The	first	principal	component	was	primarily	related	to	
spine	curvature,	whereas	the	second	was	associated	with	overall	size.		
	
A	regression	analysis	predicting	principal	component	scores	from	subject	covariates	
found	significant	effects	of	stature,	age,	and	the	ratio	of	sitting	height	to	stature.	Sex	
was	not	a	significant	predictor	of	principal	component	scores	after	accounting	for	
overall	body	size.		
	
A	three-dimensional	bone	shape	prediction	was	created	using	bone	geometry	from	
38	women	extracted	from	CT	studies.	A	principal	component	analysis	performed	on	
each	bone	level	from	C1	to	C7	demonstrated	that	the	dominant	mode	of	variation	
was	overall	size	for	C2	but	not	for	the	other	levels.	A	detailed	examination	of	
vertebra	dimensions	showed	that	length,	width,	and	height	of	the	vertebrae	and	the	
vertebral	bodies	at	C3	through	C7	were	not	correlated.		
	
Two	methods	for	generating	3D	geometry	to	match	the	2D	predictions	were	created.	
First,	a	method	was	developed	to	compute	the	optimal	vector	of	principal	
component	scores	such	that	the	side-view	projection	of	landmarks	on	the	3D	bone	
best	matched	the	2D	targets.	Second,	a	method	based	on	least-squares	alignment	
and	uniform	scaling	was	developed.	The	method	based	on	principal	component	
scores	aligned	to	the	landmarks	in	the	3D	dataset	with	average	root-mean-square	
(RMS)	errors	below	1	mm,	and	matched	the	mesh	with	average	RMS	errors	less	than	
2	mm.	When	aligning	to	landmarks	generate	from	the	2D	model,	RMS	errors	were	
less	than	2	mm.	The	RMS	errors	for	the	scaling	method	were	only	slightly	larger.	
Both	the	PCAR	2D	model	and	the	scaling	method	for	generating	3D	bone	models	
were	implemented	in	the	Python	language	for	use	by	other	researchers.		
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INTRODUCTION	

The	cervical	spine	provides	a	high	level	of	mobility	to	the	head	but	is	vulnerable	to	
injury	due	to	both	chronic	and	acute	loading.	Computational	modeling	of	the	
cervical	spine	(c-spine)	and	neck	has	been	useful	in	understanding	the	influence	of	
both	direct	and	inertial	loading	on	the	head	and	thorax	on	c-spine	kinematics	and	
tissue	strains.	However,	most	c-spine	models	have	used	geometry	from	midsize	
males,	and	most	c-spine	geometry	data	have	been	extracted	from	medical	images	
obtained	in	supine	postures	rather	than	postures	corresponding	to	the	loading	
scenarios	of	interest.	

The	current	work	addresses	the	need	for	parametric	models	of	c-spine	geometry	
and	posture	for	men	and	women	with	a	wide	range	of	body	size	in	seated	postures	
with	an	unsupported	head.	These	postures	are	typical	of	people	in	vehicle	
environments,	including	military	ground	vehicles	and	aircraft.		

The	model	developed	in	this	work	is	based	on	two	data	sources:	(1)	a	large-scale	
study	of	c-spine	geometry	and	posture	conducted	by	UMTRI	in	the	1970s	using	
lateral	radiographs,	and	(2)	c-spine	bone	geometry	extracted	by	our	collaborators	at	
Johns	Hopkins	Applied	Physics	Laboratory	(APL)	using	novel	techniques	developed	
for	the	current	work	(Drenkow	et	al.	2017).	

The	methods	for	2D	model	creation	are	based	in	large	part	on	previous	work	at	
UMTRI	on	modeling	skeletal	structures	and	whole-body	surface	shapes.	A	principal	
component	analysis	(PCA)	was	used	to	explore	the	principal	modes	of	variation	in	
the	dataset.	Linear	regression	was	used	to	test	the	effects	of	subject	covariates	on	
the	size	and	shape	of	the	c-spine	vertebra	and	to	create	a	predictive	model.			

A	methodology	for	mapping	3D	bone	geometry	to	2D	landmark	configurations	was	
adapted	from	a	method	previously	developed	for	fitting	whole-body	shape	models	
to	low-resolution	scan	data.	A	second	method	using	least-squares	fitting	to	the	
landmark	locations	was	also	tested.	

The	resulting	models	were	implemented	in	Python,	an	open-source	programming	
language.	The	source	code	and	associated	data	files	will	be	available	for	public	use	
following	the	project.	
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METHODS	

Data	Sources	

The	two-dimensional	landmark	data	used	to	create	the	parametric	geometry	and	
posture	model	were	obtained	from	Snyder	et	al.	(1975).	A	total	of	180	men	and	
women	with	a	wide	range	of	age	and	body	size	were	sat	in	a	laboratory	mockup	
with	an	unsupported	head	and	horizontally	directed	vision.	Lateral	radiographs	
(Figure	1)	were	taken	in	the	neutral	posture	and	at	maximum	flexion	and	extension.	
In	more	recent	work	(Klinich	et	al.	2004),	the	original	radiographs	were	digitized	
and	a	large	number	of	landmark	locations	on	the	bones	were	manually	extracted.	
These	data	have	formed	the	basis	for	the	development	of	new	ways	to	represent	
cervical	spine	posture	(Klinich	et	al.	2012).		

	

Figure	1.	Example	of	a	lateral	radiograph	in	the	neutral	posture	from	Snyder	et	al.	(1975).	

Imputation	and	Adjustment	of	Landmark	Data	

The	bone	shapes	obtained	by	landmark	extraction	in	the	flexed,	neutral,	and	
extended	postures	necessarily	differ	somewhat	within	subject.	Moreover,	some	
landmarks	are	missing	in	the	extreme	postures.	To	address	this	issue,	an	alignment	
and	imputation	procedure	was	used.	The	following	process	was	followed	for	subject	
and	bone:	
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1.	 Missing	landmarks	in	the	flexed	and	extended	postures	were	imputed	by	
aligning	the	neutral-posture	configuration	using	the	available	landmarks.	

2.	 The	landmarks	for	each	bone	in	the	three	postures	were	aligned	using	
generalized	Procrustes,	which	performs	a	least-squares	alignment.		

3.	 The	mean	landmark	configuration	was	computed.		

4.	 The	mean	landmark	configuration	was	aligned	to	the	landmark	data	in	each	
posture	using	a	least-squares	method.	This	aligned	mean	configuration	was	used	
for	subsequent	analysis.	

Due	to	these	steps,	no	data	were	missing	and	the	shapes	of	the	bones	for	each	
individual	were	invariant	across	postures.	

Scaling	the	UMTRI	2D	Data	

During	the	process	of	developing	the	3D	model,	a	discrepancy	was	noted	between	
the	dimensions	of	the	2D	model	and	those	obtained	from	the	APL	3D	data.	Further	
investigation	was	conducted	to	identify	the	source	of	the	discrepancy.	The	2D	
landmark	locations	obtained	by	digitizing	the	radiographs	were	originally	scaled	by	
reference	to	an	array	of	beads	oriented	vertically	in	each	image	(see	Figure	1).		
Snyder	et	al.	(1975)	data	reports	that	these	beads	were	“one	inch”	(i.e.,	25.4	mm)	
apart	and	located	on	the	“midsagittal	plane”.	The	analysis	by	Klinich	et	al.	(2004,	
2007)	assumed	this	scaling	relationship.	However,	a	closer	examination	of	the	
images	shows	that	in	most	cases	the	images	of	the	beads	overlap	that	of	the	head,	
indicating	that	the	beads	were	placed	adjacent	to	the	head,	and	not	in	the	
midsagittal	plane.		A	detailed	review	of	the	study	documentation	did	not	reveal	an	
alternative	location	for	the	beads.	Fortunately,	the	detailed	presentation	of	data	in	
the	Snyder	report	enabled	the	estimation	of	a	correction	factor.	

Snyder	et	al.	(1975)	reported	“segment	lengths”	based	on	the	distances	between	
“joint	centers”,	defined	as	the	midpoints	of	the	intervertebral	spaces,	using	the	tip	of	
the	dens	as	the	upper	margin	of	C2.	The	results	were	reported	separately	for	men	
and	women.	Tables	1	and	2	list	the	segment	lengths	for	men	and	women,	along	with	
the	total,	from	Snyder	et	al.	(1975).	For	comparison,	comparable	lengths	were	
computed	in	the	2D	landmark	data,	using	the	mean	of	the	adjacent	anterior	and	
posterior	vertebral	body	landmarks	as	an	estimate	of	the	“joint	center.”	Tables	1	and	
2	list	these	along	with	the	corresponding	correction	factor	defined	by	the	
relationship.		

The	comparison	to	the	segment	lengths	reported	by	Snyder	produces	an	average	
scale	factor	across	men	and	women	of	0.820.	The	regression	based	on	stature,	using	
the	3D	landmark	data,	produces	an	average	of	0.832.		Both	indicate	that	the	original	
2D	dataset	obtained	from	the	radiographs	(Klinich	et	al.	2004)	is	approximately	
22%	too	large,	on	average.	Based	on	this	analysis,	the	2D	landmark	data	were	scaled	
by	0.820	prior	to	analysis.	
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Table	1	
Segment	Lengths	–	Male	(mm)	

	

Snyder	(in)*	 Snyder	(mm)	 Original	2D	 Ratio	

C2	 1.509	 38.32	 47.4	 0.808	

C3	 0.7054	 17.92	 22.5	 0.796	

C4	 0.6895	 17.51	 21.8	 0.803	

C5	 0.6715	 17.06	 21.1	 0.808	

C6	 0.6670	 16.94	 20.8	 0.815	

C7	 0.7215	 18.33	 19.3	 0.950	

Total	 4.937	 125.41	 152.9	 0.820	
*	Rounded	to	four	digits	

	
Table	2	

Segment	Lengths	--	Female	

	

Snyder	(in)*	 Snyder	(mm)	 Original	2D	 Ratio	

C2	 1.386	 35.21	 43.2	 0.815	

C3	 0.6207	 15.77	 19.6	 0.804	

C4	 0.6160	 15.65	 18.9	 0.828	

C5	 0.6014	 15.28	 18.5	 0.826	

C6	 0.6000	 15.24	 19.2	 0.794	

C7	 0.6548	 16.63	 19.3	 0.862	

Total	 4.478	 113.7	 138.7	 0.820	
*	Rounded	to	four	digits	

	

Parametric	2D	Spine	Geometry	Modeling	

Some	subjects	from	the	Snyder	sample	were	excluded	due	to	problems	with	
landmark	availability.	For	example,	in	some	flexed	and	extended	scans,	insufficient	
landmarks	were	in	view	to	fit	all	of	the	vertebra	segments	and	head.	Out	of	the	
original	180	subjects,	a	total	of	140	men	and	women	with	complete	landmark	sets	
following	imputation	were	retained	for	analysis.	Table	3	lists	summary	statistics	for	
these	subjects.	

The	2D	spine	landmark	data	were	modeled	using	principal	component	analysis	
(PCA)	and	regression	to	predict	spine	size	and	shape	as	a	function	of	subject	
variables.	The	methods	were	based	on	those	used	in	previous	studies	to	model	
landmark	configurations,	body	shapes,	and	bone	geometries	(Li	et	al.	2015,	Klein	et	
al.	2015,	Park	and	Reed	2015).	PCA	expresses	the	variance	in	spine	landmark	
locations	in	a	transformed	space	in	which	each	subject’s	landmark	coordinates	are	
expressed	as	a	sum	of	independent	linear	combinations	of	coordinates.	The	
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advantages	of	PCA	for	this	application	are	that	(1)	a	large	percentage	of	the	variance	
in	the	data	can	be	expressed	using	a	relatively	small	number	of	values,	(2)	the	major	
modes	of	variance	in	spine	geometry	can	be	visualized,	and	(3)	the	subsequently	
developed	regression	models	are	independent	on	each	principal	component	(PC).	

Table	3	
Summary	Statistics	for	2D	Geometry	Sample	

Women	(N=79)	 Mean	 SD	 Min	 Max	

Stature	(mm)	 1606	 74.9	 1448	 1840	

Age	(years)	 43.4	 19.4	 18	 74	

Men	(N=61)	 	 	 	 	

Stature	(mm)	 1734	 80.7	 1520	 1899	

Age	(years)	 42.8	 20.8	 18	 74	

	

The	coordinates	of	the	spine	landmarks	in	the	neutral	posture	were	first	aligned	to	a	
T1	coordinate	system	with	the	origin	at	the	anterior	superior	body	landmark	and	
the	positive	X	axis	passing	through	the	posterior	T1	spinous	process	landmark,	as	
shown	in	Figure	2.	The	mean	T1	angle	with	respect	to	global	horizontal	was	3.2	
degrees	(sd	7.3	degrees),	indicating	that	the	T1	spinous	process	landmark	was	on	
average	slightly	higher	than	the	anterior-superior	T1	body	landmark.	No	significant	
relationships	between	body	dimensions	or	age	and	T1	angle	were	found.	The	
coordinate	data	for	the	122	landmarks	were	used.	Table	4	describes	the	landmark	
naming	convention.	Table	5	lists	the	landmarks,	which	are	depicted	in	
representative	radiographs	in	Figures	3	and	4.	The	head	landmarks	are	
infraorbitale,	tragion,	and	the	anterior	and	posterior	margins	of	the	occipital	
condyles.		

The	landmark	coordinates	were	collapsed	into	a	single	geometry	vector	of	244	
elements	and	the	PCA	was	performed	on	the	covariance	matrix.	A	regression	
analysis	was	then	conducted	using	sex,	stature,	age,	body	mass	index	(weight	in	kg	
divided	by	the	square	of	stature	in	meters),	the	ratio	of	sitting	height	to	stature,	and	
the	interactions	between	sex	and	the	other	variables	as	potential	predictors	of	
principal	component	(PC)	scores.	The	regression	models	were	assessed	with	respect	
to	the	statistical	significance	of	the	predictors	and	the	overall	adjusted	R2	values.	
The	regression	models	with	significant	predictors	were	then	used	to	predict	PC	
scores	that	were	used	to	reconstruct	the	spine	geometry.	The	resulting	landmark	
configurations	represent	the	mean	expected	spine	geometry	given	the	values	of	the	
predictors.	
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Figure	2.	Illustration	of	landmarks	(connected	by	lines)	used	in	PCA.	Horizontal	line	at	the	bottom	of	
plot	connects	anterior-superior	body	and	spinous	process	landmarks	of	T1	and	defines	the	
coordinate	system	in	which	the	neutral	spine	geometry	was	modeled.	

	

Table	4	
Abbreviations	in	Landmark	Names	

Abbreviation	 Definition	

Ant	 Anterior	

Pos	 Posterior	

Sup	 Superior	

Inf	 Inferior	

Med	 Median	

SpiPro	 Spinous	Process	

Bod	 Body	of	Vertebra	

Den	 Dens	(C2)	

Tub	 Tubercle	

C1C2	 Apparent	intersection	of	the	outlines	of	C1	and	C2	

Arc	 Arch	

Can	 Canal	

Fac	 Facet	
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Table	5	
List	of	Landmarks*	Used	in	PCA		

Point	
Number**	 C1	(N=12)	 Point	

Number	 C2	(N=16)	 Point	
Number	 C3-C7 (N=17)	

1	 C1_AntSupArc	 5	 C2_MedAntFce	 1	 CN_PosInfBod	

2	 C1_AntTub	 6	 C2_AntInfBod	 2	 CN_InfMedBod	

3	 C1_AntInfArc	 7	 C2_InfMedBod	 3	 CN_AntInfBod	

4	 C1C2_AntInt	 8	 C2_PosInfBod	 4	 CN_AntMedBod	

18	 C1C2_PosInt	 9	 C2_AntInfFac	 5	 CN_AntSupBod	

19	 C1_PosInfArc	 10	 C2_PosInfFac	 6	 CN_SupMedBod	

20	 C1_InfMidArc	 11	 C2_InfCan	 7	 CN_PosSupBod	

21	 C1_InfCan	 12	 C2_InfSpiPro	 8	 CN_AntSupFac	

22	 C1_SpiPro	 13	 C2_SpiPro†	 9	 CN_PosSupFac	

23	 C1_SupCan	 14	 C2_SupSpiPro	 11	 CN_PosInfFac	

24	 C1_SupMidArc	 15	 C2_SupCan	 10	 CN_AntInfFac	

25	 C1_PosSupArc	 16	 C2_PosSupFac	 12	 CN_SupCan	

	 	 17	 C2_AntSupFac	 13	 CN_InfCan	

	 	 26	 C2_SupPosDen	 14	 CN_SupSpiPro	

	 	 27	 C2_SupMidDen	 15	 CN_SpiPro	

  28	 C2_SupAntDen	 16	 CN_InfSpiPro	

	 	 	 	 n.s.	 CN_PosMedBod	
*	Abbreviations	in	landmark	names	are	given	in	Table	4.	
	**	See	Figures	3	and	4.	
†	Not	used	in	modeling	due	to	missing	data	for	some	subjects.	
n.s.	Not	shown.	

	



	 14	

	

Figure	3.	Landmarks	digitized	on	C1	and	C2	(Klinich	et	al.	2004).	

	

Figure	4.	Landmarks	digitized	on	C3	through	C7	(Klinich	et	al.	2004).	
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Spine	Articulation	

The	three	measurement	postures	provide	an	opportunity	to	characterize	the	spine	
motion	patterns.	Ranges	of	motion	can	be	calculated	for	each	segment	based	on	the	
differences	in	orientation	of	the	vertebra	between	flexed,	neutral,	and	extended	
postures.	Table	6	summarizes	range	of	motion	values	by	level	as	reported	by	Snyder	
et	al.	(1975).	Note	that	C1	motion	with	respect	to	C2	was	not	quantified.		The	mean	
total	range	of	head	motion	(ROM)	with	respect	to	T1	for	all	subjects	in	the	Snyder	
dataset	was	117	degrees	(sd	24	degrees).			

	

Table	6	
Total	Mean	ROM	by	Motion	Segment	from	Snyder	et	al.	(1975)	

Level	 ROM	(degrees)	 Fraction	of	Head/T1	

Head/C1	 22.4	 0.192	

C1/C2	 (not	measured)	 	

C2/C3	 4.5	 0.038	

C3/C4	 13.2	 0.104	

C4/C5	 23.0	 0.197	

C5/C6	 21.2	 0.181	

C6/C7	 18.7	 0.160	

C7/T1	 15.0	 0.128	

C2/T1	(sum	of	above)	 94.6	 0.809	

Head/T1	 117	 1	

	

With	only	three	postures,	it	is	not	possible	to	characterize	the	distribution	of	spine	
motion	for	intermediate	postures.	As	an	approximation,	a	spine	articulation	method	
was	used	that	distributes	motion	among	the	segments	according	to	the	fractions	of	
total	ROM	at	each	level	listed	in	Table	6.	The	articulation	model	is	driven	by	the	
change	from	the	neutral	posture	in	head	orientation	relative	to	T1.	

Estimated	rotation	centers	for	each	segment	were	taken	from	Amevo	et	al.	(1991),	
who	used	cineradiography	to	track	vertebra	motions	for	neck	flexion	and	extension.	
The	mean	rotation	centers	for	each	vertebra	with	respect	to	the	inferior	vertebra	
were	reported	for	C2	to	C6.	These	locations	were	expressed	as	fractions	of	vertebral	
body	height	and	width.	Figure	5	shows	the	method	for	establishing	a	coordinate	
system	equivalent	to	the	one	used	by	Amevo	et	al.	The	horizontal	axis	is	established	
parallel	to	the	line	connecting	the	anterior-	and	posterior-inferior	landmarks	by	
moving	the	line	upward	until	the	axis	passes	through	the	inferior	median	body	
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landmark.	The	vertical	axis	is	established	perpendicular	to	the	horizontal	axis	such	
that	it	passes	through	the	anterior	median	body	landmark.	The	height	(h)	and	depth	
(d)	of	the	vertebral	body	are	computed	from	the	axes	to	the	lines	passing	through	
the	superior	and	posterior	median	body	landmarks.	

Table	7	lists	the	scaled-coordinate	locations	for	each	motion	center.	Figure	6	shows	
the	motion	centers	on	the	mean	neutral	spine.	The	C7/T1	rotation	center	was	not	
given	by	Amevo,	and	the	T1	geometry	is	not	complete	in	the	current	dataset.	
Consequently,	the	C7/T1	motion	center	location	was	estimated	with	respect	to	C7	
(scaled	Z	coordinate	is	negative).		

	

Figure	5.		Establishing	a	coordinate	system	equivalent	to	Amevo	et	al.	(1991).	

	

Table	7	
C2	through	C7	Motion	Centers	in	Scaled*	Coordinates	from	Amevo	et	al.	(1991)	

 
Moving	Vertebra	 Vertebra	Relative	to	

Which	Motion	Center	
is	Estimated	

X	Coordinate	(scaled)	 Z	Coordinate	(scaled)	

C2	 C3	 0.27	 0.36	

C3	 C4	 0.32	 0.52	

C4	 C5	 0.36	 0.60	

C5	 C6	 0.39	 0.78	

C6	 C7	 0.44 0.95	

C7†	 C7	 0.50 -0.05 
*	Horizontal	and	vertical	coordinates	are	scaled	by	the	vertebral	body	depth	and	height,	
respectively;	see	Figure	5.	
†Estimated	from	trend	
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Figure	6.	Motion	centers	(red	circles)	and	intervertebral	points	(black	circles).	

Three-Dimensional	Vertebra	Model	

One	goal	of	the	project	was	to	develop	a	method	to	predict	three-dimensional	bone	
shape	as	a	function	of	the	landmark	data	available	in	the	2D	spine	geometry	model.	
Our	collaborators	at	Johns	Hopkins	Applied	Physics	Laboratory	(APL)	developed	a	
pipeline	for	automated	extraction	of	c-spine	bone	geometry	from	CT	studies.	The	
methodology	for	bone	extraction	is	covered	in	a	separate	report	from	APL.	In	brief,	a	
finite-element	mesh	was	fit	to	the	CT	density	data	using	a	semi-automated	
procedure,	so	each	bone	is	represented	by	a	homologous	set	of	surface	node	(mesh	
vertices).	

The	external	surfaces	of	the	bones	of	38	female	c-spines	(C1	through	T1)	were	
supplied	as	homologous	meshes.	Figure	7	shows	an	example	of	three	of	the	spines.	
Each	bone	is	represented	by	996	vertices	in	a	triangular	mesh.		
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Figure	7.	Example	spine	meshes	obtained	from	CT	scans	of	supine	patients.	The	image	on	the	left	
shows	the	individual	polygons.	The	other	images	are	rendered	using	smooth	shading.	

Predicting	3D	Vertebra	Shape	from	2D	Landmarks:	PC	Method	

The	parametric	2D	spine	model	predicts	the	size	and	positioning	of	vertebra	but	
does	not	predict	the	full	3D	geometry	of	the	bones.	To	address	this	issue,	a	method	
was	developed	to	link	the	3D	vertebra	geometry	to	the	2D	landmark	model	to	obtain	
a	parametric	3D	spine	model.	The	advantages	of	linking	to	the	2D	model	are	(1)	
inclusion	of	the	effects	of	the	stature	covariate	on	bone	size	and	position	and	(2)	
representation	of	the	neck	posture	with	an	unsupported	head.	

The	method	for	predicting	3D	geometry	was	as	follows:	

1.	 For	each	bone	level:	

a.	 Align	all	bones	using	generalized	Procrustes	alignment	and	restore	scale.	
b.		 Compute	the	mean	bone.	
c.	 Manually	identify	vertices	on	the	bone	corresponding	to	the	2D	landmarks.	

(This	was	performed	by	one	individual.)	
d.	 Perform	a	PCA	on	the	bone	meshes	

2.	 Generate	2D	spine	geometry	prediction	for	all	bones	from	statistical	model	as	
described	above.	

3.	 For	each	bone,	compute	the	3D	bone	shape	that	best	fits	the	selected	landmark	
locations.	

a.	 Compute	the	optimal	(least	squares)	alignment	of	the	2D	data	to	the	3D	
model	using	the	landmarks	listed	in	Table	4.	

b.		 Compute	the	vector	of	principal	component	scores	that	results	in	the	best	fit	
of	the	bone	shape	at	the	selected	landmark	locations	(see	below).	Iterate	to	
convergence.	
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c.	 Align	the	resulting	3D	bone	to	the	2D	spine	in	position.	

	

An	iterative	process	was	used	to	fit	the	3D	PCA	model	for	each	bone	to	the	selected	
2D	landmarks.	At	each	iteration,	the	algorithm	took	the	following	steps:	

1. Align	the	2D	and	3D	landmarks	in	the	XZ	plane	using	a	least-squares	fit.	
2. Compute	the	optimal	set	of	values	for	PC	to	align	the	XZ	projection	of	the	3D	

landmarks	with	the	2D	landmarks	(see	below	for	details	of	this	calculation).	
3. If	iteration	has	not	converged,	return	to	step	1.	
4. Apply	this	vector	of	PC	scores	to	obtain	the	full	set	of	surface	coordinates	for	

the	vertebra.	

The	optimal	vector	of	PC	scores	is	calculated	by	exploiting	the	linear	relationship	
between	PC	scores	and	landmark	coordinates.	Specifically,	the	individual	values	in	
the	PC	vector	represent	the	rate	of	change	of	node	coordinates	with	a	unit	change	in	
each	PC	score.	Hence,	extracting	those	columns	from	the	PC	matrix	yields	a	
sensitivity	matrix	S.		

UpdatedPCScores	=	CurrentPCScores	+	(CurrentCoordinates-
TargetCoordinates).pinv(S)	

where	pinv	is	the	Moore-Penrose	pseudoinverse.	This	approach	calculates	the	
minimum-norm	vector	of	PC	scores	that	will	match	the	coordinates.		

To	improve	the	quality	of	fitting,	a	new	method	was	developed	to	limited	the	range	
of	the	calculated	PC	scores	within	a	range	defined	by	a	combination	of	the	range	of	
values	in	the	data	and	the	relative	fraction	of	variance	accounted	for	by	the	PC.	First,	
a	PC	weight	is	assigned	based	on	the	relative	fraction	of	variance	accounted	for	in	
the	PCA,	with	the	first	PC	assigned	a	value	of	1.	Second,	this	weight	wi	is	used	to	
define	a	bound	for	each	PC’s	scores	as	±	wi	p	s	where	s	is	the	standard	deviation	of	
scores	on	PC	i	(i.e.,	the	eigenvalue)	and	p	is	a	maximum	value.	For	this	analysis	p	was	
set	to	3,	based	on	a	qualitative	investigation	of	fit	quality.	That	is,	the	maximum	
score	on	the	first	PC	is	3	times	the	eigenvalue;	all	other	PCs	are	limited	more	
restrictively	based	on	the	fraction	of	variance	accounted	for	by	that	PC.	A	similar	
qualitative	investigation	determined	that	the	best	tradeoff	between	fit	accuracy	and	
smoothness	was	obtained	using	25	PCs.		
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Table	8	
Landmarks	Used	for	2D->3D	Mapping	

	

C1	 C2	 C3-C7	

AntSupArc	 AntInfBod	 AntInfBod	

SpiPro	 SupMidDen	 AntSupBod	

	

SupSpiPro	 PosSupBod	

	

InfSpiPro	 AntSupFac	

	

PosInfFac	 SupCan	

	

PosInfBod	 SpiPro	

	  

PosInfFac	

	  

PosInfBod	

	

Predicting	3D	Vertebra	Shape	from	2D	Landmarks:	Scaling	Method	

The	PC-based	method	provides	a	good	alignment	of	the	3D	landmarks	to	the	2D	
targets,	but	the	bone	shapes	can	become	somewhat	distorted.	For	some	
applications,	a	smoother	bone	shape	with	slightly	less	accurate	fitting	to	the	
landmark	locations	might	be	preferred.	Consequently,	an	alternative	method	was	
developed	that	is	computationally	simpler	and	produces	smoother	bone	shapes.	The	
method	scales	and	rotates	the	mean	bone	shape	to	obtain	the	best	(least-squares)	
alignment	to	the	target	landmark	locations.		

1.	 	Center	the	target	and	mean	landmark	locations	by	subtracting	the	respective	
means.	

2.	 Compute	the	centroid	size	(defined	as	the	square	root	of	the	sum	of	squared	
distances	of	each	point	from	the	origin)	and	divide	the	centered	coordinates	by	
their	respective	scales	to	obtain	unscaled	landmarks	for	both	target	and	mean	
shape.	For	a	matrix	P	of	points	pi	=	{xi,	zi}	the	centroid	size	S	is	

	 	 	 S	(mm)	=	tr(P.	P	T)1/2	

	 where	PT	indicates	the	transpose	and	tr	is	the	trace	of	the	matrix	(sum	of	
diagonal	elements).		

3.	 Compute	the	optimal	(least-squares)	side-view	rotation	to	align	the	unscaled,	
centered	landmarks	from	the	mean	shape	to	the	unscaled,	centered	target	
landmarks.	The	method	uses	the	singular	value	decomposition	(SVD).	For	
centered,	unscaled	P1	and	P2,	the	matrix	R	to	rotate	P2	into	P1	is	given	by	

	 	 	 {U,	S,	V}	=	SVD(P2T.P1)	
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	 	 	 R	=	V.UT	

4.	 For	each	vertex	in	the	mean	bone	mesh,		

	 a.	 subtract	the	mean	of	the	mean	mesh	landmark	locations	
	 b.		 scale	by	the	ratio	(target	centroid	size)	/	(mean	centroid	size)	
	 c.		 apply	the	rotation	R	around	the	Y	axis	
	 d.		 translate	to	the	target	mean	

Note	that	although	the	translation	and	rotation	of	the	mean	bone	mesh	occur	only	in	
the	sagittal	plane	(side	view),	the	scaling	is	uniform	in	3D.	However,	the	analysis	of	
3D	bone	shape	showed	minimal	correlation	between	sagittal	plane	dimensions	and	
lateral	dimensions	(see	Results).	Consequently,	an	alternative	scaling	for	lateral	
dimensions	can	be	applied	as	a	fraction	of	the	sagittal-plane	scaling.	For	example,	a	
scale	factor	of	{1,	0,	1}	would	apply	scaling	only	the	in	the	sagittal	plane.	
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RESULTS	

Parametric	2D	Spine	Geometry	Model	in	Neutral	Seated	Posture	

The	mean	2D	spine	shape	is	tabulated	in	Appendix	A.	The	first	6	PCs	accounted	for	
97%	of	the	variance,	as	shown	in	Figure	8.	Figure	9	illustrates	the	first	6	PCs	by	
manipulating	the	PC	by	±3	standard	deviations	of	the	associated	PC	scores	while	
holding	the	other	scores	at	zero.	Somewhat	surprisingly,	the	first	PC	(65%	of	
variance)	is	related	to	posture	rather	than	body	size.	This	demonstrates	that	the	
“neutral”	neck	posture	associated	with	this	task	condition	(seated	with	self-
supported	head	with	forward-oriented	vision)	is	associated	with	a	wide	range	of	
spine	flexion.	The	second	PC	(27%)	shows	the	overall	size	effect	typically	seen	in	
PCA	of	biological	structures,	but	also	demonstrates	an	association	between	
curvature	and	overall	size.		The	third	PC	(3%)	illustrates	variance	spine	curvature	
independent	of	overall	spine	angle.	The	remaining	PCs	account	for	a	total	of	5%	of	
variance	and	each	individually	less	than	1%.	

	

Figure	8.	Cumulative	percentage	of	variance	associated	with	principal	components.	
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Figure	9.		Illustration	of	PC	effects	by	overlaying	mean	and	geometry	obtained	by	manipulating	each	
PC	by	±3	standard	deviations	of	the	associated	PC	scores.	Neutral	posture	is	shown	in	green.	
Percentage	of	total	variance	for	PCs	1	through	6:	64.9,	26.9,	3.1,	0.8,	0.7,	0.6	

The	regression	analyses	were	examined	for	the	first	six	principal	components.	In	no	
case	was	sex	or	the	interaction	between	sex	and	another	predictor	significant	in	
models	containing	stature.	That	is,	after	accounting	for	overall	body	size,	sex	did	not	
have	significant	effects.	Age	and	the	ratio	of	sitting	height	to	stature	(typical	value	
0.52)	were	also	significant	for	some	PCs.	Table	9	shows	the	significance	levels	for	
these	predictors	along	with	the	adjusted	R2	values	for	the	models.	Stature	was	
strongly	related	to	the	first	two	PCs	and	age	was	associated	with	4	of	the	first	6.	The	
ratio	of	siting	height	to	stature	was	related	to	the	first	two	PCs.	Table	9	shows	the	
signs	of	the	coefficients	for	each	effect.	Because	the	direction	of	PCs	is	not	unique,	
the	signs	are	arbitrary	except	that	the	same	sign	for	the	same	PCs	indicate	parallel	
effects.	For	example,	on	the	second	PC,	which	relates	primarily	to	neck	length	(see	
Figure	9),	the	effect	of	SH/S	is	in	the	same	direction	as	that	of	stature,	which	is	
consistent	with	the	individuals	having	longer	torsos	having	longer	necks	at	a	given	
stature.		
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Table	9	
Significance	Test	Results	in	Regression	Models	Predicting	Principal	Component	(PC)	Scores	

	

PC	 Stature	 Age	 Sitting	
Height/Stature	

R2adj	 Fraction	of	
Variance	
from	PCA	

1	 ***	(+)	 ***	(+)	 **	(+)	 0.24	 0.649	

2	 ***	(-)	 	 **	(-)	 0.52	 0.269	

3	 	 *	(+)	 	 0.02	 0.031	

4	 	 ***	(-)	 	 0.13	 0.008	

5	 	 	 	 n.s.	 0.007	

6	 	 ***	(+)	 	 0.27	 0.006	
		 *	p<0.05;	**	p<0.01;	***	p<0.001	

The	actual	geometric	effects	of	the	predictors	over	the	ranges	of	interest	are	more	
important	than	the	significance	tests.	To	account	for	trends	that	do	not	reach	
statistical	significance,	all	three	predictors	were	included	for	all	PCs	in	subsequent	
analyses.	Figure	10	shows	the	effects	of	the	stature	from	1525	to	1870	mm	(5th%ile	
female	to	95th%ile	male	in	ANSUR	II	(Gordon	et	al.	2015),	0.500	to	0.546	(5th	to	
95th%ile	for	men	and	women	in	ANSUR	II),	and	age	20	to	80	years.		

	

   

Stature: 1525 to 1870 mm SH/S: 0.50 to 0.55  Age: 20 to 80 years	

Figure	10.		Illustration	of	participant	covariate	effects	in	neutral	posture	with	the	other	variables	held	
at	mean	values	(1660	mm,	0.52,	44	years).	

Two	previous	studies	have	found	sex	differences	in	vertebra	dimensions	using	a	
matched-sample	paradigm.	Vasavada	et	al.	(2008)	measured	vertebra	dimensions	
on	radiographs	obtained	from	14	men	and	14	women	matched	closely	on	stature,	
erect	sitting	height,	and	neck	length.	Most	vertebra	depth	and	height	dimensions	
were	slightly	smaller	for	the	women	(ranging	from	0%	to	10%),	with	differences	
depending	on	vertebra	level	and	measurement.	Vertebra	breadth	measures	were	
not	significantly	different.	Stemper	et	al.	(2009)	conducted	a	similar	study	using	
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samples	matched	on	sitting	height	(17	males,	11	females)	and	head	circumference	
(9	males,	18	females).	Dimensions	were	extracted	from	CT	reconstructions.	Female	
dimensions	were	generally	slightly	smaller,	although	the	differences	were	typically	
less	than	10%.			

Given	these	matched-sample	findings,	the	reasons	that	the	current	modeling	did	not	
show	sex	effects	after	accounting	for	overall	body	size	and	age	are	not	clear.	
Figure	11	shows	the	result	of	including	sex	and	interactions	between	sex,	stature,	
SH/S,	and	age	for	all	PCs.	A	small	effect	of	sex	is	observed,	with	the	predicted	
geometry	being	slightly	smaller	for	women.	For	example,	the	A-P	length	of	the	C7	
vertebra	is	5%	smaller	in	the	predicted	female	geometry	than	in	the	male	geometry.	
Comparing	with	the	population	effects	in	Figure	10,	this	analysis	demonstrates	that	
overall	body	size	(stature	and	SH/S)	have	larger	effects	than	sex	across	the	
population;	that	is,	most	of	the	differences	in	vertebra	geometry	in	this	data	set	are	
attributable	to	body	size	rather	than	sex.	The	reason	for	the	sex-related	spine-length	
difference	in	a	model	that	accounts	for	stature	and	erect	sitting	height	is	unclear.			
Vadavada	et	al.	(2008)	found	that	a	skeletal	measure	of	neck	length	(vertical	
distance	from	C7	spinous	process	to	tragion)	was	about	5%	smaller	in	a	group	of	
women	compared	to	a	group	of	men	matched	on	stature	and	external	neck	length,	a	
difference	that	is	consistent	with	Figure	11.	

	

Figure	11.		Effect	of	sex	on	spine	geometry	(male=black,	female=red),	including	interactions	with	
stature,	SH/S,	and	age	(stature	=	1660	mm,	SH/S	=	0.52,	age	=	44	yrs).	

Model	Articulation	

Figure	12	shows	the	result	of	articulating	models	representing	a	midsize	male	and	
midsize	female	to	a	range	of	postures.	These	figures	were	generated	using	the	
Python	implementation	and	a	Microsoft	Excel	viewer	(see	below).	Note	that	these	
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postures	do	not	necessarily	represent	the	kinematics	of	any	individual,	but	at	the	
extremes	the	model	will	accurately	capture	typical	ranges	of	motion.			

Midsize	Male	

	

Midsize	Female	

	

	 -60˚	 0˚	 40˚	

Figure	12.	Illustration	of	spine	articulation	for	change	in	head	angle	relative	to	T1	of	-60,	0,	and	40	
degrees	relative	to	neutral	posture.	

Covariance	of	Bone	Dimensions	

The	3D	data	provided	an	opportunity	to	examine	the	extent	to	which	bone	
dimensions	are	correlated	at	each	vertebral	level.	Table	10	lists	a	set	of	dimensions	
extracted	from	each	of	the	bones	in	the	38	c-spines	obtained	from	CT.	The	
dimensions	were	measured	after	each	bone	was	aligned	to	a	consistent	coordinate	
system	with	the	origin	at	the	anterior-inferior	body	landmark	on	the	midline	and	
the	X-axis	passing	through	the	posterior-inferior	margin	(see	Figure	2).	The	vertices	
corresponding	to	the	vertebra	body	landmarks	in	Table	8	were	identified	on	the	
mean	mesh	for	C3	through	C7.	The	dimensions	were	subsequently	calculated	for	
each	bone	using	the	corresponding	vertices,	under	the	assumption	that	the	meshes	
were	fully	homologous.	The	overall	vertebra	dimensions	were	based	on	maximum	
and	minimum	values	on	the	global	axes	and	could	have	been	measured	between	
different	mesh	vertices	on	different	bones,	depending	on	the	shapes	of	the	bones.	
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Table	10	
Vertebral	Dimensions	Extracted	from	3D	Bone	Meshes	

Dimension	 Definition	

Vertebra	Length	 Maximum	anterior-posterior	dimension	

Vertebra	Width	 Maximum	medial-lateral	dimension	

Vertebra	Height	 Maximum	vertical	dimension	

Vertebra	Body	Length	 Distance	between	anterior-inferior	and	
posterior-inferior	body	landmarks	

Vertebra	Body	Width	 Distance	between	median-inferior	left	and	
median-inferior	right	body	landmarks	

Vertebra	Body	Height	 Distance	between	anterior-inferior	and	anterior-
superior	body	landmarks.	

	

Figures	13	and	14	shows	cross	plots	of	vertebra	length	and	width	and	vertebral	
body	length	and	width.	For	both	pairs	of	dimensions,	no	relationships	are	observed,	
indicating	that	the	lateral	dimensions	of	the	vertebrae	are	uncorrelated	with	the	
lengths	(A-P	dimensions)	in	this	dataset.	

	

Vertebra	
Width	
(mm)	

	

	 Vertebra	Length	(mm)	

Figure	13.		Vertebra	length	(vertical	axis)	versus	vertebra	width	(horizontal	axis)	for	bone	meshes	
from	38	women	(mm).	Note	differing	scales	in	subplots.	
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Vertebra	
Body	
Width	
(mm)	

	

	 Vertebra	Body	Length	(mm)	

Figure	14.		Vertebra	body	length	(vertical	axis)	versus	vertebra	body	width	(horizontal	axis)	for	bone	
meshes	from	38	women	(mm).	Note	differing	scales	in	subplots.	

	

	Principal	Component	Analysis	of	3D	Bone	Shapes	

Figures	15	and	16	shows	the	effects	of	the	first	3	principal	components	(PCs)	for	C2	
and	C4.	Each	PC	affects	the	location	of	every	mesh	vertex,	but	some	trends	with	
respect	to	the	effect	of	each	PC	can	be	noted.	For	C2,	the	first	PC	is	related	primarily	
to	overall	size.	PC	2	affects	the	relative	height	of	the	dens,	while	PC3	is	related	to	the	
angle	of	the	dens.	For	C4,	the	first	PC	is	primarily	related	to	the	overall	width,	while	
PC	2	has	a	greater	effect	on	the	vertical	size.	PC	3	is	related	to	the	shape	of	the	facets	
and	spinous	process.		
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PC 1   

PC2   

PC3   

 Front View Side View 

Figure	15.		Effects	of	the	first	3	principal	components	for	C2.	Overlays	show	±3	SD	(green	and	blue)	
on	each	of	the	first	3	components	while	holding	other	components	at	zero.	
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PC	1   

PC 2   

PC 3  

 Front View Side View 

Figure	16.		Effects	of	the	first	3	principal	components	for	C4.	Overlays	show	±3	SD	(green	and	blue)	
on	each	of	the	first	3	components	while	holding	other	components	at	zero.	

Results of Fitting 3D Models to 2D Geometry: PC Method 

Figure	17	shows	the	results	of	fitting	the	3D	PCA	models	to	the	2D	model	output	for	
a	midsize-female	c-spine	in	several	postures.	To	assess	the	accuracy	of	the	
technique,	the	procedure	was	used	to	fit	the	PCA	models	to	target	points	extracted	
from	the	original	spine	data.	After	fitting,	the	distance	discrepancies	between	
homologous	nodes	of	the	mesh	were	computed	and	summary	statistics	across	the	
996	nodes	were	calculated.	Table	11	lists	summary	statistics	for	the	fit	to	the	
landmarks	as	well	as	mean,	minimum,	and	maximum	across	subjects	of	the	root-
mean-square	distance	discrepancies	for	each	bone.	On	average,	the	landmark	
discrepancy	following	fitting	was	less	than	0.5	mm.	The	maximum	landmark	
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discrepancy	observed	across	subjects	was	under	3	mm.	For	the	mesh,	the	mean	
(across	subjects)	of	the	RMS	error	was	less	than	2	mm	for	all	bones.	The	maximum	
discrepancy	was	largest	for	C1,	at	3.65	mm,	but	the	maximum	RMS	fitting	error	for	
the	other	bones	was	less	than	2	mm.		

   

	

Figure	17.	Results	of	fitting	the	3D	bone	shape	to	2D	profiles	generated	from	the	2D	statistical	
geometry	model.	Bones	are	semitransparent	so	that	lines	connecting	target	landmarks	are	
visible.	
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Table	11	
Fitting	Errors*	for	Landmarks	and	Mesh:	PCA	Method	(mm)	

Bone	
Landmarks	 Mesh	

Mean	 Minimum	 Maximum	 Mean	 Minimum	 Maximum	

C1	 0.28	 0.00	 0.93	 1.90	 1.17	 3.65	

C2	 0.56	 0.02	 2.66	 1.13	 0.79	 1.80	

C3	 0.34	 0.02	 2.01	 0.93	 0.62	 1.33	

C4	 0.34	 0.01	 1.44	 1.00	 0.72	 1.38	

C5	 0.45	 0.03	 2.93	 0.98	 0.72	 1.33	

C6	 0.36	 0.02	 1.87	 1.02	 0.72	 1.40	

C7	 0.46	 0.02	 2.64	 1.25	 0.76	 1.73	
*	Root	mean	square	error	across	38	subjects	(all	of	the	spines	used	to	generate	the	PC	models).	
	

The	fitting	performance	was	also	assessed	by	evaluating	how	closely	the	fitted	
landmark	locations	matched	the	targets	for	spine	profiles	generated	from	the	2D	
model.	Table	12	shows	mean,	minimum,	and	maximum	RMS	errors	in	coordinate	
values	for	a	set	of	spines	generated	from	the	2D	model	using	statures	from	1500	
mm	to	1750	mm	in	increments	of	50	mm	(approximately	5th-percentile	female	to	
95th-percentile	female).	The	RMS	errors	are	somewhat	larger	than	those	observed	in	
the	CT	dataset,	likely	due	to	small	differences	in	the	placement	of	the	landmarks	
relative	to	the	bone.	Nonetheless,	the	mean	RMS	errors	are	less	than	1.5	mm	across	
the	7	bones	with	maximum	RMS	errors	less	than	2	mm.	

	

Table	12	
Fitting	Errors*	for	Landmarks	for	6	Spine	Profiles	Generated	from	2D:	PC	Method	(mm)	

Bone	
Landmarks	

Mean	 Minimum	 Maximum	

C1	 0.33	 0.03	 0.82	

C2	 1.32	 1.18	 1.49	

C3	 0.99	 0.66	 1.32	

C4	 1.20	 0.72	 1.59	

C5	 0.96	 0.74	 1.10	

C6	 1.39	 0.80	 1.84	

C7	 1.30	 1.21	 1.38	
	 	 *	Root	mean	square	error	across	6	spine	profiles	generated	from	the	2D	model.	
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Results of Fitting 3D Models to 2D Geometry: Scaling Method 

Table	13	presents	the	mean,	minimum,	and	maximum	RMS	errors	observed	when	
applying	the	scaling	method	to	the	3D	bone	meshes.	As	expected,	both	the	landmark	
and	mesh	errors	are	larger	than	those	obtained	with	the	PC	method,	but	the	mean	
RMS	landmark	errors	are	below	1	mm	and	the	mean	RMS	mesh	errors	are	2	mm	or	
less.		

Table	14	shows	the	RMS	errors	in	coordinate	values	for	the	same	set	of	2D	spine	
profiles	used	for	Table	12.	Comparing	to	Table	12,	the	RMS	errors	are	similar	to	
those	obtained	using	the	PC	method.	This	suggests	that	the	PC	method	is	not	
producing	substantially	better	fit	than	the	simpler	scaling	model	to	the	landmark	
predictions	from	the	2D	model.	

Table	13	
Fitting	Errors*	for	Landmarks	and	Mesh:	Scaling	Method	(mm)	

Bone	
Landmarks	 Mesh	

Mean	 Minimum	 Maximum	 Mean	 Minimum	 Maximum	

C1	 0.00**	 0.00**	 0.00**	 2.01	 1.07	 3.57	

C2	 0.79	 0.06	 2.26	 1.22	 0.93	 1.77	

C3	 0.69	 0.02	 2.66	 1.08	 0.79	 1.95	

C4	 0.69	 0.00	 2.50	 1.15	 0.88	 1.56	

C5	 0.82	 0.05	 3.68	 1.18	 0.82	 2.12	

C6	 0.83	 0.04	 2.99	 1.27	 0.90	 2.18	

C7	 0.94	 0.07	 3.96	 1.50	 0.89	 2.65	
*	Root	mean	square	error	across	38	subjects.	
**	Due	to	the	method,	the	landmark	errors	for	C1,	which	uses	only	2	landmarks	for	alignment,	will	
always	be	zero.	
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Table	14	
Fitting	Errors*	for	Landmarks	for	6	Spine	Profiles	Generated	from	2D:	Scaling	Method	(mm)	

Bone	
Landmarks	

Mean	 Minimum	 Maximum	

C1	 0.00**	 0.00**	 0.00**	

C2	 0.82	 0.71	 0.99	

C3	 1.19	 1.15	 1.24	

C4	 1.30	 1.28	 1.33	

C5	 1.12	 1.09	 1.18	

C6	 1.56	 1.40	 1.73	

C7	 1.17	 1.08	 1.29	
*	Root	mean	square	error	across	6	spine	profiles	generated	from	the	2D	model.	
**	Due	to	the	method,	the	landmark	errors	for	C1,	which	uses	only	2	landmarks	
for	alignment,	will	always	be	zero.	

	

Python	Implementation	of	2D	Model	

To	facilitate	use	of	the	parametric	spine	geometry	model,	a	version	of	the	model	was	
implemented	in	version	3.5	of	the	Python	language	(http://python.org/).	The	
Python	version	includes	sex,	stature,	SH/S,	age,	and	the	head	angle	relative	to	
neutral	as	inputs.	Figure	18	shows	a	flow	chart	of	the	code,	which	is	designed	to	be	
executed	in	a	command-line	environment.	Appendix	B	contains	a	user	guide	for	the	
software.	Each	time	it	is	executed,	the	software	loads	the	PC	vectors,	mean	
geometry,	and	regression	coefficients	for	the	PCAR	model.	The	input	variables	are	
given	on	the	command	line.	The	code	generates	the	landmarks	describing	each	bone	
shape	in	the	neutral	posture,	calculates	the	rotation	centers	as	described	above,	
then	articulates	the	spine	using	the	motion	distribution	given	in	Table	6.		The	
resulting	bone	landmark	locations	are	written	to	a	text	file	as	a	series	of	named	
points.	A	simple	Microsoft	Excel	spreadsheet	for	viewing	the	results	is	available	with	
the	software.	(Figure	12	shows	sample	graphics	from	this	viewer.)	
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Figure	18.	Functional	flow	of	Python	implementation	of	2D	model.	

	

Python	Implementation	of	3D	Model	

Because	the	analysis	of	the	performance	of	the	PC-based	and	scaling-based	methods	
for	2D-to-3D	mapping	did	not	show	a	strong	advantage	for	the	PC-based	method,	
the	simpler	scaling-based	method	was	implemented	in	Python.	The	output	file	from	
the	2D	model	is	the	input	to	the	software,	along	with	the	mean	shapes	of	each	of	the	
bones.	The	Python	implementation	follows	the	algorithm	laid	out	above,	outputting	
the	scaled	and	positioned	meshes	for	each	bone	in	OBJ	format,	a	simple	text	file	
format	that	contains	vertex	coordinates	and	polygons	defined	by	vertex	indices.		
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DISCUSSION	

Two-Dimensional	Model	

The	PCA	of	2D	landmark	locations	provided	a	clear	demonstration	that	“neutral”	
spine	posture	is	highly	variable.	Klinich	et	al.	(2012)	previously	showed	this	using	a	
spline	to	quantify	curvature,	but	the	current	analysis	demonstrates	that	posture	
dominates	overall	size	in	its	contribution	to	the	variance	in	landmark	locations	
across	a	diverse	subject	pool.	An	important	conclusion	is	that	modeling	aimed	at	
assessing	injury	risk	across	a	population	should	focus	on	posture	variability	at	least	
as	much	as	geometric	variability.		

The	2D	cervical	spine	geometry	model	developed	in	this	work	provided	an	
opportunity	to	test	hypotheses	about	the	relationships	between	overall	body	size	
and	neck	geometry.	The	primary	modes	of	variation	in	the	spine,	quantified	by	the	
principal	components	of	the	landmark	coordinates,	did	not	show	significant	
variation	by	sex	after	taking	into	account	overall	body	size	using	stature	and	the	
ratio	of	sitting	height	to	stature.	Body	weight,	quantified	by	body	mass	index,	also	
did	not	have	significant	effects.	Age	had	a	small	effect	including	a	slightly	more	
extended	neck	posture	with	age.	An	alternative	model	formulation	that	included	sex	
predicted	a	slightly	smaller	spine	for	women,	after	taking	into	account	stature,	
sitting	height,	and	age,	but	the	effect	of	sex	and	the	associated	interactions	were	not	
statistically	significant	for	the	first	six	principal	components.	

This	2D	dataset	used	in	this	study	is	unusual	in	being	obtained	from	a	relatively	
large,	anthropometrically	diverse	population	in	a	seated	posture	with	a	self-
supported	head.	Other	2D	data	are	available,	for	example	the	large	number	of	
radiographs	gathered	in	the	Fels	study	(Roche	1992),	some	of	which	were	obtained	
with	a	self-supported	head.	However,	the	greatest	potential	for	improving	the	
current	work	is	through	a	larger	collection	of	3D	data	obtained	from	medical	CT	
scans.		

Nonetheless,	the	2D	model	has	several	purposes	not	yet	superseded	by	other	
available	tools.	First,	the	simple	formulation	provides	an	easy	way	for	developers	of	
FE	models	to	scale	their	cervical	geometry	accurately	to	represent	individuals	with	a	
wide	range	of	body	size.	For	this	purpose,	the	tool	augments	previous	studies	that	
have	published	distributions	of	bone	dimensions.	Importantly,	the	construction	of	
the	model	ensures	that	the	set	of	landmarks	generated	are	internally	consistent	
across	a	wide	range	of	body	size.	

Second,	and	most	importantly,	the	model	generates	the	mean	neutral	spine	
configuration	for	a	person	sitting	in	a	typical	seating	posture	with	an	unsupported	
head.		In	contrast,	nearly	all	CT	studies	are	obtained	with	a	supine	subject	with	head	
support,	so	that	the	resulting	spine	curvature	is	not	representative	of	typical	loading	
cases	of	interest.	One	caveat	is	that	the	test	seat	was	constructed	using	simple	rigid	
surfaces,	with	a	seat	back	at	19	degrees	to	vertical.		However,	other	studies	have	
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quantified	the	trends	in	head	and	thorax	orientation	with	changes	in	seat	back	angle	
(e.g.,	Reed	and	Ebert	2013;	Park	et	al.	2016);	these	may	be	used	to	adjust	the	
predicted	postures.	Another	limitation	for	modeling	applications	is	that	the	data	do	
not	take	into	account	the	effects	of	head-supported	mass	on	posture.	

A	simple	articulation	model	was	implemented	based	on	previously	published	
segment	rotation	centers.	Initially,	the	flexed	and	extended	posture	data	were	
examined	to	determine	if	the	motion	centers	could	be	calculated	reliably.	The	
results,	however,	were	found	to	be	highly	variable	and	ultimately	were	discarded	in	
favor	of	the	literature	values.		

The	utility	of	the	articulation	model	is	somewhat	limited	because	the	motion	
distribution	is	constant,	which	is	not	a	realistic	assumption	at	the	limits	of	
movement.	The	articulation	will	be	most	useful	for	making	small	changes	to	account	
for	different	seating	configurations,	such	as	more-upright	or	more-reclined	seating	
postures.	Nonetheless,	given	the	wide	range	of	spine	curvatures	in	“neutral”	
postures,	any	discrepancies	in	spine	curvatures	obtained	by	this	method	will	be	
small	compared	with	the	population	variance.	Importantly,	this	articulation	model	
should	not	be	taken	to	be	representative	of	actual	human	movement.	

Three-Dimensional	Bone	Shape	Modeling	

The	analysis	of	bone	shapes	extracted	from	CT	showed	several	surprising	findings.	
First,	the	primary	mode	of	variation	for	C3-C7	was	not	overall	size,	but	rather	a	
more	complex	relationship	between	size	and	shape.	Second,	consistent	with	that	
finding	but	more	directly	relevant	for	modeling,	the	overall	length,	width,	and	height	
of	the	bones	were	essentially	uncorrelated.	The	same	was	true	of	the	vertebral	body,	
where	no	important	scaling	relationships	were	observed.	This	finding	is	limited	by	
the	relatively	small	and	homogeneous	sample	(spines	from	38	women),	but	even	
with	that	caveat	the	data	strongly	suggest	that	the	major	dimensions	of	the	spine	at	
the	level	of	individual	bones	are	not	highly	correlated.		

For	comparison,	the	2D	model	shows	a	general	scaling	of	the	whole	spine	and	the	
individual	vertebra	with	overall	body	size	(increased	stature	or	sitting	height).	The	
3D	analysis	suggests	that	the	lateral	dimensions	likely	are	only	weakly	correlated	
with	the	overall	size,	at	least	for	women.	This	somewhat	surprising	finding	should	
be	confirmed	with	a	larger	and	more	diverse	sample.	Nonetheless,	it	is	consistent	
with	the	finding	from	the	2D	landmark	analysis	of	considerable	idiosyncrasy	in	
spine	shape	across	individuals.		

A	novel	method	for	generating	3D	bone	shapes	from	the	2D	data	was	developed	
based	on	a	PC	fitting	technique	that	generates	a	3D	mesh	such	that	a	set	of	
landmarks	on	the	3D	bone	is	closely	aligned	with	the	2D	profile.	The	technique	
demonstrated	relatively	small	RMS	errors	for	both	the	landmarks	and	mesh	when	
fitting	the	original	3D	dataset,	and	small	RMS	errors	for	fitting	landmarks	generated	
from	the	2D	model	for	a	range	of	stature.		



	 38	

The	method	was	developed	under	the	assumption	that	a	substantial	amount	of	the	
lateral	size	and	shape	of	the	bones	would	be	predictable	from	the	2D	profile.	In	fact,	
as	noted	above,	lateral	dimensions	are	essentially	uncorrelated	with	profile	
dimensions	in	this	3D	dataset.	Consequently,	the	lateral	dimensions	of	3D	spines	
generated	by	this	method	are	similar	across	a	range	of	neck	lengths.		

The	2D-to-3D	mapping	method	generates	a	3D	model	that	closely	corresponds	to	
the	predictions	of	the	2D	model,	but	given	the	findings	regarding	bone	shape	
variability,	some	simpler	scaling	methods	might	work	similarly	well.	For	example,	
the	mean	bone	shape	could	be	scaled	in	3	dimensions	to	match	the	target	vertebra	
size	and	aligned	to	the	2D	predictions.		

Alternative	3D	Model	Generation	Methods	

With	a	larger	dataset,	a	number	of	alternative	methods	of	generating	a	parametric	
3D	neck	model	are	available.	

1.	 A	PCAR	model	of	the	whole	spine	can	be	created	using	subject	covariates,	such	as	
sex,	stature,	and	sitting	height	as	predictors.	However,	sitting	height	is	not	
commonly	available	in	patient	database	from	which	CT	scans	are	extracted.	

2.	 The	c-spine	length	can	be	used	as	a	size	variable	to	predict	the	3D	shape,	where	
the	length	is	generated	from	the	2D	model.	

3.	 Because	the	data	show	that	c-spine	width	is	unrelated	to	height	and	depth,	a	
geometric	model	of	the	c-spine	can	be	scaled	in	side	view	using	simple	
relationships	based	on	the	2D	model.	For	example,	the	vertebral	height	and	
anterior-posterior	length	could	be	used	to	perform	affine	scaling.	This	should	
produce	results	similar	to	the	least-squares	scaling	method	developed	in	the	
current	work.	

A	central	challenge	in	any	landmark-based	morphing	method	is	finding	truly	
homologous	points.	The	larger	landmark	errors	associated	with	fitting	the	3D	PCA	
model	to	2D	model	outputs,	compared	with	fitting	to	homologous	points	from	the	
3D	dataset,	indicates	that	the	landmarks	identified	on	the	3D	model	are	not	
completely	homologous.	However,	the	differences	are	generally	less	than	a	
millimeter,	suggesting	that	only	small	improvements	would	be	realized.		

Limitations	and	Future	Work	

The	accuracy	of	the	2D	model	is	limited	by	the	challenges	in	accurately	and	
consistently	locating	landmarks	on	the	radiographs.	Issues	relating	to	this	manual	
digitization	process	are	discussed	in	Klinich	et	al.	(2004)	and	in	the	original	Snyder	
et	al.	(1975)	report.	

The	current	analysis	uncovered	a	scaling	problem	with	the	digitization	reported	in	
Klinich	et	al.	(2004).	The	correction	applied	a	constant	scaling	factor	that	was	
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assumed	to	be	appropriate	for	all	subjects.	The	resulting	model	prediction	using	
mean	female	anthropometry	was	similar	in	size	to	the	mean	3D	spine	size,	but	it	is	
possible	that	variable	scaling	factors	were	used	in	the	original	Snyder	dataset.	These	
would	only	affect	the	current	analysis	if	the	true	scaling	was	correlated	with	one	or	
more	of	the	covariates.	However,	no	indication	of	that	is	evident	in	either	the	Snyder	
et	al.	documentation	or	the	data	analysis.	

The	articulation	method	provides	a	reasonable	way	of	adjusting	postures	around	
the	neutral	posture,	and	produces	reasonable	estimates	at	the	extremes,	due	to	the	
use	of	full	flexion/extension	range-of-motion	to	define	the	distribution	of	motion.	
However,	the	kinematics	should	not	be	taken	to	be	representative	of	the	average	
spine	motion	between	postures	for	any	individual.	

The	3D	analysis	was	based	on	relatively	few	subjects	(38	women).	A	larger	dataset	
would	have	provided	more	confidence	in	the	outcome	of	the	PCA	on	bone	shapes	
and	may	have	improved	the	performance	of	the	PC-based	fitting	method.	However,	
the	scaling	method,	which	uses	only	the	average	bone	shape,	would	not	be	improved	
by	the	addition	of	more	data.	

Future	work	should	include	the	analysis	of	3D	data	from	a	wider	pool	of	subjects,	
including	an	equal	number	of	men.	The	observations	concerning	the	lack	of	
correlation	among	vertebra	dimensions	should	be	verified	using	a	larger,	more	
diverse	sample.	
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APPENDIX A 

Mean 2D Spine Landmark Configuration (mm) 

Abbreviations:	

Ant	 Anterior	

Pos	 Posterior	

Sup	 Superior	

Inf	 Inferior	

Med	 Median	

SpiPro	 Spinous	Process	

Bod	 Body	of	Vertebra	

Den	 Dens	(C2)	

Tub	 Tubercle	

C1C2	 Apparent	intersection	of	the	outlines	of	C1	and	C2	

Arc	 Arch	

Can	 Canal	

Fac	 Facet	
	

The	origin	is	the	anterior-superior	body	landmark	on	T1	(T1_	AntSupBod).		
The	X	axis	is	positive	from	T1_	AntSupBod	to	the	T1	spinous	process	landmark	
(T1_SpiPro)	

Landmark	 X	 Z	

C2_SupAntDen	 -14.1	 117.2	
C1_AntSupArc	 -15.1	 122.6	
C1_AntTub	 -21.2	 117.4	
C1_AntInfArc	 -18.2	 110.2	
C1C2_AntInt	 -16.5	 104.3	
C1C2_PosInt	 -6.2	 104.0	
C1C2_PosInt	 -6.2	 104.0	
C1_PosInfArc	 -1.0	 103.6	
C1_InfMidArc	 6.2	 104.8	
C1_InfCan	 13.9	 101.9	
C1_SpiPro	 21.0	 104.3	
C1_SupCan	 17.5	 110.4	
C1_SupMidArc	 7.9	 109.2	
C1_PosSupArc	 7.0	 115.4	
C2_SupPosDen	 -4.1	 114.6	



	 43	

C2_SupAntDen	 -14.1	 117.2	
C2_MedAntFac	 -18.9	 93.5	
C2_AntInfBod	 -19.0	 83.5	
C2_InfMedBod	 -11.8	 87.0	
C2_PosInfBod	 -5.6	 86.6	
C2_AntInfFac	 -3.6	 90.5	
C2_PosInfFac	 4.9	 81.9	
C2_InfCan	 13.1	 84.7	
C2_InfSpiPro	 22.7	 83.7	
C2_InfSpiPro	 22.7	 83.7	
C2_SupSpiPro	 26.3	 93.0	
C2_SupCan	 14.5	 96.2	
C2_PosSupFac	 5.8	 95.3	
C2_AntSupFac	 -2.8	 101.7	
C2_SupPosDen	 -4.1	 114.6	
C2_SupPosDen	 -4.1	 114.6	
C2_SupMidDen	 -8.9	 120.2	
C2_SupAntDen	 -14.1	 117.2	
C3_AntInfBod	 -17.5	 66.7	
C3_AntMedBod	 -18.1	 73.1	
C3_AntSupBod	 -17.6	 79.5	
C3_SupMedBod	 -11.6	 81.8	
C3_PosSupBod	 -5.9	 83.5	
C3_AntSupFac	 -2.2	 86.3	
C3_PosSupFac	 6.3	 78.6	
C3_SupCan	 11.2	 81.4	
C3_SupSpiPro	 21.6	 76.1	
C3_SpiPro	 25.4	 72.2	
C3_InfSpiPro	 21.5	 71.1	
C3_InfCan	 13.1	 71.9	
C3_PosInfFac	 6.2	 69.1	
C3_AntInfFac	 -2.9	 75.5	
C3_PosMedBod	 -5.0	 77.0	
C3_PosInfBod	 -4.0	 70.4	
C3_InfMedBod	 -10.7	 70.4	
C4_AntInfBod	 -14.6	 50.4	
C4_AntMedBod	 -15.3	 56.5	
C4_AntSupBod	 -15.8	 62.6	
C4_SupMedBod	 -9.8	 65.2	
C4_PosSupBod	 -4.0	 67.5	
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C4_AntSupFac	 -2.3	 72.3	
C4_PosSupFac	 7.1	 66.0	
C4_SupCan	 12.3	 67.5	
C4_SupSpiPro	 23.4	 62.4	
C4_SpiPro	 27.6	 59.0	
C4_InfSpiPro	 23.8	 57.8	
C4_InfCan	 15.7	 58.6	
C4_PosInfFac	 9.0	 56.0	
C4_AntInfFac	 -0.7	 61.2	
C4_PosMedBod	 -2.5	 61.2	
C4_PosInfBod	 -1.0	 54.9	
C4_InfMedBod	 -7.8	 54.4	
C5_AntInfBod	 -11.1	 35.1	
C5_AntMedBod	 -11.5	 41.1	
C5_AntSupBod	 -12.4	 46.6	
C5_SupMedBod	 -6.5	 49.6	
C5_PosSupBod	 -0.6	 52.0	
C5_AntSupFac	 0.6	 58.2	
C5_PosSupFac	 9.9	 52.5	
C5_SupCan	 15.5	 54.0	
C5_SupSpiPro	 27.6	 49.0	
C5_SpiPro	 32.4	 46.2	
C5_InfSpiPro	 28.6	 44.4	
C5_InfCan	 20.0	 44.9	
C5_PosInfFac	 12.6	 42.0	
C5_AntInfFac	 3.2	 47.1	
C5_PosMedBod	 1.3	 45.9	
C5_PosInfBod	 3.0	 39.9	
C5_InfMedBod	 -4.1	 39.1	
C6_AntInfBod	 -7.5	 19.8	
C6_AntMedBod	 -8.0	 26.0	
C6_AntSupBod	 -9.3	 31.5	
C6_SupMedBod	 -2.6	 34.4	
C6_PosSupBod	 3.7	 37.0	
C6_AntSupFac	 4.8	 43.9	
C6_PosSupFac	 14.9	 37.3	
C6_SupCan	 19.0	 40.6	
C6_SupSpiPro	 36.2	 36.0	
C6_SpiPro	 41.7	 33.7	
C6_InfSpiPro	 37.9	 31.5	
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C6_InfCan	 25.7	 30.7	
C6_PosInfFac	 17.5	 27.0	
C6_AntInfFac	 8.1	 33.2	
C6_PosMedBod	 5.5	 31.0	
C6_PosInfBod	 7.2	 24.9	
C6_InfMedBod	 -0.1	 24.0	
C7_AntInfBod	 -1.1	 3.6	
C7_AntMedBod	 -3.0	 9.8	
C7_AntSupBod	 -5.4	 15.8	
C7_SupMedBod	 1.8	 19.1	
C7_PosSupBod	 8.2	 22.3	
C7_AntSupFac	 9.8	 29.9	
C7_PosSupFac	 20.6	 22.6	
C7_SupCan	 23.4	 26.8	
C7_SupSpiPro	 48.4	 22.9	
C7_SpiPro	 53.9	 19.9	
C7_InfSpiPro	 50.5	 16.8	
C7_InfCan	 32.5	 14.9	
C7_PosInfFac	 25.3	 12.3	
C7_AntInfFac	 14.2	 18.3	
C7_PosMedBod	 10.5	 16.0	
C7_PosInfBod	 12.8	 9.7	
C7_InfMedBod	 5.6	 7.7	
Tragion	 -11.9	 137.1	
Infraorbitale	 -85.6	 148.7	
AntOccCon	 -10.9	 125.0	
PosOccCon	 11.2	 119.0	
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APPENDIX B 
User Guide to Software Implementation 

UMTRI	Parametric	C-Spine	Model	

Software	for	generating	2D	and	3D	cervical	spine	bone	geometry		
as	a	function	of	anthropometry	and	posture.	

Author:	mreed@umich.edu	

Revision	Date:	2017-02-25	

***********	

Python	version	3.x	is	required;	tested	with	Python	version	3.5.	

The	numpy	library	is	required.	

***********	

	

>>>	from	CSpine2DPCAR	import	*	

#	anthro.FEMALE	and	anthro.MALE	are	defined	as	1	and	-1,	respectively				

	

#	shs	=	sitting	height	/	stature	

>>>	target_anthro	=	anthro(anthro.FEMALE,	stature=1650,	age=45,	shs=0.52)		

>>>	pcar	=	PCARSpine2D()	

>>>	pcar.predict(target_anthro,	delta_head_angle=-30)		

#	delta	head	angle	from	neutral	in	degrees;	negative	is	flexion	

					

The	predict()	methods	generates	a	spine	using	the	PCAR	model,	articulates	the	
model	according	to	the	delta_head_angle,	then	writes	the	model	to	a	file	
"SpineOut.tsv"	that	contains	named	points.	

	

Opening	SpineOut.tsv	in	Excel	will	automatically	update	the	plot	in	ViewSpine.xlsx.	
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The	PCARSpine2D.predict()	method	can	also	be	called	with	keyword	arguments:	

>>>	pcar.predict(sex=anthro.FEMALE,	stature=1750,	age=45,	
delta_head_angle=20)	

or	with	a	list	of	anthro:	

>>>	pcar.predict(anthro=[1,	1750,	0.52,	45],	delta_head_angle=20)	#	sex:	-
1=male,	1=male	

The	module	can	also	be	run	from	the	command	prompt	with	the	anthro	and	posture	
as	command-line	arguments	

$	python	CSpine2DPCAR.py	1	1650	0.52	20	0	

Note	all	five	arguments	(sex,	stature,	shs,	age,	and	delta	head	angle)	must	be	
supplied.	If	none	is	supplied,	a	midsize	female	spine	is	generated	in	the	neutral	
posture.	

A	location	parameter	can	be	added	to	the	predict()	call	to	translate	and	rotate	the	
model.		Using	the	argument	location='C7'	(or	other	level	up	to	C2)	will	place	the	
anterior-inferior	margin	of	the	body	at	the	origin	and	align	the	inferior	surface	of	
the	body	with	the	global	x	axis.	Alternatively,	enter	a	location	and	angle,	e.g.,	[[40,	
40],	30]	will	translate	the	model	by	[40,	40]	and	rotate	30	degrees	clockwise.	The	
segment	positions	and	orientations	are	written	at	the	end	of	the	landmark	file.	

Running	CSpine2DPCAR	from	the	command	line	(executing	the	module)	will	
automatically	run	CSpine3DFitting	on	the	result.	

***********	

CSpine3DFitting.py	

Usage:	

>>>	from	CSpine3DFitting	import	*	

>>>	bm	=	BoneMapper()	

The	file	SpineOut.tsv	residing	in	the	output	directory	is	read.	The	3D	geometry	in	the	
data	directory	is	mapped	to	the	2D	geometry	and	output	as	OBJ	and	landmark	files.	
The	OBJ	files	can	be	read	in	meshlab	and	many	other	graphics	packages.	

Alternatively,	from	the	command	line	

$	python	CSpine3DFitting.py	
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The	output	directory	is	expected	to	contain	a	file	called	SpineOut.tsv	containing	the	
2D	landmarks.		

An	alternative	file	can	be	supplied	on	the	command	line:	

$	python	CSpine3DFitting.py	AlternativeSpine.tsv	

Note	that	the	path	for	the	alternative	file	is	relative	to	the	module.	

The	data	directory	containing	the	bone	mesh	and	landmark	files	must	be	in	the	
same	directory	as	the	module.	

	

***********	

 


