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EXECUTIVE	SUMMARY	

This project addressed a range of issues relating to the measurement and modeling of 
three-dimensional body shape. Two metrics were devised for comparing two body shapes 
represented by surface meshes. The distance from the nodes of one mesh to the polygonal 
surface of another was defined as mesh error. Six torso dimensions computed between 
mesh nodes that are analogous to standard anthropometric measures were compared to 
compute mesh error.  Analyses were performed using three datasets: 236 male Soldiers, 
200 Air Crew, and 73 civilian women. Statistical body shape models (SBSM) were 
developed using methods developed and adapted in previous UMTRI research. A 
standardized template was fit to each scan to enable the analysis.  
 
Using the Soldier data, an evaluation of reconstruction error showed only minor 
improvements in mesh error when using more than 100 PCs, with a smooth trend toward 
reductions in mesh error statistics as more PCs were included. In contrast, the reduction 
in variance in torso dimension discrepancies with increasing numbers of PCs retained 
was not smooth, with occasional increases as more PCs were added. This finding reflects 
the fact that each PC affects each mesh vertex in a different way. However, 
approximately 90% of reconstruction dimension errors were less than 10 mm when using 
80 or more PCs.  
 
Regression was used to predict body shape as a function of stature, body mass index, and 
the ratio of sitting height to stature, or with these three variables plus 7 additional body 
segment lengths and circumferences. With three variables, mean mesh errors were 
approximately 6 mm regardless of the number of PCs used from 50 to 200. Adding 7 
additional predictors reduced the mean and 95th-percentile mesh errors by only a few 
mm, indicating that most of the variance in body shape was accounted for by three 
predictors. Importantly, the mesh error for body shapes predicted by regression was not 
significantly related to any standard anthropometric variables.  
 
To assess the effect of the number of subjects on the performance of the SBSMs, models 
were generated using random samples of 50, 100, 150, or 200 men from the combined 
Soldier and Air Crew population and assessed on 20 randomly sampled men who were 
not used to develop the models. The results, generated using 10 regresion input variables, 
showed that the SBSM prediction accuracy evaluated by mesh error was only slightly 
improved by using more than 50 subjects. A similar simulation analysis using torso 
dimensions found that the standard deviation of the mean error across the evaluation 
subjects was generally under 2 mm even with only 50 subjects used to create the model. 
These findings indicate that this method of model development is robust to relatively 
small sample pools. 
 
The SBSM developed using Soldier data was used to predict Air Crew body shapes from 
standard anthropometric variables to assess the generalizability of models to other 
populations. Using 10 variables for prediction, the mean error for six torso dimensions 
was below 10 mm in all cases. The lack of reduction in error when adding 7 
anthropometric measures to the primary three was attributed to differences in the 
measurement of standard measures between the studies. 
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A novel method was developed to predict body shape in one posture from an SBSM 
developed for another posture. Data from women measured in both postures of interest 
were analyzed to generate separate SBSMs. The principal component scores from the 
standing posture were used to predict principal component scores for a seated posture 
using linear regression. The resulting reconstructions showed excellent predictive ability 
within the population used to generate the model, with the remaining discrepancies due to 
posture differences across individuals in the seated posture. This method has considerable 
potential for generalizing scan datasets that have only a few postures using relationships 
learned from richer datasets.	
	
In	many	environments,	gather	body	shape	data	from	individuals	in	a	minimally	clad	
condition	is	not	practical.	Moreover,	both	the	individuals’	body	shapes	and	the	space	
taken	up	by	their	clothing	and	gear	is	of	interest.	A	new	method	termed	inscribed	
fitting	was	developed	to	fit	an	SBSM	within	the	shell	created	by	scanning	an	
individual	wearing	clothing,	body	armor,	or	other	gear.	The	method	is	capable	both	
of	generating	a	reasonably	accurate	avatar	of	the	scanned	individual	as	well	as	a	
map	of	the	spatial	margin	of	the	clothing	and	gear.	This	method	has	considerable	
utility	for	building	subject-specific	avatars	of	individuals	participating	in	human	
factors	evaluations	and	for	building	functional	models	of	clothing	and	gear	that	can	
be	applied	to	other	avatars.	
	
Finally,	a	small-scale	pilot	study	of	scanning	in	prone	postures	was	conducted.	Using	
a	transparent	table	developed	at	UMTRI	for	prone	and	supine	scanning,	a	textured	
model	of	a	volunteer	in	military	garb	was	obtained.	The	methodology	shows	
promise	for	modeling	of	individuals	in	functional	postures	that	involve	substantial	
contact	with	the	ground.	
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INTRODUCTION	

Advances	in	three-dimensional	(3D)	surface	measurement	technology	have	
revolutionized	anthropometry	and	enabled	a	new	generation	of	body	shape	
modeling	tools.	Applications	of	these	tools	have	included	the	design	and	evaluation	
of	protective	equipment	(Hsaio	et	al.	2003),	seats	and	chairs	(Parkinson	and	Reed	
2008),	and	vehicles	(Reed	and	Ebert	2013).	Most	body	shape	modeling	has	the	goal	
of	generating	realistic	human	forms	from	a	small	number	of	input	parameters,	
typically	overall	descriptors	such	as	sex,	stature,	and	body	weight.	The	input	data	is	
usually	a	set	of	surface	scans	obtained	from	laser	scanners,	although	measurement	
technologies	now	include	a	range	of	scanning	methods	(Park	et	al.	2014).	The	first	
statistical	whole-body	shape	model	in	the	digital	human	modeling	literature	was	
published	in	2004,	drawing	on	data	from	the	US	CAESAR	project	(Allen	et	al.	2003,	
Allen	et	al.	2004).	Since	then,	several	different	research	groups	have	published	
models	based	on	a	variety	of	analysis	methodologies	(Loper	et	al.	2015,	Pishchulin	
et	al.	2015).	However,	some	basic	questions	concerning	the	performance	of	these	
models	and	the	choices	made	in	their	development	have	remained	unanswered.	

The	goal	of	the	current	work	is	to	explore	a	range	of	questions	related	to	statistical	
body	shape	model	development	for	both	minimally	clad	and	clothed	figures,	
including	those	wearing	protective	equipment	and	gear.	The	specific	objectives	
were:	

1. Develop	a	set	of	valid,	practical,	and	effective	accuracy	and	precision	
metrics	for	human	body	shape	modeling.	

2. Quantify	the	advantages	and	disadvantages	of	alternative	modeling	
approaches	using	the	newly	defined	metrics.	

3. Develop	and	evaluate	methods	for	assessing	the	accuracy	of	extending	a	
body	shape	model	to	a	new	population.	

4. Develop	and	validate	methods	for	predicting	seated	body	shape	from	
standing	data.	

5. Develop	and	validate	methods	for	automated	extraction	of	gear	data	from	
scans	of	encumbered	Soldiers.		

6. Support	NSRDEC’s	efforts	to	develop	measurement	and	modeling	
procedures	for	encumbered	Soldiers	in	prone	postures.	

The	data	used	for	these	analyses	were	gathered	by	UMTRI	and	by	the	US	Air	Force	
from	male	Soldiers	and	Air	Crew,	respectively,	and	by	UMTRI	from	female	civilians.	
The	results	are	organized	by	the	objectives	listed	above.	
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METHODS	

Data	Sources	

Male	Soldiers	

The	data	used	for	the	current	analysis	were	gathered	in	the	Seated	Soldier	Study	
(Reed	and	Ebert	2013a).		Laser	scans	obtained	in	a	standing	pose	were	used	for	the	
current	analysis	(Figure	1).	A	total	of	236	scans	from	men	with	a	wide	range	of	body	
size	were	used.	

	

Figure	1.	Standing	pose	used	for	scans	with	male	Soldiers	and	Air	Crew.	Polygons	of	the	
template	mesh	are	visible	in	the	image.	

Male	Air	Crew	

A	total	of	200	scans	from	men	with	a	wide	range	of	body	size	were	used	for	the	
current	analysis.	The	scans	were	drawn	from	those	obtained	in	the	Air	Crew	Sizing	
Survey	(Choi	et	al.	2014).	The	standing	scan	posture	was	nominally	identical	to	that	
used	with	Soldiers,	so	the	data	could	be	readily	combined.	Figure	2	and	Table	1	
compare	summary	statistics	for	selected	anthropometric	values	for	the	Soldier	and	
Air	Crew	populations.	
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Figure	2.		Weight	by	stature	for	male	Soldiers	(o)	and	Air	Crew	(+).	Lines	indicate	5th,	50th,	and	95th	
percentiles	for	Soldiers	(—)	and	Air	Crew	(+).	

Table	1	
Summary	Statistics	for	Anthropometric	Measures	of	Male	Soldier	and	Air	Crew	Samples	

Measure	 Mean	 SD	 5th%ile	 50th%ile	 95th%ile	

Soldier	(N=236)	 	 	 	 	 	

Stature	(mm)	 1754	 67	 1652	 1755	 1866	

Weight	(kg)	 82.9	 13.6	 63.5	 82.5	 107.7	

BMI	(kg/m2)	 26.9	 3.9	 21.1	 26.9	 34.1	

Sitting	Height	(mm)	 917	 34	 862	 919	 977	

SH/S*	 0.523	 0.015	 0.497	 0.523	 0.546	

Air	Crew	(N=200)	 	 	 	 	 	

Stature	(mm)	 1783	 61	 1695	 1781	 1902	

Weight	(kg)	 84.7	 12.7	 66.8	 82.9	 107.4	

BMI	(kg/m2)	 26.6	 3.4	 21.5	 26.4	 33.2	

Sitting	Height	(mm)	 934	 32	 885	 933	 985	

SH/S*	 0.524	 0.011	 0.505	 0.525	 0.541	
*	Sitting	height/stature.	

Female	Civilians	

The	methods	for	predicting	seated	body	shape	from	standing	data	were	developed	
using	data	from	a	study	of	civilian	men	and	women,	using	a	sample	that	was	
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weighted	toward	older	adults	(Reed	and	Ebert	2013b).	Table	2	shows	the	
distribution	of	selected	anthropometric	variables	for	this	population.	

Table	2	
Summary	Statistics	for	Anthropometric	Measures	of	Female	Civilian	Sample	

Measure	 Mean	 SD	 5th%ile	 50th%ile	 95th%ile	

Stature	(mm)	 1600	 70.2	 1470	 1595	 1725	

Weight	(kg)	 68.3	 13.6	 49.3	 65.9	 99.9	

BMI	(kg/m2)	 26.7	 4.9	 19.2	 26	 34.3	

Sitting	Height	(mm)	 840	 41.2	 769	 838	 906	

SH/S*	 0.524	 0.016	 0.504	 0.526	 0.552	

Age	(yr)	 61.9	 17.4033	 23.2	 66.7	 84.8	
*	Sitting	height/stature.	

Scan	Data	Processing	

Scans	were	cleaned	to	remove	extraneous	data	points,	such	as	those	on	the	standing	
surface,	and	surface	landmarks	were	digitized	using	Meshlab	v1.3.1	(Cignoni	et	al.	
2009).	Meshlab	was	also	used	to	fill	holes,	using	Poisson	surface	reconstruction	
(filter	settings:	OctDepth=8,	SolverDivide=6,	SamplesPerNode=1,Offset=1)	and	to	
decimate	to	75k	vertices.	

Template	Fitting	

To	enable	statistical	analysis,	a	standardized	template	was	fit	to	each	processed	scan	
using	methods	developed	in	previous	UMTRI	research.	The	process,	which	is	
described	in	detail	in	Park	and	Reed	(2015),	is	as	follows:	

1.	 Scans	are	aligned	to	a	common	reference	point	on	the	ground	plane	on	the	
midline	of	the	body.	

2.	 The	template	is	approximately	scaled	and	aligned	to	the	body.	This	step	is	
facilitated	by	using	a	previously	generated	body	shape	model	and	the	“PC	fitting”	
methodology	described	in	Results	section	5.		

3.	 The	mesh	is	morphed	to	align	a	set	of	surface	landmarks	with	the	scan	using	a	
three-dimensional	interpolation	method	based	on	radial	basis	functions	(RBF).		

4.	 An	implicit	surface	representation	is	created	for	the	scan	data	using	RBF	that	
creates	a	continuous	scalar-valued	2D	function	with	a	value	of	zero	on	the	
surface,	positive	values	outside	the	surface,	and	negative	values	inside.	The	
numerically	evaluated	gradient	of	this	function	is	used	to	move	each	node	of	the	
template	mesh	into	the	approximated	surface	of	the	scan	data.		
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Scans	from	Soldiers	and	Air	Crew	were	fit	using	the	same	template.	This	mesh,	
developed	at	UMTRI,	is	symmetrical	and	has	a	resolution	optimized	for	fitting	
whole-body	data.	The	scans	used	for	the	standing-to-seated	prediction	were	fit	prior	
to	the	development	of	the	symmetrical	template	using	earlier	versions	that	are	
asymmetrical	and	lack	details	for	hands	and	feet.	

PCA	and	Regression	(PCAR)	

The	body	shape	analysis	methods	followed	procedures	used	in	many	previous	body	
shape	studies	at	UMTRI	and	elsewhere	(Reed	and	Parkinson	2008,	Park	and	Reed	
2015,	Park	et	al.	2016).	

1. A	geometry	vector	was	obtained	for	each	subject	by	concatenating	standard	
anthropometric	variables,	the	coordinates	of	body	surface	landmarks,	and	
the	coordinates	of	the	surface	mesh	vertices.			

2. PCA	was	conducted	on	the	geometry	matrix.	For	the	current	work,	a	method	
from	Turk	and	Pentland	(1991)	that	computes	a	number	of	PCs	equivalent	to	
the	number	of	subjects	was	used.	The	PCs	and	PC	scores	therefore	contain	
sufficient	information	to	exactly	reconstruct	the	original	data.	

3. Regression	analyses	were	conducted	to	predict	PC	scores	using	two	sets	of	
predictors.	The	full	set,	selected	in	previous	work	to	provide	a	parsimonious	
description	of	body	shape	(Reed	et	al.	2014),	is	stature,	BMI,	erect	sitting	
height/stature,	knee	height	sitting,	head	circumference,	chest	circumference,	
waist	circumference	at	omphalion,	maximum	hip	circumference,	and	age.		
For	some	analyses,	the	first	three	variables	were	used	to	predict	the	
remaining	variables.	The	PC	scores	obtained	from	the	regression	were	used	
to	reconstruct	the	geometry.	
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RESULTS	

The	sections	below	present	the	methods	and	results	specific	to	addressing	each	
project	objective.	

1.	 ERROR	METRICS	

Body	shape	models	are	used	to	assess	fit,	clearance,	and	other	spatial	factors	
relating	to	human	accommodation	and	performance.	Consequently,	the	most	
important	measures	of	model	performance	relate	to	spatial	accuracy	and	precision.	
Any	particular	analysis	may	use	a	different	aspect	of	the	model.	For	example,	an	
analysis	of	body	armor	might	focus	on	the	torso	shape,	while	face	shape	would	be	
more	important	for	the	design	of	protective	masks.	For	the	current	analyses,	we	
chose	two	types	of	measures:	

1. Surface	correspondence	–	The	distance	between	the	nodes	of	a	predicted	
shape	from	the	symmetric	template	fit	to	the	scan	data	were	computed.	The	
closest	point	on	the	mesh	is	obtained,	whether	within	a	polygon	or	on	an	
edge.	The	mean,	standard	deviation,	and	several	quantiles	of	the	unsigned	
distances	between	the	meshes	were	computed.	The	calculation	was	
performed	only	for	1940	node	points	on	or	near	the	torso	(see	Figure	3)	to	
reduce	the	effects	of	posture	variability	in	the	extremities	on	accuracy	
assessment.	Prior	to	assessing	the	correspondence,	the	predicted	torso	nodes	
were	aligned	to	the	comparison	mesh	using	a	two-step	process.	The	mean	
node	location	was	aligned,	and	then	the	predicted	mesh	was	rotated	so	that	
the	3	principal	components	of	the	node	coordinates	from	the	two	meshes	
were	identical.	This	focuses	the	comparison	on	the	size	and	shape	of	the	
torso	independent	of	discrepancies	of	location	or	orientation.	

2. Dimension	analysis	–	Many	analyses	using	SBSM	are	focused	on	particular	
dimensions	that	can	be	extracted	from	the	predicted	body	shapes.	
Performance	on	linear	dimensions	may	be	more	important	for	these	analyses	
than	the	overall	surface	correspondence.	Hence,	several	linear	dimensions	
intended	to	be	surrogates	for	this	type	of	measure	were	defined	and	used	for	
performance	evaluation.	Specifically,	the	torso	breadth	and	depth	
(horizontal)	were	computed	at	approximately	the	heights	of	the	
suprasternale,	substernale,	and	omphalion	landmarks.	These	correspond	
approximately	to	thorax,	shoulder,	and	abdomen	dimensions,	but	are	not	
intended	to	be	directly	equivalent	to	standard	anthropometric	variables,	
such	as	chest	depth	and	abdomen	extension.	
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Figure	3.	Torso	points	used	for	surface	correspondence	evaluations.	

2.	 ALTERNATIVE	MODELING	APPROACHES	

Effects	of	Number	of	PCs	Used	for	Reconstruction	

Historically,	people	have	selected	the	number	of	PCs	to	use	for	subsequent	modeling	
based	on	an	arbitrary	cutoff	in	the	cumulative	variance	accounted	for.	For	example,	
Figure	4	shows	the	cumulative	variance	(sum	of	eigenvalues)	for	PCs	in	the	Soldier	
PCA.	The	first	8	PCs	account	for	95%	of	the	variance;	25	PCs	account	for	99%.	
However,	choosing	the	number	of	PCs	to	retain	by	this	method	does	not	provide	a	
direct	indication	of	the	effects	on	spatial	error	in	body	shape	reconstruction	or	
prediction.	



	 15	

	

Figure	4.	Fraction	of	variance	accounted	for	by	PCs	in	the	Soldier	PCA.	

To	examine	this	factor,	the	reconstruction	error,	quantified	as	the	distance	between	
the	reconstructed	and	original	mesh,	was	calculated	across	all	236	Soldiers	for	
number	of	PCs	ranging	from	20	to	200.		Figure	5	shows	quantiles	of	the	unsigned	
distance	metrics.	The	median	error	is	below	4	mm	for	all	subjects	with	50	PCs	and	
below	2	mm	with	80	PCs.		Figure	6	shows	the	95th	percentile	error	within	subject.	At	
50	and	80	PCs	the	median	95th-percentile	errors	are	below	12	and	8	mm,	
respectively.		

	

	

Figure	5.	Effects	of	number	of	retained	PCs	on	quantiles	(across	subjects)	of	mean	(within	
subject)	mesh	reconstruction	error.	Quantiles	0.05,	0.1,	0.25,	0.5,	0.75,	0.9,	and	0.95	are	shown.	
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Figure	6.		Effects	of	number	of	retained	PCs	on	quantiles	(across	subjects)	of	95th	percentile	
(within	subject)	mesh	reconstruction	error.	Quantiles	0.05,	0.1,	0.25,	0.5,	0.75,	0.9,	and	0.95	are	
shown.	

A	similar	analysis	can	be	conducted	using	linear	dimensions	between	nodes,	which	
simulates	taking	anthropometric	dimensions	using	a	caliper.	Figure	7	shows	six	
dimensions	that	were	defined	using	node	pairs,	corresponding	to	depth	and	breadth	
measures	on	the	torso.	Note	that	these	do	not	correspond	to	any	particular	standard	
anthropometric	dimensions,	regardless	of	similarity	in	the	names.	

  	

Figure	7.	Node-to-node	dimensions:	abdomen	depth,	abdomen	breadth,	lower	chest	depth,	chest	
breadth,	upper	chest	depth,	shoulder	breadth.	
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Figure	8	shows	the	difference	in	dimensions	between	the	reconstructed	and	original	
meshes	with	the	number	of	PCs	retained	between	20	and	220	for	six	subjects.	
Figure	9	shows	the	aggregate	of	all	236	subjects.	The	dimensions	do	not	vary	
smoothly	with	the	number	of	PCs	used	for	reconstruction,	and	the	pattern	of	
reconstruction	error	across	dimensions	varies	across	subjects.	At	all	numbers	of	PCs	
retained,	the	mean	error	is	zero	across	the	population.	Table	3	lists	the	error	
standard	deviations	for	each	variable	across	a	range	of	the	number	of	PCs	used.	
Approximately	90%	of	errors	are	less	than	10	mm	for	these	dimensions	when	80	or	
more	PCs	are	used	for	reconstruction.	

	

Figure	8.		Effects	of	the	number	of	PCs	used	for	reconstruction	on	dimension	errors	(mm)	for	six	
subjects.		Lines	are	abdomen	(red),	blue	(thorax),	green	(upper	chest);	dashing	indicate	breadth.	
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Figure	9.	Aggregate	dimension	errors	(mm)	by	the	number	of	PCs	used	for	reconstruction.	Lines	
show	5th	and	95th	percentiles	(red),	10th	and	90th	percentiles	(green)	and	25th	and	75th	percentiles	
across	subjects.		

	

Table	3	
Dimension	Residual	Errors	for	Reconstruction	(SD	in	mm)	

Variable	 Mean	(mm)	 50	PCs	 100	PCs	 150	PCs	 200	PCs	

Abdomen	Depth	 232	 8.9	 4.4	 2.9	 1.1	

Abdomen	Width	 330	 9.8	 4.6	 3.5	 1.6	

Lower	Chest	
Depth	

236	 7.7	 3.6	 2.3	 1.2	

Chest	Width	 348	 8.3	 4.5	 2.3	 1.1	

Upper	Chest	
Depth	

151	 6.0	 2.8	 1.7	 0.9	

Shoulder	
Breadth	

469	 6.0	 2.7	 1.7	 0.9	

	 	

These	results	show	that	distribution	of	dimension	errors	shrinks	quickly	with	
increasing	number	of	PCs	used	for	reconstruction,	even	though	the	reconstruction	
errors	for	any	individual	do	not	decrease	monotonically.	Errors	are	approximately	
normally	distributed,	and	the	residual	SD	for	predictions	of	these	dimensions	is	less	
than	5	mm	when	100	PCs	are	used	for	reconstruction.		

Mesh	Error	Using	Regression	

The	regression	modeling	methodology	creates	separate	equations	to	predict	PC	
scores	using	standard	ordinary	least	squares	methods.	The	typical	methods	used	to	
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assess	regression	model	performance,	such	as	significance	tests	on	parameter	
estimates	and	analysis	of	residuals,	are	not	very	useful	for	this	application	because	
the	dependent	measure	for	each	regression	is	a	PC	score,	rather	than	an	outcome	of	
direct	interest.	Moreover,	the	goal	is	not	to	test	whether	particular	variables	have	
“significant”	effects	on	the	outcome,	but	rather	to	make	predictions.	The	residuals	of	
interest	are	the	discrepancies	between	the	predicted	and	measured	body	shapes.		

Table	4	shows	the	distribution	of	mesh	error	across	all	subjects	for	prediction	of	
body	shape	from	three	variables:	stature,	BMI,	and	ratio	of	sitting	height	to	stature	
(SH/S).	The	predicted	body	shape	was	reconstructed	using	from	50	to	236	(all)	PCs.	
Surprisingly,	the	errors	increase	slightly	when	more	PCs	are	used	for	
reconstruction.	This	is	thought	to	be	due	to	idiosyncrasies	in	the	mesh	that	are	
related	to	other	body	dimensions	that	are	introduced	when	including	more	PCs.	
However,	the	increase	in	errors	is	small	from	50	to	150	PCs	and	is	stable	when	more	
PCs	are	added.	

Table	4	
Mesh	Errors	(mm)	for	3-Variable	Regression	by	the	Number	of	PCs	Used	for	Reconstruction	

(mean	across	all	subjects)	

Num	PCs	 Mean	 SD	 Median	 75th%ile	 95th%ile	

50	 6.0	 4.7	 4.9	 8.5	 14.8	

100	 6.4	 5.0	 5.3	 9.2	 15.9	

150	 6.5	 5.1	 5.4	 9.3	 16.1	

200	 6.5	 5.1	 5.4	 9.4	 16.1	

236	 6.5	 5.1	 5.4	 9.4	 16.2	

	

Effects	of	the	Number	of	Anthropometric	Predictors	

Using	more	variables	can	be	expected	to	improve	prediction.	Figure	10	shows	the	
cumulative	(across	subjects)	mean	and	95th-percentile	mesh	error	for	the	full	
regression	with	10	predictors	and	the	reduced	regression	with	three	predictors.	
Using	additional	predictors	reduces	the	error	only	slightly	relative	to	the	
distribution	across	subjects.	The	median	95th-percentile	error	with	10	predictors	is	
reduced	only	from	16	to	14	mm	compared	with	the	three-variable	regression.	
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Figure	10.	Distribution	of	mean	(left	curve)	and	95th-percentile	(right	curves)	mesh	error	across	
subjects	for	regressions	with	three	variables	(solid	lines)	and	10	variables	(dashed	lines).	

The	regression	errors	are	not	strongly	related	to	any	anthropometric	variables.	
Figure	11	shows	the	mean	error	for	the	three-variable	regression	as	a	function	of	
BMI,	which	showed	the	strongest	trend.	

	

Figure	11.	Mean	mesh	error	for	the	three-variable	regression	as	a	function	of	body	mass	index.	

A	similar	comparison	can	be	made	using	the	node-to-node	dimensions	defined	in	
Figure	7.	In	all	cases,	the	predicted	dimensions	are	unbiased,	i.e.,	the	mean	error	
across	the	subjects	is	zero.	The	errors	are	approximately	normally	distributed.	The	
error	standard	deviation	is	reduced	by	the	addition	of	more	predictors.		

Note	that	these	residual	SDs	are	identical	to	those	that	are	obtained	by	doing	
regression	directly	on	the	dimensions.	That	is,	when	all	PCs	are	retained,	the	fact	
that	the	PCA	model	is	simultaneously	predicting	all	node	locations	does	not	affect	
the	precision	of	the	prediction	of	individual	node	locations	or	node-to-node	
dimensions.	

For	comparison,	Table	5	also	shows	the	results	of	reconstructing	using	50	PCs,	
rather	than	the	full	236.		Because	50	PCs	accounts	for	more	than	99%	of	the	
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variance	in	node	locations,	the	regression	prediction	precision	is	not	meaningfully	
affected	by	using	50	rather	than	236	PCs.	This	is	particularly	true	for	the	three-
variable	regression,	where	the	RMSE	values	are	identical	to	three	significant	figures.	

Table	5	
	Dimension	Residual	Errors	from	Regression	(SD	in	mm)	using	All	or	50	PCs	for	Reconstruction	

Variable	 Three	Variables	 Ten	Variables	

RMSE	
(All	PCs)	

RMSE	
(50	PCs)	

R2	
Adjusted*	

RMSE	
(All	PCs)	

RMSE	
(50	PCs)	

R2	
Adjusted*	

Abdomen	Depth	 15.2	 15.2	 0.77	 10.7	 10.8	 0.88	

Abdomen	Width	 15.9	 15.9	 0.79	 9.1	 9.9	 0.93	

Lower	Chest	
Depth	

14.8	 14.8	 0.77	 11.7	 11.9	 0.85	

Chest	Width	 14.8	 14.8	 0.80	 10.6	 10.7	 0.89	

Upper	Chest	
Depth	

8.4	 8.4	 0.63	 7.7	 7.8	 0.67	

Shoulder	
Breadth	

18.8	 18.8	 0.40	 13.0	 13.1	 0.70	

*	Obtained	from	linear	model	predicting	dimensions	directly;	equivalent	to	all-PC	calculation.	

	

Effects	of	Number	of	Subjects	

One	consideration	in	the	development	of	body	shape	models	is	how	many	subjects	
are	needed	to	achieve	a	desired	level	of	prediction	performance.	To	address	this	
issue,	the	Soldier	and	Air	Crew	data	were	combined	to	form	a	single	population	of	
436	men.	Sets	of	50	PCAR	models	were	created	using	N	=	50,	100,	150,	or	200	
subjects	sampled	randomly.		The	performance	with	respect	to	mesh	error	was	
evaluated	for	each	model	by	comparing	assessing	predictions	for	20	subjects	not	
included	in	the	models.	Predictions	were	based	on	10	anthropometric	variables.	
Table	6	shows	the	results	for	each	level	of	N	across	models	and	subjects.		

The	values	are	slightly	larger	than	the	reconstruction	error	alone	within	the	Soldier	
model.	Only	small	improvements	in	mesh	error	are	seen	with	increasing	numbers	of	
subjects.	For	example,	the	average	95th%ile	mesh	error	is	reduced	from	16.9	to	
14.9	mm	(6%)	when	using	200	rather	than	50	subjects.		
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Table	6	
Mesh	Errors	(mm)	for	10-Variable	Regression	Evaluated	for	20	Subjects	Not	Included	in	the	Model	

(average	of	50	models	at	each	number	of	PCs)	

Num	PCs	 Mean*	 SD	 50th%ile	 75th%ile	 95th%ile	

50	 6.8	(1.6)	 5.3	(1.2)	 5.6	(1.5)	 9.7	(2.4)	 16.9	(4.1)	

100	 6.3	(1.5)	 4.9	(1.1)	 5.3	(1.4)	 9.1	(2.2)	 15.8	(3.7)	

150	 6.1	(1.4)	 4.8	(1.0	 5.0	(1.4)	 8.7	(2.1)	 15.2	(3.3)	

200	 6.0	(1.3)	 4.7	(1.1)	 5.0	(1.2)	 8.5	(1.9)	 14.9 (3.3)	
*	Values	in	parentheses	are	SDs	across	50	models.	

A	similar	analysis	can	be	conducted	using	torso	dimensions	as	the	dependent	
measures.	Model	performance	for	predicting	the	six	torso	dimensions	used	above	
was	evaluated	using	100	subjects	randomly	selected	from	among	those	not	used	for	
the	model	construction.	This	procedure	was	repeated	50	times	for	each	value	of	N,	
for	a	total	of	200	PCAR	models.	In	each	case,	all	PCs	(N)	were	retained.	The	
regression	was	performed	using	all	10	anthropometric	variables.	

Table	7	lists	the	means	and	standard	deviations	of	dimension	errors	across	50	
models	for	each	variable	and	value	of	N.	On	average,	the	models	were	unbiased,	as	
expected.	The	SD	of	the	mean	(bias)	was	generally	under	2	mm	even	with	only	50	
subjects.	The	residual	error	standard	deviation	was	only	slightly	improved	by	going	
from	50	to	200	subjects.	Within	each	set	of	50	models,	the	SD	of	the	SD	was	
improved	with	more	subjects,	but	was	less	than	2	mm	even	with	50	subjects.	These	
results	indicate	that	with	the	current	linear	modeling	approach	little	improvement	
in	model	performance	can	be	expected	when	using	more	than	100	subjects.	
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Table	7	
Effects	of	the	Number	of	Subjects	(N)	on	Model	Prediction	of	Torso	Dimensions	Across		

50	Models	at	each	Level	of	N	(mm)	

N	 Dimension*	 Mean	 SD	of	Mean	 Mean	SD	 SD	of	SD	

50	 1	 0.3	 2.6	 13.4	 1.2	

	

2	 -0.3	 1.9	 10.8	 0.9	

	

3	 0.3	 1.9	 13.5	 1.2	

	

4	 0.2	 1.9	 12.9	 1.1	

	

5	 -0.1	 1.9	 9.9	 0.8	

	

6	 -0.1	 2.6	 13.6	 1.5	

100	 1	 0.1	 1.3	 12.3	 0.8	

	

2	 0.1	 1.6	 10.0	 0.8	

	

3	 0.2	 1.7	 12.5	 0.7	

	

4	 0.0	 1.9	 12.0	 0.9	

	

5	 0.1	 1.5	 9.5	 0.7	

	

6	 0.2	 1.5	 12.9	 1.1	

150	 1	 0.2	 1.6	 12.1	 0.7	

	

2	 -0.3	 1.2	 9.9	 0.8	

	

3	 -0.3	 1.5	 12.2	 0.8	

	

4	 -0.1	 1.1	 11.8	 0.7	

	

5	 -0.3	 1.1	 9.1	 0.6	

	

6	 0.1	 1.5	 12.6	 0.8	

200	 1	 0.1	 1.3	 11.8	 0.8	

	

2	 -0.2	 1.2	 9.7	 0.6	

	

3	 0.1	 1.5	 12.3	 0.8	

	

4	 -0.1	 1.5	 11.6	 0.7	

	

5	 0.1	 1.1	 9.1	 0.5	

	

6	 0.1	 1.5	 12.6	 0.7	
	 	 *	Dimensions	are	numbered	in	the	order	in	which	they	appear	in	Table	5.		
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3.	 EXTENDING	PREDICTIONS	TO	NEW	POPULATIONS		

A	body	shape	model	will	usually	be	used	to	predict	body	shapes	for	individuals	who	
are	not	in	the	original	dataset.	To	assess	this	aspect	performance,	the	Soldier	model	
was	used	to	predict	body	shapes	in	the	Air	Crew	dataset.	The	three-	and	ten-variable	
regression	models	were	used	to	predict	body	shapes	and	the	dimension	variables	
were	analyzed.	

The	three-variable	model	showed	bias	(mean	difference	in	predicted	vs.	observed	
dimensions)	similar	to	the	mean	difference	in	dimensions	between	the	populations,	
although	this	is	believed	to	be	coincidental	(see	below).	The	residual	SDs	are	similar	
to	those	observed	in	the	Soldier	dataset,	indicating	that	the	precision	for	predicting	
dimensions	in	the	Air	Crew	dataset	is	similar	to	the	precision	in	the	dataset	used	to	
create	the	model.	In	all	cases	the	mean	errors	are	less	than	one	standard	deviation	
of	the	residual.	As	was	the	case	within	the	Soldier	dataset,	dimension	prediction	
errors	were	essentially	unaffected	by	reconstructing	with	all	rather	than	50	PCs,	but	
using	10	rather	than	3	predictive	variables	improved	performance,	reducing	both	
bias	and	residual	variance.	

	

Table	8	
	Dimension	Residual	Errors*	(mm)	using	Soldier	Regression	to	Predict	Air	Crew	Dimensions	

	using	All	or	50	PCs	for	Reconstruction	

Variable	 Mean	
Difference	
Between	

Populations	
(AC-

Soldier)	

Three	Variables	 Ten	Variables	

Mean	
Error	(All	
PCs)	

SD	
(All	
PCs)	

Mean	
Error	
(50	
PCs)	

SD	
(50	
PCs)	

Mean	
Error	(All	
PCs)	

SD	
(All	
PCs)	

Mean	
Error	
(50	
PCs)	

SD	
(50	
PCs)	

Abdomen	
Depth	

11.3	 12.2	 15.6	 12.1	 15.7	 6.3	 11.7	 7.2	 11.9	

Abdomen	
Width	

3.7	 2.9	 15.7	 2.8	 15.7	 3.7	 10.0	 1.5	 10.2	

Lower	
Chest	
Depth	

6.8	 7.2	 13.5	 7.4	 13.5	 6.7	 11.6	 6.4	 11.6	

Chest	
Width	

10.2	 9.3	 13.7	 9.3	 13.7	 9.1	 11.1	 7.9	 10.9	

Upper	
Chest	
Depth	

6.7	 7.1	 9.5	 7.1	 9.5	 7.4	 9.2	 7.3	 9.2	

Shoulder	
Breadth	

-1.2	 -4.7	 14.1	 -4.7	 14.1	 -3.0	 11.5	 -3.0	 11.5	

*	Note	a	positive	error	indicates	that	the	Soldier-based	model	under-predicted	the	dimension	for	Air	
Crew.	
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The	regression	model	based	on	Soldier	data	consistently	predicted	torso	dimensions	
that	were	larger,	on	average,	than	those	measured	on	the	Air	Crew	scan	fits,	even	
when	using	10	variables.	This	bias	observed	in	the	model	predictions	appears	to	be	
due	to	the	fact	that	the	relationships	between	standard	anthropometric	measures	
and	mesh	dimensions	are	different	in	the	two	datasets.	Figure	12	shows	that	the	
mesh	abdomen	depth	measure	is	larger	in	the	Air	Crew	dataset	than	in	the	Soldier	
dataset	as	a	function	of	BMI.	This	would	be	consistent	with	an	older	Air	Crew	
population	with	greater	abdominal	adiposity.	The	inclusion	of	torso	circumference	
measures	in	the	regression	is	intended	to	compensate	for	differences	of	this	sort.	
However,	the	relationships	between	abdomen	depth	and	waist	circumference,	and	
between	chest	width	and	chest	circumference,	show	a	consistent	pattern	of	the	
mesh	measures	for	Air	Crew	being	larger	as	a	function	of	the	associated	standard	
anthropometric	dimension.	For	example,	for	a	chest	circumference	of	1000	mm,	the	
node-to-node	chest	breadth	is	about	20	mm	larger	for	the	Air	Crew	than	for	the	
Soldiers.	

These	observations	suggest	measurement	bias	in	the	standard	anthropometry.	A	
trend	in	this	direction	would	be	observed	if	the	measurement	tape	were	pulled	
more	firmly	when	measuring	Air	Crew	than	when	measuring	Soldiers.	Another	
potential	explanation	is	that	the	chest,	waist,	and	hip	circumferences	were	
measured	at	different	anatomical	locations.	For	the	same	mesh	dimensions,	the	
associated	Air	Crew	circumferences	are	an	average	of	about	3%	(or	around	30	mm)	
smaller.	These	relatively	large	differences	suggest	that	different	measurement	
locations	or	procedures	is	a	likely	explanation.	
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Figure	12.		Differences	in	relationship	between	standard	anthropometric	variables	for	Soldiers	(blue)	
and	Air	Crew	(red)	and	node-to-node	dimensions	measured	on	the	mesh.	

	

4.	 PREDICTING	SEATED	BODY	SHAPE	FROM	STANDING	

[An	earlier	version	of	this	section	appeared	as	Reed	et	al.	(2016)]	

The	most	common	scanning	posture	used	in	three-dimensional	(3D)	anthropometry	
studies	is	a	standing	pose	with	the	feet	about	200	mm	apart	and	the	arms	abducted	
from	the	side	of	the	body.	Many	studies	also	include	an	unsupported	seated	posture.	
Methods	have	been	developed	for	extracting	standard	anthropometric	measures	
from	these	and	similar	postures,	and	many	studies	have	developed	statistical	body	
shape	models	from	scan	data	gathered	in	these	postures.	

However,	because	most	work	tasks	and	product	interactions	occur	in	postures	that	
are	different	from	the	scanned	postures,	methods	are	needed	to	generalize	the	3D	
data	to	other	postures.	One	approach	is	to	select	standard	anthropometric	
dimensions	from	the	scan	data	and	input	those	values	to	human	modeling	software,	
such	as	Jack	or	RAMSIS.	The	resulting	manikins	can	then	be	articulated	to	a	wider	
range	of	alternative	postures.	The	resulting	body	shapes	are	not	necessarily	
representative	outside	of	the	areas	quantified	by	the	extracted	standard	
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anthropometric	dimensions,	but	this	approach	leverages	the	large	amount	of	
functionality	in	these	commercial	human	modeling	tools	(Reed	et	al.	2014).	

An	alternative	is	the	development	of	statistical	body	shape	models	based	on	the	scan	
data	rather	than	extracted	dimensions.		Many	such	models	have	been	reported	(e.g.,	
Allen	et	al.	2004;	Reed	and	Parkinson	2008;	Hasler	et	al.	2009).	Recent	examples	
include	Loper	et	al.	(2015)	and	Reed	and	Park	(2015).	Reed	et	al.	(2014)	developed	
a	statistical	body	shape	model	based	on	the	surface	mesh	of	a	widely	used	DHM	tool,	
enabling	rapid	implementation.	However,	the	statistical	model	did	not	include	the	
effects	of	body	shape	change	with	posture	change	away	from	the	scan	posture.	

Among	the	statistical	body	shape	models,	only	a	relatively	small	number	are	capable	
of	representing	posture	change.	The	most	sophisticated	of	these	provide	a	smooth	
transformation	across	a	wide	range	of	postures	(e.g.,	Loper	et	al.	2015).	However,	
these	methods	have	not	found	widespread	use	for	ergonomics	analysis	because	of	
the	challenges	of	implementing	the	models	in	ergonomics	software.	In	particular,	
the	implementation	of	the	surface	blending	functions	that	simulate	the	effects	of	
posture	change	are	linked	to	particular	kinematic	models.	When	implemented	with	
different	kinematic	models	(for	example,	different	joint	angle	definitions	and	
different	joint	locations	relative	to	the	surface)	the	blending	functions	are	no	longer	
accurate.	

This	section	presents	a	statistical	method	of	generalizing	postures	without	the	
requirement	for	a	kinematic	linkage	and	joint	blending	functions.	We	use	a	dataset	
with	multiple	postures	to	learn	the	within-subject	relationships	in	body	shape	in	
multiple	postures	and	demonstrate	that	it	is	effective	in	predicting	automotive-like	
seated	postures	from	standing	scan	data.	

Materials	and	Methods	

Data	Source	

The	data	for	this	analysis	were	drawn	from	a	study	of	100	men	and	100	women	with	
a	wide	range	of	body	size	and	age	(Reed	and	Ebert	2013).	Approximately	30%	had	a	
body	mass	index	>30	kg/m2.	Unusual	for	a	body	scan	study,	about	half	of	the	study	
population	was	over	age	60	years.		

The	current	analysis	is	based	on	data	from	68	women	who	were	scanned	using	a	
VITUS	XXL	laser	scanner	in	both	a	standing	posture	and	a	supported	seated	posture	
similar	to	an	automobile	driving	posture.	Figure	13	shows	the	scan	postures.	
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Figure	13.	Standing	and	seated	postures	used	for	the	current	analysis.	

The	scan	data	were	processed	through	a	pipeline	that	included	hole-filling	and	
decimation	to	approximately	80k	vertices	from	~200k	vertices	in	the	original	scans.	
Mesh	templates	were	fit	to	the	scans	using	procedures	described	in	Park	and	Reed	
(2015).	The	templates	for	the	standing	and	seated	scans	were	different,	including	
different	numbers	of	vertices	and	polygons,	and	no	homologous	mapping	was	
established	between	the	two	templates.	

Analysis	

Figure	14	shows	the	overall	analysis	process.	Principal	component	analyses	(PCA)	
were	conducted	separately	for	the	standing	and	seated	data,	using	methods	
described	in	Reed	and	Parkinson	(2008).		For	the	current	purposes,	60	PCs	
representing	more	than	99%	of	the	variance	in	the	vertex	coordinates	were	retained	
for	each	model.	

In	typical	applications,	body	shapes	are	predicted	from	overall	anthropometric	
measures	such	as	stature	and	body	weight	(Parkinson	and	Reed	2008;	Park	and	
Reed	2015).	We	construct	statistical	body	shape	models	by	conducting	regression	
analysis	to	predict	principal	component	(PC)	scores	and	reconstruct	a	body	shape	
from	the	PC	scores.		

For	the	current	work,	we	used	PC	scores	from	the	standing	posture	to	predict	the	
scores	in	the	seated	posture	via	linear	regression.	Note	that	the	standing	and	seated	
postures	were	not	combined	in	the	same	analysis	until	this	step,	so	the	PC	scores	are	
from	different	bases	(indeed,	the	meshes	are	different).			
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Figure	14.		Schematic	of	analysis	method.	

Results	

Figure	15	shows	some	examples	of	the	results	of	the	seated	predictions.	Each	
illustration	shows	the	standing	template	fit,	the	seated	template	fit,	and	the	
predicted	seated	body	shape	generated	from	applying	the	regression	model	to	the	
PC	scores	from	the	standing	fit.		

In	general,	the	predicted	body	shapes	are	very	similar	to	the	measured	shapes.	The	
significant	discrepancies	arise	from	posture	differences	in	the	seated	scans	that	are	
unrelated	to	body	size	and	shape,	and	hence	not	predictable	from	the	standing	data.	
For	example,	some	individuals	sat	with	more	cervical	or	lumbar	spine	flexion	than	
the	mean	expected	given	their	standing	body	shape.		
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Figure	15.	Comparison	of	measured	and	predicted	seated	body	shapes.	In	each	case,	the	template-

fitted	scans	are	shown	in	gray,	the	predicted	seated	body	shape	in	blue.	
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5.	 AUTOMATIC	EXTRACTION	OF	GEAR	DATA	FROM	SCANS:	INSCRIBED	
FITTING	

[An	earlier	version	of	this	section	appeared	as	Park	and	Reed	(2016)]	

Only	 a	 few	 studies	have	 attempted	 to	 estimate	body	 shapes	under	 clothing.	Balan	
and	 Black	 (2008)	 presented	 a	 model-based	 body	 shape	 estimate	 system,	 which	
infers	 nude	 body	 shape	 from	 a	 number	 of	 multiple	 images	 by	 finding	 a	maximal	
silhouette-consistent	shape.	Hasler	et	al.	(2009)	took	a	similar	fitting	approach,	but	
the	method	used	a	 single	 laser	 range	scan	 to	estimate	 the	body	shape.	Guan	et	al.	
(2012)	presented	a	method	focusing	on	2-dimensional	models	for	modeling	clothing	
deformations	on	the	body.	These	studies	all	require	high	computational	resources	to	
solve	expensive	optimization	problems.	

This	paper	presents	a	fast	fitting	method	to	estimate	the	body	shape	under	clothing	
or	equipment.	The	complementary	result	is	that	a	model	of	the	clothing	and	gear	
relative	to	the	body	is	also	obtained.	The	method	is	based	on	a	rapid	PC-based	fitting	
method	(Park	et	al.	2013)	utilizing	a	statistical	body	shape	model	(SBSM).	SBSMs	
used	with	this	method	are	developed	based	on	laser	scans	using	statistical	methods	
including	principal	component	analysis	and	multivariate	regression	(Park	and	Reed	
2014).	Because	all	body	shapes	generated	are	within	the	space	of	possible	body	
shapes,	we	leveraged	this	characteristic	to	estimate	body	shapes	in	scans	of	clothed	
subjects	using	an	inscribed-fitting	method.	

Methods	

Statistical	Body	Shape	Model	

The	current	study	used	a	statistical	body	shape	model	 (SBSM)	based	on	statistical	
analysis	of	scan	data	obtained	from	213	men	with	wide	range	of	body	size.	Using	the	
process	described	in	Park	and	Reed	(2015),	data	from	each	scan	was	fitted	using	a	
template	mesh	 obtained	 from	 the	 Jack	manikin.	 As	 a	 first	 step	 in	 this	 process,	 92	
landmarks	 were	 estimated	 and	 then	 were	 used	 as	 targets	 for	 a	 non-rigid	
registration	 using	 radial-basis-function	 interpolation.	 An	 implicit	 surface	 method	
was	 used	 to	 complete	 the	 template	 fitting	 process.	 Principal	 component	 (PC)	
analysis	 was	 conducted	 on	 measured	 landmarks,	 estimated	 joint	 centers,	 and	
surface	mesh	nodes.	A	total	of	200	PC	scores	were	retained	from	the	analysis,	which	
accounts	for	over	99%	of	the	data	variance.		

Data	Source	

For	the	current	analysis,	whole	body	scans	from	100	soldiers	were	used.	As	shown	
in	Figure	16,	 scanning	 for	 the	 individuals	was	 conducted	using	 a	VITUS	XXL	 laser	
scanner	with	four	different	levels	of	clothing	and	gear,	including	minimally	clad	level	
(MC),	 advanced	 combat	 uniform	 level	 (ACU),	 personal	 protective	 equipment	 level	
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(PPE),	 and	 encumbered	 with	 gear	 level	 (ENC).	 The	 scan	 data	 were	 processed	
through	a	pipeline	 that	 included	hole-filling	 and	decimation	 to	 approximately	80k	
vertices	form	170k	vertices.		
	

	
Figure	 16.	 	 Four	 different	 levels	 of	 clothing	 of	 an	 individual:	 (a)	 minimally	 clad	 level	 (MC),	 (b)	
advanced	 combat	 uniform	 level	 (ACU),	 (c)	 personal	 protective	 equipment	 level	 (PPE),	 and	 (d)	
encumbered	with	gear	level	(ENC)	

PC-based	Fitting	Method	

For	the	rapid	measurement	of	body	dimensions,	we	employed	a	fast	fitting	method	
proposed	 in	our	previous	 study	 to	 rapidly	 find	 the	body	 shape	 (Park	 et	 al.	 2014).	
The	method	fits	a	SBSM	to	a	scan	by	finding	the	closest	body	shape	available	in	the	
body	shape	space	of	 the	model.	Since	 the	body	shape	of	 the	model	 is	defined	by	a	
relatively	small	number	of	principal	component	scores,	the	closest	body	shape	can	
be	effectively	found	in	this	low-dimensional	PC	space.	Once	the	model	is	aligned	to	
the	 target	 scan,	 the	 discrepancy	 between	 the	 two	 surfaces	 is	 computed.	 A	 PC-
sensitivity	matrix,	 which	 explains	 how	 an	 increment	 of	 each	 PC	 score	moves	 the	
vertices	in	the	Cartesian	space,	is	used	to	compute	the	PC	scores	to	fill	the	computed	
discrepancy.	 These	 PC	 scores	 were	 computed	 by	 multiplying	 the	 discrepancy	
vectors	by	a	pseudoinverse	of	 the	PC-sensitivity	matrix	 that	gives	 the	 least-square	
solution.	Figure	17	schematically	shows	this	process.	
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Figure	17.	Schematic	of	PC-based	fitting	process	to	fit	3D	data	in	the	body	shape	space	of	the	model	

Inscribed	Fitting	Method		

The	inscribed	fitting	method	described	in	this	paper	was	motivated	by	the	fact	that	
the	body	shape	should	lie	inside	the	surface	of	a	clothed	body,	and	at	the	same	time,	
some	parts	like	face,	ankles,	and	hands	of	the	scan	should	be	close	to	the	actual	body	
shape.	This	yielded	an	assumption	that	an	actual	body	shape	is	the	maximum	body	
volume	 within	 the	 scan	 surface	 that	 is	 available	 in	 the	 body	 shape	 space	 of	 the	
model.	Conceptually,	this	is	similar	to	finding	an	inscribed	circle	in	a	polygon.	
The	inscribed	fitting	method	consists	of	the	following	steps:	
	

1. Compute	 an	 initial	 PC	 score	 vector	p0	 by	 fitting	 the	 SBSM	 to	 a	 target	 scan	
using	the	PC-sensitivity	matrix.		

2. Find	vertices	of	the	model	outside	the	target	scan	surface.	
3. Build	 a	 sub-sensitivity	 matrix	 by	 keeping	 the	 columns	 only	 related	 to	 the	

outside	vertices	from	the	PC-sensitivity	matrix.	
4. Compute	direction	vectors	from	the	outside	vertices	to	the	closest	points	of	

the	scan	using	a	kd-tree.	
5. Compute	 a	 PC	 vector	 pi	 by	 multiplying	 by	 a	 pseudo-inverse	 of	 the	 sub-

sensitivity	matrix	by	the	direction	vectors	to	move	the	outside	vertices	to	the	
scan	surface.	

6. Update	the	PC	score	vector	p0=	p0+	pi	and	apply	pi	to	the	model.	
7. Go	to	step	2	until	a	criterion	is	met.	

	
Figure	 18	 illustrates	 the	 outside	 vertices	 and	 the	 direction	 vectors.	 The	 outside	
vertices	were	found	using	the	normal	vectors	at	each	point	of	the	target	scan.	A	sub-
sensitivity	matrix	 for	 these	vertices	was	extracted	 from	 the	original	PC-sensitivity	
matrix	 by	 taking	 the	 vectors	 corresponding	 to	 the	 outside	 vertices.	 Conceptually,	
while	 the	 sub-sensitivity	matrix	 explains	 how	 the	 increments	 of	 PC	 scores	 affects	
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these	vertices,	and	the	inverse	of	the	matrix	allows	for	estimating	the	increments	of	
PC	 scores	 to	 move	 the	 vertices	 to	 certain	 target	 points.	 Thus,	 we	 multiplied	 a	
pseudoinverse	of	the	matrix	by	the	direction	vectors	to	get	the	PC	score	increments	
to	move	the	outside	vertices	onto	the	target	scan	surface.	Since	the	pseudoinverse	
provides	a	least-square	solution,	a	few	iterations	are	needed	to	get	the	most	of	the	
outside	vertices	inside	the	measured	surface	mesh.	

Figure	19	shows	the	results	of	each	inscribed	fitting	process	for	a	sampled	PPE	scan.	
While	 the	 initial	 fitting	 gives	overall	 body	 shape	 and	well-matched	posture	 this	 is	
still	a	 larger	body	shape	than	the	actual	one	due	to	the	clothing	(Figure	19(a)).	By	
iterating	the	process	of	pushing	the	outside	vertices	onto	the	target	surface,	we	can	
get	the	maximum	body	shape	that	lies	inside	the	scan	surface.	Experimentally,	about	
3	 to	 15	 iterations	 result	 in	 good	 estimation	 of	 the	 body	 shape,	 depending	 on	 the	
level	of	clothing.	For	example,	for	ENC	scans,	the	highest	level	of	gear,	about	10-12	
iterations	were	performed	to	estimate	the	underlying	body	shapes.	
	

	

Figure	18.	Model	vertices	located	outside	the	scan	surface	and	direction	vectors	to	move	the	outside	
vertices	onto	the	scan	surface	
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Figure	19.	Effect	of	iterations	on	fitting	results	of	a	SBSM	(white)	to	a	sample	scan	(blue)	

Results	
	
The	SBSM	was	inscribed-fitted	to	300	scans	of	ACU,	PPE,	and	ENC	levels	of	100	male	
soldiers.	 Figure	 20	 shows	 examples	 of	 the	 fitted	 results	 at	 each	 level.	 Each	 row	
shows	 the	 target	 scan	 (white)	 and	 the	 estimated	 body	 shape	 (yellow)	 using	 the	
inscribed	fitting	method.	Figure	20(d)	shows	a	quantitative	comparison	between	the	
estimated	body	 shape	 and	 the	minimally-clad	 scan	of	 the	 same	 soldier.	 The	mean	
absolute	 distances	 between	 the	 two	 surfaces	 were	 computed	 at	 each	 vertex	 and	
coded	with	the	color	in	red	(50	mm)	to	blue	(0	mm).	Due	to	differences	in	extremity	
postures	between	the	scans,	only	the	torso	area	was	evaluated	quantitatively.	
In	Figure	21,	the	mean	errors	at	each	vertex	across	all	 the	scans	were	color-coded	
on	a	mean	body	shape.	For	the	ACU	scans,	the	mean	error	was	11.1	mm,	95th	%tile	
error	was	17.1	mm,	and	the	root-mean-square-error	(RMSE)	was	11.7	mm.	For	the	
PPE	and	ENC	scans,	the	mean	errors	were	11.0	mm,	11.6	mm,	95th	%tiles	were	15.0	
mm,	16.5	mm,	and	RMSEs	were	11.5	mm	and	12.0	mm,	respectively.	
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(a) 																																											(b)	 	 	 										(c)			 	 			(d)	
	

Figure	20.	Comparison	of	original	target	scans	and	inscribed-fitted	manikins:	(a)	target	scan	data	of	
each	 gear	 level	 (top:	 MC,	 middle:	 PPE.	 bottom:	 ENC),	 (b)	 and	 (c)	 the	 front	 and	 side	 view	 of	
comparison	 between	 target	 scans	 (white)	 versus	 fitted	 manikins	 (yellow),	 (d)	 quantitative	
comparison	 between	 the	 fitted	 body	 shapes	 and	 the	minimally-clad	 scans	 of	 the	 same	 individuals.	
Mean	absolute	errors	are	coded	with	color.	
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Figure	21.	Mean	error	distribution	 color-coded	on	a	mean	body	 shape.	The	 fitting	 time	was	under	
two	 seconds	per	 scan	 on	 average	 on	 a	 typical	 laptop	 computer	 (I7	 3.4GHz	CPU	with	 16	GB	RAM).	
Experimentally,	 the	number	of	 iterations	required	was	3	~	6	 for	ACUs	scans,	8	~	10	 for	PPEs,	and	
10~12	for	ENCs.	
	
	
Figure	22	demonstrates	a	methodology	for	mapping	an	ensemble	measured	on	one	
individual	to	the	avatar	of	another	person.	Using	the	inscribed	fitting	method,	a	gear	
ensemble	model	was	created	by	mapping	the	offset	between	each	avatar	vertex	and	
the	surface.	The	resulting	offsets	were	then	applied	to	the	inscribed	avatars	for	two	
additional	Soldier	scans.	The	result	was	compared	to	the	scan	of	that	Soldier	in	the	
same	 ensemble.	 In	 general,	 the	 overall	 size	 and	 shape	 of	 the	 predicted	 ensemble	
matched	 the	 actual	 scan	 within	 10	 mm,	 although	 some	 large	 discrepancies	 were	
noted	 in	 the	 vertical	 position	 of	 the	 gear.	 Discrepancies	 in	 flexible	 clothing	 (for	
example,	 shoulder	 area	 on	 subject	 2	 below)	 are	 not	 considered	 to	 be	 important	
because	they	would	not	affect	accommodation	assessments.	
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Figure	22.	Demonstration	of	extracting	and	applying	gear	and	equipment	geometries.	 (a)	 Inscribed	
fit,	(b)	predicted	gear,	(c)	measured	gear	scan,	(d)	and	(e)	overlay,	(f)	comparison	
	

	

6.	 PILOT	DATA	COLLECTION	IN	PRONE	POSTURES	

Soldiers	are	called	upon	to	perform	in	a	wide	range	of	postures.	One	common	
category	of	postures	is	prone.	This	posture	is	of	particular	interest	because	of	the	
potential	for	gear	worn	on	the	front	of	the	body	to	interfere	with	activities.	As	part	
of	a	broader	effort	to	develop	appropriate	measurement	methods	for	this	posture,	a	
small-scale	pilot	study	of	prone	postures	was	conducted	at	UMTRI	using	civilians	in	
military	gear.		

Figure	23	shows	scanning	using	hand	scanners	(Artec	Eva	and	Cubify	Sense)	with	a	
subject	on	a	transparent	(Plexiglass)	table	designed	for	body	shape	data	collection	
in	prone	and	supine	postures.	Scans	obtained	from	above	and	below	are	combined	
to	obtain	a	complete	model	of	the	body	shape.	Figure	24	shows	results	from	one	
subject.	



	 39	

	

Figure	23.	Using	hand-held	scanners	to	capture	body	shape	in	prone	postures	on	a	transparent	table.	
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Figure	24.	Sample	data	obtained	from	a	prone	volunteer	using	a	transparent	scanning	surface.	



	 41	

DISCUSSION	

Error	Metrics	

The	analysis	of	body	shape	prediction	in	the	current	work	used	two	error	metrics.	
First,	the	difference	between	two	meshes	was	computed	by	calculating	the	distance	
from	the	nodes	of	one	mesh	to	the	polygonal	surface	defined	by	the	other.	For	these	
standing	whole-body	meshes,	1940	nodes	in	the	torso	area	were	used	for	
comparison.	Summary	statistics	for	this	vector	of	distances	were	computed	and	
used	in	evaluations	of	various	modeling	and	prediction	methods.	This	method	
provides	a	holistic	comparison	of	the	two	surfaces	and	gives	an	overall	indication	of	
the	similarity.	The	consequences	of	a	mean	distance	difference	are	somewhat	
difficult	to	interpret	however,	particular	when	comparing	small	differences	(say,	
mean	differences	of	3	or	6	mm).	Nonetheless,	this	metric	is	useful	for	evaluating	
trends	in	whole	body	prediction	as	various	model	parameters	are	changed.	

Second,	a	set	of	dimensions	intended	to	be	approximately	analogous	to	standard	
anthropometric	dimensions	were	computed.	For	computational	simplicity,	these	
torso	depths	and	breadths	were	defined	as	the	fore-aft	and	lateral	distances	
between	pairs	of	nodes	on	the	template	mesh.	These	measures	are	not	equivalent	to	
the	standard	anthropometric	variables	that	have	similar	names,	due	to	differences	
in	definition	and	measurement	methodology.	Nonetheless,	they	are	more	readily	
interpreted	than	the	overall	mesh	error	with	respect	to	potential	applications	in	
clothing	and	equipment	sizing.	

In	general,	the	findings	in	this	report	with	respect	to	model	performance	must	
always	be	considered	in	the	context	of	a	particular	application	or	analysis.	For	
example,	the	model	performance	suitable	for	developing	a	sizing	system	for	body	
armor	intended	to	cover	the	thorax	might	be	different	from	the	performance	needed	
for	vehicle	interior	design.	As	is	always	the	case	with	anthropometric	models,	the	
relative	importance	of	accuracy	in	representing	body	size	and	shape	is	dependent	
on	the	contributions	of	posture	and	preference	unrelated	to	body	attributes	in	
determining	the	outcomes	of	interest.	For	example,	clothing	margins	will	routinely	
vary	more	than	the	differences	resulting	from	choosing	to	retain	50	or	200	PCs.	

Alternative	Modeling	Approaches	

Effects	of	Number	of	PCs	Used	for	Reconstruction	

The	conventional	practice	of	retaining	a	number	of	PCs	associated	with	a	high	
cumulative	level	of	variance	(typically	95%)	will	generally	have	an	unquantified	
effect	on	the	reconstructed	body	shapes.	The	current	analysis	is	the	first	we	are	
aware	of	to	examine	this	issue	using	body	size	and	shape	metrics.	When	100	PCs	are	
retained,	the	95th	percentile	of	mean	mesh	error	across	subjects	is	less	than	2	mm,	
and	the	mean	of	the	95th	percentile	mesh	error	is	below	5	mm.		
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Unlike	the	mesh	errors,	the	trends	in	linear	torso	dimensions	were	unexpectedly	
variable	as	the	number	of	PCs	increases.	This	phenomenon	results	from	the	
differential	effects	of	PCs	on	the	particular	nodes	used	for	these	dimensions.	This	
will	generally	be	the	case	with	dimensions	measured	on	the	mesh,	whether	based	on	
measurement	planes	or	node-to-node	points,	as	in	the	current	analysis.	Importantly,	
the	mean	measurement	is	unbiased	regardless	of	the	number	of	PCs	used.	Instead,	
the	variance	in	reconstruction	error	increases	or	decreases	as	PCs	are	added,	though	
generally	trending	downward.	This	observation	suggests	that	the	choice	of	the	
number	of	PCs	to	retain	should	be	made,	when	possible,	with	reference	to	specific	
aspects	of	the	mesh	that	are	of	importance	for	a	particular	analysis.	Moreover,	every	
dimension,	template	mesh,	and	PCA	with	a	different	dataset	will	have	different	
trends	in	variability,	though	all	will	tend	to	zero	reconstruction	error	with	large	
numbers	of	PCs	retained.		

A	reasonable	question	is	why	all	PCs	can’t	be	retained,	and	indeed	all	PCs	were	
retained	for	many	of	the	analyses	in	the	report.	The	advantages	of	using	fewer	PCs	
are	(1)	smaller	storage	and	increased	computational	speed	of	the	PCA	model,	and	
(2)	smoother	predictions.	Overall,	the	results	in	this	report	do	not	show	important	
advantages	of	using	more	than	100	PCs	and	in	some	cases	the	improvements	from	
using	more	than	50	PCs	appear	to	be	minimal.		

Mesh	Error	Using	Regression	

When	regression	is	used	to	predict	body	shape,	the	mesh	errors	can	be	expected	to	
be	due	to	both	the	residual	variance	that	is	not	predicted	by	the	selected	variables	
and	to	the	number	of	PCs	retained.	Surprisingly,	a	small	increase	in	mean	mesh	
error	across	subjects	observed	when	predicting	with	three	variables	and	increasing	
the	number	of	PCs	from	50	to	150	(the	mean	95th%ile	error	across	subjects	
increased	by	less	than	2	mm).	Discounting	this	small	effect,	mesh	errors	resulting	
from	a	regression	prediction	using	three	overall	body	dimensions	(stature,	BMI,	and	
SH/S)	are	essentially	identical	with	50	or	more	PCs.				

Effects	of	the	Number	of	Anthropometric	Predictors	

Stature,	BMI,	and	the	ratio	of	sitting	height	to	stature	(SH/S)	have	been	used	as	a	
minimal	set	of	anthropometric	predictors	in	this	and	other	work	(e.g.,	Park	and	
Reed	2014)	because	they	capture	the	main	modes	of	variation	in	human	body	size	
and	proportion.	BMI	and	SH/S	are	used,	rather	than	body	weight	and	sitting	height,	
to	reduce	correlation	with	stature.	A	broader	set	of	10	dimensions	was	chosen	in	
previous	work	(Reed	et	al.	2014)	to	capture	variations	in	segment	sizes	that	might	
not	be	fully	expressed	by	the	three	primary	variables.	In	particular,	the	inclusion	of	
several	circumferences	provides	a	means	of	differentiating	among	individuals	
whose	body	weight	is	distributed	differently.	

In	the	analysis	of	Soldier	data,	mesh	error	was	reduced	only	slightly	when	using	10	
variables	rather	than	three,	with	the	mean	(across	subjects)	95th-percentile	mesh	
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error	decreasing	from	16	mm	to	14	mm.	Importantly,	the	residual	mesh	errors	were	
not	significantly	related	to	any	of	the	predictors	variables.	For	example,	the	
discrepancies	are	not	greater	for	individuals	with	higher	BMI	or	smaller	stature.	
This	is	an	important	finding,	because	it	suggests	that	the	normal	assumption	of	
homoscedasticity	applies	to	this	use	of	regression.	

When	examining	dimensions	defined	by	differences	in	node	coordinates,	the	
analysis	can	be	more	directly	interpreted,	because,	when	all	PCs	are	retained,	the	
regression	predictions	are	numerically	identical	to	performing	the	regression	
directly	on	the	dimensions	measured	for	each	subject.	This	enables	the	use	of	the	
conventional	R2	measure	to	assess	the	fraction	of	variance	accounted	for	by	the	
predictors.	Table	8	demonstrates	two	important	findings	from	this	analysis.	First,	
when	using	a	regression	model,	retaining	more	than	50	PCs	does	not	meaningfully	
improve	the	prediction	of	dimensions	measured	between	mesh	nodes.	Second,	as	
expected,	using	10	predictors	rather	than	3	reduces	the	residual	variance	(RMSE)	
and	improves	the	fraction	of	variance	accounted	for	(R2).	Importantly,	the	amount	of	
improvement	depends	on	the	relationships	between	the	predictors	and	dimensions.	
For	example,	30%	more	of	the	variance	in	shoulder	breadth	was	accounted	for	
when	using	10	rather	than	3	variables.		

These	results	demonstrate	that	although	the	overall	mesh	error	metrics	did	not	
improve	substantially	when	using	10	rather	than	3	predictors,	the	improvement	in	
the	prediction	of	individual	dimensions	varied	substantially.	Overall,	the	selected	
dimensions	were	fairly	well	predicted,	but	other	dimensions	may	not	have	been.	
Consequently,	it	is	not	possible	to	state	categorically	how	well	a	model	with	a	set	of	
predictors	will	perform	for	an	analysis	that	depends	on	a	particular	set	of	
dimensions;	the	model	performance	must	be	assessed	for	that	particular	case.		

Effects	of	the	Number	of	Subjects		

Anthropometric	surveys	are	time-consuming	and	expensive.	In	the	past	15	years,	3D	
scanning	has	typically	been	added	on	to	surveys	conducted	using	conventional	
methods,	although	some	surveys	have	supplemented	standard	dimensions	with	
measures	extracted	from	scans	using	either	manual	or	automated	methods.	An	
important	question	is	how	many	scans	are	needed	from	a	population	to	create	a	
body	shape	model	achieving	some	desired	level	of	fidelity.		

The	availability	of	a	large	number	of	scans	fitted	with	a	homologous	template	
enabled	a	resampling	simulation	approach	to	address	this	question.	Using	the	
combined	population	of	Soldiers	and	Air	Crew	(N=436).	Sample	populations	of	50	to	
200	subjects	were	randomly	selected	for	building	models,	which	were	then	
evaluated	in	prediction	against	scan	fits	from	20	subjects	not	included	in	the	models.	
Only	small	improvements	in	mesh	errors	for	10-variable	predictions	were	seen	
when	using	200	rather	than	100	samples.	Even	models	built	from	only	50	randomly	
selected	individuals	produced	mesh	errors	only	slightly	larger	than	the	
reconstruction	mesh	error	associated	with	having	only	50	PCs.	Importantly,	the	
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model	performance	across	instances	of	randomly	generated	50-	or	100-PC	models	
was	similar.	Similar	findings	were	observed	in	the	analysis	of	dimensions	predicted	
using	randomly	sampled	subsets.	Using	more	than	100	subjects	had	almost	no	effect	
on	the	accuracy	and	precision	of	dimension	predictions.	

These	findings	are	readily	understood	by	considering	the	structure	of	the	models.	
The	PCA	rotates	the	data	to	obtain	orthogonal	components,	but	even	with	50	PCs	
nearly	all	of	the	underlying	variance	is	retained.	Although	the	regressions	are	
performed	on	PCs	individually,	the	results	are	numerically	identical	to	performing	
the	regressions	directly	on	mesh	node	coordinates	when	all	PCs	are	retained.		

Consequently,	experience	with	ordinary	linear	regression	with	scalar	dependent	
measures	provides	good	intuition	into	the	performance	of	these	PCA+regression	
models.	Specifically,	little	improvement	in	the	model	performance	(for	example,	
RMSE	or	R2)	is	expected	when	adding	additional	subjects	randomly	sampled	from	
the	domain	of	independent	variables	after	50	or	100	samples.	

This	finding	provides	useful	guidance	for	gathering	data	to	represent	new	
populations,	or	for	selecting	data	to	use	for	model	construction.	When	the	accuracy	
and	precision	needed	for	the	application	are	reasonably	represented	by	the	metrics	
used	here,	these	results	indicate	that	having	scan	data	from	100	randomly	sampled	
individuals	within	each	subgroup	of	interest	will	generally	be	sufficient	if	predictive	
models	are	constructed	using	the	techniques	in	this	report.		

The	efficiency	of	the	sample	can	be	improved	further	by	selectively	sampling	
individuals	with	body	dimensions	relatively	far	from	the	mean.	These	individuals	
will	exert	greater	leverage	on	the	regressions	than	those	close	to	the	mean	and	
provide	greater	stability	of	the	slope	estimates	than	the	same	number	of	randomly	
sampled	subjects.		

Extending	Predictions	to	New	Populations	

The	availability	of	two	subject	pools	sampled	using	similar	methods	provided	an	
unusual	opportunity	to	evaluate	model	performance	across	populations.	In	this	case,	
the	Soldier	model	was	used	to	predict	Air	Crew	body	shapes	and	the	dimension	
metrics	were	examined.	As	was	noted	in	the	previous	sections,	using	all	236	rather	
than	50	PCs	improved	the	predictions	only	slightly.	

Using	10	variables,	the	Soldier	regression	model	slightly	under-predicted	all	but	one	
of	the	torso	dimensions,	by	approximately	the	difference	in	the	mean	between	the	
populations.	This	means	that	the	regression	was	not	effective	at	accounting	for	the	
differences.	Importantly,	using	10	rather	than	three	variables	did	not	improve	the	
prediction	as	much	as	was	seen	within	the	Soldier	model	alone.		

When	considering	the	three-variable	model,	a	reasonable	hypothesis	is	that	
differences	in	fitness	and	age	that	are	not	accounted	for	by	stature,	BMI,	and	SH/S	
account	for	the	observed	bias.	However,	the	fact	that	the	bias	is	only	slightly	
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reduced	when	adding	additional	variables,	including	torso	circumferences,	suggests	
a	different	source.	As	demonstrated	by	Figure	12,	the	relationships	between	the	
standard	chest	and	waist	circumference	measures	and	the	node-to-node	dimensions	
measured	on	the	scans	show	consistent	offsets	between	the	Soldier	and	Air	Crew	
datasets.	For	example,	at	the	equivalent	chest	breadth	dimension	(node-to-node)	
the	Air	Crew	dimensions	are	about	30	mm	smaller.	Hence,	when	the	Air	Crew	
dimensions	are	entered	into	the	Soldier	regression,	the	resulting	body	shape	is	
larger	than	would	be	expected	based	on	the	Soldier	data.	

These	findings	suggest	caution	in	using	a	model	from	one	population	to	represent	
individuals	from	another	population.	The	mean	dimension	errors	in	this	example	
are	small	in	absolute	terms	(maximum	of	9	mm,	for	chest	width,	using	10	
predictors)	but	could	be	important	for	some	applications.	Importantly,	differences	
in	measurement	methods	can	reduce	the	utility	of	the	regression	models	for	
adjusting	for	differences	in	body	dimensions.		

Predicting	Seated	Body	Shape	from	Standing	

To	our	knowledge,	this	is	the	first	published	description	of	using	PC	scores	from	one	
posture	to	predict	those	in	another.	However,	the	approach	is	sufficiently	
straightforward	that	other	researchers	may	have	used	it	in	the	past.	Nonetheless,	
the	method	is	quite	powerful,	because	it	can	be	applied	broadly	and	in	a	variety	of	
contexts.	For	example,	Hu	et	al.	(2013)	presented	a	method	for	assessing	automobile	
seatback	shape	using	seated	body	shapes.	Using	the	current	methods,	these	shapes	
can	be	generated	from	a	dataset	containing	standing	postures	but	lacking	supported	
seated	postures,	such	as	CAESAR	(Reed	et	al.	2008).	The	method	can	also	be	used	to	
predict	difficult-to-measure	supported	seated	postures	from	standing	postures	that	
can	be	easily	recorded	using	low-cost	depth	cameras	(Park	and	Reed	(2014).	

The	method	is	limited	in	that	a	relatively	large	amount	of	high	quality	body	scan	
data	is	needed	in	each	of	the	postures	for	which	predictions	are	desired.	Moreover,	
template	fits	must	be	performed	in	each	posture	so	that	a	PCA	can	be	conducted.	In	
principal,	the	prediction	could	be	performed	directly	on	the	vertex	coordinates	with	
no	loss	of	fidelity,	but	in	practice	it	is	more	efficient	to	predict	a	much	smaller	
number	of	PC	scores.		

The	number	of	scans	from	the	target	population	that	are	needed	is	fairly	small.	
Paralleling	results	from	the	earlier	sections	of	this	report,	using	more	than	120	
scans	did	not	meaningfully	improve	the	model	performance,	even	in	the	tails	of	the	
anthropometric	distribution,	because	the	models	are	inherently	linear.	
Consequently,	there	is	also	no	risk	of	overfitting.	

The	most	important	limitation	is	that	the	model	predictions	are	based	on	the	
particular	population	of	individuals	who	are	scanned.	If	the	body	shape	of	the	target	
individual	lies	within	the	scanned	population,	then	the	predictions	should	be	quite	
accurate.	The	current	model	is	based	on	an	anthropometrically	diverse	population	
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and	appears	to	perform	well	for	a	wide	range	of	body	types,	but	more	work	is	
needed	to	assess	the	quality	of	the	predictions	for	markedly	different	populations.	It	
would	not	be	expected	to	work	well	for	a	population	with	different	origin	from	the	
source	data,	such	as	East	Asian	or	African.		

A	second	limitation	is	that	the	predictions	of	alternative	postures	are	not	based	on	a	
specific	kinematic	linkage,	and	hence	the	only	postures	that	can	be	generated	by	this	
procedure	are	those	with	available	scan	data.	However,	if	the	target	posture	is	close	
to	the	posture	that	is	desired	for	a	particular	ergonomic	analysis,	this	limitation	
becomes	a	strength,	because	it	is	not	necessary	for	the	model	to	have	blending	
functions	enabling	such	a	large	posture	change.	This	might	be	valuable	for	
initializing	new	baseline	body	shapes	for	different	seated	conditions.		Moreover,	we	
have	previously	demonstrated	methods	for	driving	posture	change	for	seated	body	
shapes	using	surface	landmark	configurations	(Reed	2013),	which	are	available	
from	posture-prediction	models,	such	as	Park	et	al.	(2015).	

Automatic	Extraction	of	Gear	Data	from	Scans:	Inscribed	Fitting	

Efforts	to	achieve	the	nominal	goal	of	gear	extracted	unexpectedly	yielded	a	
methodology	with	considerably	broader	utility.	The	inscribed	fitting	method	
developed	in	this	work	can	be	used	to	rapidly	estimate	body	shape	and	body	
dimensions	under	clothing	and	gear.	The	method	showed	fast	performance	and	
convergence,	regardless	of	what	level	of	clothing	and	gear	might	be,	without	solving	
expensive	optimization	problems.	The	vertex	error	values	were	fairly	small,	but	
relatively	larger	errors	were	observed	in	the	chest,	abdomen,	and	buttocks,	
reflecting	the	fact	that	the	success	of	the	method	is	affected	by	the	amount	of	the	
true	body	form	that	is	accessible	from	the	scan.		

The	estimated	body	shapes	in	this	study	can	be	used	to	extract	the	gear	and	
protective	equipment	from	equipped	Soldier	scans.	However,	the	applications	of	
this	method	are	not	limited	in	this	particular	area.	This	can	be	applied	broadly	to	
any	situation	in	which	objects	are	in	contact	with	a	body	that	is	in	a	controlled	pose.	
For	example,	this	can	be	applied	in	generating	a	subject-specific	avatar	of	a	clothed	
person	using	low-cost	depth	cameras	(Park	et.	al.	2014)	and	can	be	used	to	estimate	
body	shape	for	people	sitting	in	vehicle	seats	(Park	et	al.	2017).	

In	addition	to	the	body	shape,	a	number	of	standard	anthropometric	values,	body	
surface	landmarks	and	joint	locations	that	are	embedded	in	the	SBSM	can	be	
effectively	obtained	from	a	fitted	body	shape	model.	Park	et	al.	(2014)	showed	good	
accuracy	in	predicting	overall	body	dimensions	(R2	>	0.92)	using	this	approach.	Note	
that	the	statistical	body	shape	model	used	in	the	current	study	incorporates	16	
anthropometric	values,	78	body	surface	landmarks,	and	18	joint	locations	as	well	as	
the	body	shape.	
	
The	major	current	limitation	of	this	method	is	that	this	body	shape	model	does	not	
incorporate	articulation,	so	that	only	a	scan	with	a	particular	standing	posture	can	
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be	used.	However,	work	is	underway	on	a	fully-posable	body	shape	model	that	will	
enhance	this	method	to	estimate	arbitrary	postures.	Other	researchers	have	
previously	demonstrated	models	encoding	both	pose	and	shape	(Loper	et	al.	2015,	
Pischulin	et	al.	2015).	

The	accuracy	of	the	method	can	be	improved	in	certain	circumstances	by	learning	
the	offsets	associated	with	a	particular	gear	ensemble	and	incorporating	them	into	
the	fitting.	If	an	individual	is	scanned	minimally	clad	and	with	the	clothing/gear	
ensemble,	the	offset	between	the	two	can	be	incorporated	into	the	fitting	for	
subsequent	individuals	wearing	the	same	ensemble,	thereby	improving	the	
accuracy.	

Overall	Discussion,	Limitations,	and	Future	Work	

This	project	addressed	a	range	of	issues	relating	to	body	shape	modeling	that	have	
not	previously	received	extensive	attention.	Overall,	the	results	demonstrate	that	
the	PCA+regression	(PCAR)	methodology	used	in	this	study	is	remarkably	robust	to	
a	variety	of	assumptions	and	constraints.	Due	to	the	linearity	of	the	model,	little	
improvement	in	model	performance	is	seen	when	data	from	more	than	100	subjects	
randomly	selected	from	a	population	are	used.	This	has	substantial	implications	for	
the	design	of	studies.	In	general,	sampling	perhaps	150	individuals	from	any	
particular	cohort	or	subpopulation	of	interest	is	likely	to	be	sufficient	if	the	data	are	
to	be	used	to	create	a	PCAR	model.		

The	analyses	are	limited	by	the	datasets.	The	Soldier	and	Air	Crew	datasets	were	
reasonably	representative	of	the	respective	Army	and	Air	Force	populations,	but	
were	less	diverse	with	respect	to	anthropometry	and	age	than	many	civilian	
populations	would	be.	In	spite	of	the	considerable	similarity	between	the	Soldier	
and	Air	Crew	populations,	some	biases	in	the	regression	model	predictions	were	
observed.	These	were	attributed	largely	to	differences	in	manual	measurement	
definitions	or	procedures,	but	the	evidence	is	circumstantial.	More	generally,	
differences	in	measurement	methodology,	particularly	for	circumferences,	can	be	
expected	across	study	populations.	This	will	limit	the	generalizability	of	a	body	
shape	model	based	on	one	population	to	another	when	these	dimensions	are	to	be	
used	as	predictors.	The	most	important	limitation	in	generalizing	models	across	
populations	will	be	encountered	when	the	source	and	target	populations	differ	
markedly	in	distributions	of	race/ethnicity	or	national	origin.	More	research	is	
needed	to	determine	the	quantitative	magnitude	of	these	issues	and	the	most	
efficient	solutions.	The	current	results	suggest	that	sampling	body	shapes	from	as	
few	as	150	of	the	target	population	will	be	sufficient	to	create	a	useful	model.	
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