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Tectonic history of the Los Angeles Basin: Understanding what formed and deforms the city of 

Los Angeles 

Anne Rosett 

 The Los Angeles (LA) Basin is located in a tectonically complex region which has led to 

many, varying interpretations of its tectonic history. Current literature indicates that processes 

from rifting and extensional volcanism to pure dextral strike-slip displacement created the LA 

Basin. It appears that the best interpretation falls somewhere in between these two end-member 

explanations, with processes taking place simultaneously, including transtensional pull-apart 

faulting and clockwise rotation of large crustal blocks. With a comprehensive literature review, 

and paleomagnetic, seismic refraction, and low-fold reflection survey data, I intend to clarify 

what tectonic processes actually occurred in the LA Basin, and how that information can provide 

insight for other research in the region, as well as predicting future seismic hazards in the highly-

populated, economically significant, and culturally rich city of Los Angeles. 

Introduction 

 The Los Angeles Basin sits in a tectonically-active region, and thus, a large amount of 

research exists regarding its formation and tectonic history. However, due to several different 

fault systems, complex structures, and angles of slip currently affecting the area, the history of 

the LA Basin is not decisive; there are some discrepancies in the current literature regarding the 

tectonic and subsidence histories of the LA Basin. These include basin formation due to 

extensional rifting and basaltic volcanism (Crouch and Suppe, 1993; McCulloh and Beyer, 

2003), transtensional pull-apart processes (Schneider et al., 1996), and dextral strike-slip faulting 

(Howard, 1996). My research question attempts to conduct an extensive literature review to 

address which interpretation best describes which processes actually happened to which fault 
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systems in the region and led to the LA Basin as we know it today. Beyond that, I will use that 

information to conduct productive research for predicting potential tectonic-related hazards in 

the future. Even incremental contributions to understanding the activity and history of this region 

are important due to the very large, dense population and value of infrastructure and property 

that currently exists in Los Angeles. 

Also, answering this question is essential for understanding aspects of the LA Basin that 

contribute to other research, such as sediment provenance. This is particularly important given 

the uncertainty surrounding paleo-currents and paleo-deltas of the Colorado River, which is 

geographically extensive and carved out the Grand Canyon. Howard (1996) used 

chronostratigraphic and palinspastic data to suggest that the Colorado River delta prior to 12 Ma 

was in what is now the LA Basin, but 300 km to the left of its current location. This study 

indicates that a large portion of the basin fill from this time, particularly in the Sespe Formation, 

is composed of sediments deposited by the Colorado River. This is opposed by Bright et al. 

(2016), which states that Colorado River gravels only appeared west of the Grand Canyon after 6 

Ma, with a current and delta forming in the Gulf of California region south of the LA Basin. 

Understanding the tectonic history of this time could help provide some insight into this much-

debated question regarding a major waterway in America. 

 This question can also make contributions to understanding the presence of the La Brea 

Tar Pits. The Tar Pits are paleontologically fascinating; over 3 million late Pleistocene plant and 

animal fossils have been found there (Friscia et al., 2008). Understanding the tectonic activity 

that formed and still allows these tar pits to remain in the LA Basin today is important for other 

research, and contributes to the culture of LA because the Tar Pits are a major tourist attraction.  
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 To better understand the interpretations and discrepancies in the LA Basin literature, it is 

essential to study basin classification and each basin’s associated characteristics.  

Extensional Rifting and Basaltic Volcanism 

Active rift systems occur in regions with high surface heat flow, crustal thinning, 

volcanic activity, relatively high earthquake activity, and gravity anomalies (Allen and Allen, 

2013). Earthquake activity is typically due to normal faulting which indicates that the direction 

of extensional rifting is orthogonal to the fault. However, rift systems can also be attributed to 

strike-slip faulting given the correct orientation to the direction of extension. 

Both Crouch and Suppe (1993) and McCulloh and Beyer (2003) assert that the rifting 

process that formed the LA Basin began during the early Miocene as a result of 70-90° clockwise 

rotation of the western Transverse Ranges, which are directly north of the LA Basin. The timing 

and magnitude of the Transverse Ranges’ rotation is supported by paleomagnetic declination 

data from Oligocene through Miocene aged rocks, all of which indicate clockwise rotation 

(Luyendyk, Kamerling, and Terres, 1980). 

Transtensional Pull-Apart Processes 

Basins that form due to strike-slip faulting have low surface heat flow, abundant seismic 

activity, are relatively small, and structurally complex due to oblique movement creating areas of 

contraction and other areas of extension within the same basin (Allen and Allen, 2013). Crustal 

blocks of a basin in strike-slip regimes also may undergo rotation, such as described above for 

the Transverse Ranges. Allen and Allen (2013) also reference the clockwise rotation of the 

Transverse Ranges due to displacement along the San Andreas Fault. This model contradicts 

Luyendyk, Kamerling, and Terres (1980), who found that the San Andreas became active in the 

late Miocene and probably ended the clockwise rotation of the Transverse Ranges. This would 
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suggest that if strike-slip processes contributed to the initial formation of the LA Basin, it was 

not due to the San Andreas Fault. Regardless, strike-slip basins that form as a result of rotation 

about a vertical axis are classified as “transrotational,” (Busby and Azor, 2012). 

Schneider et al. (1996) indicates that the LA Basin is likely classified as transtensional, 

which includes strike-slip, pull-apart basins. Busby and Azor (2012) define transtensional basins 

as ones that form associated with releasing bends. This indicates that while transform faulting is 

occurring, there are areas that are undergoing extension, lithospheric thinning, and subsidence.  

Dextral Strike-Slip Faulting 

The characteristics of a basin due to strike-slip faulting are similar to the ones described 

above for transtensional pull-apart processes. However, pure dextral slip would indicate a pure 

shear environment in which originally perpendicular principal strain axes would remain 

perpendicular after deformation. This situation describes plane strain, in which there is no strain 

in the vertical direction (Allen and Allen, 2013).  

Howard (1996) found that all sediments older than 8 to 10 Ma in the LA Basin are 

dextrally offset by about 300 km, and thus supports a model of basin formation that includes 

substantial right-lateral displacement. Howard (1996) uses this interpretation to show that the 

Colorado River flowed out to the Pacific Ocean through the region that is now in LA Basin, but, 

at the time, would have been 300 km to the left. This scenario of pure dextral slip seems unlikely 

in the case of the LA Basin given the known transrotational and orogenic events that occurred 

since the beginning of the Miocene.  



Rosett	 5	

 

Figure 1. A “Deep Time Mapsä: maps of ancient Earth” showing CA around 10 Ma (roughly 
7.4 years after subsidence and extension began). Transverse Ranges seen sticking out into 
the Pacific Ocean like a small peninsula, south of the modern US – Mexico border 
superimposed on the map. This supports Sawyer, Hsui, and Toksoz’s (1987) and Howard’s 
(1996) findings that indicate substantial dextral offset of the LA Basin since the Miocene 
(map; modified from Blakey, 2013). 
 

Based on these varying analyses and their implications to research, it is essential to dig 

further into the extensive work that addresses these questions of tectonic history in the LA Basin. 

An in-depth literature review would provide a concise report of what interpretations still hold 

and what research needs to be done or redone. 

In the literature review, to address these questions, I am primarily going to investigate 

studies that used seismic and paleomagnetic data. Fuis et al. (2001) used seismic refraction and 

low-fold reflection surveys resulting in one cross section from Seal Beach to the Mojave Desert. 

In the LA Basin, this cross section strikes northeast from Seal Beach to the northern extent of the 

Whittier Fault, which is an active dextral strike-slip fault located in the Northeast Block of the 

LA Basin (Sawyer, Hsui, and Toksoz, 1987). Fuis et al. (2001) addressed questions regarding 
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crustal structure, sediment thickness, and tectonics of southern California that cannot be 

observed from the surface. In particular, Fuis et al. (2001) identified active crustal décollements 

and blind thrust faults from the cross section. 

 

Figure 2. Seismic velocity model along transect line from seismic refraction 
and low-fold reflection surveys data from Seal Beach to the Mojave Desert 
resulting from . Hypocenters for 3 earthquakes projected onto the model and 
sediment-basement depth indicated by black bar (Fuis et al., 2001). 
 

 Scott Hornafius et al. (1986) used paleomagnetic data from Neogene rocks in the Santa 

Ynez Range, the Santa Monica Mountains, the Northern Channel Islands, and the San Gabriel 

block to show that the clockwise rotation of this region during the early Miocene occurred over 

large crustal areas. From these data, they suggest that the California coastline underwent about 

200 km of dextral displacement, and that large-scale, rapid rotation of crustal blocks was the 

result of dextral shear between the Pacific and North American plates. 

 From the literature that I have investigated so far, it is apparent that a combination of 

different tectonic processes and movement of varying crustal blocks in the southern California 
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region contributed to the formation and subsidence of the LA Basin. It seems that both 

extensional rifting due to large-scale clockwise rotation of crustal blocks and simultaneous 

dextral strike-slip faulting led to the formation and substantial displacement of the LA Basin 

beginning in the early Miocene. What I intend to further discover with this project is more 

specificity regarding which faults led to this dextral displacement and to what degree did each 

process contribute to LA Basin formation and subsidence. And again, to better inform efforts for 

determining potential seismic, tectonically-driven hazards in Los Angeles. 

Geologic Setting  

The LA Basin is located in southern California and has as much as 10 km thick sediment 

accumulated since the middle Miocene and is underlain by pre-Tertiary metamorphic and 

plutonic igneous rocks (Yerkes et al., 1965). It is surrounded by mountains, including the 

western Transverse Ranges, Santa Monica Mountains, Santa Ana Mountains, and San Joaquin 

Hills, which are included in the Peninsular Ranges. It is divided into 4 sections with one section, 

the Southwestern Block, extending into the Pacific Ocean. Marine sediment and facies located in 

sections that are now completely terrestrial indicate that during the LA Basin’s development, 

much of the Los Angeles area was below sea level (Sawyer, Hsui, and Toksoz, 1987).  

The LA Basin is characterized by both marine and non-marine, mostly fluvial, facies that, 

in some areas of the basin, are interbedded (McCulloh and Beyer, 2003). Most of the non-marine 

facies, including the geographically extensive Sespe Formation, are composed of fluviatile 

sandstones and gravels. In some locations, the terrestrial facies are interbedded with the 

fossiliferous shallow marine facies of the Topanga Formation (McCulloh and Beyer, 2003). 

While a fair amount of the fluvial sediments appears to be locally derived, there are also 

paleocurrent indicators, including clast size gradations, that indicate that most of the sediment fill 
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in the non-marine facies of the basin was transported from the northeast. (McCulloh and Beyer, 

2003). This interpretation, at least when considering the Sespe Formation, is in support of 

Howard (1996)’s findings described earlier. These terrestrial facies and basin fill indicate a 

fluvial environment, while the interbedded portions possibly indicate the presence of a delta that 

experienced regressive and transgressive periods. 

The marine facies of the Vaqueros and Topanga Canyon Formations dominate most of 

the western portion of the basin with easternmost extent reaching the Santa Monica Mountains 

where it interbeds with the fluvial facies of the Sespe Formation (McCulloh and Beyer, 2003). 

The marine strata include interbedded sandstones and muds as well as distinctive schist breccia 

called the San Onofre Breccia (McCulloh and Beyer, 2003). Biofacies reported by McCulloh and 

Beyer (2003) include foraminifera and the “provincial” mollusk Turritella ocoyana which 

further supports the interpretation of previous marine environment dominating much of the 

currently terrestrial, western portions of the basin. 

Research Plan 

 My research plan includes reproducing two main types of data in the LA Basin: 

paleomagnetic (similar to those collected by Scott Hornafius et al. (1986)) and seismic refraction 

and low-fold reflection surveys (similar to those collected by Fuis et al. (2001)). I intend to use 

these authors’ methods to verify that I am explaining the same phenomena, and then will also 

apply those methods in other areas within the LA Basin. 



Rosett	 9	

 

Figure 3. Chronostratigraphic figure depicting facies 
over time (60 – 10 Ma) in the region that includes the 
volcanics in the central trough of the LA Basin. 
Diagonal stripes indicate lacunas (hiatuses in the 
geologic record). Wavy lines indicate unconformities 
(modified from McCulloh and Beyer, 2003). 

 
A research area of interest that seems to be relatively untouched by paleomagnetic 

methods is around the perimeter of the central trough in the LA Basin. This section of the Basin 

has partly submarine, middle Miocene volcanic rocks and has two faults on either side: the Las 

Cienegas and the Newport-Inglewood zone (McCulloh and Beyer, 2003). This suggests that 

during the crustal rotation, rifting, and dextral slip in the area, there was localized volcanic 

upwellings in the LA Basin. I intend to collect samples with accurate orientation from the central 
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trough area, and follow the methods used by Scott Hornafius et al. (1986) to find paleomagnetic 

declination of those volcanic rocks.  

 I also plan to recreate the seismic refraction and low-fold reflection surveys that Scott 

Hornafius et al. (1986) used in their study. However, I intend to expand upon this and focus on 

other major faults in the LA Basin. These include the active strike-slip Newport-Inglewood and 

Elsinore-Whittier faults. The Newport-Inglewood fault slips about 1 mm/yr and the Elsinore-

Whittier fault slip about 5 mm/yr due to interactions between the North America and Pacific 

plates (Sleep, 2015). I also plan to create a cross-section in the region where the La Brea Tar Pits 

are located. The additional information collected on these previously unexamined faults should 

help clarify the tectonic history of the LA Basin. 

 

Figure 4. Map view of the LA Basin with fault systems and other structural features. Faults 
of interest for cross-sections (blue and orange lines) include: E—Elsinore, NIZ—Newport-
Inglewood zone, and W—Whittier. Green line indicates location for La Brea Tar Pits cross-
section. Red box indicates location of central trough (map; modified from McCulloh and 
Beyer, 2003). 
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Outcome 

 The results of the literature review and data collection will result in a more concise 

understanding of what tectonic processes actually formed the LA Basin. I will also create 

updated palinspastic reconstructions from these data to make the findings more accessible. In 

particular, the paleomagnetic data will help inform how much rotation occurred in the LA Basin 

contemporaneously to rotation of large crustal blocks that affected the western Transverse 

Ranges. The cross-sections from the seismic refraction and low-fold reflection surveys will 

provide information regarding subsurface structures of and around major strike-slip faults in the 

LA Basin. From these, I hope to provide a better understanding of the faults in the region that 

contributed to the substantial dextral displacement during the Miocene, the formation of the La 

Brea Tar Pits, and effect Los Angeles today as possible sources of earthquakes.   
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