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Abstract

Discrepancies between potential and observed dispersal distances of reef fish indicate

the need for a better understanding of the influence of larval behaviour on recruit-

ment and dispersal. Population genetic studies can provide insight on the degree to

which populations are connected, and the development of restriction site-associated

sequencing (RAD-Seq) methods has made such studies of nonmodel organisms more

accessible. We applied double-digest RAD-Seq methods to test for population differ-

entiation in the coral reef-dwelling cardinalfish, Siphamia tubifer, which based on beha-

vioural studies, have the potential to use navigational cues to return to natal reefs.

Analysis of 11,836 SNPs from fish collected at coral reefs in Okinawa, Japan, from ele-

ven locations over 3 years reveals little genetic differentiation between groups of

S. tubifer at spatial scales from 2 to 140 km and between years at one location: pair-

wise FST values were between 0.0116 and 0.0214. These results suggest that the Kur-

oshio Current largely influences larval dispersal in the region, and in contrast to

expectations based on studies of other cardinalfishes, there is no evidence of popula-

tion structure for S. tubifer at the spatial scales examined. However, analyses of out-

lier loci putatively under selection reveal patterns of temporal differentiation that

indicate high population turnover and variable larval supply from divergent source

populations between years. These findings highlight the need for more studies of

fishes across various geographic regions that also examine temporal patterns of

genetic differentiation to better understand the potential connections between early

life-history traits and connectivity of reef fish populations.
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1 | INTRODUCTION

The degree to which coral reef fish populations are connected,

which has large consequences for their persistence and resilience to

disturbances, has been disputed for decades. For most reef fishes,

dispersal occurs during a planktonic larval phase that lasts from a

few days to months, creating the potential for large dispersal dis-

tances (Barlow, 1981; Shulman & Bermingham, 1995), but the chal-

lenges associated with tracking the direct movement of relatively

small larvae in a dynamic, fluid environment have limited our

knowledge of the connectivity patterns of most reef fishes (Jones

et al., 2009). Recently, however, the rapid advancement of genetic

tools has facilitated the study of reef fish populations, revealing the

wide variation of spatial scales at which marine populations exhibit

connectivity (e.g., Gerlach et al., 2007; Horne et al., 2008; Jones,

Planes, & Thorrold, 2005; van der Meer et al., 2012; Planes, 2002;

Purcell et al., 2006; Taylor & Hellberg, 2003; Terry, Bucciarelli, &

Bernardi, 2000). Most coral reef fish metapopulations lie somewhere

in the middle of the spectrum between having relatively closed (low

connectivity and high self-recruitment) to open (high connectivity
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and no self-recruitment) populations (Cowen et al., 2000; Jones

et al., 2009; Mora & Sale, 2002). Nonetheless, a surprising number

of studies have provided evidence that reef fish populations are

more closed than expected and exhibit a significant degree of local

recruitment (Almany et al., 2007; Bode, Bode, & Armsworth, 2006;

Cowen, Paris, & Srinivasan, 2006; Cowen et al., 2000; Jones et al.,

1999, 2005; Swearer et al., 1999, 2002) and genetic differentiation

at relatively small spatial scales (e.g., Gerlach et al., 2007; Planes,

1993; Planes, Parroni, & Chauvet, 1998; Taylor & Hellberg, 2003).

In response to the growing evidence of somewhat restricted

gene flow among reef fish populations, the links between early

life-history traits, larval behaviour, and patterns of larval recruit-

ment and dispersal have been examined. Contrary to expectations,

levels of genetic differentiation of marine fishes are generally not

correlated with pelagic larval duration (PLD) or spawning mode

(Bowen et al., 2006; Galarza et al., 2009; Jones et al., 2009; Shul-

man, 1998), and genetic structure in reef fish populations is often

observed at smaller scales than predicted by larval dispersal alone

(e.g., Taylor & Hellberg, 2003; Rocha et al., 2005; but see Riginos,

Buckley, Blomberg, & Treml, 2014). These discrepancies can often

be explained by larval fish behaviour, through which larvae employ

some control over their dispersal trajectories (Kingsford et al.,

2002; Leis, Hay, & Trnski, 2006; Leis & McCormick, 2002; Mont-

gomery et al., 2006; Sponaugle et al., 2002), including larval swim-

ming ability (Fisher et al., 2005), vertical migration (Paris & Cowen,

2004), and the use of navigational cues, such as chemical and

acoustic cues, in the environment (Atema, 2012; Dixson et al.,

2008; Kingsford et al., 2002; Leis, Siebeck, & Dixson, 2011; Leis

et al., 2003; Paris et al., 2013; Simpson et al., 2008). Studies of lar-

val fish behaviour suggest that larvae are not simply passive parti-

cles in the plankton, but instead can actively orient and navigate

to settlement sites. Therefore, incorporating larval behaviour into

dispersal models can dramatically alter projected population con-

nectivity patterns (e.g., Paris & Cowen, 2004; Cowen et al., 2006;

Sale et al., 2005; Leis, 2007; Paris, Chérubin, & Cowen, 2007;

Staaterman, Paris, & Helgers, 2012). Nevertheless, few studies have

linked larval traits and behaviours to gene flow and levels of popu-

lation genetic differentiation, and it remains unknown how con-

served such links may be within fish families and geographic

regions.

Cardinalfishes (family Apogonidae) are known for their homing

ability from relatively large distances and for their fidelity to particu-

lar daytime resting sites (Døving et al., 2006; Gould, Harii, & Dunlap,

2014; Kolm et al., 2005; Marnane, 2000; Rueger, Gardiner, & Jones,

2014). There are only a few population genetic studies of cardinal-

fishes to date, all of which have indicated genetic differentiation at

relatively small spatial scales (Bernardi & Vagelli, 2004; Gerlach et al.,

2007; Gotoh et al., 2009; Hoffman et al., 2005; Vagelli, Burford, &

Bernardi, 2008), although the majority of studies examined the same

focal species, the Banggai cardinalfish Pterapogon kauderni, which

lacks a planktonic larval stage (Bernardi & Vagelli, 2004; Hoffman

et al., 2005; Vagelli et al., 2008). One study of the cardinalfish,

Ostorhinchus doederleini, which has a PLD of 16–27 days, connected

larval behaviour to self-recruitment and genetic differentiation

between populations only a few kilometres apart. Specifically, the

observed population genetic structure was linked to olfactory prefer-

ences exhibited by O. doederleini larvae for their home reef water

over the other nearby reefs examined (Gerlach et al., 2007). Due to

the lack of knowledge of other cardinalfishes, however, it remains

unknown whether the results of this study are specific to the O. doe-

derleini and whether other cardinalfishes with planktonic larvae also

exhibit the same degree of fine-scale genetic structure associated

with larval homing.

To better understand the link between larval behaviour and gene

flow in cardinalfishes, we examined the population genetic structure

of the sea urchin cardinalfish Siphamia tubifer, for which homing and

olfactory preferences have been previously described (Gould, Harii,

& Dunlap, 2015; Gould et al., 2014). Similar to other cardinalfishes,

S. tubifer adults and juveniles exhibit fidelity to a home site and

return to a home reef from displacement distances of at least 2 km

(Gould et al., 2014). As described for O. doederleini (Gerlach et al.,

2007), newly settled S. tubifer also exhibit a preference for the olfac-

tory cues of their home reef to that of a foreign reef (Gould et al.,

2015). These findings suggest the potential for S. tubifer larvae to

use olfaction to recognize and return to their natal reef. Additionally,

like O. doederleini, S. tubifer are short-lived (typically <200 days), but

have a slightly longer PLD of up to 30 days (Gould, Dougan, Koen-

ingbauer, & Dunlap, 2016; Kingsford et al., 2014). Despite these sim-

ilarities, S. tubifer is distinct among cardinalfishes in that it is

symbiotically bioluminescent, hosting a dense population of the lumi-

nous bacterium Photobacterium mandapamensis in an abdominal light

organ and using the bacterially-emitted light while foraging at night

(Dunlap & Nakamura, 2011; Iwai, 1958). The host fish acquires its

luminous symbiont from the environment during larval development;

however, the timing and location of symbiont acquisition in the wild

remain unknown (Dunlap et al., 2012). Defining levels of genetic

struture in S. tubifer at various geographic scales and over time can

provide insight on population connectivity and the location of sym-

biont acquisition by developing larvae.

We applied double-digest restriction site-associated sequencing

(ddRAD-Seq) methods to test for genetic differentiation among

groups of S. tubifer collected over a 3-year period from various loca-

tions in Okinawa, Japan. We used ddRAD-Seq methods as they do

not require an extensive marker discovery process and enable the

development of thousands of genomic markers without prior genetic

data for the focal species (Davey & Blaxter, 2010; Seeb et al., 2011),

and they can be used to infer genetic differentiation with fine-scale

precision (Bradbury et al., 2015; Coates et al., 2009; Luikart et al.,

2003; Willing, Dreyer, & Van Oosterhout, 2012). Our specific aims

were to test for patterns of population genetic differentiation

between groups of S. tubifer collected at various spatial scales and

to test the stability of S. tubifer populations by examining temporal

patterns of genetic divergence at a particular reef. If the link

between larval olfactory preferences, homing potential and self-

recruitment are conserved across similar cardinalfish species, we pre-

dicted that similar to O. doederleini, populations of S. tubifer would
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have significant population genetic structure between sampling sites

but less genetic differentiation at the same reef over time.

2 | MATERIALS AND METHODS

2.1 | Sampling

A total of 295 Siphamia tubifer were collected from different loca-

tions (approximately 20 individuals per location) over 3 years in the

Okinawa Islands, Japan. Ten of these locations were sampled during

the summer of 2013, three of which were again sampled in 2014,

and one location was sampled in three consecutive years, 2012,

2013 and 2014 (Figure 1). Fish of various sizes associated with sev-

eral different host sea urchins and from a broad sampling area were

collected at each location (Table 1). Upon collection, fish were imme-

diately euthanized and placed on ice. The intact light organ of each

fish was then aseptically dissected and individually preserved in

RNAlater�, and the remainder of the fish specimen was stored in

98% ethanol at �20°C.

2.2 | DNA extraction and library preparation

Genomic DNA was extracted from intact, preserved light organs,

which are comprised of fish tissue and the symbiotic population of

luminous bacteria, using QIAGEN DNeasy Blood and Tissue Kits and

following the manufacturer’s protocol. A total of six ddRAD-Seq

DNA libraries were constructed, each from the genomic DNA of up

to 50 S. tubifer light organs, following a modified combination of the

methods described in Parchman et al. (2012) and Peterson et al.

(2012). For each library, approximately 200 ng of genomic DNA

from each light organ was digested with the high-fidelity restriction

enzymes MseI and EcoRI at 37°C for 3 hr. A standardized concentra-

tion per library of each digestion product was then ligated to a

uniquely barcoded Illumina adaptor at the EcoRI cut site and an Illu-

mina adaptor at the MseI cut site. The ligation products were

individually amplified with the Illumina Illpcr1 and Illpcr2 primers in

two 20 ll PCRs per sample with a 98°C start, 12 cycles of 98°C for

20 s, 65°C for 30 s, 72°C for 40 s, followed by 10 min at 72°C,

after which, the PCR products from all samples within a library were

pooled and concentrated to an approximate volume of 150 ll. Sam-

ples were purified with Agencourt AMPure XP magnetic beads fol-

lowing standard protocols after the digestion, ligation and PCR

steps. The pooled, purified PCR products were then size-selected

between 300 and 400 bp on a Pippin Prep (Sage Science) machine,

and the size-selected DNA libraries were each sequenced in one lane

on the Illumina HiSeq2000 platform (San Diego, CA) at the Center

for Applied Genomics, Toronto, ON, Canada, to generate 100-bp,

single-end sequence reads.

2.3 | Sequence analysis and processing

Raw sequence reads were quality-filtered and processed primarily

using the program STACKS version 1.35 (Catchen et al., 2011, 2013).

Raw reads were demultiplexed, trimmed to 90 bp and quality-filtered

for a Phred score of 33 or higher using the process_radtags command

in STACKS. To distinguish sequence reads that belonged to the host

fish from those of the bacterial symbiont, we used the ‘very_sensitive’

command in BOWTIE2 version 2.2.0 (Langmead & Salzberg, 2012) to

filter all reads against the reference genome of Photobacterium man-

dapamensis (Urbanczyk et al., 2011). To ensure that all bacterial

reads were removed, we also filtered all remaining reads against the

genomes of Escherichia coli K12 (Durfee et al., 2008) and Vibrio

campbellii (Lin et al., 2010) in the same manner. Sequence reads that

did not align to the bacterial genomes were assigned as fish

(S. tubifer) sequences.

Fish sequence reads were processed and assembled de novo to

call single nucleotide polymorphisms (SNPs) using the STACKS pipeline

with the rxstacks correction step. We first ran the DENOVO_MAP pro-

gram with the parameters �m 3, �M 2 and �n 3, optimized to pre-

vent over- and under-merging of homologous loci. These parameters

F IGURE 1 Collection sites for Siphamia tubifer in the Okinawa Islands, Japan, from 2012 to 2014, and the general current patterns in the
region
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were previously used to increase the number of loci but to minimize

genotyping error for the de_novo assembly of other RAD data sets

(Mastretta-Yanes et al., 2015). We then implemented the rxstacks

correction step using a bounded model (�bound_high 0.1) in which

excess haplotypes were pruned, and loci for which 25% of individu-

als had a confounded match in the catalog (�conf_lim 0.25) or an

average log likelihood less than (�10.0) were removed. After running

this correction step, the CSTACKS (�n 3) and SSTACKS programs were

re-applied to produce the final set of RAD tags across all individuals

in the study.

2.4 | Population analysis

The mean depth of coverage per locus across all individuals was

determined from the STACKS output files, and individuals with a mean

coverage less than 10 across all loci were excluded from the analy-

ses. Population summary statistics were computed with the popula-

tions program in STACKS for loci present in at least 10 populations and

in 70% of individuals per population. Population differentiation was

evaluated with pairwise FST values calculated in the populations pro-

gram in STACKS for loci present in all populations and in 70% of indi-

viduals per population with a minor allele frequency greater that 5%.

Pairwise AMOVA FST values were also computed in GENODIVE (Meir-

mans & Van Tienderen, 2004) with 1,000 bootstrap resampling

steps, producing p-values for all pairwise population comparisons.

Isolation by distance (IBD) was assessed by conducting Mantel tests

with the Isolation by Distance Web Service (Jensen, Bohonak, & Kel-

ley, 2005) on pairwise FST values and the natural logarithm of the

shortest distances over water between sites; one-sided p-values

were calculated by randomizing the data 30,000 times. Using the

HIERFSTAT program (Goudet, 2005) in R version 3.1.1 (R Core Team

2014), the per locus FST values were calculated and compared for

the following data sets: individuals collected in 2013, 2014 and in

three consecutive years from the Sesoko (S) site. Loci in each data

set were then split into 10% quantiles based on their estimated FST

values and analysed independently as outliers.

To visualize genetic structure, principal components analyses

(PCAs) were implemented on the loci present in at least 70% of indi-

viduals per population and in at least 10 populations with a minor

allele frequency greater that 5% with the dudi.pca function in the

ADEGENET version 1.4.2 package (Jombart, 2008; Jombart & Ahmed,

2011) in R (R Core Team 2014). The small percentage of missing data

values per locus (an average of 4.1 � 4.4%, SD) were replaced with

the mean value across the entire data set at that locus. Analyses of

molecular variance (AMOVA) (Excoffier, Smouse, & Quattro, 1992)

were carried out in GENODIVE to test for genetic differences between

populations and region (populations on the east and west coast of

Okinawa). Both PCAs and AMOVAs were performed separately on

the 2013 and 2014 populations as well as on the 3-year data set

from Sesoko (S) (Figure 1).

Complimentary clustering analyses were also performed with the

program STRUCTURE version 2.3.4 (Pritchard, Stephens, & Donnelly,

2000) using the output data files from STACKS comprised of only the

first SNP per locus (to eliminate any SNPs that are linked within the

same RAD site from the analysis) for loci present in at least 70% of

all individuals and in all populations for each data set. Group assign-

ments in STRUCTURE were made using the admixture model with

100,000 burn-in steps and 100,000 MCMC iterations for each num-

ber of predetermined genotypic groups (K). Analyses were repeated

ten times for each value of K. For the 2014 and Sesoko data sets, K

was set from 1 to one plus the total number of populations sampled

(5 and 4, respectively), and for the 2013 data set, K was set from 1

to 10 (the total number of sites sampled). Probable K values were

inferred by examining the change in the posterior probability of the

log likelihood across all K values (ln P(X|K)) and by applying the

Evanno DK method (Evanno, Regnaut, & Goudet, 2005) with STRUC-

TURE HARVESTER (Earl, 2012). All STRUCTURE results were visualized with

the program DISTRUCT (Rosenberg, 2004).

TABLE 1 The locations and years in
which Siphamia tubifer were collected in
Okinawa, Japan. The range and mean
standard lengths (SL) of fish specimens
from each sampling site are listed as well
as the numbers of individuals collected
(Ni) and included in the final genomic
dataset after quality filtering (Nf)

ID Site Latitude Longitude Year SL (mean); mm Ni Nf

S Sesoko 26.6354 127.8658 2012 15.0–31.0 (22.9) 17 17

2013 22.0–38.5 (28.5) 18 18

2014 15.0–38.0 (28.4) 22 21

M Motobu 26.6558 127.8803 2013 21.0–35.5 (29.5) 26 20

N Nago 26.6037 127.9324 2013 18.5–42.5 (29.5) 24 21

Hd Hedo 26.8488 128.2525 2013 17.5–37.5 (26.3) 17 17

It Itoman 26.0952 127.6585 2013 23.0–36.5 (27.9) 15 14

2014 13.5–20.0 (16.8) 27 27

O Ou 26.1280 127.7690 2013 16.5–25.0 (20.1) 16 16

Y Yonabaru 26.2030 127.7712 2013 21.0–38.5 (28.7) 16 16

Ik Ikei 26.3935 127.9886 2013 11.5–31.0 (17.3) 16 15

2014 13.0–30.5 (21.5) 22 22

Hk Henoko 26.5346 128.0461 2013 14.5–27.5 (19.6) 17 17

A Ada 26.7420 128.3211 2013 23.0–34.5 (28.5) 16 15

K Kume 26.3516 126.8201 2014 15.5–41.5 (27.9) 26 24
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2.5 | Outlier analysis

An additional outlier approach was used to identify sets of loci with

significantly higher FST values than expected under a neutral model

of selection for each data set (2013, 2014 and Sesoko) with the pro-

gram LOSITAN (Antao, Lopes, Lopes, Beja-Pereira, & Luikart, 2008). A

subset of one SNP per locus present in all populations and in 70%

of individuals within a population with a minor allele frequency

greater that 5% were examined using the following parameters in

LOSITAN: 50,000 simulations, a confidence interval of 0.99, a false dis-

covery rate of 0.1 and a subsample size of 30, using the “neutral

means FST” and “force means FST” options, which iteratively identify

and remove FST outliers when calculating the global FST distribution.

Based on their probabilities of being under selection, loci were then

classified into the following categories: under divergent selection

(p > 99%), neutral (1% < p < 90%), or under balancing selection

(p < .1%); all remaining loci were conservatively considered to be

unclassified. To visualize whether loci putatively under selection

show any patterns concordant with sampling site or time, PCAs were

performed independently on each subset of outlier loci as previously

described. We also compared the outlier loci identified in LOSITAN to

the sets of loci within various per locus FST quantiles (90%–100%,

80%–90% and 70%–80%).

2.6 | Ethics statement

The protocols used here for the capture and handling of fish speci-

mens were approved by the University of Michigan’s University

Committee for the Use and Care of Animals (PRO00004825), and

they followed the requirements outlined in the University of the

Ryukyus’ Guide for Care and Use of Laboratory Animals (Dobutsu

Jikken Kisoku, version 19.6.26).

3 | RESULTS

3.1 | Sequence analysis and processing

The six ddRAD libraries each produced high-quality sequence data

with sufficient depth of coverage across most individuals for popula-

tion-level genetic analyses. Thirteen individuals that had fewer than

800,000 remaining reads after quality filtering (Fig. S1) were dis-

carded from the analysis. On average, 87.05 � 2.58% of all reads

were retained from each library, with an average of 9.72 � 2.29%

and 3.23 � 2.51% of reads additionally discarded for having ambigu-

ous barcodes or RADtags or for low quality, respectively (Table S1).

The final data set consisted of 11,836 loci and contained low per-

centages of missing data. On average, 4.1% of data was missing per

locus (min = 0%, max = 22.1%) and 4.1% of data was missing per

individual (min = 0%, max = 13.4%).

Prior to genetic analysis, sequence reads that aligned to the gen-

ome of the light organ symbiont, P. mandapamensis or to the other

examined bacterial genomes, were removed from the data set. The

average per cent of quality-filtered reads per individual that aligned

to the P. mandapamensis genome was 26.9 � 9.1% (Fig. S1) and of

the reads that did not align to P. mandapamensis, the average per

cent per individual that aligned to the V. campbelli or the E. coli gen-

omes were 0.293 � 0.155% and 0.003 � 0.155%, respectively.

These bacterial sequence reads were removed from the data set,

and the remaining reads were assigned as S. tubifer sequences,

resulting in an average of 72.7 � 9.3% of total reads per individual

assigned as S. tubifer (Fig. S1). After de novo assembly of the

S. tubifer sequence reads across all remaining individuals, the mean

depth of coverage per locus was 21.6 � 8.3. One individual with

mean sequence coverage per locus below 10 was additionally

removed from further analyses (Fig. S1), resulting in a total of 280

individuals in the final data set (Table 1).

3.2 | Population summary statistics

For RAD sites that were polymorphic in at least one population

(Table 2), the average major allele frequency (P) and observed

heterozygosity (Hobs) across all populations ranged from 0.9593 to

0.9607 and 0.0485 to 0.0519, respectively. When sites that were

fixed across all populations were included, P increased up to 0.9983

and Hobs values all decreased to 0.0022 (Table S2). Across variant

RAD sites only, the percentages of polymorphic loci in populations

sampled in 2013 were between 30.92% and 36.09%, whereas the

percentages of polymorphic loci in populations sampled in 2014

were slightly higher, ranging from 36.79% to 41.75% (Table 2).

Levels of overall nucleotide diversity (p) across all sites, fixed and

variant, were similar for all groups of fish sampled, varying between

0.0026 and 0.0028. Average measures of Wright’s inbreeding coeffi-

cient (FIS) calculated for all variant sites ranged from 0.0407 to

0.0567 across all populations (Table 2). These FIS values are all

slightly positive indicating a deficiency in heterozygotes within each

population.

3.3 | Analysis of genetic differentiation

Population genetic analyses of the 11,836 SNPs revealed no signifi-

cant genetic structure between sampling sites or between years. In

2013, pairwise FST values were consistently low between sites, rang-

ing between 0.0157 and 0.0214, with only a few significant values

(Table 3), most of which were for comparisons with fish from the

Motobu (M) site (Figure 1). Pairwise FST values for the 2014 samples

were similarly low and nonsignificant, ranging from 0.0116 to

0.0139 (Table S3). An analysis of temporal genetic differentiation at

the Sesoko (S) site (Figure 1) over three consecutive years also

revealed no significant differentiation over time (FST values ranged

from 0.0158 to 0.0177, Table 4). Similarly, the other two sites that

were sampled in consecutive years, Itoman (It) and Ikei (Ik) (Figure 1),

had low, nonsignificant FST values (It: FST = 0.0151, Ik: FST = 0.0165)

between years. Per locus FST values for each data set were all low

with seemingly normal distributions around zero (Fig. S2) and are

summarized in Table S4 including the values used to parse loci into

various quantile groups.
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Analyses of isolation by distance revealed no significant relation-

ship between the low levels of population differentiation observed

and geographic distance between locations within either sampling

year (2013: F1,43 = 0.369, R2 = .0085, p = .547; 2014: F1,4 = 3.372,

R2 = .457 p = .140; Fig. S3). Similarly, results from the AMOVA indi-

cate that all of the observed genetic variation is attributed to varia-

tion within (FIT) and among (FIS) individuals and none is attributed to

differences between populations or between the east and west

coast regions of Okinawa Island (Table 5).

Principal components analyses of all 11,836 SNPs confirmed the

lack of genetic structure, with no apparent clustering of individuals by

location (Figure 2). The first two PC axes for the 2013 analysis each

described less than 1% of the variation in the data. These values rose

slightly for the 2014 data, accounting for a combined (PC1 and PC2)

total of 2.57% of the total genetic variation (Figure 2). The PCA car-

ried out on the temporal data set from the Sesoko site also indicates a

lack of structure over time (Figure 2), and it is consistent with the low,

nonsignificant pairwise FST values between groups of fish collected at

that site in subsequent years (Table 3). Similarly, clustering analyses in

STRUCTURE revealed that a K = 1 is most likely for the 2013, 2014 and

Sesoko data sets when all loci were considered (Tables S5–S7). In the

TABLE 2 Population genetic summary statistics calculated for each group of Siphamia tubifer sampled using only nucleotide positions that
are polymorphic in at least one population. Populations are indicated by the abbreviation of their sampling location and year collected.
Statistics listed are the average number of individuals analysed at each locus (N), the total number of nucleotide positions in the dataset (Sites),
the number of unique variable sites in each population (Private), the per cent of polymorphic sites (% Poly), the average frequency of the major
allele (P), the average per locus observed heterozygosity (Hobs), the average nucleotide diversity (p) and Wright’s average inbreeding coefficient
(FIS). All statistics were calculated in STACKS

Population N Sites Private % Poly P Hobs p FIS

A-13 14.3 109,236 2,474 32.38 0.9600 0.0517 0.0631 0.0416

Hd-13 16.0 109,504 2,663 33.96 0.9598 0.0512 0.0630 0.0452

Hk-13 16.0 107,956 2,627 34.03 0.9597 0.0514 0.0632 0.0455

Ik-13 14.1 108,401 2,284 31.71 0.9602 0.0509 0.0625 0.0419

Ik-14 20.7 106,997 3,274 37.55 0.9601 0.0505 0.0623 0.0502

It-13 13.1 109,264 2,120 30.92 0.9598 0.0516 0.0632 0.0407

It-14 25.6 110,648 4,581 41.75 0.9593 0.0519 0.0635 0.0545

K-14 22.4 98,587 3,210 38.43 0.9595 0.0501 0.0631 0.0567

M-13 18.5 82,512 2,166 34.92 0.9607 0.0485 0.0615 0.0534

N-13 19.6 98,854 2,692 36.09 0.9601 0.0492 0.0624 0.0550

O-13 15.0 106,753 2,382 32.67 0.9603 0.0507 0.0624 0.0439

S-12 15.5 97,232 2,070 32.56 0.9602 0.0495 0.0622 0.0473

S-13 16.8 108,356 2,846 34.69 0.9598 0.0510 0.0630 0.0473

S-14 19.7 107,381 3,086 36.79 0.9599 0.0505 0.0627 0.0511

Y-13 15.1 108,186 2,539 33.07 0.9603 0.0514 0.0624 0.0418

TABLE 3 Pairwise FST values (top diagonal) and the shortest distance (km) through water (bottom diagonal) between groups of Siphamia
tubifer collected in 2013. FST values in bold are significant at p < .05

2013 A Hd Hk Ik It M N O S Y

A — 0.0187 0.0191 0.0197 0.0207 0.0182 0.0169 0.0192 0.0183 0.0194

Hd 22.4 — 0.0179 0.0191 0.0198 0.0172 0.0161 0.0184 0.0170 0.0183

Hk 38.2 59.7 — 0.0192 0.0198 0.0173 0.0163 0.0184 0.0176 0.0184

Ik 51.4 73.3 17.7 — 0.0214 0.0183 0.0172 0.0193 0.0185 0.0194

It 104.5 117.3 71.5 54.8 — 0.0189 0.0174 0.0205 0.0192 0.0199

M 68.0 47.8 105.3 119.5 72.4 — 0.0157 0.0176 0.0169 0.0176

N 78.2 58.0 115.5 129.3 80.8 10.4 — 0.0167 0.0157 0.0168

O 89.0 111.3 58.6 38.1 15.8 84.4 83.5 — 0.0181 0.0186

S 70.4 50.1 107.7 121.9 68.2 2.8 8.6 82.1 — 0.0175

Y 83.6 105.0 51.8 33.4 32.1 100.5 99.8 16.8 98.4 —

TABLE 4 Pairwise FST values between groups of Siphamia tubifer
collected at the Sesoko site in three consecutive years

Sesoko 2012 2013 2014

2012 — 0.0177 0.0161

2013 — 0.0158
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case where K = 1, the Evanno DK method of detecting the true value

of K is ineffective (Evanno et al., 2005). We therefore examined the

mean posterior probabilities for each K value in both data sets; the log

likelihood was highest when K = 1 for all data sets (Tables S5-S7).

These results provide further evidence that one panmictic population

of S. tubifer is present in the region, including Kume Island (K) 100 km

to the west of Okinawa Island (Figure 1).

3.4 | Outlier analysis

The LOSITAN outlier analyses identified a small percentage of loci

(0.7%–2.8%) within each data set that were classified as being under

divergent selection (Figure 3a–c, Table 6). The percentages of shared

loci under selection between the 2013 and 2014 LOSITAN data sets

were 2% and 8%, respectively, and the number of shared outliers

between the 2013 and 2014 data sets and the Sesoko data set were

12% and 6%. The numbers of shared loci under divergent selection

between sampling years within the Sesoko data set were higher,

ranging from 12% to 26%. Principal components analyses of these

adaptive loci only revealed a slight signature of genetic differentia-

tion between individuals collected at the broader geographic range

sampled in 2014, but less so between individuals collected from

reefs around Okinawa Island in 2013 (Figure 3d,e). Interestingly,

there was more apparent differentiation at these putative loci under

selection between individuals collected in different years at Sesoko

(S) (Figure 3f).

Many of the loci classified as being under divergent selection

were also present in the 90%–100% FST quantile data sets; 85%,

91% and 84% of the loci classified as being under divergent selec-

tion in LOSITAN were also in the 2013, 2014 and Sesoko FST outlier

data sets, respectively. Additional STRUCTURE analyses of subsets of

SNPs in each 10% FST quantile (Table S4) confirmed a lack of genetic

structure for groups of fish collected from sites around Okinawa

Island in 2013, even when examining only the loci with the highest

levels of differentiation (90%–100% FST quantile) observed across all

individuals (Fig. S4a). A weak signature of genetic similarity that

matched sampling location was evident for the most highly differen-

tiated subset of loci (90%–100% FST quantile) for the 2014 data set,

and both the highest ln P(K) and a rise in DΚ were evident when

K = 4 (Table S5). However, this pattern of genetic structure was not

apparent for the subset of loci in the 80%–90% FST quantile for the

same populations (Fig. S4b). The most highly differentiated subset of

loci (90%–100% FST quantile) in the Sesoko data set revealed three

genetic clusters that matched sampling year (Fig. S4c) and corrobo-

rate with the temporal pattern of differentiation observed with the

adaptive set of loci previously identified. Moreover, principal compo-

nents analyses of the LOSITAN outliers produced comparable results to

analyses of the 90%–100% FST outliers for each data set (Fig. S5)

with the exception of the 2013 data set; the analysis of LOSITAN out-

liers revealed a weak pattern by sampling location that was not as

evident for the 90%–100% FST outlier data set from 2013.

4 | DISCUSSION

The observed discrepancies between potential and actual dispersal

distances of reef fish larvae (e.g., Bowen et al., 2006; Galarza et al.,

TABLE 5 Analysis of molecular variance (AMOVA) of groups of
Siphamia tubifer collected in 2013. Populations were grouped into
regions determined by collection sites on the east or west coast of
Okinawa

Source of variation Nested in % Variance F-statistic p-value

Within individual — 86.4 FIT —

Among individual Population 13.6 FIS .001

Among population Region 0.0 FSC .245

Among region — 0.0 FCT .012

F IGURE 2 Principal components analyses of genetic differentiation among Siphamia tubifer collected in (a) 2013, (b) 2014 and (c) from the
Sesoko site collected in three consecutive years. Points represent individuals along the PC1 and PC2 axes of genetic variation across 11,836
SNPs with the amount of variation explained by each axis in parentheses. Distinct colours and shapes indicate the sampling locations [Colour
figure can be viewed at wileyonlinelibrary.com]
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2009; Jones et al., 2009; Rocha et al., 2005; Taylor & Hellberg,

2003) highlight the need for a better understanding of the influence

of larval fish behaviour on the connectivity of reef fish populations.

To narrow this gap in knowledge, general links between larval beha-

viour and gene flow across diverse groups of fishes and geographic

regions are required. We applied RAD-Seq methods to test for

genetic differentiation between populations of S. tubifer, as docu-

mented for another cardinalfish species with similar life-history traits

and behaviour (Gerlach et al., 2007; Kingsford et al., 2014). Despite

the potential of RAD-Seq methods to detect fine-scale genetic struc-

ture, and in contrast to studies of other cardinalfishes, we found lit-

tle evidence of genetic differentiation between groups of S. tubifer

at spatial scales up to 140 km. This lack of differentiation was partic-

ularly striking in that collection sites were located on both the sides

of Okinawa Island and included a site, Kume Island, well separated

to the west of the main island (Figure 1). Analyses of adaptive out-

lier loci, however, revealed a shallow signature of genetic divergence

F IGURE 3 Results of the FST outlier tests in LOSITAN for 6,379 SNPs in (a) 2013, (b) 2014 and (c) at the Sesoko (S) site over three
consecutive years (2012–2014) and corresponding principal components analyses of genetic differentiation for the outlier loci identified (d–f).
Loci above the red line (open circles) are candidates of being under divergent selection above a 99% probability. Loci with a probability
between 1% and 90% of being under selection are considered to be neutral and those below the bottom line with <0.1% probability are
classified as being under balancing selection. All remaining loci were conservatively considered to be unclassified (neither neutral or under
selection) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Summary of classification of SNPs from the LOSITAN

outlier FST analysis of 6,379 loci for each dataset listed. Loci were
classified based on the probabilities of being under selection
indicated in parentheses. Remaining loci were conservatively
considered to be unclassified

Data
set

Divergent
(>99%)

Neutral
(1%–90%)

Balancing
(<0.1%) Unclassified

2013 180 (2.8%) 4,776 (74.9%) 107 (1.7%) 1,316 (20.6%)

2014 46 (0.7%) 5,922 (92.8%) 0 (0%) 411 (6.4%)

Sesoko 117 (1.8%) 5,456 (85.5%) 14 (0.22%) 792 (12.4%)
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between sampling sites, particularly at the larger spatial scales exam-

ined, but this signature was evident only for a small number of the

most highly differentiated loci. The overall pattern of genetic admix-

ture observed from the analysis of all identified SNPs indicates a sig-

nificant amount of gene flow among groups of S. tubifer in the

Okinawa Islands, presumably due to larval dispersal and mixing by

strong ocean currents in the region (Figure 1). Although these results

do not exclude the possibility of natal homing, they demonstrate

that genetic exchange between the sampling sites occurs frequently

enough to maintain genetic homogeneity in the region.

The typical dispersal distances of reef fish larvae are on the

order of 50–100 km, with some local retention, and populations of

fishes with high mortality rates tend to be subsidized with larvae

from greater distances (Cowen et al., 2006). Consistent with this

model, S. tubifer is apparently subject to high mortality rates (Gould

et al., 2014, 2016) and may therefore depend on larval subsidies

from other sources for population persistence. Siphamia tubifer also

has a highly specialized habitat requirement; groups of S. tubifer clo-

sely associate with the sea urchins Diadema setosum and Echinothrix

calamaris during the daytime, seeking shelter among the urchins’ long

spines (Eibl-Eibesfeldt, 1961; Gould et al., 2014; Lachner, 1955;

Tamura, 1982). The distribution of diademid urchins in reef habitats

can be patchy, partially due to variation in sediments between sites

(Dumas et al., 2007; Nishihira et al., 1991). Therefore, the availability

of suitable settlement habitat for S. tubifer larvae is also likely to be

variable between reefs. In addition, S. tubifer acquires its species-

specific luminous bacterium from the environment during larval

development (Dunlap et al., 2012). These two factors, habitat avail-

ability and the ecological dynamics of symbiont acquisition, which

are presently undefined, could limit the recruitment success of

S. tubifer and thereby contribute substantially to the admixture

observed. The amount of gene flow required to maintain genetic

connectivity over a large scale is on the order of only a few individu-

als per generation (Leis, 2002; Shulman, 1998; Shulman & Berming-

ham, 1995); therefore if few, far-dispersing S. tubifer larvae settle

sporadically on reefs, there would be little potential for genetic

divergence to accumulate between populations over time.

Corresponding with substantial gene flow in the region, the

islands in Japan’s Ryukyu Archipelago receive larval supply from

other reef habitats in the south. In particular, small reef fish from

the Philippines have an ecologically significant linkage potential to

the Ryukyu Islands (Treml et al., 2015). The connectivity potential

from the northern Philippines is driven by the strong ocean currents

in the region, namely the Kuroshio Current, which originates off the

coast of the Philippines and flows northward through the Ryukyu

Archipelago (Figure 1). Previous studies in the region have estab-

lished evidence of genetic homogeneity among the Philippine Islands

and across the Ryukyu Islands along the Kuroshio Current for the

crown-of-thorns sea star Acanthaster planci (Yasuda et al., 2009) and

for the broadcast-spawning coral Acropora digitifera (Nakajima et al.,

2010). Moreover, at smaller spatial scales within Okinawa, there is

evidence of significant gene flow for several coral species (Nishi-

kawa, 2008; Nishikawa, Katoh, & Sakai, 2003), although two distinct

genetic clusters between the North and South regions of Okinawa

Island were apparent for the scleractinian coral Goniastrea aspera,

indicating a substantial number of locally produced recruits and the

potential for self-recruitment in the region despite the strong influ-

ence of the Kuroshio Current (Nishikawa & Sakai, 2005).

In addition to spatial differentiation, we examined temporal

genetic divergence in S. tubifer at one study site by collecting speci-

mens over three consecutive years. The dynamics of temporal genetic

structure may be even more informative than spatial dynamics in mar-

ine systems, but this issue has generally been overlooked for most

marine populations (Hedgecock, Barber, & Edmands, 2007; Hellberg

et al., 2002). Of the studies that have examined temporal structure,

instances of temporal stability have been rare (Bernal-Ram�ırez et al.,

2003; Larsson et al., 2010), whereas temporal genetic differentiation

has been reported for several marine fishes (e.g., Klanten, Choat, &

van Herwerden, 2007; Maes et al., 2006; Planes & Lenfant, 2002;

Selkoe et al., 2006). Genetic differentiation over time at a location can

result from selection, random genetic drift or from variable larval sup-

ply from different source populations (Hedgecock et al., 2007). When

examining all SNPs, we observed low levels of differentiation between

groups of S. tubifer collected from the same site over 3 years. How-

ever, when we considered only outlier loci putatively under selection,

a clear pattern of temporal differentiation was revealed. To determine

whether the observed differentiation at these adaptive loci might be

attributed to cohesive cohort dispersal and settlement, we compared

relatedness values between individuals collected in the same year with

those collected in different years but saw no significant differences in

relatedness between these groups of individuals (Fig. S6). We also

compared the numbers of shared outlier loci that were divergent

between consecutive sampling years and found that approximately

one-fourth of the loci under selection are shared between the interan-

nual comparisons. Therefore, the observed temporal patterns of struc-

ture at these outlier loci can likely be attributed to variable larval

supply from different upstream source populations rather than solely

due to genetic drift.

Siphamia tubifer is short-lived, with an expected longevity of less

than 200 days (Gould et al., 2016); therefore, population turnover at a

reef might occur regularly, especially given the potential variability in

larval supply consistent with large dispersal distances and high larval

mortality rates associated with reef fishes. Several divergent S. tubifer

populations upstream of the Okinawa Islands, such as in the Philip-

pines, could therefore supply larvae that variably settle on available

urchin habitat and establish temporary populations at a given reef site.

These populations might subsequently be vulnerable to population

bottlenecks due to high adult mortality rates (Gould et al., 2016) along

with natural disturbance events, such as typhoons, which are known

to cause a decline in the numbers of some reef fishes, especially for

demersal fish with specific habitat requirements (Halford, Cheal, Ryan,

& Williams, 2004; Harmelin-Vivien, 1994) like S. tubifer. Typhoon

occurrence in the study region has increased in recent years to an

average of approximately six typhoons per year (Tu, Chou, & Chu,

2009). Additionally, potential seasonality in the breeding pattern of

S. tubifer could enhance the likelihood of population turnover at a reef
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site. Many fish species have seasonal peaks in reproduction at higher

latitude reefs associated with temperature fluctuations (Munday,

Jones, Pratchett, & Williams, 2008), and seasonal reproduction has

been documented for other reef-associated fishes in Okinawa (Kuwa-

mura, Yogo, & Nakashima, 1994). Although breeding seasonality in

S. tubifer has not been described, any seasonal differences in repro-

duction could also contribute to the observed temporal patterns of

differentiation for the subset of adaptive loci identified.

Overall our study supports the importance of examining the

degree of genetic differentiation within various geographic regions for

a range of fish species as well as species-specific patterns across

groups of reef fishes to better understand the relationships between

life-history traits, larval behaviour and gene flow. We highlight the

effectiveness of RAD-Seq methods, which have recently been applied

to examine the genomics of other coral reef fishes (Gaither et al.,

2015; Picq, McMillan, & Puebla, 2016; Puebla, Bermingham, & McMil-

lan, 2014; Saenz-Agudelo et al., 2015; Stockwell et al., 2016), to study

such nonmodel organisms. Our results show that in contrast to other

cardinalfish species (Bernardi & Vagelli, 2004; Gerlach et al., 2007;

Gotoh et al., 2009; Hoffman et al., 2005; Vagelli et al., 2008),

S. tubifer exhibits genetic admixture over a 140-km region despite the

species’ demonstrated homing abilities and olfactory preferences for a

home reef (Gould et al., 2015). These findings suggest that strong

ocean currents combined with a month-long pelagic larval phase pro-

mote dispersal and gene flow in the region. We also found evidence

for temporal genetic differentiation at a small number of loci puta-

tively under selection, suggesting adaptive variation in the source pop-

ulations that supply S. tubifer larvae to the Okinawa Islands. Future

investigations S. tubifer populations at varying locations across this

species’ broad, Indo-Pacific distribution will provide insight on

whether various source populations are undergoing divergent selec-

tion and whether the scale of genetic admixture observed here is

region-specific.
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