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ABSTRACT 

The development of resistance to targeted therapeutics is a challenging issue for the treatment of 

cancer. Cancers that have mutations in BRCA, a DNA repair protein, have been treated with poly 

(ADP-ribose) polymerase (PARP) inhibitors, which target a second DNA repair mechanism with the 

aim of inducing synthetic lethality. While these inhibitors have shown promise clinically, the 

development of resistance can limit their effectiveness as a therapy. This study investigated 

mechanisms of resistance in BRCA-mutated cancer cells (HCC1937) to Olaparib (AZD2281) using 

TRACER, a technique for measuring dynamics of transcription factor (TF) activity in living cells. TF 

activity was monitored in the parental HCC1937 cell line and two distinct resistant cell lines, one with 

restored wild-type BRCA1 and one with acquired resistance independent of BRCA1 for 48 hours 

during treatment with Olaparib. Partial least squares discriminant analysis (PLSDA) was used to 

categorize the three cell types based on TF activity, and network analysis was used to investigate the 

mechanism of early response to Olaparib in the study cells. NOTCH signaling was identified as a 

common pathway linked to resistance in both Olaparib-resistant cell types. Western blotting confirmed 

upregulation of NOTCH protein, and sensitivity to Olaparib was restored through co-treatment with a 

gamma secretase inhibitor. The identification of NOTCH signaling as a common pathway contributing 

to PARP inhibitor resistance by TRACER indicates the efficacy of transcription factor dynamics in 

identifying targets for intervention in treatment-resistant cancer and provides a new method for 

determining effective strategies for directed chemotherapy. 

Keywords: PARP inhibitors, Data-driven modeling, Drug resistance 

 

Introduction 

The genes BRCA1/BRCA2 play major roles in the repair of DNA double-strand breaks (DSBs) by 

homologous recombination (HR). HR repairs DSBs that occur in the late S and G2 phase of the cell 

cycle and also has a key role in resolving DSBs that result from unrepaired single-strand breaks 
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(SSB). As such, mutations in the BRCA genes lead to an increased risk of genetic mutation and the 

subsequent development of cancer. Women carrying a mutation in BRCA1 or BRCA2 have a lifetime 

risk of developing breast cancer of up to 80%, with a risk of developing ovarian cancer of 

approximately 50% (Ford et al. 1994; King et al. 2003). Breast cancer and ovarian cancer are often 

associated with mutations in BRCA, with many BRCA1-driven breast cancers also being triple 

negative for the estrogen, progesterone and HER2/neu receptors (ER-, PR-, HER2-)(Foulkes et al. 

2010; Reis‐Filho and Tutt 2008). Targeted therapy for triple negative breast cancer (TNBC) is 

currently lacking, and as such much research is directed towards understanding and developing 

chemotherapeutics to target this disease subtype. 

One therapy targeted to BRCA-mutated cancers is the use of poly(ADP-ribose) polymerase 

(PARP) inhibitors(Farmer et al. 2005; Rottenberg et al. 2008; Rouleau et al. 2010). PARP is an 

enzyme that plays an important role in the recognition and repair of single-strand DNA breaks through 

the base excision repair (BER) pathway. Targeting this mechanism with PARP1 inhibitors has shown 

preclinical efficacy in tumors with homologous DNA repair defects, such as those arising in BRCA1 or 

BRCA2 mutation carriers with breast cancer and ovarian cancer(Bryant et al. 2005; Farmer et al. 

2005). The mechanism by which PARP inhibition can promote cell death in BRCA-mutated cells is 

thought to be through synthetic lethality, defined as the co-occurrence of multiple genetic events that 

results in organismal or cellular death(Lord et al. 2015). The PARP inhibitor Olaparib (AZD2281) is a 

small-molecule that has shown efficacy in patients with germline BRCA mutations in clinical 

trials(Buege and B Mahajan 2015; Gelmon et al. 2011; Ledermann et al. 2012; Tutt et al. 2009). 

Olaparib was recently approved for use in late-stage ovarian cancers with deleterious germline BRCA 

mutations as a result of its efficacy in clinical trials(Kim et al. 2015). Despite the effectiveness of 

PARP inhibitors in the treatment of BRCA-mutated cancers, some patients do not respond, and others 

can develop resistance to the drug with prolonged treatment. The mechanisms governing lack of 

responsiveness or the development of resistance are thought to occur through alterations in the 
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transcriptional network (Barber et al. 2013; Henneman et al. 2015; Jaspers et al. 2013; Johnson et al. 

2013; Lord and Ashworth 2013). Identification of these changes offers the opportunity to develop 

combination therapy strategies that can enhance the efficacy of PARP inhibitors while also preventing 

the development of resistance. 

The objective of this study was to quantify the regulatory dynamics of breast cancer cells in 

response to Olaparib treatment using cells that are both sensitive and resistant to PARP inhibition. 

We applied a TRanscriptional Activity CEll aRray (TRACER) to measure the large-scale dynamic 

activity of multiple transcription factors (TFs) that occur in response to Olaparib treatment for multiple 

cell populations. TRACER is distinct from other high-throughput approaches that measure the 

abundance of mRNA or protein within cells, as the repeated measurement of activity for multiple TFs 

within the same cell populations enables monitoring of the cellular adaptation to the presence of the 

drug and provides information on active signaling pathways that enable resistance. We employed 

data-driven modeling(Arnold et al. 2015; Beste et al. 2014) approaches that enable evaluation of 

relationships between TFs, rather than separate treatment of individual TFs. Network analysis of TF 

activity provided a unique perspective for both identifying tumor cells that are likely to be resistant to 

standard therapies as well as suggesting alternative multivariate targets for combinatorial treatment. 

Identifying the mechanisms of PARP1 inhibition-mediated cell death and resistance development 

during treatment has the potential to identify new strategies to maximize drug efficacy, guide 

associated combinatorial therapeutics to avoid resistance, and identify biomarker signatures to 

identify patients that are sensitive to PARP1 inhibitors. 

Materials and Methods 

Cells and Reagents 

HCC1937 (BRCA1-mutated) tumor cell line is derived from a type of human ductal carcinoma 

bearing a BRCA1 5382insC mutation in one allele and a deletion of the second allele. The BRCA1 

protein in HCC1937 lacks the BRCA1 C terminus, and extracts show very low levels of BRCA1 
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protein. The cells were stably transfected with either the wild-type BRCA1-expressing vector or the 

null vector so that two cell lines (BRCA1 wild-type and mutant-type) were established. (Kindly gifted 

by Dr. Vincent Cryns). 

Cell viability assay 

Cell viability was analyzed by MTS assay (Sigma). Cells (1500-3000) were plated in each well of a 

96-well tissue culture plate with 100 μL of medium. The next day, the medium was replaced with 100 

μL of fresh medium containing 10 μM Olaparib or 0.5 μM gamma secretase inhibitor, as indicated, 

and the cells were grown for 7 days. Stock Olaparib and gamma secretase inhibitor were prepared in 

DMSO. At the end of the treatment period, 10 μL of MTS solution was added to each well, the cells 

were incubated at 37°C for 1 to 2 h, and absorbance was read at 490 nm. Data are presented as a 

percentage of the control cells cultivated under the same conditions or the absorbance of the wells. 

Lentivirus 

Lentivirus was produced by co-transfecting HEK-293T cells with previously described lentiviral 

packaging vectors (pMDL-GagPol, pRSV-Rev, pIVS-VSV-G) (Dull et al. 1998) and lentiviral vectors 

using JetPrime (Polyplus). After 48 h, supernatants were collected and cell debris was spun down and 

removed. Viruses were concentrated using PEG-it (Systems Biosciences) and re-suspended in 

phosphate buffered saline (PBS). 

Establishment of Olaparib-resistant cell line from BRCA1 mutant cells 

Olaparib-resistant clones were established by means of long-term exposure to gradually 

increasing concentrations of Olaparib (0.2, 0.5, 1, 2, 5, 10 µM, 1 week in each treatment). The cells 

that survived in the final 10 µM concentration of Olaparib were serially diluted to single cells and 

enriched without Olaparib. After establishing the clones, the drug resistance was confirmed and 

clones were selected that had drug resistance similar to BRCA1 wild type cells. 

Reverse Transcription-PCR (RT-PCR) 
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RNA was prepared from 5 × 105 cells by use of the Absolutely RNA Microprep Kit (Stratagene, 

Santa Clara, CA, USA). Before reverse transcription, 1 μg of RNA was treated with RNase free-

DNase I. Purified RNA (0.5 μg) was reverse transcribed with random hexamers using the Superscript 

III first-strand synthesis system (Life Technologies). β-actin was used as an internal control. The 

cycling conditions were as follows: pre-treatment at 95°C for 15 s, then 40 cycles of denaturation at 

95°C for 5 s, and extension at 60°C for 30 s. Relative gene expression was quantified using the 

comparative ΔCT (CT: cycle threshold) method. 

Transcription factor activity arrays 

TF reporters consist of a specific TF response element (TRE) cloned upstream of a minimal 

thymidine kinase promoter driving the gene for firefly luciferase (FLUC). Increased binding of TFs at 

the TRE results in increased luciferase production and a proportional increase in luminescence when 

an excess of substrate is added during imaging, thus providing a quantitative measure of relative 

transactivation. TF reporter specificity and sensitivity studies are referenced on the TRANSFAC 

database. Each lentiviral reporter consists of three or four repeats of a TF-specific binding element 

driving expression of firefly luciferase. 

Dynamic TF activity was measured for three different populations of HCC1937 cells: parent 

HCC1937 cells with mutated BRCA1 (BRCAMT), HCC1937 cells with wild-type BRCA1 (BRCA1WT), 

and HCC1937 cells with mutated BRCA1 that have been selected for resistance to Olaparib 

(BRCA1MT/RES). Cells with mutated BRCA1 have impaired DNA repair and are thus sensitive to PARP 

inhibitors such as Olaparib. Activity was measured for 44 different factors over two days of treatment 

with 10 μM Olaparib. Measurements acquired at several time points (0,2,4,6,8,24,48 hours) allowed 

both initial differences between cell types as well as differences in response to Olaparib treatment to 

be elucidated from the data. 

All cell types were transduced with 10 MOI of each TF activity-reporting lentivirus. Transduced 

cells were then seeded on a 384-well plate with at least 4 replicates of each condition. Two days after 
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cell seeding, luciferase activity was measured using an IVIS Lumina LTE camera system (Caliper Life 

Sciences, Hopkinton, MA). The 2-day period is sufficient time for ensuring lentiviral gene expression. 

After changing media, cells were treated with 10 µM of Olaparib, and the luciferase activity was 

measured for 2 days. TA lentivirus, which is composed of only minimal promoter of thymidine kinase, 

was used as a control. The luciferase activity from TA lentivirus transduced cells highly correlates to 

cell number over time. Thus, all other TF activity was normalized with respect to TA activity and 

represented by TF/TA ratio. 

Western blot analysis 

Total cell protein was extracted in boiling SDS sample buffer [2% SDS, 50 mmol/L Tris-HCl (pH 

6.8), 10% glycerol, 0.002% bromophenol blue, and 6% 2-mercaptoethanol]. Cell extracts were 

separated by SDS-PAGE, and the proteins were transferred to polyvinylidene difluoride membrane 

(Millipore). Western blots were blocked in TBS-T buffer [10 mmol/L Tris-HCl (pH 7.4), 150 mmol/L 

NaCl, and 0.05% (v/v) Tween 20] containing 5% nonfat dry milk and probed with primary antibody in 

blocking buffer at 4°C overnight. Blots were washed with TBS-T buffer and incubated with secondary 

antibodies diluted in TBS-T at room temperature. Primary antibodies of anti-NOTCH1 and anti-

NOTCH3 were obtained from Santa Cruz Biotechnology. 

PLSDA Analysis 

Partial Least Squares Discriminant Analysis (PLSDA) was performed in order to identify patterns 

in TF activity that distinguish between cell types and treatments(Benedict and Lauffenburger 2012). 

PLSDA reduces model dimensionality by calculating orthogonal latent variables (LV) that best 

differentiate between classes. Scores calculated for observations can be plotted on LVs to allow for 

visualization of classification in a scores plot. Associated latent variable loadings enable identification 

of TF activity patterns associated with classification. Two separate PLSDA models were generated in 

this study; one using only data from the initial time point (single time point) and one using 

measurements from multiple time points (combined time-course). PLSDA calculations were performed 
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using the orthogonal PLSDA algorithm in PLS Toolbox (Eigenvector Research, Manson, WA). Cross-

validation was performed using k-fold cross-validation with k=10, dividing the dataset into 10 subsets 

and testing each subset individually with the remaining used for training. In addition to cross-

validation, the model was further validated by a permutation test, in which the classification efficacy of 

the PLSDA model was compared to additional PLSDA models generated using randomly permuted 

class labels using a Student’s T-Test. This test allowed for confirmation that the classification between 

the assigned cell types was significantly more effective than classification between random 

groups(Westerhuis et al. 2008). A single time point model was created with all cell groups (BRCA1MT, 

BRCA1WT, and BRCA1MT/RES) at the initial measurement time point (48 hours after seeding and 

transfection). A combined time-course model was also created using all three cell groups at multiple 

time points after treatment with Olaparib. Variable importance in projection (VIP) scores were used to 

select variables that were most effective in separating classes, eliminating those that were either not 

helpful or were confounding. The VIP scores for the selected variables indicate the relative 

importance of each variable in modelling the variance seen in TF activity measurements, and 

accordingly the most important variable for explaining the variance(Chong and Jun 2005). The 35 

variables with the highest VIP scores were selected in order to keep dimensionality consistent 

between single time-point and combined time-course PLSDA models. 

Statistical and systems analysis 

TF activity levels were normalized to a TA reporter with the corresponding treatment. We 

performed background subtraction and loss normalization to correct for systematic noise. All 

normalized TF activity levels were log2 transformed. Results of experiments are presented as the 

mean ± standard deviation unless otherwise indicated. Differences in means were evaluated by fitting 

an empirical hierarchical Bayesian linear model using the limma R package(Smyth 2005). P-values 

were adjusted using the false discovery rate correction(Benjamini and Hochberg 1995). A p-value of 

<0.05 was considered to be statistically significant. Each individual 384-well plate included only a 
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subset of the measured TFs, requiring the formation of simulated multivariate observations 

(containing every TF) for hierarchical clustering and PLSDA, which were generated by randomly 

sampling independent TF activity measurements from within each cell type. 1000 simulated 

observations were generated for each cell type in order to form a stable distribution, without 

calculating all possible combinations (>1048). Variables with more than 25% of activity measurements 

below background were removed from analysis. Mean-centering and variance scaling were used to 

standardize all data prior to multivariate analysis.  

Hierarchical clustering was used to identify differences in TF activity between cell groups in an 

unsupervised manner(Arnold et al. 2016). Clustering was performed using Matlab software 

(Mathworks, Natick, MA) with Pearson’s correlation coefficient as a distance metric. The clustering 

results were visualized using the clustergram function to generate a heatmap of relative TF activity 

with dendrograms indicating clusters for both TFs and samples. 

Network Analysis 

Network analysis of TF activity measurements was carried out using NTRACER, as described 

previously (Bernabé et al. 2016; Weiss et al. 2014). Briefly, normalized activity measurements are 

mean-centered and an initial network topology inferred through several different techniques: linear 

methods (PLSR(Mevik and Wehrens 2007), similarity index(Siletz et al. 2013), linear ordinary 

differential equations based on TIGRESS(Haury et al. 2012)), and nonlinear methods 

(ARACNE(Margolin et al. 2006), CLR(Faith et al. 2007), MRNET(Meyer et al. 2007), dynamic random 

forest(Breiman 2001)). A prior knowledge network curated from GENEGO, TRANSFAC, and IPA was 

also included in the model. CellNOptR(Terfve et al. 2012) was used to optimize the network 

architecture. A total of 500 runs was performed. Edge significance was determined by comparing the 

number of edge occurrences in the 500 optimized networks to 500 networks generated from 

permutation samples from the same data. A p-value of 10-6 was used for significance. Finally, features 
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were selected from the top 10% of significant edges at each set of time points to ensure high-quality 

edge selection. Networks were visualized using the R package iGraph(Csardi and Nepusz 2006). 

Results 

BRCA1-mutated HCC1937 cancer cells were sensitive to PARP1 inhibitor Olaparib 

The sensitivity of BRCA1-mutated HCC1937 cells to the PARP1 inhibitor Olaparib (AZD2281) was 

initially investigated. BRCA1WT cells were resistant to 10 µM of Olaparib compared with BRCAMT cells, 

with a 2-fold increase in cell viability after 7 days as measured by MTS assay (Figure 1). This data is 

consistent with the previous observation that Olaparib has a cytotoxic effect on BRCA-mutated cells. 

Prolonged exposure of HCC1937 cells to increasing doses of Olaparib over a six-week period led 

to the development of resistance at the therapeutic dose (Figure 1). Previous reports suggested 

BRCA1-mutated cell lines may develop resistance to Olaparib or other PARP inhibitors through a 

secondary mutation to restore the wildtype BRCA1 protein(Lord and Ashworth 2013). RG-PCR for 

BRCA1 in the resistant cells confirmed that the cells retained the truncated BRCA1 mutant that is 

present in the parental cell line, indicating that wild-type BRCA1 protein was not restored in these 

cells (Figure S1). 

Multivariate analysis of TF activity before treatment with Olaparib predicted phenotype and provided 

insight into systems-level mechanisms 

TRACER was used to profile baseline (i.e., no drug treatment) differences in TF activity in the 

three cell types (Figure 2 and Figure S2). A total of 68% (30/44) of examined TFs were significantly 

different between BRCA1WT or BRCA1MT/RES cells and BRCAMT (p<0.05). Of these factors, 10 were 

similar between BRCA1WT and BRCA1MT/RES, 1 was significant in BRCA1WT only, and 19 were 

significant in BRCA1MT/RES only. The TFs that were common between BRCA1WT and BRCA1MT/RES 

suggested that there may be common mechanisms to producing resistance to Olaparib, while the TFs 

that were distinct between the two may suggest cell-type specific mechanisms. 
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While univariate analysis may identify differences between cell groups based on the activity 

measurements of individual TFs, multivariate approaches allow for the identification of patterns in TF 

activity that can improve the classification and identifying relationships between TFs. We used 

hierarchical clustering to visualize multivariate differences in differentially active TFs in an 

unsupervised manner. Our results indicated distinct regulatory activity in BRCA1MT, BRCA1WT, and 

BRCA1MT/RES cells (Figure 3). TFs associated with BRCA1MT cells include PTTG, E2F1, CRE, and 

STAT3, while HOXA1, STAT5, WT, and HIF1 were associated with BRCA1WT cells, and LHX8, IRF1, 

ISRE, SP1, RAR, SRF, and OCT4 were associated with BRCA1MT/RES cells. These TFs belong to a 

variety of pathways, including interferon response (IRF1 and ISRE), development (RAR, HOXA1, and 

LHX8), and pluripotency (OCT4). 

PLSDA was used to identify linear combinations of TFs that best separated the 3 cell lines at 

single time points (Figure S3a). PLSDA applied to TF activity data from all three cell types (BRCA1MT, 

BRCA1WT, and BRCA1MT/RES) indicated separation between groups along two latent variables, with a 

calibration error ranging from 5.6% to 11.4% and a cross-validation error from 5.7% to 11.7% (Figure 

S3b). In the PLSDA model of TF activity prior to Olaparib treatment (Time 0), the first latent variable 

separated BRCA1WT and BRCA1MT cells, while the second latent variable separated BRCA1MT/RES 

cells from the other types (Figure 4a). BRCA1MT cells were scored negatively on LV1 and LV2 and 

therefore were associated with CRE, GATA1, E2F1, and PTTG. BRCA1WT cells, scored positively on 

LV1 and negatively on LV2, were associated with HIF1, STAT5, HOXA1 and WT, and BRCA1MT/RES 

cells, which scored positively on LV2, were associated with SP1, RAR, SRF and OCT4 (Figure 4b). 

Unsurprisingly, the TFs identified with each cell type using PLSDA were similar to those identified with 

hierarchical clustering. Of particular interest are TFs SRF, NOTCH, and OCT4 that are positively 

loaded on both LV1 and LV2, indicating association with both Olaparib resistant cell lines (BRCA1WT 

and BRCA1MT/RES). Overall, PLSDA indicated that resistant cell phenotype can be predicted based on 

relationships between baseline TF activity measurements. 
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Measurements of dynamic TF activity were more predictive of resistant cell phenotype and gave 

insight into temporal patterns of TF activation 

Measurements from multiple time points were used to create a combined time-course PLSDA 

model using data collected before (Time 0) and after (Times 2-48) Olaparib treatment (Figure 4 c-d). 

We ensured the number of parameters was matched between combined time-course and single time 

point models by including only the top 35 parameters in the combined time-course model, as 

assessed by VIP scores. Interestingly, the model including temporal information was over ten-fold 

more accurate for differentiating cell phenotype (cross-validation error of 0.25%) (Figure S3b), 

highlighting the importance of the ability to measure TF activity over time. PLSDA performed with 

permuted class labels performed with significantly worse CV accuracy (p<0.001). 

Examination of latent variable loadings revealed signatures of TF activation that may be useful in 

understanding differences in temporal signaling relationships based on cell phenotype (Figure 4d). 

The first latent variable (LV) separated BRCA1WT and BRCA1MT cells, while the second LV 

distinguished BRCA1MT/RES cells (Figure 4c). NOTCH activity measured 2 hours after treatment was 

the most critical component of these signatures (as assessed by VIP score). The loadings for most 

TFs across time points remained similar, suggesting similar dynamic directionality. Intriguingly, 

however, NOTCH is loaded differently at each time point, indicating that there is a change in relative 

activity over the course of the experiment within different cell types. Two hours after treatment with 

Olaparib, NOTCH is loaded positively on both LV1 and LV2, associating it with the Olaparib-resistant 

cell types (BRCA1WT and BRCAMT/RES). However, 48 hours after treatment, NOTCH becomes more 

associated with the Olaparib-sensitive BRCA1MT cell type. 

NOTCH as a common transcription factor in multiple Olaparib resistance mechanisms 

Networks for TRACER (NTRACER) was used to identify relevant hubs of activity leading to 

resistance in BRCA1WT and BRCA1MT/RES cells (Figure 5). These networks compared the differences 

in response between sensitive and resistant cell lines in order to identify differences in response that 
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lead to the resistant phenotype. Specifically, the networks at the earliest time points (0-2 hours, 

Figure 5a and 5c) were examined to determine the initial effects of Olaparib treatment on the inferred 

dynamic regulatory network. NTRACER identified 7 nodes directly connected to the BRCA1MT/RES cell 

type (PTTG, RAR, SP1, SRF, STAT1, AR, and HIF1), with 5 additional nodes (NOTCH, IRF1, GL1, 

SNAIL, and OCT4) regulated by one or more of the cell type-associated nodes. Similar connectivity 

was observed for BRCA1WT cells, with 1 node (Wilms tumor (WT)) associated with the cell type and 4 

additional nodes (NOTCH, STAT5, HOX1A, and GL1) downstream of the cell type-associated node. 

Later time points (2-4 hours, Figure 5b and 5d) had increased connectivity (defined as the number of 

connections for a particular node relative to the total number of nodes in the network) of downstream 

nodes, particularly NOTCH, OCT4, IRF1 and SNAIL in the BRCA1MT/RES cells and NOTCH and GL1 in 

the BRCA1WT cells. The nodes are interpreted as involved in early response to the drug as they are 

both downstream of the phenotype and increase in importance with increased treatment duration. 

Taken together, NOTCH was the only factor that appeared in all inferred networks and was 

additionally shown to be involved in early response to Olaparib in resistant cell lines. 

Inhibition of NOTCH signaling sensitized resistant cells to Olaparib 

The combination of analysis techniques identified NOTCH as a common target in BRCA1WT and 

BRCA1MT/RES cells to desensitize them to Olaparib treatment. NOTCH protein overexpression in 

BRCA1WT and BRCA1MT/RES cells was confirmed by western blot (Figure 6a). Specifically, NOTCH3 

was overexpressed while NOTCH1 expression was consistent between cell types. The direct role of 

NOTCH signaling in PARP1 inhibitor-induced cell death and the development of resistance was 

investigated by treating BRCA1WT and BRCA1MT/RES cells with both Olaparib and γ-secretase inhibitor 

(GSI), which specifically inhibits NOTCH signaling (Figure 6b). Cell viability decreased for both 

resistant cell groups during co-treatment, with BRCA1WT cells showing 40% decrease in viability with 

co-treatment and BRCA1WT/RES cells showing 75% decrease in viability by MTS assay. These results 

are consistent with our identification of NOTCH activity as an important factor in acquired Olaparib 
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resistance, and they suggest that acquired resistance independent of BRCA1 restoration is distinctly 

sensitive to NOTCH inhibition in combination with Olaparib. 

Discussion 

Resistance to PARP inhibitors can proceed through a variety of mechanisms. BRCA can be 

restored, thus preventing the combination of events that lead to synthetic lethality(Barber et al. 2013). 

Resistance can also proceed through enhanced drug clearance(Lord and Ashworth 2013; Rottenberg 

et al. 2008) or secondary mutations that lead to deletion of the 53bp1 gene, which prevents PARP 

action at the site of DNA damage(Jaspers et al. 2013). Crucially important are the regulatory factors 

that can lead to one or a combination of these events. This study identified core transcription factors 

and pathways that distinguish parental HCC1937 cells (BRCAMT) from cells with restored BRCA1 

(BRCA1WT) and cells with acquired resistance (BRCA1MT/RES), using both supervised and 

unsupervised classification prior to treatment with Olaparib. Because NOTCH was 1) significantly 

different in the two resistant cell lines compared to the parental line, 2) in the top 10% of VIP scores 

via PLSDA on the dynamic TF activity data, and 3) implicated in the early response to Olaparib by 

NTRACER, NOTCH inhibition was investigated in combination with Olaparib treatment, and we 

observed that this combination could overcome resistance. 

The association of NOTCH with mutant BRCA1, sensitivity to PARP inhibition, and upregulation 

following the development of resistance is consistent with the role of NOTCH signaling in breast 

cancer development. BRCA1 has been reported to upregulate NOTCH signaling by transcriptionally 

upregulating NOTCH ligands and receptors, which may be important for normal breast tissue 

differentiation(Buckley et al. 2013). This role of NOTCH during development would be consistent with 

the observation that BRCA1 mutation may prevent the ability to upregulate NOTCH. In human breast 

cancer, aberrant activation of NOTCH1 has been observed(Stylianou et al. 2006), and examination of 

breast cancer patients' clinicopathological parameters reports that a high level of NOTCH1 may be 

associated with a poorer outlook for the breast cancer patient, while a high level of NOTCH2 
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correlated to a higher chance of survival(Parr et al. 2004). Herein, we report an association of NOTCH 

signaling with PARP1 inhibitor-induced breast cancer cell death, which was further validated by 

demonstration of increased cell death following co-treatment with PARP1 and NOTCH signaling 

inhibitors for BRCA1 wild-type and mutant cells. Furthermore, PARP1 inhibitor-resistant BRCA1 

mutant cells had an increased expression of NOTCH3. NOTCH fusions have been reported in triple 

negative breast cancer cells, which could provide a means for upregulation of NOTCH activity despite 

BRCA1 mutation(Robinson et al. 2011), thereby providing resistance to PARP1i treatment. Our 

results, combined with the increasing evidence supporting the association of NOTCH pathways with 

breast cancer development, suggest that PARP1 inhibitor-induced cell death and development of 

resistance might be related to restored NOTCH activity, which is lowered in the BRCA1-mutant cell 

type. 

A key component to identifying NOTCH was the incorporation of dynamic TF activity 

measurements, which improved the classification accuracy of the models compared with static 

techniques. The ability of the TRACER platform to capture dynamic changes provides a distinct 

advantage over comparable techniques based on cell lysis and measurements of abundance, where 

acquiring multiple time points can be prohibitively labor intensive or expensive to perform. By 

measuring TF activity at multiple time points in the live cell assays, the probable phenotype of the cell 

was more easily classified, potentially recognizing resistance days before the efficacy of treatment 

can be assessed. Incorporation of dynamics into the supervised PLSDA model resulted in more than 

a ten-fold reduction in misclassified points compared to single time point PLSDA. Importantly, 48 

hours of treatment and measurement were used for classification in this study, which is before a 

significant response was observed to the drug in sensitivity assays (Figure 1). Equally important, VIP 

scores identified NOTCH at 2 hours as the top scoring classifier in the model. Latent variable loadings 

in the combined time-course PLSDA model indicate the association of this early NOTCH response, 

but not the later response, with the resistant phenotype, which supports the utility of comparing 
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dynamic measurements (Figure 4). Static measurements would not have identified the complex role 

of this factor, which ultimately proved important to the development of resistance in the model system 

(Figure S3a). 

Furthermore, the combination of analysis techniques used in this study was essential to identifying 

NOTCH as a potential driver of resistance to Olaparib. Statistical analysis is useful for finding factors 

that are differentially regulated between cell types and different time points of treatment, however 

determining the factors ultimately responsible for resistance is difficult to determine. PLSDA was 

applied in this study to identify differences in the two phenotypes (resistant and sensitive) as well as 

differences between cells with different mechanisms of resistance. The latent variables generated 

during PLSDA provide an excellent means for representing multivariate TF activity measurements and 

a distinct advantage over other classification techniques in visualization and interpretation (Ballabio 

and Consonni 2013). PLSDA allowed identification of relationships between TFs (or “signatures”) that 

best differentiated cell phenotypes. Additionally, PLSDA directly complements these baseline 

statistical measurements by providing a measure of the factors that are “important”; that is, the factors 

that can be used to identify one cell type from the others, and, through the VIP score, rank the relative 

importance of each factor within the model. Network analysis (NTRACER) generated a model of the 

factors that are directly connected to the phenotype, the factors that are associated with the response 

to the drug, and how these factors change in importance over time. The network analysis provided a 

biological context for the PLSDA measurements, in which the role of a particular factor in the 

response could be elucidated. In this study, we tested one TF identified as a key hub by our network 

analysis, yet future studies could use additional TF signatures to design combinatorial therapies. 

The techniques used in this study each suggested NOTCH signaling as essential to the response 

of both resistant cell types, though the analysis suggests BRCA1WT and BRCA1MT/RES have distinct 

mechanisms of resistance. NOTCH activity is linked to the BRCA1 protein and thus likely the cause of 

increased NOTCH activity in the BRCA1WT cell line; this would also account for the relative simplicity 
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of the BRCA1WT network, as the response to PARP inhibition would proceed through the BRCA1 

protein, which was not measured in these experiments. Conversely, NOTCH signaling was associated 

with pluripotency markers (OCT4, NANOG) in the BRCA1MT/RES cell lines by both PLSDA and 

NTRACER. This association of NOTCH with OCT4 and NANOG is consistent with previous reports in 

which signaling in resistant cancer cells was connected with the cancer stem cell phenotype(Bhola et 

al. 2016; D'Angelo et al. 2015; Qiu et al. 2013; Reya et al. 2001; Ying et al. 2011). The association of 

pluripotency markers (OCT4, NANOG) with BRCA1MT/RES cells but not BRCA1WT cells possibly 

indicates a stem cell phenotype for these cells and that this phenotype may enhance NOTCH activity 

that contributes to the resistance to Olaparib. 

In conclusion, we employed TRACER to report on the activity of numerous TFs in BRCA1-mutated 

cells during treatment with Olaparib and identified key TFs associated with PARP inhibition. The 

NOTCH pathway was identified as a key factor in supporting resistance to PARP inhibitor therapy 

through a combination of techniques. The analysis strategies utilized here could be applied to other 

cancer/therapy systems to identify pathways important to drug resistance, as well as identify potential 

mechanisms for drug action on these cells. Furthermore, strategies such as those developed herein to 

identify NOTCH signaling may also be employed to identify therapeutic targets critical to overcoming 

resistance to a variety of pharmaceuticals, which is a mounting challenge to the clinical management 

of advanced cancers. 
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Figure 1: Cell viability after 7 day treatment with 10 μM Olaparib. Values are presented as absorbance at 
490nm normalized to the parental cell line. BRCA1WT and BRCA1MT/RES are both significantly different from BRCA1MT 

(* p<0.05, **p<0.01) 
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Figure 2: Dynamic transcription factor activity after treatment with Olaparib. Values are reported as log2 
values for the treated condition normalized to the TA control reporter and untreated HCC1937 cells. Colors 
of TF names denote significance compared to BRCAMT during at least one measurement (p<0.05). Red: 
BRCAWT, Green: BRCAMT/RES, Blue: Both 

 

 

Figure 3: Unsupervised hierarchical cluster of bootstrapped multivariate observations based on 
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transcriptional activity at the initial time point. BRCA1MT (BRCA1 mutant, green), BRCA1WT (BRCA1 wildtype, 
red), and BRCA1MT/RES cells (BRCA1 mutant with resistance to Olaparib, blue) were separated based on 
their transcriptional activity. 

 

 

Figure 4: PLSDA analysis of transcription factor activity measurements from BRCA1MT (BRCA1 mutant, 
green), BRCA1WT (BRCA1 wild-type, red), and BRCA1MT/RES cells (BRCA1 mutant with resistance to Olaparib, 
blue). Colored regions represent 95% confidence ellipses for each cell type. Specific TF activity patterns 
associated with each cell group can be identified by the co-localization of the sample scores (A and C) and 
the TF loadings (B and D). (A and B) Single timepoint PLSDA using standardized activity measurements for 
35 transcription factors at the was able to separate the three cell groups with 92.0% calibration accuracy 
and 91.7% cross-validation accuracy. (C and D) Combined time-course PLSDA using standardized activity 
measurements for transcription factors at multiple time points after treatment with Olaparib. VIP scores 

were used to select 35 TF/time point measurements that separate the three cell groups with 99.7% 
calibration accuracy and 99.7% cross-validation accuracy. The labels on the loadings plot (D) indicate both 
the name of the transcription factor being used and the elapsed time after the addition of Olaparib. 
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Figure 5: Inferred regulatory networks in BRCA1MT/RESand BRCA1WT cells. Networks depict regulatory 

interactions relative to BRCAMT cells during the first 4 hours of PARPi treatment. White node indicates the cell 
type. Green edges indicate activating interaction, red edges indicate deactivating interactions. A, B) 
networks for BRCA1RES/MT cells from 0-2 and 2-4 hours. C, D) networks for BRCA1WT cells from 0-2 and 2-4 
hours. 
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Figure 6: NOTCH signaling is related to PARPi resistance. A) Notch3 protein was elevated in two PARPi 
resistant cell lines, while Notch1 protein was unchanged. B)Three cell lines (BRCAWT, BRCAMT, and 
BRCAMT/RES) were treated by 10 uM of Olaparib, 0.5 uM of GSI, and both for 7 days. The values were 
represented by the MTS ratio to DMSO-treated control. Co-treatment of Olaparib and GSI significantly 
affected cell viability (p<0.01). 

 

 

 

 

 

 

 


