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Abstract 30 

Efficient management and prevention of species invasions requires accurate prediction of where 31 

species of concern can arrive and persist. Species distribution models provide one way to 32 

identify potentially suitable habitat by developing the relationship between climatic variables and 33 

species occurrence data. However, these models when applied to freshwater invasions are 34 

complicated by two factors. The first is that the range expansions that typically occur as part of 35 

the invasion process violate standard species distribution model assumptions of data stationarity. 36 

Second, predicting potential range of freshwater aquatic species is complicated by the reliance on 37 

terrestrial climate measurements to develop occurrence relationships for species that occur in 38 

aquatic environments. To overcome these obstacles, we combined a recently developed 39 

algorithm for species distribution modeling—range bagging—with newly available aquatic 40 

habitat-specific information from the North American Great Lakes region to predict suitable 41 

habitat for three potential invasive species: golden mussel, killer shrimp and Northern snakehead. 42 

Range bagging may more accurately predict relative suitability than other methods because it 43 

focuses on the limits of the species environmental tolerances rather than central tendency or 44 

“typical” cases. Overlaying the species distribution model output with aquatic habitat-specific 45 

data then allowed for more specific predictions of areas with high suitability.  Our results 46 

indicate there is suitable habitat for Northern snakehead in the Great Lakes, particularly shallow 47 

coastal habitats in the lower four Great Lakes where literature suggests they will favor areas of 48 

wetland and submerged aquatic vegetation.  These coastal areas also offer the highest suitability 49 

for golden mussel, but our models suggest they are marginal habitats. Globally, the Great Lakes 50 

provide the closest match to the currently invaded range of killer shrimp, but they appear to pose 51 

an intermediate risk to the region. Range bagging provided reliable predictions when assessed 52 

either by a standard test set or tests for spatial transferability, with golden mussel being the most 53 

difficult to accurately predict. Our approach illustrates the strength of combining multiple 54 

sources of data, while reiterating the need for increased measurement of freshwater habitat at 55 

high spatial resolutions to improve the ability to predict potential invasive species. 56 

Key words: environmental niche; golden mussel; habitat suitability; killer shrimp; 57 

nonindigenous species; northern snakehead. 58 
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Aquatic invasive species (AIS) have imposed substantial ecological damage on freshwater 61 

ecosystems (Ricciardi and MacIsaac 2000, Cucherousset and Olden 2011), prompting a more 62 

proactive, holistic approach to invasive species management (Leung et al. 2002, Pagnucco et al. 63 

2014). The identification of high risk species, transport pathways (e.g. Ricciardi and Rasmussen 64 

1998, Keller et al. 2009, Gantz et al. 2015), surveillance sites, and opportunities for 65 

implementation of slow-the-spread strategies all rely upon an accurate prediction of locations 66 

suitable for nonindigenous species to establish and persist (Gormley et al. 2011, Jiménez-67 

Valverde et al. 2011, Václavík et al. 2012, Gallien et al. 2012).  68 

 69 

Species distribution models (SDMs) estimate the statistical relationship between species 70 

occurrence and environmental conditions (Elith and Leathwick 2009) and applications of these 71 

models have been used to identify suitable habitat outside of the current range (Barve et al. 72 

2011), predict range shifts in response to climate change (Austin and Van Niel 2011, VanDerWal 73 

et al. 2013) and predict the spread of invasive species (Kulhanek et al. 2011). However, these 74 

applications involve violation of a key assumption of SDM methods, namely stationarity in 75 

species occurrence (Barve et al. 2011, Václavík and Meentemeyer 2012, Pagel and Schurr 2012). 76 

A spreading species is not in equilibrium with environmental conditions and has not had previous 77 

opportunity to sample novel environments in which it may thrive. The result is limited 78 

information on the suitability of novel combinations of environmental conditions (Veloz et al. 79 

2012). For actively invading species, using data from the invaded and native ranges provides the 80 

strongest basis for extrapolation and is the most practical approach given physiological 81 

information needed for a mechanistic model is generally lacking (Araújo and Peterson 2012). 82 

Nevertheless, there is still a risk of underestimating the extent of suitable habitat. 83 

 84 

Predicting suitable habitat for freshwater aquatic species using SDMs faces an additional 85 

challenge. SDMs are typically fit to measured or interpolated climatic or environmental 86 

measurements of the terrestrial environment. This is because the most reliably available climate 87 

variables come from global data sets (Hijmans et al. 2005, Tyberghein et al. 2012) or remote 88 

sensing (Cord and Rödder 2011, Bisrat et al. 2012) that primarily measure terrestrial climate 89 

variables. These data are often only an indirect indicator of freshwater environmental conditions, 90 

and several physical characteristics of water bodies can strongly influence the correlation 91 
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between atmospheric and aquatic conditions (Mohseni and Stefan 1999). For example, bottom 92 

waters of deep, seasonally stratified lakes are to a large extent decoupled from lake surface (and 93 

adjacent atmosphere) for a substantial portion of the year due to the presence of a thermocline 94 

(Boyce et al. 1989). Moreover, aquatic species predictions are also sensitive to aquatic 95 

environment-specific conditions such as hydrological and substrate stability, wave action or flow, 96 

water chemistry or clarity (Leathwick et al. 2005, 2011, Snelder et al. 2006, Brenden et al. 2008, 97 

McKenna Jr. and Castiglione 2010).  98 

 99 

Identifying which nonindigenous species are most likely to be introduced, establish, and to result 100 

in negative impacts is a complex endeavor that complicates management of biological invasions. 101 

This not only requires knowledge about the pathways of introduction and propagule pressure, but 102 

also the suitability of the receiving environment and likelihood of establishment (Leung et al. 103 

2012). One reliable predictor that a non-native species will cause environmental damage is 104 

invasiveness in other locations (Kolar and Lodge 2001). In addition, species that have high rates 105 

of introduction or are established in adjacent regions are also more likely to become established 106 

(Lockwood et al. 2005). For some species with known invasion histories and observations of 107 

widespread impact, information may exist on life history, environmental tolerance and 108 

persistence outside the native range. The ability to assess invasion risk can be increased by 109 

combining SDMs with this existing information, even when wide-spread measurements are not 110 

available to create mechanistic predictions from laboratory-measured environmental tolerances. 111 

 112 

We performed a two part evaluation of the potential range of three nonindigenous species which 113 

could invade the North American Great Lakes: golden mussel (Limnoperna fortunei), killer 114 

shrimp (Dikerogammarus villosus) and Northern Snakehead (Channa argus). These species have 115 

been identified by the United States Aquatic Nuisance Species Task Force (USACE 2011) as 116 

species of concern to US waters and have been predicted as probable future invaders of the Great 117 

Lakes (Ricciardi and Rasmussen 1998, Council of Great Lakes Governors 2013). First we 118 

estimated the habitat suitability throughout the Great Lakes for each species using a novel SDM 119 

algorithm called "range bagging" (Drake 2015). This algorithm was designed to estimate species 120 

range limits based on climate variables measured at all precisely known occurrences world-wide. 121 

To assess ecosystem-specific suitable habitat, these model predictions were then merged with 122 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

high resolution spatially explicit data representing the localized aquatic environment in terms of 123 

established species tolerances (Wittmann et al. 2017). The results provide species range 124 

predictions for a set of molluscan, crustacean and vertebrate nonindigenous aquatic species, 125 

illustrating the value of the two-part evaluation and showing that inclusion of measurements of 126 

aquatic conditions (or more reliable terrestrial surrogates) is key to providing models for the 127 

potential ranges of invasive aquatic species that are most relevant to management decisions (US 128 

Environmental Protection Agency 2008, Kilroy et al. 2008). 129 

  130 

Methods 131 

Three species were chosen for this analysis based on their likelihood of invasion and concern 133 

from scientists and the regional management agencies. The golden mussel (Limnoperna fortunei; 134 

Dunker, 1857) is an epifaunal bivalve, native to mainland China. Since the mid 1960s, golden 135 

mussel has been unintentionally dispersed across the globe through fouling of shipping vessels 136 

and established populations are now present in Hong Kong, Taiwan, Japan, Brazil, Paraguay, 137 

Uruguay, Bolivia and Argentina (Ricciardi 1998). Spawning occurs at temperatures between 16 138 

and  28°C (Xu et al. 2013) and after external fertilization, a free-living straight-hinged larva 139 

develops, subsequently evolving into an actively swimming veliger larva capable of survival in a 140 

wide variety of habitats (Karatayev et al. 2007). Golden mussel are thought to have life histories 141 

and habitat preferences similar to Dreissenid mussels, which have a widespread distribution and 142 

ecological impacts in the Great Lakes watershed (Karatayev et al. 2007, Fahnenstiel et al. 2010, 143 

Kerfoot et al. 2010, Vanderploeg et al. 2010).  144 

Species 132 

 145 

Killer shrimp (Dikerogammarus villosus) is an amphipod native to the Ponto-Caspian region of 146 

Eastern Europe and Ukraine. Since the 1980s, it has spread to at least 17 European countries 147 

along the complex European canal-river systems (Pöckl 2009) and to the United Kingdom via 148 

maritime shipping (Gallardo and Aldridge 2012). Killer shrimp is expected to continue its spread 149 

in Europe and eventually to North America (Ricciardi and Rasmussen 1998). Many studies show 150 

that D. villosus can prey upon many macroinvertebrate species, including native and other 151 

nonnative amphipods, as well as fish eggs and larvae (Dick and Platvoet 2000, Dick et al. 2002, 152 

Casellato et al. 2006). D. villosus range expansion is influenced by hydrological regime, 153 
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temperature, salinity, water quality, substrate and food availability (Bruijs et al. 2001, Devin et 154 

al. 2003, Josens et al. 2005, MacNeil et al. 2010, Boets et al. 2010).  155 

 156 

Northern snakehead (Channa argus) is a fish native to China, Russia and Korea (Courtenay and 157 

Williams 2004). It is established in regions of the eastern and central US (Potomac River, 158 

Chesapeake Bay, Lower Mississippi River (Arkansas) and individuals have been observed in 159 

California, New Jersey, New York  and in watersheds adjacent to the Great Lakes 160 

(http://nas.er.usgs.gov). This species is

 170 

 capable of survival in poorly oxygenated waters and has 161 

been found inhabiting shallow (<2 m) ponds or swamps, canals, reservoirs, lakes, and rivers 162 

(Courtenay and Williams 2004). The presence of submersed aquatic vegetation can provide a 163 

benefit for its reproduction, but is not necessary. C. argus has a wider latitudinal range and 164 

temperature tolerance (0 to >30°C) compared with other snakehead species (Courtenay and 165 

Williams 2004) and earlier SDM models using global climatic data suggest much of North 166 

America is suitable (Herborg et al. 2007). It is an aggressive predator, with a broad diet including 167 

fish, invertebrate and amphibian species (Courtenay and Williams 2004). Northern snakehead is 168 

listed as injurious wildlife under the US Lacey Act (Lacey Act 1900). 169 

Worldwide occurrence records for each study species were obtained from the primary literature, 172 

the Global Biodiversity Information Facility (http://www.gbif.org/), Fishbase (Froese and Pauly 173 

2011), and USGS (http://nas.er.usgs.gov) databases. All records with position uncertainty >50 174 

km were removed to ensure accurate match with the environmental data. All presence locations 175 

in both the native and introduced ranges were included in this analysis, yielding 81 unique 176 

locations for L. fortunei (22 native and 59 introduced; Appendix S1: Fig. S1), 233 unique 177 

locations for D. villosus (16 native and 217 introduced; Appendix S1: Fig. S2), and 198 unique 178 

locations for C. argus (47 native and 151 introduced; Appendix S1: Fig. S3). 179 

Occurrence data 171 

  180 

Nineteen global climate surfaces were obtained at 5 min resolution from the WorldClim dataset 182 

(Hijmans et al. 2005, http://www.worldclim.org). These variables are derivations of monthly 183 

rainfall and climate data that have been interpolated from weather stations, and are designed to 184 
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have increased relevance to species physiological limits (Hijmans et al. 2005, Graham and 185 

Hijmans 2006). To reduce bias and improve model stability, climate variables were rescaled and, 186 

in some cases, transformed. Variables BIO1-BIO11 and BIO15 were rescaled by subtracting the 187 

global mean and dividing by the global standard deviation. Variables BIO18 and BIO19 were 188 

rescaled similarly after log transformation to improve symmetry. Variables BIO12-BIO14, 189 

BIO16 and BIO17 were transformed via the empirical cumulative distribution function to obtain 190 

a uniform distribution as a normal distribution could not be approximated. (See archived R code 191 

for further details.) All climate variables were included in the analysis in order to estimate the 192 

best predictive model given the limited a priori understanding of the correlations between 193 

atmospheric and aquatic climate and of which variables are most influential for each species.  194 

 195 

Data on the distribution of submerged aquatic vegetation (SAV) at 30 m resolution in the 196 

optically shallow areas of lakes Huron, Michigan, Erie, and Ontario were obtained from the 197 

Michigan Tech Research Institute (MTRI).  These data were generated using an MTRI-198 

developed depth invariant algorithm and depend on Landsat satellite data collected during the 199 

vegetative growing season (Michigan Tech Research Institute 2012, Shuchman et al. 2013). 200 

Vegetative growing season and years varied by lake: Lake Erie, May–September 2006–2011; 201 

Lake Huron, March–September 2007–2011; Lake Michigan, April–May 2008–2011; Lake 202 

Ontario, April–September 2008–2011.  Some portions of these lakes could not be classified due 203 

to high turbidity.  Submersed vegetation data did not exist for Lake Superior or Lake St. Clair.  204 

Data for the remaining four lakes were combined using the Mosaic to New Raster tool process in 205 

ArcGIS Version 10.2 (Esri 2014) with a cell size of 30 m.  This study used classes 1 (light 206 

submerged aquatic vegetation) and 7 (dense submerged aquatic vegetation).   207 

 208 

Data on the spatial distribution of wetlands were compiled by the Great Lakes Coastal Wetland 209 

Inventory (Great Lakes Coastal Wetland Consortium 2004).  The inventory utilized the most 210 

comprehensive coastal wetlands data available for the Great Lakes and connecting channels and 211 

was derived from multiple sources. Coastal wetlands polygonal data were rasterized with a cell 212 

size of 30 m.  213 

 214 

Benthic temperature data acquired from the NOAA Great Lakes Coastal Forecasting System 215 
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(GLCFS) nowcasts were summarized by the Great Lakes Aquatic Habitat Framework (GLAHF). 216 

The GLCFS uses a 3D hydrodynamic model (Schwab and Bedford 1994, Chu et al. 2011, 217 

Beletsky et al. 2013) with a horizontal resolution ranging from 2 km (Lakes Erie, Huron and 218 

Michigan) to 5km (Lake Ontario) and 10 km (Lake Superior) to nowcast lake temperatures 219 

(among other physical variables) at 20 vertical levels in all lakes except Lake Erie (that has 21 220 

level). Averages of August monthly data from the years 2006-2012 were used and were 221 

combined for individual lakes using a mosaic process with an output cell size of 2000 meters 222 

(Esri 2014).  223 

 224 

To determine the habitat suitability in novel environments we applied SDMs using the range 226 

bagging algorithm (Drake 2015). This algorithm estimates species range limits in multi-227 

dimensional climate space using bootstrap aggregation. Range bagging has comparable accuracy 228 

to the widely used MaxEnt approach on high quality validation data sets (Drake 2015) and also 229 

performs similarly to widely used species distribution models for traditional approaches (Drake 230 

and Richards unpublished data) and invasive species (Wittmann et al. 2017, Cope et al. in 231 

review) including the three species considered here (Kramer et al. unpublished data). Range 232 

bagging was chosen over some more commonly used algorithms (e.g. Maxent) for two primary 233 

reasons. First, range bagging estimates the environmental limits of species habitat, giving it an 234 

ecologically relevant interpretation (Drake 2015, Cope et al. in review). This quantity more 235 

closely matches the concept of the ecological niche advanced by Hutchinson (Hutchinson 1957). 236 

Consideration of environmental tolerances—rather than the central tendency—may offer a more 237 

conservative (i.e. larger) estimate of the ecological niche relevant to invasive species risk 238 

assessment. Further, range bagging uses only presence points, removing the need for selecting a 239 

suitable area from which to sample background points, as this choice has recently been shown to 240 

have substantial effects on model reliability (Barve et al. 2011, Kramer et al unpublished data).  241 

Modeling potential distribution 225 

 242 

Range bagging models were constructed by fitting convex hulls to 256 random combinations of 243 

two environmental variables from the global climate surfaces (Drake 2015). We specified the 244 

parameter identifying the proportion of points sampled in each bootstrapped combination to be 1. 245 

While smaller subsets may give better performance on the holdout test points if presences are 246 
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sampled from sink habitat (Drake 2015), such limitations could be restrictive relative to novel 247 

environmental conditions experienced by non-native species. Along with all approaches to 248 

species distribution modeling, range bagging models may still be biased due to the issues of non-249 

stationarity and novel environmental combinations. For validation, therefore, models were fit to 250 

80% of the data and performance (area under the receiver operating curve, or AUC) was 251 

evaluated on a 20% hold-out test set (Appendix S1: Fig S4). For golden mussel, a 60-40 training 252 

test split was used due to fewer data points. The models fit to the training data are presented in 253 

the maps, such that performance on the 20% (or 40% for golden mussel) hold-out represents 254 

provides the measure of accuracy of the displayed models. As a second measure of performance, 255 

we estimated the continuous Boyce index (Hirzel et al. 2006, Petitpierre et al. 2012). The Boyce 256 

index was designed for presence-only data and was calculated with the R package “ecospat”. The 257 

Boyce index varies from −1 to 1 with values greater than zero indicating agreement between the 258 

prediction and the presences in the test data (Hirzel et al. 2006). The AUC and the Boyce index 259 

were calculated with the same model output and data for each run of the model. Variance in 260 

model performance was assessed with 10-fold cross-validation on the training data (Appendix 261 

S1: Fig. S4). Additionally, we estimated the transferability of the model by performing 5-fold 262 

cross-validation on data that was divided into longitudinal bins (Wenger and Olden 2012, 263 

Appendix S1: Fig. S4). This test measures the ability of the model to predict occurrence in 264 

distinct geographical areas, with longitudinal bins being appropriate for the occurrence of these 265 

species on multiple continents. Code used to fit models and display results is archived on Dryad 266 

(http://dx.doi.org/10.5061/dryad.d4144). 267 

 268 

The outcome of a range bagging model is an estimate of niche centrality for each species at each 269 

point on a map. After fitting the model, niche centrality was estimated for each grid cell in the 270 

global climate data set and mapped. Niche centrality refers to the tendency of an environment to 271 

be centered within the environmental range of a species across multiple environmental variables. 272 

We also estimated variable importance for each species by permuting each predictor variable and 273 

measuring the reduction in accuracy on the withheld test set. Because data reflect only 274 

occurrence records, a set of random background points was necessarily selected to function as 275 

absence points in the AUC calculation (Elith and Leathwick 2009). These points were taken from 276 

a large buffer (2000 km surrounding the known occurrence records), consistent with the fact that 277 
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these species are well known to be entrained in long distance transport pathways and therefore 278 

not greatly limited by dispersal.  279 

 280 

Species-specific information on environmental limits to occurrence, survival and spawning was 282 

collected from extensive review of the primary literature, which included but was not limited to 283 

field-based and laboratory experiments, surveillance efforts, and review and synthesis 284 

publications. Published limits in any measured environmental variable, including temperature, 285 

substrate type, water chemistry, and aquatic vegetation were recorded. Cases for which reliable 286 

Great Lakes-wide data was unavailable were discarded (primarily water quality data and 287 

zooplankton species composition). When sources differed in their reported limits the extrema 288 

from the set of values were considered to be the limit. This resulted in surprisingly limited 289 

concrete knowledge about environmental limits to establishment and persistence for the three 290 

species considered here. These environmental conditions were then used to restrict the projected 291 

range bagging model to the suitable areas of the Great Lakes, treating the environmental limits as 292 

thresholds beyond which habitat was unsuitable for that aspect of species life-history. 293 

Aquatic habitat suitability 281 

 294 

As spawning temperature >16°C is required for golden mussel reproduction (Xu et al. 2013), 295 

available benthic temperature data on the Great Lakes were used to delineate the potential 296 

spawning habitat. Constraints based solely on depth were not included, although it is thought that 297 

golden mussel may colonize the same habitats as Dreissenid mussels in the Great Lakes 298 

(Ricciardi 1998). Further, the existing measured depth limits for golden mussel are constrained 299 

by sampling and their current largely riverine distribution.  300 

 301 

Published field and laboratory studies of killer shrimp did not identify any useful environmental 302 

limitations that could be addressed with the Great Lakes dataset. The reported temperature range 303 

for survival is large (Bruijs et al. 2001, Wijnhoven et al. 2003, Velde et al. 2009), as is substrate 304 

usage (Boets et al. 2010) and dissolved oxygen (Gallardo and Aldridge 2012). Killer shrimp has 305 

only been reported at shallow depths (Lods-Crozet and Reymond 2006), but as with golden 306 

mussel this limit appears to depend on sampling, the limited depth range of colonized habitats 307 

and other factors, rather than a well-understood biological limitation.  308 
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 309 

The minimum temperature requirement for Northern snakehead spawning is 18°C (Amanov 310 

1974) and survival has been observed at temperatures 0–30°C (Okada 1960, Courtenay and 311 

Williams 2004). C. argus are known to survive long periods in low oxygen environments (Frank 312 

1970, Courtenay and Williams 2004) and prefer habitats with mud and aquatic vegetation (Okada 313 

1960, Courtenay and Williams 2004). Thus, Great Lakes regions with wetlands and submerged 314 

aquatic vegetation are of particular concern, even though the fish is able to occur outside of these 315 

areas (Amanov 1974). To identify areas where population densities and ecological impacts may 316 

be highest, the snakehead niche map was restricted by the combination of coastal wetlands and 317 

submerged aquatic vegetation. 318 

  319 

Results 320 

There was relatively little climate overlap between the Great Lakes basin and native and current 322 

non-native golden mussel distribution (Fig. 1). Niche centrality was highest in Lake Erie, but 323 

never exceeded 0.39, indicating most of the marginal niche models did not include 324 

environmental conditions observed in the Great Lakes basin. At the global scale, several regions 325 

where golden mussel is not established had much higher relative suitability, including the south-326 

east U.S. and eastern Australia (Fig. 2). Model AUC on a balanced set of withheld test points and 327 

random background points was 0.89 (Appendix S1: Fig. S5) and the Boyce index was 0.78. 328 

Random cross-validation showed a similar average AUC and slightly lower Boyce index 329 

(Appendix S1: Fig. S6, Fig. S7). The spatial cross-validation for golden mussel had much weaker 330 

performance, indicating the invaded and native ranges experience distinct climates (Appendix 331 

S1: Fig. S6, Fig. S7). The most influential variable for model performance was seasonality of 332 

precipitation (Appendix S1: Fig. S8), however, the loss of performance from permuting any 333 

single climate value was small and of similar magnitude, indicating redundancy due to high 334 

correlation among variables and/or a multivariate niche. 335 

Golden mussel 321 

 336 

The suitable niche for golden mussel was further restricted when limitations on reproduction 337 

were taken into account. Areas with average summer benthic temperatures warm enough to 338 

facilitate spawning were limited to Lake Erie, southern Lake Michigan and shallow bays of all 339 
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lakes (Fig. 3). The range bagging model and water temperature data indicated that Lake Superior 340 

and colder areas are unlikely to support viable populations. 341 

 342 

Killer shrimp displayed variable, intermediate niche centrality across the Great Lakes basin, with 344 

the highest match with current occurrences occurring in the southern regions (Fig. 4). There were 345 

no areas fully within the climate envelope of known killer shrimp populations. Indeed, viewed at 346 

the global scale, the climate niche only estimates high niche overlap for the native and currently 347 

invaded areas in the Ponto-Caspian region and Europe (Fig. 5). Model AUC was high at 0.96 348 

(Appendix S1: Fig. S9) with the most influential variables including the amount of precipitation 349 

in the wettest month and the wettest quarter (Appendix S1: Fig. S10). The Boyce index was 0.56, 350 

with comparable performance for both random and spatial cross-validation (Appendix S1: Fig. 351 

S6, Fig. S7). Alternative models using only temperature covariates had lower (killer shrimp and 352 

snakehead) or equivalent performance (golden mussel) for these species and did not provide 353 

increased ability to differentiate importance among the correlated climate predictors. As 354 

explained above, the few directly measured biotic limitations to killer shrimp persistence were so 355 

broad as to include the entirety of the Great Lakes. 356 

Killer shrimp 343 

 357 

The snakehead niche model estimated high climate overlap in the Great Lakes basin. The 359 

majority of Lake Erie, Lake Michigan and Lake Ontario, as well as large areas of Lakes Huron 360 

and Superior had niche centrality exceeding 0.8 (Fig. 6). This was unsurprising given the high 361 

niche centrality of much of eastern North America (consistent with the frequency of known 362 

persistent populations in this region; Appendix S1: Fig. S8). The model predicted a large area of 363 

Europe and part of South America as equally suitable environments for this species (Fig. 7). 364 

Model AUC was 0.93 (Appendix S1: Fig. S11) and Boyce index was 0.73. Cross-validation 365 

showed consistently positive AUC and Boyce indices (Appendix S1: Fig. S6, Fig. S7). Several 366 

climate variables were influential in model performance, including the temperature of the wettest 367 

quarter and the diurnal range in temperature (Appendix S1: Fig. S12).  368 

Northern snakehead 358 

 369 

Areas with surface water temperatures suitable for Northern snakehead spawning were relatively 370 
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limited, but they occurred in all lakes other than Lake Superior (Fig. 8). Areas with existing SAV 371 

and wetlands comprised only 2% of the lake area, but constitute suitable habitat for this species 372 

(Fig. 9). In most cases the spawning temperatures and aquatic vegetation coincide, indicating the 373 

potential for significant ecological impact if snakehead were to establish in the lakes. 374 

 375 

Discussion 376 

Integrating habitat specific information that characterizes the underwater environment with 377 

species distribution models improved the delineation of potential suitable habitat for non-378 

indigenous species.  As a result, we were able to use an SDM with a range bagging algorithm to 379 

provide informative estimates of relative climate suitability for all three species at the regional 380 

scale. While these suitability estimates cannot directly predict the probability of persistence 381 

without additional information (Phillips and Elith 2013), the high AUC values indicated these 382 

models did successfully predict occurrence of the three species in their native and current 383 

introduced ranges. The broad temperature range of killer shrimp and lack of information on other 384 

habitat requirements precluded the production of a habitat specific delineation for this species. 385 

However, high resolution aquatic environmental data from within the Great Lakes enabled 386 

prediction at finer scale by identifying specific areas with highest chance of establishment and 387 

persistence for golden mussel and snakehead, as well as areas likely to enable population growth 388 

and spread. To generalize across species, Lake Erie and southern Lake Michigan contained the 389 

areas most similar to the current climate niche of these species, while Lake Superior was more 390 

peripheral. Further, shallow coastal habitats appear to be most at risk if these species become 391 

established in the Great Lakes, whereas deeper, colder benthic habitat of all lakes appears to be 392 

unsuitable.   393 

 394 

The high AUC values for the test data and the random cross-validation showed that the range 395 

bagging models were effective at determining the relative suitability of these species for their 396 

native and introduced range. These high AUC values were supported by positive Boyce indices, 397 

indicating the models did better than random at predicting suitability for presences in the test and 398 

random cross-validation datasets. These findings were also validated for killer shrimp and 399 

snakehead using the more challenging approach of spatially subdividing the datasets suggested 400 

by Wenger and Olden (2012). Models for golden mussel performed more poorly when fit to 401 
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spatially defined subsets of the data than to all the data. In fact, the Boyce index suggested 402 

performance no better than random under this cross-validation. This highlights one of the 403 

difficulties of fitting species distribution models to species in the process of invading multiple 404 

regions. This is unsurprising for golden mussel, given the distance and differences between the 405 

native range in east Asia and invaded areas in South America. One implication is that a model fit 406 

only to the native range would misrepresent and underestimate the suitability of various habitats, 407 

indicating that using all available occurrences from the native and introduced ranges are likely to 408 

produce the most reliable predictions. At the same time, this case reminds us that species 409 

distribution models can perform poorly with non-analog climates. Accordingly, the analyses 410 

presented herein models represent an attempt to estimate risk as effectively as possible, but they 411 

may underestimate risk for particular locations. 412 

 413 

To our knowledge, this is the first global niche model of golden mussel, an invader having strong 414 

impacts in its introduced ranges (Ricciardi 1998). While the Great Lakes climate is relatively 415 

distinct in seasonality and temperature from the observed niche, several other areas appear to be 416 

highly suitable for establishment of this species, including uninvaded parts of South America, the 417 

Gulf of Mexico, southeastern United States, the east coast of Australia and parts of southeast 418 

Africa. Our analysis suggests that increasing surveillance in these areas may be warranted. If this 419 

species could establish in the relatively novel environment of the Great Lakes, its ability to 420 

reproduce would probably be limited to Lake Erie and the warmer and shallower parts of Lakes 421 

Michigan, Huron and Ontario. However, this does allow that the lakes could still act as a 422 

beachhead for invasion (Rothlisberger and Lodge 2013) of the more suitable lower Mississippi 423 

River via the Chicago Area Waterway System, potentially mirroring the historic spread of 424 

dressenid mussels across North America. There is also potential for suitable spawning area to 425 

grow given expected increases of surface water temperatures in the Great Lakes (Trumpickas et 426 

al. 2009, Kao et al. 2015). The ability to incorporate these underwater specific habitat data layers 427 

representing the golden mussel’s temperature limitation improves the understanding of where 428 

surveillance efforts can be focused. Relevant environmental layers on water chemistry or 429 

substrate type are not yet available for the entirety of the lakes, but the tolerances of golden 430 

mussel are broad enough that few parts of the lake would fall outside their tolerance (Ricciardi 431 

1998, Boltovskoy et al. 2006). 432 
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 433 

Our analysis provides a less clear prediction for killer shrimp in the Great Lakes. The niche 434 

centrality for the lakes is ambiguous, generally between 0.2 and 0.5, with Lake Superior again 435 

being the most peripheral. This could mean that the Great Lakes may be marginal but possibly 436 

suitable habitat for killer shrimp. However, the current distribution of killer shrimp is 437 

environmentally restricted by a contiguous geographic and climatic area, and our knowledge of 438 

this species is primarily derived from canal and riverine habitats (Pöckl 2009) which limits the 439 

ability to develop alternative environmental limits that can be applied within the lakes. Thus, it 440 

could be either that these are the only suitable environments or that the species simply has not 441 

yet been transported to other novel habitats, making non-stationarity a contributor to the 442 

uncertainty of predicting killer shrimp habitat. Moreover, given the existing distribution, the 443 

Great Lakes had the highest niche centrality of potential introduction regions globally, consistent 444 

with a previous analysis of European ports (Keller et al 2010). Since killer shrimp can persist 445 

across the range of water temperatures observed in the Great Lakes and seem to have a broad 446 

diet we were unable to further pinpoint high risk areas based on local environmental conditions. 447 

For example, killer shrimp have been shown to successfully colonize hard substrates (i.e., stones) 448 

and low density zebra mussel habitats (Kobak et al. 2015). While consistent spatial data on the 449 

distribution of these habitats are not yet available for the whole of the lakes, information on these 450 

habitats at the local scale could further inform assessments of risk for killer shrimp 451 

establishment. 452 

 453 

Climate conditions throughout much of the Great Lakes significantly overlap with the estimated 454 

niche of northern snakehead. This is consistent with predictions of Herborg et al. (2007) as well 455 

as observations of occurrences of this species elsewhere in North America, including watersheds 456 

adjacent to the Great Lakes. However, our inclusion of within-lake environmental conditions 457 

produced a refinement on previous models based on surface temperature, and helped identify 458 

specific habitats vulnerable to this species. Required spawning temperatures indicate that specific 459 

and, outside of Lake Erie, relatively limited areas would be available for reproduction. 460 

SAV/wetland regions in the Great Lakes overlapped with the suitable spawning temperatures, 461 

suggesting that these habitats may be vulnerable to snakehead establishment.  462 

 463 
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Modeling these three species reinforces the benefits and challenges of relying on climatic 464 

variables to apply SDMs in aquatic systems, particularly large lakes and rivers that are poorly 465 

coupled to proximal air temperature and precipitation (Boyce et al. 1989, Gronewold and Stow 466 

2013). This is especially relevant for the Great Lakes where the bottom temperature changes 467 

little throughout the year in areas deeper than about 30 m. Range bagging SDMs effectively 468 

estimated the intensity of occurrence in the current range, providing important information on 469 

relative suitability of locations at the regional and global scales. The analysis suggests the 470 

relative importance of precipitation at a global scale as surrogates for riverine hydrologic regime 471 

(Leathwick et al. 2011), although these variables are likely to have limited relevance within the 472 

waters of the Great Lakes themselves and are correlated with each other. Further, the 473 

microhabitat variations that are known to be important for many aquatic species are often 474 

unrelated to surface climatic measurements. Here we build on previous Great Lakes case studies 475 

(EPA 2008) that have combined satellite derived data layers with climatic data, and show how 476 

well-characterized subsurface aquatic habitat variables can also be used to improve spatial risk 477 

assessment. 478 

 479 

The visualizations of habitat suitability produced here could be an important tool for natural 480 

resource managers, and advance the understanding of the risk of invasion by these three species. 481 

This process of combining information from species locations and studies of environmental 482 

tolerances will have value for many other aquatic species. This process also highlights the need 483 

for the development of a standardized set of global or regional aquatic habitats data layers and 484 

measurements. By associating additional data on variables such as pH, nitrogen, phosphorus, 485 

calcium, substrate, and water temperature with species presences, more direct, high resolution 486 

models could be produced. The substantial ecological and economic costs posed by aquatic 487 

invasive species should motivate the collection of such data sets and continued advances in 488 

integrating different types of information. 489 

 490 
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Figure Legends 711 

Figure 1: Golden mussel niche centrality in the North American Great Lakes basin. Low values 712 

of niche centrality indicate climate conditions in the Great Lakes basin are often outside of the 713 

predicted niche.  714 

 715 

Figure 2: Golden mussel global niche. Map of niche centrality values with higher values 716 

indicating climate conditions falling within the modeled niche. 717 

 718 

Figure 3: Golden mussel habitat suitability restricted by spawning habitat. Visualization of the 719 

climate-based niche in areas of the Great Lakes warm enough for golden mussel spawning. 720 

Spawning can occur at benthic temperatures greater the 16°C (Xu et al. 2013). 721 

 722 

Figure 4: Killer shrimp niche centrality in the North American Great Lakes basin. Intermediate 723 

values of niche centrality indicate climate conditions in the Great Lakes basin often, but not 724 

completely, overlap the predicted niche. 725 

 726 

Figure 5: Killer shrimp global niche. Map of niche centrality values with higher values indicating 727 

climate conditions falling within the modeled niche. 728 

 729 

 730 

Figure 6: Northern snakehead niche centrality in the North American Great Lakes basin. Map of 731 

niche centrality for northern snakehead in the Great Lakes basin. High values of niche centrality 732 

indicate climate conditions in the Great Lakes basin fall generally within the predicted niche. 733 

 734 

Figure 7: Snakehead global niche. Map of niche centrality values with higher values indicating 735 

climate conditions falling within the modeled niche. 736 

 737 

Figure 8: Northern snakehead habitat suitability restricted by spawning habitat. Visualization of 738 

the climate-based niche in areas of the Great Lakes warm enough for snakehead spawning. 739 

Spawning can occur at benthic temperatures greater the 18°C. 740 

 741 
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Figure 9: Northern snakehead habitat suitability restricted by aquatic vegetation. Visualization of 742 

the climate-based niche in wetlands and areas of submerged aquatic vegetation. These are 743 

preferred habitat for northern snakehead. Note that submerged aquatic vegetation data is missing 744 

for Lake St. Clair.  745 
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