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SUMMARY

Li ticity problems posed on cracked domains, or domains with re-entrant corners, yield singular
solutionsFhat deteriorate the optimality of convergence of finite element methods. In this work, we
pr n optimally convergent finite element method for this class of problems. The method is
bas pproximating a much smoother function obtained by locally reparameterizing the solution
ardfind the singularities. This reparameterized solution can be approximated using standard finite
ele rocedures yielding optimal convergence rates for any order of interpolating polynomials,
without additional degrees of freedom or special shape functions. Hence the method provides optimally
co t solutions for the same computational complexity of standard finite element methods.
Fu re, the sparsity and the conditioning of the resulting system are preserved. The method
handles®body forces and crack-face tractions, as well as multiple crack tips and re-entrant corners.
tages of the method are showcased for four different problems: a straight crack with loaded
fac®mgcircular arc crack, an L-shaped domain undergoing anti-plane deformation, and lastly a crack
alo material interface. Optimality in convergence is observed for all the examples. A proof of
nvergence is accomplished mainly by proving the regularity of the reparameterized solution.
Copyright (© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

h

I'# boundary value problems, such as linear elasticity and the Poisson problem, which
ca scribe steady-state heat conduction, steady-state diffusion, or electrostatics, singularities
in the s@lution may arise from non-smooth boundaries, discontinuous coefficients, or abrupt
ch in boundary conditions. Problems with cracked domains, or those containing re-
entra orners, fall in the first category. The singularity of the solutions to this class of

s plagues the accuracy and convergence rate of standard (Lagrange) finite element
me . Concretely, finite element approximations of linear elasticity solutions in cracked
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in each element. To alleviate the shortcomings of standard finite element methods several
techniques have been proposed to address these singularities. These often provide a more
accurate solution, but very few of them are capable of obtaining optimal rates of convergence
for an arbitrary order of interpolating polynomials, which, as we show here, substantially
reduce the computational time for a given desired accuracy.

Overall speaking, the classes of finite element methods capable of achieving better accuracy
thgn standard finite element methods at a given computational cost for crack and re-
MHrner problems can be arguably classified into four categories: A family of methods
th iches the finite dimensional space with additional basis functions, one that takes
ad of adaptive refinement of h- and/or p-type, another that employs special singular
elements, and lastly a family of methods, which is closely related to this work, that exploits
B AP techniques to approximate a smoother function obtained from carefully mapping the
sirgular solution. In the following paragraphs we review the efforts invested in developing the
aforementioned families of finite element methods.

ssiy the most common methodology to enhance the accuracy of the solution and to

ac ptimal convergence rates is through the addition of special basis functions to the
fini ment space. The work found in [1] was the precursor of the methodology and more
reml 3, 4, 5] have re-energized this idea by including special basis functions exploiting
the Trafmework of the partition of unity. Within this framework, the methods proposed in

[6, "= arc among the early contributions that could achieve second-order convergence in
thmrm of the displacement. The literature on the topic is vast and we refer the reader
interested in a thorough review to [10, 11].

m;nd [13] the authors independently proposed a technique to construct eight-node
quglsadageral elements whose shape functions resemble the /7 singularity encountered in linear

elasti cture mechanics, where r denotes the distance to the crack tip. By placing the
mifl- nodes at the quarter points the mapped shape functions along the element edges
ex pture the radial singularity. Later, the method was improved in [14] where one of

nt edges is collapsed to a single point so that the mapped shape functions capture
t agoularity in the interior of the element as well. This idea of edge collapse appeared in
a r contribution [15] for the case of four-node quadrilateral elements. Although such

e elements constructed through singular isoparametric maps greatly enhance the
accuracy of the solution, the convergence rates remain sub-optimal.

Another class of methods employs adaptive mesh refinement in the proximity of the
si ity to enhance the convergence of the solution. Such specially designed graded meshes
[16, 17] or adaptively determined polynomial order [18] can be shown to yield optimally
At or otherwise much more accurate solutions.
we introduce the last class of methods, we discuss a different perspective on how

ﬁith singularities. Consider the singular solution w for an elasticity problem on a
c

rdfked domain Q, and define a function @ := w o~ on ) = ~~1(Q), the result of composing

mapping 7y : Q- Q. If, with a priori knowledge of the singularity, it were possible

ct a mapping v such that @ were much smoother that w, then one could shift the
focus to constructing approximations to @ instead of to w. We show here that this is in fact
pomWhy is approximating u different than approximating u? Because under very general
COLdaa@®s, U is very smooth, and hence standard finite element methods and quasiuniform
meshes over () can be used to approximate it with orders of convergence bounded
the smoothness of ©. This higher order of approximation is not lost when composing
roximation of @ with 4 to construct an approximation of w. This approach to deal
with singularities is the core of the method we introduce here.

Ideas close to what was described above have been explored in the literature. What
distinguishes our method from earlier work is that, by constructing a mapping < completely
independent of the domain discretization, we create an entirely different problem from the
original one, which we then proceed to discretize. This view is in contrast with the use
of mapping techniques to effectively generate special shape functions resulting from map

family
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MAPPED FINITE ELEMENT METHODS 3

composition. Reformulating the problem entirely, alongside specially constructed mappings -,
circumvent many of the limitations of earlier works where the cumbersome meshing required,
the limited capabilities in handling complex crack geometries (including multiple cracks and
cracks arbitrarily close to domain features), alongside the lack of applications to the more
commonly employed h-version of finite element methods, have likely prevented this type of
approach from being widely adopted. To further elaborate on this, we briefly review previous
effart exgenditures and later highlight the novelties of our approach.
Higin of this class of methods is the work found in [19], where, through conformal
mag®es and a careful construction of the discretization of the parametric domain Q, the
au btained better approximations to the straight crack problem. Albeit their approach
proved innovative, the method, which the authors referred to as the mapped elements method,
B, O™ cveral limitations. In fact only a limited family of crack geometries were dealt with
(oM straight cracks), the mesh generation process was rather cumbersome, and the non-local
mapping limited the applicability of the method to single cracks in simple domains. At a later
tinf® th&same authors proposed [20] a similar technique that employs mappings to generate
sin rack tip elements. Analogous to the work found in [12, 13, 14], such singular elements
gregtlyenhance the accuracy of the solution, but the convergence rates remain sub-optimal.
Whe authors exploited the same underlying idea and named their approach the method
of auziliary mapping. Their method was primarily targeted to p-finite elements [22] and hp-
fin ents. Similarly to [19], they reparameterized the solution restricted to a circular
secmjund the singularity, and separately meshed this sector and the remaining part of
the computational domain. The discretized circular sector was then mapped with the inverse
mﬂ to the parametric domain (the domain over which the singularity is eliminated),
an standard polynomial shape functions were built over this parametric domain. This
inte n nature of the mapping and the domain discretization renders the meshing procedure
reﬁ and cumbersome: The approximation functions near the boundary between the
1

cir ector and the remaining region have to be constructed using the blending mapping
[23] to ensure conformity. With such construction, for the p- and hp-version of

n ments they showed exponential rates of convergence. The method was later extended
to ss boundary singularities for a larger family of elliptic operators in [24], elasticity

in [25], and three-dimensional domains in [26]. Recently it was exploited in the
context of isogeometric finite element methods [27].

e introduce here a method targeted to h-finite elements of arbitrary order, but that should
alsh with p-finite elements, where the novelty lies in the fact that we construct an entirely
new problem via a mapping that is independent of the choice of the numerical method and
spscretization. Hence, standard numerical methods of any order could be adopted to
apMkggaate this new problem. Additional novel features of the method consist of:

) ppings are local, allowing the handling in a trivial manner of multiple singularities,
singularities at interfaces or domain boundaries.

° ihe cgnstruction of high-order approximations significantly reduces the computational time
eeded to obtain numerical solutions with a given error, as we show here.

. arge family of mappings are proposed [not a single way of constructing a smooth solution,

]. We provide precise conditions on the minimum power of the asymptotic behavior

of t apping near the singularity to sufficiently smoothen it to obtain optimal rates of
ergence for a given order of the h-version of finite element method.

° nily of mappings contain many mappings that are C*°(£2). One of them is adopted
here for the numerical examples.

e The asymptotic behavior of the particular mapping we adopt here is such that we do not
need to a priori know the precise power of the singularity, being that of a corner, a crack,
or a crack at an interface, to recover optimal order of convergence of the method.

e Both the enhanced regularity of the mapped solution and the optimality of the convergence
rate of the resulting method are proved.
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We highlight that the computational cost of the proposed method for a given number of
degrees of freedom is the same as that for standard finite element methods, no ill-conditioning
issues arise, several types of singularities can be successfully dealt with (including oscillatory
ones), the method is trivially implementable, and moving singularities are easily handled (e.g.
propagating cracks, moving dislocations, etc.).

Although we refer to this approach at dealing with singularities as a “method,” in reality it
is gothing but a reformulation of the problem statement such that the reformulated problem
(Heeagily solved using standard methods over Q. In particular, in the case of adopting finite
eley®ynethods for this last approximation, pushing forward the shape functions from Q to
Q builds a non-standard finite element space over 2. Motivated by this observation,
and in line with what was originally proposed in [19], we will refer to our method with the
R BMMMEEM, for Mapped Finite Element Method.

%e paper is organized as follows. In §2 we provide a bird’s-eye view of the method. We save
its details for §3 where we provide a self-contained summary of it for the reader less interested in
thgfdetzMed analysis. In §4 we use numerical examples to showcase the convergence properties
of ethod. Then in §5 we provide the analysis of the method, showing the enhanced
regylagdy of u and the optimal convergence rates at which @ is approximated.

WClude the introduction with some remarks on notation. We denote by H*(Q, R%) the
Sob®le®space W*2(Q, RY) and we let ||0|x.q and |O|; o denote the Sobolev norm and semi-
no M, cctively, over ). We let V- and V denote the divergence and gradient operators,
resmly. We reserve the symbol n to denote outward normals to boundaries. We will denote
y 1 :=J;;e; ® e; the second-order identity tensor and by

on

1
I= 5(5%5]'1 +0udjr)e; ®e; ®e,® e

thm‘?—order identity tensor on symmetric second-order tensors, where {e;} is an
ort

al basis.

E 2. OVERVIEW OF THE METHOD

We begin by introducing a brief overview of the key ideas behind the method. Details of the
forgnulation and the analysis are saved for §3 and §5, respectively.

2.1 e challenge

N th boundaries yield singular solutions to certain elliptic boundary value problems

such as linear elasticity. In this work, we consider a class of problems whose solution can be

ex as the sum of a singular part and a smooth part. For example, in a domain 2 with
nt corner of angle © > 7 (see Figure 1), the solution of the elastic field u :  — R?

cai be Witten as the sum of singular functions, {f;}, plus a smooth part ug such as

l
3 w=3"fitun (1)

i o= i (0) € HY(Q,R?), (r,0) are polar coordinates with the re-entrant corner as the
1/2 < min{\;}f_, <1, 9;(0) is C* in the appropriate range of 6, and ur € H*(Q, R?)
for som® k£ > 1 corresponding to max{/\i}le. This particular form of the solution results
in a singularity as u ¢ H?(Q,R?). In the particular case of fracture mechanics © = 27 and
A1 =1/2. If £ =1 is chosen, then k = 2, a well known result obtained by Grisvard [28, 29].
The lack of regularity of the solution is reflected in poor convergence rates when standard
Lagrange finite element methods are used to solve the problem. Generally for second-order
elliptic problems the convergence rate of standard finite element methods in the H'-seminorm
is bounded by h™{P:5=1}  where h is the maximum size of the elements, p denotes the
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L] Figure 1. Domain with a re-entrant corner.

omplete polynomials in the basis functions, and s is such that the elastic solution

. As a result, a necessary condition for optimal convergence is p < s — 1. For

example, f p = 1, the minimum possible choice, s must be at least 2 for optimal convergence.

m{m the problem at hand, it can be shown that w € H3/2-9(Q,R?) for any § >0

3/2(Q, R?). Thus the error in the solution of the displacement gradient is of order

e.g. see Flgure 7a), independent of p, the order of the polynomial interpolant. That

is to sayjino matter how high the degree of the polynomial basis functions is, the convergence
rate 1S the same and is always suboptimal.

2 solution
Gi known form of singularity of the solution (1), and considering that finite element
solfgtil converge rather rapidly to the exact one if the latter is sufficiently regular, the

underlying idea of the method is to construct a smooth solution by appropriately scaling
lar one. Namely, we would like to construct a bijective map ~ : R2 — R2 such that
and that 4 :=uo~vy € Hk(Q, R?), for some k > 2. Moreover, it will be shown later
satisfies a differential equation of the same type as that satisfied by w, with different
coetlicients. Once we have constructed such a map we can solve for @ using standard finite
element methods, recovering optimal convergence rates of the error in @ over the parametric
dogpain . It will be later shown in 85 that the optimality of convergence also holds on Q for
th in u.
e thus faced with the challenge of constructing a map - such that the composed solution
U is sufficiently regular. The minimum regularity requirement will be dictated by the
ordermor the interpolating polynomial.
onstrate the idea, consider a problem with one re-entrant corner, see Figure 1, with
Ep as a special case. Let (r,0) and (7, é) be polar coordinates associated with the re-
niant ﬁorner over € and Q respectively (see, for example, Figure 3). The map constructed

7:(72@)»—> (r:f4,9:é)

s the function ™ over Q to #*1 over ). Recall that since A1 > 1/2, it follows
' is in H2(Q) (see §5). As a result, if P! shape functions are used to solve for ,
| convergence is expected. In the actual method, we will localize the map via a cut-off
function™o that multiple singularities can be independently handled. Moreover, we will build
the map according to the order of interpolating polynomials to ensure optimal convergence.
Figure 2 showcases the effects of localizing the map around a specific point, in contrast to
reparameterizing the entire domain. More details will follow in § 3.1.3, as well as in Figure 3.

In the following section we provide a detailed description of the construction of the smooth
problem, as well as its numerical solution via standard Lagrange finite element methods. It
will become apparent to the reader that the method can be easily implemented with minor

transfo.
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Identity Map T

.JO

00 )
Q,'\‘““ d IPTI!§[

';}X

Fi 1o “remove” a singularity in the elasticity solution, assumed to be placed at the “nose” in

we construct a map from the original domain (left) to a parametric one (either one on
the right). A general map would deform the boundary of the domain (bottom right figure) as well as
deform the neighborhood of other possible singularities, such as when in the presence of multiple crack
tipg Instead, the map we adopt is localized around each singularity (top right figure), which means
thod uals the identity beyond a certain distance from the singularity (indicated by the cross-
hatched area). This property simplifies the enforcement of boundary conditions in many situations

llows for multiple crack tips to be handled simultaneously (cf. Figure 33b and § 3.1.3).

altgations to any standard finite element program, effectively yielding optimal convergence
rates with minimal computational and implementation overburden.

3. THE METHOD

@ overview of the method in mind from §2, we proceed next to present a detailed
construction of the problem over the parametric domain and its numerical solution.

We begin by stating in §3.1.1 the elasticity problem over the domain occupied by the body
of interest, followed by, in §3.1.2, an equivalent weak formulation over a generic parametric
domain € (with some mild restriction). We then discuss in §3.1.3 the construction of the map
o () — Q that ensures a sufficiently smooth solution of the problem over Q. We lastly conclude
the section with the introduction of the discrete problem statement in §3.2 and a summary of
the method in §3.3.
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MAPPED FINITE ELEMENT METHODS 7

3.1. Constructing the problem in the parametric domain

3.1.1. Problem statement in the physical domain. We consider a linear elasticity problem over
a bounded open domain € C R? with an associated Cartesian coordinate system z;, i = 1,2.
The problem reads: Find u : @ — R? such that

V-(C:Vu)+b=0, inQ,

H u=g, ond, (2)

(C:Vu) - n=t, ondQ,
WlQmotes the unit outward normal to the boundary 99 = 93Q U 9,9, 932N 9,Q = (),

@ Qi 2 Positive length, g: 940 — R? denotes the prescribed boundary displacement,
t :gTQ — R? denotes the prescribed boundary tractions and b : 0 — R? represents the body
fo . For the case with cracks, the domain {2 is intended as the cracked domain (namely
theggrasg is considered a portion of the domain boundary) and we let € = 9 \ 9 denote the
cr@ ensure that 9,0 D %. The constitutive tensor C is defined as

A, for plane strain,
C=A1®1+2ul, A= 20\
A+ 2’

where %ind 1 are Lamé’s first and second parameters, which we take as strictly positive, and
1 and I are the second order identity tensor and the fourth order symmetric identity tensor,

S

for plane stress,

re ly, as defined in §1.

set of admissible displacements V and that of test functions WV defined as
V= {u e H! (Q,RQ)}u =g on 8dQ},
W= {'w € H! (Q,R2)|w =0on 8dQ} ,

eak form of (2) reads: Find w € V such that

alu,w) = F(w), YweW, (3)

a(u, w) ::/Vu:C:deQ,
Q

F(w)::/b-wdQ+/ t-wdl.
Q LX)

3. §2. Problem statement in the parametric domain. Let 7 : R? — R? be a diffeomorphism
Q =~(Q) and that v = id outside a sufficiently large ball containing all crack tips
_cftrant corners, where id denotes the identity map. Additionally we introduce for later

use a set of Cartesian coordinates #; associated with Q (cf. Figure 3(a)). With

or Ma

h

{

)A)::Vo'y, W::Wo'y,

U

n equivalent formulation of (3) given by: Find @ € V such that

we

ay (0, W) = F (W), Y €W, (4)
where

any (T, W) = / Vi : M : Vab dS,
Q
F(m);:/i).u&jdfw t-w||(Vy)" " -n| jdl,

Q 2:Q
Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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8 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW
and j := det(V~) denotes the Jacobian of the mapping ~.
The symbol " is here reserved for functions composed with v, e.g. 4 = w o ~, and
Mi=j(Vy)~-C-(Vy) .

We remark that M possesses the major symmetry but not necessarily the minor symmetries
as it can be readily seen from its expanded form

M=Aj(Vy) '@ (Vy) ™" +2ui (V)™ -1 (V)"
erator a~ was constructed so that
 — a(u,w) = ay (4, W), (6)

fohovandw:wo'y.

3. @e map. The regularity of the solution of the problem stated in (4) is predicated
on the appropriate construction of the mapping -. In this section we will discuss the

co ion of such mapping. For clarity, we first present the construction of « for the case
of e singularity (crack tip or re-entrant corner), then we generalize it to handle multiple
si aies.

The case of a single singularity. Let @1 be the location of the singularity in the physical
doE&nd by construction, also the location of the singularity in the parametric domain,
T

ie ) = x1. We define # = #(&) := ||& — x|, and construct the mapping as
A qam) , . . (&
('U 1(@) = a7+ D0 er), g —n(a) = "2, 7
p € RT and

[1 e <1 + ! >} ifn<1

nmjL—exp w1 _ 1 )| U7 )
q(n) = n?mt—1 (8)

7, otherwise,

wim 2. The value of m is chosen so that m > p + 1, where p is the order of polynomials

in the finite element space (see §3.2 for specifics). In this way, optimal convergence of the finite
elg pproximation follows (see §5). For example, if piecewise quadratic polynomials to
co approximations over ) are selected, p = 2, we would set m = 3.

ﬁnect (7) with the discussion in §2.2, we first recall r» = r(x) := || — T ||. From (7)
welfca

n conclude that

) a(?/p)  7ali/p) (;) 9)

1 . 1.
—=—|y@) —v(®T) = =[l& - @T| == = —-—7— =1«
et = @) @) = Sle - e 452 = T
and henfe that ¢(#/p) plays the role of “stretching” 7 into r. As we shall see, the choice of
g)

q( guarantees that:

e have r ~ #2™ as # N\, 0, which is the condition stated in §2.2 to have @ € H’“(Q, R?),
ith £ > 2.

ii. The mapping = is bijective.
iii. The mapping - is the identity outside a compact region containing the singularity.

By defining v, we defined () = v~ HQ) as well. As a result, if the singularity is located at the
tip of a curved crack, the path of the crack will be different in Q than in Q. We illustrate this
with examples later.
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MAPPED FINITE ELEMENT METHODS 9

REMARK 1 (Generalization). The choice of ¢(n) in (8) is not the only one. More generally, we
can choose any function ¢(n) € Il ,,,, with m > k > 2 and

Oy, = {q € C* (R)|q(n) =nVn > 1; (10)

q(0)=0,5=0,....k—1; ¢'(n) >0 Vn>0;

Q 3C, Cy,m0 > 0 s.t. ¢'(n) > Cip®™ ! and ‘q(k) (n)‘ < Con*™=F v € [0,7]0]}.
t

1s simple to build ¢ € Il ,,, with polynomials, for example. Here k is the desired degree
Of Smoothness of the mapped solution near the singularity, i.e., & € H* (Q) For the numerical
apMgoximation of the solution, the smoother the function, the higher the attainable order
of convergence. Hence, in general, we will select m = k = p + 1, where p is the order of the
pofynonfals in the finite element space.
nditions stated in (10) imply that 0 < g¢(n)/n <1 for all n € RY. Moreover, by
in%n it is simple to see that they also constrain the behavior of ¢ near n = 0. More
idel

pr there exist C5,Cy > 0 and 79 > 0 such that Vn € [0, o],
Can™ <q(n) < Can®™, (11a)
- o <) (i
C ’q(j)(r])‘ <Cm?™i, j=1,... k. (11c¢)

s2m

Together, (11a) and (9) show precisely that r ~ 7 near 0, while (11c) guarantees that the
de s of v do not grow more than the derivatives of 7™ do. Equation (11b) ensures the
gromgt the gradient of v~!, which participates in M, see §5, as well as the bijectivity of .

jjectivity of 4 is readily seen from (9). In fact, for 7 € [0, p],
&y <T> >0
dr P

with the equal sign satisfied if and only if n = 0, implying the bijectivity of ~.
he discussion in §2.2 corresponds to a very simple ¢ that takes the form ¢(n) = n* for all
7 his g satisfies all conditions in (10) with & = m = 2, except ¢(n) = n for n > 1, and
leadgehg simpler computations of the gradient of the map. However, it is convenient to choose
a oincides with the identity for n large enough since it permits localizing the map to
il

ea ularity, an appealing feature when dealing with multiple singularities. O

ﬂ remainder of the manuscript we use (8) as the function ¢ of choice. We do so since
s ple to evaluate and it can be used to construct approximations of any order, given
that it ig C'°. The parameter p should be chosen to be at least a few times the radius of
cumvature of 00 at xT, so that the mesh size required to resolve the near-tip behavior is not

snjan that needed to resolve the geometry.

Handligg multiple singularities. Let ¢ € N denote the number of singularities, located at
T ,7=1,...,t. For each 7, we set 7, : @ > || — =T ||, see Figure 3. In this particular
e assume that the solution can be written as the sum of the asymptotic expansions

about €2h singularity plus the regular part as
t L
A
u = Z Z Trjwj 7'(97') + URg,
=1 j=1

where 6, is a polar angle associated with T , and, as before, 9, » and ug are assumed to be
sufficiently smooth.
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10 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

coincide outside balls of radius p; centered at the position of the it crack tip,
LT j-

v

— .
! (a) The problem is recast from a domain Q to a domain 2. The two domains

I
/
’
’
N s
~

(bi Illustration of the action of the mapping «. The image on the left shows the physical domain 2 while the
rifkt ficure shows the parametric domain €, namely the image of the physical domain under the action of the
inverse mapping (2 = v~ 1(Q)). We label with xT i, 1= 1...5the singularities around which we would like to
pesd o reparameterization. Several aspects of the mapping are worthwhile highlighting: (1) the mapping,
a @ d in §3.1.3, is such that the reparameterization is localized to the ball of radius p; centered at
mTJ), such that By, (zT ;)N By, (z7,;) =0 for all i # j, allowing a simple way to handle multiple
ities, (2) the boundary of the parametric domain (82) and that of the physical domain (89) do
necessarily need to coincide, as boundary conditions can be easily handled through map composition
r integral scaling (cf. (13a) and (15b)), (3) moving from the domain Q to €, points close to the
singularity are “pulled away” (effectively allowing the singular function to possess lower gradients when
“o Q), and (4) moving from the domain ) to the domain € the points farther from the singularity
are brought closer to the singularity (effectively allowing for a smooth function defined over Q to possess
s ures over 2). This last observation is responsible for the “disappearance” of the nose and the right
dimple in Q when mapped to Q.

T

Sin,
n

Figur hysical and parametric domains, and action of the mapping and its inverse on them. While
i ext the location of the crack tips coincide, for clarity in the figure the two domains are depicted
translated with respect to each other.

To account for each singularity we then construct the mapping v: R? — R? as

Nr

@) =53 (1 - "(’”) & - wr.), (12
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MAPPED FINITE ELEMENT METHODS 11

where 7, = n.(2) := 7-(2)/pr, with 7, : &+ || —x7]|]. We choose {p,}, € (RT)! within

the sole restriction that B, (x1.) N B, (xT ) =0, V7 # 7/, where B,(y) = {x ¢ R? | ||« —

yv|| < p} is the ball of radius p around y; in other words we require that the neighborhoods

of the singularities being mapped are mutually disjoint. Hence, by construction, the mapping

is local to each singularity and the mapped solution possesses the desired regularity. Figure 4

illustrates the construction of such mappings for a one-dimensional analog of the problem.
he egpression of the gradient of the mapping ~ is provided in Appendix A.

§

. 2
—_ f(z) cf. (d)

w
l

P

“’/
D\

1 — a(m)/mo == q(m)/m
i i i i — —1
1 1 1 1 l I l I l
-2 TT,1 0 LT,2 2 -2 0 2
z z
(a) The singular function. (b) Functions g¢(n+)/nr with m =2 in

Eq. (8)

[\)

—
9
T

|
—
N
T

|
N

1
z T, T

(c¢) The global map (c.f. Eq (12)) (d) The resulting mapped function over a
subdomain as highlighted in (a). The markers
show corresponding values of z; and #; such

that f(zi) = f(&) = v.

thor Manuscr

- One dimensional analog of the mapping. We begin by considering in (a) the function
— x7’1|1/2 + |z — x7’2\1/27 where z7 . = (-1)", 7=1,2. Weset m=k =2, pr =1, and
then congruct in (b) the maps q(nr) with nr = |z — z |/pr, for 7 = 1,2. In (c) we show the global

~
—~

u

g

a ilar to (12), and lastly in (d) we show the smooth function f = f o~ alongside the action of
the mapping on a set of evenly spaced points {Z;};.

A

3.2. The numerical approximation

In the following we describe the construction of a numerical approximation to @, and from
that an approximation to wu.

Let Q" be an approximation of Q of the appropriate order so that the error introduced by
the approximation of the domain does not dominate the order of convergence of the method.
For example, a standard isoparametric approximation of the domain would suffice. A similar

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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12 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

consideration is assumed in constructing the approximation 00" of 9,0 = ~71(849), then
setting 8,Q" = 90" \ ;0. This can be easily accomplished if, for example, 9,0 = 89, in
which case we set 90" = Q" or otherwise if the end points of 9;Q" coincide with the end
points of 9,8, and they coincide with nodes in the mesh.

Let 7" denote a finite element mesh over Q" (see Figure 5) with standard conditions, namely,
(1) K c Q" for all elements K € T", (2) Qh = = Ukepn K, where K denotes both a typical

nd the open set occupied by this element, and (3) for any K, Ko € T", K; N K, can

pty7 a common vertex, or a complete common edge. Here h = maxy 7+ diam K,
mK denotes the diameter of K.
gmwe build the finite element spaces

P

V P =Jal e H! (Qh RQ) Ah‘ e p? (K7R2),ﬁh:fh’(go'y) on 8th}, (13a)
: j wh € H! (Qh,R2> @', € PP (K,R?), %" =0 on adfzh} : (13b)
Here ) denotes the family of complete polynomials of order up to p € N over K, and Ih

rpolat1on operator over such elements. For Lagrange finite elements, the condition
g o) on g0 in (13a) is equivalent to 4" = g o v on nodes on 940" Tt is worthwhile
at the piecewise polynomial functions are constructed over Qh when composed with
the mapying v they will no longer be polynomials.

alerkin form of the problem statement then reads: Find @" € V"* such that

iE

- ol (@) = 2 (@), Vel € W, (19
..
:/ vVal M : V" dQ", (15a)
Qn
E F! (w -:/ g.whdeu/A W" - (£/(Vy)"" - n| j)opd, (15b)
Qh 0, Qh

Note that in the above, quantities in the domain integrals defined over O (e.g. b, J, V) are
taken as their zero extensions to Q", and p : 90" — 99 denotes the closest point projection of

a 18 ing in 0" to AQ. The mention of the extensions is purely formal, since in practice
and ag a result of the use of quadrature rules these extensions are (essentially) never evaluated.
Fi e obtain an approximation to w as u” = @" o y~!. For a more detailed description

plementation of the method we refer the reader to Appendix B.

(The inverse map). Notice that this approximation needs a mesh over Q) instead
To this end, an explicit expression of v~! was derived in order to easily evaluate

forllts dicretlzatlon. More precisely, the inverse map v~ ! can be explicitly expressed as

- ()

- q . .
(@) =2+ L (x—mT7), H=hx)=——",
0 P
for ongggangularity, and
- (1 A rr(x
Jt @ o= 3 (1= 0 e = i) =
T=1 T
for multiple singularities, where ¢=1(#) is the inverse function of q(n). O

REMARK 3 (Comparing against a method to approximate a problem with no auxiliary map).
In the upcoming sections we will recurrently contrast the approximations of u obtained with
and without the auxiliary map. To be precise, we will compare the results obtained by setting

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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MAPPED FINITE ELEMENT METHODS 13

~ to (7) and (12), termed MFEM, with that obtained by setting « to be the identity map,
which recovers a standard finite element approximation with Lagrange finite elements. For
convenience we will use the shorter acronym FEM to refer to the latter.

Notice that the MFEM does not introduce additional degrees of freedom or special shape
functions over the FEM (the shape functions in the MFEM are also polynomials, but over the
parametric domain). O

W 4 (Numerical computation of the bilinear form and functional). The bilinear form

and jaagfunctional of (15a) and (15b), respectively, are performed in § 4 using standard Gauss
qu re over a subdivision of Q" as traditionally carried out for finite element methods. [

RIPEMR 5 (Choice of p,). In order for the results to be accurate, the radius p, shall be chosen
to !e a sufficiently large multiple of the mesh size. Of course, for convergence, once chosen
the value of p, should not be changed as the mesh size is refined. We observed that p, > 5hy,
whifre is the coarsest mesh under consideration, already yielded the asymptotic behavior

wh rates of convergence approached optimal values. O
S’.Mmary of the method

Wi de this section by providing in Box 3.1 a recapitulation of the method. We emphasize
th rucial steps are (1) the construction of the map, (2) the subdivision of the parametric

domain, and (3) the generation of finite element arrays accounting for the metric changes.

N

Author Ma
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14 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

e

W R

L_A‘ __________________

i
1
(m-«‘

(a) Entire domain

Mapped boundary (¢) Zoom in over parametric domain (d) Zoom in over physical domain

Figure 5. Example of a finite element mesh of Q=~"1(Q) with Q=[-3,3] x [-1.5,1.5]\
{Hl € (=2,2), z3 = cos(3z1) exp[l/(23/4 — 1) + 1]}. In (a) we showcase the discretization
used for computations. In (b) we highlight that the boundary of the domain may not necessarily
be E'ed under the action of the mapping, namely % # v~ 1(%). In (c¢) we zoom in around one
of ck tips added[id=mc] to showcase the discretization of Q. Lastly in (d) we showcase what
the i of the discretization 7" of Q under the action of ~. It is worthwhile noting that ’y(Th)

re (d) ) does not serve any purpose from the computational perspective but it is solely provided

to illustrate the reader the action of ~.
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MAPPED FINITE ELEMENT METHODS 15

o]

3

x 3.1 Summary of the method.

Step ™ each of the t singularities let {p,}, such that B, (T .)NB,  (xT ) =0,V7 #1'.

Step . Selpct the polynomial degree p of the interpolating space php,

C

Step 3. oose m >k > p+ 1 (generally m = k = p+ 1) and generate the map ~ as
(’J . q(n-)
() = - (1 - ) (& - a7.0),
where 0, == ||& — T -|/pr, and

C et )], e

ni|L—exp m—1_ 1 )| UM )

q(n) = et =1

m 7, otherwise.

inverse map ! is

where 7, = ||l — 1 ||/pr-
Step hera‘ce a subdivision 7" of the approximation Q" of Q0 = 4~ 1(Q).
Step Qstruct the finite element space Vv over T" with isoparametric elements.

Step ve the following problem: Find @/ € V" such that

ay (@, 0") = F'(w), v e WP,

h

Stéanose " with v~! to obtain an optimally convergent approximation to u.

T
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16 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

4. NUMERICAL EXAMPLES

We next showcase the convergence of the MFEM by comparing the computed results to
the analytical solutions of benchmark problems. We will further contrast the accuracy and
computational complexity of the MFEM with the common FEM as introduced in Remark 3.
We considered four benchmark problems to showcase the properties of the MFEM: the first
prgblemgconsists of a straight crack with loaded crack faces, the second is that of a circular
aHr crack, the third is that of anti-plane elastic deformations in an L-shaped domain, and
lasyi®™my consider the problem of a crack at a bi-material interface. For all problems we show
thr gence behavior of the MFEM in comparison to the FEM. We systematically provide
convergence plots alongside tables with errors and computed convergence rates, for which finer
™MW ere obtained by successively and uniformly subdividing the coarsest mesh, which will
beﬂlustrated for each of the examples. We further provide error comparisons as functions of
the problem size N (namely the number of degrees of freedom, or the size of the linear system,
w 1¥ludes the degrees of freedom with Dirichlet boundary conditions) and CPU time

ta the assembly and the solution of the linear system, including some minor overhead
tas ich take orders of magnitude less time and are independent of refinement (all the
sirw\s were performed on a Unix based machine with 1.4 GHz Intel Core i5 processor
witl'4 GB 1600 MHz DDR3 of memory). As expected, we observe optimal convergence rates
fo FEM and sub-optimal rates for the FEM. Furthermore we see considerable gains in
ac for equivalent problem sizes and run times.

In what follows we will reserve the superscript ¢ for the analytical solution of the boundary
Vamblem under consideration. Furthermore, unless otherwise noted, we always let

04 8, g = u® (c.f. Eq. (2)), and b = 0. In all examples we chose m = k = p + 1, where p
ist er of the polynomials in the finite element space over the parametric configuration.
ases, the error ||u® — u"||o.q = ||[u® — 4" o y71o.o we approximated by numerical

int&ron over (), namely,
1/2
Jur =g~ (3 [ o = @[ o wsils, ) -

Additionally, throughout the following examples we present further numerical results,
begond the convergence of the L?(2)-norm of the solution, that highlight additional features
of thod. Namely, in §4.1 we discuss the conditioning of the resulting system of equation,
in S4amege discuss the convergence of the stress intensity factors, and lastly in §4.4 we showcase
Rality of convergence of the derivatives of the solution measured as the H'(Q)-norm
). Both triangular and quadrilateral elements are used in the presentation to showcase
theg endence of the optimality of convergence on the choice of the finite elements.

raight crack

rst problem is the one of a semi-infinite straight crack in an infinite medium subject
to mode loading. An analytical solution for the problem can be found in [30, 31]. We
further giperimpose a uniform pressure field in order to verify the application of boundary
tractiong,in the mapped region. If we let ub!! denote the solution field as found in [30, 31], the
S of the example will be given by

w = b 4 P

where uP is the displacement field associated with the uniform pressure. Assuming a plane
strain state, we have
(11 +25e5)

2(A + p)

with p = 1 being the uniform in-plane pressure.

uP =

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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MAPPED FINITE ELEMENT METHODS 17

We model a subdomain of the infinite medium Q = (—=1,1)?\{(z1, z2)|z2 = 0,21 < 0}. We
then have € = {(x1,22)|z2 = 0,—1 < 23 < 0}. We impose essential boundary conditions on
040 = 09 given by g = u®. On € = 9, we apply the tractions associated with the uniform
pressure field, namely t = pn. In Figure 6 we show a sketch of the modeled problem with
boundary conditions alongside the subdivision 7" of Q) and the same mesh mapped with ~.
Note that, as Q = Q, we use the same subdivision 7" for both the MFEM and the FEM. The
rag'us oisupport of the cut-off function is taken as p = 1. We assume a plain strain state and
thdmaterial constants are A = 1.5 and p = 1.

. ¥(T")

_________________________ . 1
o Q=0 ! |
1(4 i 0.5 |
+_ ok ‘2

' . on® = pn O ok N
l-l E:@
— :

' L 05f §

| |
1 u = ut —1 —-0.5 0 0.5 1
Meled subdomain with boundary conditions (b) Sample mesh corresponding to the first subdivision

Figure 6. Straight crack problem.

estigated the h-convergence for ]A)h’p,p =1,2,3,4, by uniformly subdividing each
triangle in the mesh into four similar ones. We showcase in Figure 7(a) comparison of the
convergence of the MFEM against the FEM. The error and the rates of convergence are
prt&ided in Table I. We observe optimal convergence rates for the MFEM and sub-optimal
rates for FEM. In Figure 7 we also provide comparison of the errors as functions of the problem
Siz d CPU time. It appears that the choice of p = 2 best balances computing time and
er ice that with p = 2 the computing times for an error of 1075 differ by around two
orders of magnitude, in favor of the MFEM.
ne of the key features that unleashes the computational time savings for the MFEM is
the auxiliary map presented here, the condition number of the resulting system of
eq@ationg maintains the same scaling with respect to mesh refinements than standard finite
elelnent methods. This is in contrast with graded mesh refinement strategies without proper
sc the basis functions. More precisely, the condition number of the method was observed
toms O(h=2), just as in standard finite element methods, cf. [32, Chapter 9]. Figure 8
shows the aforementioned behavior. This behavior arises because the bilinear form of the new
is coercive and continuous with continuity and coercivity constants independent of h.
1 to this fact is that the map itself is defined independently of h.
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w) Convergence in mesh size for FEM (b) Convergence in mesh size for MFEM
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Figure 7. Convergence of the elasticity solution for a straight crack.
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Table I. Errors (||u® — uhHO’Q) and convergence rates for the straight crack problem.

(a) FEM
P! P2 pP3 Pt
ho/h ‘ Error (@] Error (@) Error (@] Error o
1 91-100% - |26-100* - |13-100* - |75-107% -
D_‘z 45-100* 1.0|13-100* 1.1]6.1-107® 1.0 3.7-107° 1.0
4 22-107% 10]6.1-107®° 1.0]30-107° 1.0 1.8-107® 1.0
[ = |
8 1.1-107% 10/3.0-107®> 10| 1.5-10"® 1.0 |9.0-107% 1.0
L— 16 | 5.5-107® 1.0 | 15-107% 1.0 | 75-107% 1.0 — -
O 32 128-100° 1.0 75-100¢ 1.0 — — - -
64 | 1.4-10=° 1.0 - - - - - -
U) (b) MFEM
Pl P2 P3 P4
:70 /h ‘ Error O Error () Error (@] Error (@)
1 1.8-107% - | 28-100* - |91-100® - |57-100% -
C 2 | 54-100% 1.7|37-107° 29 |59-107% 3.9|25-107% 45
4 1.5-107* 18| 43-10% 3.1/39-1007 39|6.0-100% 5.4
m 8 41-107° 1.9 |53-1077 30| 24-1078 40| 19-107° 5.0
16 | 1.0-107® 2.0 |65-107% 3.0 1.5-1072 4.0 - -
32 | 26-107% 2.0]81-107° 3.0 — — - -
64 | 6.5-1077 2.0 - - - - - ~
o ’+P1 - FEM —& P! - MFEM
TOY(}LLQ)T [ T T T T T 1 11 [ :
| P! _FEM P! - MFEM
% division K O K O
o (h72) | 1 3.1-100 - | 11.100 -
\ e 2 3.2-10° —0.1 | 1.3-10* —0.2
: 1 4 37-10° —0.2 | 27100 —11
. 8 78-10% —1.1] 1.2-10° -21
E 16 3.2-10* —-20 | 4.8-10° -2.0
. 32 1.3-10° —2.0 | 1.9-105 —2.0
[N N
1071 10°
h/hg

Figure 8. Scaling of the condition number « for the straight crack problem.
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4.2. Circular arc crack

We now consider the problem of a circular arc crack in an infinite medium loaded by
remote stress, as shown in Figure 9a. An analytical solution for the problem is available in
Muskhelishvili [33] and a Python [34] implementation of the solution is available as part of
the supplementary material in [35]. The objective of the example is to showcase the method
in the context of multiple crack tips and curved cracks.
#lues of 69°, i =1,2 were chosen such that mode I stress intensity factor is unity
(K1 ggal) and mode II stress intensity factor is exactly zero (K = 0). The radius of the crack
is R = 1 and the angle subdued by the crack is taken as 2¢p = 7. In Figure 9(b) and
(c)lwmamtlmm o, sketch of the modeled subdomain given by Q = [—2,2] x [—1, 1] with boundary
sOeibians and the coarsest mesh, respectively. The radius of support of the cut-off functions
forgboth crack tips was chosen as p, = 0.5, 7 = 1,2. Lastly we assumed a plane strain state
Wiherial constants A = 1.5, u = 1.

myvestigated the h-convergence for )>h’p,p: 1,2,3,4. We showcase in Figure 10 a
co@vn of the convergence of the MFEM against the FEM. The error and the rates

of cOmvergence are provided in Table II. As in the previous section, we observe optimal
co%ce rates for the MFEM and sub-optimal convergence for the FEM.

36 IL. Errors (J|u® — uh||07Q) and convergence rates for the circular arc crack problem.

(a) FEM
P! P2 p3 Pt

:'70 /h ‘ Error @ Error @) Error (] Error (@)

m 1 54-107° - | 16-1005 - |81-100% — | 48-107% -
2 26-107° 11 |78-107% 1.11{39-107% 1.11]23-107% 1.0

4 1.3-10°®> 1.0|38-100% 1.1]19-107% 10| 1.1-107% 1.0

8 62-107% 1.01]19-107% 1.01]93-1007 10| 56-1077 1.0

16 | 3.0-100% 1.0[92-1007 1.0 46-1077 1.0 - -

32 [ 15-100% 10| 46-1007 1.0 - — ~ -

! 64 | 7.5-1077 1.0 — — — ~ — —

(b) MFEM
o Pl P2 P3 P4

E /h ‘ Error @) Error @) Error @) Error @)
1 3.7-100®° - | 54-100% - | 1.3-100% - | 54-100" -
..|_l2 1.3-107% 15| 7.1-1007 29| 1.4-1077 3.2 3.7-107% 3.8
44-100% 15| 1.0-1007 28] 94-107° 39| 19-107° 43
1.3-107¢% 18| 1.0-10% 34 |6.3-10719 39 |64-10711 49

6 |34-1007 19| 1.1-107° 3.2 3.8-1071 4.0 - -

32 | 85-107% 20| 1.2-10710 31 - - - -

4 1211078 2.0 — — — - — —

The importance of the optimality in the convergence of the derivative becomes apparent,
for example, when considering simulations of crack propagation. The evolution of a crack
is dictated by two scalar coefficients known as the stress intensity factors (SIFs). The
SIFs can be computed by evaluating a continuous linear functional of the derivative of the

Copyright (© 0000 John Wiley & Sons, Ltd.
Prepared using nmeauth.cls

Int. J. Numer. Meth. Engng (0000)
DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



MAPPED FINITE ELEMENT METHODS 21
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O - - :
N — bl i
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L lim =)0 e ®e
11,2—>i00
' ' (a) The circular arc crack problem
co A Q
S . :
I i
! 3 'S
| ¢ |
: (b) Modeled subdomain with boundary conditions
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o
0.5 K
‘H
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(c) Sample mesh corresponding to the first subdivision
< Figure 9. Circular arc crack problem.

computed solution (see for example [36]) known as the interaction integral functional. It can
be shown that such functionals converge at twice the rate of their argument. Namely if I
denotes the Interaction Integral functional, then we have || I[Vu¢] — I[Vu"]|| < O(h?F) where
u® — uh||; o < O(h*). This behavior is indeed observed in the evaluation of the SIFs for a
circular arc crack, and illustrated in Figure 11, where we contrast the convergence of the SIF's
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22 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

from a solution obtained using FEM with that of using MFEM. In the former k = 0.5, and
hence the SIFs converge as O(h'), while in the latter k& = p, and hence the SIFs converge as
O(h?). Convergence curves for the derivatives are provided for a different example in § 4.4.

Author Manuscript
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Figure 10. Convergence of the elasticity solution for a circular arc crack.
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Fi 11 Convergence of the stress intensity factors for a circular arc crack. We highlight that the
rate of convergence of the stress intensity factors are twice the rates of convergence of the derivatives
of ution (where |[Vu” — Vulllpa < O(h*) with k = 0.5 for FEM and k = p for MFEM, cf.
§ 4.4, Figure 16 and Table V)

Of

Auth

Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



MAPPED FINITE ELEMENT METHODS 25

4.8. Anti-plane elasticity over an L-shaped domain

The next example we present is aimed at showcasing the versatility of the MFEM for problems
with re-entrant corners. The problem of interest is the anti-plane deformation of an L-shaped
domain, as shown in Figure 12. As we remarked earlier in the manuscript, the boundary value
problem becomes solving u : 0 — R such that

V- (uVu)+b=0, inQ,
uw=g, on 042,

Q uVu-n=t, ond 0.

B ismader straightforward to follow the steps of §3 to derive the Garlerkin form over Q of
thgeabove boundary value problem. We provide details of the bilinear form and other relevant
COLS in Appendix C.

e dpmain is Q = (—1,1)2\ [0, 1]2. We then let 942 = 9\ [({0} x [0,1]) U ([0, 1] x {0})].
Whtake}f = 0, b = 2(2? + 23) and set

g =123 cos(20/3) + 2222

S

e xi-axis coincides with the ray 6 = 0. The solution to the above boundary value
is given by
u® =13 cos(260/3) + xia3.

The power of the singularity is 2/3 rather than 1/2 as in the case of a cracked domain.
W¢ could very well replace the condition m > k > p+ 1 by a milder one and still maintain
u® k(fl) and recover optimal rates of convergence. Alternatively, given that the solution
to m‘haped domain is less singular than that of the cracked domain it will not be necessary

nu

to Rlt e method at all. In fact using a mapping - given by (12) with the original condition
m > k% p+ 1 will yield an even smoother solution. Therefore for the example the mapping

he same as (12).
dius of the cut-off function was taken as p =1 and the material parameters were
¢ )

nce more as g = 1.

e (7"
L JvZw o . 1 ’)‘l )

b 0.5 |
r E
=3 : \Y% =0
*H —— @;Z’___,I 0K .
=F ]
— :
: e
— il —05F N
1 |:®
qa_______________________.' 1 | | |
1 u = ut -1 —0.5 0 0.5 1

(a) Modeled subdomain with boundary conditions (b) Sample mesh corresponding to the first subdivision

Figure 12. Anti-plane elasticity over an L-shaped domain.

We provide convergence plots for four polynomial degrees in Figure 13. Once again, alongside
the convergence in the mesh size we showcase comparisons of error evolution as a function of
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the problem size and computing time. It is worthwhile noting that for this particular example
the solution of FEM converges faster than for the cracked domain, but still suboptimally,
namely ||u¢ — u"|| < O(h*/3). The above is attributed to the higher regularity of the solution,
namely u® € H>/37%(Q) for any § > 0 [37].

Consistent with what was observed before, the solution computed with MFEM converges
optimally. Table III shows the error and the computed rates of convergence. Once more
qugdratig polynomial interpolates provide the best compromise between run-time and accuracy
f'oﬁe range of errors here presented.

Tarors (JJu® — ’U/hHO_’Q) and convergence rates for the anti-plane elasticity problem on and

L-shaped domain.

 —
(a) FEM
L Pl P2 pP3 P4
t ”'LO /h ‘ Error @ Error @) Error @) Error @)
1 1.9-102 - |25-10% - |10-107% - |51-107% -

2 |62-100% 1.6]93-107* 14 |37-100% 14 |19-107* 14
4 |22-100% 1.5 35-100% 14 |14-107* 14| 71-107° 1.4
8 80-107* 14| 14-107* 14| 54-107° 14 |27-107° 1.4
16 |31-100* 14 ]52-107° 1.4 |21-107° 14 - -
32 | 1.2-100% 14 |21-107° 14 —~ —~ - -
64 | 47-1075 1.4 - - - - - -

(b) MFEM
Pl p? pP3 P4
o/h ‘ Error (@] Error o Error (@] Error @)

dNusS

1 24-1002 -~ [29-100® — |86-100* — |15-107% -
2 | 75-107% 1.7]4.0-107* 28 |55-107° 4.0 | 1.4-107° 34
L— 4 [21-100® 1.8|43-107° 3.2 ]42-107% 37 |45-1007 5.0
8§ |55-100% 1.91]52-107¢ 31 |25-1007 41| 13-107% 5.1
16 |[14-100* 20 (63-100" 30| 11-107% 4.5 - -
32 [35-100° 2.0|6.1-107% 34 - - - —~
64 |7.6-1076 22 —~ —~ - —~ - -

Autho
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Figure 13. Convergence of the anti-plane elasticity solution for an L-shaped domain.
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4.4. Interface crack

The last problem we present is the one of a crack along a bilateral interface. The material
properties are chosen such that A; = 1.5, u; =1, Ay = 10A;, and pp = 10p;. The analytical
solution for the problem can be found in [38]. The objective of the example is to showcase the
ability of the same method to obtain higher-order approximations of the elasticity fields in the
presence of different asymptotic behaviors. More precisely, the displacement field in medium

Ml, 2, scales as

D_ w ~ 712 Y114 (0) cos(e Inr) + ghary(0) sin(e n )],

Where :éMa and ¥z are C° functions of 8, and  depends on the elastic constants of the two
erials, which vanishes if Ay = Ay and p11 = po. In this example, e = 18/77 = 0.2338. This
as ic behavior in the physical domain leads to, in the mapped domain with m = k,

' , [¢Ma( ) cos(2ke In7) + g (6 )s1n(2kslnr)} e H*(Q,R?),

wwa and 1/} Mmp are C*° functions of 0. Hence, no alteration is needed to apply the method
to oblem in order to achieve optimal convergence.
jparison, in the case of extended finite element methods (XFEM) basis functions
that spalh the different type of singularities need to be employed to get at most first order
onvergence in the stresses. An example of the latter, albeit with stresses converging as h'/2,
nd in [39].
the analytlcal solutions are available, we modeled a subdomain = (—1,1)2\([~1,0] x
containing only a single crack tip and prescribed displacements on the boundary of the
as illustrated in Figure 14. The coarsest mesh is shown in in Figure 14(b) an each
m obtained by recursive subdivisions of the coarsest mesh. We remark that for this
we employed quadrilateral elements Q* to showcase the independence of the method
type of finite element. The radius of support of the mapping is p = 1. As before we
perf an h-convergence study for four degrees of the polynomial interpolate ranging from
uartic (Q*, k =1,2,3,4) in Figure 15. Table IV shows the error and the computed
rates of convergence. Results similar to the previous examples are obtained.

(T
1
0.5
0
—-0.5
€ u = u —1 —0.5 0 0.5 1
(a) Modeled subdomain with boundary conditions (b) Coarsest subdivision
Figure 14. Interface crack.
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Table IV. Errors (||u® — u” llo,) and convergence rates of the elasticity field of a crack at a bimaterial

interface.
(a) FEM
Q' Q? Q? Q*
ho/h ‘ Error O Error @) Error O Error @)
-l—' 1 46-1072 - |14-1002 - |6.7-10® - |19-1073% -
D_? 22.1072 1.1 (64-107% 1.1 ]31-107% 1.11]9.1-107* 1.0
1.0-1072 1.1 ]130-107% 1.1 |15-107% 1.1 |45-107* 1.0
- o 8 50-107% 11| 15-107% 11| 74-100%* 1.0 22-100* 1.0
! 16 | 24-107% 1.1 |71-100% 1.0 36-100* 1.0 1.1-107* 1.0
32 | 12-107% 1.0{35-100* 10| 18-107* 1.0 -
( >64 57-100% 1.0 1.7-100* 1.0 - - -
w (b) MFEM
Q' Q? Q? Q*
370 /h ‘ Error O Error @ Error O Error @
1 58-1072 - [42-1072 - |18-1002 - |3.0-107% -
C 2 34-1072 0.8]9.2-107% 22 |57-100% 1.7 |19-107* 4.0
4 1.2-1072 15| 23-107% 20 |6.1-107* 32| 73-1006 4.7
CU 8 [41-107% 1.6 [23-100* 3.3 [33-10° 42]29-1077 46
16 1.2-107% 1.8 123-1075 33 |18-1006 42 |98-107% 4.9
32 [3.0-100* 19(24-10% 33|12-1007 3.9 -
64 | 76-107° 20| 27-1007 3.1 - - -

e would like to remark that optimality in the convergence of the derivative, alongside the
sol themselves, was also observed. We expect the error in the derivative to converge

intk

optjmmiyy for MFEM, namely ||u® — u"||; o < O(hP) with p being the order of the polynomial
e, while with FEM we observe ||u®—u”|;q < O(h®), with s=1/2 for crack

prob™s, independently of p. Figure 16 showcases the contrast between suboptimal rates for

are reported in Table V.

mrm for FEM in comparison with MFEM for the interface crack problem, and rates
S

E
<
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- —
Tajle V. Errors of the derivative of the solution (]ju® — u" |l1,0) and convergence rates for the problem
of a crack at a bimaterial interface.
O (a) FEM
Q' Q? Q? Q*
m’m /h ‘ Error @ Error @) Error @) Error @)
1 2.5-1071 - 1.3-100Y  — ] 92-1072 - |49-107%2 -
i 2 1.8-107' 05]93-1072 05|6.4-107%2 0.5 |34-1072 0.5
4 1.3-1071 0.5]6.4-1072 05| 44-1072 05| 23-1002 05
! 8 87-1072 05 ]45-1072 05]31-1072 05 |16-1072 05
16 6.1-1072 0.5 |3.1-1072 05 21-1002 05| 1.1-1072 05
cU 32 | 42.1072 05|21-1072 05| 1.5-1072 0.5 - -
64 3.0-1072 05| 15-1072 0.5 — - - -
(b) MFEM
Q' Q? Q* Q*

ho/h ‘ Error ] Error @) Error O Error @)

1 46-1071 - | 48-107! - | 32100t - 1.0-1071! -

2 39-107' 0.2 18-100' 14 |14-100' 12| 1.7-1072 26

4 1.8-1071 12| 72-1072 13 |33-1002 21 |15-107% 3.4

8 89-1072 1.0 16-1072 21 ]49-1073 27| 14-100* 34

16 42-1072 1.1 |43-107% 19]6.3-100* 3.0 1.0-107° 3.8

32 20-1072 1.0 | 1.1-107% 20| 87-107° 2.9 - -
1.0-1072 1.0 26-107* 2.0 - - - -

Author
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Figure 15. Convergence of the solution of the elasticity field of a crack at a bimaterial interface.
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Figure 16. Convergence of the derivatives of the solution. In (a) we see suboptimal rates for FEM,
na u’ —’U/hHLQ < (’)(hl/2) independently of the polynomial interpolate, while we recover

s

al rates,||u® — 'u,h||1,Q < O(hP*YY for MFEM, with p being the degree of the polynomial

interpolate.
Copyright © 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



MAPPED FINITE ELEMENT METHODS 33

5. ANALYSIS OF THE METHOD

In this section we prove the optimal convergence of the proposed method as the main result.
More precisely, we provide an analysis of the method for the problem of finding u” := @" o 4y~ 1,
where @ € VP is such that (14) holds, with the map ~ introduced in (7) where k > p+ 1.
We are mostly interested in the error over the physical domain, namely in an estimate of
|ug— u"§s.0, s=0,1. The proof of this last result is built on the convergence rates in the
pamametric domain and a norm equivalence between functions in the parametric and physical
doQCrucial to this approach is a proof of the enhanced regularity of the mapped solution
u.
or clarity, we assume that  is open and has the cone property (to apply Sobolev’s
B, /W®™ o theorem), and that an exact discretization of the domain €2 is adopted, instead of,
forfexample, an isoparametric approximation. Furthermore we assume that the only singularity
comes Irom the only crack tip of a Lipschitz-continuous edge crack (i.e., the image of a Lipschitz
fufftio — R?) that does not cross itself and thus we consider a mapping of the form (7).
Th sis for a re-entrant corner can be accounted for in a similar and simpler manner.
wplify the statement of the regularity assumption, we let polar coordinates (r,6) be
co%s all over €, i.e., within Q the value of f is discontinuous only across €. We then
let © b€ the minimum real number such that 6 € (-0, ©) for all points of Q. If € is straight,
th .
geometries inside B,(xT) could be quite complex. For the purposes of the proof
below, it is useful to keep in mind the image of B,(xT) with a straight crack emanating from
tb . In general, however, a rather mild hypothesis that we shall make is to assume that
ats an extension of the crack that cuts B,(xT) into two disjoint sets, By and B_, such
hm{ NOB,(xT)| > 0, and that both sets satisfy the strong local Lipschitz condition, see
g

HEi

E’%

-+

This assumption will allow us to apply Poincaré’s inequality, a trace inequality, and
ence theorem on each set (cf. [40]). If € N B,(aT) is straight, then this extension
t as extending along the line that contains ¢ N B,(xT).

h

+

=
-
O
-

M Schematic showing the extension of the crack (dashed line) that cuts B,(xT) into two
dlS oint parts, By and B_, such that |0B+ NdBy(xT)| > 0, and that both sets have the strong
Lipschitz property.

We 1 adopt the following notation to indicate partial derivatives. Let multi-index a =

2 and |a := a1 + az. We then define the operator DS := (9/9x1)% (0/0x2)2.

= (0/0%1)**(0/0%2)*2, and D&é) = (/7)1 (8/00)*2. To avoid cluttering of

symbols we set 9 = DEX X

In the sequel we first lay out the regularity assumption of the solution and then proceed to

the proof. Note that within §5 the symbol C' denotes a generic positive constant independent
of the solution w and the mesh size h. The value of C' may differ at different occurrences.

Assumption 5.1 (Regularity of the solution)
We assume that there exists k € N, k > 2, such that b€ H*2(Q), g € H*Y/2(9,Q), t €
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34 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

HF=3/2(9,Q), and that the solution to (2) can be written as
k—1
w= 3N i(0) + un (16)
i=1

Where N =i—1/2 1, € C®°[-0,0], ur € H*(Q,R?). Moreover, there exists C' independent
d t such that

glnmnk( o0+ lurlio < C (b 20+ 1813 1200+ IHF 5/20.0) -

e remark that the so-called stress intensity factors are incorporated in the function 4 (9).
Assumption 5.1, our main result is summarized in Theorems 5.1 and 5.2.

ThgbreMy 5.1 (Regularity of the mapped solution)
Le®u be the solution to (2) with k € N, k > 2 given by Assumption 5.1. Let v be as
defined_in (7) with ¢ € Iy ,,, for some m > k. Then @ :=wu o~y € H’“(Q,RQ); moreover, there
exij 0 independent of b, g, and t such that

lalq<C ([1Bllk—2,2 + 1gllk—1/2.000 + [Ellk=3/2.0.0) -
T: 5.2 (Optimality of convergence)

Let, ssumptions of Theorem 5.1 hold. Let p € N with p < k — 1, and {Th } be a quasi-
unSorrn family of subdivisions of Q = 'y ~1(Q) over which finite element spaces Vh p and Wh»
ar ucted following (13). Let @" € V*P be such that (14) holds, and set u” := @/ oy~
Tbmxe exists a positive constant C' independent of w and h such that

|u— “h|s,ﬂ <SChH ' 0luony|, g, =01,
5.3
Le ssumptions of Theorem 5.2 hold. Then there exists a positive constant C' independent
h such that

h —
lu—u |57Q < O (|Ibllp-1,0 + I9llpr1/2,000 + Ellp-1/2.0,0) ,  s=0,1.

e these main results, we first prove a few lemmas.

Lej @ .4 (Bivariate chain rule of an arbitrary order)
LeMggai-index a = (a1, az) € (Ng)? and functions f € Cl®I(R?), g = (g1, 92), with g1,92 €

ﬁ(?onstruct the composition of functions
h(z) = flg1(x), 92(x)], = (z1,22).

'M partial derivative DSh is given by

kf_l) k,<.2)
o (Degi(@) " (Do)’
o Y o Y ]
1<IBI< e s=1p,(a,8) =1 [k<1>,k<2>,] {151)!l§2)!}
where DB f = (8/8g1)7(8/8g2)P f, and for j=1,...,s, k; = (kj(-l), kj(?)), l = (l§-1),l§2)).
Finally,
ps(aaﬂ) = {(k17~"7ks;lla-"als) ‘kl| > O? |lz| > 077' = 17"'785
. . (17)
li,...,1l, are distinct; ZkZ = ﬂ;z |k |l; = a}.
=1 i=1
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Proof
This is a special case of the main result of [41]. O

Example applications of Lemma 5.4 for some a’s are given as follows, where the standard
partial derivative formulas are recovered:

°
Q
|

= (1,0), then the only contributions are from 3 = (0,1) or (1,0). We note that

pl((l,O), (07 1)) = {(kl = (Ov 1);l1 = (170))}7
pl((l’o)a (170)) = {(kl = (LO);ll = (170))}'

{

esult,

rip

oh  Of O0ga  Of o1

o 8792[91(33)792(55)]3761 + aﬁgl[gl(w)ﬂ?(‘”ﬂaixl'

(1,1), then the only contributions are from 8 = (0,1), (1,0), (0,2), (1,1), or (2,0).
next find out the p;’s:

b3

= =
=
_ =
=
—
= p
—_

this we obtain
2h - 8f 8292 6f 8291 82f 692 agg
10Ty 372[91(53)792(90)]m 8791[91@%92(53)]% 8795[91(510)792(%)]@87%

O*f dg2 091 Og1 Dg2\ | O°f dg1 g1
991992 [91(x), g2(x)] (81:28@ + Dy 971 + Tgf[gl(w)’gﬂm)]aizg@ixl'

2

M

Lemma 5.5 (Basic properties of the map =)

Let v be given by (7) with ¢ € Il ,,, and j = det(V~y). Let & € B,(x7) and 7 = ||& — x|,
r i ?Ss&) —x7|. Then v € C¥(R2,R?), and there exist C, Cy, C3 > 0 independent of & such
that for all 7 € (0, p],

Prl _ cpiemei jeN0<j<h (18a)

dii | = 2 y J YOS TSR,
; |Dg|| < Cor®mlel < Cgpt=led/Cm) = o e (Ng)?,0 < |a <k, (18D)
T 1/(2m) < H(v,y)—IH < C2r—1+1/(27n)’ (18C)
Cyr2H/m < =1 < Cyp=2FY/m, (18d)

Proof E

T qualities directly follow from (11) and (9). The fact that v € C*(R?, R?) follows after
the ior of the derivatives of v near 1 is bounded by (18b). O

special case, taking a = (0,0) in (18b) yields that there exist C7,Cy > 0 independent
of & sucl that for all # € (0, p],
Cl’lﬁ2m S T S Cgf2m. (19)

Lemma 5.6 R
Let the assumptions of Theorem 5.1 hold. Let v € H*(Q2) and 9 = v o~. Then ¢ € H*({2) and
there exists C independent of v such that

9]0 < Cllvllka-
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36 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

Proof
We first prove that
[2llg.0 < Cllvll2.0- (20)

Since €2 has the cone property, applying the Sobolev embedding theorem yields that v € C%(Q),

and that [|v]j0,co,0 < C||v]|2,0. As aresult, o € C%(Q) and [9]l0.0 < Clltllg o = Cllvlloco,e <
Cl|v]|2,0, where we have used the bijectivity and continuity of ~.

t define, for each a such that 1 < || < k, a provisional expression for D0 given by

D £®
o s (DEn@) " (De@)”
ao= > Dluin@),n@)]> Y (mla)]] "
- — " (1)y.(2) (D)
1<IB<a =1 p.(aB) = [P O]
We now show that for all e such that 1 < |a| < k,
O | Dgo }0@ < Ok, (21)
anmthat ﬁg‘ﬁ is in fact the a-weak derivative of .
R end, we first note the finiteness of terms in ps(cx, 3), and that ~ is the identity in
Q ), hence we just need to prove that for each member of ps(cx, 3),
s W ©)
9 L\ L\ 2 L
)Qw&)]]Q%m)](amg’ 0y Q< Ol g, ryre- (22)
plzT)N j=1

To proceed, we apply (17), (18b), and (18d) to obtain

P Lo N2RY o 2k
/ (D2v) H(D@Wl) ' (Da:fvz) Doyl ag
By(zT)NQ

j=1
< C/ P2 /m 281l /m | D8y 12 a0 (23)
B, (z1)NQ

< C/ P20B1=D=(la|-1)/m HDﬁUH2 ey
; B,(zT)NQ T

:’ B> 2, then 2(|8] — 1) — (la| — 1)/m > 0, and (22) holds; otherwise, for |8 =1, we
iny “ divergence theorem’ on the last term above to write

(2= ) [y 20 a0
:/ div [Tl,(‘a‘,wm&} ID2o||” do
‘H B,(zT)NQ

: _ _/ ptel=ime, v (||Dgu]*) de
B, (zT)NQ

+ / pi=el=0/me | D8 doc
OB, (27 )NY

0 o f |DBu|? ar
A1B,(@r)NQ

8,). L (ps
/B P (DEv) B (DEv) d

2
< Clpllzq,

<C

TThe use of the divergence theorem is justified by the strong local Lipschitz condition of B*, which implies
that W11 (B%) is dense in C*>°(B%).
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where we have invoked the Cauchy-Schwarz inequality and the trace inequality in the last step.
As a result, (22) is also true for the case of |3| = 1.

It remains to prove that the locally integrable function Dg@ is the weak derivative of v with
index a, which amounts to prove that, for any test function ¢ € CEO(Q),

(—1)‘0‘/13Dg¢ dQ—/qﬁf)g‘ﬁ d = 0. (24)
Togthis end, for € >0 we let J. be a mollifier function with supp(J.) C B.(0), and
Ve # v, where % denotes convolution over R2:
" — vl@) = [ e y)ely) ),
RZ

Witt v extended by zero over R? \ €. With the same arguments that yield (20), it is clear that
v 2(€2). Moreover, from Lemma 5.4,

(-0 [ ooy Dgodt= [ 6Dg(ue o) ot (25)
Q

Q

ino (25) left hand side of (24) and applying the Cauchy-Schwarz inequality, (20), and (21)
(with v ¥eplaced by v — v.) yields

‘(—1)""'/@D§¢d§2—/¢f)gﬁ s
Q Q

< +

CU <| [ (0-v.om Dgoat|+| [ 61050~ Dg(v.om)]at
Q Q
<6l allo — ve 0l + 18l [ D2 (6 = v o)y a

< Clo —veovllg o + Cllo — vz 0lly g
< Cllv = vellr.q-

Passing to the limit € \, 0 and applying [42, Lemma 3.16] yields (24).
O

Lehﬁ (Relation of semi-norms)
Let gmmg H'(Q) and @ = w o~ under the assumptions of Theorem 5.1. Then there exists C
innt of w such that

ic C7 i)y g < [who < Cldl, o-

The inegnality C 10|, o < |wli,o follows from a special case of (23), which was proved when
weproved Lemma 5.6.
Ere |w|1,0 < Clw|, g, we start from Cauchy-Schwarz inequality to obtain

wlo= [ Vo oy 0 < [ Va7 a
Q Q

He it remains to show that there exists C' > 0 such that for all & € Q, |(V~) %] < C,
which follows from (18¢c) and (18d). O

Corollary 5.8 R
The operator a(,-) is continuous and coercive in H*'(2;R?).

Proof

This corollary is a direct consequence of (6) and Lemma 5.7. O
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We now proceed to prove the main results.

Proof of Theorem 5.1
For any @& € B,(x1) N2, we let 7 and r be given by the assumptions of Lemma 5.5. Applying
the regularity assumption (16) yields

k—1
H d:uo'y:Z'IliJrﬂR, ;= rNp(0), Ur:=wugro~,
i=1

w e to 7, § = 0. Applying Lemma 5.6 to ug yields |ag|, o < Clur|kq, and we
conclude that the theorem holds if there exists C' independent of w such that
| |

! il o < CllYillk,-0,0), i=1,....k—1

Toghis"gd, we will prove that there exists C' > 0 such that for any multi-index a = (a1, 2) €
(NRZfh 0 < o] < K,
[1DZ@illy o < Clvillial,(-o,0)-

Wt prove the case of |a| =0, i.e., « = (0,0). In this case, from (19),
2 Fmax © 5 2
) i s [ [ s dd < Clgdl oo
0 —®

er Tmax ‘= SUDgcq |z — x|
case of 1 < |a| < k, we apply Lemma 5.4 to each component of @;[7(&),0(&)] to

wri any & £ 0
L S £

o oo 6] S = (Dyr@)” (pie)
1§;§a@6m [r(az),&(w)} gpsgﬁ) (a1!a2!)j:1 [kﬁlnkﬁ»?)!} [lﬁl)!l?)!}‘kﬂ

where we have abused notations in regarding 4; as a function of either & = (&1,42) or
(7,0). Additionally, we have taciltly used the fact that functions 7#(z) and (&) belong to
C‘! &2 \ {0}), needed for Lemma 5.4.

Next we observe that, for each term in ps(a, 3), by induction we have

‘ng‘f < oIl

< oIl ’D;{é

MSeover7 from the Faa di Bruno formula of one-dimension (see, again, [41]) combined with
. btain

B24)y.
‘H ||@3ﬂz|| < Cf2mAi—B d i¢1
- doB2
asult,
lex| || 2
o s (D117 @) _7. dﬂ%b-
Deal’ < C AmAi—261 435, [%j (=1t )+2k3( uj\)] i
IDga<C 3 5 3
1= ,6270

Note that from (17),

281+ 3 2601 = ) + 2P (-] = 281+ 23 KD 23 1yl | = 2l

J=1 j=1 j=1
=0
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Thus,
1 g2, |2
IDg | < crtmi—ziel 3 || L9
doB2
B2=0
Finally, since A\; > 1/2 and m > k > |/, the theorem holds. O

Prgof ofgTheorem 5.2
| * case of s =1 is straightforward. We first write

Q |u—uh|1ﬂg \u—u,\lﬂ-y‘u[—uh 1LQ’ (26)

R, .= "t o~ ! and Z" is the classical interpolation operator such that Z"% € VP
an! Lhat Th4 and @ coincide at all nodes of 7%. By construction, u; — u" = 0 on 9,9, and
thus u; — u" € Whe o ~~ L

om ¥he coercivity of a(-,-) and the Galerkin orthogonality of u”,

m’uhﬁg <Ca (UI*Uh,quuh) =Ca (u[fu,ulfuh) +Ca(ufuh,u1—uh)

=0

—urlio |u1 - ’uh}LQ )
or |uy — ’U/h|1’Q < Clu — ug|1,0. As a result, with Lemma 5.7 and a standard interpolation
er ate, (26) is simplified to

fu |y < Clu—urho <Cla—T"a| < CHlal,, o (27)
m 0, we first note that a standard interpolation error estimate yields
E lw —wurlloo < ChP Hal,, o
i is sufficient to prove
Hul - uhHo,sz = Chp+1|ﬁ|p+1,§2‘ (28)

h end, we employ the standard argument by considering the solution w € W of the

pr
@ a(v,w) = (ul — uh,v) , YveWw, (29)

rFEM approximation w" € WP o 4! such that
a(v,w") = ( h

ur—u"v), Vve WhP oy,
| hen applying (27) and Theorem 5.1 to W = w oy with k = 2 yields

|'w—w < Chlw|, o SC’hHuI_uhHO,Q'

"0

roceed, we note that u; — u" € W, and hence from (29), the Galerkin orthogonality of
continuity of a(, ), a standard interpolation error estimate, and (27),

Au

s —"hHi,n =a(ur —u" w) =a(ur —u",w—w") <Clus _uh|1,sz |w _wh‘uz

=C¢ <|u —urly o+ ]u - uh|1,Q) h H’uz - “hHo,Q < Chp+1|ﬁ’|p+1,§z H“I - “hHo,Q’

and thus (28) holds.

O
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A. GRADIENT OF THE MAPPING

For convenience here we provide the expression of the gradient of the mapping, V~, and that
of its inverse. The gradient of ~ is given by

t

Vy=1- [(1=qln:)/n)L+ (a(ne) /ne — d (0:))err @ esr],

T=1

whepsege » 1= (& — @7 +)/7- is the unit vector in the direction of & — @ . Since the mapping
p each singularity, within B, (21 ), we have

Vy=1- [(1 - q(n‘r)/n‘r)l + (q<n7>/77‘r - q/(nr))eﬁ‘r ® efﬂ'] )
=q' (1) err @€+ q(n:)/nr €5, D€

from which it follows that

1
€err Qepr+ I

O (V)= ) T alny)
)

e;,®e; , inB, (zT,),

1, otherwise,

where ei . is the basis vector of the f-coordinate of the 7 singularity.
B. REMARKS ON THE IMPLEMENTATION

bdivision 7" of Q" such that

" = Nyu,, w" = N,w,,

ToCd on the presentation of §3.2, we let {N,}, denote the shape functions constructed
Onm

e shape functions are constructed over the parametric domain; on the physical domain

Y Wil be given by n, = N, oy~!. The above implies that, if polynomial shape functions

. are constructed over 7" the corresponding shape functions n, on v(7") may not be
poj/nomials. They are definitively not polynomials when the map defined by ¢(n) in (8) is
ad Figure 18 showcases the transformation of the shape functions N, to n, through the

actigumgl the map (%) = £2.
@4 it is easy to see that

uh = ﬁh © 771 = Ngo Vilua = NgUg,

an&similarly w" = n,w,.
Then (14) may be written as: find u, such that

wa'kabub = W, '.fa7 Vwav

eated indices imply a summation over them. Here u, and w, are the nodal values of
the cement field and test functions over spaces of Lagrange finite elements. We remark
N,

or find U such that

KU =F
W,
{K}ab = kab7 {U}a = Uq, {F}a = .fa
and
ON, ONy
kapli; = i (Mligji o dK,
kablis = Y i 5 | ]’“laxl
KeTh I
[fali= > / [b]i N j dK + ) /([ﬂi [(Vy) " || j)opdl
reh K pee, B
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17 -
&
< 05f |

1 0 01 02 03 04 05 06 07 08 09 1 1.1

z

pt

(a)htional set of affine shape functions constructed on a uniform discretization of the parametric
domain

SC

a

nctions on the physical domain obtained by composing the set of affine shape functions in
(a) with the mapping (%) = 22.

o
=
ol
D;
=
o;
[\&}
O;
w
O;
o
8 2L
ot
O;
D
O;
\]
o;
oo
O;
Ne}
— L
—_
i

Constructing a traditional affine finite element space {Nq}q on a uniform discretization
Th = U?ZO{[i/él, (i41)/4]} of the parametric domain € =[0,1]. Under the mapping (&) = &>
ults in a set of shape functions {na}a, no longer affine, on a subdivision of Q given by 'y(Th) =

Ui o (v ((i/4)),7(( + 1)/4)]}.

—
o]
2

or

w denotes the set of element edges on 9,Q", [e],, and [e], denote the sub-tensors and
vectors, respectively, associated with the degree of freedom a and b, and [e];; = e : e; ® €; and
ﬁohjkl =e:e; ®e; ®e, e denote the tensor components in the orthonormal basis
° with the cartesian coordinates z;, Z; (cf. Figure 3). The above integrals can then be
apgroxiggated over each element K using standard quadrature rules as commonly carried out

in ! oIy
3@1}7 the only peculiarity of this approach is that the coefficients of M will depend on
space further Ml may not necessarily be symmetric. This peculiarities are easily handled
in any commercial or open source finite element code that allows for user defined coefficients.
T e method is easy to implement, without the need to introduce special shape functions,

nal quadrature rules, or particular mesh gradations.

C. GALERKIN FORM OF POISSON’S EQUATION OVER THE PARAMETRIC
DOMAIN

We construct here the weak form over the parametric domain of Poisson’s equation for a scalar
field, in a similar manner as presented in §3.
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42 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

Formulation in the physical domain. We consider the problem of finding u : 2 — R such
that
Au+b=0, inQ,
u=g, on Jyfd,
Vu-n=t, ond.

t

cke 0, g and t are smooth enough scalar fields over the domains where they are evaluated.
ak form of this problem reads: Find u € V such that

a(u,v) = F(w), YweW,

P

=
3

a(u,w) := / Vu - Vw dSQ,
Q

F(w) ::/bw dQ+/ twdl,
Q 8.9

Q
=]

nusc

V= {uEHl(Q)‘u:gon a2},
W = {wEHl(Q)}w=OOH adQ}.

ak form over the parametric domain. With V=Vo ~ and W=Wo ~, the
t formulation given by: Find @ € V such that

4

ay(G,0) = F(b), Vi e W,

=
=
@D

Q
F() ::/Bwj dQ+/ Ctw|[(Vy) " | gl
Q Q

-

an

or

M = j(Vy)~' - (V)"

G!Ierkin’s approximation over the parametric domain. Let Th denote a subdivision
ated in §3.2. Consider finite dimensional approximations of V and W given by

phe = {ah e H'(Q)| "], € PP (K),@" = T"(go~y) on adQ} ,

’LZ}h

ut

Wh = {wh e HY()

€ PP (K) " =0 on adﬂh},

ively. The Galerkin form of the problem statement then reads: Find 4/ € VhP such that

ay(@", ") = F(@"), va" e Whr,
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