Mapped finite element methods: High-order approximations of problems on domains with cracks and corners

-

${ }^{1}$ Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
\checkmark
0

SUMMARY

Lirneerever
solutions
ticity problems posed on cracked domains, or domains with re-entrant corners, yield singular propose hat deteriorate the optimality of convergence of finite element methods. In this work, we based on_a
ard and the sing a men smoother function obtained by locally reparameterizing the solution elentrocedures yielding optimal convergence rates for any order of interpolating polynomials, without additional degrees of freedom or special shape functions. Hence the method provides optimally
 t solutions for the same computational complexity of standard finite element methods. Fu therm bre, the sparsity and the conditioning of the resulting system are preserved. The method handles body forces and crack-face tractions, as well as multiple crack tips and re-entrant corners. mentages of the method are showcased for four different problems: a straight crack with loaded faces, circular arc crack, an L-shaped domain undergoing anti-plane deformation, and lastly a crack alono ormaterial interface. Optimality in convergence is observed for all the examples. A proof of rimalcpn nvergence is accomplished mainly by proving the regularity of the reparameterized solution. Copyright © 0000 John Wiley \& Sons, Ltd.

KEY WORDS: solid, crack problem, re-entrant corner, singularity

1. INTRODUCTION

Mand boundary value problems, such as linear elasticity and the Poisson problem, which can describe steady-state heat conduction, steady-state diffusion, or electrostatics, singularities in the sglution may arise from non-smooth boundaries, discontinuous coefficients, or abrupt chargeo in boundary conditions. Problems with cracked domains, or those containing reentrant orners, fall in the first category. The singularity of the solutions to this class of nobl ms plagues the accuracy and convergence rate of standard (Lagrange) finite element Concretely, finite element approximations of linear elasticity solutions in cracked domains converge in H^{1}. with order $1 / 2$, regardless of the order of interpolating polynomials This is the author manuscript accepted for publication and has undergone full peer review but
has notheen through the copyediting, typesetting, pagination and proofreading process, which Contract/grant sponsor: National Natural Science Foundation of China contract/grant number: 11402146

Contract/grant Sponsor: Army Research Grant contract/grant: W911NF-07-2-0027

* Correspondence to: chiaramonte@princeton.edu, yongxing.shen@sjtu.edu.cn, lewa@stanford.edu

Copyright © 0000 John Wiley \& Sons, Ltd.
Prepared using nmeauth.cls [Version: 2010/05/13 v3.00]
This article is protected by copyright. All rights reserved.
in each element. To alleviate the shortcomings of standard finite element methods several techniques have been proposed to address these singularities. These often provide a more accurate solution, but very few of them are capable of obtaining optimal rates of convergence for an arbitrary order of interpolating polynomials, which, as we show here, substantially reduce the computational time for a given desired accuracy.

Overall speaking, the classes of finite element methods capable of achieving better accuracy than standard finite element methods at a given computational cost for crack and reentrant corner problems can be arguably classified into four categories: A family of methods tho en iches the finite dimensional space with additional basis functions, one that takes ad antare of adaptive refinement of h - and/or p-type, another that employs special singular elements, and lastly a family of methods, which is closely related to this work, that exploits mapping techniques to approximate a smoother function obtained from carefully mapping the singular solution. In the following paragraphs we review the efforts invested in developing the aforementioned families of finite element methods.
ossiby the most common methodology to enhance the accuracy of the solution and to ptimal convergence rates is through the addition of special basis functions to the finite alement space. The work found in [1] was the precursor of the methodology and more red en $2,3,4,5$] have re-energized this idea by including special basis functions exploiting the framework of the partition of unity. Within this framework, the methods proposed in
 the L_{0-r} orm of the displacement. The literature on the topic is vast and we refer the reader interested in a thorough review to $[10,11]$.
~12] and [13] the authors independently proposed a technique to construct eight-node querinateral elements whose shape functions resemble the \sqrt{r} singularity encountered in linear elastic fracture mechanics, where r denotes the distance to the crack tip. By placing the mil - de nodes at the quarter points the mapped shape functions along the element edges apture the radial singularity. Later, the method was improved in [14] where one of thament edges is collapsed to a single point so that the mapped shape functions capture the mingularity in the interior of the element as well. This idea of edge collapse appeared in an esifer contribution [15] for the case of four-node quadrilateral elements. Although such e elements constructed through singular isoparametric maps greatly enhance the accuracy of the solution, the convergence rates remain sub-optimal.

Another class of methods employs adaptive mesh refinement in the proximity of the sinularity to enhance the convergence of the solution. Such specially designed graded meshes $[16,17]$ or adaptively determined polynomial order [18] can be shown to yield optimally cor vergent or otherwise much more accurate solutions.
we introduce the last class of methods, we discuss a different perspective on how to deal with singularities. Consider the singular solution \boldsymbol{u} for an elasticity problem on a cr cked domain Ω, and define a function $\hat{\boldsymbol{u}}:=\boldsymbol{u} \circ \gamma$ on $\hat{\Omega}=\gamma^{-1}(\Omega)$, the result of composing wrira mapping $\gamma: \hat{\Omega} \rightarrow \Omega$. If, with a priori knowledge of the singularity, it were possible tonstluct a mapping γ such that $\hat{\boldsymbol{u}}$ were much smoother that \boldsymbol{u}, then one could shift the focus to constructing approximations to $\hat{\boldsymbol{u}}$ instead of to \boldsymbol{u}. We show here that this is in fact posside Why is approximating $\hat{\boldsymbol{u}}$ different than approximating \boldsymbol{u} ? Because under very general conditids, $\hat{\boldsymbol{u}}$ is very smooth, and hence standard finite element methods and quasiuniform family of meshes over $\hat{\Omega}$ can be used to approximate it with orders of convergence bounded 0n- y the smoothness of $\hat{\boldsymbol{u}}$. This higher order of approximation is not lost when composing proximation of $\hat{\boldsymbol{u}}$ with γ to construct an approximation of \boldsymbol{u}. This approach to deal with singularities is the core of the method we introduce here.

Ideas close to what was described above have been explored in the literature. What distinguishes our method from earlier work is that, by constructing a mapping γ completely independent of the domain discretization, we create an entirely different problem from the original one, which we then proceed to discretize. This view is in contrast with the use of mapping techniques to effectively generate special shape functions resulting from map
composition. Reformulating the problem entirely, alongside specially constructed mappings γ, circumvent many of the limitations of earlier works where the cumbersome meshing required, the limited capabilities in handling complex crack geometries (including multiple cracks and cracks arbitrarily close to domain features), alongside the lack of applications to the more commonly employed h-version of finite element methods, have likely prevented this type of approach from being widely adopted. To further elaborate on this, we briefly review previous effert expenditures and later highlight the novelties of our approach.
Fhe origin of this class of methods is the work found in [19], where, through conformal mapins and a careful construction of the discretization of the parametric domain $\hat{\Omega}$, the au bors bbtained better approximations to the straight crack problem. Albeit their approach proved innovative, the method, which the authors referred to as the mapped elements method, sufferedseveral limitations. In fact only a limited family of crack geometries were dealt with (on v straight cracks), the mesh generation process was rather cumbersome, and the non-local mapping limited the applicability of the method to single cracks in simple domains. At a later tin ethy same authors proposed [20] a similar technique that employs mappings to generate sing crack tip elements. Analogous to the work found in [12, 13, 14], such singular elements greatlymnance the accuracy of the solution, but the convergence rates remain sub-optimal. the authors exploited the same underlying idea and named their approach the method of auxinary mapping. Their method was primarily targeted to p-finite elements [22] and $h p$ finfue erments. Similarly to [19], they reparameterized the solution restricted to a circular sector a ound the singularity, and separately meshed this sector and the remaining part of the computational domain. The discretized circular sector was then mapped with the inverse m oping to the parametric domain (the domain over which the singularity is eliminated), andhan standard polynomial shape functions were built over this parametric domain. This interwoven nature of the mapping and the domain discretization renders the meshing procedure res ri tive and cumbersome: The approximation functions near the boundary between the ector and the remaining region have to be constructed using the blending mapping thaninil [23] to ensure conformity. With such construction, for the p - and $h p$-version of fintoelements they showed exponential rates of convergence. The method was later extended to aditess boundary singularities for a larger family of elliptic operators in [24], elasticity in [25], and three-dimensional domains in [26]. Recently it was exploited in the context of isogeometric finite element methods [27].

We introduce here a method targeted to h-finite elements of arbitrary order, but that should als work with p-finite elements, where the novelty lies in the fact that we construct an entirely new problem via a mapping that is independent of the choice of the numerical method and sp tial giscretization. Hence, standard numerical methods of any order could be adopted to app hate this new problem. Additional novel features of the method consist of:

- AIC Itrappings are local, allowing the handling in a trivial manner of multiple singularities, ad_of singularities at interfaces or domain boundaries.
- The crnstruction of high-order approximations significantly reduces the computational time needed to obtain numerical solutions with a given error, as we show here.
- Alarg family of mappings are proposed [not a single way of constructing a smooth solution,]. We provide precise conditions on the minimum power of the asymptotic behavior of themapping near the singularity to sufficiently smoothen it to obtain optimal rates of 2 ergence for a given order of the h-version of finite element method.
- 1humily of mappings contain many mappings that are $C^{\infty}(\Omega)$. One of them is adopted here for the numerical examples.
- The asymptotic behavior of the particular mapping we adopt here is such that we do not need to a priori know the precise power of the singularity, being that of a corner, a crack, or a crack at an interface, to recover optimal order of convergence of the method.
- Both the enhanced regularity of the mapped solution and the optimality of the convergence rate of the resulting method are proved.

We highlight that the computational cost of the proposed method for a given number of degrees of freedom is the same as that for standard finite element methods, no ill-conditioning issues arise, several types of singularities can be successfully dealt with (including oscillatory ones), the method is trivially implementable, and moving singularities are easily handled (e.g. propagating cracks, moving dislocations, etc.).

Although we refer to this approach at dealing with singularities as a "method," in reality it is pothing but a reformulation of the problem statement such that the reformulated problem cal be easily solved using standard methods over $\hat{\Omega}$. In particular, in the case of adopting finite elenmmethods for this last approximation, pushing forward the shape functions from $\hat{\Omega}$ to Ω ffectilely builds a non-standard finite element space over Ω. Motivated by this observation, and in line with what was originally proposed in [19], we will refer to our method with the acronym MFEM, for Mapped Finite Element Method.

The paper is organized as follows. In $\S 2$ we provide a bird's-eye view of the method. We save its details for $\S 3$ where we provide a self-contained summary of it for the reader less interested in th detaled analysis. In $\S 4$ we use numerical examples to showcase the convergence properties of hethod. Then in $\S 5$ we provide the analysis of the method, showing the enhanced regularity of $\hat{\boldsymbol{u}}$ and the optimal convergence rates at which $\hat{\boldsymbol{u}}$ is approximated. clude the introduction with some remarks on notation. We denote by $H^{k}\left(\Omega, \mathbb{R}^{d}\right)$ the Sobolev space $W^{k, 2}\left(\Omega, \mathbb{R}^{d}\right)$ and we let $\|\square\|_{k, \Omega}$ and $|\square|_{k, \Omega}$ denote the Sobolev norm and seminonrr, rpectively, over Ω. We let $\nabla \cdot$ and ∇ denote the divergence and gradient operators, respectively. We reserve the symbol \boldsymbol{n} to denote outward normals to boundaries. We will denote by $1:=\delta_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}$ the second-order identity tensor and by

$$
\mathbb{I}=\frac{1}{2}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}
$$

h-order identity tensor on symmetric second-order tensors, where $\left\{\mathbf{e}_{i}\right\}$ is an orthonormal basis.

2. OVERVIEW OF THE METHOD

We begin by introducing a brief overview of the key ideas behind the method. Details of the formulation and the analysis are saved for $\S 3$ and $\S 5$, respectively.

2.1. The challenge

No -smoth boundaries yield singular solutions to certain elliptic boundary value problems such as linear elasticity. In this work, we consider a class of problems whose solution can be ex ressed as the sum of a singular part and a smooth part. For example, in a domain Ω with nannt corner of angle $\Theta>\pi$ (see Figure 1), the solution of the elastic field $\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{2}$ car be vritten as the sum of singular functions, $\left\{\boldsymbol{f}_{i}\right\}$, plus a smooth part \boldsymbol{u}_{R} such as

$$
\begin{equation*}
\boldsymbol{u}=\sum_{i=1}^{\ell} \boldsymbol{f}_{i}+\boldsymbol{u}_{R} \tag{1}
\end{equation*}
$$

He, $i:=r^{\lambda_{i}} \boldsymbol{\psi}_{i}(\theta) \in H^{1}\left(\Omega, \mathbb{R}^{2}\right),(r, \theta)$ are polar coordinates with the re-entrant corner as the $1 / 2 \leq \min \left\{\lambda_{i}\right\}_{i=1}^{\ell} \leq 1, \boldsymbol{\psi}_{i}(\theta)$ is C^{∞} in the appropriate range of θ, and $\boldsymbol{u}_{R} \in H^{k}\left(\Omega, \mathbb{R}^{2}\right)$ for some $k>1$ corresponding to $\max \left\{\lambda_{i}\right\}_{i=1}^{\ell}$. This particular form of the solution results in a singularity as $\boldsymbol{u} \notin H^{2}\left(\Omega, \mathbb{R}^{2}\right)$. In the particular case of fracture mechanics $\Theta=2 \pi$ and $\lambda_{1}=1 / 2$. If $\ell=1$ is chosen, then $k=2$, a well known result obtained by Grisvard [28, 29].

The lack of regularity of the solution is reflected in poor convergence rates when standard Lagrange finite element methods are used to solve the problem. Generally for second-order elliptic problems the convergence rate of standard finite element methods in the H^{1}-seminorm is bounded by $h^{\min \{p, s-1\}}$, where h is the maximum size of the elements, p denotes the

1
ord complete polynomials in the basis functions, and s is such that the elastic solution $\boldsymbol{u} \in H^{s} / 2, \mathbb{R}^{2}$). As a result, a necessary condition for optimal convergence is $p \leq s-1$. For example, for $p=1$, the minimum possible choice, s must be at least 2 for optimal convergence.

for the problem at hand, it can be shown that $\boldsymbol{u} \in H^{3 / 2-\delta}\left(\Omega, \mathbb{R}^{2}\right)$ for any $\delta>0$ $H^{3 / 2}\left(\Omega, \mathbb{R}^{2}\right)$. Thus the error in the solution of the displacement gradient is of order $\mathcal{O}(1 / 2)($ e.g. see Figure 7a), independent of p, the order of the polynomial interpolant. That is to say no matter how high the degree of the polynomial basis functions is, the convergence rate is the same and is always suboptimal.

Gin ationsknown form of singularity of the solution (1), and considering that finite element converge rather rapidly to the exact one if the latter is sufficiently regular, the underlying idea of the method is to construct a smooth solution by appropriately scaling * esingular one. Namely, we would like to construct a bijective map $\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\gamma: \Omega>\Omega$ and that $\hat{\boldsymbol{u}}:=\boldsymbol{u} \circ \gamma \in H^{k}\left(\hat{\Omega}, \mathbb{R}^{2}\right)$, for some $k \geq 2$. Moreover, it will be shown later tat \boldsymbol{u} satisfies a differential equation of the same type as that satisfied by \boldsymbol{u}, with different coefficients. Once we have constructed such a map we can solve for $\hat{\boldsymbol{u}}$ using standard finite element methods, recovering optimal convergence rates of the error in $\hat{\boldsymbol{u}}$ over the parametric do nain $\hat{\Omega}$. It will be later shown in $\S 5$ that the optimality of convergence also holds on Ω for the error in \boldsymbol{u}.
Wear thus faced with the challenge of constructing a map γ such that the composed solution $\hat{\boldsymbol{u}}=\boldsymbol{u} \circ$ is sufficiently regular. The minimum regularity requirement will be dictated by the order of the interpolating polynomial.

0 ormonstrate the idea, consider a problem with one re-entrant corner, see Figure 1, with acantip as a special case. Let (r, θ) and $(\hat{r}, \hat{\theta})$ be polar coordinates associated with the reentrant corner over Ω and $\hat{\Omega}$, respectively (see, for example, Figure 3). The map constructed

$$
\gamma:(\hat{r}, \hat{\theta}) \mapsto\left(r=\hat{r}^{4}, \theta=\hat{\theta}\right)
$$

transforms the function $r^{\lambda_{1}}$ over Ω to $\hat{r}^{4 \lambda_{1}}$ over $\hat{\Omega}$. Recall that since $\lambda_{1} \geq 1 / 2$, it follows is in $H^{2}(\hat{\Omega})$ (see $\left.\S 5\right)$. As a result, if P^{1} shape functions are used to solve for $\hat{\boldsymbol{u}}$, l convergence is expected. In the actual method, we will localize the map via a cut-off function so that multiple singularities can be independently handled. Moreover, we will build the map according to the order of interpolating polynomials to ensure optimal convergence. Figure 2 showcases the effects of localizing the map around a specific point, in contrast to reparameterizing the entire domain. More details will follow in $\S 3.1 .3$, as well as in Figure 3.

In the following section we provide a detailed description of the construction of the smooth problem, as well as its numerical solution via standard Lagrange finite element methods. It will become apparent to the reader that the method can be easily implemented with minor

To "remove" a singularity in the elasticity solution, assumed to be placed at the "nose" in we construct a map from the original domain (left) to a parametric one (either one on the right). A general map would deform the boundary of the domain (bottom right figure) as well as deform the neighborhood of other possible singularities, such as when in the presence of multiple crack tip. Instead, the map we adopt is localized around each singularity (top right figure), which means that equals the identity beyond a certain distance from the singularity (indicated by the crosshatched area). This property simplifies the enforcement of boundary conditions in many situations

llows for multiple crack tips to be handled simultaneously (cf. Figure 33b and § 3.1.3).
alt rations to any standard finite element program, effectively yielding optimal convergence rates with minimal computational and implementation overburden.

3. THE METHOD

 construction of the problem over the parametric domain and its numerical solution.We begin by stating in $\S 3.1 .1$ the elasticity problem over the domain occupied by the body of interest, followed by, in §3.1.2, an equivalent weak formulation over a generic parametric domain $\hat{\Omega}$ (with some mild restriction). We then discuss in $\S 3.1 .3$ the construction of the map $\gamma: \hat{\Omega} \rightarrow \Omega$ that ensures a sufficiently smooth solution of the problem over $\hat{\Omega}$. We lastly conclude the section with the introduction of the discrete problem statement in $\S 3.2$ and a summary of the method in $\S 3.3$.

3.1. Constructing the problem in the parametric domain

3.1.1. Problem statement in the physical domain. We consider a linear elasticity problem over a bounded open domain $\Omega \subset \mathbb{R}^{2}$ with an associated Cartesian coordinate system $x_{i}, i=1,2$. The problem reads: Find $\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{align*}
\nabla \cdot(\mathbb{C}: \nabla \boldsymbol{u})+\boldsymbol{b} & =0, & & \text { in } \Omega, \\
\boldsymbol{u} & =\boldsymbol{g}, & & \text { on } \partial_{d} \Omega, \tag{2}\\
(\mathbb{C}: \nabla \boldsymbol{u}) \cdot \boldsymbol{n} & =\boldsymbol{t}, & & \text { on } \partial_{\tau} \Omega,
\end{align*}
$$

whenotes the unit outward normal to the boundary $\partial \Omega=\overline{\partial_{d} \Omega \cup \partial_{\tau} \Omega}, \partial_{d} \Omega \cap \partial_{\tau} \Omega=\emptyset$, $\partial_{d} \Omega$ bac a positive length, $\boldsymbol{g}: \partial_{d} \Omega \rightarrow \mathbb{R}^{2}$ denotes the prescribed boundary displacement, $\boldsymbol{t}: \partial_{\tau} \Omega \rightarrow \mathbb{R}^{2}$ denotes the prescribed boundary tractions and $\boldsymbol{b}: \Omega \rightarrow \mathbb{R}^{2}$ represents the body forld. For the case with cracks, the domain Ω is intended as the cracked domain (namely the rack is considered a portion of the domain boundary) and we let $\mathscr{C}=\partial \Omega \backslash \partial \bar{\Omega}$ denote the crack anl ensure that $\partial_{\tau} \Omega \supseteq \mathscr{C}$. The constitutive tensor \mathbb{C} is defined as

$$
\mathbb{C}=\Lambda \mathbf{1} \otimes \mathbf{1}+2 \mu \mathbb{I}, \quad \Lambda= \begin{cases}\lambda, & \text { for plane strain, } \\ \frac{2 \lambda \mu}{\lambda+2 \mu}, & \text { for plane stress }\end{cases}
$$

where λ and μ are Lamé's first and second parameters, which we take as strictly positive, and 1 and \mathbb{I} are the second order identity tensor and the fourth order symmetric identity tensor, res ectrvely, as defined in $\S 1$.

Wr the set of admissible displacements \mathcal{V} and that of test functions \mathcal{W} defined as

$$
\begin{aligned}
\mathcal{V} & =\left\{\boldsymbol{u} \in H^{1}\left(\Omega, \mathbb{R}^{2}\right) \mid \boldsymbol{u}=\boldsymbol{g} \text { on } \partial_{d} \Omega\right\} \\
\mathcal{W} & =\left\{\boldsymbol{w} \in H^{1}\left(\Omega, \mathbb{R}^{2}\right) \mid \boldsymbol{w}=\mathbf{0} \text { on } \partial_{d} \Omega\right\}
\end{aligned}
$$

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})=F(\boldsymbol{w}), \quad \forall \boldsymbol{w} \in \mathcal{W} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
a(\boldsymbol{u}, \boldsymbol{w}) & :=\int_{\Omega} \nabla \boldsymbol{u}: \mathbb{C}: \nabla \boldsymbol{w} d \Omega \\
F(\boldsymbol{w}) & :=\int_{\Omega} \boldsymbol{b} \cdot \boldsymbol{w} d \Omega+\int_{\partial_{\tau} \Omega} \boldsymbol{t} \cdot \boldsymbol{w} d \Gamma
\end{aligned}
$$

3. 2. Problem statement in the parametric domain. Let $\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a diffeomorphism sucrirat $\Omega=\gamma(\hat{\Omega})$ and that $\gamma=$ id outside a sufficiently large ball containing all crack tips andre-e trant corners, where id denotes the identity map. Additionally we introduce for later use a set of Cartesian coordinates \hat{x}_{i} associated with $\hat{\Omega}$ (cf. Figure 3(a)). With

$$
\hat{\mathcal{V}}:=\mathcal{V} \circ \gamma, \quad \hat{\mathcal{W}}:=\mathcal{W} \circ \gamma
$$

we havan equivalent formulation of (3) given by: Find $\hat{\boldsymbol{u}} \in \hat{\mathcal{V}}$ such that

$$
\begin{equation*}
a_{\boldsymbol{\gamma}}(\hat{\boldsymbol{u}}, \hat{\boldsymbol{w}})=\hat{F}(\hat{\boldsymbol{w}}), \quad \forall \hat{\boldsymbol{w}} \in \hat{\mathcal{W}} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{\boldsymbol{\gamma}}(\hat{\boldsymbol{u}}, \hat{\boldsymbol{w}}) & :=\int_{\hat{\Omega}} \nabla \hat{\boldsymbol{u}}: \mathbb{M}: \nabla \hat{\boldsymbol{w}} d \hat{\Omega} \\
\hat{F}(\hat{\boldsymbol{w}}) & :=\int_{\hat{\Omega}} \hat{\boldsymbol{b}} \cdot \hat{\boldsymbol{w}} j d \hat{\Omega}+\int_{\partial_{\tau} \hat{\Omega}} \hat{\boldsymbol{t}} \cdot \hat{\boldsymbol{w}}\left\|(\nabla \boldsymbol{\gamma})^{-\top} \cdot \boldsymbol{n}\right\| j d \hat{\Gamma},
\end{aligned}
$$

and $j:=\operatorname{det}(\nabla \gamma)$ denotes the Jacobian of the mapping γ.
The symbol ${ }^{\wedge}$ is here reserved for functions composed with γ, e.g. $\hat{\boldsymbol{u}}=\boldsymbol{u} \circ \gamma$, and

$$
\mathbb{M}:=j(\nabla \gamma)^{-1} \cdot \mathbb{C} \cdot(\nabla \gamma)^{-\top}
$$

We remark that \mathbb{M} possesses the major symmetry but not necessarily the minor symmetries as it can be readily seen from its expanded form

$$
\mathbb{M}=\Lambda j(\nabla \gamma)^{-1} \otimes(\nabla \gamma)^{-\top}+2 \mu j(\nabla \gamma)^{-1} \cdot \mathbb{I} \cdot(\nabla \gamma)^{-\top}
$$

She oberator $a_{\boldsymbol{\gamma}}$ was constructed so that

for

$$
\begin{equation*}
a(\boldsymbol{u}, \boldsymbol{w})=a_{\boldsymbol{\gamma}}(\hat{\boldsymbol{u}}, \hat{\boldsymbol{w}}) \tag{6}
\end{equation*}
$$

ue map. The regularity of the solution of the problem stated in (4) is predicated on the appropriate construction of the mapping γ. In this section we will discuss the cost sig ion of such mapping. For clarity, we first present the construction of γ for the case of nole singularity (crack tip or re-entrant corner), then we generalize it to handle multiple \sin undarities.

The case of a single singularity. Let \boldsymbol{x}_{\top} be the location of the singularity in the physical do rant, and by construction, also the location of the singularity in the parametric domain, i.e. $\boldsymbol{\gamma}\left(\boldsymbol{x}_{-}\right)=\boldsymbol{x}_{\top}$. We define $\hat{r}=\hat{r}(\hat{\boldsymbol{x}}):=\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}_{\mathrm{T}}\right\|$, and construct the mapping as
סে

$$
\gamma(\hat{\boldsymbol{x}})=\boldsymbol{x}_{\top}+\frac{q(\eta)}{\eta}\left(\hat{\boldsymbol{x}}-\boldsymbol{x}_{\top}\right), \quad \eta=\eta(\hat{\boldsymbol{x}}):=\frac{\hat{r}(\hat{\boldsymbol{x}})}{\rho},
$$

wi, mı
2. The value of m is chosen so that $m \geq p+1$, where p is the order of polynomials in the finite element space (see $\S 3.2$ for specifics). In this way, optimal convergence of the finite ele nent ppproximation follows (see $\S 5$). For example, if piecewise quadratic polynomials to condrun approximations over $\hat{\Omega}$ are selected, $p=2$, we would set $m=3$.

To connect (7) with the discussion in $\S 2.2$, we first recall $r=r(\boldsymbol{x}):=\left\|\boldsymbol{x}-\boldsymbol{x}_{\top}\right\|$. From (7) we can conclude that
$\frac{r}{\rho}=\frac{1}{\rho}\left\|\gamma(\hat{\boldsymbol{x}})-\gamma\left(\boldsymbol{x}_{\mathrm{T}}\right)\right\|=\frac{1}{\rho}\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}_{\mathrm{T}}\right\| \frac{q(\hat{r} / \rho)}{\hat{r} / \rho}=\frac{\hat{r}}{\rho} \frac{q(\hat{r} / \rho)}{\hat{r} / \rho}=q\left(\frac{\hat{r}}{\rho}\right)$,
and hen e that $q(\hat{r} / \rho)$ plays the role of "stretching" \hat{r} into r. As we shall see, the choice of $q(7)$ III (8) guarantees that:
< We have $r \sim \hat{r}^{2 m}$ as $\hat{r} \searrow 0$, which is the condition stated in $\S 2.2$ to have $\hat{\boldsymbol{u}} \in H^{k}\left(\hat{\Omega}, \mathbb{R}^{2}\right)$, vith $k \geq 2$.
ii. The mapping γ is bijective.
iii. The mapping γ is the identity outside a compact region containing the singularity.

By defining γ, we defined $\hat{\Omega}=\gamma^{-1}(\Omega)$ as well. As a result, if the singularity is located at the tip of a curved crack, the path of the crack will be different in $\hat{\Omega}$ than in Ω. We illustrate this with examples later.

REmARK 1 (Generalization). The choice of $q(\eta)$ in (8) is not the only one. More generally, we can choose any function $q(\eta) \in \Pi_{k, m}$, with $m \geq k \geq 2$ and

$$
\begin{equation*}
\Pi_{k, m}:=\left\{q \in C^{k}\left(\mathbb{R}_{0}^{+}\right) \mid q(\eta)=\eta \forall \eta>1\right. \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
& q^{(j)}(0)=0, j=0, \ldots, k-1 ; q^{\prime}(\eta) \geq 0 \forall \eta \geq 0 \\
& \left.\exists C_{1}, C_{2}, \eta_{0}>0 \text { s.t. } q^{\prime}(\eta) \geq C_{1} \eta^{2 m-1} \text { and }\left|q^{(k)}(\eta)\right| \leq C_{2} \eta^{2 m-k} \forall \eta \in\left[0, \eta_{0}\right]\right\} \text {. }
\end{aligned}
$$

It is simple to build $q \in \Pi_{k, m}$ with polynomials, for example. Here k is the desired degree of smoothness of the mapped solution near the singularity, i.e., $\hat{\boldsymbol{u}} \in H^{k}(\hat{\Omega})$. For the numerical ap roximation of the solution, the smoother the function, the higher the attainable order of convergence. Hence, in general, we will select $m=k=p+1$, where p is the order of the po nom als in the finite element space.

Theonditions stated in (10) imply that $0 \leq q(\eta) / \eta \leq 1$ for all $\eta \in \mathbb{R}_{0}^{+}$. Moreover, by integr con it is simple to see that they also constrain the behavior of q near $\eta=0$. More pr ci fly there exist $C_{3}, C_{4}>0$ and $\eta_{0}>0$ such that $\forall \eta \in\left[0, \eta_{0}\right]$,

$$
\begin{align*}
C_{3} \eta^{2 m} & \leq q(\eta) \leq C_{4} \eta^{2 m} \tag{11a}\\
C_{3} \eta^{2 m-1} & \leq q^{\prime}(\eta) \tag{11b}\\
& \left|q^{(j)}(\eta)\right| \leq C_{4} \eta^{2 m-j}, \quad j=1, \ldots, k \tag{11c}
\end{align*}
$$

Together, (11a) and (9) show precisely that $r \sim \hat{r}^{2 m}$ near 0 , while (11c) guarantees that the de \bar{N} the gradient of γ^{-1}, which participates in \mathbb{M}, see $\S 5$, as well as the bijectivity of γ. The biiectivity of γ is readily seen from (9). In fact, for $\hat{r} \in[0, \rho]$,

$$
\frac{d r}{d \hat{r}}=q^{\prime}\left(\frac{\hat{r}}{\rho}\right) \geq 0
$$

with the equal sign satisfied if and only if $\eta=0$, implying the bijectivity of γ.
The discussion in $\S 2.2$ corresponds to a very simple q that takes the form $q(\eta)=\eta^{4}$ for all $\eta \geq$. This q satisfies all conditions in (10) with $k=m=2$, except $q(\eta)=\eta$ for $\eta>1$, and leads to simpler computations of the gradient of the map. However, it is convenient to choose a that coincides with the identity for η large enough since it permits localizing the map to eacmularity, an appealing feature when dealing with multiple singularities.
or the remainder of the manuscript we use (8) as the function q of choice. We do so since mple to evaluate and it can be used to construct approximations of any order, given that it in C^{∞}. The parameter ρ should be chosen to be at least a few times the radius of curvature of $\partial \Omega$ at \boldsymbol{x}_{\top}, so that the mesh size required to resolve the near-tip behavior is not smurun that needed to resolve the geometry.

Handling multiple singularities. Let $t \in \mathbb{N}$ denote the number of singularities, located at $\boldsymbol{x} \rightarrow \Omega, \tau=1, \ldots, t$. For each τ, we set $r_{\tau}: \boldsymbol{x} \mapsto\left\|\boldsymbol{x}-\boldsymbol{x}_{\mathrm{T}, \tau}\right\|$, see Figure 3. In this particular e assume that the solution can be written as the sum of the asymptotic expansions about each singularity plus the regular part as

$$
\boldsymbol{u}=\sum_{\tau=1}^{t} \sum_{j=1}^{\ell_{\tau}} r_{\tau}^{\lambda_{j}} \boldsymbol{\psi}_{j, \tau}\left(\theta_{\tau}\right)+\boldsymbol{u}_{R}
$$

where θ_{τ} is a polar angle associated with $\boldsymbol{x}_{\mathrm{T}, \tau}$ and, as before, $\boldsymbol{\psi}_{j, \tau}$ and \boldsymbol{u}_{R} are assumed to be sufficiently smooth.

$\stackrel{-}{-}$

?
(a) The problem is recast from a domain Ω to a domain $\hat{\Omega}$. The two domains coincide outside balls of radius ρ_{j} centered at the position of the $\mathrm{j}^{\text {th }}$ crack tip,
\checkmark Θ
 . $\boldsymbol{x}_{\mathrm{T}, \mathrm{j}}$.

(b) Illustration of the action of the mapping γ. The image on the left shows the physical domain Ω while the rig nt figure shows the parametric domain $\hat{\Omega}$, namely the image of the physical domain under the action of the
 per ${ }^{〔}$ a reparameterization. Several aspects of the mapping are worthwhile highlighting: (1) the mapping detail d in $\S 3.1 .3$, is such that the reparameterization is localized to the ball of radius ρ_{i} centered at $\left(\boldsymbol{x}_{\top, \mathrm{i}}\right)$, such that $B_{\rho_{\mathrm{i}}}\left(\boldsymbol{x}_{\top, \mathrm{i}}\right) \cap B_{\rho_{\mathrm{j}}}\left(\boldsymbol{x}_{\left.\mathrm{T}_{, \mathrm{j}}\right)}\right)=\emptyset$ for all $\mathrm{i} \neq \mathrm{j}$, allowing a simple way to handle multiple singularities, (2) the boundary of the parametric domain $(\partial \hat{\Omega})$ and that of the physical domain ($\partial \Omega$) do n necessarily need to coincide, as boundary conditions can be easily handled through map composition an proner integral scaling (cf. (13a) and (15b)), (3) moving from the domain Ω to $\hat{\Omega}$, points close to the singularity are "pulled away" (effectively allowing the singular function to possess lower gradients when o $\hat{\Omega}$), and (4) moving from the domain $\hat{\Omega}$ to the domain Ω the points farther from the singularity are brought closer to the singularity (effectively allowing for a smooth function defined over $\hat{\Omega}$ to possess shorpretures over Ω). This last observation is responsible for the "disappearance" of the nose and the right dimple in $\hat{\Omega}$ when mapped to Ω.

Figure 2 Physical and parametric domains, and action of the mapping and its inverse on them. While ine ext the location of the crack tips coincide, for clarity in the figure the two domains are depicted translated with respect to each other.

To account for each singularity we then construct the mapping $\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as

$$
\begin{equation*}
\gamma(\hat{\boldsymbol{x}})=\hat{\boldsymbol{x}}-\sum_{\tau=1}^{t}\left(1-\frac{q\left(\eta_{\tau}\right)}{\eta_{\tau}}\right)\left(\hat{\boldsymbol{x}}-\boldsymbol{x}_{\mathrm{T}, \tau}\right) \tag{12}
\end{equation*}
$$

where $\eta_{\tau}=\eta_{\tau}(\hat{\boldsymbol{x}}):=\hat{r}_{\tau}(\hat{\boldsymbol{x}}) / \rho_{\tau}$, with $\hat{r}_{\tau}: \hat{\boldsymbol{x}} \mapsto\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}_{\top}\right\|$. We choose $\left\{\rho_{\tau}\right\}_{\tau} \in\left(\mathbb{R}^{+}\right)^{t}$ within the sole restriction that $B_{\rho_{\tau}}\left(\boldsymbol{x}_{\top, \tau}\right) \cap B_{\rho_{\tau^{\prime}}}\left(\boldsymbol{x}_{\top, \tau^{\prime}}\right)=\emptyset, \forall \tau \neq \tau^{\prime}$, where $B_{\rho}(\mathbf{y})=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid \| \boldsymbol{x}-\right.$ $\mathbf{y} \|<\rho\}$ is the ball of radius ρ around \mathbf{y}; in other words we require that the neighborhoods of the singularities being mapped are mutually disjoint. Hence, by construction, the mapping is local to each singularity and the mapped solution possesses the desired regularity. Figure 4 illustrates the construction of such mappings for a one-dimensional analog of the problem.
The eypression of the gradient of the mapping γ is provided in Appendix A.

(a) The singular function.

(b) Functions $q\left(\eta_{\tau}\right) / \eta_{\tau}$ with $m=2$ in Eq. (8)

(d) The resulting mapped function over a subdomain as highlighted in (a). The markers show corresponding values of x_{i} and \hat{x}_{i} such that $f\left(x_{i}\right)=\hat{f}\left(\hat{x}_{i}\right)=y_{i}$.

Figure 4. One dimensional analog of the mapping. We begin by considering in (a) the function $f\left(\left.x_{\top, 1}\right|^{1 / 2}+\left|x-x_{\top, 2}\right|^{1 / 2}\right.$, where $x_{\top, \tau}=(-1)^{\tau}, \tau=1,2$. We set $m=k=2, \rho_{\tau}=1$, and then con truct in (b) the maps $q\left(\eta_{\tau}\right)$ with $\eta_{\tau}=\left|x-x_{\top, \tau}\right| / \rho_{\tau}$, for $\tau=1,2$. In (c) we show the global map similar to (12), and lastly in (d) we show the smooth function $\hat{f}=f \circ \gamma$ alongside the action of the mapping on a set of evenly spaced points $\left\{\hat{x}_{i}\right\}_{i}$.

3.2. The numerical approximation

In the following we describe the construction of a numerical approximation to $\hat{\boldsymbol{u}}$, and from that an approximation to \boldsymbol{u}.

Let $\hat{\Omega}^{h}$ be an approximation of $\hat{\Omega}$ of the appropriate order so that the error introduced by the approximation of the domain does not dominate the order of convergence of the method. For example, a standard isoparametric approximation of the domain would suffice. A similar
consideration is assumed in constructing the approximation $\partial_{d} \hat{\Omega}^{h}$ of $\partial_{d} \hat{\Omega}=\gamma^{-1}\left(\partial_{d} \Omega\right)$, then setting $\partial_{\tau} \hat{\Omega}^{h}=\partial \hat{\Omega}^{h} \backslash \partial_{d} \hat{\Omega}^{h}$. This can be easily accomplished if, for example, $\partial_{d} \Omega=\partial \Omega$, in which case we set $\partial_{d} \hat{\Omega}^{h}=\partial \hat{\Omega}^{h}$, or otherwise if the end points of $\partial_{d} \hat{\Omega}^{h}$ coincide with the end points of $\partial_{d} \hat{\Omega}$, and they coincide with nodes in the mesh.

Let \mathcal{T}^{h} denote a finite element mesh over $\hat{\Omega}^{h}$ (see Figure 5) with standard conditions, namely,
(1) $K \subset \hat{\Omega}^{h}$ for all elements $K \in \mathcal{T}^{h}$, (2) $\overline{\hat{\Omega}^{h}}=\overline{\bigcup_{K \in \mathcal{T}^{h}} K}$, where K denotes both a typical element Ind the open set occupied by this element, and (3) for any $K_{1}, K_{2} \in \mathcal{T}^{h}, \overline{K_{1}} \cap \overline{K_{2}}$ can only be empty, a common vertex, or a complete common edge. Here $h=\max _{K \in \mathcal{T}^{h}} \operatorname{diam} K$, wh ere dim K denotes the diameter of K.
-

$$
\begin{align*}
& \hat{\mathcal{V}}^{h, p}=\left\{\hat{\boldsymbol{u}}^{h} \in H^{1}\left(\hat{\Omega}^{h}, \mathbb{R}^{2}\right)\left|\hat{\boldsymbol{u}}^{h}\right|_{K} \in P^{p}\left(K, \mathbb{R}^{2}\right), \hat{\boldsymbol{u}}^{h}=\hat{\mathcal{I}}^{h}(\boldsymbol{g} \circ \boldsymbol{\gamma}) \text { on } \partial_{d} \hat{\Omega}^{h}\right\} \tag{13a}\\
& \hat{\boldsymbol{w}}^{h, p}=\left\{\hat{\boldsymbol{w}}^{h} \in H^{1}\left(\hat{\Omega}^{h}, \mathbb{R}^{2}\right)\left|\hat{\boldsymbol{w}}^{h}\right|_{K} \in P^{p}\left(K, \mathbb{R}^{2}\right), \hat{\boldsymbol{w}}^{h}=\mathbf{0} \text { on } \partial_{d} \hat{\Omega}^{h}\right\} \tag{13b}
\end{align*}
$$

Here $P^{p}(K)$ denotes the family of complete polynomials of order up to $p \in \mathbb{N}$ over K, and $\hat{\mathcal{I}}^{h}$ is A erpolation operator over such elements. For Lagrange finite elements, the condition $\hat{\boldsymbol{u}}^{h} \hat{\mathcal{I}}^{h} \boldsymbol{g} \circ \gamma$) on $\partial_{d} \hat{\Omega}^{h}$ in (13a) is equivalent to $\hat{\boldsymbol{u}}^{h}=\boldsymbol{g} \circ \boldsymbol{\gamma}$ on nodes on $\partial_{d} \hat{\Omega}^{h}$. It is worthwhile noting that the piecewise polynomial functions are constructed over $\hat{\Omega}^{h}$; when composed with the map ing γ they will no longer be polynomials.

FITCGalerkin form of the problem statement then reads: Find $\hat{\boldsymbol{u}}^{h} \in \hat{\mathcal{V}}^{h, p}$ such that

$$
\begin{equation*}
\square a_{\gamma}^{h}\left(\hat{\boldsymbol{u}}^{h}, \hat{\boldsymbol{w}}^{h}\right)=F_{\gamma}^{h}\left(\hat{\boldsymbol{w}}^{h}\right), \quad \forall \hat{\boldsymbol{w}}^{h} \in \hat{\mathcal{W}}^{h, p} \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
a_{\gamma}^{h}\left(\hat{\boldsymbol{u}}^{h}, \hat{\boldsymbol{w}}^{h}\right) & :=\int_{\hat{\Omega}^{h}} \nabla \hat{\boldsymbol{u}}^{h}: \mathbb{M}: \nabla \hat{\boldsymbol{w}}^{h} d \hat{\Omega}^{h} \tag{15a}\\
F_{\gamma}^{h}\left(\hat{\boldsymbol{w}}^{h}\right) & :=\int_{\hat{\Omega}^{h}} \hat{\boldsymbol{b}} \cdot \hat{\boldsymbol{w}}^{h} j d \hat{\Omega}^{h}+\int_{\partial_{\tau} \hat{\Omega}^{h}} \hat{\boldsymbol{w}}^{h} \cdot\left(\hat{\boldsymbol{t}}\left\|(\nabla \boldsymbol{\gamma})^{-\top} \cdot \boldsymbol{n}\right\| j\right) \circ \mathfrak{p} d \hat{\Gamma}
\end{align*}
$$

Note that in the above, quantities in the domain integrals defined over $\hat{\Omega}$ (e.g. $\hat{\boldsymbol{b}}, j, \nabla \gamma)$ are taken as their zero extensions to $\hat{\Omega}^{h}$, and $\mathfrak{p}: \partial \hat{\Omega}^{h} \rightarrow \partial \hat{\Omega}$ denotes the closest point projection of a fintlying in $\partial \hat{\Omega}^{h}$ to $\partial \hat{\Omega}$. The mention of the extensions is purely formal, since in practice and as a result of the use of quadrature rules these extensions are (essentially) never evaluated. Fir ally, ve obtain an approximation to \boldsymbol{u} as $\boldsymbol{u}^{h}=\hat{\boldsymbol{u}}^{h} \circ \boldsymbol{\gamma}^{-1}$. For a more detailed description of plementation of the method we refer the reader to Appendix B.
RF NARK 2 (The inverse map). Notice that this approximation needs a mesh over $\hat{\Omega}$ instead f. Q . To this end, an explicit expression of γ^{-1} was derived in order to easily evaluate $\hat{\Omega}$ for its discretization. More precisely, the inverse map γ^{-1} can be explicitly expressed as

$$
\gamma^{-1}(\boldsymbol{x})=\boldsymbol{x}_{\top}+\frac{q^{-1}(\hat{\eta})}{\hat{\eta}}\left(\boldsymbol{x}-\boldsymbol{x}_{\top}\right), \quad \hat{\eta}=\hat{\eta}(\boldsymbol{x}):=\frac{r(\boldsymbol{x})}{\rho}
$$

for one cing

$$
\gamma^{-1}(\boldsymbol{x})=\boldsymbol{x}-\sum_{\tau=1}^{t}\left(1-\frac{q^{-1}\left(\hat{\eta}_{\tau}\right)}{\hat{\eta}_{\tau}}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{\mathrm{T}, \tau}\right), \quad \hat{\eta}_{\tau}=\hat{\eta}_{\tau}(\boldsymbol{x}):=\frac{r_{\tau}(\boldsymbol{x})}{\rho_{\tau}}
$$

for multiple singularities, where $q^{-1}(\hat{\eta})$ is the inverse function of $q(\eta)$.
REMARK 3 (Comparing against a method to approximate a problem with no auxiliary map). In the upcoming sections we will recurrently contrast the approximations of \boldsymbol{u} obtained with and without the auxiliary map. To be precise, we will compare the results obtained by setting
γ to (7) and (12), termed MFEM, with that obtained by setting γ to be the identity map, which recovers a standard finite element approximation with Lagrange finite elements. For convenience we will use the shorter acronym FEM to refer to the latter.

Notice that the MFEM does not introduce additional degrees of freedom or special shape functions over the FEM (the shape functions in the MFEM are also polynomials, but over the parametric domain).

4 (Numerical computation of the bilinear form and functional). The bilinear form and functional of (15a) and (15b), respectively, are performed in $\S 4$ using standard Gauss qu dratyre over a subdivision of $\hat{\Omega}^{h}$, as traditionally carried out for finite element methods.

REMARK 5 (Choice of ρ_{τ}). In order for the results to be accurate, the radius ρ_{τ} shall be chosen to ee a sufficiently large multiple of the mesh size. Of course, for convergence, once chosen the value of ρ_{τ} should not be changed as the mesh size is refined. We observed that $\rho_{\tau} \geq 5 h_{0}$, wh h is the coarsest mesh under consideration, already yielded the asymptotic behavior wh e rates of convergence approached optimal values.

3.3.Svinary of the method

We cong ude this section by providing in Box 3.1 a recapitulation of the method. We emphasize that crucial steps are (1) the construction of the map, (2) the subdivision of the parametric domain, and (3) the generation of finite element arrays accounting for the metric changes.

Figure 5. Example of a finite element mesh of $\hat{\Omega}=\gamma^{-1}(\Omega)$ with $\Omega=[-3,3] \times[-1.5,1.5] \backslash$ $\left\{1, x_{1} \in(-2,2), x_{2}=\cos \left(3 x_{1}\right) \exp \left[1 /\left(x_{1}^{2} / 4-1\right)+1\right]\right\}$. In (a) we showcase the discretization used for computations. In (b) we highlight that the boundary of the domain may not necessarily be preser yed under the action of the mapping, namely $\mathscr{C} \neq \gamma^{-1}(\mathscr{C})$. In (c) we zoom in around one of ack tips added $[\mathrm{id}=\mathrm{mc}]$ to showcase the discretization of $\hat{\Omega}$. Lastly in (d) we showcase what the imane of
(s) of the discretization \mathcal{T}^{h} of $\hat{\Omega}$ under the action of $\boldsymbol{\gamma}$. It is worthwhile noting that $\gamma\left(\mathcal{T}^{h}\right)$ (swirl ure (d)) does not serve any purpose from the computational perspective but it is solely provided to illustrate the reader the action of γ.

$-$

Box 3.1 Summary of the method.
Step 1. For each of the t singularities let $\left\{\rho_{\tau}\right\}_{\tau}$ such that $B_{\rho_{\tau}}\left(\boldsymbol{x}_{\top, \tau}\right) \cap B_{\rho_{\tau^{\prime}}}\left(\boldsymbol{x}_{\top, \tau^{\prime}}\right)=\emptyset, \forall \tau \neq \tau^{\prime}$.
Step S. Sel the polynomial degree p of the interpolating space $\hat{\mathcal{V}}^{h, p}$.
Step 3. Choose $m \geq k \geq p+1$ (generally $m=k=p+1$) and generate the map γ as

$$
\gamma(\hat{\boldsymbol{x}})=\hat{\boldsymbol{x}}-\sum_{\tau=1}^{t}\left(1-\frac{q\left(\eta_{\tau}\right)}{\eta_{\tau}}\right)\left(\hat{\boldsymbol{x}}-\boldsymbol{x}_{\mathrm{T}, \tau}\right)
$$

where $\eta_{\tau}:=\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}_{\top, \tau}\right\| / \rho_{\tau}$, and

$$
q(\eta):= \begin{cases}\eta\left[1-\exp \left(1+\frac{1}{\eta^{2 m-1}-1}\right)\right], & \text { if } \eta<1 \\ \eta, & \text { otherwise }\end{cases}
$$

inverse map γ^{-1} is

$$
\gamma^{-1}(\boldsymbol{x})=\boldsymbol{x}-\sum_{\tau=1}^{t}\left(1-\frac{q^{-1}\left(\hat{\eta}_{\tau}\right)}{\hat{\eta}_{\tau}}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{\top, \tau}\right),
$$

where $\hat{\eta}_{\tau}:=\left\|\boldsymbol{x}-\boldsymbol{x}_{\mathrm{T}, \tau}\right\| / \rho_{\tau}$.
Step 4. Generate a subdivision \mathcal{T}^{h} of the approximation $\hat{\Omega}^{h}$ of $\hat{\Omega}=\gamma^{-1}(\Omega)$.
Step Construct the finite element space $\hat{\mathcal{V}}^{h, p}$ over \mathcal{T}^{h} with isoparametric elements.
Step 0. Nolve the following problem: Find $\hat{\boldsymbol{u}}^{h} \in \hat{\mathcal{V}}^{h, p}$ such that

$$
a_{\boldsymbol{\gamma}}\left(\hat{\boldsymbol{u}}^{h}, \hat{\boldsymbol{w}}^{h}\right)=F_{\gamma}^{h}(\hat{\boldsymbol{w}}), \quad \forall \hat{\boldsymbol{w}}^{h} \in \hat{\mathcal{W}}^{h, p}
$$

Step. .ompose $\hat{\boldsymbol{u}}^{h}$ with $\boldsymbol{\gamma}^{-1}$ to obtain an optimally convergent approximation to \boldsymbol{u}.

4. NUMERICAL EXAMPLES

We next showcase the convergence of the MFEM by comparing the computed results to the analytical solutions of benchmark problems. We will further contrast the accuracy and computational complexity of the MFEM with the common FEM as introduced in Remark 3.

We considered four benchmark problems to showcase the properties of the MFEM: the first prgblem consists of a straight crack with loaded crack faces, the second is that of a circular are crack, the third is that of anti-plane elastic deformations in an L-shaped domain, and las consider the problem of a crack at a bi-material interface. For all problems we show the cony rgence behavior of the MFEM in comparison to the FEM. We systematically provide convergence plots alongside tables with errors and computed convergence rates, for which finer mesnes were obtained by successively and uniformly subdividing the coarsest mesh, which will be llustrated for each of the examples. We further provide error comparisons as functions of the problem size N (namely the number of degrees of freedom, or the size of the linear system, wh ch includes the degrees of freedom with Dirichlet boundary conditions) and CPU time tak the assembly and the solution of the linear system, including some minor overhead tasks which take orders of magnitude less time and are independent of refinement (all the $\sin \mathrm{u}$ Itigns were performed on a Unix based machine with 1.4 GHz Intel Core i5 processor with 4 GB 1600 MHz DDR3 of memory). As expected, we observe optimal convergence rates for IFEM and sub-optimal rates for the FEM. Furthermore we see considerable gains in accurac for equivalent problem sizes and run times.

In what follows we will reserve the superscript ${ }^{e}$ for the analytical solution of the boundary va problem under consideration. Furthermore, unless otherwise noted, we always let $\partial_{d}-\bar{\Omega}, \boldsymbol{g}=\boldsymbol{u}^{e}$ (c.f. Eq. (2)), and $\boldsymbol{b}=\mathbf{0}$. In all examples we chose $m=k=p+1$, where p is the order of the polynomials in the finite element space over the parametric configuration. n ill cases, the error $\left\|\boldsymbol{u}^{e}-\boldsymbol{u}^{h}\right\|_{0, \Omega}=\left\|\boldsymbol{u}^{e}-\hat{\boldsymbol{u}}^{h} \circ \gamma^{-1}\right\|_{0, \Omega}$ we approximated by numerical integravon over $\hat{\Omega}$, namely,

$$
\left\|\boldsymbol{u}^{e}-\boldsymbol{u}^{h}\right\|_{0, \Omega} \approx\left(\left.\left.\sum\left\|\boldsymbol{u}^{e} \circ \gamma-\hat{\boldsymbol{u}}^{h}\right\|^{2}\right|_{x_{g}} w_{g} j\right|_{x_{g}}\right)^{1 / 2}
$$

Additionally, throughout the following examples we present further numerical results, beyond the convergence of the $L^{2}(\Omega)$-norm of the solution, that highlight additional features of thod. Namely, in $\S 4.1$ we discuss the conditioning of the resulting system of equation, in $\S \sim_{2}$ we discuss the convergence of the stress intensity factors, and lastly in $\S 4.4$ we showcase th opti ality of convergence of the derivatives of the solution measured as the $H^{1}(\Omega)$-norm (|| $\mathbf{0} / \mathrm{Tr}$,). Both triangular and quadrilateral elements are used in the presentation to showcase the endence of the optimality of convergence on the choice of the finite elements. 4.1. Straight crack The first problem is the one of a semi-infinite straight crack in an infinite medium subject to -mode loading. An analytical solution for the problem can be found in [30, 31]. We further uperimpose a uniform pressure field in order to verify the application of boundary tractions in the mapped region. If we let $\boldsymbol{u}^{\mathrm{I}, \mathrm{II}}$ denote the solution field as found in [30, 31], the solv, In of the example will be given by

$$
\boldsymbol{u}^{e}=\boldsymbol{u}^{\mathrm{I}, \mathrm{II}}+\boldsymbol{u}^{\mathrm{p}}
$$

where $\boldsymbol{u}^{\mathrm{p}}$ is the displacement field associated with the uniform pressure. Assuming a plane strain state, we have

$$
\boldsymbol{u}^{\mathrm{p}}=\mathrm{p} \frac{\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}\right)}{2(\Lambda+\mu)}
$$

with $\mathrm{p}=1$ being the uniform in-plane pressure.

We model a subdomain of the infinite medium $\Omega=(-1,1)^{2} \backslash\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=0, x_{1} \leq 0\right\}$. We then have $\mathscr{C}=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=0,-1<x_{1} \leq 0\right\}$. We impose essential boundary conditions on $\partial_{d} \Omega=\partial \bar{\Omega}$ given by $\boldsymbol{g}=\boldsymbol{u}^{e}$. On $\mathscr{C}=\partial_{\tau} \Omega$ we apply the tractions associated with the uniform pressure field, namely $\boldsymbol{t}=\mathrm{p} \boldsymbol{n}$. In Figure 6 we show a sketch of the modeled problem with boundary conditions alongside the subdivision \mathcal{T}^{h} of $\hat{\Omega}$ and the same mesh mapped with γ. Note that, as $\Omega=\hat{\Omega}$, we use the same subdivision \mathcal{T}^{h} for both the MFEM and the FEM. The radius of support of the cut-off function is taken as $\rho=1$. We assume a plain strain state and the material constants are $\Lambda=1.5$ and $\mu=1$.

(b) Sample mesh corresponding to the first subdivision
restigated the h-convergence for $\hat{\mathcal{V}}^{h, p}, p=1,2,3,4$, by uniformly subdividing each triangle in the mesh into four similar ones. We showcase in Figure 7(a) comparison of the convergence of the MFEM against the FEM. The error and the rates of convergence are previded in Table I. We observe optimal convergence rates for the MFEM and sub-optimal rates for FEM. In Figure 7 we also provide comparison of the errors as functions of the problem
 d CPU time. It appears that the choice of $p=2$ best balances computing time and tice that with $p=2$ the computing times for an error of 10^{-5} differ by around two orders of magnitude, in favor of the MFEM.
ne of the key features that unleashes the computational time savings for the MFEM is the auxiliary map presented here, the condition number of the resulting system of equation maintains the same scaling with respect to mesh refinements than standard finite element methods. This is in contrast with graded mesh refinement strategies without proper scarrig the basis functions. More precisely, the condition number of the method was observed to scale $\mathcal{O}\left(h^{-2}\right)$, just as in standard finite element methods, cf. [32, Chapter 9]. Figure 8 shows the aforementioned behavior. This behavior arises because the bilinear form of the new is coercive and continuous with continuity and coercivity constants independent of h. 1 to this fact is that the map itself is defined independently of h.

Figure 7. Convergence of the elasticity solution for a straight crack.

Table I. Errors $\left(\left\|\boldsymbol{u}^{e}-\boldsymbol{u}^{h}\right\|_{0, \Omega}\right)$ and convergence rates for the straight crack problem.
(a) FEM

	P^{1}		P^{2}		P^{3}		P^{4}	
h_{0} / h	Error	\mathcal{O}	Error	\mathcal{O}	Error	\mathcal{O}	Error	\mathcal{O}
1	$9.1 \cdot 10^{-4}$	-	$2.6 \cdot 10^{-4}$	-	$1.3 \cdot 10^{-4}$	-	$7.5 \cdot 10^{-5}$	-
2	$4.5 \cdot 10^{-4}$	1.0	$1.3 \cdot 10^{-4}$	1.1	$6.1 \cdot 10^{-5}$	1.0	$3.7 \cdot 10^{-5}$	1.0
4	$2.2 \cdot 10^{-4}$	1.0	$6.1 \cdot 10^{-5}$	1.0	$3.0 \cdot 10^{-5}$	1.0	$1.8 \cdot 10^{-5}$	1.0
8	$1.1 \cdot 10^{-4}$	1.0	$3.0 \cdot 10^{-5}$	1.0	$1.5 \cdot 10^{-5}$	1.0	$9.0 \cdot 10^{-6}$	1.0
16	$5.5 \cdot 10^{-5}$	1.0	$1.5 \cdot 10^{-5}$	1.0	$7.5 \cdot 10^{-6}$	1.0	-	-
32	$2.8 \cdot 10^{-5}$	1.0	$7.5 \cdot 10^{-6}$	1.0	-	-	-	-
64	$1.4 \cdot 10^{-5}$	1.0	-	-	-	-	-	-
(b) MFEM								
P^{1}			P^{2}		P^{3}		P^{4}	
h_{0} / h	Error	\mathcal{O}	Error	\mathcal{O}	Error	\mathcal{O}	Error	\mathcal{O}
1	$1.8 \cdot 10^{-3}$	-	$2.8 \cdot 10^{-4}$	-	$9.1 \cdot 10^{-5}$	-	$5.7 \cdot 10^{-5}$	-
2	$5.4 \cdot 10^{-4}$	1.7	$3.7 \cdot 10^{-5}$	2.9	$5.9 \cdot 10^{-6}$	3.9	$2.5 \cdot 10^{-6}$	4.5
4	$1.5 \cdot 10^{-4}$	1.8	$4.3 \cdot 10^{-6}$	3.1	$3.9 \cdot 10^{-7}$	3.9	$6.0 \cdot 10^{-8}$	5.4
$\bigcirc 8$	$4.1 \cdot 10^{-5}$	1.9	$5.3 \cdot 10^{-7}$	3.0	$2.4 \cdot 10^{-8}$	4.0	$1.9 \cdot 10^{-9}$	5.0
16	$1.0 \cdot 10^{-5}$	2.0	$6.5 \cdot 10^{-8}$	3.0	$1.5 \cdot 10^{-9}$	4.0	-	-
32	$2.6 \cdot 10^{-6}$	2.0	$8.1 \cdot 10^{-9}$	3.0	-	-	-	-
64	$6.5 \cdot 10^{-7}$	2.0	-	-	-	-	-	-

Figure 8. Scaling of the condition number κ for the straight crack problem.

4.2. Circular arc crack

We now consider the problem of a circular arc crack in an infinite medium loaded by remote stress, as shown in Figure 9a. An analytical solution for the problem is available in Muskhelishvili [33] and a Python [34] implementation of the solution is available as part of the supplementary material in [35]. The objective of the example is to showcase the method in the context of multiple crack tips and curved cracks.
lues of $\sigma_{i}^{\infty}, i=1,2$ were chosen such that mode I stress intensity factor is unity $\left(K_{I}=1\right)$ and mode II stress intensity factor is exactly zero ($K_{I I}=0$). The radius of the crack is aken s $R=1$ and the angle subdued by the crack is taken as $2 \phi=\pi$. In Figure 9 (b) and (c) a sketch of the modeled subdomain given by $\Omega=[-2,2] \times[-1,1]$ with boundary conditions and the coarsest mesh, respectively. The radius of support of the cut-off functions for both crack tips was chosen as $\rho_{\tau}=0.5, \tau=1,2$. Lastly we assumed a plane strain state wi erial constants $\Lambda=1.5, \mu=1$.
We vestigated the h-convergence for $\hat{\mathcal{V}}^{h, p}, p=1,2,3,4$. We showcase in Figure 10 a co pari on of the convergence of the MFEM against the FEM. The error and the rates of convergence are provided in Table II. As in the previous section, we observe optimal co gonce rates for the MFEM and sub-optimal convergence for the FEM.

	P^{1}		P^{2}		P^{3}		P^{4}	
${ }^{h_{0} / h}$	Error	\mathcal{O}	Error	\mathcal{O}	Error	\mathcal{O}	Error	\mathcal{O}
	$5.4 \cdot 10^{-5}$	-	$1.6 \cdot 10^{-5}$	-	$8.1 \cdot 10^{-6}$	-	$4.8 \cdot 10^{-6}$	-
2	$2.6 \cdot 10^{-5}$	1.1	$7.8 \cdot 10^{-6}$	1.1	$3.9 \cdot 10^{-6}$	1.1	$2.3 \cdot 10^{-6}$	1.0
4	$1.3 \cdot 10^{-5}$	1.0	$3.8 \cdot 10^{-6}$	1.1	$1.9 \cdot 10^{-6}$	1.0	$1.1 \cdot 10^{-6}$	1.0
8	$6.2 \cdot 10^{-6}$	1.0	$1.9 \cdot 10^{-6}$	1.0	$9.3 \cdot 10^{-7}$	1.0	$5.6 \cdot 10^{-7}$	1.0
16	$3.0 \cdot 10^{-6}$	1.0	$9.2 \cdot 10^{-7}$	1.0	$4.6 \cdot 10^{-7}$	1.0	-	-
32	$1.5 \cdot 10^{-6}$	1.0	$4.6 \cdot 10^{-7}$	1.0	-	-	-	-
64	$7.5 \cdot 10^{-7}$	1.0	-	-	-	-	-	-

(b) MFEM

The importance of the optimality in the convergence of the derivative becomes apparent, for example, when considering simulations of crack propagation. The evolution of a crack is dictated by two scalar coefficients known as the stress intensity factors (SIFs). The SIFs can be computed by evaluating a continuous linear functional of the derivative of the

Figure 9. Circular arc crack problem.
computed solution (see for example [36]) known as the interaction integral functional. It can be shown that such functionals converge at twice the rate of their argument. Namely if $I[\cdot]$ denotes the Interaction Integral functional, then we have $\left\|I\left[\nabla \boldsymbol{u}^{e}\right]-I\left[\nabla \boldsymbol{u}^{h}\right]\right\| \leq \mathcal{O}\left(h^{2 k}\right)$ where $\left\|\boldsymbol{u}^{e}-\boldsymbol{u}^{h}\right\|_{1, \Omega} \leq \mathcal{O}\left(h^{k}\right)$. This behavior is indeed observed in the evaluation of the SIFs for a circular arc crack, and illustrated in Figure 11, where we contrast the convergence of the SIFs
from a solution obtained using FEM with that of using MFEM. In the former $k=0.5$, and hence the SIFs converge as $\mathcal{O}\left(h^{1}\right)$, while in the latter $k=p$, and hence the SIFs converge as $\mathcal{O}\left(h^{2 p}\right)$. Convergence curves for the derivatives are provided for a different example in § 4.4.

Figure 10. Convergence of the elasticity solution for a circular arc crack.

Figure 11. Convergence of the stress intensity factors for a circular arc crack. We highlight that the rate of convergence of the stress intensity factors are twice the rates of convergence of the derivatives of re selution (where $\left\|\nabla \boldsymbol{u}^{h}-\nabla \boldsymbol{u}^{e}\right\|_{0, \Omega} \leq \mathcal{O}\left(h^{k}\right)$ with $k=0.5$ for FEM and $k=p$ for MFEM, cf. § 4.4, Figure 16 and Table V)

4.3. Anti-plane elasticity over an L-shaped domain

The next example we present is aimed at showcasing the versatility of the MFEM for problems with re-entrant corners. The problem of interest is the anti-plane deformation of an L-shaped domain, as shown in Figure 12. As we remarked earlier in the manuscript, the boundary value problem becomes solving $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\nabla \cdot(\mu \nabla u)+b & =0, & & \text { in } \Omega, \\
u & =g, & & \text { on } \partial_{d} \Omega, \\
\mu \nabla u \cdot \boldsymbol{n} & =t, & & \text { on } \partial_{\tau} \Omega .
\end{aligned}
$$

It is inther straightforward to follow the steps of $\S 3$ to derive the Garlerkin form over $\hat{\Omega}$ of theabove boundary value problem. We provide details of the bilinear form and other relevant cons in Appendix C.
The smain is $\Omega=(-1,1)^{2} \backslash[0,1]^{2}$. We then let $\partial_{d} \Omega=\partial \Omega \backslash[(\{0\} \times[0,1]) \cup([0,1] \times\{0\})]$. W take $t=0, b=2\left(x_{1}^{2}+x_{2}^{2}\right)$ and set

$$
g=r^{2 / 3} \cos (2 \theta / 3)+x_{1}^{2} x_{2}^{2}
$$

where the x_{1}-axis coincides with the ray $\theta=0$. The solution to the above boundary value pr is given by

$$
u^{e}=r^{2 / 3} \cos (2 \theta / 3)+x_{1}^{2} x_{2}^{2}
$$

The power of the singularity is $2 / 3$ rather than $1 / 2$ as in the case of a cracked domain.
W could very well replace the condition $m \geq k \geq p+1$ by a milder one and still maintain
$u^{e} H^{k}(\hat{\Omega})$ and recover optimal rates of convergence. Alternatively, given that the solution
to the shaped domain is less singular than that of the cracked domain it will not be necessary
to alt method at all. In fact using a mapping γ given by (12) with the original condition
$m \geq k=1$ will yield an even smoother solution. Therefore for the example the mapping
The dius of the cut-off function was taken as $\rho=1$ and the material parameters were
chen once more as $\mu=1$.

(a) Modeled subdomain with boundary conditions

(b) Sample mesh corresponding to the first subdivision

Figure 12. Anti-plane elasticity over an L-shaped domain.

We provide convergence plots for four polynomial degrees in Figure 13. Once again, alongside the convergence in the mesh size we showcase comparisons of error evolution as a function of
the problem size and computing time. It is worthwhile noting that for this particular example the solution of FEM converges faster than for the cracked domain, but still suboptimally, namely $\left\|u^{e}-u^{h}\right\| \leq \mathcal{O}\left(h^{4 / 3}\right)$. The above is attributed to the higher regularity of the solution, namely $u^{e} \in H^{5 / 3-\delta}(\Omega)$ for any $\delta>0$ [37].

Consistent with what was observed before, the solution computed with MFEM converges optimally. Table III shows the error and the computed rates of convergence. Once more quadrati polynomial interpolates provide the best compromise between run-time and accuracy forthe range of errors here presented.
Ta le III Errors $\left(\left\|\boldsymbol{u}^{e}-\boldsymbol{u}^{h}\right\|_{0, \Omega}\right)$ and convergence rates for the anti-plane elasticity problem on and L-shaped domain.

| |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 13. Convergence of the anti-plane elasticity solution for an L-shaped domain.

4.4. Interface crack

The last problem we present is the one of a crack along a bilateral interface. The material properties are chosen such that $\Lambda_{1}=1.5, \mu_{1}=1, \Lambda_{2}=10 \Lambda_{1}$, and $\mu_{2}=10 \mu_{1}$. The analytical solution for the problem can be found in [38]. The objective of the example is to showcase the ability of the same method to obtain higher-order approximations of the elasticity fields in the presence of different asymptotic behaviors. More precisely, the displacement field in medium 1,2 , scales as

$$
\boldsymbol{u} \sim r^{1 / 2}\left[\boldsymbol{\psi}_{M a}(\theta) \cos (\varepsilon \ln r)+\boldsymbol{\psi}_{M b}(\theta) \sin (\varepsilon \ln r)\right],
$$

where $\boldsymbol{\psi}_{M a}$ and $\boldsymbol{\psi}_{M b}$ are C^{∞} functions of θ, and ε depends on the elastic constants of the two materials, which vanishes if $\Lambda_{1}=\Lambda_{2}$ and $\mu_{1}=\mu_{2}$. In this example, $\varepsilon=18 / 77 \doteq 0.2338$. This asman ic behavior in the physical domain leads to, in the mapped domain with $m=k$,

$$
\text { (} \hat{\boldsymbol{u}} \sim \hat{r}^{k}\left[\hat{\psi}_{M a}(\hat{\theta}) \cos (2 k \varepsilon \ln \hat{r})+\hat{\psi}_{M b}(\hat{\theta}) \sin (2 k \varepsilon \ln \hat{r})\right] \in H^{k}\left(\hat{\Omega}, \mathbb{R}^{2}\right) \text {, }
$$

wh \int) ${ }_{a t}$ and $\hat{\boldsymbol{\psi}}_{M b}$ are C^{∞} functions of $\hat{\theta}$. Hence, no alteration is needed to apply the method to mroblem in order to achieve optimal convergence.
marison, in the case of extended finite element methods (XFEM) basis functions
that spal the different type of singularities need to be employed to get at most first order convergence in the stresses. An example of the latter, albeit with stresses converging as $h^{1 / 2}$, car ormand in [39].
sthe analytical solutions are available, we modeled a subdomain $\Omega=(-1,1)^{2} \backslash([-1,0] \times$ $\{0\}$) containing only a single crack tip and prescribed displacements on the boundary of the do ($\overline{\mathrm{m}}$, as illustrated in Figure 14. The coarsest mesh is shown in in Figure 14(b) an each obtained by recursive subdivisions of the coarsest mesh. We remark that for this examole we employed quadrilateral elements Q^{k} to showcase the independence of the method on the type of finite element. The radius of support of the mapping is $\rho=1$. As before we perfordd an h-convergence study for four degrees of the polynomial interpolate ranging from quartic ($Q^{k}, k=1,2,3,4$) in Figure 15. Table IV shows the error and the computed rates of convergence. Results similar to the previous examples are obtained.

Figure 14. Interface crack.

Table IV. Errors ($\left\|\boldsymbol{u}^{e}-\boldsymbol{u}^{h}\right\|_{0, \Omega}$) and convergence rates of the elasticity field of a crack at a bimaterial interface.
(a) FEM

h_{0} / h	Q^{1}		Q^{2}		Q^{3}		Q^{4}	
	Error	\mathcal{O}	Error	\mathcal{O}	Error	\mathcal{O}	Error	\mathcal{O}
$\int 1$	$4.6 \cdot 10^{-2}$	-	$1.4 \cdot 10^{-2}$	-	$6.7 \cdot 10^{-3}$	-	$1.9 \cdot 10^{-3}$	-
2	$2.2 \cdot 10^{-2}$	1.1	$6.4 \cdot 10^{-3}$	1.1	$3.1 \cdot 10^{-3}$	1.1	$9.1 \cdot 10^{-4}$	1.0
	$1.0 \cdot 10^{-2}$	1.1	$3.0 \cdot 10^{-3}$	1.1	$1.5 \cdot 10^{-3}$	1.1	$4.5 \cdot 10^{-4}$	1.0
8	$5.0 \cdot 10^{-3}$	1.1	$1.5 \cdot 10^{-3}$	1.1	$7.4 \cdot 10^{-4}$	1.0	$2.2 \cdot 10^{-4}$	1.0
16	$2.4 \cdot 10^{-3}$	1.1	$7.1 \cdot 10^{-4}$	1.0	$3.6 \cdot 10^{-4}$	1.0	$1.1 \cdot 10^{-4}$	1.0
32	$1.2 \cdot 10^{-3}$	1.0	$3.5 \cdot 10^{-4}$	1.0	$1.8 \cdot 10^{-4}$	1.0	-	-
) 64	$5.7 \cdot 10^{-4}$	1.0	$1.7 \cdot 10^{-4}$	1.0	-	-	-	-

(b) MFEM
would like to remark that optimality in the convergence of the derivative, alongside the solurne themselves, was also observed. We expect the error in the derivative to converge optin for MFEM, namely $\left\|\boldsymbol{u}^{e}-\boldsymbol{u}^{h}\right\|_{1, \Omega} \leq \mathcal{O}\left(h^{p}\right)$ with p being the order of the polynomial int rpolgte, while with FEM we observe $\left\|\boldsymbol{u}^{e}-\boldsymbol{u}^{h}\right\|_{1, \Omega} \leq \mathcal{O}\left(h^{s}\right)$, with $s=1 / 2$ for crack probrems, independently of p. Figure 16 showcases the contrast between suboptimal rates for the H form FEM in comparison with MFEM for the interface crack problem, and rates and errors are reported in Table V.

Figure 15. Convergence of the solution of the elasticity field of a crack at a bimaterial interface.

5. ANALYSIS OF THE METHOD

In this section we prove the optimal convergence of the proposed method as the main result. More precisely, we provide an analysis of the method for the problem of finding $\boldsymbol{u}^{h}:=\hat{\boldsymbol{u}}^{h} \circ \boldsymbol{\gamma}^{-1}$, where $\hat{\boldsymbol{u}}^{h} \in \hat{\mathcal{V}}^{h, p}$ is such that (14) holds, with the map $\boldsymbol{\gamma}$ introduced in (7) where $k \geq p+1$. We are mostly interested in the error over the physical domain, namely in an estimate of $\left\|\boldsymbol{u}_{\boldsymbol{\sim}}-\boldsymbol{u}^{h}\right\|_{s, \Omega}, s=0,1$. The proof of this last result is built on the convergence rates in the parametric domain and a norm equivalence between functions in the parametric and physical doratrm Crucial to this approach is a proof of the enhanced regularity of the mapped solution $\hat{\boldsymbol{u}}$.

For clarity, we assume that Ω is open and has the cone property (to apply Sobolev's mpearmg theorem), and that an exact discretization of the domain $\hat{\Omega}$ is adopted, instead of, for example, an isoparametric approximation. Furthermore we assume that the only singularity comes from the only crack tip of a Lipschitz-continuous edge crack (i.e., the image of a Lipschitz fur ction $\mathbb{R} \rightarrow \mathbb{R}^{2}$) that does not cross itself and thus we consider a mapping of the form (7). Th ysis for a re-entrant corner can be accounted for in a similar and simpler manner.
T_{p} cimplify the statement of the regularity assumption, we let polar coordinates (r, θ) be co ti u) is all over Ω, i.e., within $\bar{\Omega}$ the value of θ is discontinuous only across \mathscr{C}. We then let Θ be the minimum real number such that $\theta \in(-\Theta, \Theta)$ for all points of Ω. If \mathscr{C} is straight, themove π.

Crack geometries inside $B_{\rho}\left(\boldsymbol{x}_{\top}\right)$ could be quite complex. For the purposes of the proof below, it is useful to keep in mind the image of $B_{\rho}\left(\boldsymbol{x}_{\top}\right)$ with a straight crack emanating from its center. In general, however, a rather mild hypothesis that we shall make is to assume that the oxists an extension of the crack that cuts $B_{\rho}\left(\boldsymbol{x}_{\top}\right)$ into two disjoint sets, B_{+}and B_{-}, such that $\left|\partial B_{ \pm} \cap \partial B_{\rho}\left(\boldsymbol{x}_{\top}\right)\right|>0$, and that both sets satisfy the strong local Lipschitz condition, see Fi ur 17. This assumption will allow us to apply Poincaré's inequality, a trace inequality, and the gence theorem on each set (cf. [40]). If $\mathscr{C} \cap B_{\rho}\left(\boldsymbol{x}_{\top}\right)$ is straight, then this extension \sim as extending along the line that contains $\mathscr{C} \cap B_{\rho}\left(\boldsymbol{x}_{\top}\right)$.

Schematic showing the extension of the crack (dashed line) that cuts $B_{\rho}\left(\boldsymbol{x}_{\mathrm{T}}\right)$ into two disjoint parts, B_{+}and B_{-}, such that $\left|\partial B_{ \pm} \cap \partial B_{\rho}\left(\boldsymbol{x}_{\top}\right)\right|>0$, and that both sets have the strong Lipschitz property.

We will adopt the following notation to indicate partial derivatives. Let multi-index $\boldsymbol{\alpha}=$
$(\alpha, \boldsymbol{N}) \in\left(\mathbb{N}_{0}\right)^{2}$ and $|\boldsymbol{\alpha}|:=\alpha_{1}+\alpha_{2}$. We then define the operator $D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}}:=\left(\partial / \partial x_{1}\right)^{\alpha_{1}}\left(\partial / \partial x_{2}\right)^{\alpha_{2}}$.
se, $D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}}:=\left(\partial / \partial \hat{x}_{1}\right)^{\alpha_{1}}\left(\partial / \partial \hat{x}_{2}\right)^{\alpha_{2}}$, and $D_{(\hat{r}, \hat{\theta})}^{\boldsymbol{\alpha}}:=(\partial / \partial \hat{r})^{\alpha_{1}}(\partial / \partial \hat{\theta})^{\alpha_{2}}$. To avoid cluttering of symbols, we set $\mathscr{D}^{\boldsymbol{\alpha}}:=D_{(\hat{r}, \hat{\theta})}^{\alpha}$.

In the sequel we first lay out the regularity assumption of the solution and then proceed to the proof. Note that within $\S 5$ the symbol C denotes a generic positive constant independent of the solution \boldsymbol{u} and the mesh size h. The value of C may differ at different occurrences.
Assumption 5.1 (Regularity of the solution)
We assume that there exists $k \in \mathbb{N}, k \geq 2$, such that $\boldsymbol{b} \in H^{k-2}(\Omega), \boldsymbol{g} \in H^{k-1 / 2}\left(\partial_{d} \Omega\right), \boldsymbol{t} \in$
$H^{k-3 / 2}\left(\partial_{\tau} \Omega\right)$, and that the solution to (2) can be written as

$$
\begin{equation*}
\boldsymbol{u}=\sum_{i=1}^{k-1} r^{\lambda_{i}} \boldsymbol{\psi}_{i}(\theta)+\boldsymbol{u}_{R} \tag{16}
\end{equation*}
$$

where $\lambda_{i}=i-1 / 2, \quad \boldsymbol{\psi}_{i} \in C^{\infty}[-\Theta, \Theta], \boldsymbol{u}_{R} \in H^{k}\left(\Omega, \mathbb{R}^{2}\right)$. Moreover, there exists C independent of b. \boldsymbol{a}. n nd \boldsymbol{t} such that

$$
\sum_{i=1}^{k-1}\left\|\boldsymbol{\psi}_{i}\right\|_{k,(-\Theta, \Theta)}^{2}+\left\|\boldsymbol{u}_{R}\right\|_{k, \Omega}^{2} \leq C\left(\|\boldsymbol{b}\|_{k-2, \Omega}^{2}+\|\boldsymbol{g}\|_{k-1 / 2, \partial_{d} \Omega}^{2}+\|\boldsymbol{t}\|_{k-3 / 2, \partial_{\tau} \Omega}^{2}\right)
$$

- We remark that the so-called stress intensity factors are incorporated in the function $\psi_{1}(\theta)$. mdor Assumption 5.1, our main result is summarized in Theorems 5.1 and 5.2.

Thprem 5.1 (Regularity of the mapped solution)
Le $u \in \mathcal{V}$ be the solution to (2) with $k \in \mathbb{N}, k \geq 2$ given by Assumption 5.1. Let γ be as defined in (7) with $q \in \Pi_{k, m}$ for some $m \geq k$. Then $\hat{\boldsymbol{u}}:=\boldsymbol{u} \circ \gamma \in H^{k}\left(\hat{\Omega}, \mathbb{R}^{2}\right)$; moreover, there exists $C 0$ independent of $\boldsymbol{b}, \boldsymbol{g}$, and \boldsymbol{t} such that

$$
\|\hat{\boldsymbol{u}}\|_{k, \hat{\Omega}} \leq C\left(\|\boldsymbol{b}\|_{k-2, \Omega}+\|\boldsymbol{g}\|_{k-1 / 2, \partial_{d} \Omega}+\|\boldsymbol{t}\|_{k-3 / 2, \partial_{\tau} \Omega}\right) .
$$

Thun 5.2 (Optimality of convergence)
Let the assumptions of Theorem 5.1 hold. Let $p \in \mathbb{N}$ with $p \leq k-1$, and $\left\{\mathcal{T}^{h}\right\}$ be a quasiun form family of subdivisions of $\hat{\Omega}=\gamma^{-1}(\Omega)$ over which finite element spaces $\hat{\mathcal{V}}^{h, p}$ and $\hat{\mathcal{W}}^{h, p}$ areormoructed following (13). Let $\hat{\boldsymbol{u}}^{h} \in \hat{\mathcal{V}}^{h, p}$ be such that (14) holds, and set $\boldsymbol{u}^{h}:=\hat{\boldsymbol{u}}^{h} \circ \boldsymbol{\gamma}^{-1}$. Th~re exists a positive constant C independent of \boldsymbol{u} and h such that

$$
\left|\boldsymbol{u}-\boldsymbol{u}^{h}\right|_{s, \Omega} \leq C h^{p+1-s}|\boldsymbol{u} \circ \gamma|_{p+1, \hat{\Omega}}, \quad s=0,1
$$

Cotary 5.3
Let, assumptions of Theorem 5.2 hold. Then there exists a positive constant C independent

$$
\left|\boldsymbol{u}-\boldsymbol{u}^{h}\right|_{s, \Omega} \leq C h^{p+1-s}\left(\|\boldsymbol{b}\|_{p-1, \Omega}+\|\boldsymbol{g}\|_{p+1 / 2, \partial_{d} \Omega}+\|\boldsymbol{t}\|_{p-1 / 2, \partial_{\tau} \Omega}\right), \quad s=0,1 .
$$

To prove these main results, we first prove a few lemmas.
$L e \sim m a .4$ (Bivariate chain rule of an arbitrary order)
Levinnindex $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right) \in\left(\mathbb{N}_{0}\right)^{2}$ and functions $f \in C^{|\boldsymbol{\alpha}|}\left(\mathbb{R}^{2}\right)$, $\boldsymbol{g}=\left(g_{1}, g_{2}\right)$, with $g_{1}, g_{2} \in$ $C^{\alpha}\left(\mathbb{R}^{2}\right)$ Construct the composition of functions

$$
h(\boldsymbol{x})=f\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right], \quad \boldsymbol{x}=\left(x_{1}, x_{2}\right)
$$

Hen une partial derivative $D_{\boldsymbol{x}}^{\boldsymbol{\alpha}} h$ is given by
$D_{\boldsymbol{x}}^{\boldsymbol{\alpha}} h=\sum_{1 \leq|\boldsymbol{\beta}| \leq|\boldsymbol{\alpha}|} D_{\boldsymbol{g}}^{\boldsymbol{\beta}} f\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right] \sum_{s=1}^{|\boldsymbol{\alpha}|} \sum_{p_{s}(\boldsymbol{\alpha}, \boldsymbol{\beta})}\left(\alpha_{1}!\alpha_{2}!\right) \prod_{j=1}^{s} \frac{\left(D_{\boldsymbol{x}}^{\boldsymbol{l}_{\boldsymbol{j}}} g_{1}(\boldsymbol{x})\right)^{k_{j}^{(1)}}\left(D_{\boldsymbol{x}}^{\boldsymbol{l}_{\boldsymbol{j}}} g_{2}(\boldsymbol{x})\right)^{k_{j}^{(2)}}}{\left[k_{j}^{(1)}!k_{j}^{(2)}!\right]\left[l_{j}^{(1)}!l_{j}^{(2)}!\right]^{\left|\boldsymbol{k}_{j}\right|}}$,
where $\bar{D}_{\boldsymbol{g}}^{\boldsymbol{\beta}} f=\left(\partial / \partial g_{1}\right)^{\beta_{1}}\left(\partial / \partial g_{2}\right)^{\beta_{2}} f$, and for $j=1, \ldots, s, \boldsymbol{k}_{j}=\left(k_{j}^{(1)}, k_{j}^{(2)}\right), \boldsymbol{l}_{j}=\left(l_{j}^{(1)}, l_{j}^{(2)}\right)$. Finally,

$$
\begin{array}{r}
p_{s}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\left\{(\boldsymbol { k } _ { 1 } , \ldots , \boldsymbol { k } _ { s } ; \boldsymbol { l } _ { 1 } , \ldots , \boldsymbol { l } _ { s }) | | \boldsymbol { k } _ { i } \left|>0,\left|\boldsymbol{l}_{i}\right|>0, i=1, \ldots, s\right.\right. \\
\left.\boldsymbol{l}_{1}, \ldots, \boldsymbol{l}_{s} \text { are distinct; } \sum_{i=1}^{s} \boldsymbol{k}_{i}=\boldsymbol{\beta} ; \sum_{i=1}^{s}\left|\boldsymbol{k}_{i}\right| \boldsymbol{l}_{i}=\boldsymbol{\alpha}\right\} \tag{17}
\end{array}
$$

Proof
This is a special case of the main result of [41].
Example applications of Lemma 5.4 for some $\boldsymbol{\alpha}$'s are given as follows, where the standard partial derivative formulas are recovered:

- $\boldsymbol{\alpha}=(1,0)$, then the only contributions are from $\boldsymbol{\beta}=(0,1)$ or $(1,0)$. We note that

$$
p_{1}((1,0),(0,1))=\left\{\left(\boldsymbol{k}_{1}=(0,1) ; \boldsymbol{l}_{1}=(1,0)\right)\right\}
$$

$$
p_{1}((1,0),(1,0))=\left\{\left(\boldsymbol{k}_{1}=(1,0) ; \boldsymbol{l}_{1}=(1,0)\right)\right\}
$$

$$
\frac{\partial h}{\partial x_{1}}=\frac{\partial f}{\partial g_{2}}\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right] \frac{\partial g_{2}}{\partial x_{1}}+\frac{\partial f}{\partial g_{1}}\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right] \frac{\partial g_{1}}{\partial x_{1}} .
$$

$\binom{\alpha}{W}$
$(1,1)$, then the only contributions are from $\boldsymbol{\beta}=(0,1),(1,0),(0,2),(1,1)$, or $(2,0)$. next find out the p_{s} 's:
(

$$
\begin{aligned}
& p_{1}((1,1),(0,1))=\left\{\left(\boldsymbol{k}_{1}=(0,1) ; \boldsymbol{l}_{1}=(1,1)\right)\right\} \\
& p_{1}((1,1),(1,0))=\left\{\left(\boldsymbol{k}_{1}=(1,0) ; \boldsymbol{l}_{1}=(1,1)\right)\right\} \\
& p_{2}((1,1),(0,2))=\left\{\left(\boldsymbol{k}_{1}=\boldsymbol{k}_{2}=(0,1) ; \boldsymbol{l}_{1}=(0,1), \boldsymbol{l}_{2}=(1,0)\right)\right\} \\
& p_{2}((1,1),(1,1))=\left\{\left(\boldsymbol{k}_{1}=(0,1), \boldsymbol{k}_{2}=(1,0) ; \boldsymbol{l}_{1}=(0,1), \boldsymbol{l}_{2}=(1,0)\right),\right.
\end{aligned}
$$

$$
\left.\left(\boldsymbol{k}_{1}=(1,0), \boldsymbol{k}_{2}=(0,1) ; \boldsymbol{l}_{1}=(0,1), \boldsymbol{l}_{2}=(1,0)\right)\right\}
$$

$$
p_{2}((1,1),(2,0))=\left\{\left(\boldsymbol{k}_{1}=\boldsymbol{k}_{2}=(1,0) ; \boldsymbol{l}_{1}=(0,1), \boldsymbol{l}_{2}=(1,0)\right)\right\}
$$

$$
\begin{aligned}
& \text { From this we obtain } \\
& \frac{)^{2} h}{\partial x_{1} \partial x_{2}}=\frac{\partial f}{\partial g_{2}}\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right] \frac{\partial^{2} g_{2}}{\partial x_{1} \partial x_{2}}+\frac{\partial f}{\partial g_{1}}\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right] \frac{\partial^{2} g_{1}}{\partial x_{1} \partial x_{2}}+\frac{\partial^{2} f}{\partial g_{2}^{2}}\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right] \frac{\partial g_{2}}{\partial x_{2}} \frac{\partial g_{2}}{\partial x_{1}} \\
& +\frac{\partial^{2} f}{\partial g_{1} \partial g_{2}}\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right]\left(\frac{\partial g_{2}}{\partial x_{2}} \frac{\partial g_{1}}{\partial x_{1}}+\frac{\partial g_{1}}{\partial x_{2}} \frac{\partial g_{2}}{\partial x_{1}}\right)+\frac{\partial^{2} f}{\partial g_{1}^{2}}\left[g_{1}(\boldsymbol{x}), g_{2}(\boldsymbol{x})\right] \frac{\partial g_{1}}{\partial x_{2}} \frac{\partial g_{1}}{\partial x_{1}} .
\end{aligned}
$$

Lemma 5.5 (Basic properties of the map γ)
Let $\boldsymbol{\gamma}$ be given by (7) with $q \in \Pi_{k, m}$ and $j=\operatorname{det}(\nabla \boldsymbol{\gamma})$. Let $\hat{\boldsymbol{x}} \in B_{\rho}\left(\boldsymbol{x}_{\top}\right)$ and $\hat{r}=\|\hat{\boldsymbol{x}}-\boldsymbol{x} \boldsymbol{T}\|$, $r=\left\|\gamma(\hat{\boldsymbol{x}})-\boldsymbol{x}_{\top}\right\|$. Then $\gamma \in C^{k}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$, and there exist $C_{1}, C_{2}, C_{3}>0$ independent of $\hat{\boldsymbol{x}}$ such that for all $\hat{r} \in(0, \rho]$,

$$
\begin{align*}
\left|\frac{d^{j} r}{d \hat{r}^{j}}\right| & \leq C_{2} \hat{r}^{2 m-j}, \quad j \in \mathbb{N}, 0 \leq j \leq k, \tag{18a}\\
\left\|D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \gamma\right\| & \leq C_{2} \hat{r}^{2 m-|\boldsymbol{\alpha}|} \leq C_{3} r^{1-|\boldsymbol{\alpha}| /(2 m)}, \quad \boldsymbol{\alpha} \in\left(\mathbb{N}_{0}\right)^{2}, 0 \leq|\boldsymbol{\alpha}| \leq k, \\
C_{1} r^{-++}+1 /(2 m) \leq\left\|(\nabla \gamma)^{-1}\right\| & \leq C_{2} r^{-1+1 /(2 m)} \tag{18b}\\
C_{1} r^{-2+1 / m} \leq j^{-1} & \leq C_{2} r^{-2+1 / m} \tag{18c}
\end{align*}
$$

Proof

Thenc trrequalities directly follow from (11) and (9). The fact that $\gamma \in C^{k}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ follows after the bel fior of the derivatives of γ near $\boldsymbol{x}_{\mathrm{T}}$ is bounded by (18b).
special case, taking $\boldsymbol{\alpha}=(0,0)$ in (18b) yields that there exist $C_{1}, C_{2}>0$ independent of $\hat{\boldsymbol{x}}$ such that for all $\hat{r} \in(0, \rho]$,

$$
\begin{equation*}
C_{1} \hat{r}^{2 m} \leq r \leq C_{2} \hat{r}^{2 m} \tag{19}
\end{equation*}
$$

Lemma 5.6
Let the assumptions of Theorem 5.1 hold. Let $v \in H^{k}(\Omega)$ and $\hat{v}=v \circ \gamma$. Then $\hat{v} \in H^{k}(\hat{\Omega})$ and there exists C independent of v such that

$$
\|\hat{v}\|_{k, \hat{\Omega}} \leq C\|v\|_{k, \Omega}
$$

Proof
We first prove that

$$
\begin{equation*}
\|\hat{v}\|_{0, \hat{\Omega}} \leq C\|v\|_{2, \Omega} . \tag{20}
\end{equation*}
$$

Since Ω has the cone property, applying the Sobolev embedding theorem yields that $v \in C_{B}^{0}(\Omega)$, and that $\|v\|_{0, \infty, \Omega} \leq C\|v\|_{2, \Omega}$. As a result, $\hat{v} \in C_{B}^{0}(\Omega)$ and $\|\hat{v}\|_{0, \hat{\Omega}} \leq C\|\hat{v}\|_{0, \infty, \hat{\Omega}}=C\|v\|_{0, \infty, \Omega} \leq$ $C\|v\|_{2, \Omega}$, where we have used the bijectivity and continuity of γ.
红 define, for each $\boldsymbol{\alpha}$ such that $1 \leq|\boldsymbol{\alpha}| \leq k$, a provisional expression for $D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \hat{v}$ given by
$=D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha} \hat{v}=} \sum_{1 \leq|\boldsymbol{\beta}| \leq|\boldsymbol{\alpha}|} D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\left[\gamma_{1}(\hat{\boldsymbol{x}}), \gamma_{2}(\hat{\boldsymbol{x}})\right] \sum_{s=1}^{|\boldsymbol{\alpha}|} \sum_{p_{s}(\boldsymbol{\alpha}, \boldsymbol{\beta})}\left(\alpha_{1}!\alpha_{2}!\prod_{j=1}^{s} \frac{\left(D_{\hat{\boldsymbol{x}}}^{l_{j}} \gamma_{1}(\hat{\boldsymbol{x}})\right)^{k_{j}^{(1)}}\left(D_{\hat{\boldsymbol{x}}}^{l_{j}} \gamma_{2}(\hat{\boldsymbol{x}})\right)^{k_{j}^{(2)}}}{\left[k_{j}^{(1)}!k_{j}^{(2)}!\right]\left[l_{j}^{(1)}!l_{j}^{(2)}!\right]^{\left|\boldsymbol{k}_{j}\right|}}\right.$.
We now show that for all $\boldsymbol{\alpha}$ such that $1 \leq|\boldsymbol{\alpha}| \leq k$,

$$
\begin{equation*}
\left\|\tilde{D}_{\hat{\boldsymbol{x}}}^{\alpha} \hat{v}\right\|_{0, \hat{\Omega}} \leq C\|v\|_{k, \Omega} \tag{21}
\end{equation*}
$$

an (that $\tilde{D}_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \hat{v}$ is in fact the $\boldsymbol{\alpha}$-weak derivative of \hat{v}.
end, we first note the finiteness of terms in $p_{s}(\boldsymbol{\alpha}, \boldsymbol{\beta})$, and that $\boldsymbol{\gamma}$ is the identity in $\hat{\Omega} \boldsymbol{\sim}^{\top}$), hence we just need to prove that for each member of $p_{s}(\boldsymbol{\alpha}, \boldsymbol{\beta})$,

$$
\begin{equation*}
\left(D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right)^{2}\left[\prod_{j=1}^{s}\left(D_{\hat{\boldsymbol{x}}}^{l_{j}} \gamma_{1}\right)^{2 k_{j}^{(1)}}\left(D_{\hat{\boldsymbol{x}}}^{l_{j}} \gamma_{2}\right)^{2 k_{j}^{(2)}}\right] \circ \gamma^{-1} j^{-1} d \Omega \leq C\|v\|_{k, B_{\rho}\left(\boldsymbol{x}_{\mathrm{T}}\right) \cap \Omega}^{2} . \tag{22}
\end{equation*}
$$

To proceed, we apply (17), (18b), and (18d) to obtain

$$
\begin{align*}
& \int_{B_{\rho}(\boldsymbol{x} T) \cap \Omega}\left(D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right)^{2}\left[\prod_{j=1}^{s}\left(D_{\hat{\boldsymbol{x}}}^{l_{j}} \gamma_{1}\right)^{2 k_{j}^{(1)}}\left(D_{\hat{\boldsymbol{x}}}^{l_{\boldsymbol{j}}} \gamma_{2}\right)^{2 k_{j}^{(2)}}\right] \circ \boldsymbol{\gamma}^{-1} j^{-1} d \Omega \\
& \leq C \int_{B_{\rho}\left(\boldsymbol{x}_{\top}\right) \cap \Omega} r^{-2+1 / m} r^{2|\boldsymbol{\beta}|-|\boldsymbol{\alpha}| / m}\left\|D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right\|^{2} d \Omega \tag{23}\\
& \leq C \int_{B_{\rho}\left(\boldsymbol{x}_{\top}\right) \cap \Omega} r^{2(|\boldsymbol{\beta}|-1)-(|\boldsymbol{\alpha}|-1) / m}\left\|D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right\|^{2} d \Omega .
\end{align*}
$$

2 , then $2(|\boldsymbol{\beta}|-1)-(|\boldsymbol{\alpha}|-1) / m>0$, and (22) holds; otherwise, for $|\boldsymbol{\beta}|=1$, we

$$
\begin{aligned}
& \left(2-\frac{|\boldsymbol{\alpha}|-1}{m}\right) \int_{B_{\rho}\left(\boldsymbol{x}_{\top}\right) \cap \Omega} r^{-(|\boldsymbol{\alpha}|-1) / m}\left\|D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right\|^{2} d \Omega \\
& =\int_{B_{\rho}\left(\boldsymbol{x}_{T}\right) \cap \Omega} \operatorname{div}\left[r^{1-(|\boldsymbol{\alpha}|-1) / m} \mathbf{e}_{r}\right]\left\|D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right\|^{2} d \Omega \\
& =-\int_{B_{\rho}\left(\boldsymbol{x}_{T}\right) \cap \Omega} r^{1-(|\boldsymbol{\alpha}|-1) / m} \mathbf{e}_{r} \cdot \nabla\left(\left\|D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right\|^{2}\right) d \Omega \\
& \quad+\int_{\partial\left[B_{\rho}\left(\boldsymbol{x}_{T}\right) \cap \Omega\right]} r^{1-(|\boldsymbol{\alpha}|-1) / m} \mathbf{e}_{r} \cdot n\left\|D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right\|^{2} d \partial \Omega \\
& \leq C\left|\int_{B_{\rho}\left(\boldsymbol{x}_{\top}\right) \cap \Omega}\left(D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right) \cdot \frac{\partial}{\partial r}\left(D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right) d \Omega\right|+C \int_{\partial\left[B_{\rho}\left(\boldsymbol{x}_{T}\right) \cap \Omega\right]}\left\|D_{\boldsymbol{x}}^{\boldsymbol{\beta}} v\right\|^{2} d \Gamma \\
& \leq C\|v\|_{2, \Omega}^{2}
\end{aligned}
$$

[^0]where we have invoked the Cauchy-Schwarz inequality and the trace inequality in the last step. As a result, (22) is also true for the case of $|\boldsymbol{\beta}|=1$.

It remains to prove that the locally integrable function $\tilde{D}_{\hat{\boldsymbol{x}}}^{\alpha} \hat{v}$ is the weak derivative of \hat{v} with index $\boldsymbol{\alpha}$, which amounts to prove that, for any test function $\phi \in C_{c}^{\infty}(\hat{\Omega})$,

$$
\begin{equation*}
(-1)^{|\boldsymbol{\alpha}|} \int_{\hat{\Omega}} \hat{v} D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \phi d \hat{\Omega}-\int_{\hat{\Omega}} \phi \tilde{D}_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \hat{v} d \hat{\Omega}=0 \tag{24}
\end{equation*}
$$

To this
$\left.v_{\varepsilon}=J_{\varepsilon}\right) v$,end, for $\varepsilon>0$ we let J_{ε} be a mollifier function with $\operatorname{supp}\left(J_{\varepsilon}\right) \subset B_{\varepsilon}(\mathbf{0})$, and $v_{\varepsilon}=J_{\varepsilon}<v$, where $*$ denotes convolution over \mathbb{R}^{2} :

$$
v_{\varepsilon}(\boldsymbol{x})=\int_{\mathbb{R}^{2}} J_{\varepsilon}(\boldsymbol{x}-\boldsymbol{y}) v(\boldsymbol{y}) d \Omega(\boldsymbol{y})
$$

with v extended by zero over $\mathbb{R}^{2} \backslash \Omega$. With the same arguments that yield (20), it is clear that $v_{\varepsilon}<\gamma \in L^{2}(\hat{\Omega})$. Moreover, from Lemma 5.4,

$$
\begin{equation*}
(-1)^{|\boldsymbol{\alpha}|} \int_{\hat{\Omega}} v_{\varepsilon} \circ \gamma D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \phi d \hat{\Omega}=\int_{\hat{\Omega}} \phi \tilde{D}_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}}\left(v_{\varepsilon} \circ \gamma\right) d \hat{\Omega} \tag{25}
\end{equation*}
$$

Using (25) left hand side of (24) and applying the Cauchy-Schwarz inequality, (20), and (21) (with v eplaced by $v-v_{\varepsilon}$) yields

$$
\begin{aligned}
& \left|(-1)^{|\boldsymbol{\alpha}|} \int_{\hat{\Omega}} \hat{v} D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \phi d \hat{\Omega}-\int_{\hat{\Omega}} \phi \tilde{D}_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \hat{v} d \hat{\Omega}\right| \\
& \leq\left|\int_{\hat{\Omega}}\left(\hat{v}-v_{\varepsilon} \circ \gamma\right) D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \phi d \hat{\Omega}\right|+\left|\int_{\hat{\Omega}} \phi\left[\tilde{D}_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \hat{v}-\tilde{D}_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}}\left(v_{\varepsilon} \circ \gamma\right)\right] d \hat{\Omega}\right| \\
& \leq\|\phi\|_{k, \hat{\Omega}}\left\|\hat{v}-v_{\varepsilon} \circ \gamma\right\|_{0, \hat{\Omega}}+\|\phi\|_{0, \hat{\Omega}}\left\|\tilde{D}_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}}\left(\hat{v}-v_{\varepsilon} \circ \gamma\right)\right\|_{0, \hat{\Omega}} \\
& \leq C\left\|\hat{v}-v_{\varepsilon} \circ \gamma\right\|_{0, \hat{\Omega}}+C\left\|\hat{v}-v_{\varepsilon} \circ \gamma\right\|_{k, \hat{\Omega}} \\
& \leq C\left\|v-v_{\varepsilon}\right\|_{k, \Omega}
\end{aligned}
$$

Passing to the limit $\varepsilon \searrow 0$ and applying [42, Lemma 3.16] yields (24).
Le 7 (Relation of semi-norms)
Let $H^{1}(\Omega)$ and $\hat{w}=w \circ \gamma$ under the assumptions of Theorem 5.1. Then there exists C ind epengent of w such that

$$
C^{-1}|\hat{w}|_{1, \hat{\Omega}} \leq|w|_{1, \Omega} \leq C|\hat{w}|_{1, \hat{\Omega}}
$$

The ine uality $C^{-1}|\hat{w}|_{1, \hat{\Omega}} \leq|w|_{1, \Omega}$ follows from a special case of (23), which was proved when we proved Lemma 5.6.
TPround $|w|_{1, \Omega} \leq C|\hat{w}|_{1, \hat{\Omega}}$, we start from Cauchy-Schwarz inequality to obtain
$|w|_{1, \Omega}^{2}=\int_{\hat{\Omega}}\left|\nabla \hat{w} \cdot(\nabla \gamma)^{-1}\right|^{2} j d \hat{\Omega} \leq \int_{\hat{\Omega}}|\nabla \hat{w}|^{2}\left|(\nabla \gamma)^{-1}\right|^{2} j d \hat{\Omega}$.
Henow it remains to show that there exists $C>0$ such that for all $\hat{\boldsymbol{x}} \in \hat{\Omega},\left|(\nabla \gamma)^{-1}\right|^{2} j \leq C$, which follows from (18c) and (18d).

Corollary 5.8
The operator $a_{\gamma}(\cdot, \cdot)$ is continuous and coercive in $H^{1}\left(\hat{\Omega} ; \mathbb{R}^{2}\right)$.
Proof
This corollary is a direct consequence of (6) and Lemma 5.7.

We now proceed to prove the main results.
Proof of Theorem 5.1
For any $\hat{\boldsymbol{x}} \in B_{\rho}\left(\boldsymbol{x}_{\top}\right) \cap \hat{\Omega}$, we let \hat{r} and r be given by the assumptions of Lemma 5.5. Applying the regularity assumption (16) yields
$\hat{\boldsymbol{u}}=\boldsymbol{u} \circ \boldsymbol{\gamma}=\sum_{i=1}^{k-1} \hat{\boldsymbol{u}}_{i}+\hat{\boldsymbol{u}}_{R}, \quad \hat{\boldsymbol{u}}_{i}:=r^{\lambda_{i}} \boldsymbol{\psi}_{i}(\hat{\theta}), \quad \hat{\boldsymbol{u}}_{R}:=\boldsymbol{u}_{R} \circ \gamma$,
whre. ue to $\gamma, \hat{\theta}=\theta$. Applying Lemma 5.6 to \boldsymbol{u}_{R} yields $\left\|\hat{\boldsymbol{u}}_{R}\right\|_{k, \hat{\Omega}} \leq C\left\|\boldsymbol{u}_{R}\right\|_{k, \Omega}$, and we conclude that the theorem holds if there exists C independent of \boldsymbol{u} such that

$$
\left\|\hat{\boldsymbol{u}}_{i}\right\|_{k, \hat{\Omega}} \leq C\left\|\boldsymbol{\psi}_{i}\right\|_{k,(-\Theta, \Theta)}, \quad i=1, \ldots, k-1 .
$$

To nis nd, we will prove that there exists $C>0$ such that for any multi-index $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right) \in$ $(\mathbb{N})^{2}$ wilh $0 \leq|\boldsymbol{\alpha}| \leq k$,

$$
\left\|D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \hat{\boldsymbol{u}}_{i}\right\|_{0, \hat{\Omega}} \leq C\left\|\boldsymbol{\psi}_{i}\right\|_{|\boldsymbol{\alpha}|,(-\Theta, \Theta)} .
$$

prove the case of $|\boldsymbol{\alpha}|=0$, i.e., $\alpha=(0,0)$. In this case, from (19),
$\Longrightarrow\left\|\hat{\boldsymbol{u}}_{i}\right\|_{0, \hat{\Omega}}^{2} \leq \int_{0}^{\hat{r}_{\max }} r^{2 \lambda_{i}} \hat{r} d \hat{r} \int_{-\Theta}^{\Theta} \boldsymbol{\psi}_{i}^{2} d \hat{\theta} \leq C\left\|\boldsymbol{\psi}_{i}\right\|_{0,(-\Theta, \Theta)}^{2}$,
wh $\boldsymbol{r e r}_{\text {max }}:=\sup _{\hat{\boldsymbol{x}} \in \hat{\Omega}}\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}_{T}\right\|$.
case of $1 \leq|\boldsymbol{\alpha}| \leq k$, we apply Lemma 5.4 to each component of $\hat{\boldsymbol{u}}_{i}[\hat{r}(\hat{\boldsymbol{x}}), \hat{\theta}(\hat{\boldsymbol{x}})]$ to $\underbrace{\text { writany } \hat{x} \neq 0}$
$\boldsymbol{q}_{\hat{\mathbf{c}}}^{\boldsymbol{u}}=\sum_{1 \leq|\boldsymbol{\beta}| \leq|\boldsymbol{\alpha}|} \mathscr{P}^{\boldsymbol{\beta}} \hat{\boldsymbol{u}}_{i}[\hat{r}(\hat{\boldsymbol{x}}), \hat{\theta}(\hat{\boldsymbol{x}})] \sum_{s=1}^{|\boldsymbol{\alpha}|} \sum_{p_{s}(\boldsymbol{\alpha}, \boldsymbol{\beta})}\left(\alpha_{1}!\alpha_{2}!\prod_{j=1}^{s} \frac{\left(D_{\dot{\boldsymbol{x}}}^{l_{\hat{\boldsymbol{x}}}} \hat{r}(\hat{\boldsymbol{x}})\right)^{k_{j}^{(1)}}\left(D_{\hat{\boldsymbol{x}}_{j}}^{l_{j}} \hat{\theta}(\hat{\boldsymbol{x}})\right)^{k_{j}^{(2)}}}{\left[k_{j}^{(1)}!k_{j}^{(2)}!\right]\left[l_{j}^{(1)}!l_{j}^{(2)}!\right]^{\left|\boldsymbol{k}_{j}\right|}}\right.$
where we have abused notations in regarding $\hat{\boldsymbol{u}}_{i}$ as a function of either $\hat{\boldsymbol{x}}=\left(\hat{x}_{1}, \hat{x}_{2}\right)$ or $(\hat{r}, \hat{\theta})$. Additionally, we have taciltly used the fact that functions $\hat{r}(\hat{\boldsymbol{x}})$ and $\hat{\theta}(\hat{\boldsymbol{x}})$ belong to $C \backslash\left(\mathbb{R}^{2} \backslash\{\mathbf{0}\}\right)$, needed for Lemma 5.4.

Next we observe that, for each term in $p_{s}(\boldsymbol{\alpha}, \boldsymbol{\beta})$, by induction we have
$\int\left|D_{\hat{x}}^{l_{j}} \hat{r}\right| \leq C \hat{r}^{1-\left|l_{j}\right|}, \quad\left|D_{\hat{x}}^{l_{j}} \hat{\theta}\right| \leq C \hat{r}^{-\left|l_{j}\right|}$.
M reover, from the Faa di Bruno formula of one-dimension (see, again, [41]) combined with

$$
\left\|\mathscr{D}^{\beta} \hat{\boldsymbol{u}}_{i}\right\| \leq C \hat{r}^{2 m \lambda_{i}-\beta_{1}}\left\|\frac{d^{\beta_{2}} \boldsymbol{\psi}_{i}}{d \hat{\theta}^{\beta_{2}}}\right\|
$$

$\geq D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \hat{\boldsymbol{u}}_{i}\left\|^{2} \leq C \sum_{\beta_{1}=0}^{|\boldsymbol{\alpha}|} \hat{r}^{m m \lambda_{i}-2 \beta_{1}+\sum_{j=1}^{s}\left[2 k_{j}^{(1)}\left(1-\left|l_{j}\right|\right)+2 k_{j}^{(2)}\left(-\left|z_{j}\right|\right)\right]} \sum_{\beta_{2}=0}^{|\boldsymbol{\alpha}|}\right\| \frac{d^{\beta_{2}} \boldsymbol{\psi}_{i}}{d \hat{\theta}^{\beta_{2}}} \|^{2}$.
Note that from (17),

$$
-2 \beta_{1}+\sum_{j=1}^{s}\left[2 k_{j}^{(1)}\left(1-\left|\boldsymbol{l}_{j}\right|\right)+2 k_{j}^{(2)}\left(-\left|\boldsymbol{l}_{j}\right|\right)\right]=\underbrace{-2 \beta_{1}+2 \sum_{j=1}^{s} k_{j}^{(1)}}_{=0}-2 \sum_{j=1}^{s}\left|\boldsymbol{k}_{j}\right|\left|\boldsymbol{l}_{j}\right|=-2|\boldsymbol{\alpha}| .
$$

Thus,

$$
\left\|D_{\hat{\boldsymbol{x}}}^{\boldsymbol{\alpha}} \hat{\boldsymbol{u}}_{i}\right\|^{2} \leq C \hat{r}^{4 m \lambda_{i}-2|\boldsymbol{\alpha}|} \sum_{\beta_{2}=0}^{|\boldsymbol{\alpha}|}\left\|\frac{d^{\beta_{2}} \boldsymbol{\psi}_{i}}{d \hat{\theta}^{\beta_{2}}}\right\|^{2}
$$

Finally, since $\lambda_{i} \geq 1 / 2$ and $m \geq k \geq|\boldsymbol{\alpha}|$, the theorem holds.

Prpof of Theorem 5.2

The case of $s=1$ is straightforward. We first write

$$
\begin{equation*}
\left|\boldsymbol{u}-\boldsymbol{u}^{h}\right|_{1, \Omega} \leq\left|\boldsymbol{u}-\boldsymbol{u}_{I}\right|_{1, \Omega}+\left|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right|_{1, \Omega} \tag{26}
\end{equation*}
$$

where $\boldsymbol{u}_{I}:=\hat{\mathcal{I}}^{h} \hat{\boldsymbol{u}} \circ \boldsymbol{\gamma}^{-1}$ and $\hat{\mathcal{I}}^{h}$ is the classical interpolation operator such that $\hat{\mathcal{I}}^{h} \hat{\boldsymbol{u}} \in \hat{\mathcal{V}}^{h, p}$ and that $\hat{\mathcal{I}}^{h} \hat{\boldsymbol{u}}$ and $\hat{\boldsymbol{u}}$ coincide at all nodes of \mathcal{T}^{h}. By construction, $\boldsymbol{u}_{I}-\boldsymbol{u}^{h}=0$ on $\partial_{d} \Omega$, and thus $\boldsymbol{u}_{\boldsymbol{f}}-\boldsymbol{u}^{h} \in \hat{\mathcal{W}}^{h, p} \circ \boldsymbol{\gamma}^{-1}$.
rom he coercivity of $a(\cdot, \cdot)$ and the Galerkin orthogonality of \boldsymbol{u}^{h},

$$
\left.\boldsymbol{u}_{I} \boldsymbol{u}^{h}\right|_{1, \Omega} ^{2} \leq C a\left(\boldsymbol{u}_{I}-\boldsymbol{u}^{h}, \boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right)=C a\left(\boldsymbol{u}_{I}-\boldsymbol{u}, \boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right)+C \underbrace{a\left(\boldsymbol{u}-\boldsymbol{u}^{h}, \boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right)}_{=0}
$$

$$
\left.\sim \boldsymbol{u}_{I}\right|_{1, \Omega}\left|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right|_{1, \Omega}
$$

or $\left|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right|_{1, \Omega} \leq C\left|\boldsymbol{u}-\boldsymbol{u}_{I}\right|_{1, \Omega}$. As a result, with Lemma 5.7 and a standard interpolation err \sim esommate, (26) is simplified to
$\left|\boldsymbol{u}-\boldsymbol{u}^{h}\right|_{1, \Omega} \leq C\left|\boldsymbol{u}-\boldsymbol{u}_{I}\right|_{1, \Omega} \leq C\left|\hat{\boldsymbol{u}}-\hat{\mathcal{I}}^{h} \hat{\boldsymbol{u}}\right|_{1, \hat{\Omega}} \leq C h^{p}|\hat{\boldsymbol{u}}|_{p+1, \hat{\Omega}}$.
Por $=0$, we first note that a standard interpolation error estimate yields

$$
\left\|\boldsymbol{u}-\boldsymbol{u}_{I}\right\|_{0, \Omega} \leq C h^{p+1}|\hat{\boldsymbol{u}}|_{p+1, \hat{\Omega}}
$$

is sufficient to prove

$$
\begin{equation*}
\left\|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right\|_{0, \Omega} \leq C h^{p+1}|\hat{\boldsymbol{u}}|_{p+1, \hat{\Omega}} \tag{28}
\end{equation*}
$$

end, we employ the standard argument by considering the solution $\boldsymbol{w} \in \mathcal{W}$ of the

$$
\begin{equation*}
a(\boldsymbol{v}, \boldsymbol{w})=\left(\boldsymbol{u}_{I}-\boldsymbol{u}^{h}, \boldsymbol{v}\right), \quad \forall \boldsymbol{v} \in \mathcal{W} \tag{29}
\end{equation*}
$$

an FEM approximation $\boldsymbol{w}^{h} \in \hat{\mathcal{W}}^{h, p} \circ \gamma^{-1}$ such that
$a\left(\boldsymbol{v}, \boldsymbol{w}^{h}\right)=\left(\boldsymbol{u}_{I}-\boldsymbol{u}^{h}, \boldsymbol{v}\right), \quad \forall \boldsymbol{v} \in \hat{\mathcal{W}}^{h, p} \circ \gamma^{-1}$.
Then applying (27) and Theorem 5.1 to $\hat{\boldsymbol{w}}=\boldsymbol{w} \circ \boldsymbol{\gamma}$ with $k=2$ yields

$$
\left|\boldsymbol{w}-\boldsymbol{w}^{h}\right|_{1, \Omega} \leq C h|\hat{\boldsymbol{w}}|_{2, \hat{\Omega}} \leq C h\left\|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right\|_{0, \Omega}
$$

\boldsymbol{T}^{\square} roceed, we note that $\boldsymbol{u}_{I}-\boldsymbol{u}^{h} \in \mathcal{W}$, and hence from (29), the Galerkin orthogonality of e continuity of $a(\cdot, \cdot)$, a standard interpolation error estimate, and (27),

$$
\begin{aligned}
& \left\|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right\|_{0, \Omega}^{2}=a\left(\boldsymbol{u}_{I}-\boldsymbol{u}^{h}, \boldsymbol{w}\right)=a\left(\boldsymbol{u}_{I}-\boldsymbol{u}^{h}, \boldsymbol{w}-\boldsymbol{w}^{h}\right) \leq C\left|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right|_{1, \Omega}\left|\boldsymbol{w}-\boldsymbol{w}^{h}\right|_{1, \Omega} \\
& \leq C\left(\left|\boldsymbol{u}-\boldsymbol{u}_{I}\right|_{1, \Omega}+\left|\boldsymbol{u}-\boldsymbol{u}^{h}\right|_{1, \Omega}\right) h\left\|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right\|_{0, \Omega} \leq C h^{p+1}|\hat{\boldsymbol{u}}|_{p+1, \hat{\Omega}}\left\|\boldsymbol{u}_{I}-\boldsymbol{u}^{h}\right\|_{0, \Omega}
\end{aligned}
$$

and thus (28) holds.

A. GRADIENT OF THE MAPPING

For convenience here we provide the expression of the gradient of the mapping, $\nabla \gamma$, and that of its inverse. The gradient of γ is given by

$+$

$$
\nabla \gamma=\mathbf{1}-\sum_{\tau=1}^{t}\left[\left(1-q\left(\eta_{\tau}\right) / \eta_{\tau}\right) \mathbf{1}+\left(q\left(\eta_{\tau}\right) / \eta_{\tau}-q^{\prime}\left(\eta_{\tau}\right)\right) \mathbf{e}_{\hat{r}, \tau} \otimes \mathbf{e}_{\hat{r}, \tau}\right]
$$

wheren $\hat{\sigma}_{\tau}:=\left(\hat{\boldsymbol{x}}-\boldsymbol{x}_{T, \tau}\right) / \hat{r}_{\tau}$ is the unit vector in the direction of $\hat{\boldsymbol{x}}-\boldsymbol{x}_{T_{, ~}}$. Since the mapping is cal each singularity, within $B_{\rho_{\tau}}\left(\boldsymbol{x}_{T}, \tau\right)$, we have

- $\quad \nabla \gamma=\mathbf{1}-\left[\left(1-q\left(\eta_{\tau}\right) / \eta_{\tau}\right) \mathbf{1}+\left(q\left(\eta_{\tau}\right) / \eta_{\tau}-q^{\prime}\left(\eta_{\tau}\right)\right) \mathbf{e}_{\hat{r}, \tau} \otimes \mathbf{e}_{\hat{r}, \tau}\right]$, $=q^{\prime}\left(\eta_{\tau}\right) \mathbf{e}_{\hat{r}, \tau} \otimes \mathbf{e}_{\hat{r}, \tau}+q\left(\eta_{\tau}\right) / \eta_{\tau} \mathbf{e}_{\hat{\theta}, \tau} \otimes \mathbf{e}_{\hat{\theta}, \tau}$,
from which it follows that

$$
(\nabla \gamma)^{-1}= \begin{cases}\frac{1}{q^{\prime}\left(\eta_{\tau}\right)} \mathbf{e}_{\hat{r}, \tau} \otimes \mathbf{e}_{\hat{r}, \tau}+\frac{\eta_{\tau}}{q\left(\eta_{\tau}\right)} \mathbf{e}_{\hat{\theta}, \tau} \otimes \mathbf{e}_{\hat{\theta}, \tau}, & \text { in } B_{\rho_{\tau}}\left(\boldsymbol{x}_{T, \tau}\right), \\ \mathbf{1}, & \text { otherwise },\end{cases}
$$

where $\mathbf{e}_{\hat{\boldsymbol{e}}} \tau$

B. REMARKS ON THE IMPLEMENTATION

To dan on the presentation of $\S 3.2$, we let $\left\{N_{a}\right\}_{a}$ denote the shape functions constructed on the cubdivision \mathcal{T}^{h} of $\hat{\Omega}^{h}$ such that

$$
\hat{\boldsymbol{u}}^{h}=N_{a} \boldsymbol{u}_{a}, \quad \hat{\boldsymbol{w}}^{h}=N_{a} \boldsymbol{w}_{a},
$$

Abstract

meated indices imply a summation over them. Here \boldsymbol{u}_{a} and \boldsymbol{w}_{a} are the nodal values of the dryacement field and test functions over spaces of Lagrange finite elements. We remark the the shape functions are constructed over the parametric domain; on the physical domain they will be given by $n_{a}=N_{a} \circ \boldsymbol{\gamma}^{-1}$. The above implies that, if polynomial shape functions N_{a} are constructed over \mathcal{T}^{h} the corresponding shape functions n_{a} on $\gamma\left(\mathcal{T}^{h}\right)$ may not be polynomials. They are definitively not polynomials when the map defined by $q(\eta)$ in (8) is ad Figure 18 showcases the transformation of the shape functions N_{a} to n_{a} through the actionf the map $\gamma(\hat{x})=\hat{x}^{2}$.

(urth it is easy to see that

$$
\boldsymbol{u}^{h}=\hat{\boldsymbol{u}}^{h} \circ \boldsymbol{\gamma}^{-1}=N_{a} \circ \boldsymbol{\gamma}^{-1} \boldsymbol{u}_{a}=n_{a} \boldsymbol{u}_{a},
$$

and similarly $\boldsymbol{w}^{h}=n_{a} \boldsymbol{w}_{a}$.
Then (14) may be written as: find \boldsymbol{u}_{a} such that

$$
\boldsymbol{w}_{a} \cdot \boldsymbol{k}_{a b} \boldsymbol{u}_{b}=\boldsymbol{w}_{a} \cdot \boldsymbol{f}_{a}, \quad \forall \boldsymbol{w}_{a},
$$

$$
\begin{gathered}
\boldsymbol{K} \boldsymbol{U}=\boldsymbol{F} \\
\{\boldsymbol{K}\}_{a b}=\boldsymbol{k}_{a b}, \quad\{\boldsymbol{U}\}_{a}=\boldsymbol{u}_{a}, \quad\{\boldsymbol{F}\}_{a}=\boldsymbol{f}_{a}
\end{gathered}
$$

$$
\begin{aligned}
{\left[\boldsymbol{k}_{a b}\right]_{i j} } & =\sum_{K \in \mathcal{T}^{h}} \int_{K} \frac{\partial N_{a}}{\partial \hat{x}_{j}}[\mathbb{M}]_{i k j l} \frac{\partial N_{b}}{\partial \hat{x}_{l}} d K, \\
{\left[\boldsymbol{f}_{a}\right]_{i} } & =\sum_{K \in \mathcal{T}^{h}} \int_{K}[\hat{\boldsymbol{b}}]_{i} N_{a} j d K+\sum_{E \in \mathcal{E}_{\tau}} \int_{E}\left([\hat{\boldsymbol{t}}]_{i}\left\|(\nabla \gamma)^{-\top} \cdot \boldsymbol{n}\right\| j\right) \circ \mathfrak{p} d \hat{\Gamma}
\end{aligned}
$$

 (a) with the mapping $\gamma(\hat{x})=\hat{x}^{2}$.

Constructing a traditional affine finite element space $\left\{N_{a}\right\}_{a}$ on a uniform discretization $\mathcal{T}^{h}=\bigcup_{i=0}^{4}\{[i / 4,(i+1) / 4]\}$ of the parametric domain $\hat{\Omega}=[0,1]$. Under the mapping $\gamma(\hat{x})=\hat{x}^{2}$ results in a set of shape functions $\left\{n_{a}\right\}_{a}$, no longer affine, on a subdivision of Ω given by $\gamma\left(\mathcal{T}^{h}\right)=$ $\bigcup_{i=0}^{4}\{[\gamma((i / 4)), \gamma((i+1) / 4)]\}$.

denotes the set of element edges on $\partial_{\tau} \Omega^{h},[\bullet]_{a b}$ and $[\bullet]_{a}$ denote the sub-tensors and vectors, respectively, associated with the degree of freedom a and b, and $[\bullet]_{i j}=\bullet: \mathbf{e}_{i} \otimes \mathbf{e}_{j}$ and sin 1arly $[\bullet]_{i j k l}=\bullet: \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}$ denote the tensor components in the orthonormal basis
d with the cartesian coordinates x_{i}, \hat{x}_{i} (cf. Figure 3). The above integrals can then be approximated over each element K using standard quadrature rules as commonly carried out in FEM.

Eruenvely the only peculiarity of this approach is that the coefficients of \mathbb{M} will depend on space $a v d$ further \mathbb{M} may not necessarily be symmetric. This peculiarities are easily handled in any commercial or open source finite element code that allows for user defined coefficients. Thu the method is easy to implement, without the need to introduce special shape functions, undit onal quadrature rules, or particular mesh gradations.

C. GALERKIN FORM OF POISSON'S EQUATION OVER THE PARAMETRIC DOMAIN

We construct here the weak form over the parametric domain of Poisson's equation for a scalar field, in a similar manner as presented in $\S 3$.

Formulation in the physical domain. We consider the problem of finding $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\Delta u+b & =0, & & \text { in } \Omega \\
u & =g, & & \text { on } \partial_{d} \Omega \\
\nabla u \cdot \boldsymbol{n} & =t, & & \text { on } \partial_{\tau} \Omega .
\end{aligned}
$$

Here b, g
and t are smooth enough scalar fields over the domains where they are evaluated.
Tremeak form of this problem reads: Find $u \in \mathcal{V}$ such that

$$
a(u, v)=F(w), \quad \forall w \in \mathcal{W}
$$

whre

$$
\begin{aligned}
a(u, w) & :=\int_{\Omega} \nabla u \cdot \nabla w d \Omega \\
F(w) & :=\int_{\Omega} b w d \Omega+\int_{\partial_{\tau} \Omega} t w d \Gamma
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{V} & =\left\{u \in H^{1}(\Omega) \mid u=g \text { on } \partial_{d} \Omega\right\} \\
\mathcal{W} & =\left\{w \in H^{1}(\Omega) \mid w=0 \text { on } \partial_{d} \Omega\right\}
\end{aligned}
$$

Weak form over the parametric domain. With $\hat{\mathcal{V}}=\mathcal{V} \circ \gamma$ and $\hat{\mathcal{W}}=\mathcal{W} \circ \gamma$, the eq ant formulation given by: Find $\hat{u} \in \hat{\mathcal{V}}$ such that

$$
\begin{gathered}
a_{\boldsymbol{\gamma}}(\hat{u}, \hat{w})=\hat{F}(\hat{w}), \quad \forall \hat{w} \in \hat{\mathcal{W}} \\
a_{\boldsymbol{\gamma}}(\hat{u}, \hat{w}):=\int_{\hat{\Omega}} \nabla \hat{u} \cdot \boldsymbol{M} \cdot \nabla \hat{w} d \hat{\Omega} \\
\hat{F}(\hat{w}):=\int_{\hat{\Omega}} \hat{b} \hat{w} j d \hat{\Omega}+\int_{\partial_{\tau} \hat{\Omega}} \hat{t} \hat{w}\left\|(\nabla \boldsymbol{\gamma})^{-\top} \cdot \boldsymbol{n}\right\| j d \hat{\Gamma} \\
\boldsymbol{M}=j(\nabla \gamma)^{-1} \cdot(\nabla \boldsymbol{\gamma})^{-\top}
\end{gathered}
$$

where

$$
\mathrm{an} \longrightarrow
$$

G. lerkin's approximation over the parametric domain. Let \mathcal{T}^{h} denote a subdivision orsanstated in $\S 3.2$. Consider finite dimensional approximations of $\hat{\mathcal{V}}$ and $\hat{\mathcal{W}}$ given by

$$
\begin{aligned}
\hat{\mathcal{V}}^{h, p} & =\left\{\hat{u}^{h} \in H^{1}(\hat{\Omega})\left|\hat{u}^{h}\right|_{K} \in P^{p}(K), \hat{u}^{h}=\hat{\mathcal{I}}^{h}(g \circ \gamma) \text { on } \partial_{d} \hat{\Omega}\right\} \\
\hat{\mathcal{W}}^{h, p} & =\left\{\hat{w}^{h} \in H^{1}(\hat{\Omega})\left|\hat{w}^{h}\right|_{K} \in P^{p}(K), \hat{w}^{h}=0 \text { on } \partial_{d} \hat{\Omega}^{h}\right\}
\end{aligned}
$$

repe tively. The Galerkin form of the problem statement then reads: Find $\hat{u}^{h} \in \hat{\mathcal{V}}^{h, p}$ such that

$$
a_{\boldsymbol{\gamma}}\left(\hat{u}^{h}, \hat{w}^{h}\right)=\hat{F}\left(\hat{w}^{h}\right), \quad \forall \hat{w}^{h} \in \hat{\mathcal{W}}^{h, p}
$$

REFERENCES

[1] Fix G, Gulati S, Wakoff G. On the use of singular functions with finite element approximations. Journal of Computational Physics 1973; 13(2):209-228.
[2] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 1999; 45(5):601-620.
[3] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46(1):131150.
[4] Melnk J, Babuška I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering 1996; 139(14): 89-314.
[5] Duarte C, Oden J. An h-p adaptive method using clouds. Computer Methods in Applied - -vrethanics and Engineering 1996; 139(1-4):237-262.
[6 , XY, Xiao QZ, Karihaloo BL. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi materials. International Journal for Numerical Methods in Eng neering 2004; 59(8):1103-1118.
[7] L ${ }^{\text {h }}$ orde P, Pommier J, Renard Y, Salaün M. High-order extended finite element method racked domains. International Journal for Numerical Methods in Engineering 2005; 64(3):354-381.
[8] Béc let E, Minnebo H, Moës N, Burgardt B. Improved implementation and robustness study of the x-fem for stress analysis around cracks. International Journal for Numerical Whods in Engineering 2005; 64(8):1033-1056.
[9] Niren Y, Lew AJ. An optimally convergent discontinuous galerkin-based extended finite - ment method for fracture mechanics. International Journal for Numerical Methods in neering 2009; .
[101_Rolvtschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Tigineering 2009; 17(4):043001.
[11] Yazid A, Abdelkader N, Abdelmadjid H. A state-of-the-art review of the x-fem for computational fracture mechanics. Applied Mathematical Modelling 2009; 33(12):4269-
4282.
[12] Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering 1975; 9(3):495-507.
[13] Barsoum RS. On the use of isoparametric finite elements in linear fracture mechanics.
International Journal for Numerical Methods in Engineering 1976; 10(1):25-37.
[14] Barsoum RS. Triangular quarter-point elements as elastic and perfectly-plastic crack tip Emments. International Journal for Numerical Methods in Engineering 1977; 11(1):85-98.
[15] Ira ey DM. Finite elements for determination of crack tip elastic stress intensity factors. nineering Fracture Mechanics 1971; 3(3):255-265.
[16] abuška I, Kellogg RB, Pitkäranta J, Babuska I, Kellogg RB, Pitkranta J. Direct and verse error estimates for finite elements with mesh refinements. Numerische Mathematik 33(4):447-471.
[17] Thatcher RW. The use of infinite grid refinements at singularities in the solution of laplace's equation. Numerische Mathematik 1976; 25(2):163-178.
[18] Karihaloo B, Xiao Q. Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity. Engineering Fracture Mechanics 2001; 68(15):1609-1630.
[19] Tsamasphyros G, Giannakopoulos A. The mapped elements for the solution of cracked bodies. Computer Methods in Applied Mechanics and Engineering 1985; 49(3):331-342.
[20] Tsamasphyros G. Singular element construction using a mapping technique. International Journal for Numerical Methods in Engineering 1987; 24(7):1305-1316.
[21] Babuška I, Oh HS, Babugka I, Oh HS. The p-version of the finite element method for Aains with corners and for infinite domains. Numerical Methods for Partial Differential Equations 1990; 6(4):371-392.
[22 Bの uska I, Szabo BA, Katz IN. The p-version of the finite element method. SIAM Journal - on Numerical Analysis 1981; 18(3):515-545.
[23 Gordon W, Hall C. Construction of curvilinear co-ordinate systems and applications to mesh generation 1973; 7:461-477.
[24 Luds T, Oh H. The method of auxiliary mapping for the finite element solutions of elliptic problems containing singularities. Journal of Computational Physics 1993; 108(2):3270
[25] Oh HS, Babuška I, Babu ska I. The method of auxiliary mapping for the finite element sol ions of elasticity problems containing singularities. Journal of Computational Physics 121(2):193-212.
[2 Lee SJ, Oh HS, Yun Jh. Extension of the method of auxiliary mapping for three--nsional elliptic boundary value problems. International Journal for Numerical Mothods in Engineering 2001; 50(5):1103-1129.
[27. J JW, Oh HS, Kang S, Kim H. Mapping techniques for isogeometric analysis of allintic boundary value problems containing singuliesarit. Computer Methods in Applied Mechanics and Engineering 2013; 254:334-352.
Criqvard P. Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics, 2011.
[291 Grisvard P. Singularités en Élasticité. Archive for Rational Mechanics and Analysis 1989; CIUP157-180.
[30 Wil iams ML. Stress singularities resulting from various boundary conditions in angular hers of plate in extension. Journal of Applied Mechanics 1952; 19:526-528.
[31 Williams ML. On the stress distribution at the base of a stationary crack. Journal of Hpplied Mechanics 1957; 24:109-158.
[32. Brenner SC, Scott LR. The Mathematical Theory of Finite Element Methods. 2nd edn., - 1 inger, 2002.
[33] vruskhelishvili NI ((ed.)). Some Basic Problems of the Mathematical Theory of Elasticity: Flamental Equations, Plane Theory of Elasticity, Torsion, and Bending (translated om Russian). 2nd edn., Noordhoff International Publishing: Leyden, The Netherlands,
[34] Rossum G. Python reference manual. Technical Report, CWI (Centre for Mathematics and Computer Science), Amsterdam, The Netherlands, The Netherlands 1995.
[35] Rangarajan R, Chiaramonte MM, Hunsweck MJ, Shen Y, Lew AJ. Simulating curvilinear crack propagation in two dimensions with universal meshes. International Journal for Numerical Methods in Engineering 2015; 102(3-4):632-670.
[36] Chiaramonte MM, Shen Y, Keer LM, Lew AJ. Computing stress intensity factors for curvilinear cracks. International Journal for Numerical Methods in Engineering 2015; 104(4):260-296.
[37] Strang G, Fix GJ. An Analysis of the Finite Element Method. Prentice-Hall: Englewood Cliffs, New Jersey, 1973.
[38/ Sun Z. Mechanics of interface fracture. PhD Thesis, Harvard University 1989.
[397 ounumar N, Huang ZY, Prévost JH, Suo Z. Partition of unity enrichment for bimaterial inteface cracks. International Journal for Numerical Methods in Engineering 2004; 59(8):1075-1102.
[40 Wloka J. Partial differential equations. Cambridge University Press: Cambridge, 1987.
[41]Censtantine GM, Savits TH. A multivariate Faa di Bruno formula with applications. Tra sactions of the American Mathematical Society 1996; 348(2):503-520.
[42]Adems RA, Fournier JJF. Sovolev Spaces. 2nd edn., Academic Press: Amsterdam, 2003.

[^0]: ${ }^{\dagger}$ The use of the divergence theorem is justified by the strong local Lipschitz condition of $B^{ \pm}$, which implies that $W^{1,1}\left(B^{ \pm}\right)$is dense in $C^{\infty}\left(\overline{B^{ \pm}}\right)$.

