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SUMMARY

Linear elasticity problems posed on cracked domains, or domains with re-entrant corners, yield singular
solutions that deteriorate the optimality of convergence of finite element methods. In this work, we
propose an optimally convergent finite element method for this class of problems. The method is
based on approximating a much smoother function obtained by locally reparameterizing the solution
around the singularities. This reparameterized solution can be approximated using standard finite
element procedures yielding optimal convergence rates for any order of interpolating polynomials,
without additional degrees of freedom or special shape functions. Hence the method provides optimally
convergent solutions for the same computational complexity of standard finite element methods.
Furthermore, the sparsity and the conditioning of the resulting system are preserved. The method
handles body forces and crack-face tractions, as well as multiple crack tips and re-entrant corners.
The advantages of the method are showcased for four different problems: a straight crack with loaded
faces, a circular arc crack, an L-shaped domain undergoing anti-plane deformation, and lastly a crack
along a bimaterial interface. Optimality in convergence is observed for all the examples. A proof of
optimal convergence is accomplished mainly by proving the regularity of the reparameterized solution.
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1. INTRODUCTION

In elliptic boundary value problems, such as linear elasticity and the Poisson problem, which
can describe steady-state heat conduction, steady-state diffusion, or electrostatics, singularities
in the solution may arise from non-smooth boundaries, discontinuous coefficients, or abrupt
changes in boundary conditions. Problems with cracked domains, or those containing re-
entrant corners, fall in the first category. The singularity of the solutions to this class of
problems plagues the accuracy and convergence rate of standard (Lagrange) finite element
methods. Concretely, finite element approximations of linear elasticity solutions in cracked
domains converge in H1 with order 1/2, regardless of the order of interpolating polynomials
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in each element. To alleviate the shortcomings of standard finite element methods several
techniques have been proposed to address these singularities. These often provide a more
accurate solution, but very few of them are capable of obtaining optimal rates of convergence
for an arbitrary order of interpolating polynomials, which, as we show here, substantially
reduce the computational time for a given desired accuracy.

Overall speaking, the classes of finite element methods capable of achieving better accuracy
than standard finite element methods at a given computational cost for crack and re-
entrant corner problems can be arguably classified into four categories: A family of methods
that enriches the finite dimensional space with additional basis functions, one that takes
advantage of adaptive refinement of h- and/or p-type, another that employs special singular
elements, and lastly a family of methods, which is closely related to this work, that exploits
mapping techniques to approximate a smoother function obtained from carefully mapping the
singular solution. In the following paragraphs we review the efforts invested in developing the
aforementioned families of finite element methods.

Possibly the most common methodology to enhance the accuracy of the solution and to
achieve optimal convergence rates is through the addition of special basis functions to the
finite element space. The work found in [1] was the precursor of the methodology and more
recently [2, 3, 4, 5] have re-energized this idea by including special basis functions exploiting
the framework of the partition of unity. Within this framework, the methods proposed in
[6, 7, 8, 9] are among the early contributions that could achieve second-order convergence in
the L2-norm of the displacement. The literature on the topic is vast and we refer the reader
interested in a thorough review to [10, 11].

In [12] and [13] the authors independently proposed a technique to construct eight-node
quadrilateral elements whose shape functions resemble the

√
r singularity encountered in linear

elastic fracture mechanics, where r denotes the distance to the crack tip. By placing the
mid-side nodes at the quarter points the mapped shape functions along the element edges
exactly capture the radial singularity. Later, the method was improved in [14] where one of
the element edges is collapsed to a single point so that the mapped shape functions capture
the singularity in the interior of the element as well. This idea of edge collapse appeared in
an earlier contribution [15] for the case of four-node quadrilateral elements. Although such
degenerate elements constructed through singular isoparametric maps greatly enhance the
accuracy of the solution, the convergence rates remain sub-optimal.

Another class of methods employs adaptive mesh refinement in the proximity of the
singularity to enhance the convergence of the solution. Such specially designed graded meshes
[16, 17] or adaptively determined polynomial order [18] can be shown to yield optimally
convergent or otherwise much more accurate solutions.

Before we introduce the last class of methods, we discuss a different perspective on how
to deal with singularities. Consider the singular solution u for an elasticity problem on a
cracked domain Ω, and define a function û := u ◦ γ on Ω̂ = γ−1(Ω), the result of composing
u with a mapping γ : Ω̂→ Ω. If, with a priori knowledge of the singularity, it were possible
to construct a mapping γ such that û were much smoother that u, then one could shift the
focus to constructing approximations to û instead of to u. We show here that this is in fact
possible. Why is approximating û different than approximating u? Because under very general
conditions, û is very smooth, and hence standard finite element methods and quasiuniform
family of meshes over Ω̂ can be used to approximate it with orders of convergence bounded
only by the smoothness of û. This higher order of approximation is not lost when composing
the approximation of û with γ to construct an approximation of u. This approach to deal
with singularities is the core of the method we introduce here.

Ideas close to what was described above have been explored in the literature. What
distinguishes our method from earlier work is that, by constructing a mapping γ completely
independent of the domain discretization, we create an entirely different problem from the
original one, which we then proceed to discretize. This view is in contrast with the use
of mapping techniques to effectively generate special shape functions resulting from map
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MAPPED FINITE ELEMENT METHODS 3

composition. Reformulating the problem entirely, alongside specially constructed mappings γ,
circumvent many of the limitations of earlier works where the cumbersome meshing required,
the limited capabilities in handling complex crack geometries (including multiple cracks and
cracks arbitrarily close to domain features), alongside the lack of applications to the more
commonly employed h-version of finite element methods, have likely prevented this type of
approach from being widely adopted. To further elaborate on this, we briefly review previous
effort expenditures and later highlight the novelties of our approach.

The origin of this class of methods is the work found in [19], where, through conformal
mappings and a careful construction of the discretization of the parametric domain Ω̂, the
authors obtained better approximations to the straight crack problem. Albeit their approach
proved innovative, the method, which the authors referred to as the mapped elements method,
suffered several limitations. In fact only a limited family of crack geometries were dealt with
(only straight cracks), the mesh generation process was rather cumbersome, and the non-local
mapping limited the applicability of the method to single cracks in simple domains. At a later
time the same authors proposed [20] a similar technique that employs mappings to generate
singular crack tip elements. Analogous to the work found in [12, 13, 14], such singular elements
greatly enhance the accuracy of the solution, but the convergence rates remain sub-optimal.

In [21] the authors exploited the same underlying idea and named their approach the method
of auxiliary mapping. Their method was primarily targeted to p-finite elements [22] and hp-
finite elements. Similarly to [19], they reparameterized the solution restricted to a circular
sector around the singularity, and separately meshed this sector and the remaining part of
the computational domain. The discretized circular sector was then mapped with the inverse
mapping to the parametric domain (the domain over which the singularity is eliminated),
and then standard polynomial shape functions were built over this parametric domain. This
interwoven nature of the mapping and the domain discretization renders the meshing procedure
restrictive and cumbersome: The approximation functions near the boundary between the
circular sector and the remaining region have to be constructed using the blending mapping
technique [23] to ensure conformity. With such construction, for the p- and hp-version of
finite elements they showed exponential rates of convergence. The method was later extended
to address boundary singularities for a larger family of elliptic operators in [24], elasticity
problems in [25], and three-dimensional domains in [26]. Recently it was exploited in the
context of isogeometric finite element methods [27].

We introduce here a method targeted to h-finite elements of arbitrary order, but that should
also work with p-finite elements, where the novelty lies in the fact that we construct an entirely
new problem via a mapping that is independent of the choice of the numerical method and
spatial discretization. Hence, standard numerical methods of any order could be adopted to
approximate this new problem. Additional novel features of the method consist of:

• The mappings are local, allowing the handling in a trivial manner of multiple singularities,
and of singularities at interfaces or domain boundaries.

• The construction of high-order approximations significantly reduces the computational time
needed to obtain numerical solutions with a given error, as we show here.

• A large family of mappings are proposed [not a single way of constructing a smooth solution,
cf. (10)]. We provide precise conditions on the minimum power of the asymptotic behavior
of the mapping near the singularity to sufficiently smoothen it to obtain optimal rates of
convergence for a given order of the h-version of finite element method.

• The family of mappings contain many mappings that are C∞(Ω). One of them is adopted
here for the numerical examples.

• The asymptotic behavior of the particular mapping we adopt here is such that we do not
need to a priori know the precise power of the singularity, being that of a corner, a crack,
or a crack at an interface, to recover optimal order of convergence of the method.

• Both the enhanced regularity of the mapped solution and the optimality of the convergence
rate of the resulting method are proved.
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We highlight that the computational cost of the proposed method for a given number of
degrees of freedom is the same as that for standard finite element methods, no ill-conditioning
issues arise, several types of singularities can be successfully dealt with (including oscillatory
ones), the method is trivially implementable, and moving singularities are easily handled (e.g.
propagating cracks, moving dislocations, etc.).

Although we refer to this approach at dealing with singularities as a “method,” in reality it
is nothing but a reformulation of the problem statement such that the reformulated problem
can be easily solved using standard methods over Ω̂. In particular, in the case of adopting finite
element methods for this last approximation, pushing forward the shape functions from Ω̂ to
Ω effectively builds a non-standard finite element space over Ω. Motivated by this observation,
and in line with what was originally proposed in [19], we will refer to our method with the
acronym MFEM, for Mapped Finite Element Method.

The paper is organized as follows. In §2 we provide a bird’s-eye view of the method. We save
its details for §3 where we provide a self-contained summary of it for the reader less interested in
the detailed analysis. In §4 we use numerical examples to showcase the convergence properties
of the method. Then in §5 we provide the analysis of the method, showing the enhanced
regularity of û and the optimal convergence rates at which û is approximated.

We conclude the introduction with some remarks on notation. We denote by Hk(Ω,Rd) the
Sobolev space W k,2(Ω,Rd) and we let ‖2‖k,Ω and |2|k,Ω denote the Sobolev norm and semi-
norm, respectively, over Ω. We let ∇· and ∇ denote the divergence and gradient operators,
respectively. We reserve the symbol n to denote outward normals to boundaries. We will denote
by 1 := δijei ⊗ ej the second-order identity tensor and by

I =
1

2
(δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el

the fourth-order identity tensor on symmetric second-order tensors, where {ei} is an
orthonormal basis.

2. OVERVIEW OF THE METHOD

We begin by introducing a brief overview of the key ideas behind the method. Details of the
formulation and the analysis are saved for §3 and §5, respectively.

2.1. The challenge

Non-smooth boundaries yield singular solutions to certain elliptic boundary value problems
such as linear elasticity. In this work, we consider a class of problems whose solution can be
expressed as the sum of a singular part and a smooth part. For example, in a domain Ω with
a re-entrant corner of angle Θ > π (see Figure 1), the solution of the elastic field u : Ω→ R2

can be written as the sum of singular functions, {fi}, plus a smooth part uR such as

u =
∑̀

i=1

fi + uR. (1)

Here fi := rλiψi(θ) ∈ H1(Ω,R2), (r, θ) are polar coordinates with the re-entrant corner as the
origin, 1/2 ≤ min{λi}`i=1 ≤ 1, ψi(θ) is C∞ in the appropriate range of θ, and uR ∈ Hk(Ω,R2)
for some k > 1 corresponding to max{λi}`i=1. This particular form of the solution results
in a singularity as u 6∈ H2(Ω,R2). In the particular case of fracture mechanics Θ = 2π and
λ1 = 1/2. If ` = 1 is chosen, then k = 2, a well known result obtained by Grisvard [28, 29].

The lack of regularity of the solution is reflected in poor convergence rates when standard
Lagrange finite element methods are used to solve the problem. Generally for second-order
elliptic problems the convergence rate of standard finite element methods in the H1-seminorm
is bounded by hmin{p,s−1}, where h is the maximum size of the elements, p denotes the
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Figure 1. Domain with a re-entrant corner.

order of complete polynomials in the basis functions, and s is such that the elastic solution
u ∈ Hs(Ω,R2). As a result, a necessary condition for optimal convergence is p ≤ s− 1. For
example, for p = 1, the minimum possible choice, s must be at least 2 for optimal convergence.
However, for the problem at hand, it can be shown that u ∈ H3/2−δ(Ω,R2) for any δ > 0
but u 6∈ H3/2(Ω,R2). Thus the error in the solution of the displacement gradient is of order
O(h1/2) (e.g. see Figure 7a), independent of p, the order of the polynomial interpolant. That
is to say, no matter how high the degree of the polynomial basis functions is, the convergence
rate is the same and is always suboptimal.

2.2. Our solution

Given the known form of singularity of the solution (1), and considering that finite element
solutions converge rather rapidly to the exact one if the latter is sufficiently regular, the
underlying idea of the method is to construct a smooth solution by appropriately scaling
the singular one. Namely, we would like to construct a bijective map γ : R2 → R2 such that
γ : Ω̂→ Ω and that û := u ◦ γ ∈ Hk(Ω̂,R2), for some k ≥ 2. Moreover, it will be shown later
that û satisfies a differential equation of the same type as that satisfied by u, with different
coefficients. Once we have constructed such a map we can solve for û using standard finite
element methods, recovering optimal convergence rates of the error in û over the parametric
domain Ω̂. It will be later shown in §5 that the optimality of convergence also holds on Ω for
the error in u.

We are thus faced with the challenge of constructing a map γ such that the composed solution
û = u ◦ γ is sufficiently regular. The minimum regularity requirement will be dictated by the
order of the interpolating polynomial.

To demonstrate the idea, consider a problem with one re-entrant corner, see Figure 1, with
a crack tip as a special case. Let (r, θ) and (r̂, θ̂) be polar coordinates associated with the re-
entrant corner over Ω and Ω̂, respectively (see, for example, Figure 3). The map constructed
as

γ : (r̂, θ̂) 7→
(
r = r̂4, θ = θ̂

)

transforms the function rλ1 over Ω to r̂4λ1 over Ω̂. Recall that since λ1 ≥ 1/2, it follows
that r̂4λ1 is in H2(Ω̂) (see §5). As a result, if P 1 shape functions are used to solve for û,
optimal convergence is expected. In the actual method, we will localize the map via a cut-off
function so that multiple singularities can be independently handled. Moreover, we will build
the map according to the order of interpolating polynomials to ensure optimal convergence.
Figure 2 showcases the effects of localizing the map around a specific point, in contrast to
reparameterizing the entire domain. More details will follow in § 3.1.3, as well as in Figure 3.

In the following section we provide a detailed description of the construction of the smooth
problem, as well as its numerical solution via standard Lagrange finite element methods. It
will become apparent to the reader that the method can be easily implemented with minor
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Figure 2. To “remove” a singularity in the elasticity solution, assumed to be placed at the “nose” in
the figure, we construct a map from the original domain (left) to a parametric one (either one on
the right). A general map would deform the boundary of the domain (bottom right figure) as well as
deform the neighborhood of other possible singularities, such as when in the presence of multiple crack
tips. Instead, the map we adopt is localized around each singularity (top right figure), which means
that it equals the identity beyond a certain distance from the singularity (indicated by the cross-
hatched area). This property simplifies the enforcement of boundary conditions in many situations

and allows for multiple crack tips to be handled simultaneously (cf. Figure 33b and § 3.1.3).

alterations to any standard finite element program, effectively yielding optimal convergence
rates with minimal computational and implementation overburden.

3. THE METHOD

With the overview of the method in mind from §2, we proceed next to present a detailed
construction of the problem over the parametric domain and its numerical solution.

We begin by stating in §3.1.1 the elasticity problem over the domain occupied by the body
of interest, followed by, in §3.1.2, an equivalent weak formulation over a generic parametric
domain Ω̂ (with some mild restriction). We then discuss in §3.1.3 the construction of the map
γ : Ω̂→ Ω that ensures a sufficiently smooth solution of the problem over Ω̂. We lastly conclude
the section with the introduction of the discrete problem statement in §3.2 and a summary of
the method in §3.3.
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3.1. Constructing the problem in the parametric domain

3.1.1. Problem statement in the physical domain. We consider a linear elasticity problem over
a bounded open domain Ω ⊂ R2 with an associated Cartesian coordinate system xi, i = 1, 2.
The problem reads: Find u : Ω→ R2 such that

∇ · (C : ∇u) + b = 0, in Ω,

u = g, on ∂dΩ,

(C : ∇u) · n = t, on ∂τΩ,

(2)

where n denotes the unit outward normal to the boundary ∂Ω = ∂dΩ ∪ ∂τΩ, ∂dΩ ∩ ∂τΩ = ∅,
∂dΩ has a positive length, g : ∂dΩ→ R2 denotes the prescribed boundary displacement,
t : ∂τΩ→ R2 denotes the prescribed boundary tractions and b : Ω→ R2 represents the body
force field. For the case with cracks, the domain Ω is intended as the cracked domain (namely
the crack is considered a portion of the domain boundary) and we let C = ∂Ω \ ∂Ω denote the
crack and ensure that ∂τΩ ⊇ C . The constitutive tensor C is defined as

C = Λ1⊗ 1 + 2µI, Λ =




λ, for plane strain,

2λµ

λ+ 2µ
, for plane stress,

where λ and µ are Lamé’s first and second parameters, which we take as strictly positive, and
1 and I are the second order identity tensor and the fourth order symmetric identity tensor,
respectively, as defined in §1.

For the set of admissible displacements V and that of test functions W defined as

V =
{
u ∈ H1

(
Ω,R2

)∣∣u = g on ∂dΩ
}
,

W =
{
w ∈ H1

(
Ω,R2

)∣∣w = 0 on ∂dΩ
}
,

the weak form of (2) reads: Find u ∈ V such that

a(u,w) = F (w), ∀w ∈ W, (3)

where

a(u,w) :=

∫

Ω

∇u : C : ∇w dΩ,

F (w) :=

∫

Ω

b ·w dΩ +

∫

∂τΩ

t ·w dΓ.

3.1.2. Problem statement in the parametric domain. Let γ : R2 → R2 be a diffeomorphism
such that Ω = γ(Ω̂) and that γ = id outside a sufficiently large ball containing all crack tips
and re-entrant corners, where id denotes the identity map. Additionally we introduce for later
use a set of Cartesian coordinates x̂i associated with Ω̂ (cf. Figure 3(a)). With

V̂ := V ◦ γ, Ŵ :=W ◦ γ,

we have an equivalent formulation of (3) given by: Find û ∈ V̂ such that

aγ (û, ŵ) = F̂ (ŵ), ∀ŵ ∈ Ŵ, (4)

where

aγ (û, ŵ) :=

∫

Ω̂

∇û : M : ∇ŵ dΩ̂,

F̂ (ŵ):=

∫

Ω̂

b̂ · ŵ j dΩ̂ +

∫

∂τ Ω̂

t̂ · ŵ
∥∥(∇γ)−> · n

∥∥ j dΓ̂,
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8 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

and j := det(∇γ) denotes the Jacobian of the mapping γ.
The symbolˆis here reserved for functions composed with γ, e.g. û = u ◦ γ, and

M := j (∇γ)−1 ·C · (∇γ)−>.

We remark that M possesses the major symmetry but not necessarily the minor symmetries
as it can be readily seen from its expanded form

M = Λ j (∇γ)−1 ⊗ (∇γ)−> + 2µ j (∇γ)−1 · I · (∇γ)−>.

The operator aγ was constructed so that

a(u,w) = aγ (û, ŵ) , (6)

for û = u ◦ γ and ŵ = w ◦ γ.

3.1.3. The map. The regularity of the solution of the problem stated in (4) is predicated
on the appropriate construction of the mapping γ. In this section we will discuss the
construction of such mapping. For clarity, we first present the construction of γ for the case
of a single singularity (crack tip or re-entrant corner), then we generalize it to handle multiple
singularities.

The case of a single singularity. Let x> be the location of the singularity in the physical
domain, and by construction, also the location of the singularity in the parametric domain,
i.e., γ(x>) = x>. We define r̂ = r̂(x̂) := ‖x̂− x>‖, and construct the mapping as

γ(x̂) = x> +
q(η)

η
(x̂− x>), η = η(x̂) :=

r̂(x̂)

ρ
, (7)

for some ρ ∈ R+ and

q(η) =




η

[
1− exp

(
1 +

1

η2m−1 − 1

)]
, if η < 1,

η, otherwise,

(8)

with m ≥ 2. The value of m is chosen so that m ≥ p+ 1, where p is the order of polynomials
in the finite element space (see §3.2 for specifics). In this way, optimal convergence of the finite
element approximation follows (see §5). For example, if piecewise quadratic polynomials to
construct approximations over Ω̂ are selected, p = 2, we would set m = 3.

To connect (7) with the discussion in §2.2, we first recall r = r(x) := ‖x− x>‖. From (7)
we can conclude that

r

ρ
=

1

ρ
‖γ(x̂)− γ(x>)‖ =

1

ρ
‖x̂− x>‖

q(r̂/ρ)

r̂/ρ
=
r̂

ρ

q(r̂/ρ)

r̂/ρ
= q

(
r̂

ρ

)
, (9)

and hence that q(r̂/ρ) plays the role of “stretching” r̂ into r. As we shall see, the choice of
q(η) in (8) guarantees that:

i. We have r ∼ r̂2m as r̂ ↘ 0, which is the condition stated in §2.2 to have û ∈ Hk(Ω̂,R2),
with k ≥ 2.

ii. The mapping γ is bijective.

iii. The mapping γ is the identity outside a compact region containing the singularity.

By defining γ, we defined Ω̂ = γ−1(Ω) as well. As a result, if the singularity is located at the
tip of a curved crack, the path of the crack will be different in Ω̂ than in Ω. We illustrate this
with examples later.
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Remark 1 (Generalization). The choice of q(η) in (8) is not the only one. More generally, we
can choose any function q(η) ∈ Πk,m, with m ≥ k ≥ 2 and

Πk,m :=

{
q ∈ Ck

(
R+

0

)∣∣∣∣q(η) = η ∀η > 1; (10)

q(j)(0) = 0, j = 0, . . . , k − 1; q′(η) ≥ 0 ∀η ≥ 0;

∃C1, C2, η0 > 0 s.t. q′(η) ≥ C1η
2m−1 and

∣∣∣q(k)(η)
∣∣∣ ≤ C2η

2m−k ∀η ∈ [0, η0]

}
.

It is simple to build q ∈ Πk,m with polynomials, for example. Here k is the desired degree

of smoothness of the mapped solution near the singularity, i.e., û ∈ Hk(Ω̂). For the numerical
approximation of the solution, the smoother the function, the higher the attainable order
of convergence. Hence, in general, we will select m = k = p+ 1, where p is the order of the
polynomials in the finite element space.

The conditions stated in (10) imply that 0 ≤ q(η)/η ≤ 1 for all η ∈ R+
0 . Moreover, by

integration it is simple to see that they also constrain the behavior of q near η = 0. More
precisely, there exist C3, C4 > 0 and η0 > 0 such that ∀η ∈ [0, η0],

C3η
2m ≤q(η) ≤ C4η

2m, (11a)

C3η
2m−1 ≤q′(η), (11b)∣∣∣q(j)(η)

∣∣∣ ≤ C4η
2m−j , j = 1, . . . , k. (11c)

Together, (11a) and (9) show precisely that r ∼ r̂2m near 0, while (11c) guarantees that the
derivatives of γ do not grow more than the derivatives of r̂2m do. Equation (11b) ensures the
growth of the gradient of γ−1, which participates in M, see §5, as well as the bijectivity of γ.
The bijectivity of γ is readily seen from (9). In fact, for r̂ ∈ [0, ρ],

dr

dr̂
= q′

(
r̂

ρ

)
≥ 0

with the equal sign satisfied if and only if η = 0, implying the bijectivity of γ.
The discussion in §2.2 corresponds to a very simple q that takes the form q(η) = η4 for all

η ≥ 0. This q satisfies all conditions in (10) with k = m = 2, except q(η) = η for η > 1, and
leads to simpler computations of the gradient of the map. However, it is convenient to choose
a q that coincides with the identity for η large enough since it permits localizing the map to
each singularity, an appealing feature when dealing with multiple singularities.

For the remainder of the manuscript we use (8) as the function q of choice. We do so since
(8) is simple to evaluate and it can be used to construct approximations of any order, given
that it is C∞. The parameter ρ should be chosen to be at least a few times the radius of
curvature of ∂Ω at x>, so that the mesh size required to resolve the near-tip behavior is not
smaller than that needed to resolve the geometry.

Handling multiple singularities. Let t ∈ N denote the number of singularities, located at
x>,τ ∈ Ω, τ = 1, . . . , t. For each τ , we set rτ : x 7→ ‖x− x>,τ‖, see Figure 3. In this particular
case we assume that the solution can be written as the sum of the asymptotic expansions
about each singularity plus the regular part as

u =

t∑

τ=1

`τ∑

j=1

r
λj
τ ψj,τ (θτ ) + uR,

where θτ is a polar angle associated with x>,τ and, as before, ψj,τ and uR are assumed to be
sufficiently smooth.
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10 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

ρj

ρi ρi

ρj
x̂>,jx>,j

θ̂i(x̂)

eθ̂,i

r̂i(x̂)

x̂
x

γ−1(x)

er̂,i

Ω

x>,i
ri(x)

x̂>,i

Ω̂

γ(x̂)

θi(x)

x1, x̂1

e2

e1

x2, x̂2

(a) The problem is recast from a domain Ω to a domain Ω̂. The two domains

coincide outside balls of radius ρj centered at the position of the jth crack tip,
x>,j.

Ω Ω̂

x>,1 x>,1

ρ1 ρ1

x>,2 x>,2

ρ2 ρ2

x>,3 x>,3

ρ3 ρ3

x>,4 x>,4

ρ4 ρ4

x>,5 x>,5

ρ5 ρ5

γ

γ−1

(b) Illustration of the action of the mapping γ. The image on the left shows the physical domain Ω while the

right figure shows the parametric domain Ω̂, namely the image of the physical domain under the action of the

inverse mapping (Ω̂ = γ−1(Ω)). We label with x>,i, i = 1 . . . 5 the singularities around which we would like to
perform a reparameterization. Several aspects of the mapping are worthwhile highlighting: (1) the mapping,
as detailed in §3.1.3, is such that the reparameterization is localized to the ball of radius ρi centered at
x>,i, Bρi (x>,i), such that Bρi (x>,i) ∩Bρj (x>,j) = ∅ for all i 6= j, allowing a simple way to handle multiple

singularities, (2) the boundary of the parametric domain (∂Ω̂) and that of the physical domain (∂Ω) do
not necessarily need to coincide, as boundary conditions can be easily handled through map composition

and proper integral scaling (cf. (13a) and (15b)), (3) moving from the domain Ω to Ω̂, points close to the
singularity are “pulled away” (effectively allowing the singular function to possess lower gradients when

mapped to Ω̂), and (4) moving from the domain Ω̂ to the domain Ω the points farther from the singularity

are brought closer to the singularity (effectively allowing for a smooth function defined over Ω̂ to possess
sharp features over Ω). This last observation is responsible for the “disappearance” of the nose and the right

dimple in Ω̂ when mapped to Ω.

Figure 3. Physical and parametric domains, and action of the mapping and its inverse on them. While
in the text the location of the crack tips coincide, for clarity in the figure the two domains are depicted

translated with respect to each other.

To account for each singularity we then construct the mapping γ : R2 → R2 as

γ(x̂) = x̂−
t∑

τ=1

(
1− q(ητ )

ητ

)
(x̂− x>,τ ), (12)
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MAPPED FINITE ELEMENT METHODS 11

where ητ = ητ (x̂) := r̂τ (x̂)/ρτ , with r̂τ : x̂ 7→ ‖x̂− x>‖. We choose {ρτ}τ ∈ (R+)t within
the sole restriction that Bρτ (x>,τ ) ∩Bρτ′ (x>,τ ′) = ∅, ∀τ 6= τ ′, where Bρ(y) = {x ∈ R2 | ‖x−
y‖ < ρ} is the ball of radius ρ around y; in other words we require that the neighborhoods
of the singularities being mapped are mutually disjoint. Hence, by construction, the mapping
is local to each singularity and the mapped solution possesses the desired regularity. Figure 4
illustrates the construction of such mappings for a one-dimensional analog of the problem.

The expression of the gradient of the mapping γ is provided in Appendix A.

-2 0 2

1

2

3

x>,1 x>,2

cf. (d)

x̂

f(x)

(a) The singular function.

-2 0 2

−1

0

1

2

x̂

q(η0)/η0 q(η1)/η1

(b) Functions q(ητ )/ητ with m = 2 in
Eq. (8)

-2 0 2
−2

−1

0

1

2

x̂,

γ(x̂) id

(c) The global map (c.f. Eq (12))

0 1 2
1

3

x̂ixî

yi
γ

x, x̂

f(x) f̂(x̂)

(d) The resulting mapped function over a
subdomain as highlighted in (a). The markers
show corresponding values of xi and x̂i such

that f(xi) = f̂(x̂i) = yi.

Figure 4. One dimensional analog of the mapping. We begin by considering in (a) the function

f(x) = |x− x>,1|1/2 + |x− x>,2|1/2, where x>,τ = (−1)τ , τ = 1, 2. We set m = k = 2, ρτ = 1, and
then construct in (b) the maps q(ητ ) with ητ = |x− x>,τ |/ρτ , for τ = 1, 2. In (c) we show the global

map similar to (12), and lastly in (d) we show the smooth function f̂ = f ◦ γ alongside the action of
the mapping on a set of evenly spaced points {x̂i}i.

3.2. The numerical approximation

In the following we describe the construction of a numerical approximation to û, and from
that an approximation to u.

Let Ω̂h be an approximation of Ω̂ of the appropriate order so that the error introduced by
the approximation of the domain does not dominate the order of convergence of the method.
For example, a standard isoparametric approximation of the domain would suffice. A similar
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12 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

consideration is assumed in constructing the approximation ∂dΩ̂
h of ∂dΩ̂ = γ−1(∂dΩ), then

setting ∂τ Ω̂h = ∂Ω̂h \ ∂dΩ̂h. This can be easily accomplished if, for example, ∂dΩ = ∂Ω, in
which case we set ∂dΩ̂

h = ∂Ω̂h, or otherwise if the end points of ∂dΩ̂
h coincide with the end

points of ∂dΩ̂, and they coincide with nodes in the mesh.
Let T h denote a finite element mesh over Ω̂h (see Figure 5) with standard conditions, namely,

(1) K ⊂ Ω̂h for all elements K ∈ T h, (2) Ω̂h =
⋃
K∈T h K, where K denotes both a typical

element and the open set occupied by this element, and (3) for any K1,K2 ∈ T h, K1 ∩K2 can
only be empty, a common vertex, or a complete common edge. Here h = maxK∈T h diamK,
where diamK denotes the diameter of K.

Over T h we build the finite element spaces

V̂h,p =
{
ûh ∈ H1

(
Ω̂h,R2

)∣∣∣ ûh
∣∣
K
∈ P p

(
K,R2

)
, ûh = Îh(g ◦ γ) on ∂dΩ̂

h
}
, (13a)

Ŵh,p =
{
ŵh ∈ H1

(
Ω̂h,R2

)∣∣∣ŵh
∣∣
K
∈ P p

(
K,R2

)
, ŵh = 0 on ∂dΩ̂

h
}
. (13b)

Here P p(K) denotes the family of complete polynomials of order up to p ∈ N over K, and Îh
is the interpolation operator over such elements. For Lagrange finite elements, the condition
ûh = Îh(g ◦ γ) on ∂dΩ̂

h in (13a) is equivalent to ûh = g ◦ γ on nodes on ∂dΩ̂
h. It is worthwhile

noting that the piecewise polynomial functions are constructed over Ω̂h; when composed with
the mapping γ they will no longer be polynomials.

The Galerkin form of the problem statement then reads: Find ûh ∈ V̂h,p such that

ahγ
(
ûh, ŵh

)
= Fhγ

(
ŵh
)
, ∀ŵh ∈ Ŵh,p, (14)

where

ahγ
(
ûh, ŵh

)
:=

∫

Ω̂h
∇ûh : M : ∇ŵh dΩ̂h, (15a)

Fhγ
(
ŵh
)
:=

∫

Ω̂h
b̂ · ŵh j dΩ̂h +

∫

∂τ Ω̂h
ŵh · (t̂

∥∥(∇γ)−> · n
∥∥ j) ◦ p dΓ̂, (15b)

Note that in the above, quantities in the domain integrals defined over Ω̂ (e.g. b̂, j, ∇γ) are
taken as their zero extensions to Ω̂h, and p : ∂Ω̂h → ∂Ω̂ denotes the closest point projection of
a point lying in ∂Ω̂h to ∂Ω̂. The mention of the extensions is purely formal, since in practice
and as a result of the use of quadrature rules these extensions are (essentially) never evaluated.
Finally, we obtain an approximation to u as uh = ûh ◦ γ−1. For a more detailed description
of the implementation of the method we refer the reader to Appendix B.

Remark 2 (The inverse map). Notice that this approximation needs a mesh over Ω̂ instead
of over Ω. To this end, an explicit expression of γ−1 was derived in order to easily evaluate Ω̂
for its discretization. More precisely, the inverse map γ−1 can be explicitly expressed as

γ−1(x) = x> +
q−1(η̂)

η̂
(x− x>), η̂ = η̂(x) :=

r(x)

ρ
,

for one singularity, and

γ−1(x) = x−
t∑

τ=1

(
1− q−1(η̂τ )

η̂τ

)
(x− x>,τ ), η̂τ = η̂τ (x) :=

rτ (x)

ρτ

for multiple singularities, where q−1(η̂) is the inverse function of q(η).

Remark 3 (Comparing against a method to approximate a problem with no auxiliary map).
In the upcoming sections we will recurrently contrast the approximations of u obtained with
and without the auxiliary map. To be precise, we will compare the results obtained by setting
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MAPPED FINITE ELEMENT METHODS 13

γ to (7) and (12), termed MFEM, with that obtained by setting γ to be the identity map,
which recovers a standard finite element approximation with Lagrange finite elements. For
convenience we will use the shorter acronym FEM to refer to the latter.

Notice that the MFEM does not introduce additional degrees of freedom or special shape
functions over the FEM (the shape functions in the MFEM are also polynomials, but over the
parametric domain).

Remark 4 (Numerical computation of the bilinear form and functional). The bilinear form
and the functional of (15a) and (15b), respectively, are performed in § 4 using standard Gauss
quadrature over a subdivision of Ω̂h, as traditionally carried out for finite element methods.

Remark 5 (Choice of ρτ ). In order for the results to be accurate, the radius ρτ shall be chosen
to be a sufficiently large multiple of the mesh size. Of course, for convergence, once chosen
the value of ρτ should not be changed as the mesh size is refined. We observed that ρτ ≥ 5h0,
where h0 is the coarsest mesh under consideration, already yielded the asymptotic behavior
where the rates of convergence approached optimal values.

3.3. Summary of the method

We conclude this section by providing in Box 3.1 a recapitulation of the method. We emphasize
that the crucial steps are (1) the construction of the map, (2) the subdivision of the parametric
domain, and (3) the generation of finite element arrays accounting for the metric changes.
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14 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

C γ−1(C ) T h

(a) Entire domain

C γ−1(C )

(b) Mapped boundary

T h γ−1(C )

(c) Zoom in over parametric domain

γ(T h) C

(d) Zoom in over physical domain

Figure 5. Example of a finite element mesh of Ω̂ = γ−1(Ω) with Ω = [−3, 3]× [−1.5, 1.5] \
{(x1, x2)|x1 ∈ (−2, 2), x2 = cos(3x1) exp[1/(x2

1/4− 1) + 1]}. In (a) we showcase the discretization
used for computations. In (b) we highlight that the boundary of the domain may not necessarily

be preserved under the action of the mapping, namely C 6= γ−1(C ). In (c) we zoom in around one

of the crack tips added[id=mc] to showcase the discretization of Ω̂. Lastly in (d) we showcase what

the image of the discretization T h of Ω̂ under the action of γ. It is worthwhile noting that γ(T h)
(subfigure (d) ) does not serve any purpose from the computational perspective but it is solely provided

to illustrate the reader the action of γ.
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MAPPED FINITE ELEMENT METHODS 15

Box 3.1 Summary of the method.

Step 1. For each of the t singularities let {ρτ}τ such that Bρτ (x>,τ ) ∩Bρτ′ (x>,τ ′) = ∅, ∀τ 6= τ ′.

Step 2. Select the polynomial degree p of the interpolating space V̂h,p.
Step 3. Choose m ≥ k ≥ p+ 1 (generally m = k = p+ 1) and generate the map γ as

γ(x̂) = x̂−
t∑

τ=1

(
1− q(ητ )

ητ

)
(x̂− x>,τ ),

where ητ := ‖x̂− x>,τ‖/ρτ , and

q(η) :=




η

[
1− exp

(
1 +

1

η2m−1 − 1

)]
, if η < 1,

η, otherwise.

The inverse map γ−1 is

γ−1(x) = x−
t∑

τ=1

(
1− q−1(η̂τ )

η̂τ

)
(x− x>,τ ),

where η̂τ := ‖x− x>,τ‖/ρτ .

Step 4. Generate a subdivision T h of the approximation Ω̂h of Ω̂ = γ−1(Ω).

Step 5. Construct the finite element space V̂h,p over T h with isoparametric elements.

Step 6. Solve the following problem: Find ûh ∈ V̂h,p such that

aγ
(
ûh, ŵh

)
= Fhγ (ŵ), ∀ŵh ∈ Ŵh,p.

Step 7. Compose ûh with γ−1 to obtain an optimally convergent approximation to u.
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16 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

4. NUMERICAL EXAMPLES

We next showcase the convergence of the MFEM by comparing the computed results to
the analytical solutions of benchmark problems. We will further contrast the accuracy and
computational complexity of the MFEM with the common FEM as introduced in Remark 3.

We considered four benchmark problems to showcase the properties of the MFEM: the first
problem consists of a straight crack with loaded crack faces, the second is that of a circular
arc crack, the third is that of anti-plane elastic deformations in an L-shaped domain, and
lastly we consider the problem of a crack at a bi-material interface. For all problems we show
the convergence behavior of the MFEM in comparison to the FEM. We systematically provide
convergence plots alongside tables with errors and computed convergence rates, for which finer
meshes were obtained by successively and uniformly subdividing the coarsest mesh, which will
be illustrated for each of the examples. We further provide error comparisons as functions of
the problem size N (namely the number of degrees of freedom, or the size of the linear system,
which includes the degrees of freedom with Dirichlet boundary conditions) and CPU time
taken for the assembly and the solution of the linear system, including some minor overhead
tasks which take orders of magnitude less time and are independent of refinement (all the
simulations were performed on a Unix based machine with 1.4 GHz Intel Core i5 processor
with 4 GB 1600 MHz DDR3 of memory). As expected, we observe optimal convergence rates
for the MFEM and sub-optimal rates for the FEM. Furthermore we see considerable gains in
accuracy for equivalent problem sizes and run times.

In what follows we will reserve the superscript e for the analytical solution of the boundary
value problem under consideration. Furthermore, unless otherwise noted, we always let
∂dΩ = ∂Ω, g = ue (c.f. Eq. (2)), and b = 0. In all examples we chose m = k = p+ 1, where p
is the order of the polynomials in the finite element space over the parametric configuration.

In all cases, the error ‖ue − uh‖0,Ω = ‖ue − ûh ◦ γ−1‖0,Ω we approximated by numerical

integration over Ω̂, namely,

∥∥ue − uh
∥∥

0,Ω
≈
(∑∥∥ue ◦ γ − ûh

∥∥2 |xgwgj|xg
)1/2

.

Additionally, throughout the following examples we present further numerical results,
beyond the convergence of the L2(Ω)-norm of the solution, that highlight additional features
of the method. Namely, in §4.1 we discuss the conditioning of the resulting system of equation,
in §4.2 we discuss the convergence of the stress intensity factors, and lastly in §4.4 we showcase
the optimality of convergence of the derivatives of the solution measured as the H1(Ω)-norm
(‖ • ‖1,Ω). Both triangular and quadrilateral elements are used in the presentation to showcase
the independence of the optimality of convergence on the choice of the finite elements.

4.1. Straight crack

The first problem is the one of a semi-infinite straight crack in an infinite medium subject
to mixed-mode loading. An analytical solution for the problem can be found in [30, 31]. We
further superimpose a uniform pressure field in order to verify the application of boundary
tractions in the mapped region. If we let uI,II denote the solution field as found in [30, 31], the
solution of the example will be given by

ue = uI,II + up

where up is the displacement field associated with the uniform pressure. Assuming a plane
strain state, we have

up = p
(x1e1 + x2e2)

2(Λ + µ)

with p = 1 being the uniform in-plane pressure.
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MAPPED FINITE ELEMENT METHODS 17

We model a subdomain of the infinite medium Ω = (−1, 1)2\{(x1, x2)|x2 = 0, x1 ≤ 0}. We
then have C = {(x1, x2)|x2 = 0,−1 < x1 ≤ 0}. We impose essential boundary conditions on
∂dΩ = ∂Ω given by g = ue. On C = ∂τΩ we apply the tractions associated with the uniform
pressure field, namely t = pn. In Figure 6 we show a sketch of the modeled problem with
boundary conditions alongside the subdivision T h of Ω̂ and the same mesh mapped with γ.
Note that, as Ω = Ω̂, we use the same subdivision T h for both the MFEM and the FEM. The
radius of support of the cut-off function is taken as ρ = 1. We assume a plain strain state and
the material constants are Λ = 1.5 and µ = 1.

u = ue

u
=
u
e

u = ue

u
=
u
e

σn± = pn±

e2

e1

Ω = Ω̂

(a) Modeled subdomain with boundary conditions

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
γ(T h)

(b) Sample mesh corresponding to the first subdivision

Figure 6. Straight crack problem.

We investigated the h-convergence for V̂h,p, p = 1, 2, 3, 4, by uniformly subdividing each
triangle in the mesh into four similar ones. We showcase in Figure 7(a) comparison of the
convergence of the MFEM against the FEM. The error and the rates of convergence are
provided in Table I. We observe optimal convergence rates for the MFEM and sub-optimal
rates for FEM. In Figure 7 we also provide comparison of the errors as functions of the problem
size N and CPU time. It appears that the choice of p = 2 best balances computing time and
error. Notice that with p = 2 the computing times for an error of 10−5 differ by around two
orders of magnitude, in favor of the MFEM.

One of the key features that unleashes the computational time savings for the MFEM is
that, for the auxiliary map presented here, the condition number of the resulting system of
equations maintains the same scaling with respect to mesh refinements than standard finite
element methods. This is in contrast with graded mesh refinement strategies without proper
scaling of the basis functions. More precisely, the condition number of the method was observed
to scale as O(h−2), just as in standard finite element methods, cf. [32, Chapter 9]. Figure 8
shows the aforementioned behavior. This behavior arises because the bilinear form of the new
problem is coercive and continuous with continuity and coercivity constants independent of h.
Crucial to this fact is that the map itself is defined independently of h.
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(a) Convergence in mesh size for FEM
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(d) Convergence in system size for MFEM
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(e) Convergence in CPU time for FEM
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(f) Convergence in CPU time for MFEM

Figure 7. Convergence of the elasticity solution for a straight crack.
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MAPPED FINITE ELEMENT METHODS 19

Table I. Errors (‖ue − uh‖0,Ω) and convergence rates for the straight crack problem.

(a) FEM

P 1 P 2 P 3 P 4

h0/h Error O Error O Error O Error O

1 9.1 · 10−4 – 2.6 · 10−4 – 1.3 · 10−4 – 7.5 · 10−5 –

2 4.5 · 10−4 1.0 1.3 · 10−4 1.1 6.1 · 10−5 1.0 3.7 · 10−5 1.0

4 2.2 · 10−4 1.0 6.1 · 10−5 1.0 3.0 · 10−5 1.0 1.8 · 10−5 1.0

8 1.1 · 10−4 1.0 3.0 · 10−5 1.0 1.5 · 10−5 1.0 9.0 · 10−6 1.0

16 5.5 · 10−5 1.0 1.5 · 10−5 1.0 7.5 · 10−6 1.0 – –

32 2.8 · 10−5 1.0 7.5 · 10−6 1.0 – – – –

64 1.4 · 10−5 1.0 – – – – – –

(b) MFEM

P 1 P 2 P 3 P 4

h0/h Error O Error O Error O Error O

1 1.8 · 10−3 – 2.8 · 10−4 – 9.1 · 10−5 – 5.7 · 10−5 –

2 5.4 · 10−4 1.7 3.7 · 10−5 2.9 5.9 · 10−6 3.9 2.5 · 10−6 4.5

4 1.5 · 10−4 1.8 4.3 · 10−6 3.1 3.9 · 10−7 3.9 6.0 · 10−8 5.4

8 4.1 · 10−5 1.9 5.3 · 10−7 3.0 2.4 · 10−8 4.0 1.9 · 10−9 5.0

16 1.0 · 10−5 2.0 6.5 · 10−8 3.0 1.5 · 10−9 4.0 – –

32 2.6 · 10−6 2.0 8.1 · 10−9 3.0 – – – –

64 6.5 · 10−7 2.0 – – – – – –

10−1 100

104

105

106

O
(
h−2

)

O
(
h−2

)

h/h0

C
o
n
d
it
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Figure 8. Scaling of the condition number κ for the straight crack problem.
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4.2. Circular arc crack

We now consider the problem of a circular arc crack in an infinite medium loaded by
remote stress, as shown in Figure 9a. An analytical solution for the problem is available in
Muskhelishvili [33] and a Python [34] implementation of the solution is available as part of
the supplementary material in [35]. The objective of the example is to showcase the method
in the context of multiple crack tips and curved cracks.

The values of σ∞i , i = 1, 2 were chosen such that mode I stress intensity factor is unity
(KI = 1) and mode II stress intensity factor is exactly zero (KII = 0). The radius of the crack
is taken as R = 1 and the angle subdued by the crack is taken as 2φ = π. In Figure 9(b) and
(c) we show a sketch of the modeled subdomain given by Ω = [−2, 2]× [−1, 1] with boundary
conditions and the coarsest mesh, respectively. The radius of support of the cut-off functions
for both crack tips was chosen as ρτ = 0.5, τ = 1, 2. Lastly we assumed a plane strain state
with material constants Λ = 1.5, µ = 1.

We investigated the h-convergence for V̂h,p, p = 1, 2, 3, 4. We showcase in Figure 10 a
comparison of the convergence of the MFEM against the FEM. The error and the rates
of convergence are provided in Table II. As in the previous section, we observe optimal
convergence rates for the MFEM and sub-optimal convergence for the FEM.

Table II. Errors (‖ue − uh‖0,Ω) and convergence rates for the circular arc crack problem.

(a) FEM

P 1 P 2 P 3 P 4

h0/h Error O Error O Error O Error O

1 5.4 · 10−5 – 1.6 · 10−5 – 8.1 · 10−6 – 4.8 · 10−6 –

2 2.6 · 10−5 1.1 7.8 · 10−6 1.1 3.9 · 10−6 1.1 2.3 · 10−6 1.0

4 1.3 · 10−5 1.0 3.8 · 10−6 1.1 1.9 · 10−6 1.0 1.1 · 10−6 1.0

8 6.2 · 10−6 1.0 1.9 · 10−6 1.0 9.3 · 10−7 1.0 5.6 · 10−7 1.0

16 3.0 · 10−6 1.0 9.2 · 10−7 1.0 4.6 · 10−7 1.0 – –

32 1.5 · 10−6 1.0 4.6 · 10−7 1.0 – – – –

64 7.5 · 10−7 1.0 – – – – – –

(b) MFEM

P 1 P 2 P 3 P 4

h0/h Error O Error O Error O Error O

1 3.7 · 10−5 – 5.4 · 10−6 – 1.3 · 10−6 – 5.4 · 10−7 –

2 1.3 · 10−5 1.5 7.1 · 10−7 2.9 1.4 · 10−7 3.2 3.7 · 10−8 3.8

4 4.4 · 10−6 1.5 1.0 · 10−7 2.8 9.4 · 10−9 3.9 1.9 · 10−9 4.3

8 1.3 · 10−6 1.8 1.0 · 10−8 3.4 6.3 · 10−10 3.9 6.4 · 10−11 4.9

16 3.4 · 10−7 1.9 1.1 · 10−9 3.2 3.8 · 10−11 4.0 – –

32 8.5 · 10−8 2.0 1.2 · 10−10 3.1 – – – –

64 2.1 · 10−8 2.0 – – – – – –

The importance of the optimality in the convergence of the derivative becomes apparent,
for example, when considering simulations of crack propagation. The evolution of a crack
is dictated by two scalar coefficients known as the stress intensity factors (SIFs). The
SIFs can be computed by evaluating a continuous linear functional of the derivative of the
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(c) Sample mesh corresponding to the first subdivision

Figure 9. Circular arc crack problem.

computed solution (see for example [36]) known as the interaction integral functional. It can
be shown that such functionals converge at twice the rate of their argument. Namely if I[·]
denotes the Interaction Integral functional, then we have ‖I[∇ue]− I[∇uh]‖ ≤ O(h2k) where
‖ue − uh‖1,Ω ≤ O(hk). This behavior is indeed observed in the evaluation of the SIFs for a
circular arc crack, and illustrated in Figure 11, where we contrast the convergence of the SIFs
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from a solution obtained using FEM with that of using MFEM. In the former k = 0.5, and
hence the SIFs converge as O(h1), while in the latter k = p, and hence the SIFs converge as
O(h2p). Convergence curves for the derivatives are provided for a different example in § 4.4.
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Figure 10. Convergence of the elasticity solution for a circular arc crack.
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Figure 11. Convergence of the stress intensity factors for a circular arc crack. We highlight that the
rate of convergence of the stress intensity factors are twice the rates of convergence of the derivatives

of the solution (where ‖∇uh −∇ue‖0,Ω ≤ O(hk) with k = 0.5 for FEM and k = p for MFEM, cf.
§ 4.4, Figure 16 and Table V)
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4.3. Anti-plane elasticity over an L-shaped domain

The next example we present is aimed at showcasing the versatility of the MFEM for problems
with re-entrant corners. The problem of interest is the anti-plane deformation of an L-shaped
domain, as shown in Figure 12. As we remarked earlier in the manuscript, the boundary value
problem becomes solving u : Ω→ R such that

∇ · (µ∇u) + b = 0, in Ω,

u = g, on ∂dΩ,

µ∇u · n = t, on ∂τΩ .

It is rather straightforward to follow the steps of §3 to derive the Garlerkin form over Ω̂ of
the above boundary value problem. We provide details of the bilinear form and other relevant
constructs in Appendix C.

The domain is Ω = (−1, 1)2 \ [0, 1]2. We then let ∂dΩ = ∂Ω \ [({0} × [0, 1]) ∪ ([0, 1]× {0})].
We take t = 0, b = 2(x2

1 + x2
2) and set

g = r2/3 cos(2θ/3) + x2
1x

2
2

where the x1-axis coincides with the ray θ = 0. The solution to the above boundary value
problem is given by

ue = r2/3 cos(2θ/3) + x2
1x

2
2.

The power of the singularity is 2/3 rather than 1/2 as in the case of a cracked domain.
We could very well replace the condition m ≥ k ≥ p+ 1 by a milder one and still maintain
ue ◦ γ ∈ Hk(Ω̂) and recover optimal rates of convergence. Alternatively, given that the solution
to the L-shaped domain is less singular than that of the cracked domain it will not be necessary
to alter the method at all. In fact using a mapping γ given by (12) with the original condition
m ≥ k ≥ p+ 1 will yield an even smoother solution. Therefore for the example the mapping
remains the same as (12).

The radius of the cut-off function was taken as ρ = 1 and the material parameters were
chosen once more as µ = 1.

u = ue

∇
u
·n

=
0

∇u · n = 0

u
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u
e
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u
=

u
e
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e1

Ω = Ω̂

(a) Modeled subdomain with boundary conditions

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
γ(T h)

(b) Sample mesh corresponding to the first subdivision

Figure 12. Anti-plane elasticity over an L-shaped domain.

We provide convergence plots for four polynomial degrees in Figure 13. Once again, alongside
the convergence in the mesh size we showcase comparisons of error evolution as a function of

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



26 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

the problem size and computing time. It is worthwhile noting that for this particular example
the solution of FEM converges faster than for the cracked domain, but still suboptimally,
namely ‖ue − uh‖ ≤ O(h4/3). The above is attributed to the higher regularity of the solution,
namely ue ∈ H5/3−δ(Ω) for any δ > 0 [37].

Consistent with what was observed before, the solution computed with MFEM converges
optimally. Table III shows the error and the computed rates of convergence. Once more
quadratic polynomial interpolates provide the best compromise between run-time and accuracy
for the range of errors here presented.

Table III. Errors (‖ue − uh‖0,Ω) and convergence rates for the anti-plane elasticity problem on and
L-shaped domain.

(a) FEM

P 1 P 2 P 3 P 4

h0/h Error O Error O Error O Error O

1 1.9 · 10−2 – 2.5 · 10−3 – 1.0 · 10−3 – 5.1 · 10−4 –

2 6.2 · 10−3 1.6 9.3 · 10−4 1.4 3.7 · 10−4 1.4 1.9 · 10−4 1.4

4 2.2 · 10−3 1.5 3.5 · 10−4 1.4 1.4 · 10−4 1.4 7.1 · 10−5 1.4

8 8.0 · 10−4 1.4 1.4 · 10−4 1.4 5.4 · 10−5 1.4 2.7 · 10−5 1.4

16 3.1 · 10−4 1.4 5.2 · 10−5 1.4 2.1 · 10−5 1.4 – –

32 1.2 · 10−4 1.4 2.1 · 10−5 1.4 – – – –

64 4.7 · 10−5 1.4 – – – – – –

(b) MFEM

P 1 P 2 P 3 P 4

h0/h Error O Error O Error O Error O

1 2.4 · 10−2 – 2.9 · 10−3 – 8.6 · 10−4 – 1.5 · 10−4 –

2 7.5 · 10−3 1.7 4.0 · 10−4 2.8 5.5 · 10−5 4.0 1.4 · 10−5 3.4

4 2.1 · 10−3 1.8 4.3 · 10−5 3.2 4.2 · 10−6 3.7 4.5 · 10−7 5.0

8 5.5 · 10−4 1.9 5.2 · 10−6 3.1 2.5 · 10−7 4.1 1.3 · 10−8 5.1

16 1.4 · 10−4 2.0 6.3 · 10−7 3.0 1.1 · 10−8 4.5 – –

32 3.5 · 10−5 2.0 6.1 · 10−8 3.4 – – – –

64 7.6 · 10−6 2.2 – – – – – –
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Figure 13. Convergence of the anti-plane elasticity solution for an L-shaped domain.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



28 M. M. CHIARAMONTE, Y. SHEN AND A. J. LEW

4.4. Interface crack

The last problem we present is the one of a crack along a bilateral interface. The material
properties are chosen such that Λ1 = 1.5, µ1 = 1, Λ2 = 10Λ1, and µ2 = 10µ1. The analytical
solution for the problem can be found in [38]. The objective of the example is to showcase the
ability of the same method to obtain higher-order approximations of the elasticity fields in the
presence of different asymptotic behaviors. More precisely, the displacement field in medium
M , M = 1, 2, scales as

u ∼ r1/2 [ψMa(θ) cos(ε ln r) +ψMb(θ) sin(ε ln r)] ,

where ψMa and ψMb are C∞ functions of θ, and ε depends on the elastic constants of the two
materials, which vanishes if Λ1 = Λ2 and µ1 = µ2. In this example, ε = 18/77

.
= 0.2338. This

asymptotic behavior in the physical domain leads to, in the mapped domain with m = k,

û ∼ r̂k
[
ψ̂Ma(θ̂) cos(2kε ln r̂) + ψ̂Mb(θ̂) sin(2kε ln r̂)

]
∈ Hk(Ω̂,R2),

where ψ̂Ma and ψ̂Mb are C∞ functions of θ̂. Hence, no alteration is needed to apply the method
to this problem in order to achieve optimal convergence.

In comparison, in the case of extended finite element methods (XFEM) basis functions
that span the different type of singularities need to be employed to get at most first order
convergence in the stresses. An example of the latter, albeit with stresses converging as h1/2,
can be found in [39].

As the analytical solutions are available, we modeled a subdomain Ω = (−1, 1)2\([−1, 0]×
{0}) containing only a single crack tip and prescribed displacements on the boundary of the
domain, as illustrated in Figure 14. The coarsest mesh is shown in in Figure 14(b) an each
mesh was obtained by recursive subdivisions of the coarsest mesh. We remark that for this
example we employed quadrilateral elements Qk to showcase the independence of the method
on the type of finite element. The radius of support of the mapping is ρ = 1. As before we
performed an h-convergence study for four degrees of the polynomial interpolate ranging from
linear to quartic (Qk, k = 1, 2, 3, 4) in Figure 15. Table IV shows the error and the computed
rates of convergence. Results similar to the previous examples are obtained.
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Figure 14. Interface crack.
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Table IV. Errors (‖ue − uh‖0,Ω) and convergence rates of the elasticity field of a crack at a bimaterial
interface.

(a) FEM

Q1 Q2 Q3 Q4

h0/h Error O Error O Error O Error O

1 4.6 · 10−2 – 1.4 · 10−2 – 6.7 · 10−3 – 1.9 · 10−3 –

2 2.2 · 10−2 1.1 6.4 · 10−3 1.1 3.1 · 10−3 1.1 9.1 · 10−4 1.0

4 1.0 · 10−2 1.1 3.0 · 10−3 1.1 1.5 · 10−3 1.1 4.5 · 10−4 1.0

8 5.0 · 10−3 1.1 1.5 · 10−3 1.1 7.4 · 10−4 1.0 2.2 · 10−4 1.0

16 2.4 · 10−3 1.1 7.1 · 10−4 1.0 3.6 · 10−4 1.0 1.1 · 10−4 1.0

32 1.2 · 10−3 1.0 3.5 · 10−4 1.0 1.8 · 10−4 1.0 – –

64 5.7 · 10−4 1.0 1.7 · 10−4 1.0 – – – –

(b) MFEM

Q1 Q2 Q3 Q4

h0/h Error O Error O Error O Error O

1 5.8 · 10−2 – 4.2 · 10−2 – 1.8 · 10−2 – 3.0 · 10−3 –

2 3.4 · 10−2 0.8 9.2 · 10−3 2.2 5.7 · 10−3 1.7 1.9 · 10−4 4.0

4 1.2 · 10−2 1.5 2.3 · 10−3 2.0 6.1 · 10−4 3.2 7.3 · 10−6 4.7

8 4.1 · 10−3 1.6 2.3 · 10−4 3.3 3.3 · 10−5 4.2 2.9 · 10−7 4.6

16 1.2 · 10−3 1.8 2.3 · 10−5 3.3 1.8 · 10−6 4.2 9.8 · 10−9 4.9

32 3.0 · 10−4 1.9 2.4 · 10−6 3.3 1.2 · 10−7 3.9 – –

64 7.6 · 10−5 2.0 2.7 · 10−7 3.1 – – – –

We would like to remark that optimality in the convergence of the derivative, alongside the
solutions themselves, was also observed. We expect the error in the derivative to converge
optimally for MFEM, namely ‖ue − uh‖1,Ω ≤ O(hp) with p being the order of the polynomial
interpolate, while with FEM we observe ‖ue − uh‖1,Ω ≤ O(hs), with s = 1/2 for crack
problems, independently of p. Figure 16 showcases the contrast between suboptimal rates for
the H1-norm for FEM in comparison with MFEM for the interface crack problem, and rates
and errors are reported in Table V.
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Table V. Errors of the derivative of the solution (‖ue − uh‖1,Ω) and convergence rates for the problem
of a crack at a bimaterial interface.

(a) FEM

Q1 Q2 Q3 Q4

h0/h Error O Error O Error O Error O

1 2.5 · 10−1 – 1.3 · 10−1 – 9.2 · 10−2 – 4.9 · 10−2 –

2 1.8 · 10−1 0.5 9.3 · 10−2 0.5 6.4 · 10−2 0.5 3.4 · 10−2 0.5

4 1.3 · 10−1 0.5 6.4 · 10−2 0.5 4.4 · 10−2 0.5 2.3 · 10−2 0.5

8 8.7 · 10−2 0.5 4.5 · 10−2 0.5 3.1 · 10−2 0.5 1.6 · 10−2 0.5

16 6.1 · 10−2 0.5 3.1 · 10−2 0.5 2.1 · 10−2 0.5 1.1 · 10−2 0.5

32 4.2 · 10−2 0.5 2.1 · 10−2 0.5 1.5 · 10−2 0.5 – –

64 3.0 · 10−2 0.5 1.5 · 10−2 0.5 – – – –

(b) MFEM

Q1 Q2 Q3 Q4

h0/h Error O Error O Error O Error O

1 4.6 · 10−1 – 4.8 · 10−1 – 3.2 · 10−1 – 1.0 · 10−1 –

2 3.9 · 10−1 0.2 1.8 · 10−1 1.4 1.4 · 10−1 1.2 1.7 · 10−2 2.6

4 1.8 · 10−1 1.2 7.2 · 10−2 1.3 3.3 · 10−2 2.1 1.5 · 10−3 3.4

8 8.9 · 10−2 1.0 1.6 · 10−2 2.1 4.9 · 10−3 2.7 1.4 · 10−4 3.4

16 4.2 · 10−2 1.1 4.3 · 10−3 1.9 6.3 · 10−4 3.0 1.0 · 10−5 3.8

32 2.0 · 10−2 1.0 1.1 · 10−3 2.0 8.7 · 10−5 2.9 – –

64 1.0 · 10−2 1.0 2.6 · 10−4 2.0 – – – –
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Figure 15. Convergence of the solution of the elasticity field of a crack at a bimaterial interface.
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(a) Convergence in mesh size for FEM
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(b) Convergence in mesh size for MFEM

Figure 16. Convergence of the derivatives of the solution. In (a) we see suboptimal rates for FEM,

namely ‖ue − uh‖1,Ω ≤ O(h1/2) independently of the polynomial interpolate, while we recover

the optimal rates,‖ue − uh‖1,Ω ≤ O(hp+1) for MFEM, with p being the degree of the polynomial
interpolate.
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5. ANALYSIS OF THE METHOD

In this section we prove the optimal convergence of the proposed method as the main result.
More precisely, we provide an analysis of the method for the problem of finding uh := ûh ◦ γ−1,
where ûh ∈ V̂h,p is such that (14) holds, with the map γ introduced in (7) where k ≥ p+ 1.
We are mostly interested in the error over the physical domain, namely in an estimate of
‖u− uh‖s,Ω, s = 0, 1. The proof of this last result is built on the convergence rates in the
parametric domain and a norm equivalence between functions in the parametric and physical
domains. Crucial to this approach is a proof of the enhanced regularity of the mapped solution
û.

For clarity, we assume that Ω is open and has the cone property (to apply Sobolev’s
embedding theorem), and that an exact discretization of the domain Ω̂ is adopted, instead of,
for example, an isoparametric approximation. Furthermore we assume that the only singularity
comes from the only crack tip of a Lipschitz-continuous edge crack (i.e., the image of a Lipschitz
function R→ R2) that does not cross itself and thus we consider a mapping of the form (7).
The analysis for a re-entrant corner can be accounted for in a similar and simpler manner.

To simplify the statement of the regularity assumption, we let polar coordinates (r, θ) be
continuous all over Ω, i.e., within Ω the value of θ is discontinuous only across C . We then
let Θ be the minimum real number such that θ ∈ (−Θ,Θ) for all points of Ω. If C is straight,
then Θ = π.

Crack geometries inside Bρ(x>) could be quite complex. For the purposes of the proof
below, it is useful to keep in mind the image of Bρ(x>) with a straight crack emanating from
its center. In general, however, a rather mild hypothesis that we shall make is to assume that
there exists an extension of the crack that cuts Bρ(x>) into two disjoint sets, B+ and B−, such
that |∂B± ∩ ∂Bρ(x>)| > 0, and that both sets satisfy the strong local Lipschitz condition, see
Figure 17. This assumption will allow us to apply Poincaré’s inequality, a trace inequality, and
the divergence theorem on each set (cf. [40]). If C ∩Bρ(x>) is straight, then this extension
can be set as extending along the line that contains C ∩Bρ(x>).

B+

B−

x>C

ρ

Figure 17. Schematic showing the extension of the crack (dashed line) that cuts Bρ(x>) into two
disjoint parts, B+ and B−, such that |∂B± ∩ ∂Bρ(x>)| > 0, and that both sets have the strong

Lipschitz property.

We will adopt the following notation to indicate partial derivatives. Let multi-index α =
(α1, α2) ∈ (N0)2 and |α| := α1 + α2. We then define the operator Dαx := (∂/∂x1)α1(∂/∂x2)α2 .

Likewise, Dαx̂ := (∂/∂x̂1)α1(∂/∂x̂2)α2 , and Dα
(r̂,θ̂)

:= (∂/∂r̂)α1(∂/∂θ̂)α2 . To avoid cluttering of

symbols, we set Dα := Dα
(r̂,θ̂)

.

In the sequel we first lay out the regularity assumption of the solution and then proceed to
the proof. Note that within §5 the symbol C denotes a generic positive constant independent
of the solution u and the mesh size h. The value of C may differ at different occurrences.

Assumption 5.1 (Regularity of the solution)
We assume that there exists k ∈ N, k ≥ 2, such that b ∈ Hk−2(Ω), g ∈ Hk−1/2(∂dΩ), t ∈
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Hk−3/2(∂τΩ), and that the solution to (2) can be written as

u =

k−1∑

i=1

rλiψi(θ) + uR (16)

where λi = i− 1/2, ψi ∈ C∞[−Θ,Θ], uR ∈ Hk(Ω,R2). Moreover, there exists C independent
of b, g, and t such that

k−1∑

i=1

‖ψi‖2k,(−Θ,Θ) + ‖uR‖2k,Ω ≤ C
(
‖b‖2k−2,Ω + ‖g‖2k−1/2,∂dΩ + ‖t‖2k−3/2,∂τΩ

)
.

We remark that the so-called stress intensity factors are incorporated in the function ψ1(θ).
Under Assumption 5.1, our main result is summarized in Theorems 5.1 and 5.2.

Theorem 5.1 (Regularity of the mapped solution)
Let u ∈ V be the solution to (2) with k ∈ N, k ≥ 2 given by Assumption 5.1. Let γ be as
defined in (7) with q ∈ Πk,m for some m ≥ k. Then û := u ◦ γ ∈ Hk(Ω̂,R2); moreover, there
exists C > 0 independent of b, g, and t such that

‖û‖k,Ω̂ ≤ C
(
‖b‖k−2,Ω + ‖g‖k−1/2,∂dΩ + ‖t‖k−3/2,∂τΩ

)
.

Theorem 5.2 (Optimality of convergence)
Let the assumptions of Theorem 5.1 hold. Let p ∈ N with p ≤ k − 1, and {T h} be a quasi-
uniform family of subdivisions of Ω̂ = γ−1(Ω) over which finite element spaces V̂h,p and Ŵh,p

are constructed following (13). Let ûh ∈ V̂h,p be such that (14) holds, and set uh := ûh ◦ γ−1.
Then there exists a positive constant C independent of u and h such that

∣∣u− uh
∣∣
s,Ω
≤ Chp+1−s|u ◦ γ|p+1,Ω̂, s = 0, 1.

Corollary 5.3
Let the assumptions of Theorem 5.2 hold. Then there exists a positive constant C independent
of u and h such that

∣∣u− uh
∣∣
s,Ω
≤ Chp+1−s (‖b‖p−1,Ω + ‖g‖p+1/2,∂dΩ + ‖t‖p−1/2,∂τΩ

)
, s = 0, 1.

To prove these main results, we first prove a few lemmas.

Lemma 5.4 (Bivariate chain rule of an arbitrary order)
Let multi-index α = (α1, α2) ∈ (N0)2 and functions f ∈ C |α|(R2), g = (g1, g2), with g1, g2 ∈
Cα(R2). Construct the composition of functions

h(x) = f [g1(x), g2(x)] , x = (x1, x2).

Then the partial derivative Dαxh is given by

Dαxh =
∑

1≤|β|≤|α|
Dβg f [g1(x), g2(x)]

|α|∑

s=1

∑

ps(α,β)

(α1!α2!)

s∏

j=1

(
D
lj
x g1(x)

)k(1)j (
D
lj
x g2(x)

)k(2)j
[
k

(1)
j !k

(2)
j !
] [
l
(1)
j !l

(2)
j !
]|kj | ,

where Dβg f = (∂/∂g1)β1(∂/∂g2)β2f , and for j = 1, . . . , s, kj = (k
(1)
j , k

(2)
j ), lj = (l

(1)
j , l

(2)
j ).

Finally,

ps(α,β) =

{
(k1, . . . ,ks; l1, . . . , ls)

∣∣∣∣|ki| > 0, |li| > 0, i = 1, . . . , s;

l1, . . . , ls are distinct;

s∑

i=1

ki = β;

s∑

i=1

|ki|li = α

}
.

(17)
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Proof
This is a special case of the main result of [41].

Example applications of Lemma 5.4 for some α’s are given as follows, where the standard
partial derivative formulas are recovered:

• α = (1, 0), then the only contributions are from β = (0, 1) or (1, 0). We note that

p1((1, 0), (0, 1)) = {(k1 = (0, 1); l1 = (1, 0))},
p1((1, 0), (1, 0)) = {(k1 = (1, 0); l1 = (1, 0))}.

As a result,

∂h

∂x1
=

∂f

∂g2
[g1(x), g2(x)]

∂g2

∂x1
+
∂f

∂g1
[g1(x), g2(x)]

∂g1

∂x1
.

• α = (1, 1), then the only contributions are from β = (0, 1), (1, 0), (0, 2), (1, 1), or (2, 0).
We next find out the ps’s:

p1((1, 1), (0, 1)) ={(k1 = (0, 1); l1 = (1, 1))},
p1((1, 1), (1, 0)) ={(k1 = (1, 0); l1 = (1, 1))},
p2((1, 1), (0, 2)) ={(k1 = k2 = (0, 1); l1 = (0, 1), l2 = (1, 0))},
p2((1, 1), (1, 1)) ={(k1 = (0, 1),k2 = (1, 0); l1 = (0, 1), l2 = (1, 0)),

(k1 = (1, 0),k2 = (0, 1); l1 = (0, 1), l2 = (1, 0))},
p2((1, 1), (2, 0)) ={(k1 = k2 = (1, 0); l1 = (0, 1), l2 = (1, 0))}.

From this we obtain

∂2h

∂x1∂x2
=

∂f

∂g2
[g1(x), g2(x)]

∂2g2

∂x1∂x2
+
∂f

∂g1
[g1(x), g2(x)]

∂2g1

∂x1∂x2
+
∂2f

∂g2
2

[g1(x), g2(x)]
∂g2

∂x2

∂g2

∂x1

+
∂2f

∂g1∂g2
[g1(x), g2(x)]

(
∂g2

∂x2

∂g1

∂x1
+
∂g1

∂x2

∂g2

∂x1

)
+
∂2f

∂g2
1

[g1(x), g2(x)]
∂g1

∂x2

∂g1

∂x1
.

Lemma 5.5 (Basic properties of the map γ)
Let γ be given by (7) with q ∈ Πk,m and j = det(∇γ). Let x̂ ∈ Bρ(x>) and r̂ = ‖x̂− x>‖,
r = ‖γ(x̂)− x>‖. Then γ ∈ Ck(R2,R2), and there exist C1, C2, C3 > 0 independent of x̂ such
that for all r̂ ∈ (0, ρ],

∣∣∣∣
djr

dr̂j

∣∣∣∣ ≤ C2r̂
2m−j , j ∈ N, 0 ≤ j ≤ k, (18a)

‖Dαx̂γ‖ ≤ C2r̂
2m−|α| ≤ C3r

1−|α|/(2m), α ∈ (N0)2, 0 ≤ |α| ≤ k, (18b)

C1r
−1+1/(2m) ≤

∥∥(∇γ)−1
∥∥ ≤ C2r

−1+1/(2m), (18c)

C1r
−2+1/m ≤ j−1 ≤ C2r

−2+1/m. (18d)

Proof
These inequalities directly follow from (11) and (9). The fact that γ ∈ Ck(R2,R2) follows after
the behavior of the derivatives of γ near x> is bounded by (18b).

As a special case, taking α = (0, 0) in (18b) yields that there exist C1, C2 > 0 independent
of x̂ such that for all r̂ ∈ (0, ρ],

C1r̂
2m ≤ r ≤ C2r̂

2m. (19)

Lemma 5.6
Let the assumptions of Theorem 5.1 hold. Let v ∈ Hk(Ω) and v̂ = v ◦ γ. Then v̂ ∈ Hk(Ω̂) and
there exists C independent of v such that

‖v̂‖k,Ω̂ ≤ C‖v‖k,Ω.
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Proof
We first prove that

‖v̂‖0,Ω̂ ≤ C‖v‖2,Ω. (20)

Since Ω has the cone property, applying the Sobolev embedding theorem yields that v ∈ C0
B(Ω),

and that ‖v‖0,∞,Ω ≤ C‖v‖2,Ω. As a result, v̂ ∈ C0
B(Ω) and ‖v̂‖0,Ω̂ ≤ C‖v̂‖0,∞,Ω̂ = C‖v‖0,∞,Ω ≤

C‖v‖2,Ω, where we have used the bijectivity and continuity of γ.
We next define, for each α such that 1 ≤ |α| ≤ k, a provisional expression for Dαx̂ v̂ given by

D̃αx̂ v̂ =
∑

1≤|β|≤|α|
Dβxv [γ1(x̂), γ2(x̂)]

|α|∑

s=1

∑

ps(α,β)

(α1!α2!)

s∏

j=1

(
D
lj
x̂ γ1(x̂)

)k(1)j (
D
lj
x̂ γ2(x̂)

)k(2)j
[
k

(1)
j !k

(2)
j !
] [
l
(1)
j !l

(2)
j !
]|kj | .

We now show that for all α such that 1 ≤ |α| ≤ k,
∥∥D̃αx̂ v̂

∥∥
0,Ω̂
≤ C‖v‖k,Ω, (21)

and then that D̃αx̂ v̂ is in fact the α-weak derivative of v̂.
To this end, we first note the finiteness of terms in ps(α,β), and that γ is the identity in

Ω̂ \Bρ(x>), hence we just need to prove that for each member of ps(α,β),

∫

Bρ(x>)∩Ω

(
Dβxv

)2
[

s∏

j=1

(
D
lj
x̂ γ1

)2k
(1)
j
(
D
lj
x̂ γ2

)2k
(2)
j

]
◦ γ−1j−1 dΩ ≤ C‖v‖2k,Bρ(x>)∩Ω. (22)

To proceed, we apply (17), (18b), and (18d) to obtain

∫

Bρ(x>)∩Ω

(
Dβxv

)2
[

s∏

j=1

(
D
lj
x̂ γ1

)2k
(1)
j
(
D
lj
x̂ γ2

)2k
(2)
j

]
◦ γ−1j−1 dΩ

≤ C
∫

Bρ(x>)∩Ω

r−2+1/mr2|β|−|α|/m ∥∥Dβxv
∥∥2

dΩ

≤ C
∫

Bρ(x>)∩Ω

r2(|β|−1)−(|α|−1)/m
∥∥Dβxv

∥∥2
dΩ.

(23)

If |β| ≥ 2, then 2(|β| − 1)− (|α| − 1)/m > 0, and (22) holds; otherwise, for |β| = 1, we
invoke the divergence theorem† on the last term above to write

(
2− |α| − 1

m

)∫

Bρ(x>)∩Ω

r−(|α|−1)/m
∥∥Dβxv

∥∥2
dΩ

=

∫

Bρ(x>)∩Ω

div
[
r1−(|α|−1)/mer

] ∥∥Dβxv
∥∥2

dΩ

= −
∫

Bρ(x>)∩Ω

r1−(|α|−1)/mer · ∇
(∥∥Dβxv

∥∥2
)
dΩ

+

∫

∂[Bρ(x>)∩Ω]

r1−(|α|−1)/mer · n
∥∥Dβxv

∥∥2
d∂Ω

≤ C
∣∣∣∣∣

∫

Bρ(x>)∩Ω

(
Dβxv

)
· ∂
∂r

(
Dβxv

)
dΩ

∣∣∣∣∣+ C

∫

∂[Bρ(x>)∩Ω]

∥∥Dβxv
∥∥2

dΓ

≤ C ‖v‖22,Ω ,

†The use of the divergence theorem is justified by the strong local Lipschitz condition of B±, which implies

that W 1,1(B±) is dense in C∞(B±).
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where we have invoked the Cauchy-Schwarz inequality and the trace inequality in the last step.
As a result, (22) is also true for the case of |β| = 1.

It remains to prove that the locally integrable function D̃αx̂ v̂ is the weak derivative of v̂ with

index α, which amounts to prove that, for any test function φ ∈ C∞c (Ω̂),

(−1)|α|
∫

Ω̂

v̂ Dαx̂φ dΩ̂−
∫

Ω̂

φ D̃αx̂ v̂ dΩ̂ = 0. (24)

To this end, for ε > 0 we let Jε be a mollifier function with supp(Jε) ⊂ Bε(0), and
vε := Jε ∗ v, where ∗ denotes convolution over R2:

vε(x) =

∫

R2

Jε(x− y)v(y) dΩ(y),

with v extended by zero over R2 \ Ω. With the same arguments that yield (20), it is clear that
vε ◦ γ ∈ L2(Ω̂). Moreover, from Lemma 5.4,

(−1)|α|
∫

Ω̂

vε ◦ γ Dαx̂φ dΩ̂ =

∫

Ω̂

φ D̃αx̂ (vε ◦ γ) dΩ̂. (25)

Using (25) left hand side of (24) and applying the Cauchy-Schwarz inequality, (20), and (21)
(with v replaced by v − vε) yields

∣∣∣∣(−1)|α|
∫

Ω̂

v̂ Dαx̂φ dΩ̂−
∫

Ω̂

φ D̃αx̂ v̂ dΩ̂

∣∣∣∣

≤
∣∣∣∣
∫

Ω̂

(v̂ − vε ◦ γ) Dαx̂φ dΩ̂

∣∣∣∣+

∣∣∣∣
∫

Ω̂

φ [D̃αx̂ v̂ − D̃αx̂ (vε ◦ γ)] dΩ̂

∣∣∣∣
≤ ‖φ‖k,Ω̂‖v̂ − vε ◦ γ‖0,Ω̂ + ‖φ‖0,Ω̂

∥∥D̃αx̂ (v̂ − vε ◦ γ)
∥∥

0,Ω̂

≤ C‖v̂ − vε ◦ γ‖0,Ω̂ + C‖v̂ − vε ◦ γ‖k,Ω̂
≤ C‖v − vε‖k,Ω.

Passing to the limit ε↘ 0 and applying [42, Lemma 3.16] yields (24).

Lemma 5.7 (Relation of semi-norms)
Let w ∈ H1(Ω) and ŵ = w ◦ γ under the assumptions of Theorem 5.1. Then there exists C
independent of w such that

C−1|ŵ|1,Ω̂ ≤ |w|1,Ω ≤ C|ŵ|1,Ω̂.

Proof
The inequality C−1|ŵ|1,Ω̂ ≤ |w|1,Ω follows from a special case of (23), which was proved when
we proved Lemma 5.6.

To prove |w|1,Ω ≤ C|ŵ|1,Ω̂, we start from Cauchy-Schwarz inequality to obtain

|w|21,Ω =

∫

Ω̂

∣∣∇ŵ · (∇γ)−1
∣∣2 j dΩ̂ ≤

∫

Ω̂

|∇ŵ|2
∣∣(∇γ)−1

∣∣2 j dΩ̂.

Hence, it remains to show that there exists C > 0 such that for all x̂ ∈ Ω̂, |(∇γ)−1|2j ≤ C,
which follows from (18c) and (18d).

Corollary 5.8
The operator aγ(·, ·) is continuous and coercive in H1(Ω̂;R2).

Proof
This corollary is a direct consequence of (6) and Lemma 5.7.
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We now proceed to prove the main results.

Proof of Theorem 5.1
For any x̂ ∈ Bρ(x>) ∩ Ω̂, we let r̂ and r be given by the assumptions of Lemma 5.5. Applying
the regularity assumption (16) yields

û = u ◦ γ =

k−1∑

i=1

ûi + ûR, ûi := rλiψi(θ̂), ûR := uR ◦ γ,

where, due to γ, θ̂ = θ. Applying Lemma 5.6 to uR yields ‖ûR‖k,Ω̂ ≤ C‖uR‖k,Ω, and we
conclude that the theorem holds if there exists C independent of u such that

‖ûi‖k,Ω̂ ≤ C‖ψi‖k,(−Θ,Θ), i = 1, . . . , k − 1.

To this end, we will prove that there exists C > 0 such that for any multi-index α = (α1, α2) ∈
(N0)2 with 0 ≤ |α| ≤ k,

‖Dαx̂ ûi‖0,Ω̂ ≤ C‖ψi‖|α|,(−Θ,Θ).

We first prove the case of |α| = 0, i.e., α = (0, 0). In this case, from (19),

‖ûi‖20,Ω̂ ≤
∫ r̂max

0

r2λi r̂ dr̂

∫ Θ

−Θ

ψ2
i dθ̂ ≤ C ‖ψi‖20,(−Θ,Θ) ,

where r̂max := supx̂∈Ω̂ ‖x̂− x>‖.
For the case of 1 ≤ |α| ≤ k, we apply Lemma 5.4 to each component of ûi[r̂(x̂), θ̂(x̂)] to

write for any x̂ 6= 0

Dαx̂ ûi =
∑

1≤|β|≤|α|
Dβûi

[
r̂(x̂), θ̂(x̂)

] |α|∑

s=1

∑

ps(α,β)

(α1!α2!)

s∏

j=1

(
D
lj
x̂ r̂(x̂)

)k(1)j (
D
lj
x̂ θ̂(x̂)

)k(2)j
[
k

(1)
j !k

(2)
j !
] [
l
(1)
j !l

(2)
j !
]|kj |

where we have abused notations in regarding ûi as a function of either x̂ = (x̂1, x̂2) or

(r̂, θ̂). Additionally, we have taciltly used the fact that functions r̂(x̂) and θ̂(x̂) belong to
C∞(R2 \ {0}), needed for Lemma 5.4.

Next we observe that, for each term in ps(α,β), by induction we have

∣∣∣Dljx̂ r̂
∣∣∣ ≤ Cr̂1−|lj |,

∣∣∣Dljx̂ θ̂
∣∣∣ ≤ Cr̂−|lj |.

Moreover, from the Faa di Bruno formula of one-dimension (see, again, [41]) combined with
(19), we obtain

∥∥Dβûi
∥∥ ≤ Cr̂2mλi−β1

∥∥∥∥
dβ2ψi

dθ̂β2

∥∥∥∥ .

As a result,

‖Dαx̂ ûi‖2 ≤ C
|α|∑

β1=0

r̂
4mλi−2β1+

∑s
j=1

[
2k

(1)
j (1−|lj |)+2k

(2)
j (−|lj |)

] |α|∑
β2=0

∥∥∥∥
dβ2ψi

dθ̂β2

∥∥∥∥
2

.

Note that from (17),

−2β1 +

s∑

j=1

[
2k

(1)
j (1− |lj |) + 2k

(2)
j (−|lj |)

]
= −2β1 + 2

s∑

j=1

k
(1)
j

︸ ︷︷ ︸
=0

−2

s∑

j=1

|kj ||lj | = −2|α|.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

This article is protected by copyright. All rights reserved.



MAPPED FINITE ELEMENT METHODS 39

Thus,

‖Dαx̂ ûi‖2 ≤ Cr̂4mλi−2|α|
|α|∑

β2=0

∥∥∥∥
dβ2ψi

dθ̂β2

∥∥∥∥
2

.

Finally, since λi ≥ 1/2 and m ≥ k ≥ |α|, the theorem holds.

Proof of Theorem 5.2
The case of s = 1 is straightforward. We first write

∣∣u− uh
∣∣
1,Ω
≤ |u− uI |1,Ω +

∣∣uI − uh
∣∣
1,Ω

, (26)

where uI := Îhû ◦ γ−1 and Îh is the classical interpolation operator such that Îhû ∈ V̂h,p
and that Îhû and û coincide at all nodes of T h. By construction, uI − uh = 0 on ∂dΩ, and
thus uI − uh ∈ Ŵh,p ◦ γ−1.

From the coercivity of a(·, ·) and the Galerkin orthogonality of uh,

∣∣uI − uh
∣∣2
1,Ω
≤ Ca

(
uI − uh,uI − uh

)
= Ca

(
uI − u,uI − uh

)
+ C a

(
u− uh,uI − uh

)
︸ ︷︷ ︸

=0

≤ C|u− uI |1,Ω
∣∣uI − uh

∣∣
1,Ω

,

or |uI − uh|1,Ω ≤ C|u− uI |1,Ω. As a result, with Lemma 5.7 and a standard interpolation
error estimate, (26) is simplified to

∣∣u− uh
∣∣
1,Ω
≤ C|u− uI |1,Ω ≤ C

∣∣∣û− Îhû
∣∣∣
1,Ω̂
≤ Chp|û|p+1,Ω̂. (27)

For s = 0, we first note that a standard interpolation error estimate yields

‖u− uI‖0,Ω ≤ Chp+1|û|p+1,Ω̂.

Hence, it is sufficient to prove

∥∥uI − uh
∥∥

0,Ω
≤ Chp+1|û|p+1,Ω̂. (28)

To this end, we employ the standard argument by considering the solution w ∈ W of the
problem

a(v,w) =
(
uI − uh,v

)
, ∀v ∈ W, (29)

and its MFEM approximation wh ∈ Ŵh,p ◦ γ−1 such that

a
(
v,wh

)
=
(
uI − uh,v

)
, ∀v ∈ Ŵh,p ◦ γ−1.

Then applying (27) and Theorem 5.1 to ŵ = w ◦ γ with k = 2 yields

∣∣w −wh
∣∣
1,Ω
≤ Ch|ŵ|2,Ω̂ ≤ Ch

∥∥uI − uh
∥∥

0,Ω
.

To proceed, we note that uI − uh ∈ W, and hence from (29), the Galerkin orthogonality of
wh, the continuity of a(·, ·), a standard interpolation error estimate, and (27),

∥∥uI − uh
∥∥2

0,Ω
= a

(
uI − uh,w

)
= a

(
uI − uh,w −wh

)
≤ C

∣∣uI − uh
∣∣
1,Ω

∣∣w −wh
∣∣
1,Ω

≤ C
(
|u− uI |1,Ω +

∣∣u− uh
∣∣
1,Ω

)
h
∥∥uI − uh

∥∥
0,Ω
≤ Chp+1|û|p+1,Ω̂

∥∥uI − uh
∥∥

0,Ω
,

and thus (28) holds.
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A. GRADIENT OF THE MAPPING

For convenience here we provide the expression of the gradient of the mapping, ∇γ, and that
of its inverse. The gradient of γ is given by

∇γ = 1−
t∑

τ=1

[(1− q(ητ )/ητ )1 + (q(ητ )/ητ − q′(ητ ))er̂,τ ⊗ er̂,τ ] ,

where er̂,τ := (x̂− x>,τ )/r̂τ is the unit vector in the direction of x̂− x>,τ . Since the mapping
is local to each singularity, within Bρτ (x>,τ ), we have

∇γ = 1− [(1− q(ητ )/ητ )1 + (q(ητ )/ητ − q′(ητ ))er̂,τ ⊗ er̂,τ ] ,

= q′(ητ ) er̂,τ ⊗ er̂,τ + q(ητ )/ητ eθ̂,τ ⊗ eθ̂,τ ,

from which it follows that

(∇γ)−1 =





1

q′(ητ )
er̂,τ ⊗ er̂,τ +

ητ
q(ητ )

eθ̂,τ ⊗ eθ̂,τ , in Bρτ (x>,τ ),

1, otherwise,

where eθ̂,τ is the basis vector of the θ̂-coordinate of the τ th singularity.

B. REMARKS ON THE IMPLEMENTATION

To expand on the presentation of §3.2, we let {Na}a denote the shape functions constructed
on the subdivision T h of Ω̂h such that

ûh = Naua, ŵh = Nawa,

where repeated indices imply a summation over them. Here ua and wa are the nodal values of
the displacement field and test functions over spaces of Lagrange finite elements. We remark
that the shape functions are constructed over the parametric domain; on the physical domain
they will be given by na = Na ◦ γ−1. The above implies that, if polynomial shape functions
Na are constructed over T h the corresponding shape functions na on γ(T h) may not be
polynomials. They are definitively not polynomials when the map defined by q(η) in (8) is
adopted. Figure 18 showcases the transformation of the shape functions Na to na through the
action of the map γ(x̂) = x̂2.

Further it is easy to see that

uh = ûh ◦ γ−1 = Na ◦ γ−1ua = naua,

and similarly wh = nawa.
Then (14) may be written as: find ua such that

wa · kabub = wa · fa, ∀wa,
or find U such that

KU = F

where
{K}ab = kab, {U}a = ua, {F }a = fa

and

[kab]ij =
∑

K∈T h

∫

K

∂Na
∂x̂j

[M]ikjl
∂Nb
∂x̂l

dK,

[fa]i =
∑

K∈T h

∫

K

[b̂]iNa j dK +
∑

E∈Eτ

∫

E

([t̂]i
∥∥(∇γ)−> · n

∥∥ j) ◦ p dΓ̂
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(a) A traditional set of affine shape functions constructed on a uniform discretization of the parametric
domain
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a
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(b) Basis functions on the physical domain obtained by composing the set of affine shape functions in
(a) with the mapping γ(x̂) = x̂2.

Figure 18. Constructing a traditional affine finite element space {Na}a on a uniform discretization

T h =
⋃4
i=0{[i/4, (i+ 1)/4]} of the parametric domain Ω̂ = [0, 1]. Under the mapping γ(x̂) = x̂2

results in a set of shape functions {na}a, no longer affine, on a subdivision of Ω given by γ(T h) =⋃4
i=0{[γ((i/4)), γ((i+ 1)/4)]}.

where Eτ denotes the set of element edges on ∂τΩh, [•]ab and [•]a denote the sub-tensors and
vectors, respectively, associated with the degree of freedom a and b, and [•]ij = • : ei ⊗ ej and
similarly [•]ijkl = • : ei ⊗ ej ⊗ ek ⊗ el denote the tensor components in the orthonormal basis
associated with the cartesian coordinates xi, x̂i (cf. Figure 3). The above integrals can then be
approximated over each element K using standard quadrature rules as commonly carried out
in FEM.

Effectively the only peculiarity of this approach is that the coefficients of M will depend on
space and further M may not necessarily be symmetric. This peculiarities are easily handled
in any commercial or open source finite element code that allows for user defined coefficients.
Thus, the method is easy to implement, without the need to introduce special shape functions,
additional quadrature rules, or particular mesh gradations.

C. GALERKIN FORM OF POISSON’S EQUATION OVER THE PARAMETRIC
DOMAIN

We construct here the weak form over the parametric domain of Poisson’s equation for a scalar
field, in a similar manner as presented in §3.
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Formulation in the physical domain. We consider the problem of finding u : Ω→ R such
that

∆u+ b = 0, in Ω,

u = g, on ∂dΩ,

∇u · n = t, on ∂τΩ.

Here b, g and t are smooth enough scalar fields over the domains where they are evaluated.
The weak form of this problem reads: Find u ∈ V such that

a(u, v) = F (w), ∀w ∈ W,

where

a(u,w) :=

∫

Ω

∇u · ∇w dΩ,

F (w) :=

∫

Ω

bw dΩ +

∫

∂τΩ

tw dΓ,

and

V =
{
u ∈ H1(Ω)

∣∣u = g on ∂dΩ
}
,

W =
{
w ∈ H1(Ω)

∣∣w = 0 on ∂dΩ
}
.

Weak form over the parametric domain. With V̂ = V ◦ γ and Ŵ =W ◦ γ, the
equivalent formulation given by: Find û ∈ V̂ such that

aγ(û, ŵ) = F̂ (ŵ), ∀ŵ ∈ Ŵ,

where

aγ(û, ŵ) :=

∫

Ω̂

∇û ·M · ∇ŵ dΩ̂,

F̂ (ŵ) :=

∫

Ω̂

b̂ŵ j dΩ̂ +

∫

∂τ Ω̂

t̂ŵ
∥∥(∇γ)−> · n

∥∥ j dΓ̂,

and
M = j(∇γ)−1 · (∇γ)−>.

Galerkin’s approximation over the parametric domain. Let T h denote a subdivision
of Ω̂ as stated in §3.2. Consider finite dimensional approximations of V̂ and Ŵ given by

V̂h,p =
{
ûh ∈ H1(Ω̂)

∣∣∣ ûh
∣∣
K
∈ P p (K) , ûh = Îh(g ◦ γ) on ∂dΩ̂

}
,

Ŵh,p =
{
ŵh ∈ H1(Ω̂)

∣∣∣ ŵh
∣∣
K
∈ P p (K) , ŵh = 0 on ∂dΩ̂

h
}
,

respectively. The Galerkin form of the problem statement then reads: Find ûh ∈ V̂h,p such that

aγ(ûh, ŵh) = F̂ (ŵh), ∀ŵh ∈ Ŵh,p.
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