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Abstract
Introduction: Prediction of Alzheimer’s disease (AD) progression based on baseline 
measures allows us to understand disease progression and has implications in deci-
sions concerning treatment strategy. To this end, we combine a predictive multi-task 
machine learning method (cFSGL) with a novel MR-based multivariate morphometric 
surface map of the hippocampus (mTBM) to predict future cognitive scores of 
patients.
Methods: Previous work has shown that a multi-task learning framework that per-
forms prediction of all future time points simultaneously (cFSGL) can be used to en-
code both sparsity as well as temporal smoothness. The authors showed that this 
method is able to predict cognitive outcomes of ADNI subjects using FreeSurfer-based 
baseline MRI features, MMSE score demographic information and ApoE status. Whilst 
volumetric information may hold generalized information on brain status, we hypoth-
esized that hippocampus specific information may be more useful in predictive mod-
eling of AD. To this end, we applied a multivariate tensor-based parametric surface 
analysis method (mTBM) to extract features from the hippocampal surfaces.
Results: We combined mTBM features with traditional surface features such as mid-
dle axis distance, the Jacobian determinant as well as 2 of the Jacobian principal eigen-
values to yield 7 normalized hippocampal surface maps of 300 points each. By 
combining these 7 × 300 = 2100 features together with the previous ~350 features, 
we illustrate how this type of sparsifying method can be applied to an entire surface 
map of the hippocampus that yields a feature space that is 2 orders of magnitude 
larger than what was previously attempted.
Conclusions: By combining the power of the cFSGL multi-task machine learning 
framework with the addition of AD sensitive mTBM feature maps of the hippocampus 
surface, we are able to improve the predictive performance of ADAS cognitive scores 
6, 12, 24, 36 and 48 months from baseline.
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1  | INTRODUCTION

Recent work in psychological testing (Caselli et al., 2013), genetic 
studies (Elias-Sonnenschein et al., 2013), magnetic resonance (MR) 
imaging (Teipel et al., 2013), positron emission tomography (PET) 
imaging (Becker et al., 2013), cerebral spinal fluid (CSF) measurements 
(Blennow & Zetterberg, 2013), cardiovascular status (Hajjar, Brown, 
Mack, & Chui, 2013) and others have yielded tremendous amounts 
of diagnostic data for diagnosing and staging dementias, especially 
Alzheimer’s disease (AD). Moreover, many of these studies now also 
include longitudinal information (Caselli et al., 2013; Mueller et al., 
2005). This has led to a problem often referred to as the ‘curse of 
dimensionality’, where the size (number of dimensions) of the data-
set makes it difficult to perform numerical analyses on the data. This 
in turn makes it increasingly difficult to draw consistent conclusions 
from the dataset. Traditional approaches to dimension reduction elim-
inates variables / dimensions based on clinical assumptions and allows 
us to test specific hypothesis about the disease model. However, it 
does not lend itself to discovering new correlations or allow for all 
inclusive models that are consistent across all dimensions. These 
problems become even more important when trying to improve pre-
dictions using machine learning techniques. This is mainly because at 
a point the predictive power of the model ceases to increase by just 
adding more information or dimensions. The question is then about 
how to select the “correct” features to maximize predictive power. 
Zhou, Liu, Narayan, Ye, and Ye (2013) outlines a method that simulta-
neously enforces low dimensionality through sparsity of weights and 
temporal smoothness of the predicted behavioral scores at 6, 12, 24, 
36 and 48 months. This paper leverages this method, built specifically 
for progressive disease models, such as AD, together with multivari-
ate tensor-based morphometric (mTBM) features (Wang, Yuan, et al., 
2010) of the hippocampus to predict AD progression up to 48 months 
from the baseline MRI measurement. The goal is to evaluate the pre-
dictive power of mTBM against those of cortical thickness and other 
FreeSurfer-based features, demographic information (sex and age) as 
well as genetic information (ApoE-ε4 Copies).

Alzheimer’s Disease is characterized by non-focal deterioration of 
brain tissue and many attempts have been made at imaging this phe-
nomenon. This includes the use multiple modalities including CT, PET 
and MRI. PET has been a powerful technique for imaging AD, espe-
cially with the development of the Pittsburgh Compound B (PiB) tracer 
that enhances beta-amyloid plaques (Klunk et al., 2004). However, 
MRI is more commonly used because of the lack of ionizing radiation 
and good white matter / grey matter tissue contrast. MR also allows 
for multiple image contrasts to be generated in a single session. T1-
weighted high resolution structural images have revealed widespread 
atrophy of the both white matter and gray matter tissues. In particular, 
the deep gray matter structures – particularly, the hippocampus - cor-
relate strongly with AD progression (Barber, Ballard, McKeith, Gholkar, 
& O’ Brien, 2000; Bozzali, Franceschi, Falini, & Pontesilli, 2001; Jack, 
Shiung, Gunter, & O’ Brien, 2004; Jack et al., 1999; Killiany, Hyman, 
Gomez-Isla, & Moss, 2002; Petersen, Jack, Xu, Waring, & O’ Brien, 
2000; deToledo-Morrell et al., 2004; Xu, Jack, O’ Brien, Kokmen, & 

Smith, 2000). Similarly, diffusion weighted imaging has revealed dis-
ruption of a number of crucial white matter tracts associated with the 
limbic system (Bozzali, Falini, & Franceschi, 2002; Bozzali et al., 2001; 
Choi, Lim, & Monteiro, 2005; Chua, Wen, & Slavin, 2008; Clerx, Visser, 
Verhey, & Aalten, 2012; Concha, Gross, & Beaulieu, 2005; Douaud 
et al., 2011; Frisoni, Fox, Jack, & Scheltens, 2010; Jack, Bernstein, 
& Fox, 2008; Jahng et al., 2011; Lo, Wang, Chou, & Wang, 2010; 
Nakata et al., 2009; Rose, Chen, Chalk, & Zelaya, 2000; Sexton, Kalu, 
Filippini, & Mackay, 2011; Takahashi, Yonezawa, Takahashi, & Kudo, 
2002; Yoshiura, Mihara, Ogomori, & Tanaka, 2002; Zhang, Schuff, 
Ching, & Tosun, 2011; Zhang, Schuff, Du, Rosen, & Kramer, 2009; 
Zhang, Schuff, Jahng, Bayne, & Mori, 2007). Functional connectivity 
MRI has also shown decreases in the default mode as well as other 
brain networks. Clinically, the current AD diagnosis criteria include 
the use of (1) MRI, (2) PET as well as (3) beta-amyloid load within the 
cerebral spinal fluid (McKhann, Knopman, & Chertkow, 2011; Ray, 
Britschgi, Herbert, & Takeda-Uchimura, 2007). To measure severity of 
dementia, tests such as MMSE and CDR are often used (Tan:2011vt, 
OBryant:2008bk, Morris:1997vu).

As MR imaging has become more ubiquitous as a research and 
clinical tool, there has been an effort in developing image-based 
features that are increasingly sensitive to AD progression as well as 
the conversion from Mildly Cognitively Impaired (MCI) to AD. Early 
attempts used volumetric measurements of tissue types (WM or GM) 
and then the volume of specific structures such as the hippocampus 
(De Jong, Van der Hiele, Veer, & Houwing, 2008; Fox, Warrington, 
& Freeborough, 1996; Frisoni et al., 2010; Jack et al., 2008; Laakso, 
Partanen, Riekkinen, & Lehtovirta, 1996; Ridha, Barnes, Bartlett, & 
Godbolt, 2006; Scahill, Schott, & Stevens, 2002; Schuff, Woerner, 
Boreta, Kornfield, & Shaw, 2009). Attempts were also made at quan-
tifying the degree of deformation associated with the atrophying 
demented brain using tensor-based morphometric (TBM) techniques 
(Baron, Chetelat, Desgranges, & Perchey, 2001; Grossman, McMillan, 
Moore, Ding, & Glosser, 2004; Hirata, Matsuda, Nemoto, Ohnishi, & 
Hirao, 2005; Hua, Leow, Parikshak, Lee, & Chiang, 2008; Hua et al., 
2009; Hua et al., 2008; Karas, Burton, Rombouts, & Van Schijndel, 
2003; Lerch, Pruessner, Zijdenbos, & Hampel, 2005; Oishi et al., 2009; 
Salat, Buckner, Snyder, & Greve, 2004; Teipel, Born, Ewers, Bokde, & 
Reiser, 2007; Thompson, Hayashi, Sowell, & Gogtay, 2004). In addition 
to volumetric deformations, (Shi, Thompson, et al. 2013) applied multi-
variate TBM (mTBM) to the hippocampus surface and showed marked 
improvement in sensitivity of detecting AD progression.

At the same time, the machine learning community recognized 
the utility in predicting disease progression as a means of character-
izing AD disease progression. It allows for an inclusive look at how 
the different diagnostic indicators account for observed changes. 
However, researchers were faced with finding selecting meaningful 
features to be used as well as how to incorporate data with multiple 
time points (Davatzikos, Fan, Wu, Shen, & Resnick, 2008; Klöppel, 
Stonnington, Chu, & Draganski, 2008; Lao, Shen, Xue, Karacali, 
& Resnick, 2004; Li, Shi, Pu, Li, & Jiang, 2007; Magnin, Mesrob, & 
Kinkingnéhun, 2009; Morra, Tu, Apostolova, & Green, 2008; Shankle, 
Mani, Pazzani, & Smyth, 1997; Stonnington, Chu, Klöppel, & Jack, 
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2010; Sun, van Erp, Thompson, & Bearden, 2009; Trambaiolli, Lorena, 
& Fraga, 2011; Vemuri, Gunter, Senjem, & Whitwell, 2008; Ye, Wu, 
Li, & Chen, 2011; Zhang & Shen, 2012; Zhang, Wang, Zhou, Yuan, & 
Shen, 2011). (Zhou et al., 2013) tackled this problem by using a con-
vex fused sparse group lasso (cFSGL) framework that incorporated 
temporal smoothness to predict disease progression as measured by 
MMSE and CDR. Generic volumetric and cortical thickness generated 
by freesurfer was used as imaging features in addition to a host of 
other clinical descriptors.

However, combining cFSGL with a more AD specific / sensitive 
features such as surface deformations fields of the hippocampus might 
improve the predictive power of the algorithm significantly. To this 
end, we augmented the generic FreeSurfer-based image features with 
novel mTBM features of the hippocampus and other surface deforma-
tion field based features (see Table 1 for features), which significantly 
increased the predictive power of the cFSGL technique.

2  | METHODS

2.1 | ADNI data

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). ADNI was launched in 2003 by the National Institute 
on Aging (NIA), the National Institute of Biomedical Imaging and 
Bioengineering (NIBIB), the Food and Drug Administration (FDA), 
private pharmaceutical companies and non-profit organizations, as a 
$60 million, 5-year public-  private partnership. The primary goal of 
ADNI has been to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). Determination of sensitive and specific 
markers of very early AD progression is intended to aid researchers 
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, 
MD, VA Medical Center and University of California – San Francisco. 
ADNI is the result of efforts of many co- investigators from a broad 
range of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the U.S. and 
Canada. The initial goal of ADNI was to recruit 800 subjects but 
ADNI has been followed by ADNI-GO and ADNI-2. ADNI-GO or 
“Grand Challenges” and ADNI-2 supplements ADNI by trying to 
identify patients in the pre-dementia or early mildly cognitively 
impaired (eMCI) phase. To date these three protocols have recruited 
over 1500 adults, ages 55 to 90, to participate in the research, con-
sisting of cognitively normal older individuals, people with early 
or late MCI, and people with early AD. The follow up duration of 
each group is specified in the protocols for ADNI-1, ADNI-2 and 
ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO 
had the option to be followed in ADNI-2. For up-to-date informa-
tion, see www.adni-info.org.

For our experiment we used 616 subjects from ADNI-1 where we 
had 606 subjects that have behavioral scores for M06, 606 for M12, 
533 for M24, 364 for M36 and 97 for M48. Zhou et al. (2013) meth-
ods allows us to train prediction using data that have missing time 
points, so subjects that has missing time points can be used. 90% of 
the data was used for training and 10% used for testing. The reported 
results are for 20 different selection splits of training and testing. More 
information about the demographics and patient selection is available 
in (Zhou et al., 2013).

2.2 | Freesurfer MRI features

The MRI image analysis software Freesurfer (Fischl, 2012) was used to 
extract 305 MRI features based on cortical reconstruction and volu-
metric segmentations. The features can be group into 5 categories: 
average cortical thickness, standard deviation in cortical thickness, the 
volumes of cortical parcellations (based on regions of interest auto-
matically segmented in the cortex), the volumes of specific white mat-
ter parcellations, and the total surface area of the cortex. This process 
was performed by the ADNI team at UCSF under the ADNI harmo-
nized MRI processing protocols as outlined on their website (http://
adni.loni.usc.edu/methods/mri-analysis/). See Table 1 for a more 
complete feature list and breakdown.

2.3 | Hippocampus surface computation

The details of the entire methodology of extracting mTBM fea-
tures from surface registered hippocampal maps is outlined in Shi, 
Thompson, et al. (2013), we have outlined the key steps of the method 

TABLE  1 List of original features from (Zhou et al., 2013) and 
new surface features (downsized by 10) computed from the 
hippocampus used to predict outcomes at 6, 12, 24, 36 and 
48 months

No of features

Original features

Sex 1

309

Age 1

ApoE 1

Baseline MMSE 1

MRI features: (average cortical thickness, 
standard deviation in cortical thickness, the 
volumes of cortical parcellations (based on 
regions of interest automatically segmented in 
the cortex), the volumes of specific white 
matter parcellations, and the total surface area 
of the cortex.

305

Hippocampal surface features

Mid Axis Distance map 300

2100
mTBM feature maps (3 tensor values × 300 
points)

900

Jacobian magnitude map 300

Jacobian principal eigen values (2 × 300 points) 600

http://www.adni-info.org
http://adni.loni.usc.edu/methods/mri-analysis/
http://adni.loni.usc.edu/methods/mri-analysis/
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F IGURE  1 Example of Feature Maps of 
the Hippocampus for 1 subject
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in this paper. FSL’s (Jenkinson, Beckmann, & Behrens, 2012) auto-
mated segmentation program FIRST was used to segment the MRI 
volumes to extract binary volumes for the hippocampus. The sur-
faces were then computed by running a topology-preserving level set 
method (Han, Xu, & Prince, 2003) to ensure the segmentation was 
topological correct before tessellation via a marching cubes algorithm 
(Lorensen & Cline, 1987).

2.4 | Conformal representation and surface 
registration of the hippocampus

In order for discretized imaging data to be used in group analysis and 
prediction tasks, they must be transformed into a common space that 
allows for one-to-one correspondence across subjects. Examples of 
the mean hippocampal common space can be seen in Figure 1. In 
our case, we would like to use measurements on a discretized sur-
face represented my vertices in ℝ3 and edges between the vertices. 
In this case, we first conformally mapped the hippocampal surface 
onto a rectangular plannar surface using holomorphic 1-forms. The 
surface conformal representation is then computed using the local 
conformal factor as well as mean curvature. The dynamic range of 
the conformal representation is then linearly scaled to form the fea-
ture image of the surface. The feature image aligned with a template 
image via fluid registration in a curvilinear coordinate system that 
compensates for distortions due to the conformal parameteriza-
tion (Shi, Thompson, et al. 2013). There are numerous advantages 
of using conformal representation with fluid registration to align 
the hippocampal surfaces: (1) the entire transform is diffeomor-
phic and therefore has diffeomorphic shape correspondences that 
are smooth and one-to-one. (2) The transform is inverse consist-
ent and therefore more robust than unidirectional transformations 
(Leow et al., 2005). (3) Because conformal parametrization induces 
a simple Riemannian metric, the Navier-Stokes equation in the fluid 
registration can be easily adjusted for area distortion (Wang, Chiang, 
& Thompson, 2005a,b).

2.5 | Multivariate tensor-based morphometry 
(mTBM)

After automatically segmenting hippocampus with FSL (Jenkinson 
et al., 2012) from brain MR images, we build parametric meshes to 
model hippocampal shapes. High-order correspondences between 
hippocampal surfaces were enforced across subjects with a novel 
inverse consistent surface fluid registration method. Multivariate 
statistics consisting of multivariate tensor-based morphometry 
(mTBM) and radial distance were computed for surface deforma-
tion analysis (Shi, Thompson, et al. 2013; Wang, Yuan, et al., 2010). 
Multivariate tensor-based morphometric (mTBM) analysis has been 
used as a sensitive method of comparing deformation fields of dif-
ferent subjects with the aim of discovering group-wise differences 
(Lepore et al., 2008; Wang, Zhang, et al., 2010). mTBM generates 
Riemannian manifolds from the full deformation fields that map 
each subject to the template space and statistics are computed on 

these manifolds. Specifically, compared to univariate TBM which 
uses the Jacobian of the transformation that mainly describes the 
volumetric changes, mTBM uses the full deformation information 
by applying a manifold version of Hotelling’s test to Riemannian 
manifolds in log-euclidean space. The idea is to be able to describe 
higher order transformations with a single metric instead of using 
derived metrics from the Jacobian (see Figure 1 for examples of 
mTBM features).

Shi et al. 2013 showed that a surface derived from a reasonable 
segmentation using FSL is sensitive enough to detect group-wise dif-
ferences in the mTBM features. Moreover, mTBM is also more statis-
tically sensitive with better power as shown by false discovery rates 
(Lepore et al., 2008). In this work, we’ve added these sensitive fea-
tures to the existing MR-based surface area and volumetric features 
to boost AD prediction accuracy.

2.6 | Convex fused sparse group lasso

Zhou et al. (2013) proposed a powerful multi-tasked learning tech-
nique that incorporates sparsity as well as temporal smoothing for 
modeling a progressive disease model. In their formulation, each 
tasked can be though of a single forward predictor from baseline 
measurement to a measurement at a certain future time point. In 
their case, they used the ADNI dataset and predicted ADAS cognitive 
scores 6 months after baseline (M06), 12 months after baseline (M12), 
24 months after baseline (M24), 36 months after baseline (M36) and 
48 months after baseline (M48). In our study we aim to use the same 
ADNI dataset but also incorporate 7 hippocampus surface feature 
maps of 300 points (2100 features total) and compare it to the predic-
tive performance of using only simple regional volumes and surface 
areas used (305 features total) in their study.

The cFSGL method that we use can be considered a multi-task 
regression problem with t time points and from n subjects each with d 
features, where 

{

x1, x2,… , xn
}

 represents each of the d input features 

TABLE  2 Comparison of model performance in predicting ADA 
Cognitive Score with and without mTBM features. The base set of 
features used were MRI information (305 features), Sex, Gender, 
Age, ApoE and baseline MMSE score. 7 Hippocampus feature maps 
were used: Mid Distance, 3 lambda values of the mTBM, magnitude 
of the Jacobian map and the first two eigenvalues of the Jacobian 
(See Table 1 and Figure 1 for more details)

Without hippocampal 
features

With 
hippocampal 
features

nMSE 0.345 ± 0.075 0.249 ± 0.039

wR 0.828 ± 0.036 0.873 ± 0.022

M06 rMSE 5.259 ± 0.872 4.534 ± 0.883

M12 rMSE 5.653 ± 1.143 4.989 ± 1.134

M24 rMSE 5.532 ± 1.029 4.885 ± 1.094

M36 rMSE 4.777 ± 0.833 4.055 ± 1.024

M48 rMSE 4.367 ± 1.179 3.164 ± 1.091
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for each subject at baseline (i.e. xi∈ℝ
d ). Similarly, 

{

y1, y2,… , yn
}

 rep-
resents the target cognitive scores for each subject at T time points 
(i.e. yi∈ℝ

t). For a single subject (n), each task can be seen as a pro-
jection of MR / demographic / genetic baseline measurements at 
t = 0 represented as xn to a future cognitive score measurement at 
time t = t1 (e.g. at 48 months) given by the appropriate row in vector 
yn. We can extend this formulation to a multi-task one by performing 
projections of all time points simultaneously. In other words, each set 
of baseline measurements for a single subject at t = 0 given by x1 (ℝd 
with d features) is projected to a vector (ℝt with T time points) given 
by y1. The entire population-based mapping can be summarized as a 
linear operation using matrices X and Y. X and Y are formed by arrang-
ing the input and output patient feature space row-wise, each row 
being xn or yn, (i.e. X=

[

x1, x2,… , xn
]T
,Y=

[

y1, y2,… , yn
]T) and yield a 

X∈ℝ
n×d matrix and a Y∈ℝ

n×t matrix. Since this is a linear model, a 
set of weights W=

[

w1,w2,… ,wt
]T

∈ℝ
d×t is trained to map xn to yn 

or X to Y.

To achieve a set of weights that encodes both sparsity and tem-
poral smoothness, the following cost function is minimized during 
training:

where ||W1|| is the L1-norm or lasso penalty that encodes for sparsity, 
��W2,1��=

∑d

i=1

�

∑t

j=1
W

2

ij
 is the group Lasso penalty that encodes for 

temporal grouping of features.
||RW

T
||1 is the fused lasso penalty as defined by R = HT, where:

this term encodes for temporal smoothness (Zhou et al., 2013).

3  | RESULTS

Predictions using hippocampus-based feature maps outperform pre-
diction without using feature maps as shown by quantitative meas-
ures such as nMSE, wR and rMSE. This was true across the board at all 
time points (see Table 2 and Figure 2). Our results show that incorpo-
rating large feature maps into sparsifying prediction tasks is not only 
possible but may improve results of the prediction.

The results shown are from 2 simulation experiments where 
data from ADNI was used to both train and test the cFSGL model. 
Experiment 1 uses demographic information (age and gender), 
FreeSurfer volumes and cortical thicknesses (326 features), the num-
ber of ApoE- ε4 alleles as well as a baseline MMSE score as features 
used in the model. Experiment 2 added the hippocampus features 
from each of the vertices of the hippocampus segmentation using 
FreeSurfer. The vertex information from the hippocampus was scaled 

down by a factor 10 using bi-cubic interpolation to yield a total of 
2100 features. 90 percent of the 624 subjects were used for training 
and the remaining 10 percent were used for testing. The results shown 
are from the 10 percent of our dataset allocated for testing. We calcu-
lated the root mean square error:

as well as a the correlation coefficient between the pairs of predicted 
values and actual values at each of the time points.

Table 2 shows how predictive performance has improved by incor-
porating hippocampus surface features into our dataset. There were 
improvements in predicting behavior outcomes at every time point. 
Moreover, by looking at the weights in predicting the behavioral out-
comes, we may able to see which parts of the hippocampus feature 
maps are often used in predicting behavior. Figures 3 and 4 show that 
the raw prediction results from our multiple cross validation runs are 
reasonably distributed. These results were then used to calculate the 
different predictive performance measures such as Mean Square Error.

4  | DISCUSSION AND CONCLUSIONS

By merging fused multi-task learning that encodes temporal smooth-
ing (Zhou et al., 2013) together with AD sensitive mTBM maps of the 
parametric hippocampus surface (Shi, Thompson, et al. 2013), we 
were able to get significant gains in future ADAS cognitive score pre-
diction. These results are some of the highest performing predictions 
based on baseline data only and is consistent with our survey of other 
comparable studies (Zhou et al., 2013). There are two main findings 
in our work. First, we demonstrate surface mTBM when combined 
with other features, may significantly boost the statistical powers. 
This discovery is in line with many of our prior studies (Wang et al., 
2011; Shi, Wang, et al., 2013; Wang et al., 2013; Shi et al., 2014). The 
newly combined surface statistics practically encodes a great deal 
of neighboring intrinsic geometry information that would otherwise 

⎡
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F IGURE  2 Bar Chart of the rMSE of predictions with and 
without hippocampal features by time points (6 months, 12 months, 
24 months, 36 months, 48 months)
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be inaccessible, or overlooked. Second, cFSGL is an effective way 
to overcome the curse of the dimension with it’s sparsity constraint. 
With proper tuning of parameters to match the features size, the spar-
sity constraint was also able to prevent overfitting, which tends to 
occur when using large number of features. Our work shed some light 
to future work to predict longitudinal neuropsychological changes and 
may help solve this challenging research problem.

One factor not addressed in this work is the effect of percentage 
of data used for training and testing. Previous work (Zhou et al., 2013) 
has shown that although there would be a decrease in performance 
measured with a smaller training set, the trends and relative perfor-
mance remains comparable. We have also treated the parametric sur-
face data, patient demographics and MRI volumetric information as 

one continuous information vector. It would be interesting to see if 
adding neighborhood information based on the location on the para-
metric surface would give us smoother and more realistic weights on 
the parametric surface and perhaps even better or more consistent 
results.

The current study also serves as an illustration of how machine 
learning methods can be used with whole parametric surfaces or even 
volumetric volumes such as in fMRI studies. However, as the num-
ber of voxels and vertex points increase, we again run into problems 
with the curse of dimensionality. To counter such problems, sparsify-
ing penalties such as in cFSGL can be employed. However, without a 
reasonable starting weight, finding a reasonable solution that has the 
required sparsity can get computational intensive. One solution that 

F IGURE  3 Prediction of ADAS Cog Score vs. Actual ADAS Cog Score without using mTBM features and only with MRI volumetric 
information, Age, Sex, Gender, ApoE and baseline MMSE score at M06 (6 months), M12 (12 months), M24 (24 months), M36 (36 months), M48 
(48 months)

−20 0 20 40 60
−20

0

20

40

60

Actual ADAS Cog

P
re

di
ct

ed
 A

D
A

S
 C

og
M06

−20 0 20 40 60
−20

0

20

40

60

Actual ADAS Cog

P
re

di
ct

ed
 A

D
A

S
 C

og

M12

−20 0 20 40 60
−20

0

20

40

60

Actual ADAS Cog

P
re

di
ct

ed
 A

D
A

S
 C

og

M24

−20 0 20 40 60
−20

0

20

40

60

Actual ADAS Cog

P
re

di
ct

ed
 A

D
A

S
 C

og

M36

−20 0 20 40 60
−20

0

20

40

60

Actual ADAS Cog

P
re

di
ct

ed
 A

D
A

S
 C

og

M48



8 of 11  |     TSAO et al.

we intend to explore is the use of stability selection in seeding the 
initial weights for the algorithm in a hierarchical approach to learning. 
We believe that this a reasonable way of leveraging prior informa-
tion whilst allowing the algorithm to impose explore ensure temporal 
smoothness and sparsity.

As this is a model of an epidemiological system, we cannot ignore 
the investigator’s selection of reasonable features. Moreover, the per-
formance of the system is as interesting as the weights that yield the 
predictions.

4.1 | Future Work

Our future work includes understanding the behavior of the weights 
across the parametric surface space as well as in time. Previous work 
has shown that stability selection may be a good fit for analyzing the 

feature weights on the model and may yield more information about 
the relationship between the deformation of hippocampal subfields 
and other clinical indicators during AD progression. Moreover, addi-
tional work can be done to investigate the specifics of how the addi-
tion of the large number of mTBM features has contributed to the 
final prediction results as well as the computational burden versus 
reward of the additional features.
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