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Abstract

Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov

process models often used to relate cancer incidence to biological mechanism. Identifiability

analysis determines what model parameter combinations can, theoretically, be estimated from

given data. We use a systematic approach, based on differential algebra methods traditionally

used for deterministic ODE models, to determine identifiable combinations for a generalized

subclass of MSCE models with any number of pre-initation stages and one clonal expansion.

Additionally, we determine the identifiable combinations of the generalized MSCE model with

up to four clonal expansion stages, and conjecture the results for any number of clonal expansion

stages. The results improve upon previous work in a number of ways and provide a framework

to find the identifiable combinations for further variations on the MSCE models. Finally, our

approach, which takes advantage of the Kolmogorov backward equations for the probability

generating functions of the Markov process, demonstrates that identifiability methods used in

engineering and mathematics for systems of ODES can be applied to continuous-time Markov

processes.
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1 Introduction

The two-stage clonal expansion (TSCE) model is a continuous-time Markov process proposed by

Moolgavkar, Venzon, and Knudson [1, 2] to capture the initiation–promotion–progression hypoth-

esis of carcinogenesis, wherein normal cells undergo a genetic transformation that causes clonal

expansion, followed by progression to malignancy. The initiation–promotion–progression paradigm

allows one to consider carcinogenic factors as initiators or promoters given their mechanism of ac-

tion and their differential effects at different stages of life. The TSCE model formulation may be

extended to three or more stages or other more complex variations, which are collectively called

multistage clonal expansion (MSCE) models. Parameter estimation with multistage clonal expan-

sion models has proven a valuable approach, and MSCE models have been successfully used to

analyze and fit data from pancreatic, colorectal, esophageal, and oral cancer, among others [3–16].

Consideration of identifiability is the first step in estimation of model parameters from data. A

model is said to be identifiable if all model parameters may be uniquely determined from given

observed data [17–19]. Identifiability is a key step in ensuring successful parameter estimation and

is often considered in two forms: structural identifiability, which considers the best-case scenario

of noise-free, continuously measured data in order to uncover identifiability issues inherent in the

model structure, and practical identifiability, which addresses issues such as noise, bias, and fre-

quency of sampling [20]. While the best-case scenario is unrealistic, structural identifiability is

necessary for practical identifiability and can often lead to useful insights for model reparameteri-

zation and data collection strategies.

For deterministic models, one often frames the identifiability problem as testing the injectivity of

the map from the parameters to the output trajectories (implicitly defined by the corresponding

ordinary differential equations (ODE) system) [21]. There are a wide range of approaches to

answering questions of identifiability for such systems, including Laplace transformation, Taylor

series, similarity transformation, and differential algebra [19, 21–28].

The identifiability of certain individual clonal expansion models, which are stochastic rather than

deterministic, has been addressed primarily on a case-by-case basis and in no systematic way.

Heidenreich et al. [29] determined the identifiability of the TSCE model with constant and piece-

wise-constant parameters when fitted to incidence data through derivation of closed form solutions

of the corresponding hazard function. Luebeck and Moolgavkar [5] similarly analyzed the identi-

fiability of MSCE models with multiple pre-initiation stages and constant parameters. Little et

al. [30] developed bounds for the number of identifiable combinations for a class of stochastic can-

cer models with genomic instability—which includes MSCE models—through observing parameter

combinations in the form of the cancer hazard in the model and numerical evaluations of the Fisher

information matrix.
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Here, we present a derivation of the identifiability of a generalized subclass of MSCE models with

multiple pre-initiation steps when fitting to age-specific cancer incidence data, as is typical. We

use a differential algebra approach that was developed for deterministic ODE models and which

has not previously been brought to bear on this class of models [21, 26, 27, 31, 32]. We do this

by leveraging the Kolmogorov backward equations for continuous-time Markov processes, which

can be reduced to a system of differential equations. This approach has many advantages: it is

analytical and systematic, returns explicit identifiable combinations rather than bounds, and is

a global result over the parameter space. We additionally demonstrate the identifiability of the

fully general case with multiple clonal expansions for models with up to four clonal expansion

stages and conjecture that our framework could be extended to any number of stages. Our work

demonstrates that approaches for identifiability in deterministic dynamical systems can be used in

Markov branching processes and, more generally, continuous-time Markov processes.

2 Methods

2.1 Derivation of the MSCE model

Although the mathematics of multistage clonal expansion models has been detailed elsewhere [1–

3, 11, 29, 33–39], we provide a sketch of the derivation in order to provide a basis for using the

differential algebra method of identifiability with other continuous-time Markov processes. The

n-stage clonal expansion model (Figure 1a) is characterized by a set of conditional probability

generating functions, where Yk(t), 1 ≤ k ≤ n− 2, and Z(t) are as in Table I, and τ is a fixed time

such that 0 ≤ τ ≤ t. If we define

Ω(t) = y
Y1(t)
1 . . . y

Yn−1(t)
n−1 zZ(t), (1)

for some dummy variables y1, . . . , yn−1, and z, then the conditional probability generation functions

are as follows:
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Table I: Variables and parameters of the generalized multistage clonal expansion (MSCE) model

Variables

X(t) Number of normal cells, treated deterministically or set to be constant X(t) = X

Yk(t) Number of cells in initiated stage k

Z(t) Number of malignant cells

Parameters

ν(t) Per cell mutation rate for normal cells (asymmetric division)

µ0(t) := ν(t)X(t), a notational convenience

µk(t) Mutation rate at the kth stage (asymmetric division)

αk(t) Clonal expansion rate at the kth stage (symmetric division)

βk(t) Cell death rate at the kth stage

Ψ(y1, . . . , yn−1, z, τ, t) = E[Ω(t)|Y1(τ) = 0, . . . , Yn−1(τ) = 0, Z(τ) = 0],

Φ1(y1, . . . , yn−1, z, τ, t) = E[Ω(t)|Y1(τ) = 1, Y2(τ) = 0, . . . , Yn−1(τ) = 0, Z(τ) = 0],

...

Φi(y1, . . . , yn−1, z, τ, t) = E[Ω(t)|Y1(τ) = 0, . . . , Yi(τ) = 1, Yi+1(τ) = 0, . . . Yn−1(τ) = 0, Z(τ) = 0],

...

Φn−1(y1, . . . , yn−1, z, τ, t) = E[Ω(t)|Y1(τ) = 0, . . . , Yn−1(τ) = 1, Z(τ) = 0],

Θ(y1, . . . , yn−1, z, τ, t) = E[Ω(t)|Y1(τ) = 0, . . . , Yn−1(τ) = 0, Z(τ) = 1].

(2)

These probability functions satisfy the Kolmogorov backward equations. Here, we assume that the

parameters, which are listed in Table I, are constant in time (age). These equations are

∂

∂τ
Ψ = µ0Ψ(1− Φ1),

∂

∂τ
Φ1 = (α1 + β1 + µ1)Φ1 − β1 − α1Φ

2
1 − µ1Φ1Φ2,

...

∂

∂τ
Φn−2 = (αn−2 + βn−2 + µn−2)Φn−2 − βn−2 − αn−2Φ

2
n−2 − µn−2Φn−2Φn−1,

∂

∂τ
Φn−1 = (αn−1 + βn−1 + µn−1)Φn−1 − βn−1 − αn−1Φ

2
n−1,

∂

∂τ
Θ = 0

(3)

with initial conditions
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Ψ(y1, . . . , yn−1, z, t, t) = 1,

Φ1(y1, . . . , yn−1, z, t, t) = y1,

...

Φn−1(y1, . . . , yn−1, z, t, t) = yn−1,

Θ(y1, . . . , yn−1, z, t, t) = z.

(4)

The usual data in this context are age-specific incidence curves (e.g. as are available in the

Surveillance, Epidemiology and End Results (SEER) cancer registries). The age-specific incidence

curve corresponds to a model hazard. The hazard and survival contain equivalent information

(h(t) = − d
dt logS(t), S(0) = 1, h(0) = 0), so, for simplicity of analysis, we consider the survival to

be known. For this model, the survival can be related to Ψ in the following way:

S(t) =
∑

(i1,...,in−1,0)

P [Y1(t) = i1, . . . , Yn−1(t) = in−1, Z(t) = 0|Y1(0) = 0, . . . , Yn−1(0) = 0, Z(0) = 0],

=
∑

(i1,...,in−1,j)

P [Y1(t) = i1, . . . , Yn−1(t) = in−1, Z(t) = j|Y1(0) = 0, . . . , Yn−1(0) = 0, Z(0) = 0]1i1 · · · 1in−10j ,

= Ψ(y1 = 1, . . . , yn−1 = 1, z = 0, τ = 0, t = t).

(5)

Let s = t− τ and define x(s) = Ψ(1, . . . , 1, 1, t− s, t), x1(s) = Φ1(1, . . . , 1, 1, t− s, t), . . . , xn−1(s) =

Φn−1(1, . . . , 1, 1, t− s, t). Then x(t) = S(t). Let ẋk denote derivative of xk with respect to s. Then

the following set of differential equations, 1 ≤ k ≤ n− 2, governs the survival:

ẋ = −µ0x(1− x1),

ẋk = −(αk + βk + µk)xk + βk + αkx
2
k + µkxkxk+1,

ẋn−1 = −(αn−1 + βn−1 + µn−1)xn−1 + βn−1 + αn−1x
2
n−1,

(6)

with initial conditions x(0) = 1, xk(0) = 1, and xn−1(0) = 1.

2.2 Differential algebra approach to identifiability

As noted earlier, structural identifiability focuses on examining the inherent, structural estimation

properties of a given model and data, assuming a best-case scenario in which the model output (i.e.
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the observed variable(s)) is perfectly observed and the model is correctly specified. While this is

unrealistic for real data, structural identifiability is a necessary condition for practical estimation

from real-world data that many times goes unchecked, and in fact many mathematical models used

in practice turn out to be structurally unidentifiable. Structural identifiability allows us to resolve

these issues and can help in designing data collection or estimation strategies.

Here we give an overview of structural identifiability definitions and the differential algebra approach

for deterministic dynamical systems. For more details, the reader is referred to Saccomani et al. [21]

and Audoly et al. [26]. For simplicity, here we consider the case where we have only one measured

variable v and one input function u, although the same definitions and approach can be used

for multiple inputs and outputs as well. Consider a vector of states x(t) (unobserved), vector of

parameters to be estimated ρ, and observed (known) input u(t) and output v(t) in the ODE model

ẋ(t) = f(x(t), u(t),ρ),

v(t) = g(x(t),ρ).
(7)

Structural identifiability analysis addresses the following question: given the model, states x, known

input u, and known output v, is it possible to uniquely identify the model parameters ρ? This can

be framed as an injectivity question: is the map (implicitly defined by f and g) from parameter

values (ρ) to output trajectories (v) injective? [21]. Structural identifiability is a global property,

but, because there may be some degenerate parameters or initial conditions for which an otherwise

identifiable model may be unidentifiable (e.g. if all initial conditions or parameters are zero), it is

typically defined almost everywhere over parameter and initial-condition space.

Definition 1. Parameter ρi in the model given in Eq. (7) is uniquely structurally identifiable if,

for almost all values ρ∗i and initial conditions, the observation of an output trajectory (v(t) = v∗(t))

uniquely determines the parameter value ρi (ρi = ρ∗i ), i.e. if only one value of ρi could have resulted

in the observed output.

Definition 2. The model given in Eq. (7) is structurally identifiable if each ρi is structurally

identifiable.

If a model is not structurally identifiable, it is said to be unidentifiable, and there exists a set of

identifiable combinations of parameters that represents the parametric information available in the

data (except in degenerate cases where the model is reducible or has insensitive parameters). Such

a set is not unique; any set of combinations that generate the same field is an equivalent set of

identifiable combinations, e.g. {ab, c/b} and {ab, ac} are equivalent sets of identifiable combinations.

We must emphasize that identifiability is an assessment that is dependent on both what quantities

are observed (i.e. the data u(t) and v(t)) and on the parameterization of the model. A model is

unidentifiable if even one parameter cannot be uniquely determined from the available data. An
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unidentifiable model can sometimes be rendered identifiable by reparameterization (i.e. in terms

of identifiable combinations) or by changing what data are measured.

Differential algebra offers one approach for evaluating the structural identifiability of rational-

function differential-equation models. Technical details of the differential algebra approach to

identifiability may be found elsewhere [21, 32], but this method is built on the idea of treating the

differential equations as elements of a differential polynomial ring, that is, a polynomial ring in

the variables and their derivatives, with an additional derivative operation. Once framed in this

algebraic perspective, reduction techniques such as characteristic sets or Gröbner bases can be used

to reduce the model to a form in which the identifiability properties can be determined, called the

input–output equation [26, 40].

The input–output equation is central to the differential algebra technique [41]. It is a monic

differential polynomial only in terms of u and v, their derivatives, and the parameters ρ. In the case

of multiple outputs, there will be as many of these monic differential polynomials—input–output

equations—as there are observed output variables. The solutions of the input–output equation

are precisely the possible input-output pairs for the system; in other words, the input–output

equation is an equivalent differential equation where the unobserved variables have been eliminated,

so that every solution trajectory for the model (in terms of x, u, v) corresponds to a solution

for the input–output equation (in terms of only u and v), though we note that multiple model

trajectories may correspond to the same input–output solution. The coefficients of the input–

output equation are a complete, though typically not minimal (redundancies are usual), set of

identifiable combinations, and testing for structural identifiability can thus be reduced to testing

the injectivity of the map from the parameters to the identifiable combinations. We illustrate the

differential algebra technique and the input–output equation for a simple example in Appendix A.

The input–output equation must be monic—the choice of variable ranking is arbitrary, though

u < u̇ < ü < · · · < v < v̇ < v̈ < · · · is traditional [26]—or the set of identifiable combinations may

not be uniquely determined. For example, the following are equivalent differential polynomials,

0 =
1

a
v̇ + bv + cu,

0 = v̇ + abv + acu,

but the map from {a, b, c} to { 1
a , b, c} is injective while that to {1, ab, ac} is not. The input–output

equation is required to be monic to identify the correct set of identifiable combinations.

Finally, we note that, in the notation of this section, the MSCE model (Eq. 6) has states x =

(x(t), x1(t), . . . , xn−1(t)), output (data) v(t) = x(t), and has no input u(t).
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3 Results

3.1 Two-stage clonal expansion (TSCE) model

Although the identifiability of the TSCE model is well-known [29], this model provides a tractable

test-case for the differential algebra approach to identifiability in this context.

Theorem 1. If cancer survival (or, equivalently, age-specific incidence) is perfectly measured, the

two-stage clonal expansion model with constant parameters (ν, X, α, β, µ1) is unidentifiable but has

three identifiable parameter combinations, which may be represented as µ0µ1, α1µ1, and α1−β1−µ1,
where µ0 = νX.

Proof. From Eqs. (6), the following equations contain all information of the the two-stage clonal

expansion model:

ẋ = −µ0x(1− x1)

ẋ1 = −(α1 + β1 + µ1)x1 + β1 + α1x
2
1

(8)

We assume that the survival function x is perfectly measured. The goal here is to determine the

identifiable parameter combinations from the input–output equation for the system, which will be

a monic polynomial of the observed output x and its derivatives.

We solve for x1 in terms of x and its derivatives,

x1 =
x+ ẋ

µ0

x
. (9)

Plug this in to the ẋ1 equation,

(
x+ ẋ

µ0

x

)′

= −(α1 + β1 + µ1)

(
x+ ẋ

µ0

x

)
+ β1 + α1

(
x+ ẋ

µ0

x

)2

, (10)

simplifying to

0 = ẍx+ (µ0µ1)x
2 − (α1 − β1 − µ1) ẋx−

(
α1µ1
µ0µ1

+ 1

)
ẋ2. (11)

This last equation is a monic polynomial of x and its derivatives, is equivalent to the original

differential equations, and is thus an input–output equation. We can read a set of identifiable

parameter combinations from the equation coefficients: µ0µ1, α1 − β1 − µ1, and α1µ1.

8
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Remark: The two-stage clonal expansion is often parameterized [5] as

r = µ0/α,

p =
1

2

(
(−α+ β + µ1)−

√
(α− β − µ1)2 + 4αµ1

)
,

q =
1

2

(
(−α+ β + µ1) +

√
(α− β − µ1)2 + 4αµ1

)
.

(12)

It is easy to see that {r, p, q} is an equivalent set of identifiable parameter combinations.

Remark: Although the initial conditions can, generally, provide additional identifiable combina-

tions, they do not in this case. At the initial conditions, x(0) = 1 and x1(0) = 1,

ẋ(0) = −µ0x(0) (1− x1(0)) = 0,

ẋ1(0) = −(α1 + β1 + µ1)x1(0) + β1 + α1x
2
1(0) = −µ1

(13)

As the data is x, we can identify ẋ(0), which, in this case, is identically equal to 0 and thus does

not provide any additional parametric information. We do not observe x1, so ẋ1(0) = −µ1 is not

observed.

3.2 Generalized MSCE model with multiple pre-initiation steps

We extend the result and method for the two-stage model to an n-stage model in which only the

final non-malignant compartment has clonal expansion (Figure 1b). This model, unlike the fully

generalized MSCE model, is often used in the literature to model cancer progression (e.g. [5, 9, 11]).

The differential equations defining the survival x—and implicitly the hazard—of this model may

be found by setting each of α1, . . . , αn−2, β1, . . . , βn−2 to zero in Eqs. (6):

ẋ = −µ0x(1− x1),

ẋk = −µkxk(1− xk+1),

ẋn−1 = −(αn−1 + βn−1 + µn−1)xn−1 + βn−1 + αn−1x
2
n−1,

(14)

for 1 ≤ k ≤ n− 2 and with initial conditions x(0) = 1, xk(0) = 1, and xn−1(0) = 1.

Theorem 2. If cancer survival (or, equivalently, age-specific incidence) is perfectly measured, the

n-stage (n ≥ 3) multistage clonal expansion (MSCE) model with only one, final clonal expansion

and n + 3 constant parameters (ν, X, α, β, µ1,. . . , µn−1) is unidentifiable but has n identifiable

9
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parameter combinations, which may be represented by µ0, . . . , µn−3, µn−1µn−2, αn−1µn−1, αn−1−
βn−1 − µn−1, where µ0 = νX.

In order to highlight the result and its implications without the distraction of technical details,

we leave the proof to Appendix B. This is a global result over parameter space, and there are

no degenerate parameter values of interest: when µk = 0, the problem is no longer of biological

interest, and, when excluding those cases, αk = 0 and βk = 0 are not degenerate values for the

theorem.

3.3 Generalized MSCE model with multiple clonal expansions

Here, we consider the full model (Eqs. (6), Figure 1a), allowing clonal expansion to occur at each

pre-malignant stage.

Proposition 1. If cancer survival (or, equivalently, age-specific incidence) is perfectly measured,

the n-stage (n ≥ 3) multistage clonal expansion (MSCE) model with 3n − 1 constant parameters

(ν, X, α1, . . . , αn−1, β1, . . . , βn−1, µ1, . . . , µn−1) is unidentifiable.

As above, we leave the proof to Appendix B.

Conjecture 1. If cancer survival (or, equivalently, age-specific incidence) is perfectly measured,

the n-stage (n ≥ 3) multistage clonal expansion (MSCE) model with 3n − 1 constant parameters

has 3n− 3 identifiable parameter combinations, which may be represented as α1, . . . ,αn−2, β1, . . . ,

βn−2, µ0, . . . , µn−3, µn−1µn−2, αn−1µn−1, αn−1 − βn−1 − µn−1, where µ0 = νX.

The conjecture is true for n ≤ 5; the proof, left to Appendix B, is an extension of that of Propo-

sition 1. We believe that the method developed in the proof of Theorem 1 could be used to prove

this conjecture in general, though additional combinatorial results will likely be needed to deal with

the added complexity.

In Figure 4, we plot the hazards for the full model with four to eight stages using two different sets of

parameters. For each model with n stages, the plotted points are generated using parameter values

µk−1 = 10−2, αk = 3, βk = 2.8 for k = 1, . . . , n− 2 and µn−2 = 10−3, αn−1 = 3, βn−1 = 2.5+ 10−6,

and µn−1 = 10−6. The corresponding lines use the parameters µk−1 = 10−2, αk = 3, βk = 2.8

for k = 1, . . . , n − 2 and µn−2 = 10−2, αn−1 = 30, βn−1 = 29.5 + 10−7, and µn−1 = 10−7. The

indistinguishability of the hazards generated with each of the two parameters sets is consistent with

the conjecture.
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4 Discussion

Structural identifiability analysis is necessary for accurate estimation of model parameters from

data, a fact that merits wider appreciation. Failure to verify the identifiable combinations in

one’s model given one’s data may result in specious parameter estimates. Conversely, knowing the

identifiable combinations can lead to insight and helpful model reparameterizations (e.g. [42]). This

is true for the two-stage clonal expansion model. Using the r, p, q parameterization (Eqs. (12)), the

survival and hazard can be expressed succinctly, and, observing that r = µ0/α, p ≈ −(α− β) and

q ≈ µ1/
(
1− β

α

)
[43], one can identify multiplicative effects (e.g. temporal effects) on initiation,

promotion (net cell proliferation), and malignant conversion respectively, as in Brouwer et al. [16].

The identifiability of MSCE models has been previously considered by Heidenreich et al. [29] (two

stage model), Luebeck and Moolgavkar [5] (MSCE models with up to three pre-initiation steps),

and Little et al. [30] (bounds on the maximum number of identifiable combinations in a generalized

class of models that includes the MSCE model with any number of clonal expansion steps). Some

of these previous results have relied on the form of the hazard function, which can only bound the

identifiable combinations, or numerical evaluations of the rank of the Fisher information matrix,

which, although strong evidence of local identifiability, is not formal proof. We offer an analytical

proof of the exact identifiable combinations for MSCE models with any number of pre-initiation

steps and one clonal expansion. This is a global result over the parameter space. Additionally,

we provide a framework and conjecture for considering the exact identifiable combinations for the

model with any number of clonal expansion stages, which we prove for n ≤ 5. For practical

purposes, parsimonious carcinogenesis models are unlikely to need this many clonal expansion

stages, let alone more. Moreover, this framework extends easily to variations of MSCE models that

future work may consider, such as those incorporating disease precursors, e.g. gastroesophageal

reflux disease (GERD) for esophageal cancer [15] or human papillomavirus (HPV) infection for

anogenital or oral cancer [39].

Our methods and results are important in a larger context as well. We expand the differential

algebra approach for structural identifiability, which has been primarily been used in the field of

biological, deterministic ODE models (though is of course applicable to models in other fields), into

the realm of stochastic branching processes and, more generally, continuous-time Markov processes.

Once one is able to write a continuous-time Markov process as a system of differential equations of

probability generating functions, a variety of identifiability techniques become available (e.g. Taylor

series expansion [24] or similarity transform [23]). Of course, use of these techniques requires that

one’s data relate to the probability generating functions in some way, so it is as of yet unclear

exactly how widely applicable this framework will be. However, our approach to identifiability is

applicable to at least one broad class of continuous-time Markov chain models, those that relate

data to survival methods (i.e. time-to-event processes), which is true of many carcinogenesis and
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other health-outcome models.

This work sets the stage for several important problems. We have considered constant parameters,

but time varying and piecewise-constant parameters are of great interest in the context of time-

varying exposures [44–47]. The results given here address the piecewise constant case in part, since

the problem can be expressed as multiple instances of the case with constant parameters, although

additional analysis of initial conditions will be needed. Further, as data for each constant-parameter

model will be limited (a full trajectory for each constant-parameter model is not observed), practical

identifiability considerations arise. For more general time-varying parameters additional analysis

is needed, though if the functional forms of the time varying parameters are known and if they are

rational functions or approximable as such, then a similar approach as used here could be taken.

Future work may also be able to see the conjecture given in this work proved beyond n = 5 using

the differential algebra framework, but strong combinatorial tools may be necessary to disentangle

the complexity of the coefficients of the input–output equation of the full model. Additionally, as

mentioned above, future work that considers variations of the MSCE model will greatly benefit

from this adaptable framework.

Finally, another important consideration is that of practical identifiability. In the context of real

data, this structural identifiability analysis provides upper bounds on the number of identifiable

parameter combinations, but there may be less parametric information available in real data. Such

problems have been identified for MSCE models [11], but further analysis will be needed to address

these issues more broadly.
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Appendix A

To illustrate these differential algebra approach to identifiability, we consider the classic example

of a linear two-compartment model, commonly used in pharmacokinetics; the unidentifiability of

this model is well-established through a range of methods [17, 26]. The model equations are given

by

ẋ1 = κ12x2 − (κ21 + κ01)x1 + u,

ẋ2 = κ21x1 − (κ12 + k02)x2,

v = x1/ψ,

(15)

where x1(t) and x2(t) are the masses of a drug/substance in the plasma and tissue respectively,

u(t) is a known input function (e.g. an intravenous injection or constant infusion at a known
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dose), the κij are unknown parameters to be estimated, and the output equation v(t) is the plasma

concentration, where ψ is the plasma volume (another unknown parameter to be estimated). Then

our input–output equation should be a differential equation in terms of the parameters, input u,

output v, and their derivatives. This can be generated as follows—we substitute x1 = ψv into the

ẋ1 equation above, and solve for x2 to give

x2 =
ψv̇ + (κ21 + κ01)ψv − u

κ12
. (16)

Plugging this in to the ẋ2 equation yields the following (taking a derivative of Eq. (16) to substitute

for ẋ2),

ψv̈ + (κ21 + κ01)ψv̇ − u̇

κ12
= κ21ψv − (κ12 + κ02)

(
ψv̇ + (κ21 + κ01)ψv − u

κ12

)
. (17)

Clearing denominators and combining terms yields

ψv̈+ (κ21 + κ01 + κ12 + κ02)ψv̇− u̇− (κ12κ21 + (κ12 + κ02)(κ21 + κ01))ψv− (κ12 + κ02)u = 0. (18)

This differential polynomial is monic and thus an input-output equation for the system under a

ranking of the variables that places u as higher ranked than v. However, the ranking u < u̇ < ü <

· · · < v < v̇ < v̈ < · · · is traditional [26], so we take

v̈ + (κ21 + κ01 + κ12 + κ02)v̇ −
1

ψ
u̇− (κ12κ21 + (κ12 + κ02)(κ21 + κ01))v −

1

ψ
(κ12 + κ02)u = 0 (19)

as our input-output equation. The coefficients of Eq. (19) are the set of identifiable combinations for

the model. The importance of making the input-output equation monic (or otherwise clearing the

coefficient of one of the terms) can be seen here—if we did not include such a restriction, we could

multiply Eq. (19) by an arbitrary parameter combination, which would then be the coefficient of

the v̈ term and appear to be identifiable. From these coefficients, we can see immediately that the

model is unidentifiable—there are only four identifiable combinations, but there are five parameters.

Moreover, we can see from the coefficient of u̇ that the parameter ψ is identifiable (since if 1/ψ is

known, then ψ is known).

More broadly, testing for identifiability is usually accomplished by testing injectivity of the map

from the parameters to the coefficients, i.e. evaluating each coefficient at two (symbolic) points,

setting the two equal (e.g. κ21+κ01+κ12+κ02 = κ∗21+κ
∗
01+κ

∗
12+k

∗
02), and then testing whether it

is possible to solve the resulting equations for each parameter in the form κij = κ∗ij . In this case, it

is apparent that the parameters are not identifiable. However we can find simpler representations of

the identifiable combinations than the coefficients of Eq. (19): by noting that ψ is identifiable, we

see that the coefficient for u shows that (κ12+κ02) is also identifiable (since both ψ and (κ12+κ02)/ψ

are). Continuing in this fashion yields a simplified set of identifiable combinations: ψ, (κ12 + κ02),

κ21 + κ01, and κ12κ21. Further examination shows that we can reparameterize the model in terms
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of the identifiable combinations by rescaling x̃2 = κ12x2, resolving the identifiability problem for

the model (discussed further in [26]).

This example is simple enough to permit by-hand computation of the input–output equations and

identifiable combinations. However, many models (even relatively simple nonlinear models) can

result in extremely lengthy input output equations (e.g. terms numbering in the hundreds) or

complicated combination structures which are not feasible to calculate by hand [27, 31]. Thus, it is

common to use computational algebra techniques such as characteristic sets or Gröbner bases for

many of the above steps [26, 27, 48], such as elimination of the unobserved variables x to generate

an input–output equation or calculation of the identifiability results from the coefficients of the

input–output equation. These approaches typically reduce a given set of polynomials/differential

polynomials using some sort of ranking of the variables, typically ranking u < v < x typically [26].

Appendix B

To prove Theorem 2, we begin with a series of lemmas.

Lemma 1. For 1 ≤ k < n−1, xk is a rational function of x and its derivatives and may be written

in the form qk+uk
qk

, where qk and uk are polynomials of x and its derivatives and qk is monic.

Proof. We proceed by induction. Observe that

x1 =
x+ ẋ

µ0

x
(20)

Next, assume that xk, for some 1 ≤ k < n− 2, may be written in the form qk+uk
qk

, where qk and uk

are polynomials of x and its derivatives and qk is monic. Then, from the ẋk equation, we find

xk+1 =
xk +

1
µk
ẋk

xk

=

(
qk+uk
qk

)
+ 1

µk
d
dt

(
qk+uk
qk

)

(
qk+uk
qk

)

=
(qk + uk)qk +

1
µk
((q̇k + u̇k)qk − (qk + uk)q̇k)

(qk + uk)qk

=
qk+1 + uk+1

qk+1

(21)

where

14
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uk+1 =
1

µk
(u̇kqk − ukq̇k) (22)

qk+1 = (qk + uk)qk (23)

Because qk is monic, qk+1 = q2k + qkuk is also monic. Further, qk and uk are clearly polynomials in

x and its derivatives. Hence the result.

Lemma 2. The highest power of x in the polynomial qk is 2k−1, and the highest order derivative

of x is k − 1. In particular, qk contains the term x2
k−1

, which is the only term with this power of

x. The only terms in qk of with the power 2k−1 − 1 of x are, for 0 ≤ m ≤ k − 1,

2k−m−1

µ0 · · ·µm−1
x2

k−1−1x(m).

The highest power of x in the polynomial uk is 2k−1 − 1 and the highest order derivative is k. In

particular, uk contains the term
1

µ0 · · ·µk−1
x2

k−1−1x(k),

which is the only term in uk with this power of x.

Proof. The relevant terms in qk and uk for the first few k are written out in Table II for convenience.

We have q1 = x and u1 = 1
µ0 ẋ, so the base case is—partly vacuously—true. Now, suppose that

the hypotheses are true. Let qk+1 = (qk + uk)qk. Then, its term with the highest power of x is(
x2

k−1
)2

= x2
k
. Since qk contains the terms 2k−m−1

µ0···µm−1
x2

k−1−1x(m), 1 ≤ m ≤ k − 1, and x2
k−1

, q2k
contains the terms, for 1 ≤ m ≤ k − 1,

2 · x2k−1 · 2k−m−1

µ0 · · ·µm−1
x2

k−1−1x(m) =
2k−m

µ0 · · ·µm−1
x2

k−1x(m).

Since we have identified all of the terms with a power on x of 2k−1 and 2k−1−1 in qk, we have iden-

tified all of terms of power 2k−1−1 in q2k. Additionally, there can be only one such term from qkuk:

since qk contains x2
k−1

and uk contains 1
Xµ0···µk−1

x2
k−1−1x(k), qkuk contains 1

Xµ0···µk−1
x2

k−1x(k).

Hence qk+1 contains the terms, for 1 ≤ m ≤ k,

2k−m

µ0 · · ·µm−1
x2

k−1x(m).

Further, since the highest order derivative of x in uk is x(k), the term in uk+1 of order k + 1 must

come from 1
µk
u̇kqk. In particular, u̇k contains 1

µ0···µk−1
x2

k−1−1x(k+1). Then, 1
µk
u̇kqk, uk+1 contains

the term
1

µk
· 1

µ0 · · ·µk−1
x2

k−1−1x(k+1) · x2k−1
=

1

µ0 · · ·µk
x2

k−1x(k+1).

Hence the result.
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Table II: Relevant terms in qk and uk for k ≤ 4

k Relevant terms in qk Relevant term in uk

1 x 1
µ0
ẋ

2 x2, 1
µ0
xẋ 1

µ0µ1
xẍ

3 x4, 2
µ0
x3ẋ, 1

µ0µ1
x3ẍ 1

µ0µ1µ2
x3x(3)

4 x8, 4
µ0
x7ẋ, 2

µ0µ1
x7ẍ, 1

µ0µ1µ2
x7x(3) 1

µ0µ1µ2µ3
x7x(4)

Now, we prove Theorem 2.

Proof. For ease of notation, let q := qn−1 and u := un−1. Now, we replace xn−1 with q+u
q in the

ẋn−1 equation to find an input–output equation.

ẋn−1 = −(αn−1 + βn−1 + µn−1)xn−1 + βn−1 + αn−1x
2
n−1 (24)

(q̇ + u̇)q − (q + u)q̇

q2
= −(αn−1 + βn−1 + µn−1)

q + u

q
+ βn−1 + αn−1

(
q + u

q

)2

(25)

u̇q − uq̇ = −(αn−1 + βn−1 + µn−1)(q
2 + qu) + βn−1q

2 + αn−1(q
2 + 2qu+ u2) (26)

0 = u̇q − uq̇ + µn−1q
2 − (αn−1 − βn−1 − µn−1)qu− αn−1u

2 (27)

0 =
1

µn−1
(u̇q − uq̇) + q2 −

(
αn−1 − βn−1 − µn−1

µn−1

)
qu− αn−1

µn−1
u2 (28)

Viewed as a function of x, this last equation is an input–output equation. Under an appropriate

ranking, it is monic because of the x2
n−1

term in q2. As in the proof of the previous lemma, q2 also

contains the terms, for 1 ≤ m ≤ n− 2,

2 · x2n−2 · 2n−m−2

µ0 · · ·µm−1
x2

n−2−1x(m) =
2n−m−1

µ0 · · ·µm−1
x2

n−1−1x(m).

From the −
(
αn−1−βn−1−µn−1

µn−1

)
qu term, we get

−
(
αn−1 − βn−1 − µn−1

µn−1

)
·x2n−2 · 1

Xµ0 · · ·µn−2
x2

n−2−1x(n−1) = −αn−1 − βn−1 − µn−1

Xµ0 · · ·µn−1
x2

n−1−1x(n−1).

Next, from 1
µn−1

u̇q, as in the proof of the lemma, we get

1

µn−1
· 1

µ0 · · ·µn−2
x2

n−2−1x(n) · x2n−2
=

1

µ0 · · ·µn−1
x2

n−1−1x(n).

From −αn−1

µn−1
u2, we get

−αn−1

µn−1

(
1

µ0 · · ·µn−2
x2

n−2−1x(n−1)

)2

= − αn−1µn−1

(µ0 · · ·µn−1)2
x2

n−2−2(x(n−1))2
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A term of the same kind arrives from − 1
µn−1uq̇. Noting that the derivative of 1

µ0···µn−3
x2

n−2−1x(n−2)

contains 1
µ0···µn−3

x2
n−2−1x(n−1),

− 1

µn−1
· 1

µ0 · · ·µn−2
x2

n−2−1x(n−1) · 1

µ0 · · ·µn−3
x2

n−2−1x(n−1) = − µn−2µn−1

(µ0 · · ·µn−1)2
x2

n−2−2(x(n−1))2.

We have identified n+ 1 coefficients in the input–output equation. They are, for 1 ≤ m ≤ n− 2,

2n−m−1

µ0 · · ·µm−1
,

−αn−1 − βn−1 − µn−1

µ0 · · ·µn−1
,

1

µ0 · · ·µn−1
,

and

−αn−1µn−1 + µn−2µn−1

(µ0 · · ·µn−1)2
.

Thus, we can identify µ0, µ1, . . . , µn−3 (n > 3), µn−2µn−1, αn−1µn−1, αn−1 − βn−1 − µn−1.

However, there may be additional terms in the input–output equations. Thus, a priori, it is possible

that smaller combinations making up these terms could be identifiable (or even that the model itself

might be). So, we must show that the overall model is unidentifiable, and, moreover, that none

of these combinations can be broken down into smaller identifiable pieces. To this end, we find a

model equivalent to the original model (Eq. (14)) that can be parameterized using only the above

identifiable combinations. To do so, solve the ẋn−2 for xn−1: xn−1 = 1 + 1
µn2

ẋn−2

xn−2
, and plug this

into the ẋn−1 equation to arrive at the following set of equations:

ẋ = −µ0x(1− x1),

ẋk = −µkxk(1− xk+1),

0 = ẍn−2xn−2 + (µn−2µn−1)x
2
n−2 − (αn−1 − βn−1 − µn−1) ẋn−2xn−2 −

(
αn−1µn−1

µn−2µn−1
+ 1

)
ẋ2n−2,

(29)

for 1 ≤ k ≤ n − 3 and with initial conditions x(0) = 1, xk(0) = 1, xn−2(0) = 1, and ẋn−2(0) = 0.

Because the parameters µn−2, µn−1, αn−1, and βn−1 appear only in the combinations µn−2µn−1,

αn−1µn−1, and αn−1 − βn−1 − µn−1 in the model equations, specifying values for these parameter

combinations fully describes the model. Because a product is the smallest unit in a combination,

it is clear that µn−2, µn−1, and αn−1 are not individually identifiable. Because βn−1 appears only

in a sum with αn−1 and µn−1, it too is unidentifiable.

Hence, the result.
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Next, we prove Proposition 1.

Proof. That the full model is unidentifiable, generally, can be seen as follows. The model below is

equivalent to that in described by Eqs. (6).

ẋ = −µ0x(1− x1),

ẋk = −(αk + βk + µk)xk + βk + αkx
2
k + µkxkxk+1,

0 = ẍn−2xn−2 −
α2
n−2 (αn−1µn−1)

µn−2µn−1
x4n−2 + 2αn−2

(
αn−1µn−1

µn−2µn−1
− 1

)
x2n−2ẋn−2

−
(
(αn−1 − βn−1 − µn−1) +

2(αn−2 + βn−2) (αn−1µn−1)

µn−2µn−1

)
xn−2ẋn−2

+ βn−2

(
(αn−1 − βn−1 − µn−1) +

2(αn−2 + βn−2) (αn−1µn−1)

µn−2µn−1

)
xn−2

−
(
(αn−2 + βn−2)(αn−1 − βn−1 − µn−1)− µn−2µn−1 +

(αn−1µn−1) (α
2
n−2 + 4αn−2βn−2 + β2n−2)

µn−2µn−1

)
x2n−2

+ αn−2

(
(αn−1 − βn−1 − µn−1) +

2 (αn−1µn−1) (αn−2 + βn−2)

µn−2µn−1

)
x3n−2

−
(
αn−1µn−1

µn−2µn−1
+ 1

)
ẋ2n−2 + 2βn−2

(
αn−1µn−1

µn−2µn−1
+ 1

)
ẋn−2 −

β2n−2 (αn−1µn−1)

µn−2µn−1

(30)

for 1 ≤ k ≤ n− 3 with initial conditions x(0) = 1, xk(0) = 1 , and xn−3(0) = 1, xn−2(0) = 1, and

ẋn−2(0) = 0. As in the previous proof, parameters µn−2, µn−1, αn−1, and βn−1 appear only in the

combinations µn−2µn−1, αn−1µn−1, and αn−1 − βn−1 − µn−1 in Eqs. (30). So, the full model is

indeed unidentifiable.

Finally, we sketch the proof of Conjecture 1 for n ≤ 5. Calculations were carried out in Mathematica

10.2.

Proof. Solve the ẋ equation for x1. Take a derivative to find ẋ1. We now have x1 and ẋ1 as a

function of x and its derivatives. Plug these into the ẋ1 equation so that it becomes an equation

of x3, x, and derivatives of x. Solve for x2 as a function of x and its derivatives, and compute

ẋ2. Continue in this manner until we have xn as a function of x and its derivatives. Substitute

xn and ẋn into the final equation. We now have a single equation of x and its derivatives that

contains all of the information of the system. Divide the equation by
∏n−1
k=0 µ

2n−1−k

k , which makes

the equation monic under the appropriate ranking. This is an input–output equation. The equation

has the following number of coefficients: 11 for n = 3, 48 for n = 4, 365 for n = 5. Determine the
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identifiable combinations from the list of coefficients by setting the coefficients equal to copies of

themselves with placeholder parameter values and finding a Gröbner basis.
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Figure 1

[b]

Figure 2

Figure 3: Generalized MSCE models. (a) The fully generalized model with clonal expansion at

each pre-malignant step. (b) The standard model with several pre-initiation steps and one clonal

expansion.
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Figure 4: Hazards of multistage clonal expansion models with four to eight stages under two

different parameter sets each (points vs. lines). See text for parameter details.
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