Antiviral Therapy in Management of Chronic Hepatitis B Viral Infection in Children: A Systematic Review and Meta-analysis

Maureen M. Jonas,¹ Anna S.F. Lok,² Brian J. McMahon,³ Robert S. Brown, Jr.,⁴ John B. Wong,⁵ Ahmed T. Ahmed,^{6,7} Wigdan Farah,^{6,7} Mohamed A. Mouchli,⁸ Siddharth Singh,⁹ Larry J. Prokop,¹⁰ Mohammad Hassan Murad,^{6,7,11} and Khaled Mohammed^{6,7,11}

Most individuals with chronic hepatitis B viral (HBV) infection acquired the infection around the time of birth or during early childhood. We aimed to synthesize evidence regarding the effectiveness of antiviral therapy in the management of chronic HBV infection in children. We conducted a comprehensive search of multiple databases from 1988 to December 2, 2014, for studies that enrolled children (<18 years) with chronic HBV infection treated with antiviral therapy. We included observational studies and randomized controlled trials (RCTs). Two independent reviewers selected studies and extracted data. In the 14 included studies, two cohort studies showed no significant reduction in the already low risk of hepatocellular carcinoma or cirrhosis and 12 RCTs reported intermediate outcomes. In RCTs with posttreatment follow-up <12 months, antiviral therapy compared to placebo improved alanine aminotransferase normalization (risk ratio [RR] = 2.3, 95% confidence interval [CI] 1.7-3.2), hepatitis B e antigen (HBeAg) clearance/loss (RR = 2.1, 95% CI 1.5-3.1), HBV DNA suppression (RR = 2.9, 95% CI 1.8-4.6), HBeAg seroconversion (RR = 2.1, 95% CI 1.4-3.3), and hepatitis B surface antigen clearance (RR = 5.8, 95% CI 1.1-31.5). In RCTs with posttreatment followup ≥ 12 months, antiviral therapy improved cumulative HBeAg clearance/loss (RR = 1.9, 95% CI 1.7-3.1), HBeAg seroconversion (RR = 2.1, 95% CI 1.3-3.5), alanine aminotransferase normalization (RR = 1.4, 95% CI 1.1-1.7), and HBV DNA suppression (RR = 1.4, 95%CI 1.1-1.8) but not hepatitis B surface antigen clearance or seroconversion. Conclusion: In children with chronic HBV infection, antivirals compared to no antiviral therapy improve HBV DNA suppression and frequency of alanine aminotransferase normalization and HBeAg seroconversion. (HEPATOLOGY 2016;63:307-318)

orldwide, most individuals with chronic hepatitis B viral (HBV) infection acquired their infections around the time of birth or during early childhood because the risk of chronic infection is 90% when infection occurs in infancy, 30% when occurring during the first 5 years of life, and <5% when infection occurs in immunocompetent older children and adults.¹ In countries where HBV is endemic, perinatal transmission remains the most important mode of infection because of the high prevalence of hepatitis B e

Received August 25, 2015; accepted October 4, 2015.

Abbreviations: ALT, alanine aminotransferase; CI, confidence interval; HBeAg, hepatitis B e antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; IFN, interferon; RCT, randomized controlled trial; RR, risk ratio.

From the ¹Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA; ²Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI; ³Liver Disease and Hepatitis Program, Alaska Native Tribal Health Consortium, Anchorage, AK; ⁴Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY; ⁵Department of Medicine, Tufts Medical Center, Boston, MA; ⁶Evidence-Based Practice Research Program, Mayo Clinic, Rochester, MN; ⁷Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN; ⁸Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN; ⁹Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN; ⁹Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN; ¹⁰Library Public Services, Mayo Clinic, Rochester, MN; ¹¹Division of Preventive, Occupational and Aerospace Medicine, Mayo Clinic, Rochester, MN.

Additional Supporting Information may be found at onlinelibrary.wiley.com/doi/10.1002/hep.28278/suppinfo.

Supported by a contract from the American Association for the Study of Liver Diseases (to M.M.).

This Review published with an accompanying Practice Guideline and Reviews by Lok et al. and Brown et al.

antigen (HBeAg) in pregnant women. Perinatal transmission also occurs in nonendemic countries, including the United States, mostly in children of HBV-infected mothers who did not receive appropriate screening during pregnancy or HBV immunoprophylaxis at birth.

The natural history of chronic HBV infection in children varies, depending upon age at infection, mode of acquisition, and ethnicity. When HBV infection is acquired perinatally or horizontally during the first few years of life, children from HBV endemic countries usually become HBeAg-positive with high levels of viral replication.² Spontaneous HBeAg seroconversion rates vary by age and are <2% per year in children younger than 3 years of age and 4%-5% after age 3 and then rise during puberty. In contrast, children from nonendemic countries are less likely to have acquired the infection perinatally and frequently undergo HBeAg seroconversion during the first two to three decades of life.³

Cirrhosis is an infrequent complication of HBV infection during childhood. In one of the largest studies, involving 292 consecutive children with a mean age of 4.0 ± 3.3 years who were hepatitis B surface antigen (HBsAg)-positive and who had elevated serum alanine aminotransferase (ALT) levels,4 10 (3%) had cirrhosis at enrollment but none developed cirrhosis during followup of 1-10 years. The risk of hepatocellular carcinoma (HCC) is related to the duration of infection, the degree of liver injury, and the replicative state of the virus (HBV DNA levels). HCC in children with chronic HBV infection has been described in both Asian and Western populations.⁵⁻⁹ Importantly, HCC may occur even in children who have undergone HBeAg seroconversion at a young age, indicating that risk for developing HCC persists even following reduced viral replication.¹⁰

Management of children with chronic HBV infection involves education of the children and their parents on measures to prevent transmission of infection, regular follow-up to monitor viral replication and liver injury, and antiviral therapy and HCC surveillance in some cases.¹¹ Few large trials of antiviral therapy in children exist to guide treatment decisions. In the United States, interferon (IFN)- α is approved for children beginning at 1 year of age, and lamivudine and entecavir are approved for use in children 2 years and older. Adefovir and tenofovir are approved for use in those 12 years of age and older. IFN, lamivudine, and adefovir are no longer first-line therapy in adults as much better agents are available, so they are less than ideal for children. Randomized phase 3 trials of pegylated IFN- α 2a and tenofovir in children with chronic HBV are under way. We conducted this systematic review and meta-analysis to synthesize existing evidence about effectiveness of antiviral therapy in the management of chronic HBV infection in children.

Materials and Methods

This systematic review follows a predefined protocol that was developed by a guideline writing group from the American Association for the Study of Liver Diseases. The reporting of this systematic review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-analyses statements.¹²

Eligibility Criteria. We included studies that enrolled children (<18 years) with chronic HBV infection treated with antiviral therapy. Due to the anticipated limited number of randomized controlled trials (RCTs) evaluating patient-important (clinical) outcomes, we included observational studies that evaluated such outcomes. Outcomes of interest were cirrhosis, decompensated liver disease, HCC, ALT normalization, HBV DNA suppression, HBeAg/HBsAg seroconversion, and HBeAg/HBsAg loss. We included both English and non-English-language studies. We excluded studies enrolling adults; patients coinfected with hepatitis C, hepatitis D, or human immunodeficiency virus; patients receiving combination therapy, steroids, or chemotherapy/immunotherapy; liver transplant recipients; and hemodialysis patients. Supporting Table S1 describes the detailed inclusion and exclusion criteria.

Search Strategy. The search strategy was designed and conducted by an experienced librarian (L.J.P.) with input from the principal investigator. A comprehensive search of Medline In-Process & Other Non-Indexed Citations, MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Scopus was conducted from January 1988 to December 2, 2014. Controlled vocabulary supplemented with keywords was used to

Address reprint requests to: Maureen M. Jonas, M.D., Division of Gastroenterology, Hunnewell Ground Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115. Tel: 617-355-5837. E-mail: maureen.Jonas@childrens.harvard.edu.

Copyright © 2015 by the American Association for the Study of Liver Diseases.

View this article online at wileyonlinelibrary.com.

DOI 10.1002/hep.28278

Potential conflict of interest: Dr. Jonas advises and received grants from Gilead. She received grants from Bristol-Myers Squibb and Roche. Dr. Lok advises and received grants from Gilead. She consults for GlaxoSmithKline and Merck and received grants from Bristol-Myers Squibb. Dr. Brown consults for Gilead and Bristol-Myers Squibb.

search for studies of antiviral therapy for hepatitis B in children. Supporting Table S2 provides details of the search strategy. We conducted a manual search of bibliographies of the included studies and previous systematic reviews to identify relevant studies. Content experts from the American Association for the Study of Liver Diseases were also queried for potential references.

Study Selections. Using an online reference management system (DistillerSR; Evidence Partners, Inc.), two reviewers independently screened titles and abstracts. Full texts of the included abstracts were retrieved and screened in duplicate. Disagreements were harmonized by consensus or arbitration by a third reviewer. We calculated interrater agreement (kappa) during the full text screening to observe the agreement between reviewers.

Data Extraction. Data extraction was done in duplicate using a standardized, piloted form. A third reviewer compared the reviewers' entered data and resolved any inconsistencies by referring to the full text of the article. We extracted the following variables from each study: study characteristics, patient baseline characteristics, intervention details, and outcomes of interest.

Risk of Bias Assessment. Two reviewers independently assessed the risk of bias (i.e., systematic error) using the Cochrane risk of bias tool and the Newcastle-Ottawa Scale for RCTs and observational studies. Quality of evidence (i.e., certainty in the estimates) was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation approach. Criteria used to evaluate quality of evidence were risk of bias, indirectness (surrogate outcomes), imprecision (wide confidence intervals), inconsistency (heterogeneity), and publication bias.¹³

Statistical Analysis. For dichotomized outcomes, we calculated risk ratios (RRs) and 95% confidence intervals (CIs) using binomial distribution. We then pooled the log-transformed RRs using the DerSimonian and Laird¹⁴ random-effect method with the heterogeneity estimated from the Mantel-Haenszel model. To measure the overall heterogeneity across the included studies, we calculated the I² statistic, with I² >50% suggesting high heterogeneity.¹⁵ All statistical analyses were conducted using STATA, version 13 (StataCorp LP, College Station, TX). We explored the impact of publication bias using the Egger regression asymmetry test and by constructing funnel plots if a sufficient number of studies (>20) per outcome was available and heterogeneity was low.¹⁶

Results

From the 2321 citations identified with the primary search strategy, 14 studies that enrolled 1425 children

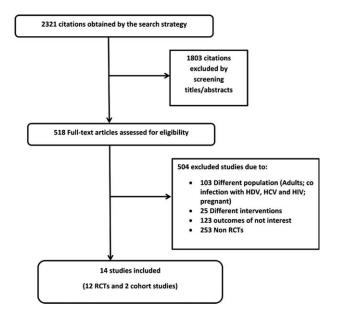


Fig. 1. The process of study selection.

were finally included. Two studies evaluated the clinical (patient-important) outcomes of death, cirrhosis, and HCC and 12 studies reported intermediate outcomes. Average weighted kappa (interrater agreement) for study selection was 0.75. Details of study selection and reasons for exclusion are described in Fig. 1.

Effect of Antiviral Therapy on Clinical (Patient-Important) Outcomes of Cirrhosis and HCC. Two cohort studies^{17,18} from Europe and Japan reported on 163 HBeAg-positive patients treated with multiple interventions including IFN- α with a mean follow-up of 15 years. Characteristics of the included studies are described in Table 1. IFN treatment did not significantly reduce the risk of HCC (RR = 0.3, 95% CI 0.01-156.2) or cirrhosis (RR = 0.2, 95% CI 0.01-100.7).

Effect of Antiviral Therapy on Intermediate Outcomes (ALT Normalization, HBV DNA Suppression, HBeAg/HBsAg Seroconversion, and HBeAg/HBsAg Loss). Among 12 RCTs reporting intermediate outcomes, eight studies evaluated IFN- α^{19-26} and one each evaluated lamivudine,²⁷ tenofovir,²⁸ adefovir,²⁹ and entecavir.³⁰ Most of the studies (74%) had a high risk of bias due to unreported or unclear randomization methods, allocation concealment, and blinding (Table 2).

Any Antiviral Therapy Versus Control Results. Of the 12 RCTs that compared antiviral therapy to controls, five^{20,22,23,26,30} reported outcomes for both short (<12 months) and long (\geq 12 months) posttreatment follow-up durations, two^{19,25} included only longer (\geq 12 months) posttreatment follow-up, and five^{21,24,27-29} included only shorter (<12 months) follow-up. Two RCTs reported the

					Baseline HBV	:	:		.
Author, Year	Country	Interventions (Dose)	Patients (N)	Age (Years)	DNA Level (Log10 IU/mL)	Baseline ALT Level (U/L)	Follow-Up (Months)	HBeAg Status at Baseline	Study Design
Bortolotti et al., 1998 17	Multicenter	IFN-α (3-5 MII/m ² three times/week	21	5.5 ± 0.4	NR	NR	141.6 ± 25.2	HBeAg-positive	Cohort
		for 3-6 months)							
:		Control	117	5.5 ± 0.4	NR	NR	153.6 ± 38.4		
Fujisawa et al., 2004 ¹⁸	Japan	IFN-a	16	NR	NR	NR	216	HBeAg-positive	Cohort
		(0.1 MU/kg/day $ imes$ 28 days)							
Vajro et al., 1996 ¹⁹	Italy	IFN-a	13	6.9 ± 2.4	7.2 ± 7.1	238 ± 197	48	HBeAg-positive	RCT
		(10 MU/m ² body surface area							
		intramuscularly, three times/							
		week, in the evening, for 1							
		year) Control	σ	2 0 4 2 1	2 + 6 2	117 + 67	18		
Barhera et al 1994 ²⁰	Italv	IFN-2	21	+	43% >67	1092 + 69	ç (HReAg-nositive	RCT
	((7.5 MU/m ² three times/week	1)	0	
		for 6 months)							
		IFN-œ	19	8.1 ± 2.3	21% > 6.7	72.4 ± 36	18		
		(3 MU/m ² three times/week for							
		6 months)							
		Control	37	8.5 ± 2.5	43% >6.7	+	18		
Utili et al., 1991 ²¹	Italy	IFN-α	10	10 (6-14)	6.3 (5.7-6.8)	138 ± 95	18	HBeAg-positive	RCT
		(3 MU intramuscularly three							
		times/week for 12 months)							
		Control	10	12 (6-14)	6.4 (5.7-6.6)	+1	18		
Ruiz-Moreno et al.,	Spain	IFN-a	12	8.7 ± 4.2	7.6 ± 7.7	147 ± 72	18	NR	RCT
1991^{22}		(10 MU three times/week for							
		24 weeks subcutaneously)							
		IFN-α	12	7.3 ± 2.5	7.6 ± 7.6	138 ± 90	18		
		(5 MU three times/week for 24							
		weeks subcutaneously)							
		Control	12		+1	+1	18		
Ruiz-Moreno et al.,	Spain	IFN-α	12	7.7 ± 2.9	8.6 ± 8.5	155 ± 63	18	HBeAg-positive	RCT
1990^{23}		(10 MU/ m ² body surface,							
		intramuscularly, three times/							
		week tor 3 months)							
16		Control	12	8.3 ± 1.8	8.3 ± 8.1	149 ± 122	18		
Sokal et al., 1998 ^{∠+}	Multinational	IFN-∞2b	72	5.0 (1-17)	6.7 (<4.6-7.6)	3.2 (1.7-18.3)	48	HBeAg-positive	RCT
		$(3 \text{ MU/m}^2 \text{ of body surface area})$							
		three times/week for 1 week)	1	; ; ;			:		
1 -: -+ -1 400425		Control	22	5.0 (1-17)	6.7 (<4.6-7.5)	3.7 (1.3-18.2)	48		Ш
Lai et al., 1991-*	China	IFN-Q	67	0.5 (4-10)	NK	12 (5-34)	.24	HBeAg-positive	KCI
		$(5 \times 10^{\circ} \mu/m^{\circ}$ subcutane-							
		ously weekly for 16 weeks)							
		Control	30	6 (3-15)	NK	9 (6-98)	24		

310 JONAS ET AL.

Author, Year	Country	Interventions (Dose)	Patients (N)	Age (Years)	Baseline HBV DNA Level (Log10 IU/mL)	Baseline ALT Level(U/L)	Follow-Up (Months)	HBeAg Status at Baseline	Study Design
Gregorio et al., 1996 ²⁶	Multicenter	IFN-_{α} (5 MU/m ² for 5 consecutive days during the induction phase, followed by three times/ week for 11 weeks of mainte-	30	9.5 (2.9-14.9)	8.3 (6.9-9.01)	120 (49-620)	18	HBeAg-positive	RCT
Jonas et al., 2002 ²⁷	Multinational	nance therapy) Control Control Lamivudine (3 mg/kg once daily for 52 weeks)	31 95	10.9 $(2.5-15.1)$ 8.9 \pm 3.1 9 $(1-17)$	7.9 (6.7-9.04) 7.2 ± 7 8.3 (5.6-9.8)	68 (35-266) 117 ± 67 2.1 (0.7-16.9) ×ULN	18 48 24	HBeAg-positive	RCT
Murray et al., 2012 ²⁸	Europe and the United State	Control Tenofovir (300 mg once daily for 72	191 52	$8 (2-17) 15.3 \pm 1.34$	$8.3 (5.5-9.5) 7.3 \pm 0.7$	$\begin{array}{l} 2.3(0.3\text{-}22.1)\\ \times \text{ULN}\\ 101 \pm107.5 \end{array}$	24 72	HBeAg-positive	RCT
Jonas et al., 2008 ²⁹	Multinational	weeks) Placebo Adefovir dipivoxil (depend on the age and weight, dose not to exceed 10	54 115	15.3 ± 1.43 10.8 ± 4.3	7.5 ± 0.7 8.04 ± 0.2	101 ± 90 111 ± 81.6	72 6	HBeAg-positive	RCT
Jonas et al., 2015 ³⁰	Multinational	mg/day) Placebo Entecavir,weight-based at 0.015 mg/kg oral solution (0.05 mg/mL) once daily, up to	58 120	10.7 ± 3.9 10.5 ± 0.45	7.9 ± 0.3 8.1 ± 0.1	99 ± 52.8 107.1 ± 5.4	6 24	HBeAg-positive	RCT
		a maximum of 0.5 mg/day Placebo	60	10.8 ± 0.62	7.9 ± 0.1	94.4 ± 12.2	24		

Table 1. Continued

HEPATOLOGY, Vol. 63, No. 1, 2016

Abbreviation: NR, not reported.

Table 2. Risk of Bias Assessment for RCTs: Antiviral Versus Control Trials

Author, Year	Sequence Generation	Allocation Concealment	Blinding of Participants, Personnel, and Assessors	Incomplete Outcome Data	Selective Outcome Reporting	Other Sources of Bias	Overall Risk of Bias
Vajro et al., 1996 ¹⁹	NR	NR	NR	Complete	None	None	High
Barbera et al., 1994 ²⁰	NR	NR	NR	Complete	None	None	High
Utili et al., 1991 ²¹	NR	NR	NR	Complete	None	None	High
Ruiz-Moreno et al., 1991 ²²	NR	NR	NR	Complete	None	None	High
Ruiz-Moreno et al., 1990 ²³	NR	NR	NR	Complete	None	None	High
Sokal et al., 1998 ²⁴	Random digit numbers	NR	NR	Complete	None	None	Moderate
Lai et al., 1991 ²⁵	NR	NR	NR	Complete	None	None	High
Gregorio et al., 1996 ²⁶	NR	NR	NR	Complete	None	None	High
Jonas et al., 2002 ²⁷	Centrally randomized	NR	Double blinded	Complete	None	None	Low
Murray et al., 2012 ²⁸	Centralized and stratified by age	Unclear	Unclear	Complete	None	None	Moderate
Jonas et al., 2008 ²⁹	Centrally randomized	NR	Double blinded	Complete	None	None	Low
Jonas et al., 2015 ³⁰	Sponsor-designated center through an interactive voice response system using a block size of 6	NR	Double blinded	Complete	None	None	Low

Abbreviation: NR, not reported.

short-term and long-term outcomes separately for lamivudine^{27,31} and adefovir.^{29,32}

In studies with posttreatment follow-up <12 months, meta-analysis (Fig. 2) demonstrated that antiviral therapy compared to placebo was more effective at improving ALT normalization (eight RCTs, RR = 2.3, 95% CI 1.7-3.2, I^2 = 46.5%), HBeAg clearance/loss (seven RCTs, RR = 2.1, 95% CI 1.5-3.1, $I^2 = 0\%$), HBV DNA suppression (nine RCTs, RR = 3.3, 95% CI 1.9-6.1, $I^2 = 63.8\%$), HBeAg seroconversion (four RCTs, RR = 2.1, 95% CI 1.4-3.3, I^2 = 0%), and HBsAg clearance (two RCTs, RR = 5.8, 95%CI 1.1-31.5, $I^2 = 0\%$). In studies with posttreatment follow-up ≥ 12 months (Fig. 3), antiviral therapy improved ALT normalization (two RCTs, RR = 1.4, 95% CI 1.1-1.7, $I^2 = 0\%$), HBeAg clearance/loss (five RCTs, RR = 2, 95% CI 1.9-3.2, $I^2 = 0\%$), HBV DNA suppression (seven RCTs, RR = 1.4, 95% CI 1.1-1.8, $I^2 = 0\%$), and HBeAg seroconversion (three RCTs, RR = 2.1, 95% CI 1.3-3.5, $I^2 = 0\%$). However, the short-term statistically significant difference did not persist after ≥ 12 months of follow-up for HBsAg clearance (two RCTs, RR = 3.3, 95% CI 0.4-27.8, $I^2 = 0\%$) and for HBsAg seroconversion (two RCTs, RR = 2.5, 95% CI 0.3-22.7, $I^2 = 0\%$). The quality of evidence was low to very low due to high risk of bias and indirectness.

Specific Antiviral Therapy Versus Control Results. In studies (Fig. 4) with posttreatment follow-up <12 months, IFN- α compared to no treatment significantly improved HBeAg clearance/loss (four RCTs, RR = 3.2, 95% CI 1.8-5.7, I² = 0%) and HBV DNA suppression (six RCTs, RR = 2.2, 95% CI 1.4-3.3, I² = 0%) but did not significantly improve ALT normalization (four RCTs, RR = 1.4, 95% CI 0.9-2.3, I² = 0%), HBeAg seroconversion (one RCT, RR = 2.8, 95% CI 0.8-9.4) or HBsAg clearance (one RCT, RR = 7.4, 95% CI 0.958.6). In studies (Fig. 5) with posttreatment follow-up \geq 12 months, IFN- α use was associated with improved HBeAg clearance/loss (five RCTs, RR = 2.0, 95% CI 1.9-3.2, I² = 0%) and HBeAg seroconversion (two RCTs, RR = 3.1, 95% CI 1.2-8.1, I² = 0%), but statistically significant differences were not observed for ALT normalization (one RCT, RR = 1.4, 95% CI 0.6-1.9), HBV DNA suppression (six RCTs, RR = 1.5, 95% CI 0.99-2.1, I² = 7.6%), HBsAg clearance (two RCTs, RR = 3.3, 95% CI 0.4-27.8, I² = 0%), or HBsAg seroconversion (two RCTs, RR = 2.5, 95% CI 0.3-22.7, I² = 0%). The quality of evidence was low to very low due to risk of bias, indirectness, and imprecision.

Lamivudine, when compared to placebo,²⁷ was associated with significantly higher likelihood of ALT normalization (one RCT, RR = 4.5, 95% CI 2.3-9.1), HBeAg clearance/loss (one RCT, RR = 1.8, 95% CI 1-3.1), and HBV DNA suppression (one RCT, RR = 3.9, 95% CI 2.4-6.3) but not HBeAg seroconversion (two RCTs, RR = 1.7, 95% CI 0.96-3.2) or HBsAg clearance (one RCT, RR = 3.5, 95% CI 0.2-67.1) at the end of 48 weeks of treatment. The quality of evidence was moderate to low due to indirectness and imprecision.

One RCT^{29,31} compared adefovir to placebo treatment. After 48 weeks of treatment, adefovir was associated with a higher rate of ALT normalization (RR = 2.7, 95% CI 1.6-4.6) and HBV DNA suppression (RR = 11.1, 95% CI 1.5-80.3) but not HBeAg seroconversion (RR = 3, 95% CI 0.9-9.9). Longer follow-up (192 weeks) of the same cohort with open-label adefovir treatment either alone or with lamivudine showed continued viral suppression and ALT normalization.³² The quality of evidence was moderate to low due to indirectness and imprecision.

Study name		RR (95% CI)	Events, Treatment	Events, Control	% Weight
HBeAg clearance/loss					
Barbera, 1994		5.55 (0.70, 43.95)	6/40	1/37	3.02
Gregorio, 1996		3.44 (1.05, 11.31)	10/30	3/31	9.16
Jonas,2002	-	1.78 (1.04, 3.05)	50/191	14/95	44.53
Murray,2012	<u> </u>	1.43 (0.59, 3.44)	10/48	7/48	16.75
Sokal, 1998		3.04 (1.46, 6.34)	23/70	8/74	23.95
Utili, 1991		2.00 (0.21, 18.69)	2/10	1/10	2.59
Ruiz-Moreno, 1990	1		0/12	0/12	0.00
		(Excluded)	101/401	34/307	
Subtotal (I-squared = 0.0%, p = 0.609)	¢	2.15 (1.50, 3.08)	101/401	34/307	100.00
ALT normalization					
Barbera, 1994	-	1.26 (0.70, 2.30)	16/39	12/37	14.57
Jonas,2002	1 🔶	4.52 (2.55, 8.01)	100/191	11/95	15.25
Jonas,2008	- 🔶 T	2.69 (1.58, 4.57)	64/115	12/58	16.41
Murray,2012	•	1.98 (1.37, 2.85)	40/52	21/54	21.60
Ruiz-Moreno, 1990		1.33 (0.38, 4.72)	4/12	3/12	5.19
Sokal, 1998	-	1.69 (0.58, 4.92)	8/70	5/74	6.81
Utili, 1991	- [a -	3.00 (0.37, 24.17)	3/10	1/10	2.14
Jonas, 2015	•	2.89 (1.80, 4.65)	81/120	14/60	18.03
Subtotal (I-squared = 48.5%, p = 0.070)	10	2.32 (1.69, 3.18)	316/609	79/400	100.00
· · · · · · · · · · · · · · · · · · ·	ľ				
HBV DNA suppression					
Barbera, 1994		2.16 (0.93, 5.03)	14/40	6/37	14.48
Gregorio, 1996	-	1.29 (0.55, 2.99)	9/29	7/29	14.48
Jonas.2002	1.	3.88 (2.41, 6.26)	117/191	15/95	18.12
Ruiz-Moreno, 1991		2.50 (0.60, 10.46)	5/12	2/12	9.30
Ruiz-Moreno, 1991		2.00 (0.45, 8.94)	4/12	2/12	8.85
Sokal, 1998	-	3.04 (1.46, 6.34)	23/70	8/74	15.59
Utili, 1991		3.00 (0.37, 24.17)	3/10	1/10	5.75
Jonas, 2015		14.75 (3.73, 58.32)	59/120	2/60	9.71
Murray, 2012		- 92.38 (5.84, 1461.71)	44/52	0/54	3.73
Subtotal (I-squared = 63.8%, p = 0.005)		3.34 (1.85, 6.03)	278/538	43/383	100.00
Subiotal (I-squared = 03.8%; p = 0.003)	×	3.34 (1.83, 0.03)	210/000	43/303	100.00
HBeAg seroconversion					
Gregorio, 1996		2.76 (0.81, 9.41)	8/30	3/31	11.61
Jonas,2002	-	1.74 (0.96, 3.15)	42/191	12/95	49.91
Jonas.2008		3.03 (0.93, 9.85)	18/113	3/57	12.58
Jonas, 2015	-	2.42 (1.06, 5.50)	29/120	6/60	25.89
Subtotal (I-squared = 0.0%, p = 0.789)		2.14 (1.41, 3.28)	97/454	24/243	100.00
	l~	2.17 (1.71, 3.20)	511-154	27/293	100.00
HBsAg clearance					
Jonas,2002		3.50 (0.18, 67.07)	3/191	0/95	32.94
Sokal, 1998		7.40 (0.93, 58.62)	7/70	1/74	67.08
Subtotal (I-squared = 0.0%, p = 0.684)	0	5.78 (1.06, 31.49)	10/261	1/169	100.00
NOTE: Weights are from random effects analysis					

Fig. 2. Forest plot of intermediate outcomes for antiviral therapy compared to control at posttreatment follow-up <12 months.

One RCT²⁸ compared tenofovir to placebo treatment. After 72 weeks of treatment, tenofovir demonstrated significantly higher rates of ALT normalization (RR = 2, 95% CI 1.4-2.9) and HBV DNA suppression (RR = 92.4, 95% CI 5.8-146.7) but no statistically significant effect on HBeAg clearance/loss (RR = 1.4, 95% CI 0.6-3.4). The quality of evidence was moderate to low due to indirectness and imprecision. In one RCT,³⁰ entecavir compared to placebo was associated with higher ALT normalization (RR = 2.9, 95% CI 1.8-4.7), HBV DNA suppression (RR = 14.8, 95% CI 3.7-58.3), and HBeAg seroconversion (RR = 2.4, 95% CI 1.1-5.5) at 48 weeks. Longer duration of treatment (96 weeks) resulted in persistently statistically significant HBeAg seroconversion (RR = 1.8, 95% CI 1.0-3.4) but not ALT

Study name		RR (95% CI)	Events, Treatment	Events, Control	% Weight
HBeAg clearance/loss					
Barbera, 1994	-	1.90 (0.72, 5.03)	10/39	5/37	26.74
Gregorio,1996	-	2.48 (0.99, 6.19)	12/30	5/31	30.37
Lai,1991	- <u></u>	2.90 (0.12, 68.50)	1/30	0/29	2.54
Ruiz-Moreno, 1990	-	1.33 (0.38, 4.72)	4/12	3/12	15.87
Varjo, 1996	-	1.85 (0.67, 5.11)	8/13	3/9	24.47
Subtotal (I-squared = 0.0%, p = 0.952)	IÔ.	1.95 (1.18, 3.23)	35/124	16/118	100.00
ALT normalization					
Varjo, 1996	-	1.38 (0.59, 3.23)	8/13	4/9	6.49
Jonas, 2015	۲	1.36 (1.09, 1.70)	98/120	36/60	93.51
Subtotal (I-squared = 0.0%, p = 0.969)	1	1.36 (1.10, 1.69)	106/133	40/69	100.00
HBV DNA suppression					
Barbera, 1994	-	1.66 (0.79, 3.49)	14/39	8/37	10.44
Gregorio,1996	-	1.42 (0.66, 3.04)	11/30	8/31	9.99
Lai,1991	\rightarrow	4.84 (0.24, 96.66)	2/30	0/29	0.64
Ruiz-Moreno,1991	-	2.50 (0.60, 10.46)	5/12	2/12	2.81
Ruiz-Moreno,1991		3.50 (0.91, 13.53)	7/12	2/12	3.15
Vajro, 1996	-	1.38 (0.59, 3.23)	8/13	4/9	8.03
Jonas, 2015	٠	1.23 (0.92, 1.66)	77/120	26/50	64.94
Subtotal (I-squared = 0.0%, p = 0.654)	.0	1.39 (1.09, 1.76)	124/256	50/180	100.00
•					
HBeAg seroconversion					
Gregorio,1996	-	3.10 (1.12, 8.55)	12/30	4/31	25.38
Lai,1991		2.90 (0.12, 68.50)	1/30	0/29	2.61
Jonas, 2015	+	1.83 (1.00, 3.35)	44/120	10/50	72.00
Subtotal (I-squared = 0.0%, p = 0.670)	\diamond	2.12 (1.27, 3.53)	57/180	14/110	100.00
· ·					
HBsAg clearance					
Lai,1991	•	2.90 (0.12, 68.50)	1/30	0/29	46.14
Vajro, 1996		3.57 (0.19, 66.61)	2/13	0/9	53.86
Subtotal (I-squared = 0.0%, p = 0.925)	\sim	3.25 (0.38, 27.79)	3/43	0/38	100.00
	-				
HBsAg seroconversion					
Lai, 1991	•	2.90 (0.12, 68.50)	1/30	0/29	48.96
Varjo, 1996		2.14 (0.10, 47.38)	1/13	0/9	51.04
Subtotal (I-squared = 0.0%, p = 0.893)	\sim	2.49 (0.27, 22.71)	2/43	0/38	100.00
NOTE: Weights are from random effects analysis	-				
	- 1 1 1 1 1				
	.05 .51 51550				

Fig. 3. Forest plot of intermediate outcomes for antiviral therapy compared to control at posttreatment follow-up \geq 12 months.

normalization (RR = 1.1, 95% CI 0.9-1.4) and HBV DNA suppression (RR = 1.2, 95% CI 0.9-1.7). The quality of evidence was limited due to the use of surrogate outcomes.

A detailed summary of the assessment of quality of evidence is provided in Supporting Table S3.

Publication Bias. We were unable to evaluate publication bias due to the small number of studies for each outcome.

Discussion

Main Findings. In this systematic review evaluating the effectiveness of antiviral therapy in children, we identified 14 studies. The current evidence demonstrates that antiviral therapy improves the frequency of surrogate outcomes (ALT normalization, HBeAg loss, HBV DNA suppression, HBeAg seroconversion, and HBsAg loss) when compared to no or placebo treatment. The

IBeAg clearance/loss	RR (95% CI)	Treatment	Control	Weight
IBeAg clearance/loss				
Barbera, 1994	5.55 (0.70, 43.95)	6/40	1/37	7.81
Gregorio, 1996	3.44 (1.05, 11.31)	10/30	3/31	23.66
Sokal,1998	3.04 (1.46, 6.34)	23/70	8/74	61.84
Jtili, 1991	2.00 (0.21, 18.69)	2/10	1/10	6.69
Ruiz-Moreno, 1990	(Excluded)	0/12	0/12	0.00
Subtotal (I-squared = 0.0%, p = 0.923)	3.19 (1.79, 5.69)	41/162	13/164	100.00
ALT normalization				
Barbera, 1994	1.26 (0.70, 2.30)	16/39	12/37	61.76
Ruiz-Moreno, 1990	1.33 (0.38, 4.72)	4/12	3/12	13.81
Sokal,1998	1.69 (0.58, 4.92)	8/70	5/74	19.36
Jtili, 1991	3.00 (0.37, 24.17)	3/10	1/10	5.08
Subtotal (I-squared = 0.0%, p = 0.857)	1.41 (0.88, 2.25)	31/131	21/133	100.00
•				
IBV DNA suppression				
Barbera, 1994	2.16 (0.93, 5.03)	14/40	6/37	24.04
Gregorio,1996	1.29 (0.55, 2.99)	9/29	7/29	24.17
Ruiz-Moreno,1991	2.50 (0.60, 10.46)	5/12	2/12	8.39
Ruiz-Moreno,1991	2.00 (0.45, 8.94)	4/12	2/12	7.67
Sokal,1998	3.04 (1.46, 6.34)	23/70	8/74	31.79
Jtili, 1991	3.00 (0.37, 24.17)	3/10	1/10	3.95
Subtotal (I-squared = 0.0%, p = 0.784)	2.16 (1.43, 3.28)	58/173	26/174	100.00
•				
IBeAg seroconversion				
Gregorio, 1996	2.76 (0.81, 9.41)	8/30	3/31	100.00
Subtotal (I-squared = .%, p = .)	2.76 (0.81, 9.41)	8/30	3/31	100.00
	1414 6 2			
IBsAg clearance				
Sokal, 1998	7.40 (0.93, 58.62)	7/70	1/74	100.00
Subtotal (I-squared = .%, p = .)	7.40 (0.93, 58.62)	7/70	1/74	100.00
IOTE: Weights are from random effects analysis				

Fig. 4. Forest plot of intermediate outcomes for IFN- α compared to control at posttreatment follow-up <12 months.

confidence in this evidence is limited by the short duration of follow-up, certain methodological limitations that relate to randomization and blinding processes, and minimal data on patient-important outcomes such as cirrhosis and HCC.

Strengths and Limitations. Although relatively few in number, some large, randomized trials of antiviral agents inform clinical decision-making in pediatric HBV infection. In general, the primary outcomes of these studies, including HBV DNA suppression, HBeAg loss and seroconversion, and ALT normalization, were used as surrogates for the clinical outcomes of cirrhosis, HCC, and death as the latter are quite rare during childhood. Despite this limitation, this is the reality of pediatric practice, and some data support the use of HBeAg seroconversion and viral suppression as therapeutic endpoints, particularly if these are durable. Going forward, future trials of antivirals in children should evaluate long-term durability of the surrogate outcomes. As for clinical outcomes; which require a very long follow-up that may be challenging for randomized trials, we suggest the use of registries and large databases of treated children. Such observational studies can provide evidence on clinical outcome and can inform decision-making if the studies had rigorous design features to protect from bias (e.g., prospective data entry, multivariable adjustment for prognostic factors, and minimal loss to follow-up).

Currently approved therapeutic agents have acceptable safety profiles in children and adolescents. IFN has a

HBAg clearance/loss Barbera, 1994 Sregorio, 1996 Lai, 1991 Ruiz-Moreno, 1990 (AJRO, 1996 Subtotal (I-squared = 0.0%, p = 0.952)	RR (95% CI) 1.90 (0.72, 5.03) 2.48 (0.99, 6.19) 2.90 (0.12, 68.50) 1.33 (0.38, 4.72) 1.85 (0.67, 5.11) 1.95 (1.18, 3.23)	Treatment 10/39 12/30 1/30 4/12 8/13 35/124	5/37 5/31 0/29 3/12 3/9	Weight 26.74 30.37 2.54 15.87
Barbera, 1994 Gregorio, 1998 .si, 1991 Ruiz-Moreno, 1990 (AJRO, 1998 Subtotal (I-squared = 0.0%, p = 0.952)	2.48 (0.99, 6.19) 2.90 (0.12, 68.50) 1.33 (0.38, 4.72) 1.85 (0.67, 5.11)	12/30 1/30 4/12 8/13	5/31 0/29 3/12	30.37 2.54
Sregorio, 1998 .ai, 1991 Ruiz-Moreno, 1990 (AJRO, 1998 Subtotal (I-squared = 0.0%, p = 0.952)	2.48 (0.99, 6.19) 2.90 (0.12, 68.50) 1.33 (0.38, 4.72) 1.85 (0.67, 5.11)	12/30 1/30 4/12 8/13	5/31 0/29 3/12	30.37 2.54
.ai, 1991 Ruiz-Moreno, 1990 (AJRO, 1998 Subtotal (I-squared = 0.0%, p = 0.952)	2.90 (0.12, 68.50) 1.33 (0.38, 4.72) 1.85 (0.67, 5.11)	1/30 4/12 8/13	0/29 3/12	2.54
Ruiz-Moreno, 1990 /AJRO, 1998 Subtotal (I-squared = 0.0%, p = 0.952)	1.33 (0.38, 4.72) 1.85 (0.67, 5.11)	4/12 8/13	3/12	
/AJRO, 1998 Subtotal (I-squared = 0.0%, p = 0.952)	1.85 (0.67, 5.11)	8/13		15.87
Subtotal (I-squared = 0.0%, p = 0.952)			3/9	
	1.95 (1.18, 3.23)	35/124		24.47
LT normalization			16/118	100.00
LT normalization				
/AJRO, 1996	1.38 (0.59, 3.23)	8/13	4/9	100.00
Subtotal (I-squared = .%, p = .)	1.38 (0.59, 3.23)	8/13	4/9	100.00
IBV DNA suppression				
Barbera, 1994	1.66 (0.79, 3.49)	14/39	8/37	23.93
Gregorio, 1996	1.42 (0.66, 3.04)	11/30	8/31	23.01
.si,1991	4.84 (0.24, 98.66)	2/30	0/29	1.66
Ruiz-Moreno,1991	2.50 (0.60, 10.46)	5/12	2/12	7.08
Ruiz-Moreno, 1991	3.50 (0.91, 13.53)	7/12	2/12	7.87
/AJRO, 1998	0.96 (0.54, 1.71)	8/13	9/14	36.47
Subtotal (I-squared = 7.6%, p = 0.388)	1.48 (0.99, 2.14)	47/138	29/135	100.00
iBeAg seroconversion				
Gregorio, 1998	3.10 (1.12, 8.55)	12/30	4/31	90.67
.si,1991	2.90 (0.12, 68.50)	1/30	0/29	9.33
Subtotal (I-squared = 0.0%, p = 0.989)	3.08 (1.17, 8.09)	13/60	4/60	100.00
iBsAg clearance				
.si,1991	2.90 (0.12, 68.50)	1/30	0/29	46.14
/AJRO, 1996	3.57 (0.19, 66.61)	2/13	0/9	53.86
Subtotal (I-squared = 0.0%, p = 0.925)	3.25 (0.38, 27.79)	3/43	0/38	100.00
IBsAg seroconversion				
.ai,1991	2.90 (0.12, 68.50)	1/30	0/29	48.96
/AJRO, 1996	2.14 (0.10, 47.38)	1/13	0/9	51.04
Subtotal (I-squared = 0.0%, p = 0.893)	2.49 (0.27, 22.71)	2/43	0/38	100.00
IOTE: Weights are from random effects analysis				

Fig. 5. Forest plot of intermediate outcomes for IFN- α compared to control at posttreatment follow-up \geq 12 months.

side effect profile similar to that seen in adults, and transient effects on body weight and growth have been observed³³; but no long-term safety issues have been identified. Oral antivirals are both safe and well tolerated, but viral resistance with lamivudine and adefovir develops at least as often in children as in adults.³⁴ Development of viral resistance is less common with entecavir,³⁰ as has been the case in adults.

Clinical and Research Implications. Some children with chronic HBV infection may benefit from treatment, at least with respect to the surrogate outcomes of HBV DNA suppression and HBeAg seroconversion. The effect of treatment in preventing serious sequelae, such as cirrhosis and HCC, in young adult life

remains unproven. ALT levels less than 1.5-2 times the upper limit of normal in a child who is HBeAg-positive with high HBV DNA levels (>10 million IU/mL) generally indicates that the child is in the immune-tolerant phase of HBV infection. Such children are not typically candidates for treatment because treatment with any of the currently available drugs has not been demonstrated to improve HBeAg seroconversion compared with no treatment. Children with ALT values greater than 10 times the upper limit of normal may be in the process of spontaneous HBeAg seroconversion and should be observed for several months before treatment is begun. Therapeutic choices for children with chronic hepatitis B have been limited but expanding as entecavir has recently been shown to be safe and effective in this population and data regarding pegylated IFN and tenofovir use in children are expected soon. Therefore, the choice of whether to treat now or to monitor depends on patient-specific characteristics that predict the efficacy of treatment, including persistently abnormal ALT levels or active disease on liver biopsy, as well as considerations regarding the likelihood of achieving appropriate therapeutic goals. Patients' and parents' values and preferences should be incorporated into shared decision-making about treatment. Prolonged treatment with nucleoside or nucleotide analogues in children who are in the immune-tolerant stage has not been associated with substantial benefit and carries a risk of developing antiviral drug resistance, both to the agent chosen and to related drugs. An exception may be those immune-tolerant children who will be undergoing immunosuppressive therapy, such as those who will be receiving chemotherapy, or stem cell or solid organ transplantation. Patient selection and timing of treatment are critical decisions in order to avoid overtreatment, maximize therapeutic benefit while limiting duration of therapy, and minimize risk for antiviral drug resistance later in life.

References

- McMahon BJ, Alward WL, Hall DB, Heyward WL, Bender TR, Francis DP, et al. Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. J Infect Dis 1985;151:599-603.
- Lok AS, Lai CL. A longitudinal follow-up of asymptomatic hepatitis B surface antigen-positive Chinese children. HEPATOLOGY 1988;8:1130-1133.
- Bortolotti F, Cadrobbi P, Crivellaro C, Guido M, Rugge M, Noventa F, et al. Long-term outcome of chronic type B hepatitis in patients who acquire hepatitis B virus infection in childhood. Gastroenterology 1990;99:805-810.
- Bortolotti F, Calzia R, Cadrobbi P, Giacchini R, Ciravegna B, Armigliato M, et al. Liver cirrhosis associated with chronic hepatitis B virus infection in childhood. J Pediatr 1986;108:224-227.
- Cheah PL, Looi LM, Lin HP, Yap SF. Childhood primary hepatocellular carcinoma and hepatitis B virus infection. Cancer 1990;65:174-176.
- Giacchino R, Navone C, Facco F, Giambartolomei G, Pontisso P, Callea F. HBV-DNA-related hepatocellular carcinoma occurring in childhood. Report of three cases. Dig Dis Sci 1991;36:1143-1146.
- Hsu HC, Wu MZ, Chang MH, Su IJ, Chen DS. Childhood hepatocellular carcinoma develops exclusively in hepatitis B surface antigen carriers in three decades in Taiwan. Report of 51 cases strongly associated with rapid development of liver cirrhosis. J Hepatol 1987;5:260-267.
- Pontisso P, Basso G, Perilongo G, Morsica G, Cecchetto G, Ruvoletto MG, et al. Does hepatitis B virus play a role in primary liver cancer in children of Western countries? Cancer Detect Prev 1991;15:363-368.
- Tanaka T, Miyamoto H, Hino O, Kitagawa T, Koike M, Iizuka T, et al. Primary hepatocellular carcinoma with hepatitis B virus-DNA integration in a 4-year-old boy. Hum Pathol 1986;17:202-204.
- Livingston SE, Simonetti JP, McMahon BJ, Bulkow LR, Hurlburt KJ, Homan CE, et al. Hepatitis B virus genotypes in Alaska Native people with hepatocellular carcinoma: preponderance of genotype F. J Infect Dis 2007;195:5-11.

JONAS ET AL.

317

- Jonas MM, Block JM, Haber BA, Karpen SJ, London WT, Murray KF, et al. Treatment of children with chronic hepatitis B virus infection in the United States: patient selection and therapeutic options. HEPATO-LOGY 2010;52:2192-2205.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Open Med 2009;3:e123-e130.
- 13. Murad MH, Montori VM, Ioannidis JP, Jaeschke R, Devereaux PJ, Prasad K, et al. How to read a systematic review and meta-analysis and apply the results to patient care: users' guides to the medical literature. JAMA 2014;312:171-179.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-188.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-560.
- Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011;343: d4002.
- Bortolotti F, Jara P, Crivellaro C, Hierro L, Cadrobbi P, Frauca E, et al. Outcome of chronic hepatitis B in Caucasian children during a 20-year observation period. J Hepatol 1998;29:184-190.
- Fujisawa T, Inui A, Sogo T, Komatsu H. Long-term history of chronic hepatitis B virus infection in children. [in Japanese] Nihon Rinsho 2004;62(Suppl. 8):303-308.
- 19. Vajro P, Tedesco M, Fontanella A, De Vincenzo A, Vecchione R, Ammendola R, et al. Prolonged and high dose recombinant interferon alpha-2b alone or after prednisone priming accelerates termination of active viral replication in children with chronic hepatitis B infection. Pediatr Infect Dis J 1996;15:223-231.
- Barbera C, Bortolotti F, Crivellaro C, Coscia A, Zancan L, Cadrobbi P, et al. Recombinant interferon-alpha 2a hastens the rate of HBeAg clearance in children with chronic hepatitis B. HEPATOLOGY 1994;20:287-290.
- Utili R, Sagnelli E, Galanti B, Aprea L, Cesaro G, Digilio L, et al. Prolonged treatment of children with chronic hepatitis B with recombinant alpha 2a-interferon: a controlled, randomized study. Am J Gastroenterol 1991;86:327-330.
- 22. Ruiz-Moreno M, Rua MJ, Molina J, Moraleda G, Moreno A, Garcia-Aguado J, et al. Prospective, randomized controlled trial of interferonalpha in children with chronic hepatitis B. HEPATOLOGY 1991;13:1035-1039.
- Ruiz Moreno M, Jimenez J, Porres JC, Bartolome J, Moreno A, Carreno V. A controlled trial of recombinant interferon-alpha in Caucasian children with chronic hepatitis B. Digestion 1990;45:26-33.
- Sokal EM, Conjeevaram HS, Roberts EA, Alvarez F, Bern EM, Goyens P, et al. Interferon alfa therapy for chronic hepatitis B in children: a multinational randomized controlled trial. Gastroenterology 1998;114: 988-995.
- Lai CL, Lin HJ, Lau JN, Flok AS, Wu PC, Chung HT, et al. Effect of recombinant alpha 2 interferon with or without prednisone in Chinese HBsAg carrier children. QJM 1991;78:155-163.
- 26. Gregorio GV, Jara P, Hierro L, Diaz C, de la Vega A, Vegnente A, et al. Lymphoblastoid interferon alfa with or without steroid pretreatment in children with chronic hepatitis B: a multicenter controlled trial. HEPATOLOGY 1996;23:700-707.
- Jonas MM, Mizerski J, Badia IB, Areias JA, Schwarz KB, Little NR, et al. Clinical trial of lamivudine in children with chronic hepatitis B. N Engl J Med 2002;346:1706-1713. Erratum in: N Engl J Med 2002; 347:955.
- Murray KF, Szenborn L, Wysocki J, Rossi S, Corsa AC, Dinh P, et al. Randomized, placebo-controlled trial of tenofovir disoproxil fumarate in adolescents with chronic hepatitis B. HEPATOLOGY 2012;56:2018-2026.
- Jonas MM, Kelly D, Pollack H, Mizerski J, Sorbel J, Frederick D, et al. Safety, efficacy, and pharmacokinetics of adefovir dipivoxil in children and adolescents (age 2 to <18 years) with chronic hepatitis B. HEPATOLOGY 2008;47:1863-1871.

- Jonas MM, Chang M-H, Sokal E, Schwarz KB, Kelly D, Kim KM, et al. Randomized controlled trial of entecavir versus placebo in children with HBeAg-positive chronic hepatitis B. HEPATOLOGY 2015; doi: 10.1002/hep.28015.
- Jonas MM, Little NR, Gardner SD; International Pediatric Lamivudine Investigator Group. Long-term lamivudine treatment of children with chronic hepatitis B: durability of therapeutic responses and safety. J Viral Hepat 2008;15:20-27.
- 32. Jonas MM, Kelly D, Pollack H, Mizerski J, Sorbel J, Frederick D, et al. Efficacy and safety of long-term adefovir dipivoxil therapy in children with chronic hepatitis B infection. Pediatr Infect Dis J 2012;31: 578-582.
- 33. Comanor L, Minor J, Conjeevaram HS, Roberts EA, Alvarez F, Bern EM, et al. Impact of chronic hepatitis B and interferon-alpha therapy on growth of children. J Viral Hepat 2001;8:139-147.
- 34. Sokal EM, Kelly DA, Mizerski J, Badia IB, Areias JA, Schwarz KB, et al. Long-term lamivudine therapy for children with HBeAg-positive chronic hepatitis B. HEPATOLOGY 2006;43:225-232.

Supporting Information

Additional Supporting Information may be found at onlinelibrary.wiley.com/doi/10.1002/hep.28278/suppinfo.