# Monitoring the Future 

National Survey Results on Drug Use, 1975-2004

Volume I

# Secondary <br> School Students 

2004

# MONITORING THE FUTURE 

# NATIONAL SURVEY RESULTS ON DRUG USE, 1975-2004 

Volume I<br>Secondary School Students

> by

Lloyd D. Johnston, Ph.D.
Patrick M. O'Malley, Ph.D.
Jerald G. Bachman, Ph.D.
John E. Schulenberg, Ph.D.
The University of Michigan
Institute for Social Research

National Institute on Drug Abuse
6001 Executive Boulevard
Bethesda, Maryland 20892
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

This publication was written by the principal investigators and staff of the Monitoring the Future project at the Institute for Social Research, the University of Michigan, under Research Grant No. R01 DA 01411 from the National Institute on Drug Abuse.

## Public Domain Notice

All material appearing in this volume is in the public domain and may be reproduced or copied without permission from the Institute or the authors. Citation of the source is appreciated.

Recommended Citation
Johnston, L. D., O'Malley, P. M., Bachman, J. G., \& Schulenberg, J. E. (2005). Monitoring the Future national survey results on drug use, 1975-2004: Volume I, Secondary school students (NIH Publication No. 05-5727). Bethesda, MD: National Institute on Drug Abuse.

## ABBREVIATED CONTENTS*

Page
Detailed Contents ..... v
List of Tables ..... xi
List of Figures ..... xxi
Chapter 1 Introduction. ..... 1
Chapter 2 Key Findings: An Overview and Integration Across Five Populations ..... 9
Chapter 3 Study Design and Procedures ..... 59
Chapter $4 \quad$ Prevalence and Frequency of Drug Use Among Eighth-, Tenth-, and Twelfth-Grade Students ..... 79
Chapter 5 Trends in Drug Use ..... 139
Chapter 6 Initiation Rates and Trends in Initiation Rates at Lower Grade Levels ..... 259
Chapter 7 Degree and Duration of Drug Highs ..... 301
Chapter 8 Attitudes and Beliefs About Drug Use ..... 327
Chapter 9 The Social Milieu. ..... 385
Chapter 10 Other Findings From the Study ..... 429
Appendix A Prevalence and Trend Estimates Adjusted for Absentees and Dropouts ..... 461
Appendix B Definition of Background and Demographic Subgroups ..... 473
Appendix C Estimation of Sampling Errors. ..... 477
Appendix D Trends by Subgroup: Supplemental Tables for Secondary School Students ..... 509
Appendix E Trends in Specific Subclasses of Hallucinogens, Amphetamines, Tranquilizers, and Narcotic Drugs Other Than Heroin ..... 659
Index of Drugs ..... 671

## DETAILED CONTENTS

Page
Chapter 1 Introduction ..... 1
Surveys of Secondary School Students ..... 2
Surveys of College Students and of Adults Through Age 45 ..... 2
Content Areas Covered in This Report ..... 3
Drug Classes Included at the Beginning of the Study ..... 3
Drug Classes Added During the Life of the Study ..... 3
Attitudes and Beliefs ..... 4
Over-the-Counter Substances ..... 4
Cumulative Lifetime Daily Marijuana Use ..... 5
Trends in the Use of Specific Alcoholic Beverages ..... 5
Appendixes ..... 5
Purposes and Rationale for This Research ..... 6
Web Site ..... 7
Index ..... 8
Chapter 2 Key Findings: An Overview and Integration Across Five Populations ..... 9
Trends in Illicit Drug Use ..... 10
College-Noncollege Differences in Illicit Drug Use ..... 23
Male-Female Differences in Illicit Drug Use ..... 24
Trends in Alcohol Use ..... 25
College-Noncollege Differences in Alcohol Use ..... 26
Male-Female Differences in Alcohol Use ..... 27
Trends in Cigarette Smoking ..... 27
Age and Cohort-Related Differences in Cigarette Smoking ..... 29
College-Noncollege Differences in Cigarette Smoking ..... 30
Male-Female Differences in Cigarette Smoking ..... 30
Racial/Ethnic Comparisons ..... 31
Drug Use in Eighth Grade. ..... 32
Drug Use by Age 45 ..... 34
Summary and Conclusions ..... 35
Chapter 3 Study Design and Procedures ..... 59
Research Design and Procedures for the Surveys of Seniors ..... 59
The Population Under Study ..... 60
The Omission of Dropouts ..... 60
Sampling Procedures ..... 60
Questionnaire Administration ..... 61
Questionnaire Format. ..... 61
Research Design and Procedures for the Surveys of Lower Grades ..... 61

## DETAILED CONTENTS (Continued)

Page
Mode of Administration ..... 62
Questionnaire Forms and Sample Proportions ..... 63
Research Design and Procedures for the Follow-Up Surveys of Seniors ..... 64
Follow-Up Procedures ..... 64
Follow-Up Questionnaire Format ..... 65
Representativeness and Sample Accuracy ..... 65
School Participation ..... 65
Student Participation ..... 67
Sampling Accuracy of the Estimates ..... 68
Panel Retention ..... 68
The Problem of Panel Attrition ..... 68
Response Rates Attained ..... 69
The Impact of Panel Attrition on Research Results ..... 70
Effects on Relational Analyses ..... 72
Validity of the Measures of Self-Reported Drug Use. ..... 72
Consistency and the Measurement of Trends ..... 73
Chapter 4 Prevalence and Frequency of Drug Use Among Eighth-, Tenth-, and Twelfth-Grade Students ..... 79
Prevalence and Frequency of Drug Use in 2004: All Students ..... 79
Prevalence of Lifetime, Annual, and 30-Day Use ..... 79
Frequency of Lifetime, Annual, and 30-Day Use ..... 87
Prevalence of Current Daily Use ..... 87
Noncontinuation Rates ..... 88
Prevalence Comparisons for Important Subgroups ..... 89
Gender Differences ..... 90
Differences Related to College Plans ..... 91
Regional Differences ..... 93
Differences Related to Population Density ..... 94
Differences Related to Parental Education ..... 95
Racial/Ethnic Differences ..... 96
Chapter 5 Trends in Drug Use ..... 139
Trends in Prevalence of Use 1975-2004: Twelfth Graders ..... 139
Trends in Prevalence of Use 1991-2004: Eighth and Tenth Graders ..... 154
Trends in Noncontinuation Rates: Twelfth Graders ..... 161
Implications for Prevention. ..... 163
Comparisons Among Subgroups in Trends in Prevalence ..... 164
Gender Differences in Trends ..... 164

## DETAILED CONTENTS (Continued)

Page
Trend Differences Related to College Plans ..... 168
Regional Differences in Trends ..... 172
Trend Differences Related to Population Density ..... 176
Differences in Trends by Socioeconomic Status ..... 179
Racial/Ethnic Differences in Trends ..... 182
Chapter 6 Initiation Rates and Trends in Initiation Rates at Lower Grade Levels ..... 259
Incidence of Use by Grade Level ..... 260
Trends in Lifetime Prevalence at Earlier Grade Levels ..... 263
Chapter 7 Degree and Duration of Drug Highs ..... 301
Degree and Duration of Highs Among Twelfth Graders ..... 301
Trends in Degree and Duration of Drug Highs ..... 303
Chapter 8 Attitudes and Beliefs About Drug Use ..... 327
Perceived Harmfulness of Drug Use ..... 328
Beliefs about Harmfulness Among Twelfth Graders ..... 328
Eighth and Tenth Graders’ Beliefs about Harmfulness ..... 329
Trends in Perceived Harmfulness of Drug Use ..... 330
Trends in Perceived Harmfulness Among Twelfth Graders ..... 330
Trends in Perceived Harmfulness Among Eighth and Tenth Graders ..... 338
Personal Disapproval of Drug Use ..... 341
Extent of Disapproval Among Twelfth Graders ..... 341
Extent of Disapproval Among Eighth and Tenth Graders ..... 342
Trends in Disapproval of Drug Use ..... 343
Trends in Disapproval Among Twelfth Graders ..... 343
Trends in Disapproval Among Eighth and Tenth Graders ..... 346
Attitudes Regarding the Legality of Drug Use ..... 348
Attitudes of Twelfth Graders ..... 348
Trends in These Attitudes Among Twelfth Graders ..... 349
The Legal Status of Marijuana ..... 349
Attitudes and Predicted Responses to Legalization ..... 350
Trends in Attitudes and Predicted Responses ..... 350

## DETAILED CONTENTS (Continued)

Page
Chapter 9 The Social Milieu. ..... 385
Perceived Attitudes of Friends: Twelfth Graders ..... 385
Perceptions of Friends’ Attitudes ..... 385
A Comparison of the Attitudes of Parents, Peers, and Twelfth Graders ..... 386
Trends in Perceptions of Friends’ Attitudes ..... 387
Friends’ Use of Drugs ..... 389
Exposure to Drug Use by Friends and Others: Twelfth Graders ..... 390
Friends' Use of Drugs: Eighth and Tenth Graders ..... 391
Trends in Exposure to Drug Use and Friends’ Use of Drugs ..... 392
Trends in Exposure to Drug Use by Friends and Others: Twelfth Graders ..... 392
Implications for Validity of Self-Reported Usage Questions ..... 394
Trends in Friends’ Use: Eighth and Tenth Graders ..... 394
Perceived Availability of Drugs ..... 395
Perceived Availability ..... 396
Trends in Perceived Availability for Twelfth Graders ..... 397
Trends in Perceived Availability for Eighth and Tenth Graders ..... 401
The Importance of Supply Reduction Versus Demand Reduction ..... 402
Chapter 10 Other Findings From the Study ..... 429
The Use of Nonprescription Stimulants. ..... 429
Prevalence of Use in 2004 Among Seniors ..... 430
Subgroup Differences ..... 430
Trends in Use Among Seniors ..... 431
Trends in Subgroup Differences ..... 432
Performance-Enhancing Substances: "Andro" and Creatine ..... 433
The Use of Marijuana on a Daily Basis ..... 434
Lifetime Prevalence of Daily Marijuana Use Among Seniors ..... 434
Grade of First Daily Marijuana Use ..... 435
Recency of Daily Marijuana Use by Seniors ..... 435
Duration of Daily Marijuana Use by Seniors ..... 436
Subgroup Differences ..... 436
Trends in Use of Marijuana on a Daily Basis ..... 437
Other Publications From the Study ..... 437
A Panel Study of American College Students ..... 438
Developmental Tasks and Well-Being ..... 438
Recall and Appraisal of Anti-Smoking Advertising ..... 439
Recent Trends in Youth Access to Cigarettes and in Different Means of Access ..... 439

## DETAILED CONTENTS (Continued)

Page
An Examination of Differences in Substance Use Among Different Hispanic Subgroups ..... 440
Aims and Objectives of Monitoring the Future ..... 440
Design and Procedures of the Study ..... 441
Other Data on Correlates and Trends. ..... 441
Monitoring the Future Web Site ..... 442
Appendix A Prevalence and Trend Estimates Adjusted for Absentees and Dropouts ..... 461
Corrections for Lower Grade Levels ..... 461
The Effects of Missing Absentees ..... 462
The Effects of Missing Dropouts ..... 463
Extrapolating to Dropouts From Absentees ..... 463
Extrapolating From the Household Surveys ..... 464
Effects of Omitting Dropouts in Trend Estimates ..... 465
More Recent Update on Corrections for Dropouts ..... 466
Summary and Conclusions ..... 468
Examples of Revised Estimates for Two Drugs ..... 468
Appendix B Definition of Background and Demographic Subgroups ..... 473
Appendix C Estimation of Sampling Errors ..... 477
Calculating Confidence Intervals ..... 477
Significance of Difference Between Two Proportions ..... 478
Design Effects in Complex Samples ..... 478
Estimating Design Effects. ..... 479
Factors Affecting Design Effects ..... 480
Design Effects for Differences Between Two Proportions ..... 481
Determining Effective Ns ..... 483
A Special Note on Racial/Ethnic Subgroups ..... 483
A Note on Interpretation of Differences and Statistical Significance. ..... 484
Appendix D Trends by Subgroup: Supplemental Tables for Secondary School Students ..... 509
Appendix E Trends in Specific Subclasses of Hallucinogens, Amphetamines, Tranquilizers, and Narcotic Drugs Other Than Heroin ..... 659
Index of Drugs ..... 671

## LIST OF TABLES

## Page

Table 2-1. Trends in Lifetime Prevalence of Use of Various Drugs for Eighth,
Tenth, and Twelfth Graders, College Students, and Young Adults
(Ages 19-28) ..... 39

Table 2-2. Trends in Annual Prevalence of Use of Various Drugs for
Eighth, Tenth, and Twelfth Graders, College Students, and
Young Adults (Ages 19-28) ..... 46
Table 2-3. Trends in Thirty-Day Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28) ..... 52
Table 2-4. Trends in Thirty-Day Prevalence of Daily Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28) ..... 57
Table 3-1. $\quad$ Sample Sizes and Response Rates ..... 75
Table 4-1. Ninety-Five Percent Confidence Limits: Eighth, Tenth, and TwelfthGraders, 2004
a. Lifetime Prevalence of Use ..... 99
b. Annual Prevalence of Use. ..... 100
c. Thirty-Day Prevalence of Use. ..... 101
d. Daily Prevalence of Use ..... 102
Table 4-2. Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, 2004 ..... 103
Table 4-3. Prevalence of Use of Heroin With and Without a Needle for Eighth, Tenth, and Twelfth Graders, 2004 ..... 105
Table 4-4a. Frequency of Use of Various Drugs: Lifetime, Annual, and Thirty-Day for Eighth, Tenth, and Twelfth Graders, 2004. ..... 106
Table 4-4b. Frequency of Occasions of Heavy Drinking and Cigarette and Smokeless Tobacco Use for Eighth, Tenth, and Twelfth Graders, 2004 ..... 111
Table 4-5. Lifetime Prevalence of Use of Various Drugs by Subgroups: Eighth, Tenth, and Twelfth Graders, 2004 ..... 112

## LIST OF TABLES (Continued)

Page
Table 4-6. Annual Prevalence of Use of Various Drugs by Subgroups: Eighth, Tenth, and Twelfth Graders, 2004 ..... 117
Table 4-7. Thirty-Day Prevalence of Use of Various Drugs by Subgroups: Eighth, Tenth, and Twelfth Graders, 2004 ..... 123
Table 4-8. Thirty-Day Prevalence of Daily Use of Various Drugs by Subgroups: Eighth, Tenth, and Twelfth Graders, 2004 ..... 128
Table 4-9. Racial/Ethnic Comparisons of Lifetime, Annual, Thirty-Day, and Daily Prevalence of Use of Various Drugs: Eighth, Tenth, and Twelfth Graders, 2004 ..... 129
Table 5-1. Long-Term Trends in Lifetime Prevalence of Use of Various Drugs for Twelfth Graders ..... 188
Table 5-2. Long-Term Trends in Annual Prevalence of Use of Various Drugs for Twelfth Graders ..... 192
Table 5-3. Long-Term Trends in Thirty-Day Prevalence of Use of Various Drugs for Twelfth Graders ..... 194
Table 5-4. Long-Term Trends in Thirty-Day Prevalence of Daily Use of Various Drugs for Twelfth Graders ..... 196
Table 5-5a. Trends in Lifetime Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders ..... 198
Table 5-5b. Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders ..... 201
Table 5-5c. Trends in Thirty-Day Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders ..... 205
Table 5-5d. Trends in Thirty-Day Prevalence of Daily Use of Various Drugs for Eighth, Tenth, and Twelfth Graders ..... 208
Table 5-6a. Trends in Lifetime Prevalence of Use of Heroin With and Without a Needle for Eighth, Tenth, and Twelfth Graders ..... 211

## LIST OF TABLES (Continued)

PageTable 5-6b. Trends in Annual Prevalence of Use of Heroin With and Without a Needle for Eighth, Tenth, and Twelfth Graders ..... 212
Table 5-6c. $\quad$ Trends in Thirty-Day Prevalence of Use of Heroin With and Without a Needle for Eighth, Tenth, and Twelfth Graders ..... 213
Table 5-7a. Trends in Noncontinuation Rates Among Twelfth Graders Who Ever Used Drug in Lifetime ..... 214
Table 5-7b. Trends in Noncontinuation Rates Among Twelfth Graders Who Used Drug Ten or More Times in Lifetime ..... 217
Table 6-1. Incidence of Use of Various Drugs by Grade: Eighth Graders, 2004 ..... 272
Table 6-2. Incidence of Use of Various Drugs by Grade: Tenth Graders, 2004 ..... 273
Table 6-3. Incidence of Use of Various Drugs by Grade: Twelfth Graders, 2004 ..... 274
Table 6-4. Incidence of Use of Various Drugs: A Comparison of Responses from Eighth, Tenth, and Twelfth Graders, 2004 ..... 275
Table 7-1. Marijuana: Trends in Degree and Duration of Feeling High for Twelfth Graders ..... 307
Table 7-2. LSD: Trends in Degree and Duration of Feeling High for Twelfth Graders ..... 309
Table 7-3. Hallucinogens Other Than LSD: Trends in Degree and Duration of Feeling High for Twelfth Graders ..... 311
Table 7-4. Cocaine: Trends in Degree and Duration of Feeling High for Twelfth Graders ..... 313
Table 7-5. Other Narcotics: Trends in Degree and Duration of Feeling High for Twelfth Graders ..... 315
Table 7-6. Amphetamines: Trends in Degree and Duration of Feeling High for Twelfth Graders ..... 317
Table 7-7. Tranquilizers: Trends in Degree and Duration of Feeling High for Twelfth Graders ..... 319

## LIST OF TABLES (Continued)

Page
Table 7-8. Alcohol: Trends in Degree and Duration of Feeling High for Twelfth Graders ..... 321
Table 8-1. Trends in Harmfulness of Drugs as Perceived by Eighth Graders ..... 352
Table 8-2. Trends in Harmfulness of Drugs as Perceived by Tenth Graders ..... 353
Table 8-3. Trends in Harmfulness of Drugs as Perceived by Twelfth Graders ..... 354
Table 8-4. Trends in Disapproval of Drug Use by Eighth Graders. ..... 356
Table 8-5. Trends in Disapproval of Drug Use by Tenth Graders ..... 357
Table 8-6. Trends in Disapproval of Drug Use by Twelfth Graders. ..... 358
Table 8-7. Trends in Twelfth Graders’ Attitudes Regarding Legality of Drug Use ..... 360
Table 8-8. Trends in Twelfth Graders’ Attitudes Regarding Marijuana Laws ..... 362
Table 9-1. Trends in Proportion of Friends Disapproving of Drug Use for Twelfth Graders ..... 404
Table 9-2. Trends in Twelfth Graders’ Exposure to Drug Use ..... 406
Table 9-3. Trends in Friends’ Use of Drugs as Estimated by Eighth Graders ..... 409
Table 9-4. Trends in Friends’ Use of Drugs as Estimated by Tenth Graders ..... 410
Table 9-5a. Trends in Friends’ Use of Drugs as Estimated by Twelfth Graders, Part A ..... 411
Table 9-5b. Trends in Friends’ Use of Drugs as Estimated by Twelfth Graders, Part B ..... 413
Table 9-6. Trends in Availability of Drugs as Perceived by Eighth Graders ..... 416
Table 9-7. Trends in Availability of Drugs as Perceived by Tenth Graders ..... 417
Table 9-8. Trends in Availability of Drugs as Perceived by Twelfth Graders ..... 418

## LIST OF TABLES (Continued)

Page
Table 10-1a. Nonprescription Diet Pills: Trends in Twelfth Graders’ Lifetime, Annual, and Thirty-Day Prevalence of Use by Gender ..... 443
Table 10-1b. Stay-Awake Pills: Trends in Twelfth Graders’ Lifetime, Annual, and Thirty-Day Prevalence of Use by Gender ..... 444
Table 10-1c. Look-Alikes: Trends in Twelfth Graders’ Lifetime, Annual, and Thirty-Day Prevalence of Use by Gender ..... 445
Table 10-2a. Nonprescription Diet Pills: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders ..... 446
Table 10-2b. Stay-Awake Pills: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders ..... 448
Table 10-2c. Look-Alikes: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders ..... 450
Table 10-3. Percentage of Twelfth Graders in Each Category of an Illicit Drug Use Index Who Have Tried Various Over-the-Counter Stimulants, 2004. ..... 452
Table 10-4. Trends in Annual Prevalence of Use of Androstenedione by Subgroups for Eighth, Tenth, and Twelfth Graders ..... 453
Table 10-5. Trends in Annual Prevalence of Use of Creatine by Subgroups for Eighth, Tenth, and Twelfth Graders ..... 454
Table 10-6. Trends in Annual Prevalence of Use of Steroids and Androstenedione by Gender for Eighth, Tenth, and Twelfth Graders ..... 455
Table 10-7. Daily Marijuana Use: Responses to Selected Questions by Subgroups for Twelfth Graders, 2004 ..... 456
Table 10-8a. Trends in Daily Use of Marijuana in Lifetime by Subgroups for Twelfth Graders ..... 457
Table 10-8b. Trends in Daily Use of Marijuana Prior to Tenth Grade by Subgroups for Twelfth Graders ..... 458

## LIST OF TABLES (Continued)

Page
Table A-1. Comparison of 2002 Monitoring the Future Seniors, NSDUH Seniors, and NSDUH Dropouts ..... 469
Table A-2. Estimated Prevalence Rates for Marijuana and Cocaine, 2002, Based on Data From Monitoring the Future and The National Survey on Drug Use and Health ..... 470
Table C-1. Design Effects for One-Year Trends in Prevalence of Use a. Any Illicit Drug Other Than Marijuana ..... 487
b. Any Illicit Drug, Any Illicit Drug Including Inhalants, and Marijuana ..... 488
c. Hallucinogens, LSD, Cocaine, and Other Cocaine ..... 489
d. Nitrites, PCP, Crack Cocaine, Heroin, Methamphetamine, Ice, Methaqualone, Rohypnol, GHB, Ketamine, and Steroids ..... 490
e. Hallucinogens Other Than LSD, MDMA, Narcotics Other Than Heroin, OxyContin, Ritalin, Sedatives (Barbiturates), Tranquilizers, Bidis, Kreteks, Androstenedione and Creatine ..... 491
f. Inhalants, Vicodin, and Amphetamines ..... 492
g. Alcohol, Been Drunk, Cigarettes, and Smokeless Tobacco ..... 493
Table C-2. Design Effects for (a) Prevalence of Use or (b) a Change in Prevalence of Use Across Nonadjacent Years
a. Any Illicit Drug Other Than Marijuana ..... 494
b. Any Illicit Drug, Any Illicit Drug Including Inhalants, and Marijuana ..... 495
c. Hallucinogens, LSD, Cocaine, and Other Cocaine ..... 496
d. Nitrites, PCP, Crack Cocaine, Heroin, Methamphetamine, Ice, Methaqualone, Rohypnol, GHB, Ketamine, and Steroids ..... 497
e. Hallucinogens Other Than LSD, MDMA, Narcotics Other Than Heroin, OxyContin, Ritalin, Sedatives (Barbiturates), Tranquilizers, Bidis, Kreteks, Androstenedione and Creatine ..... 498
f. Inhalants, Vicodin, and Amphetamines ..... 499
g. Alcohol, Been Drunk, Cigarettes, and Smokeless Tobacco ..... 500
Table C-3. Design Effects for Subgroup Comparisons Within Any Single Year
a. Any Illicit Drug Other Than Marijuana ..... 501
b. Any Illicit Drug, Any Illicit Drug Including Inhalants, and Marijuana ..... 502
c. Hallucinogens, LSD, Cocaine, and Other Cocaine ..... 503
d. Nitirites, PCP, Crack Cocaine, Heroin, Methamphetamine, Ice, Methaqualone, Rohypnol, GHB, Ketamine, and Steroids ..... 504

## LIST OF TABLES (Continued)

Page
e. Hallucinogens Other Than LSD, MDMA, Narcotics Other Than Heroin, OxyContin, Ritalin, Sedatives (Barbiturates), Tranquilizers, Bidis, Kreteks, Androstenedione, and Creatine ..... 505
f. Inhalants, Vicodin, and Amphetamines ..... 506
g. Alcohol, Been Drunk, Cigarettes, and Smokeless Tobacco ..... 507
Tables D-1 to D-107. Trends in Prevalence of Use by Subgroups
D-1. Annual Use of Any Illicit Drug for Eighth Graders ..... 512
D-2. Annual Use of Any Illicit Drug for Tenth Graders ..... 513
D-3. Annual Use of Any Illicit Drug for Twelfth Graders ..... 514
D-4. Annual Use of Any Illicit Drug Other Than Marijuana for Eighth Graders ..... 516
D-5. Annual Use of Any Illicit Drug Other Than Marijuana for Tenth Graders ..... 518
D-6. Annual Use of Any Illicit Drug Other Than Marijuana for Twelfth Graders ..... 520
D-7. Annual Use of Marijuana for Eighth Graders ..... 523
D-8. Annual Use of Marijuana for Tenth Graders ..... 524
D-9. Annual Use of Marijuana for Twelfth Graders ..... 525
D-10. Annual Use of Inhalants for Eighth Graders ..... 527
D-11. Annual Use of Inhalants for Tenth Graders ..... 528
D-12. Annual Use of Inhalants for Twelfth Graders. ..... 529
D-13. Annual Use of Hallucinogens for Eighth Graders ..... 531
D-14. Annual Use of Hallucinogens for Tenth Graders ..... 533
D-15. Annual Use of Hallucinogens for Twelfth Graders ..... 535
D-16. Annual Use of LSD for Eighth Graders ..... 538
D-17. Annual Use of LSD for Tenth Graders ..... 539
D-18. Annual Use of LSD for Twelfth Graders ..... 540
D-19. Annual Use of Hallucinogens Other Than LSD for Eighth Graders ..... 542
D-20. Annual Use of Hallucinogens Other Than LSD for Tenth Graders ..... 544
D-21. Annual Use of Hallucinogens Other Than LSD for Twelfth Graders ..... 546
D-22. Annual Use of MDMA (Ecstasy) for Eighth Graders ..... 549
D-23. Annual Use of MDMA (Ecstasy) for Tenth Graders ..... 550
D-24. Annual Use of MDMA (Ecstasy) for Twelfth Graders ..... 551
D-25. Annual Use of Cocaine for Eighth Graders ..... 552
D-26. Annual Use of Cocaine for Tenth Graders ..... 553
D-27. Annual Use of Cocaine for Twelfth Graders ..... 554
D-28. Annual Use of Crack for Eighth Graders ..... 556
D-29. Annual Use of Crack for Tenth Graders ..... 557
D-30. Annual Use of Crack for Twelfth Graders ..... 558
D-31. Annual Use of Other Cocaine for Eighth Graders ..... 559

## LIST OF TABLES (Continued)

D-32. Annual Use of Other Cocaine for Tenth Graders ..... 560
D-33. Annual Use of Other Cocaine for Twelfth Graders ..... 561
D-34. Annual Use of Heroin for Eighth Graders ..... 562
D-35. Annual Use of Heroin for Tenth Graders ..... 563
D-36. Annual Use of Heroin for Twelfth Graders ..... 564
D-37. Annual Use of Heroin With a Needle for Eighth Graders ..... 566
D-38. Annual Use of Heroin With a Needle for Tenth Graders ..... 567
D-39. Annual Use of Heroin With a Needle for Twelfth Graders ..... 568
D-40. Annual Use of Heroin Without a Needle for Eighth Graders ..... 569
D-41. Annual Use of Heroin Without a Needle for Tenth Graders ..... 570
D-42. Annual Use of Heroin Without a Needle for Twelfth Graders ..... 571
D-43. Annual Use of Other Narcotics for Twelfth Graders ..... 572
D-44. Annual Use of OxyContin for Eighth and Tenth Graders ..... 574
D-45. Annual Use of OxyContin for Twelfth Graders ..... 575
D-46. Annual Use of Vicodin for Eighth and Tenth Graders ..... 576
D-47. Annual Use of Vicodin for Twelfth Graders ..... 577
D-48. Annual Use of Amphetamines for Eighth Graders ..... 578
D-49. Annual Use of Amphetamines for Tenth Graders ..... 579
D-50. Annual Use of Amphetamines for Twelfth Graders ..... 580
D-51. Annual Use of Ritalin for Eighth and Tenth Graders ..... 582
D-52. Annual Use of Ritalin for Twelfth Graders ..... 583
D-53. Annual Use of Methamphetamine for Eighth and Tenth Graders ..... 584
D-54. Annual Use of Methamphetamine for Twelfth Graders ..... 585
D-55. Annual Use of Ice for Twelfth Graders ..... 586
D-56. Annual Use of Sedatives (Barbiturates) for Twelfth Graders ..... 587
D-57. Annual Use of Tranquilizers for Eighth Graders ..... 589
D-58. Annual Use of Tranquilizers for Tenth Graders ..... 591
D-59. Annual Use of Tranquilizers for Twelfth Graders ..... 593
D-60. Annual Use of Rohypnol for Eighth Graders ..... 595
D-61. Annual Use of Rohypnol for Tenth Graders ..... 596
D-62. Annual Use of Rohypnol for Twelfth Graders ..... 597
D-63. Thirty-Day Use of Alcohol for Eighth Graders ..... 599
D-64. Thirty-Day Use of Alcohol for Tenth Graders ..... 600
D-65. Thirty-Day Use of Alcohol for Twelfth Graders ..... 601
D-66. Thirty-Day Prevalence of Having Been Drunk for Eighth Graders ..... 603
D-67. Thirty-Day Prevalence of Having Been Drunk for Tenth Graders ..... 604
D-68. Thirty-Day Prevalence of Having Been Drunk for Twelfth Graders ..... 605
D-69. Two-Week Prevalence of Five or More Drinks in a Row for Eighth Graders ..... 606
D-70. Two-Week Prevalence of Five or More Drinks in a Row for Tenth Graders ..... 607

## LIST OF TABLES (Continued)

Page
D-71. Two-Week Prevalence of Five or More Drinks in a Row for Twelfth Graders ..... 608
D-72. Thirty-Day Prevalence of Use of Beer for Eighth Graders ..... 610
D-73. Thirty-Day Prevalence of Use of Beer for Tenth Graders ..... 611
D-74. Thirty-Day Prevalence of Use of Beer for Twelfth Graders ..... 612
D-75. Two-Week Prevalence of Five or More Beers in a Row for Eighth Graders ..... 614
D-76. Two-Week Prevalence of Five or More Beers in a Row for Tenth Graders ..... 615
D-77. Two-Week Prevalence of Five or More Beers in a Row for Twelfth Graders ..... 616
D-78. Thirty-Day Prevalence of Use of Liquor for Twelfth Graders ..... 618
D-79. Two-Week Prevalence of Five or More Drinks of Liquor in a Row for Twelfth Graders ..... 620
D-80. Thirty-Day Prevalence of Use of Wine for Twelfth Graders ..... 622
D-81. Two-Week Prevalence of Five or More Drinks of Wine in a Row for Twelfth Graders ..... 624
D-82. Thirty-Day Prevalence of Use of Wine Coolers for Eighth Graders ..... 626
D-83. Thirty-Day Prevalence of Use of Wine Coolers for Tenth Graders ..... 627
D-84. Thirty-Day Prevalence of Use of Wine Coolers for Twelfth Graders ..... 628
D-85. Two-Week Prevalence of Five or More Drinks of Wine Coolers in a Row for Twelfth Graders ..... 629
D-86. Thirty-Day Prevalence of Use of Flavored Alcoholic Beverages for Eighth, Tenth, and Twelfth Graders ..... 630
D-87. Thirty-Day Prevalence of Use of Cigarettes for Eighth Graders ..... 631
D-88. Thirty-Day Prevalence of Use of Cigarettes for Tenth Graders ..... 632
D-89. Thirty-Day Prevalence of Use of Cigarettes for Twelfth Graders ..... 633
D-90. Thirty-Day Prevalence of Daily Use of Cigarettes for Eighth Graders ..... 635
D-91. Thirty-Day Prevalence of Daily Use of Cigarettes for Tenth Graders ..... 636
D-92. Thirty-Day Prevalence of Daily Use of Cigarettes for Twelfth Graders ..... 637
D-93. Thirty-Day Prevalence of Use of Half-Pack a Day or More of Cigarettes for Eighth Graders ..... 639
D-94. Thirty-Day Prevalence of Use of Half-Pack a Day or More of Cigarettes for Tenth Graders ..... 640
D-95. Thirty-Day Prevalence of Use of Half-Pack a Day or More of Cigarettes for Twelfth Graders ..... 641
D-96. Thirty-Day Prevalence of Use of Smokeless Tobacco for Eighth Graders ..... 643
D-97. Thirty-Day Prevalence of Use of Smokeless Tobacco for Tenth Graders. ..... 644
D-98. Thirty-Day Prevalence of Use of Smokeless Tobacco for Twelfth Graders ..... 645

## LIST OF TABLES (Continued)

PageD-99. Thirty-Day Prevalence of Daily Use of Smokeless Tobacco for Eighth Graders ..... 647
D-100. Thirty-Day Prevalence of Daily Use of Smokeless Tobacco for Tenth Graders ..... 648
D-101.Thirty-Day Prevalence of Daily Use of Smokeless Tobacco for Twelfth Graders ..... 649
D-102. Annual Prevalence of Use of Steroids for Eighth Graders ..... 651
D-103. Annual Prevalence of Use of Steroids for Tenth Graders. ..... 652
D-104. Annual Prevalence of Use of Steroids for Twelfth Graders ..... 653
D-105. Approximate Weighted Numbers of Cases by Subgroups for Eighth Graders ..... 654
D-106. Approximate Weighted Numbers of Cases by Subgroups for Tenth Graders ..... 655
D-107. Approximate Weighted Numbers of Cases by Subgroups for Twelfth Graders ..... 656
Tables E-1 to E-4. Annual Prevalence Trends for Specific Types of Drugs, Twelfth Graders
E-1. Specific Hallucinogens Other Than LSD ..... 662
E-2. Specific Amphetamines ..... 664
E-3. Specific Tranquilizers ..... 666
E-4. Specific Narcotics Other Than Heroin ..... 668

## LIST OF FIGURES

Page
Figure 2-1. Trends in Annual Prevalence of an Illicit Drug Use Index Across Five Populations ..... 58
Figure 3-1. Schools Included in One Year’s Data Collection: Eighth, Tenth, Twelfth Grades ..... 76
Figure 3-2. School Response Rates ..... 77
Figure 4-1. Prevalence and Recency of Use of Various Types of Drugs for Eighth, Tenth, and Twelfth Graders, 2004 ..... 133
Figure 4-2. Thirty-Day Prevalence of Daily Use of Various Types of Drugs for Twelfth Graders, 2004 ..... 135
Figure 4-3. Noncontinuation Rates: Percentage of Lifetime Users Who Did Not Use in Past Year: Eighth, Tenth, and Twelfth Graders, 2004. ..... 136
Figure 4-4. States Included in the Four Regions of the Country ..... 138
Figure 5-1. Trends in Lifetime Prevalence of an Illicit Drug Use Index for Twelfth Graders ..... 220
Figure 5-2. Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders ..... 221
Figure 5-3. Trends in Thirty-Day Prevalence of an Illicit Drug Use Index for Twelfth Graders ..... 222
Figure 5-4. Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders a. Marijuana, Amphetamines ..... 223
b. Amyl and Butyl Nitrites, Inhalants, Tranquilizers ..... 224
c. Sedatives (Adjusted), Sedatives (Barbiturates), Methaqualone ..... 225
d. Hallucinogens, LSD, PCP ..... 226
e. Cocaine, Crack, Other Cocaine ..... 227
f. Heroin, Heroin With a Needle, Heroin Without a Needle ..... 228
g. Methamphetamine, Ice, Narcotics Other Than Heroin ..... 229
h. MDMA, Rohypnol ..... 230
i. Alcohol, Been Drunk ..... 231

## LIST OF FIGURES (Continued)

Page
Figure 5-4j. Trends in Two-Week Prevalence of Heavy Drinking for Eighth, Tenth, and Twelfth Graders ..... 232
Figure 5-4k. Trends in Thirty-Day Prevalence and Thirty-Day Prevalence of Daily Use of Cigarettes for Eighth, Tenth, and Twelfth Graders ..... 233
Figure 5-4l. Trends in Thirty-Day Prevalence and Thirty-Day Prevalence of Daily Use of Smokeless Tobacco for Eighth, Tenth, and Twelfth Graders ..... 234
Figure 5-4m. Trends in Thirty-Day Prevalence of Daily Use of Marijuana for Eighth, Tenth, and Twelfth Graders ..... 235
Figure 5-4n. Trends in Annual Prevalence of Steroids for Eighth, Tenth, and Twelfth Graders ..... 236
Figure 5-5. Trends in Thirty-Day Prevalence of Daily Use of Marijuana, Alcohol, and Cigarettes for Twelfth Graders, by Total and by Gender. ..... 237
Figure 5-6a. Trends in Two-Week Prevalence of Heavy Drinking Among Twelfth Graders, by Gender ..... 238
Figure 5-6b. Trends in Annual Prevalence of Steroid Use Among Twelfth Graders, by Gender ..... 239
Figure 5-7. Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders, by Gender ..... 240
Figure 5-8. Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders, by College Plans ..... 241
Figure 5-9. Trends in Thirty-Day Prevalence of Cigarette Use for Eighth, Tenth, and Twelfth Graders, by College Plans ..... 242
Figure 5-10a. Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders, by Region of the Country ..... 243
Figure 5-10b. Trends in Lifetime Prevalence of Cocaine Use for Twelfth Graders, by Region of the Country ..... 244
Figure 5-10c. Trends in Thirty-Day Prevalence of Cigarette Use for Twelfth Graders, by Region of the Country ..... 245

## LIST OF FIGURES (Continued)

Page
Figure 5-11a. Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders, by Population Density ..... 246
Figure 5-11b. Trends in Annual Prevalence of Alcohol, Marijuana, and Cocaine Use for Twelfth Graders, by Population Density ..... 247
Figure 5-11c. Trends in Thirty-Day Prevalence of Cigarettes and Smokeless Tobacco, and Annual Prevalence of MDMA Use for Twelfth Graders, by Population Density ..... 248
Figure 5-12a. Marijuana: Trends in Annual Prevalence by Average Education of Parents for Twelfth Graders ..... 249
Figure 5-12b. Cocaine: Trends in Annual Prevalence by Average Education of Parents for Twelfth Graders ..... 250
Figure 5-12c. LSD: Trends in Annual Prevalence by Average Education of Parents for Twelfth Graders ..... 251
Figure 5-12d. Amphetamines: Trends in Annual Prevalence by Average Education of Parents for Twelfth Graders ..... 252
Figure 5-12e. Heavy Drinking: Trends in Two-Week Prevalence of 5 or More Drinks in a Row by Average Education of Parents for Twelfth Graders ..... 253
Figure 5-12f. Cigarettes: Trends in Daily Prevalence by Average Education of Parents for Twelfth Graders ..... 254
Figure 5-13a. Trends in Annual Prevalence of Marijuana and Cocaine Use for Twelfth Graders, by Race/Ethnicity ..... 255
Figure 5-13b. Trends in Prevalence of 5 or More Drinks in a Row in the Past 2 Weeks and Daily Use of Cigarettes for Twelfth Graders, by Race/Ethnicity ..... 256
Figure 5-13c. Trends in Annual Prevalence of Inhalant and LSD Use for Twelfth Graders, by Race/Ethnicity ..... 257
Figure 6-1. Use of Any Illicit Drug: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 276

## LIST OF FIGURES (Continued)

Page
Figure 6-2. Use of Any Illicit Drug Other Than Marijuana: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 277
Figure 6-3. Use of Any Illicit Drug Other Than Marijuana or Amphetamines: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 278
Figure 6-4. Marijuana: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 279
Figure 6-5. Inhalants: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 280
Figure 6-6. Nitrites: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 281
Figure 6-7. Hallucinogens: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 282
Figure 6-8. LSD: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 283
Figure 6-9. Hallucinogens Other Than LSD: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 284
Figure 6-10. PCP: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 285
Figure 6-11. Cocaine: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 286
Figure 6-12. Crack Cocaine: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 287
Figure 6-13. Other Forms of Cocaine: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 288
Figure 6-14. Heroin: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 289
Figure 6-15. Narcotics Other Than Heroin: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 290
Figure 6-16. Amphetamines: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 291
Figure 6-17. Sedatives (Barbiturates): Trends in Lifetime Prevalence for Earlier Grade Levels ..... 292

## LIST OF FIGURES (Continued)

Page
Figure 6-18. Methaqualone: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 293
Figure 6-19. Tranquilizers: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 294
Figure 6-20. Alcohol: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 295
Figure 6-21. Been Drunk: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 296
Figure 6-22. Cigarettes: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 297
Figure 6-23. Cigarette Smoking on a Daily Basis: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 298
Figure 6-24. Smokeless Tobacco: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 299
Figure 6-25. Steroids: Trends in Lifetime Prevalence for Earlier Grade Levels ..... 300
Figure 7-1. Degree of Drug Highs Attained by Recent Users: Twelfth Graders, 2004 ..... 323
Figure 7-2. Duration of Drug Highs Attained by Recent Users: Twelfth Graders, 2004 ..... 324
Figure 7-3. Trends in Annual Prevalence of Marijuana, Percent of Recent Users Getting Moderately or Very High, and Percent of Recent Users Staying High Three or More Hours for Twelfth Graders ..... 325
Figure 8-1a. Trends in Perceived Harmfulness of Marijuana Use for Eighth, Tenth, and Twelfth Graders ..... 364
Figure 8-1b. Trends in Disapproval of Marijuana Use for Eighth, Tenth, and Twelfth Graders ..... 365
Figure 8-2a. Trends in Perceived Harmfulness of Cocaine Use for Twelfth Graders ..... 366
Figure 8-2b. Trends in Disapproval of Cocaine Use for Twelfth Graders ..... 367

## LIST OF FIGURES (Continued)

Page
Figure 8-3a. Trends in Perceived Harmfulness of Crack Use for Eighth, Tenth, and Twelfth Graders ..... 368
Figure 8-3b. Trends in Disapproval of Crack Use for Eighth, Tenth, and Twelfth Graders ..... 369
Figure 8-4. Marijuana: Trends in Perceived Availability, Perceived Risk of Regular Use, and Prevalence of Use in Past Thirty Days for Twelfth Graders ..... 370
Figure 8-5. Cocaine: Trends in Perceived Availability, Perceived Risk of Trying, and Prevalence of Use in Past Year for Twelfth Graders ..... 371
Figure 8-6. MDMA (Ecstasy): Trends in Perceived Availability, Perceived Risk of Trying, and Prevalence of Use in Past Year for Twelfth Graders ..... 372
Figure 8-7a. Trends in Perceived Harmfulness of Amphetamine and Sedative (Barbiturate) Use for Twelfth Graders ..... 373
Figure 8-7b. Trends in Disapproval of Amphetamine and Sedative (Barbiturate) Use for Twelfth Graders ..... 374
Figure 8-8a. Trends in Perceived Harmfulness of LSD Use for Eighth, Tenth, and Twelfth Graders ..... 375
Figure 8-8b. Trends in Disapproval of LSD Use for Eighth, Tenth, and Twelfth Graders ..... 376
Figure 8-9a. Trends in Perceived Harmfulness of Heroin Use for Twelfth Graders ..... 377
Figure 8-9b. Trends in Disapproval of Heroin Use for Twelfth Graders ..... 378
Figure 8-10a. Trends in Perceived Harmfulness of Alcohol Use for Eighth, Tenth, and Twelfth Graders ..... 379
Figure 8-10b. Trends in Disapproval of Alcohol Use for Eighth, Tenth, and Twelfth Graders ..... 380
Figure 8-11a. Trends in Perceived Harmfulness of Smoking One or More Packs of Cigarettes per Day for Eighth, Tenth, and Twelfth Graders ..... 381

## LIST OF FIGURES (Continued)

## Page

Figure 8-11b. Trends in Disapproval of Smoking One or More Packs of Cigarettes per Day for Eighth, Tenth, and Twelfth Graders ..... 382
Figure 8-12a. Trends in Perceived Harmfulness of Using Smokeless Tobacco
Regularly for Eighth, Tenth, and Twelfth Graders ..... 383
Figure 8-12b. Trends in Disapproval of Using Smokeless Tobacco Regularly for Eighth and Tenth Graders ..... 384
Figure 9-1. Trends in Disapproval of Illicit Drug Use: Twelfth Graders, Parents, and Peers
a. Marijuana ..... 420
b. Amphetamines, Cocaine, Sedatives (Barbiturates), LSD ..... 421
Figure 9-2. Trends in Disapproval of Licit Drug Use: Twelfth Graders, Parents, and Peers ..... 422
Figure 9-3. Trends in Thirty-Day Prevalence of Marijuana Use and Friends’ Use of Marijuana for Twelfth Graders ..... 423
Figure 9-4. Proportion of Friends Using Each Drug as Estimated by Eighth, Tenth, and Twelfth Graders, 2004 ..... 424
Figure 9-5a. Trends in Perceived Availability of Drugs for Twelfth Graders: Marijuana, Amphetamines, MDMA, Cocaine, Steroids, Crack, Ice ..... 426
Figure 9-5b. Trends in Perceived Availability of Drugs for Twelfth Graders: Sedatives (Barbiturates), Narcotics Other Than Heroin, Tranquilizers, Heroin ..... 427
Figure 9-5c. Trends in Perceived Availability of Drugs for Twelfth Graders: Other Hallucinogens, LSD ..... 428
Figure 10-1. Prevalence and Recency of Use, by Gender: Amphetamines and Nonprescription Stimulants, Twelfth Graders, 2004 ..... 459
Figure A-1. High School Completion by Persons 20-24 Years Old, 1972-2004 ..... 471
Figure A-2. Estimates of Prevalence and Trends for the Entire Age/Class Cohort, Adjusting for Absentees and Dropouts for Twelfth Graders ..... 472

## Chapter 1

## INTRODUCTION

In 2004 the Monitoring the Future study marked its 30th year of conducting national surveys of substance use among American young people. Beginning with the first survey of high school seniors in 1975, the study has provided the nation with a window through which to view the important, but largely hidden, problem behaviors of illicit drug use, alcohol use, and cigarette smoking. It has thus enabled the nation to gain a better understanding of the changing nature of these problems, as well as some of their causes and consequences.

An epidemic of illicit drug use emerged in the 1960s among American youth, and since then dramatic changes have occurred in the use of nearly all the specific drugs that have been part of the epidemic. Alcohol and cigarettes also have shown some very important changes in use in the intervening decades. Many new drugs have emerged to become part of an illicit drug smorgasbord available to American young people, and even some new forms of cigarettes and alcoholic beverages have emerged. Unfortunately, very few have been taken off the table. Throughout these many changes, substance use among the nation's youth has remained a major concern for parents, teachers, youth workers, health professionals, law enforcement, and policymakers, largely because substance use is one of the greatest, and yet most preventable, causes of morbidity and mortality among young people.

This annual monograph series has been the primary vehicle for disseminating the epidemiological findings from the study. It has grown substantially over the years in both coverage and size, in part because of the proliferation of substances being used. This latest twovolume monograph presents the results of the 30th (2004) national survey of drug use and related attitudes and beliefs among American high school seniors, the 25th such survey of American college students, and the 14th such survey of 8th- and 10th-grade students. Results have also been reported for varying intervals on young adult high school graduates, as well as adult high school graduates into middle age (currently through age 45), who have been followed from high school graduation through a series of panel studies.

Results from the secondary school samples of 8th, 10th, and 12th graders are contained in Volume I, which is preceded by an advance summary of its key findings in Monitoring the Future National Results on Adolescent Drug Use: Overview of Key Findings, 2004. ${ }^{1}$ The latter report, which contains a short section on each of the major classes of drugs under study, can be viewed on the Web at www.monitoringthefuture.org or obtained free of charge by contacting the authors at the Institute for Social Research, The University of Michigan, Ann Arbor, Michigan, 48106-1248. Results from college students and adults are reported in Volume II, which is published a few months after Volume I.

Monitoring the Future: A Continuing Study of American Youth is conducted at the University of Michigan’s Institute for Social Research; it has been funded since its inception through a series

[^0]of investigator-initiated research grants from the National Institute on Drug Abuse. In the early years, the study was often called the National High School Senior Survey because each year since 1975 a representative sample of all seniors in public and private high schools in the coterminous United States was surveyed. However, now the study also surveys (a) representative samples of 8th- and 10th-grade students, (b) representative samples of adults through age 45 from previous high school graduating classes, who are administered follow-up surveys by mail, and (c) representative samples of American college students one to four years past high school, who are a part of these follow-up samples.

## SURVEYS OF SECONDARY SCHOOL STUDENTS

Two of the major topics included in this series of annual reports are (a) the prevalence and frequency of drug use among American secondary school students (specifically, in 8th, 10th, and 12th grades) and (b) historical trends in use by students in those grades. Distinctions are made among important demographic subgroups in these populations based on gender, college plans, region of the country, population density, parents’ education, and race/ethnicity. Data on grade of first use, trends in use at lower grade levels, and intensity of drug use also are reported in three separate chapters. This study has demonstrated that key attitudes and beliefs about use of the various drugs are important determinants of trends in use over time. Therefore, they are also tracked over time, as are students' perceptions of certain relevant aspects of the social environment-in particular, perceived availability, peer norms, use by friends, and exposure to use of the various drugs.

## SURVEYS OF COLLEGE STUDENTS AND OF ADULTS THROUGH AGE 45

Also included in this report series are findings on the prevalence and trends in drug use among adults through age 45 who have completed high school. These data are reported primarily in Volume II, although a brief summary of them is given in chapter 2 of this volume, entitled "Overview of Key Findings." The period of young adulthood (here defined as late teens to age 30) is particularly important because it has tended to be the period of peak use for many drugs.

The Monitoring the Future study design calls for biennial follow-ups-through age 30-of a subsample of the respondents in each participating senior class, beginning with the class of 1976. In 2004, representative samples of the graduating classes of 1992 through 2003 (corresponding to modal ages 19 to 30) provided the panel data-12 classes in all. Because the questionnaire forms are the same for 12th grade as for each of these follow-ups, it is possible to integrate the data across the 12 -year age band. Comprehensive results from this young adult population are presented in Volume II.

After age 30, the class cohorts are followed up at five-year intervals-to date at ages 35, 40, and 45 -using somewhat different questionnaires. Prevalence and trend data for these older ages are also presented in Volume II but for considerably shorter time intervals because of the nature of the study design. (Panel analyses using all of these various follow-up data points are presented in many other publications from the study.)

Two chapters in Volume II present data specifically on college students. Trend data are provided since 1980, the first year that a national sample of college students one to four years past high school was available from the follow-up survey. College students have not usually been well represented in national household surveys, because many college students live on campus in group dwellings (dormitories, fraternities, and sororities) that often are not included in household surveys. (The National Household Survey on Drug Abuse, conducted in earlier years by the National Institute on Drug Abuse and now by the Substance Abuse and Mental Health Services Administration, was revised in 1991 to include such group dwellings. That survey is now called the National Survey of Drug Use and Health.) Twenty-five Monitoring the Future surveys on substance use among American college students have now been completed.

## CONTENT AREAS COVERED IN THIS REPORT

## Drug Classes Included at the Beginning of the Study

Initially, 11 separate classes of drugs were distinguished for this series of reports: marijuana (including hashish), inhalants, hallucinogens, cocaine, heroin, opiates other than heroin (both natural and synthetic), stimulants (more specifically, amphetamines), sedatives, tranquilizers, alcohol, and tobacco. This particular organization of drug use classes was chosen to heighten comparability with a parallel series of publications based on the National Survey of Drug Use and Health (NSDUH). Separate statistics are now presented for a number of subclasses of drugs within these more general classes: PCP and LSD (both hallucinogens), barbiturates and methaqualone (both sedatives), the amyl and butyl nitrites (a class of inhalants), methamphetamine, crystal methamphetamine ("ice"), and crack and other cocaine. Barbiturates and methaqualone, two components of the sedative class as used here, have been measured separately from the outset. Data for them are presented separately because their trend lines are quite different.

## Drug Classes Added During the Life of the Study

A number of the drugs just mentioned appeared on the American scene after the study began and were added to the 12th-grade questionnaires in subsequent years. Trend data for PCP and nitrites are available since 1979, when questions about the use of these drugs were added to the study because of increasing concern over their rising popularity and possibly deleterious effects. For similar reasons, a single question about crack cocaine was added to the 1986 survey, and more detailed questions on crack and other cocaine were added in 1987.

Questions about the use of "ecstasy" (methylenedioxymethamphetamine or MDMA) were added in 1989 to the adult follow-up surveys and in 1996 to the 8th-, 10th-, and 12th-grade surveys. Questions about crystal methamphetamine ("ice") were added to the 12th-grade surveys in 1990. Questions about anabolic steroids were added in 1989 because of reports of their increasing illicit use among young people. Questions about smokeless tobacco were added in 1986, while cigarette use has been covered since the study's inception. In 1991, questions about "getting drunk" were added to the long-standing set of questions on alcohol use. A question about Rohypnol was added to the secondary school questionnaires in 1996. Special questions on the use of heroin by injection, as well as by means other than injection, were added in 1995 as use by means other than injection appeared to be rising. The 1999 survey incorporated new questions on
the use of methamphetamines, and the 2000 survey added questions on the use of two additional "club drugs," GHB and ketamine, as well as bidis (a type of flavored cigarette). Ritalin, kreteks, androstenedione, and creatine were added in 2001; OxyContin and Vicodin were included in the 2002 surveys. For 12th graders only, a question about flavored alcoholic beverages (sometimes called "malternatives" or "alcopops") was added in the 2003 surveys. In 2004 the standard set of prevalence questions (lifetime, annual, and past 30-day use) replaced the single flavored alcoholic beverage question in the 12th grade survey and was added also to the surveys for 8th and 10th grades. Obviously, as time passes and new trends develop, additional drugs will have to be added to the study's coverage.

Most of the information reported here deals with illicit use of controlled substances. The major exceptions are alcohol, cigarettes, smokeless tobacco, inhalants, nonprescription stimulants, creatine, and androstenedione (which was placed in schedule III by the Drug Enforcement Administration in January 2005, thus effectively making it illegal). In the questions about illicit use of the psychotherapeutic drugs, respondents are asked to exclude any occasions on which they used them under medical supervision. (Some data on the medically supervised use of such drugs are contained in the full 1977, 1978, 1981, and 1983 volumes in this series, and an earlier article discussed trends in the medical use of these drugs. ${ }^{2}$ ) The survey administered in 2005 contains a new set of questions on the medically supervised use of stimulants for attention deficit and/or hyperactivity disorders.

Throughout this report we have chosen to focus attention on drug use at the higher frequency levels rather than simply to report proportions that have ever used various drugs. This is done to help differentiate levels of seriousness, or extent, of drug involvement. While there is no public consensus on what levels or patterns of use constitute "abuse," there is surely a consensus that higher levels of use are more likely than lower levels to have detrimental effects for the user and society. We have also introduced indirect measures of dosage per occasion by asking respondents the duration and intensity of the highs they usually experience with each type of drug. They have shown some interesting trends over the years. Chapter 7 reports those results.

## Attitudes and Beliefs

For both licit and illicit drugs, separate chapters are devoted to various variables: grade of first use; the students' own attitudes and beliefs; and their perception of drug availability and related attitudes, beliefs, and behaviors of others in their social environment. Some of these variables have proven to be important in explaining the changes in use.

## Over-the-Counter Substances

Chapter 10, "Other Findings from the Study," discusses use of nonprescription stimulants, including diet pills, stay-awake pills, and the "look-alike" pseudo-amphetamines. Questions on these substances were placed in the survey beginning in 1982 because the use of them appeared to be on the rise and because it appeared that some respondents inappropriately included them in their answers about amphetamine use. That inappropriate inclusion affected some of the

[^1]observed trends in amphetamine use until the clarification in 1982. In 2001 a table on the performance-enhancing substances androstenedione and creatine was added to chapter 10.

## Cumulative Lifetime Daily Marijuana Use

Chapter 10 also presents trend results from a set of questions about cumulative lifetime marijuana use at a daily or near-daily level. These questions were added to enable us to develop a more complete individual history of daily use over a period of years. They reveal some interesting facts about the frequent users of this drug. Also included in chapter 10 are brief synopses of findings from selected publications that have emanated from the study during the past year.

## Trends in the Use of Specific Alcoholic Beverages

In 2003, tables were added to Appendix D giving the prevalence and trend estimates for the use of the specific classes of alcoholic beverages. Twelfth-grade data are reported for beer, spirits, wine, wine coolers, and, beginning in 2003, flavored alcoholic beverages. For the two lower grades, the questionnaires were restricted to beer and wine coolers (though the category of wine coolers was dropped from the questionnaires in 2004 to make space for a more general class of flavored alcoholic beverages). The results on these various beverage classes are discussed in the text of chapters 4 and 5.

## Appendixes

This volume contains five appendixes. Appendix A addresses the issue of whether missing the absentees and school dropouts from the study's sample coverage affects the results and, if so, to what extent. For illustrative purposes, it provides estimates of prevalence and trend results adjusted for these missing segments of the population for two drugs-marijuana and cocaine. Appendix B gives the exact definitions of the various subgroups discussed in the volume. Appendix C provides a guide on how to calculate confidence intervals for point estimates and also how to calculate statistics that test the significance of changes over time or of differences between subgroups. While many tables in these volumes already contain such statistics for selected point estimates and selected change intervals, some readers may wish to conduct additional computations. This appendix contains the necessary formulas and design-effect corrections to permit such computations.

We also call attention to Appendix D, which presents supplementary tables providing cross-time trends in the use of numerous drugs for the population's various demographic subgroups. Specifically, subgroups are differentiated on the basis of gender, college plans, region of the country, size of the community, education level of the parents (a proxy for socioeconomic status), and racial/ethnic group. The tables document a number of important subgroup differences in both levels of drug use and cross-time trends in drug use. ${ }^{3}$ Finally, Appendix E provides trends (for 12th grade only) on individual drugs within the following general classes: hallucinogens other than LSD, amphetamines, tranquilizers, and opiates other than heroin.

[^2]
## PURPOSES AND RATIONALE FOR THIS RESEARCH

Perhaps no social problem has proven more clearly appropriate for, and in need of, the application of systematic research and reporting than that of substance abuse. Many of these behaviors are hidden from public view; also, many of them have changed rapidly and frequently. They are of great importance to the well-being of the nation, and many legislative and programmatic interventions are aimed at them, particularly in response to the increases in adolescent smoking and illicit drug use we reported in the 1970s and again in the 1990s.

Young people are often at the leading edge of social change—and this has been particularly true of drug use. The massive upsurge in illicit drug use during the last 35 years or so has proven to be a youth phenomenon, and the "relapse" in the drug epidemic in the early 1990s occurred initially almost exclusively among adolescents, as this study has demonstrated. Adolescents and young adults in their 20s fall into the age groups at highest risk for illicit drug use. The original epidemic began on the nation's college campuses and then spread downward in age, but the more recent relapse phase in the epidemic first manifested itself among secondary school students and then started moving upward in age as those cohorts matured. From one year to the next, particular drugs rise or fall in popularity, and related problems occur for youth, their families, governmental agencies, and society as a whole.

One of the many important purposes of the Monitoring the Future series is to develop an accurate picture of current drug use and trends in that use. This is a formidable task in and of itself, given the illegal nature of most of the phenomena under study. A reasonably accurate picture of the basic size and contours of the illicit drug use problem among young Americans is a prerequisite for rational public debate and policymaking. In the absence of reliable prevalence data, substantial misconceptions can develop and resources can be misallocated. In the absence of reliable trend data, early detection and localization of emerging problems are more difficult and societal responses more lagged. For example, we believe that Monitoring the Future played an important role in establishing early that cigarette smoking among American adolescents was rising sharply in the 1990s, and thus helped to encourage and buttress some extremely important policy initiatives that culminated in the tobacco settlement. More recently, Monitoring the Future has documented and described a sharp rise and then decline in ecstasy use; it also documented the important role that perceived risk played in these changes. Of particular importance, it has helped to draw attention to the rise in steroid and androstenedione use among adolescents, resulting in some legislative and regulatory action with respect to these drugs; it also exposed a rise in the use of narcotic drugs other than heroin (in particular, certain prescription-type analgesics), stimulating an initiative at the White House Office of National Drug Control Policy aimed at reducing the use of such drugs.

In addition, assessments of the impact of major historical and policy-induced events are much more conjectural without good trend data. Finally, the accurate empirical comparison of subgroup differences has challenged conventional wisdom in some important ways. Accurately characterizing not only differences among subgroups, but also differential changes among subgroups, has been another important scientific contribution of the study. For example, dramatic racial/ethnic differences in cigarette smoking have emerged during the life of the study-differences that were almost non-existent when the study began in 1975.

The Monitoring the Future study also monitors a number of factors that we believe help explain the changes observed in drug use. Many are discussed in this series of volumes. They include peer norms regarding drugs, beliefs about the dangers of drugs, and perceived availability. In fact, monitoring these factors has made it possible to examine a central policy issue in this nation's war on drugs-namely, the relative importance of supply factors versus demand factors in bringing about some of the observed declines (and, more recently, increases) in drug use. We also have developed a general theory of drug epidemics that uses many of these concepts to explain the rises and declines that occur in use. ${ }^{4}$

In addition to assessing prevalence and trends accurately and trying to determine their causes, the Monitoring the Future study has a substantial number of other important research objectives. Among these are (a) helping to determine which young people are at the greatest risk for developing various short- and long-term patterns of drug abuse; (b) gaining a better understanding of the lifestyles and value orientations associated with various patterns of drug use, and monitoring how subgroup differences and lifestyle orientations are shifting over time; (c) determining the immediate and more general aspects of the social environment associated with drug use and abuse; (d) determining how major transitions in social environment (e.g., entry into military service, civilian employment, college, homemaking, and unemployment) or in social roles (engagement, marriage, pregnancy, parenthood, divorce, and remarriage) affect drug use; (e) determining the life course of the various drug-using behaviors from early adolescence to middle adulthood and distinguishing such "age effects" from cohort and period effects in determining drug use; (f) evaluating possible explanations of period and age effects, including determining the effects of social legislation on various types of substance use; (g) examining possible consequences of using various drugs; and (h) determining the changing connotations of drug use and changing patterns of multiple drug use among youth. ${ }^{5}$ We believe that the differentiation of period, age, and cohort effects in the use of various substances has been a particularly important contribution of the project, and it is one that the project's cohort-sequential research design is especially well suited to make. Readers interested in publications dealing with any of these other areas should visit the study's Web site (see below) or write the authors at the Institute for Social Research, The University of Michigan, Ann Arbor, Michigan, 48106-1248.

## WEB SITE

Up-to-date information about the study may be found on the Monitoring the Future Web site at www.monitoringthefuture.org. This site contains a full listing of all publications from the study, including the full text and/or the abstracts of many, as well as the full text of all press releases.

[^3]
## INDEX

Finally, the reader should note that these volumes now contain a subject index at the end. This should facilitate finding the locations in the monograph where a particular drug or subject is addressed. It does not contain all of the pages on which a drug is contained in tables, because most tables contain the full range of drugs.

## Chapter 2

## KEY FINDINGS:

## AN OVERVIEW AND INTEGRATION ACROSS FIVE POPULATIONS

Monitoring the Future, which is now in its 30th year, has become one of the nation's most reliedupon sources of information on changes taking place in licit and illicit psychoactive drug use among American adolescents, college students, young adults and, more recently, middle-aged adults. During the last three decades, the study has tracked and reported the use of an evergrowing array of such substances in these populations.

This annual series of monographs, written by the study's investigators and published by its sponsor-the National Institute on Drug Abuse-is one of the major vehicles by which the epidemiological findings from the study are reported. The present two-volume monograph reports findings from the inception of the study in 1975 through 2004. (A companion series of annual reports provides a much briefer, advance synopsis of the key findings from the latest surveys of secondary school students. ${ }^{6}$ )

Monitoring the Future has conducted in-school surveys of nationally representative samples of (a) high school seniors each year since 1975 and (b) 8th- and 10th-grade students each year since 1991. In addition, beginning with the class of 1976, follow-up surveys have been conducted by mail on representative sub-samples of the respondents from each previously-participating 12thgrade class; follow-up surveys of all those classes continue into young adulthood and beyond.

A number of important findings have been summarized and integrated in this chapter to provide the reader with an overview of the key results. Because so many populations, drugs, and prevalence intervals are discussed here, a single integrative set of tables (Tables 2-1 through 2-4) showing the 1991-2004 trends for all drugs on all five populations (8th-grade students, 10thgrade students, 12th-grade students, full-time college students ages 19-22, and all young adults through age 28 who are high school graduates) is included in this chapter. (Note that the young adult group includes the college student population.) Volume II contains additional data on older age bands: specifically, ages 35,40 , and 45 .

[^4]
## TRENDS IN ILLICIT DRUG USE

Early in the 1990s we noted an increase in use of several illicit drugs among secondary students and some important changes among the students in terms of certain key attitudes and beliefs related to drug use. In the volume reporting 1992 survey results, we noted the beginning of such reversals in both use and attitudes among 8th graders, the youngest respondents surveyed in this study, and also a reversal in attitudes among the 12th graders. Specifically, the proportions seeing great risk in using drugs began to decline, as did the proportions saying they disapproved of use. As we suggested then, those reversals indeed presaged "an end to the improvements in the drug situation that the nation may be taking for granted." The use of illicit drugs rose sharply in all three grade levels after 1992 as negative attitudes and beliefs about drug use continued to erode. This pattern continued for several years.

In 1997, for the first time in six years, illicit drug use finally began to decline among 8th graders. Use of marijuana continued to rise among the 10th and 12th graders, although their use of several other drugs leveled off and relevant attitudes and beliefs also began to reverse in many cases. In 1998, illicit drug use continued a gradual decline among 8th graders and started to decline at 10th and 12th grades. In 1999, 2000, and 2001, the decline continued for 8th graders while use held fairly level among 10th and 12th graders. In 2002 and 2003, use by 8th and 10th graders decreased significantly and use by 12th graders dropped, but by less than a statistically significant amount. Nonsignificant declines continued for all three grades in 2004. As we have noted previously, the fact that use continued to decline steadily, albeit slowly, among the 8th graders suggested there would be an eventual further decline at the upper grades. We are now seeing those declines.

As will be illustrated in the discussion of specific drugs, the increase in use of many drugs during the 1990s among secondary school students, combined with fairly level rates of use among college students and young adults, resulted in some unusual reversals in the usage rates by age. Figure 2-1 illustrates the point. In the early years of the epidemic, illicit drug use rates clearly were higher in the college-age group (and eventually the young adults) than they were among secondary school students. But by the late 1990s, the highest rates of active use (i.e., annual or 30-day prevalence) tended to be found in the late secondary school years. In fact, in 1996 and 1997 both 10th and 12th graders actually had higher prevalence rates for illicit drug use than either college students or young adults. This changed somewhat after 2001, when use in the older age groups rose, as the heavier-using cohorts of adolescents began to comprise the college student and young adult populations. At the same time, use among the secondary students was declining.

- In 2004 the rank order for annual prevalence of using any illicit drug was 12th graders (39\%), college students (36\%), 19- to 28-year-olds (34\%), 10th graders (31\%), and 8th graders (15\%). With respect to using any illicit drug other than marijuana in the past 12 months, the rank order was as follows: 12th graders (21\%), college students and 19- to 28 -year-olds (both at 19\%), 10th graders (14\%), and finally 8th graders (8\%). As can be seen by this divergence of trends for the different age groups, something other than a simple secular trend in drug use was taking place; specifically, important cohort differences were emerging.
- From the early 1990s until 1997, marijuana use rose sharply among secondary school students and their use of a number of other illicit drugs also rose, though more gradually. We have called this period a "relapse phase" in the longer-term epidemic. An increase in marijuana use also occurred among American college students, largely reflecting "generational replacement," wherein earlier graduating high school class cohorts were replaced in the college population by more recent ones who were more drug-experienced before they left high school-in other words, as the result of a cohort effect. A resurgence in illicit drug use spreading up the age spectrum is a reversal of the way the epidemic spread several decades earlier. In the 1960s the epidemic began on the nation's college campuses, and then the behavior diffused downward in age to high school students and eventually to junior high school students. This time the increases began in middle schools and radiated up the age spectrum. The graduating class cohorts in the middle and late 1990s were bringing with them the pattern of heavier drug use that emerged among them in the early 1990s while they were in secondary school.

The increases in use of marijuana and of other illicit drugs treated as a class were substantially larger, in both proportional and absolute terms, in the three secondary school grades than in either the college or young adult populations. In fact, at present there still is only a modest, albeit continuing, increase in illicit drug use in the young adult population of 19- to 28-year-olds. From 1991 through 1997, their annual prevalence of use of any illicit drug held remarkably stable at the same time that adolescent use rose appreciably. As we have said in the past, we believe that as generational replacement continues to occur we will likely see some increase in use of illicit drugs by the young adults. As would be expected, that happened sooner and more sharply among the college students, whose annual prevalence of marijuana use peaked a year later than among 12th graders and whose 30-day prevalence peaked two years later. Their use of any illicit drug other than marijuana continued to rise through 2004, whereas use by 12th graders peaked in 1997 at $21 \%$. (It is still at $21 \%$ in 2004.) Indeed, the rates on this index are also still rising among 19- to 28-year-olds, even though it has been level for some years among high school seniors and has actually been declining among younger students.

Again, these diverging trends across the different age groups clearly show that changes during the 1990s reflected some important cohort effects-lasting differences between class cohorts-rather than broad secular trends, which would appear simultaneously in all of the age groups covered by the study. During all of the previous 18 years of the study, the use of most drugs moved in parallel across most age groups, indicating that secular change was prevailing.

- A somewhat parallel finding occurred for cigarette smoking, in that college students showed a sharp increase in smoking, beginning in 1995, which no doubt reflected a generational replacement effect as the heavier-smoking cohorts of adolescents entered college. This has been a more typical pattern of change for cigarettes, however, since differences in cigarette smoking rates among class cohorts tend to remain through the life course and also tend to account for much of the overall change in use observed at any given age.

In the early 1990s, cigarette smoking among 8th and 10th graders rose by about $50 \%$-a particularly sharp and worrisome rise to which this study called widespread attention. Smoking also had been rising among high school seniors since 1992. The increase in current smoking ended among 8th and 10th graders in 1996, among 12th graders in 1997, and among college students in 1999. The appreciable decline in the smoking rate that began among the 8th graders now appears to be radiating up the age spectrum as they get older. (Their 30-day prevalence rate has fallen from 21\% in 1996 to $9 \%$ in 2004.) Among the young adult stratum there has been little evidence yet of a decline in current smoking. The rate is still about the same as it was in 1995 (29\%); but with time we expect their current smoking also will drop as the cohort effect works its way up the age bands. In fact, the current smoking rate among young adults already has slipped by a percentage point or two in the past few years, and smoking among college students has been falling for several years.

- Marijuana use, which had been rising sharply in all three grades of secondary school during the early to mid-1990s, began to turn downward in 1997 among 8th graders and then did the same in 1998 among 10th and 12th graders. Its decline has been rather modest, however, perhaps due in part to effects of the public debates over medical use of marijuana. The 8th and 12th graders showed a continuation of this decline in 2000; but in 2001, use remained level in all three grades. Since 2001, all three grades have shown significant declines in their annual prevalence of marijuana use, with the proportional decline greatest among the 8th graders.

Earlier in the 1990s, the annual prevalence of marijuana use (i.e., the percent reporting any use during the prior 12 months) tripled among 8th graders (from 6\% in 1991 to $18 \%$ in 1996), more than doubled among 10th graders (from 15\% in 1992 to $35 \%$ in 1997), and grew by three-quarters among 12th graders (from $22 \%$ in 1992 to $39 \%$ in 1997). Among college students, however, the increase in marijuana use, presumably largely due to a "generational replacement effect," was much more gradual. Annual prevalence rose by about one-third from $27 \%$ in 1991 to 36\% in 1998, before beginning to level. Among young adults there so far has been even less change, from $24 \%$ in 1991 to $29 \%$ in 2001, with no decline yet, though we expect one to begin soon.

Daily marijuana use rose substantially among secondary school and college students between 1992 and 2000 but somewhat less so among young adults (see Table 2-4). Daily use began a slow decline after 1999 at 8th grade, after 2001 at 10th grade, and after 2003 at 12th grade, consistent with a cohort-effect pattern. It appears that the college student and young adult rates at least leveled in 2004, and may have begun to reverse. However, none of the one-year changes in 2004 reached statistical significance. Prevalence of daily marijuana use has been highest among these five groups since the mid-1990s and was slow to decline even though annual and 30-day prevalence had been dropping. Still, the rate for seniors, for example, at $5.6 \%$ in 2004, is only about half the $10.7 \%$ peak figure reached in 1978, at the height of the illicit drug epidemic.

The amount of risk associated with using marijuana fell during the earlier period of increased use in the late 1970s, and perceptions of risk fell again during the more recent
resurgence of use in the 1990s. Indeed, at 12th grade, perceived risk began to decline a year before use began to rise in the upturn of the 1990s, making perceived risk a leading indicator of change in use. (The same may have happened in 8th grade, as well, but we do not have data starting early enough to check that possibility.) The decline in perceived risk halted after 1997 in 8th and 10th grade, and annual prevalence began to decline a year or two later. Again, perceived risk was a leading indicator of change in use, as it has proven to be for a number of drugs. As is discussed in Volume I, chapter 8, on attitudes and beliefs toward drugs, these attitudes themselves show evidence of cohort effects over the past decade and a half.

Personal disapproval of marijuana use slipped considerably among 8th graders between 1991 and 1996 and among 10th and 12th graders between 1992 and 1997. For example, the proportions of 8th, 10th, and 12th graders who said they disapproved of trying marijuana once or twice fell by 17,21 , and 19 percentage points, respectively, over those intervals of decline. There has since been some increase in disapproval among 8th and 10th graders and, beginning more recently, among 12th graders. Over the past two years, both perceived risk and disapproval of marijuana use have risen in all three grades, suggesting that the recent downturn in use can be expected to continue.

- Among seniors, the proportions using any illicit drug other than marijuana in the past year rose from a low of $15 \%$ in 1992 to $21 \%$ in 1997 (and is at $21 \%$ in 2004). (This recent peak was substantially below the $34 \%$ peak rate reached more than two decades earlier, in 1981.) In fact, all of the younger groups showed significant increases (though not as large in proportional terms as for marijuana). Use of any illicit drug other than marijuana began to increase in 1992 among 8th graders, in 1993 among 10th and 12th graders, and in 1995 among college students-again reflecting evidence of a cohort effect. Use peaked in 1996 among 8th and 10th graders and by 1997 among 12th graders, but it has yet to peak among the college students and young adults. The 8th graders have shown some gradual decline in their use of the other illicit drugs, treated as a class, since 1996; the decline among 10th graders paused after 1998 and did not resume until after 2001. Twelfth graders also showed some decline after 2001, but the decline appears to have halted in 2004. However, among college students and young adults, the proportions using any illicit drug other than marijuana are still rising, likely due to a continuing cohort effect.
- Between 1989 and 1992 we noted an increase among high school seniors, college students, and young adults in their use of $\operatorname{LSD}$, a drug quite popular in the late 1960s and early 1970s. In 1992 the newly added populations (8th and 10th graders) were also showing an increase in LSD use; and for several more years, modest increases persisted in all five populations. Use of LSD among college students and young adults was the first to peak, in 1995. Use in all three grades of secondary school peaked a year later. After those peak years in the mid-1990s, there was a gradual decline in LSD use across the board, followed by a sharp decline after 2001 in all five populations. Overall, the pattern of change for LSD seems more consistent with secular change, rather than a cohort effect. The different age groups moved in parallel for the most part, likely in response to
historical events in the environment, including a sharp reduction in LSD availability after 2001.

Prior to the significant increase in LSD use among seniors in 1993, there was a significant 4.3-percentage-point decline between 1991 and 1992 in the proportion seeing great risk associated with trying LSD. (Once again this belief proved a leading indicator of change in use.) The decline in perceived risk continued through 1997 and halted in 1998. The proportion of seniors disapproving of LSD use also began to decline in 1992 and continued through 1996.

Because LSD was one of the earliest drugs to be popularly used in the overall American drug epidemic, there is a distinct possibility that young people-particularly the youngest cohorts, like the 8th graders-were not as concerned about the risks of use. They had less opportunity to learn vicariously about the consequences of use by observing others around them or to learn from intense media coverage of the issue, which occurred some years earlier. We were concerned that this type of "generational forgetting" of the dangers of a drug, which occurs as a result of generational replacement, could set the stage for a whole new epidemic of use. In fact, perceived harmfulness of LSD began to decline after 1991 among seniors. The measures for risk and disapproval were not introduced for 8th and 10th graders until 1993; both measures dropped until 1997 or 1998, after which perceived risk and disapproval leveled and then declined some. In 2004, 12th graders' personal disapproval of trying LSD increased significantly. Because the decline in use in the last few years generally has not been accompanied by expected changes in these attitudes and beliefs, we suspected that some displacement by another drug might have been taking place, at least through 2001. The most logical candidate is ecstasy, which, like LSD, is used for its hallucinogenic effects; ecstasy was popular in the club scene and was very much on the rise through 2001. After 2001 a sharp decline in the reported availability of LSD, observed in all five populations, very likely played a role in the sharp decline in use among all of them.

- Questions about the use of ecstasy (MDMA) have been included in the follow-up surveys of college students and young adults since 1989; however, because of our concern about stimulating interest in an attractive-sounding and little-known drug, these questions were not added to the secondary school surveys until 1996. From 1989 to 1994, the annual prevalence rates tended to be quite low in the older age groups for whom we had data, but in 1995 there was a substantial increase (from $0.5 \%$ to $2.4 \%$ among college students, and from $0.7 \%$ to $1.6 \%$ among young adults generally).

When data were first gathered on secondary school students in 1996, the 10th and 12th graders showed higher rates of annual use (both 4.6\%) than the college students (2.8\%). Ecstasy use then fell steadily at all three grades of secondary school between 1996 and 1998, though it did not fall in the older age groups. Between 1998 and 2001, use rose sharply in all five populations. In fact, annual prevalence more than doubled in that threeyear period among 12th graders, college students, and young adults and nearly doubled in the lower grades. In 2000 even the 8th graders showed a significant increase in use. Among young adults, the increase in use occurred primarily among those under age 29.

In 2002, use declined for all five age groups, but only the 10th graders' change was significant. Use decreased again in 2003 for all five populations, and only the drop among college students was not significant. There was some decline among all age groups in 2004; the largest declines were among the college students and young adults, suggesting that cohort effects and a secular trend may have been at work. Once again, among the secondary students this decline in use was predicted by an increase in perceived risk in 2001-an increase that continued through 2004. The rates of annual prevalence in 2004 for ecstasy were $1.7 \%, 2.4 \%$, and $4.0 \%$ among 8th, 10th, and 12th graders, respectively; $2.2 \%$ among college students; and $3.5 \%$ among all young adults. The annual prevalence fell by half in 2004 alone among the college students, and all five groups are at rates that range from one-half to three-quarters lower than their recent peaks in 2001.

All five populations have been moving fairly synchronously since 1999, which appears to reflect an important secular trend and suggests that events in the social environment are reaching everyone. We believe that relevant events include increasing media coverage of people suffering adverse outcomes due to their ecstasy use, increasing dissemination of the scientific evidence on effects produced by the National Institute on Drug Abuse, and an anti-ecstasy media campaign by the Partnership for a Drug-Free America and the Office of National Drug Control Policy, initiated in 2002.

The quite dramatic increase in reported availability of ecstasy through 2001 was substantiated by law enforcement data on ecstasy seizures. Of the 12th graders surveyed in 1991, only $22 \%$ thought they could get ecstasy fairly easily, but a decade later (in 2001) $62 \%$ thought that they could. Since 2001, however, ecstasy availability has been decreasing in all three grades, possibly due in part to the steep decline in the number of users, who serve as supply points for others. See Figure 8-6 in Volume I, chapter 8, for a graphic presentation of the trends in use, availability, and perceived risk.

- In the decade between 1982 and 1992, annual prevalence rates for amphetamine use (other than that ordered by a physician) among seniors fell by nearly two-thirds, from $20.3 \%$ to $7.1 \%$. Rates among college students fell even more over the same interval, from $21.1 \%$ to $3.6 \%$. During the relapse phase in the overall drug epidemic, annual use increased by about half among 8th and 10th graders between 1991 and 1996, and there were increases among 12th graders and college students between 1992 and 1996. After 1996 the age groups diverged, with amphetamine use declining gradually among 8th and 10th graders and continuing to rise among 12th graders, college students, and young adults. The decline in the lower two grades continued through 2004, while the rise among the 12th graders and college students finally halted by 2003. The 12th graders have since shown some decline in their annual prevalence of amphetamine use, while the college students have held steady and the young adults appear still to be rising in their usage rate. This is another drug for which a cohort effect seems to best explain the pattern of change across the several age groups.

The increase in non-medical use of amphetamines (and a concurrent decrease in disapproval) that began among seniors in 1993 followed a sharp drop in perceived risk a
year earlier (which, as we have said, often serves as a leading indicator). Following a period of decline, perceived risk among seniors generally drifted up from 1995 through 2003; and disapproval also drifted up from 1996 through 2004. However, amphetamine use among seniors held relatively steady, with just a slight rise from 1997 through 2002 and with a small decline since then.

- Use of the specific amphetamine Ritalin showed a distinct increase around 1997-with annual prevalence among 12th graders going from $0.1 \%$ in 1992 to $2.8 \%$ in 1997-and then stayed level for a few years. (See Volume I, Appendix E, Table E-2.') Because of its increasing importance, a differently structured question was introduced for Ritalin use in 2001. This new question, which we prefer to the original, does not use a prior branching question and produced somewhat higher prevalence rates. Results from the new question show Ritalin use to have been steady or declining slightly in recent years in all five populations (see Table 2-2).
- Methamphetamine questions were introduced in 1999 because of rising concern about its use; but a modest decline in use actually was observed among all five populations through 2002, with the exception of young adults, whose use has held steady. All groups except the young adults now have lower rates of annual prevalence in 2004 than they did in 1999. The only one-year change in 2004 that reached significance was for 8th graders, whose annual prevalence dropped from $2.5 \%$ in 2003 to $1.5 \%$ in 2004.
- We have had questions for a longer time-since 1990-about the use of ice (a crystallized form of methamphetamine that can be smoked, much like crack). The use of ice increased between the early and the late 1990s among 12th graders, college students, and young adults (the only populations asked about their use of ice). The estimates are a bit "bouncy" due to the relatively small sample sizes asked about this drug, but it appears that ice use has held fairly steady since 1998 among 12th graders and college students, while it may have risen some among young adults generally.
- Inhalants are defined as fumes or gases that are inhaled to get high, and they include common household substances such as glues, aerosols, butane, and solvents. In the early 1990s, there was a troublesome increase in inhalant use among secondary school students, followed by a reversal after 1995. One class of inhalants, amyl and butyl nitrites, became somewhat popular in the late 1970s, but their use has been almost eliminated. For example, the annual prevalence rate among 12th-grade students was $6.5 \%$ in 1979 but only $0.8 \%$ in 2004.
- Crack cocaine use spread rapidly from the early to the mid-1980s. Still, among high school seniors, the overall prevalence of crack leveled in 1987 at a relatively low prevalence rate ( $3.9 \%$ annual prevalence), even though crack use had continued to spread to new communities. Clearly, it had quickly attained a reputation as a dangerous drug, and by the time of our first measurement of perceived risk in 1987, it was seen as the

[^5]most dangerous of all of the drugs. Annual prevalence dropped sharply in the next few years, reaching $1.5 \%$ by 1991, where it remained through 1993. Perceived risk began what turned out to be a long and substantial decline after 1990. Use began to rise gradually after 1993, when it was $1.5 \%$, to $2.7 \%$ by 1999, before finally declining in 2000 and then leveling.

Among 8th and 10th graders, crack use had risen gradually in the 1990s: from $0.7 \%$ in 1991 to $2.1 \%$ by 1998 among 8th graders, and from $0.9 \%$ in 1992 to $2.5 \%$ in 1998 among 10th graders. Use among 12th graders peaked a year later, in 1999, at $2.7 \%$ and among young adults at $1.4 \%$. Since those peak years, crack use has gradually declined in the lower two grades, held fairly steady in 12th grade and among young adults, and possibly increased some among college students. In general, the prevalence rates for this drug are relatively low-between $1.3 \%$ and $2.3 \%$ in all five groups. Among high school seniors, the group with the highest prevalence rate, annual crack prevalence among the collegebound is considerably lower than among those not bound for college ( $1.0 \%$ for collegebound versus $4.9 \%$ for noncollege-bound, in 2004).

We believe that the particularly intense and early media coverage of the hazards of crack cocaine likely had the effect of "capping" an epidemic early by deterring many would-be users and by motivating many experimenters to desist use. As has been mentioned, when we first measured crack use in 1987, it had the highest level of perceived risk of any illicit drug. Also, it did not turn out to be "instantly addicting" upon first-time use, as had been reported widely. While $3.9 \%$ of seniors in 2004 reported ever having tried crack, only $1.0 \%$ reported use in the past month, indicating that about three-quarters of those who tried crack did not establish a pattern of continued use.

In 1993 the levels of perceived risk and disapproval associated with crack dropped in all three grade levels, foretelling the rise in use that occurred in all three grades between 1994 and 1998. Because more than a decade had passed since the 1986 media frenzy about crack use, it is quite possible that "generational forgetting" of the risks of that drug was occurring. Indeed, perceived risk of crack use had been eroding steadily at all grade levels since 1991 (or 1992 in the case of the 12th graders) through 2000. Since then there has not been much systematic change in risk or disapproval of crack, though any change has been in an upward direction.

- Use of $\boldsymbol{c o c a i n e}^{8}$ in general began to decline a year earlier than crack, probably because crack was still in the process of diffusing to new parts of the country, being still quite new. Between 1986 and 1987 the annual prevalence rate for cocaine dropped dramatically, by about one-fifth in all three populations then being studied-seniors, college students, and young adults. The decline occurred when young people finally began to view experimental and occasional use-the type of use in which they are most likely to engage-as more dangerous. This change first began to occur in 1987, probably partly because the hazards of cocaine use received extensive media coverage during the

[^6]preceding year, but almost surely in part because of the highly publicized cocaine-related deaths in 1986 of sports stars Len Bias and Don Rogers. By 1992 the annual prevalence of cocaine use had fallen by about two-thirds among the three populations for which long-term data are available (12th graders, college students, and young adults).

During the 1990s, however, cocaine use in all five age populations increased some, both beginning and ending in a staggered pattern by age. Use rose among 8th graders from 1991 to 1998, among 10th and 12th graders from 1992 to 1999, among college students from 1994 to 2004, and among young adults from 1996 through 2004. (Note that a turnaround has yet to occur in the two older groups and they are currently at their highest level since 1990.) So, again, there is evidence of a cohort effect at work.

The story regarding attitudes and beliefs is informative. Having risen substantially after 1986, the perceived risk of using cocaine actually showed some (nonsignificant) decline in 1992 among seniors. In 1993, perceived risk for cocaine other than crack fell sharply in all grades and disapproval began to decline in all grades, though not as sharply as perceived risk. The decline in perceived risk had virtually ended by 1995 among 8th graders, by 1998 among 10th graders, and by 2001 among 12th graders, suggesting that there was a cohort effect at work in this important belief. Disapproval declined between 1991 and 1996 among 8th graders, before leveling; it also declined in 1992 through 1998 among 10th and 12th graders, with the exception of an increase for 12th graders in 1995. These changes foretold a subsequent leveling of use at each grade level.

Through 1989, there was no decline in perceived availability of cocaine among 12th graders; in fact, it rose steadily from 1983 to 1989, suggesting that availability played no role in bringing about the substantial downturn in use after 1986. After 1989, however, perceived availability fell some among seniors; that decline may be explained by the greatly reduced proportions of seniors who said they have any friends who use, because friendship circles are an important part of the supply system. From 1992 through 1998 or 1999, there was rather little change in reports of availability of powder cocaine in the three grades, but since 1999 there has been some continuing falloff. Perceived availability of powder cocaine has not changed much since 2001 in the upper grades but has been declining among the 8th graders.

As with all the illicit drugs, lifetime cocaine prevalence climbs with age; in 2004 it reached $38 \%$ among those aged 45 . Unlike all of the other illicit drugs, active use of cocaine-i.e., annual prevalence or monthly prevalence-holds fairly steady after high school (and, until recent years, increases in use after high school) rather than declining. (See Figure 4-5 in Volume II.) Nearly all of the other illicit drugs show a decline in active use with age.

- PCP use fell sharply among high school seniors between 1979 and 1982, from an annual prevalence of $7.0 \%$ to $2.2 \%$. It reached a low point of $1.2 \%$ in 1988, rose some in the 1990s to $2.6 \%$ in 1996, and declined to $0.7 \%$ by 2004 . For the young adults, the annual prevalence rate rose very slightly from $0.2 \%$ in 1996 to $0.6 \%$ in 2001 before declining to $0.1 \%$ in 2004.
- Looking at the long-term trends, we see that the annual prevalence of heroin use among 12th graders fell by half between 1975 (1.0\%) and 1979 (0.5\%). It then stabilized for 15 years, through 1994. Heroin use was also stable in the early 1990s among the other four populations covered here. Then, in 1994 in the case of the 8th graders, and in 1995 in the case of all other groups, there was a sudden uptick in use, with rates doubling or tripling in one or two years. The new higher levels of heroin use remained among all five populations for the rest of the decade. In 2000, however, there was a significant decrease in use among 8th graders (from 1.4\% in 1999 to $1.1 \%$ in 2000) and a significant increase in use among seniors (from $1.1 \%$ in 1999 to $1.5 \%$ in 2000). The increase among seniors was due entirely to an increase in non-injection use. Use of heroin declined significantly among 10th and 12th graders in 2001, as did their use of heroin without a needle. In 2002 little change took place among the secondary school students, but young adults showed a significant decline in their reported heroin use. A significant decline in use of heroin overall, as well as use of heroin without a needle, occurred among 10th graders in 2003. In sum, all age groups have rates of heroin use in 2004 that are below their recent peaks.

Two factors very likely contributed to the upturn in heroin use in the 1990s. One is a long-term decline in the perceived risk of harm, probably due to "generational forgetting," because it had been a long time since the country had experienced a heroin epidemic. The second factor, not unrelated to the first, is that in the 1990s the greatly increased purity of heroin allowed it to be used by means other than injection. This may have lowered an important psychological barrier for some potential users by making heroin use less aversive and by making it seem less addictive as well as safer, because avoiding injection reduces the likelihood of transmission of HIV, hepatitis, or other serious blood-borne diseases. By introducing some new questions on heroin use in 1995, we were able to show that significant proportions of past-year users in all five populations were indeed taking heroin by means other than injection. (See Table 2-2 and chapter 4 of Volume I for details.)

The risk perceived to be associated with heroin fell for more than a decade after the study began, with $60 \%$ of the 1975 seniors seeing a great risk of trying heroin once or twice and only $46 \%$ of the 1986 seniors saying the same. Between 1986 and 1991, perceived risk rose some, from $46 \%$ to $55 \%$, undoubtedly reflecting the newly recognized threat of HIV infection associated with heroin injection. After 1991, however, perceived risk fell again (to $51 \%$ by 1995), this time perhaps reflecting the fact that the newer heroin available on the street could be administered by methods other than injection because it was so much purer. Between 1996 and 1998, perceived risk among seniors rose-perhaps as the result of an anti-heroin campaign launched by the Partnership for a Drug-Free America in June 1996, as well as the visibility of heroin-related deaths of some celebrities in the entertainment and fashion design worlds. The perceived risk of trying heroin decreased among seniors in 1999, however, foretelling a significant increase in their use of the drug in 2000. In 2001, as the perceived risk of trying heroin increased slightly, seniors' use declined significantly. Since 2001, perceived risk and use have remained fairly level.

Questions about the degree of risk perceived to be associated with heroin use were first introduced into the questionnaires for 8th and 10th graders in 1995. The questions asked
specifically and only about use "without using a needle" because we thought this was the form of heroin use of greatest concern at that point. (Similar questions were asked of 12th graders, as well, in one of the six questionnaire forms.) In general, perceived risk in all three grades for use without a needle rose in 1996 and 1997, before leveling.

- The use of narcotics other than heroin is reported only for high school seniors and older populations because we believe that younger students are not accurately discriminating among the drugs that should be included or excluded from this general class. Use had been declining gradually over most of the first half of the study in these groups. Seniors had an annual prevalence rate in 1977 of $6.4 \%$, which fell to $3.3 \%$ by 1992. But from about 1992 through 2001, all of the older age groups showed a continuing increase, reaching peak levels of use in 2003 or 2004. The specific drugs in this class are listed in Table E-4 in Appendix E of Volume I, which shows that Vicodin, codeine, Percocet, and OxyContin are among the drugs most commonly mentioned by high school seniors in recent years. They also account for much of the increase in the general class, though there has also been an increase in the reported use of other substances in the class.
- In 2002, free-standing questions were included for two drugs in this class-Vicodin and OxyContin-and the observed prevalence rates suggest that they very likely help to account for the upturn in the use of the general class of narcotics other than heroin. We found that in 2003 Vicodin had attained surprisingly high prevalence rates in the five populations under study here-an annual prevalence of $2.8 \%$ in 8 th grade, $7.2 \%$ in 10th grade, $10.5 \%$ in 12th grade, $7.5 \%$ among college students, and $8.6 \%$ among young adults. Lower rates were found for OxyContin, but considering that it is a highly addictive narcotic drug, the rates are not inconsequential- $1.7 \%, 3.6 \%, 4.5 \%, 2.2 \%$, and $2.6 \%$ annual prevalence in the same five populations, respectively. Both of these narcotic drugs also had shown some (not statistically significant) increases in all five populations in 2003. In 2004, use of OxyContin leveled among 8th and 10th graders but continued to increase some among 12th graders, college students, and young adults. Use of Vicodin leveled or decreased in 2004 among all populations under study except the young adults, among whom it increased slightly. Because OxyContin has received considerable adverse publicity in recent years, it is possible that perceived risk (which we do not measure) will increase. But because its use appears to have originated in several fairly delimited geographic areas, it seems likely that OxyContin will be diffusing to new communities for some time to come; this could delay its turnaround overall, as seems to have happened earlier for crack and ecstasy.
- A long, substantial decline, which began after 1977, occurred for tranquilizer use among high school seniors. By 1992, annual prevalence reached 2.8\%, down from $11 \%$ in 1977. After 1992, use increased significantly (as has been true with most of the drugs), reaching $5.8 \%$ in 1999. Use of this drug continued to rise through 2002 to $7.7 \%$ (although because the question was revised slightly in 2001 to include Xanax as an example of a tranquilizer, part of the increase may be artifactual). In 2003 there was a significant decline in use among seniors, to $6.7 \%$. In 2004 the rate stood at $7.3 \%$. Reported tranquilizer use also exhibited some modest increase among 8th graders, from $1.8 \%$ in 1991 to $3.3 \%$ in 1996, before declining a bit to $2.6 \%$ in 1998 with little change since
then. As with a number of other drugs, the downturn in use began considerably earlier among the 8th graders than among their older counterparts. Among 10th graders, annual prevalence remained stable between 1991 and 1994, at around $3.3 \%$, and increased significantly to $5.6 \%$ in 2000. Their use began to decline after 2001, reaching $5.1 \%$ in 2004. After a period of stability, college student use also showed an increase between 1994 and 2003, more than tripling their rate of use. For the young adult sample, after a long period of decline, annual prevalence increased appreciably between 1997 and 2004, more than doubling. Most of the reported tranquilizer use in recent years has involved Valium and Xanax. (See Table E-3 in Appendix E of Volume I.)
- The long-term gradual decline in sedative (barbiturate) use, which began at least as early as 1975, when the study began, halted in 1992. Use among 12th graders then rose to $6.7 \%$ in 2002-still well below the peak rate of $10.7 \%$ in 1975. Their use finally leveled in 2003. The 2004 annual prevalence of this class of drugs is lower among young adults (4.4\%) and college students (4.2\%) than among seniors (6.5\%). Use among college students began to rise a few years later than it did among 12th graders, no doubt reflecting the impact of generational replacement in the form of a cohort effect. (Data are not included here for 8th and 10th grades, again because we believe that the younger students have more problems with proper classification of the relevant drugs.) Among young adults, use increased since the early 1990s, rising from $1.6 \%$ in 1992 to $4.4 \%$ in 2004.
- Methaqualone, another sedative drug, has shown a trend pattern quite different from barbiturates. Methaqualone use rose among seniors from 1975 to 1981, when annual prevalence reached $7.6 \%$. Its use then fell very sharply, declining to $0.2 \%$ by 1993 , before rising significantly during the general drug resurgence in the 1990s, to $1.1 \%$ by 1996. Use then leveled before decreasing significantly to $0.3 \%$ in 2000 , but it is now up a bit to $0.8 \%$ in 2004. Use also fell among all young adults and among college students, who had annual prevalence rates of only $0.3 \%$ and $0.2 \%$, respectively, by 1989-the last year they were asked about this drug. In the late 1980s, shrinking availability may well have played a role in this drop, as legal manufacture and distribution of the drug ceased. Because of its very low usage rates, only the 12th graders are now asked about use of this drug.
- It should be noted that during much of the 1990s and into the 2000s we were seeing a virtually uninterrupted increase among high school seniors, college students, and young adults generally in the use of nearly all illicit drugs that are central nervous system depressants. These include sedatives (barbiturates), tranquilizers, and narcotics other than heroin. All of these drugs tended to fall from favor from the mid-1970s through the early 1990s, but many made a comeback after the early 1990s. The resurgence now seems to be leveling off.
- To summarize, for some years five classes of illicitly used drugs-marijuana, amphetamines, cocaine, LSD, and inhalants-had an impact on appreciable proportions of young Americans in their late teens and 20s. In 2004, high school seniors showed
annual prevalence rates of $34.3 \%, 10.0 \%, 5.3 \%, 2.2 \%$, and $4.2 \%$, respectively. Among college students in 2004, the comparable annual prevalence rates are $33.3 \%$, $7.0 \%, 6.6 \%$, $1.2 \%$, and $2.7 \%$; and for all young adults the rates are $29.2 \%, 6.2 \%, 7.1 \%, 0.9 \%$, and 1.7\%. Because LSD use has fallen so precipitously since 2001 in all five populations, it really no longer ranks as one of the major drugs of abuse, whereas narcotics other than heroin have become quite important due to their long-term rise that began in the 1990s. The narcotics other than heroin now have annual prevalence rates of $9.5 \%$ at 12th grade, $8.2 \%$ among college students, and $9.0 \%$ among young adults. Tranquilizers also have become more important due to a similar rise in use, with prevalence rates of $7.3 \%, 6.7 \%$, and $7.4 \%$, respectively, in the same three populations.
- Joining this set of long-established, more prevalent drugs was MDMA (ecstasy) for a period of time. However, it has shown a considerable drop in use and in 2004 has annual prevalence rates of $1.7 \%, 2.4 \% 4.0 \%, 2.2 \%$, and $3.5 \%$ among 8 th, 10 th, and 12 graders and college students and young adults, respectively.
- In 8th grade, inhalants rank second only to marijuana among the illicitly used drugs in terms of annual prevalence, and they actually rank first on lifetime use. Because of their importance among the younger adolescents, a new index of illicit drug use including inhalants was introduced in Tables 2-1 through 2-3. The use of inhalants reflects a form of illicit, psychoactive drug use; its inclusion makes relatively little difference in the illicit drug index prevalence rates for the older age groups but considerable difference for the younger ones. For example, in 2004 the proportion of 8th graders reporting any illicit drug use in their lifetime, exclusive of inhalants, was $22 \%$, whereas including inhalants raised the figure to $30 \%$.
- Several additional classes of drugs have been added to the study's coverage in recent years, and they are all discussed in chapter 4 of Volume I. These include ketamine, GHB, and Rohypnol, so-called "club drugs" (in addition to LSD and ecstasy). In general, these drugs have not attained high prevalence rates among 8th, 10th, or 12th graders: the 2004 annual prevalence rates for ketamine are $0.9 \%, 1.3 \%$, and $1.9 \%$, respectively; for $\boldsymbol{G H B}$, $0.7 \%, 0.8 \%$, and $2.0 \%$; and for Rohypnol, $0.6 \%$ and $0.7 \%$ for 8th and 10th grade (the Rohypnol question for 12th graders was changed in 2002 and in 2004 stands at 1.6\%). There was little change in the use of any of them this year except for significant declines in 10th graders' use of GHB and ketamine. The two narcotic drugs added to our coverage in 2002-OxyContin and Vicodin - show higher prevalence rates, as stated earlier.
- Two new substances used primarily by males to develop their physique and physical strength were added to the question set in 2001. One is androstenedione, a precursor to anabolic steroid, which could be purchased over the counter until early 2005. Among males, where use is heavily concentrated, the 2004 annual prevalence rate is relatively high, at $1.2 \%, 1.6 \%$, and $3.7 \%$ in grades 8,10 , and 12 . (Among females, the rates are $0.5 \%, 0.5 \%$, and $0.6 \%$.) As is discussed in chapter 10 of Volume I, the proportion of young males who report past-year use of either androstenedione or steroids is appreciable. The peak rate was observed in 2001, when the "andro" question was first introduced; 1 in every 12 or 13 boys ( $8.0 \%$ ) in 12th grade indicated using one or both of
these drugs in the prior year. The rate has fallen some in all three grades since then, and in 2004 it was $5.3 \%$ among 12th-grade boys.
- Another physique-enhancing substance that is not a drug, but rather a type of protein supplement, is creatine. Because we thought its use often was combined with the use of steroids and androstenedione, we included a question on it in 2001 and found prevalence of use to be very high. Among boys, who again are the primary users, the 2004 annual prevalence for creatine is $3.3 \%, 9.8 \%$, and $15.9 \%$, in grades 8,10 , and 12 . In other words, one in every six 12th-grade boys had used creatine in the prior year. (For girls, the rates are $0.6 \%, 0.9 \%$, and $1.0 \%$.)
- For some years, the study has contained a set of questions about the use of nonprescription stimulants, including stay-awake pills, diet pills, and the so-called "lookalikes." The annual prevalence among 12th graders of over-the-counter stay-awake pills, which usually contain caffeine as their active ingredient, nearly doubled between 1982 and 1990, increasing from $12 \%$ to $23 \%$. After 1990 this statistic fell, reaching $12 \%$ by 2004. Earlier decreases also occurred among the college-aged young adult population (ages 19 to 22), in which annual prevalence was $26 \%$ in 1989 and declined to $12 \%$ in 2003-its lowest level since 1986. The look-alikes also have shown some falloff in recent years. Among high school seniors, annual prevalence decreased slightly from 6.8\% in 1995 to $5.0 \%$ in 1999, increased to $7.1 \%$ in 2001, and then decreased to $5.0 \%$ by 2004 ; among young adults aged 19 to 22, use also declined from 6.0\% in 1995 to $1.9 \%$ in 2004. Among high schools seniors, annual prevalence of over-the-counter diet pills declined between 1986 and 1995, from $15 \%$ to $10 \%$, increased to $15 \%$ by 2002, then declined to $11 \%$ in 2004. (Among 12th-grade girls in 2004, 22\% had tried diet pills by the end of senior year, $14 \%$ used them in the past year, and $7 \%$ used them in just the past 30 days.) Among young adults aged 19 to 22 there also had been an earlier decline from 1986 to 1995, with annual prevalence moving from $17 \%$ to $7 \%$. Use then rose to $15 \%$ by 2004 . Use of these over-the-counter drugs by high school seniors is covered in chapter 10 of Volume I.


## College-Noncollege Differences in Illicit Drug Use

- For analytic purposes, American college students are defined here as those respondents one to four years past high school who were actively enrolled full-time in a two- or fouryear college. For most categories of drugs, college students have rates of use that are below those of their age peers, including any illicit drug other than marijuana, hallucinogens, LSD specifically, ecstasy, cocaine, crack cocaine specifically, narcotics other than heroin, OxyContin, and Vicodin specifically, amphetamines, methamphetamine, ice, sedatives (barbiturates), and tranquilizers. College students show higher rates of use than their age mates for a few drugs-Ritalin, Rohypnol, GHB, ketamine, and inhalants. Their high rate of Ritalin use may derive from its use for staying awake while studying. For a few categories of drugs-including any illicit drug, marijuana, and heroin - they also show annual usage rates that are about average for all high school graduates their age. College students are about average on an index of any
illicit drug use likely because they have very similar rates of use of marijuana, which largely drives the index.
- Although college-bound seniors have below-average rates of use on all of the illicit drugs while they are in high school, these students' eventual use of some illicit drugs attain parity with, or even come to exceed, the rates of those who do not attend college. As results from the study published in two recent books have shown, this college effect of "catching up" is largely explainable in terms of differential rates of leaving the parental home after high school graduation and of getting married. College students are more likely than their age peers to have left the parental home and its constraining influences and less likely to have entered marriage, with its constraining influences. ${ }^{9}$
- In general, the trends since 1980 in illicit substance use among American college students have paralleled those of their age peers not in college. Most drugs showed a period of substantial decline in use sometime after 1980. Further, all young adult high school graduates through age 28, as well as college students taken separately, showed trends highly parallel for the most part to the trends among high school seniors until about 1992. After 1992 a number of drugs showed an increase in use among seniors (as well as 8th and 10th graders) but not among college students and young adults for some period of time.

This divergence, combined with the fact that the upturn began first among the 8th graders (in 1992), suggests that cohort effects were emerging for illicit drug use, as we discussed earlier. In fact, as those heavier-using cohorts of high school seniors entered the college years, we saw a lagged increase in the use of several drugs in college. For example, annual prevalence reached a low point among 12th graders in 1992 for a number of drugs (e.g., cocaine, amphetamines, sedatives [barbiturates], tranquilizers, other narcotics, and any illicit drug other than marijuana) before rising thereafter; among college students, those same drugs reached a low two years later in 1994, and then began to rise gradually. Then, in 1998, as marijuana use was declining in the three grades of secondary school, we saw a sharp increase in use among college students. The evidence for cohort effects resulting from generational replacement is impressive, as well as consistent with our earlier predictions.

## Male-Female Differences in Illicit Drug Use

- Regarding gender differences in the three older populations (high school seniors, college students, and young adults), males are more likely to use most illicit drugs, and the differences tend to be largest at the higher frequency levels. Daily marijuana use among high school seniors in 2004, for example, is reported by $7.7 \%$ of males versus $3.1 \%$ of females; among all adults (aged 19 to 30 years) by $6.3 \%$ of males versus $3.3 \%$ of females; and among college students, specifically, by $6.8 \%$ of males versus $3.1 \%$ of females.

[^7]- In the 8th- and 10th-grade samples there are fewer and smaller gender differences in the use of drugs-perhaps because girls tend to date and then emulate older boys, who are in age groups considerably more likely to use drugs. While the rate of using marijuana in the past year is slightly higher for males, the rate for the use of any illicit drug other than marijuana tends to be slightly higher for females. There is little male-female difference in 8th and 10th grades in the use of LSD, ecstasy, cocaine, crack, heroin, Ritalin, Rohypnol, and GHB. Inhalant, amphetamine, and tranquilizer use are slightly higher among females.


## TRENDS IN ALCOHOL USE

- Several findings about alcohol use in these age groups are noteworthy. First, despite the fact that it is illegal for virtually all secondary school students and most college students to purchase alcoholic beverages, experience with alcohol is widespread among them. Alcohol has been tried by $44 \%$ of 8th graders, $64 \%$ of 10th graders, $77 \%$ of 12th graders, and $85 \%$ of college students; and active use is also widespread. Most important, perhaps, is the occurrence of occasions of heavy drinking - measured by the percent reporting five or more drinks in a row at least once in the prior two-week period. Among 8th graders this statistic stands at $11 \%$, among 10th graders at $22 \%$, among 12th graders at $29 \%$, and among college students at $42 \%$. After people pass their early 20 s, this behavior recedes somewhat with age, reflected by the $37 \%$ rate found in the entire young adult sample and the $27 \%$ rate found specifically among 29 - to 30 -year-olds.
- Alcohol use did not increase as use of other illicit drugs decreased among seniors from the late 1970s to the early 1990s, although it was common to hear such a "displacement hypothesis" asserted. This study demonstrates that the opposite seems to be true. After 1980, when illicit drug use was declining, the monthly prevalence of alcohol use among seniors also declined gradually, but substantially, from 72\% in 1980 to 51\% in 1992. Daily alcohol use declined by half over the same interval, from a peak of 6.9\% in 1979 to $3.4 \%$ in 1992; and the prevalence of drinking five or more drinks in a row during the prior two-week interval fell from $41 \%$ in 1983 to $28 \%$ in 1993-nearly a one-third decline. When illicit drug use rose again in the 1990s, there was evidence that alcohol use (particularly binge drinking) was rising some as well-albeit not nearly as sharply as did marijuana use. In the late 1990s, as illicit drug use leveled in secondary schools and began a gradual decline, similar trends were observed for alcohol. So, the evidence suggests that alcohol moves much more in concert with illicit drugs, rather than in the opposite direction.


## College-Noncollege Differences in Alcohol Use

- The data from college students show a quite different pattern of change in relation to alcohol use than that of 12th graders or noncollege respondents of the same age. (See Figure 9-14 in Volume II.) From 1980 to 1993, college students showed considerably less drop-off in monthly prevalence of alcohol use (82\% to 70\%) than did high school seniors ( $72 \%$ to 51\%). Occasions of heavy drinking also declined less among college students from 1980 to 1993 , from $44 \%$ to $40 \%$, compared to a decline from $41 \%$ to $28 \%$ among high school seniors. Among their noncollege age-mates, the decline was from $41 \%$ to $34 \%$. Thus, because both their noncollege age-mates and high school students were showing greater declines, the college students stood out as having maintained a high rate of binge (or party) drinking. Since 1993, this behavior has changed little among college students ( $42 \%$ in 2004, slightly above the $40 \%$ rate observed in 1993), while their noncollege age-mates also increased by two percentage points, to $34 \%$; high school seniors’ binge drinking increased to 32\% in 1998 but then decreased to $29 \%$ by 2004. Still, college students continue to stand out as having a relatively high rate of binge drinking.

Because the college-bound seniors in high school are consistently less likely to report occasions of heavy drinking than the noncollege-bound students, the higher rates of such drinking in college indicate that they catch up to and pass their peers in binge drinking after high school graduation. We have shown that this differential change after high school is largely attributable to the fact that college students are more likely to leave the parental home in the four years after graduating from high school than their noncollege peers, and also less likely to get married. ${ }^{10}$ A recent publication from the study also shows that membership in a fraternity or sorority tends to increase heavy episodic drinking and marijuana use. ${ }^{11}$

- Since 1980, college students have generally had daily drinking rates that were slightly lower than their age peers, suggesting that they were more likely to confine their drinking to weekends, when they tend to drink a lot. College men have much higher rates of daily drinking than college women ( $7.2 \%$ versus $1.8 \%$ in 2004). This gender difference also exists in the noncollege group (9.0\% versus 3.1\% in 2004).
- Comparisons between college students and their noncollege peers, in terms of binge drinking, have typically shown that college students are more likely to engage in this activity.
- The rate of daily drinking fell considerably among the noncollege group, from $8.3 \%$ in 1980 to $3.2 \%$ in 1994, but by 2000 had risen to $5.8 \%$, where it stands in 2004. Daily

[^8]drinking by the college group also dropped in approximately the same time period, from $6.5 \%$ in 1980 to $3.0 \%$ in 1995, and then increased to $4.5 \%$ in 1997. It is at $3.7 \%$ in 2004.

## Male-Female Differences in Alcohol Use

- Given that the physiological impacts of five drinks are considerably greater for the typical young female versus the typical young male, it is not surprising that we find substantial gender differences in the prevalence of occasions of heavy drinking. Among high school seniors the rates in 2004 are $24 \%$ for females versus $34 \%$ for males; this difference generally has been diminishing very gradually since the study began. (In 1975 there was a 23-percentage-point difference between them, versus a 10-point difference in 2004.)
- Among college students and young adults generally, there also are substantial gender differences in alcohol use, with college males drinking the most. For example, $49 \%$ of college males report having five or more drinks in a row over the previous two weeks versus $38 \%$ of college females. There has not been a great deal of change in this gender difference since 1980.


## TRENDS IN CIGARETTE SMOKING

Quite a number of very important findings about cigarette smoking among American adolescents and young adults have emerged during the life of the study, and one of the study's more important contributions to the long-term health of the nation's people has been to document these trends. Despite the demonstrated health risks associated with smoking, young people continued to establish regular cigarette habits during late adolescence in sizeable and, during the first half of the 1990s, growing proportions. In fact, since the study began in 1975, cigarettes have consistently remained the class of abusable substances most frequently used on a daily basis by high school students.

- During most of the 1980s, when smoking rates were falling steadily among adults, we reported that smoking among adolescents was not declining. Then the situation went from bad to worse. Among 8th and 10th graders, the current (past 30-day) smoking rate increased by about half between 1991 (when their use was first measured) and 1996; and among 12th graders, the current smoking rate rose by nearly one-third between 1992 and 1997. This study played an important role in bringing these disturbing increases in adolescent smoking to public attention during those years.

Fortunately, there have been some important declines in current smoking since 1996 in the case of 8th and 10th graders and since 1997 in the case of 12th graders. In fact, the declines have more than offset the increases observed earlier in the 1990s. In 2004, 9\% of 8th graders (down from $14 \%$ in 1991 and $21 \%$ in 1996) reported smoking one or more cigarettes in the prior 30 days-a decline of more than one-half from the recent peak. Some $16 \%$ of 10th graders were current smokers in 2004 (down from $21 \%$ in 1991 and $30 \%$ in 1996), representing a $47 \%$ drop from the recent peak rate. And in $2004,25 \%$ of

12th graders were current smokers (versus $28 \%$ in 1991 and $37 \%$ in 1997). This represents a one-third drop from the recent peak. The decline in the smoking rate among 12th graders halted in 2004, even though the decline continued in the lower grades, albeit at a much decelerated rate. Despite these very important recent improvements, at present one-quarter of American young people are current smokers by the time they complete high school; and other research consistently shows that smoking rates are substantially higher among those who drop out before graduating. Perhaps most important at present is that the improvement appears to be drawing to an end.

Among college students the peak rate in current smoking was not reached until 1999 (31\%), but since then there has been a fair decline (to $23 \%$ in 2003 and $24 \%$ in 2004). The young adults 19 to 28 years old have shown little change in rates of current smoking since 1996 (when their rate was $30 \%$ ); it is $29 \%$ in 2004. Note that none of the three older groups-high school seniors, college students, and young adults-showed any decline in their smoking rates from 2003 to 2004. All three showed nonsignificant increases.

- Daily smoking rates also increased by about half among 8th graders (from a low of 7.0\% in 1992 to $10.4 \%$ in 1996) and 10th graders (from a low of $12.3 \%$ in 1992 to $18.3 \%$ in 1996), while daily smoking among 12th graders increased by $43 \%$ (from a low of $17.2 \%$ in 1992 to $24.6 \%$ in 1997). ${ }^{12}$ In 1997 we saw the first evidence of a change in the situation, as daily smoking rates declined among 8th graders and leveled among 10th graders. There was a significant decline in 10th and 12th graders' daily smoking rates by 1998. All three grades have been continuing to decline in use through 2004, with significant declines among all three grades in 2004. Among college students daily smoking increased by nearly half from 1994 (13\%) through 1999 (19\%)—reflecting the cohort replacement effect of the heavier-smoking senior classes-before a turnaround began in 2000, decreasing the levels of use to $14 \%$ by 2003, where it remained in 2004.
- The dangers perceived to be associated with pack-a-day smoking differ greatly by grade level and seem to be unrealistically low at all grade levels. Currently, nearly threequarters of the seniors (74\%) report that pack-a-day smokers run a great risk of harming themselves physically or in other ways, but only $62 \%$ of the 8th graders say the same. All three grades showed a decrease in perceived risk between 1993 and 1995, as use was rising rapidly, but a slightly larger and offsetting increase between 1995 and 2000, presaging the subsequent downturn in smoking. Between 2000 and 2003, perceived risk remained relatively level in all grades. In 2004, perceived risk increased significantly among 8th and 10th graders and showed a nonsignificant increase among 12th graders. This is a hopeful sign for the possibility of further declines in the smoking rates among young people, in light of the deceleration of the declines between 2002 and 2004.
- Disapproval of cigarette smoking was in decline longer: from 1991 through 1996 among 8th and 10th graders, and from 1992 to 1996 among 12th graders. Since then there has been a fairly steady increase in disapproval of cigarette smoking in all three grades. Undoubtedly the heavy media coverage of the tobacco issue (the proposed settlement

[^9]with the state attorneys general, the congressional debate, the eventual state settlements, etc.) had an important influence on these attitudes and beliefs. However, that coverage diminished considerably in 1998, raising the question of whether these changes in youth attitudes would continue. It may well be, of course, that the removal of certain kinds of cigarette advertising and promotion, combined with national- and state-level antismoking campaigns and more recent significant increases in cigarette prices, have served to sustain and prolong these changes. This study has shown that there have been important changes in reported recall of anti-smoking ads as a result of both state and national campaigns. ${ }^{13}$

## Age and Cohort-Related Differences in Cigarette Smoking

- Initiation of smoking occurs most often in grades 6 through 9 (i.e., at modal ages 11-12 to 14-15), although according to the 2004 8th graders, $11 \%$ had already initiated smoking below grade 6. The initiation rate trails off considerably by 12th grade, although a number of the light smokers in 12th grade make the transition to heavy smoking in the first two years after high school. Analyses presented in this volume and elsewhere have shown that cigarette smoking evidences a clear "cohort effect." That is, if a class (or birth) cohort establishes an unusually high rate of smoking at an early age relative to other cohorts, the rate is likely to remain high throughout the life cycle relative to that of other birth cohorts at equivalent ages.
- As we reported in the "Other Findings From the Study" chapter in the 1986 volume in this series, some $53 \%$ of the half-pack-a-day (or more) smokers in senior year said that they had tried to quit smoking and found they could not. Of those who had been daily smokers in 12th grade, nearly three-quarters still were daily smokers seven to nine years later (based on the 1985 follow-up survey), despite the fact that in high school only 5\% of them thought they would "definitely" be smoking five years hence. A more recent analysis, based on the 1995 follow-up survey, showed similar results. Nearly two-thirds (63\%) of those who had been daily smokers in the 12th grade were still daily smokers seven to nine years later, although in high school only $3 \%$ of them had thought they would "definitely" be smoking five years hence. Clearly, the smoking habit is established at an early age, it is difficult to break for those young people who have it, and young people greatly overrate their own ability to quit. Additional data from the 8th- and 10thgrade students show us that younger children are even more likely than older ones to underestimate seriously the dangers of smoking.
- The surveys of 8th and 10th graders also show that cigarettes are almost universally available to teens. Nearly two-thirds (60\%) of 8th graders and four-fifths (81\%) of 10th graders say that cigarettes are "fairly easy" or "very easy" for them to get, if they want them. Until 1997 there had been little change in reported availability since these questions were first asked in 1992. Over the last eight years, however, perceived availability of cigarettes decreased significantly for 8th and 10th graders, quite likely

[^10]reflecting the impact of new regulations and related enforcement efforts aimed at reducing the sale of cigarettes to children. (Twelfth graders are not asked this question.) ${ }^{14}$

## College-Noncollege Differences in Cigarette Smoking

- A striking difference in smoking rates has long existed between college-bound and noncollege-bound high school seniors. For example, in 2004, smoking a half-pack or more per day is about three times as prevalent among the noncollege-bound seniors ( $16.0 \%$ versus $5.6 \%$ ). Among respondents of college age (one to four years past high school), those not in college show the same dramatically higher rate of smoking than those who are in college, with half-pack-a-day smoking standing at $19.2 \%$ versus $6.8 \%$, respectively. Clearly, the differences precede college attendance.
- In the first half of the 1990s, smoking rose some among college students and their sameage peers, although the increases were not as steep for either group as they were among high school seniors. But in 1998 and 1999, while smoking was declining among secondary school students at all grades, smoking increased significantly for college students, no doubt reflecting the cohort effect from earlier, heavier-smoking classes of high school seniors moving into the older age groups. Between 1991 and 1999, the 30day prevalence of cigarette smoking by college students rose from $23 \%$ to $31 \%$, or by about one-third, and daily smoking rose from $14 \%$ to $19 \%$, also by about one-third. The year 2000 showed, for the first time in several years, a decline in college student smoking, one which continued with a significant decline, to $23 \%$, in 2003, though it did not appear to continue into 2004 (24\%). (Because of the smaller numbers of cases in the college student samples, the trend lines are not always as smooth as they are for most of the other groups discussed here.) Some decline has been observed among their noncollege-aged peers, but only since 2001.


## Male-Female Differences in Cigarette Smoking

- In the 1970s, high school senior females caught up to and passed senior males in rates of current smoking. Both genders then showed a decline in use followed by a long, fairly level period, with use by females consistently higher, but with the gender difference diminishing. In the early 1990s, there was another crossover-rates rose among males and declined among females. Both genders in 12th grade showed increasing use between 1992 and 1997 and then a decline in use through 2003. In 2004, current smoking among males continued to decline (to $25 \%$ 30-day prevalence); use among the females bumped up 2 percentage points to $24 \%$ (following a 3 percentage-point drop the year before), but their smoking rate still remained slightly below that for males.

Among college students, females had slightly higher probabilities of being daily smokers from 1980 through 1994-although this long-standing gender difference was not true among their age peers not in college. However, there was a crossover from 1994 through 2001, with males being higher-an echo of the crossover among seniors in 1991. Since
${ }^{14}$ For a more detailed examination of recent changes in youth access to cigarettes, see Johnston, L. D., O’Malley, P. M., \& Terry-McElrath, Y. M. (2004). Methods, locations, and ease of cigarette access for American youth, 1997-2002. American Journal of Preventive Medicine, 27, 267-276.
about 2001 there has been little consistent gender difference in smoking among college students.

## RACIALIETHNIC COMPARISONS

The three largest ethnic groups in the population-Whites, African Americans, and Hispanics taken as a group-are examined here for 8th, 10th, and 12th graders. (Sample size limitations simply do not allow finer subgroup breakdowns unless many years are combined. Separate publications from the study have done just that.) A number of interesting findings emerge from the comparison of these three groups, and the reader is referred to chapters 4 and 5 of Volume I for a full discussion of them and to Appendix D for a tabular documentation of them across all drugs. ${ }^{15}$ The trends for these three subgroups are also presented graphically in an occasional paper available on-line. ${ }^{16}$

- African American seniors have consistently shown lower usage rates of most drugs, licit and illicit, than White seniors; this also is true at the lower grade levels where few have yet dropped out of school. The differences are quite large for some drugs at all three grade levels: these include inhalants, LSD, hallucinogens other than LSD, ecstasy, powder cocaine, amphetamines, and tranquilizers.
- African American students have a much lower 30-day prevalence rate of cigarette smoking than White students ( $10 \%$ versus $28 \%$ in senior year, in 2004) because their smoking rate continued to decline after 1983, while the rate for White students stabilized for some years. (Smoking rates had been rising among White seniors and African American seniors after 1992, but by 1998 there was a leveling, and since then a reversal, in both groups in all grades.) The White students showed a continuing decline in 2004 for all three grades, while the decline among African American students halted for all three grades.
- In 12th grade, occasions of heavy drinking are much less likely to be reported by African American students (11\%) than by White students (33\%) or Hispanic students (26\%).

[^11]- In 12th grade, of the three racial/ethnic groups, Whites tend to have the highest rates of use on a number of drugs, including marijuana, inhalants, hallucinogens, LSD specifically, hallucinogens other than LSD, ecstasy, narcotics other than heroin, amphetamines, sedatives (barbiturates), tranquilizers, alcohol, getting drunk, cigarettes, and smokeless tobacco.
- However, Hispanics have the highest usage rate in 12th grade for a number of the most dangerous drugs, for example, heroin with a needle, crack, and crystal methamphetamine (ice). Further, in 8th grade, Hispanics have the highest rates not only for these drugs, but for many of the others, as well. For example, in 8th grade, the annual prevalence of marijuana for Hispanics is $17 \%$, versus $12 \%$ for Whites and $13 \%$ for African Americans; the two-week prevalence of binge drinking is $16 \%$ for Hispanics, $11 \%$ for Whites, and $10 \%$ for African Americans. In other words, Hispanics have the highest rates of use for many drugs in 8th grade, but not in 12th, which suggests that their considerably higher dropout rate (compared to Whites and African Americans) may change their relative ranking by 12th grade.
- With regard to trends, seniors in all three racial/ethnic groups exhibited a decline in cocaine use from 1986 through 1992, although the decline was less steep among African American seniors because their earlier increase in use was not as large as the increase among White and Hispanic students.
- For virtually all of the illicit drugs, the three groups have tended to trend in parallel. Because White seniors had achieved the highest level of use on a number of drugsincluding amphetamines, sedatives (barbiturates), and tranquilizers-they also had the largest declines; African Americans have had the lowest rates and, therefore, the smallest declines.
- The important racial/ethnic differences in cigarette smoking noted earlier among high school seniors have emerged during the life of the study. The three groups were fairly similar in their smoking rates during the mid-1970s, and all three mirrored the general decline in smoking from 1977 through 1981. Over the 11-year interval from 1981 through 1992, however, smoking rates declined very little, if at all, for Whites and Hispanics; but the rates for African Americans continued to decline steadily. As a result, by 1992 the daily smoking rate of African Americans was one-fifth that of Whites. Subsequently, all three ethnic groups of 12th graders exhibited fairly parallel trends in smoking.


## DRUG USE IN EIGHTH GRADE

It may be useful to focus specifically on the youngest age group in the study-the 8th graders, most of whom are 13 or 14 years old-because the exceptional levels of both licit and illicit drug use that they already have attained help illustrate the nation's urgent need to continue to address the substance abuse problems among its young.

- By 8th grade in 2004, $44 \%$ of youngsters report having tried alcohol (more than just a few sips), and one in five (20\%) say they have already been drunk at least once.
- More than a quarter of the 8th graders (28\%) have tried cigarettes, and one in eleven (9.2\%) say they have smoked in the prior month. Shocking to most adults is the fact that only $62 \%$ of 8 th graders recognize that there is great risk associated with being a pack-aday smoker. While an increasing proportion will recognize the risk by 12th grade, for many this is too late, because by then they will have developed a hard-to-break smoking habit.
- Smokeless tobacco has been tried by $15 \%$ of male 8 th graders, is used currently by $6.4 \%$ of them, and is used daily by $1.7 \%$. (Rates are much higher among males than among females.)
- Among 8th graders, one in six (17\%) have used inhalants, and 1 in 24 (4.5\%) say they have used them in just the past month. This is the only class of drugs for which use is substantially higher in 8th grade than in 10th or 12th grade.
- Marijuana has been tried by nearly one in every six 8th graders (16\%) and has been used in the prior month by almost 1 in every 16 (6.4\%).
- A surprisingly large number of 8th graders (7.5\%) say they have tried prescription-type amphetamines without medical instruction; $2.3 \%$ say they have used them in the prior 30 days.
- Relatively few 8th graders say they have tried most of the other illicit drugs. (This is consistent with the retrospective reports from seniors concerning the grades in which they first used the various drugs.) But the proportions having at least some experience with them is not inconsequential because a $3.3 \%$ prevalence rate, for example, on average represents one child in every 30-student classroom. The 2004 8th-grade proportions reporting any lifetime experience with the other illicit drugs are tranquilizers (4.0\%), hallucinogens other than LSD (3.0\%), ecstasy (2.8\%), cocaine other than crack (2.6\%), methamphetamine (2.5\%), crack (2.4\%), steroids ( $1.9 \%$ overall, and $2.3 \%$ among males), LSD (1.8\%), heroin (1.6\%), and Rohypnol (1.0\%).
- In total, $12 \%$ of all 8th graders in 2004—one in every eight—have tried some illicit drug other than marijuana (excluding inhalants). Put another way, in an average 30 -student classroom of 8th graders, about three or four students have used some drug other than marijuana and nearly six have used marijuana.
- The very large number of students who have already begun use of the so-called "gateway drugs" (tobacco, alcohol, inhalants, and marijuana) suggests that a substantial number of today's 8th-grade students are already at risk of proceeding further to such drugs as LSD, cocaine, amphetamines, and heroin.


## DRUG USE BY AGE 45

Because we have now followed up graduating high school seniors into their 40s, we can characterize the drug-using history of today's 45 -year-olds. This is important not only because it characterizes how use by these respondents has developed over more than two decades since they left high school, but also because many of them are now themselves the parents of adolescents. Their active use of substances may serve as role modeling for their children, and their own past experience may complicate their communications with their children regarding drugs. The level of use they have attained is truly impressive. (See chapter 4 of Volume II for greater detail and discussion.)

- Among 45-year-old high school graduates in 2004, we estimate that about four-fifths (81\%) have tried marijuana and that over two-thirds (71\%) have tried an illicit drug other than marijuana (estimates are adjusted to correct for panel attrition, as described in chapter 4 of Volume II).

Their current behavior is far less extreme than those statistics would imply, however. "Only" one in eight (12\%) indicates using marijuana in the last 12 months, while 1 in 11 (9\%) affirms use of any other illicit drug in that time period. (Their past-month prevalence rates are lower still-6.5\% and 3.7\%, respectively.) About 1 in 50 45-yearolds (2.0\%) is a current daily marijuana user, though a great many more have been so at some time in the past.

- Quite high proportions of the 45 -year-old respondents have had some experience during their lifetime with several of the specific illicit drugs other than marijuana. These include amphetamines (51\%), cocaine in any form (44\%), non-crack forms of cocaine (37\%), tranquilizers (38\%), hallucinogens of any type (33\%), narcotics other than heroin (28\%), sedatives (barbiturates) (29\%), LSD specifically (20\%), and other hallucinogens (19\%). In sum, today's adults in their mid-40s are a very drug-experienced segment of the population, as might be expected from the fact that they graduated from high school near the peak of the drug epidemic. To repeat, $81 \%$ have tried marijuana and $71 \%$ have tried some illicit drug other than marijuana.
- Among the illicit drugs other than marijuana that have been used in just the past year by this age group (outside of medical regimen) are cocaine ( $3.9 \%$ annual prevalence), narcotics other than heroin (3.4\%), and tranquilizers and non-crack forms of cocaine (both at 3.1\%). There is very little active use being reported by our respondents at this age of LSD, other hallucinogens, amphetamines, crack, or heroin. (Of course, we would not expect heavy heroin or crack users to have remained in the panel studies.)
- Alcohol consumption is relatively high at this age, with $66 \%$ indicating that they consumed at least one alcoholic drink in the prior 30 days, $9.0 \%$ indicating current daily drinking (defined as drinking on 20 or more occasions in the prior 30 days), and 19\% indicating occasional heavy drinking (defined as five or more drinks on at least one occasion in the prior two weeks). The rate of occasional heavy drinking is much lower than was exhibited by this cohort when they were of high school and college ages.
- One in five (20\%) 45-year-old high school graduates currently smokes cigarettes. Almost all of those are current daily smokers.


## SUMMARY AND CONCLUSIONS

We can summarize the findings on trends as follows: over more than a decade-from the late 1970s to the early 1990s-there were very appreciable declines in use of a number of illicit drugs among 12th-grade students and even larger declines in their use among American college students and young adults. These substantial improvements-which seem largely explainable in terms of changes in attitudes about drug use, beliefs about the risks of drug use, and peer norms against drug use-have some extremely important policy implications. One is that these various substance-using behaviors among American young people are malleable-they can be changed. It has been done before. The second is that demand-side factors appear to have been pivotal in bringing about most of those changes. The reported levels of marijuana availability, as reported by high school seniors, have held fairly steady throughout the life of the study. (Moreover, both abstainers and quitters rank availability and price very low on their list of reasons for not using.) And, in fact, the perceived availability of cocaine actually was rising during the beginning of the sharp decline in cocaine and crack use, which occurred when the risks associated with that drug rose sharply. (See the last section of chapter 9, Volume I, for more examples and further discussion of this point.)

However, improvements surely are not inevitable; and, when they occur, they should not be taken for granted. Relapse is always possible and, indeed, just such a "relapse" in the longer-term epidemic occurred during the early to mid-1990s, as the country let down its guard on many fronts. (See chapter 8 of Volume I for a more detailed discussion of this point.)

In 1992, 8th graders exhibited a significant increase in annual use of marijuana, cocaine, LSD, and hallucinogens other than LSD, as well as an increase in inhalant use. (In fact, all five populations showed some increase in $\operatorname{LSD}$ use, continuing a longer-term trend for college students and young adults.) Further, the attitudes and beliefs of seniors regarding drug use began to soften.

In 1993, use of several drugs began to rise among 10th and 12th graders, as well, fulfilling our earlier predictions that we had made based on their eroding beliefs about the dangers of drugs and their attitudes about drug use. Increases occurred in a number of the so-called "gateway drugs"-marijuana, cigarettes, and inhalants-increases that we argued boded ill for the use of later drugs in the usual sequence of drug use involvement. Indeed, the proportion of students reporting the use of any illicit drug other than marijuana rose steadily after 1991 among 8th and 10th graders and after 1992 among 12th graders. (This proportion increased by more than half among 8th graders, with annual prevalence rising from $8.4 \%$ in 1991 to $13.1 \%$ in 1996.) The softening attitudes about crack and other forms of cocaine also provided a basis for concernthe use of both increased fairly steadily through 1998.

Over the years, this study has demonstrated that changes in perceived risk and disapproval have been important causes of change in the use of a number of drugs. These beliefs and attitudes
surely are influenced by the amount and nature of public attention paid to the drug issue in the historical period during which young people are growing up. A substantial decline in attention to this issue in the early 1990s very likely helps to explain why the increases in perceived risk and disapproval among students ceased and began to backslide. News coverage of the drug issue plummeted between 1989 and 1993 (although it made a considerable comeback as surveysincluding this one-began to document that the problem was worsening again), and the media's pro bono placement of ads from the Partnership for a Drug-Free America also fell considerably. (During that period the 12th graders in this study showed a steady decline in their recalled exposure to such ads and in the judged impact of such ads on their own drug-taking behavior.)

Also, the deterioration in the drug abuse situation first began among our youngest cohortsperhaps because they had not had the same opportunities for vicarious learning from the adverse drug experiences of people around them and people they learn about through the media. Clearly, there was a danger that, as the drug epidemic subsided in the 1980s and early 1990s, newer cohorts would have far less opportunity to learn through informal means about the dangers of drugs-that what we have called a "generational forgetting" of those risks would occur through a process of generational replacement of older, more drug-savvy cohorts with newer, more naive ones. If true, this suggests that as drug use subsides, as it did by the early 1990s, the nation must redouble its efforts to ensure that such naive cohorts learn these lessons about the dangers of drugs through more formal means-from schools, parents, and focused messages in the media, for example-and that this more formalized prevention effort be institutionalized so that it will endure for the long term. Clearly, for the foreseeable future, American young people will be aware of the psychoactive potential of a host of drugs and will continue to have access to them. That means that each new generation of young people must learn the reasons that they should not use drugs. Otherwise, their natural curiosity and desires for new experiences will lead a great many of them to use drugs.

Another lesson that derives from the epidemiological data in this study is that social influences that tend to reduce the initiation of substance use also have the potential to deter the continuation of use by those who have already begun to use-particularly if they are not yet deeply involved in use. Chapter 5 of Volume I shows how increased quitting rates have contributed importantly to downturns in the use of a number of drugs at different historical periods. The lesson for prevention is that primary prevention should not be the only goal of intervention programs; early-stage users are also susceptible to being influenced when their beliefs and attitudes regarding drugs are changed.

The following facts help to put into perspective the magnitude and variety of substance use problems that presently remain among American young people:

- By the end of 8th grade, nearly a third (30\%) of American young people have tried an illicit drug (if inhalants are included as an illicit drug), and by 12th grade, more than half (53\%) have done so.
- By their late 20s, 6 in every 10 (61\%) of today's American young adults have tried an illicit drug, and a third (35\%) have tried some illicit drug other than marijuana (usually in addition to marijuana). (These figures do not include inhalants.)
- Today more than one in seven Americans (16\% in 2004) has tried cocaine by the age of 30, and $8 \%$ have tried it by their senior year of high school (i.e., by age 17 or 18). More than 1 in every 26 seniors (3.9\%) has tried crack. In the young adult sample, 1 in 13 (7.5\%) has tried crack by age 29-30.
- Over 1 in every 18 high school seniors (5.6\%) in 2004 smokes marijuana daily, and this rate has shown very little decline so far. Among young adults aged 19 to 28, the percentage is slightly less (5.0\%). Among those same seniors in 2004, one in every six (18\%) has been a daily marijuana smoker at some time for at least a month, and among young adults the comparable figure is one in five (21\%).
- Three in ten high school seniors (29\%) consumed five or more drinks in a row at least once in the two weeks prior to the survey, and such behavior tends to increase among young adults one to four years past high school. About half (49\%) of male college students report such behavior.
- A quarter (25\%) of high school seniors in 2004 were current cigarette smokers, and $16 \%$ already were current daily smokers. In addition, we know from studying previous cohorts that many young adults increase their rates of smoking within a year or so after they leave high school.
- Despite the substantial improvement in this country's drug situation in the 1980s and the early 1990s, and then some further improvement beginning in the late 1990s, it is still true that this nation's secondary school students and young adults show a level of involvement with illicit drugs that is among the highest in the world's industrialized nations. ${ }^{17}$ Even by longer-term historical standards in this country, these rates remain extremely high, though in general they are not as high as in the peak years of the epidemic in the late 1970s. Heavy drinking also remains widespread and troublesome; and certainly the continuing initiation to cigarette smoking of a large, albeit declining, proportion of young people remains a matter of the greatest public health concern. The declines in youth smoking have decelerated sharply, indicating that improvements in youth smoking may soon come to a halt.
- Finally, we note the seemingly unending capacity of pharmacological experts and amateurs to discover new substances with abuse potential that can be used to alter mood and consciousness. There is also a great capacity for our young people to discover the abuse potential of existing products, such as Robitussin, and to "rediscover" older drugs, such as LSD and heroin. While as a society we have made significant progress on a number of fronts in the fight against drug abuse, we must remain vigilant against the

[^12]opening of new fronts, as well as the reemergence of trouble on older ones, particularly after a period of generational forgetting.

In fact, one of the dynamics that keeps the drug epidemic rolling is the emergence of new drugs whose hazards are little known. In 1999 we saw this happen with the drug ecstasy (MDMA). Other drugs like Rohypnol, ketamine, GHB, and OxyContin have appeared in the past decade and now must be added to the list of drugs under study. The spread of such new drugs appears to be facilitated and hastened today by young people's widespread use of chat rooms and other sites on the Internet. We predict a continuous flow of such new substances onto the scene and believe that the task of rapidly documenting their emergence, establishing their adverse consequences, and quickly demystifying them will remain important means by which policymakers, researchers, and educators deal with the continuing threats posed by such drugs.

The drug problem is not an enemy that can be vanquished, as in a war. It is more a recurring and relapsing problem that must be contained to the extent possible on a long-term, ongoing basis. Therefore, it is a problem that requires an ongoing, dynamic response from our society-one that takes into account the continuing generational replacement of our children, the generational forgetting of the dangers of drugs that can occur with that replacement, and the perpetual additional tracking of new abusable substances that will come onto the scene and threaten to lure our young people into involvement with drugs.

TABLE 2-1
Trends in Lifetime Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)


## TABLE 2-1 (cont'd)

Trends in Lifetime Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)


## TABLE 2-1 (cont'd)

Trends in Lifetime Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

## Lifetime

03-'04
$1991199219931994 \underline{1995} \underline{1996} 1997 \underline{1998} 1999200020012002 \underline{2003} 2004$ change

| Heroin ${ }^{\text {k }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8th Grade | 1.2 | 1.4 | 1.4 | 2.0 | 2.3 | 2.4 | 2.1 | 2.3 | 2.3 | 1.9 | 1.7 | 1.6 | 1.6 | 1.6 | 0.0 |
| 10th Grade | 1.2 | 1.2 | 1.3 | 1.5 | 1.7 | 2.1 | 2.1 | 2.3 | 2.3 | 2.2 | 1.7 | 1.8 | 1.5 | 1.5 | 0.0 |
| 12th Grade | 0.9 | 1.2 | 1.1 | 1.2 | 1.6 | 1.8 | 2.1 | 2.0 | 2.0 | 2.4 | 1.8 | 1.7 | 1.5 | 1.5 | -0.1 |
| College Students | 0.5 | 0.5 | 0.6 | 0.1 | 0.6 | 0.7 | 0.9 | 1.7 | 0.9 | 1.7 | 1.2 | 1.0 | 1.0 | 0.9 | -0.1 |
| Young Adults | 0.9 | 0.9 | 0.9 | 0.8 | 1.1 | 1.3 | 1.3 | 1.6 | 1.7 | 1.8 | 2.0 | 1.8 | 1.9 | 1.9 | 0.0 |
| With a Needle' |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | 1.5 | 1.6 | 1.3 | 1.4 | 1.6 | 1.1 | 1.2 | 1.0 | 1.0 | 1.1 | +0.2 |
| 10th Grade | - | - | - | - | 1.0 | 1.1 | 1.1 | 1.2 | 1.3 | 1.0 | 0.8 | 1.0 | 0.9 | 0.8 | -0.1 |
| 12th Grade | - | - | - | - | 0.7 | 0.8 | 0.9 | 0.8 | 0.9 | 0.8 | 0.7 | 0.8 | 0.7 | 0.7 | 0.0 |
| College Students | - | - | - | - | 0.4 | 0.1 | 0.2 | 0.5 | 0.8 | 0.7 | 0.2 | 0.3 | 0.1 | 0.1 | 0.0 |
| Young Adults | - | - | - | - | 0.4 | 0.4 | 0.3 | 0.4 | 0.6 | 0.4 | 0.6 | 0.4 | 0.5 | 0.4 | -0.1 |
| Without a Needle ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | 1.5 | 1.6 | 1.4 | 1.5 | 1.4 | 1.3 | 1.1 | 1.0 | 1.1 | 1.0 | -0.1 |
| 10th Grade | - | - | - | - | 1.1 | 1.7 | 1.7 | 1.7 | 1.6 | 1.7 | 1.3 | 1.3 | 1.0 | 1.1 | +0.1 |
| 12th Grade | - | - | - | - | 1.4 | 1.7 | 2.1 | 1.6 | 1.8 | 2.4 | 1.5 | 1.6 | 1.8 | 1.4 | -0.3 |
| College Students | - | - | - | - | 0.5 | 1.0 | 1.2 | 2.1 | 1.0 | 2.5 | 1.3 | 1.2 | 1.1 | 1.0 | -0.1 |
| Young Adults | - | - | - | - | 0.9 | 1.3 | 1.5 | 1.7 | 1.9 | 2.1 | 2.1 | 1.8 | 2.2 | 2.1 | -0.2 |
| OtherNarcotics ${ }^{\text {m,n }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 6.6 | 6.1 | 6.4 | 6.6 | 7.2 | 8.2 | 9.7 | 9.8 | 10.2 | 10.6 | 9.9\# | 13.5 | 13.2 | 13.5 | +0.3 |
| College Students | 7.3 | 7.3 | 6.2 | 5.1 | 7.2 | 5.7 | 8.2 | 8.7 | 8.7 | 8.9 | 11.0才 | 12.2 | 14.2 | 13.8 | -0.4 |
| Young Adults | 9.3 | 8.9 | 8.1 | 8.2 | 9.0 | 8.3 | 9.2 | 9.1 | 9.5 | 10.0 | 11.5才 | 13.9 | 16.8 | 17.6 | +0.8 |
| Amphetamines ${ }^{m}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 10.5 | 10.8 | 11.8 | 12.3 | 13.1 | 13.5 | 12.3 | 11.3 | 10.7 | 9.9 | 10.2 | 8.7 | 8.4 | 7.5 | -0.9 |
| 10th Grade | 13.2 | 13.1 | 14.9 | 15.1 | 17.4 | 17.7 | 17.0 | 16.0 | 15.7 | 15.7 | 16.0 | 14.9 | 13.1 | 11.9 | -1.2 |
| 12th Grade | 15.4 | 13.9 | 15.1 | 15.7 | 15.3 | 15.3 | 16.5 | 16.4 | 16.3 | 15.6 | 16.2 | 16.8 | 14.4 | 15.0 | +0.6 |
| College Students | 13.0 | 10.5 | 10.1 | 9.2 | 10.7 | 9.5 | 10.6 | 10.6 | 11.9 | 12.3 | 12.4 | 11.9 | 12.3 | 12.7 | +0.4 |
| Young Adults | 22.4 | 20.2 | 18.7 | 17.1 | 16.6 | 15.3 | 14.6 | 14.3 | 14.1 | 15.0 | 15.0 | 14.8 | 15.2 | 15.9 | +0.7 |
| Methamphetamine ${ }^{\text {o, }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | 4.5 | 4.2 | 4.4 | 3.5 | 3.9 | 2.5 | -1.4 ss |
| 10th Grade | - | - | - | - | - | - | - | - | 7.3 | 6.9 | 6.4 | 6.1 | 5.2 | 5.3 | 0.0 |
| 12th Grade | - | - | - | - | - | - | - | - | 8.2 | 7.9 | 6.9 | 6.7 | 6.2 | 6.2 | 0.0 |
| College Students | - | - | - | - | - | - | - | - | 7.1 | 5.1 | 5.3 | 5.0 | 5.8 | 5.2 | -0.6 |
| Young Adults | - | - | - | - | - | - | - | - | 8.8 | 9.3 | 9.0 | 9.1 | 8.9 | 9.0 | 0.0 |
| Ic ${ }^{\text {p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 3.3 | 2.9 | 3.1 | 3.4 | 3.9 | 4.4 | 4.4 | 5.3 | 4.8 | 4.0 | 4.1 | 4.7 | 3.9 | 4.0 | +0.2 |
| College Students | 1.3 | 0.6 | 1.6 | 1.3 | 1.0 | 0.8 | 1.6 | 2.2 | 2.8 | 1.3 | 2.3 | 2.0 | 2.9 | 2.2 | -0.7 |
| Young Adults | 2.9 | 2.2 | 2.7 | 2.5 | 2.1 | 3.1 | 2.5 | 3.4 | 3.3 | 3.9 | 4.0 | 4.1 | 4.7 | 4.7 | 0.0 |

## TABLE 2－1（cont＇d）

Trends in Lifetime Prevalence of Use of Various Drugs for Eighth，Tenth， and Twelfth Graders，College Students，and Young Adults（Ages 19－28）

|  |  |  |  |  |  |  |  | Lfetim |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | change |
| Sedatives（Barbiturates） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| 10th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| 12th Grade | 6.2 | 5.5 | 6.3 | 7.0 | 7.4 | 7.6 | 8.1 | 8.7 | 8.9 | 9.2 | 8.7 | 9.5 | 8.8 | 9.9 | ＋1．0 |
| College Students | 3.5 | 3.8 | 3.5 | 3.2 | 4.0 | 4.6 | 5.2 | 5.7 | 6.7 | 6.9 | 6.0 | 5.9 | 5.7 | 7.2 | ＋1．5 |
| Young Adults | 8.2 | 7.4 | 6.5 | 6.4 | 6.7 | 6.6 | 6.5 | 6.9 | 7.4 | 8.1 | 7.8 | 8.0 | 8.7 | 9.7 | ＋0．9 |
| Methaqualone ${ }^{\text {m，q }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| 10th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| 12th Grade | 1.3 | 1.6 | 0.8 | 1.4 | 1.2 | 2.0 | 1.7 | 1.6 | 1.8 | 0.8 | 1.1 | 1.5 | 1.0 | 1.3 | ＋0．3 |
| College Students | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| Young Adults | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| Tranquilizers ${ }^{\text {b，m }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 3.8 | 4.1 | 4.4 | 4.6 | 4.5 | 5.3 | 4.8 | 4.6 | 4.4 | 4．4才 | 5.0 | 4.3 | 4.4 | 4.0 | －0．4 |
| 10th Grade | 5.8 | 5.9 | 5.7 | 5.4 | 6.0 | 7.1 | 7.3 | 7.8 | 7.9 | 8．0才 | 9.2 | 8.8 | 7.8 | 7.3 | －0．5 |
| 12th Grade | 7.2 | 6.0 | 6.4 | 6.6 | 7.1 | 7.2 | 7.8 | 8.5 | 9.3 | 8．9才 | 10.3 | 11.4 | 10.2 | 10.6 | ＋0．4 |
| College Students | 6.8 | 6.9 | 6.3 | 4.4 | 5.4 | 5.3 | 6.9 | 7.7 | 8.2 | 8.8 | 9.7 | 10.7 | 11.0 | 10.6 | －0．4 |
| Young Adults | 11.8 | 11.3 | 10.5 | 9.9 | 9.7 | 9.3 | 8.6 | 9.6 | 9.6 | 10.5 | 11.9 | 13.4 | 13.8 | 14.9 | ＋1．1 |
| Rohypnol ${ }^{\text {r }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | － | 1.5 | 1.1 | 1.4 | 1.3 | 1.0 | 1.1 | 0.8 | 1.0 | 1.0 | 0.0 |
| 10th Grade | － | － | － | － | － | 1.5 | 1.7 | 2.0 | 1.8 | 1.3 | 1.5 | 1.3 | 1.0 | 1.2 | ＋0．2 |
| 12th Grade | － | － | － | － | － | 1.2 | 1.8 | 3.0 | 2.0 | 1.5 | 1.7 | － | － | － | － |
| College Students | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| Young Adults | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| Alcohol ${ }^{\text {s }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Any Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 70.1 | 69．3才 | 55.7 | 55.8 | 54.5 | 55.3 | 53.8 | 52.5 | 52.1 | 51.7 | 50.5 | 47.0 | 45.6 | 43.9 | －1．6 |
| 10th Grade | 83.8 | 82．3才 | 71.6 | 71.1 | 70.5 | 71.8 | 72.0 | 69.8 | 70.6 | 71.4 | 70.1 | 66.9 | 66.0 | 64.2 | －1．8 |
| 12th Grade | 88.0 | 87．5才 | 80.0 | 80.4 | 80.7 | 79.2 | 81.7 | 81.4 | 80.0 | 80.3 | 79.7 | 78.4 | 76.6 | 76.8 | ＋0．2 |
| College Students | 93.6 | 91.8 | 89.3 | 88.2 | 88.5 | 88.4 | 87.3 | 88.5 | 88.0 | 86.6 | 86.1 | 86.0 | 86.2 | 84.6 | －1．7 |
| Young Adults | 94.1 | 93.4 | 92.1 | 91.2 | 91.6 | 91.2 | 90.7 | 90.6 | 90.2 | 90.7 | 89.9 | 90.2 | 89.3 | 89.4 | 0.0 |
| Flavored Alcoholic |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Beverages ${ }^{\mathrm{g}, 0}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | 37.9 | － |
| 10th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | 58.6 | － |
| 12th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | 71.0 | － |
| College Students | － | － | － | － | － | － | － | － | － | － | － | － | － | 79.0 | － |
| Young Adults | － | － | － | － | － | － | － | － | － | － | － | － | － | 83.2 | － |
| Been Drunk ${ }^{\text {p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 26.7 | 26.8 | 26.4 | 25.9 | 25.3 | 26.8 | 25.2 | 24.8 | 24.8 | 25.1 | 23.4 | 21.3 | 20.3 | 19.9 | －0．3 |
| 10th Grade | 50.0 | 47.7 | 47.9 | 47.2 | 46.9 | 48.5 | 49.4 | 46.7 | 48.9 | 49.3 | 48.2 | 44.0 | 42.4 | 42.3 | －0．1 |
| 12th Grade | 65.4 | 63.4 | 62.5 | 62.9 | 63.2 | 61.8 | 64.2 | 62.4 | 62.3 | 62.3 | 63.9 | 61.6 | 58.1 | 60.3 | ＋2．3 |
| College Students | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| Young Adults | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |

TABLE 2-1 (cont'd)
Trends in Lifetime Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

Lifetime
'03-'04
$1991 \underline{1992} 1993 \underline{1994} \underline{1995} \underline{1996} \underline{1997} \underline{1998} \underline{1999} \underline{2000} \underline{2001} \underline{2002} \underline{2003} \underline{2004}$ change

| Cigarettes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Any Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 44.0 | 45.2 | 45.3 | 46.1 | 46.4 | 49.2 | 47.3 | 45.7 | 44.1 | 40.5 | 36.6 | 31.4 | 28.4 | 27.9 | -0.5 |
| 10th Grade | 55.1 | 53.5 | 56.3 | 56.9 | 57.6 | 61.2 | 60.2 | 57.7 | 57.6 | 55.1 | 52.8 | 47.4 | 43.0 | 40.7 | -2.3 s |
| 12th Grade | 63.1 | 61.8 | 61.9 | 62.0 | 64.2 | 63.5 | 65.4 | 65.3 | 64.6 | 62.5 | 61.0 | 57.2 | 53.7 | 52.8 | -0.9 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Smokeless Tobacco ${ }^{\text {t }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 22.2 | 20.7 | 18.7 | 19.9 | 20.0 | 20.4 | 16.8 | 15.0 | 14.4 | 12.8 | 11.7 | 11.2 | 11.3 | 11.0 | -0.4 |
| 10th Grade | 28.2 | 26.6 | 28.1 | 29.2 | 27.6 | 27.4 | 26.3 | 22.7 | 20.4 | 19.1 | 19.5 | 16.9 | 14.6 | 13.8 | -0.8 |
| 12th Grade | - | 32.4 | 31.0 | 30.7 | 30.9 | 29.8 | 25.3 | 26.2 | 23.4 | 23.1 | 19.7 | 18.3 | 17.0 | 16.7 | -0.4 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Steroids ${ }^{\text {p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 1.9 | 1.7 | 1.6 | 2.0 | 2.0 | 1.8 | 1.8 | 2.3 | 2.7 | 3.0 | 2.8 | 2.5 | 2.5 | 1.9 | -0.6 s |
| 10th Grade | 1.8 | 1.7 | 1.7 | 1.8 | 2.0 | 1.8 | 2.0 | 2.0 | 2.7 | 3.5 | 3.5 | 3.5 | 3.0 | 2.4 | -0.6 s |
| 12th Grade | 2.1 | 2.1 | 2.0 | 2.4 | 2.3 | 1.9 | 2.4 | 2.7 | 2.9 | 2.5 | 3.7 | 4.0 | 3.5 | 3.4 | -0.2 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | 1.7 | 1.9 | 1.5 | 1.3 | 1.5 | 1.5 | 1.4 | 1.4 | 1.9 | 1.4 | 1.4 | 1.6 | 1.8 | 1.9 | +0.1 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.

## Footnotes for Table 2-1 to Table 2-4

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
'-' indicates data not available.
'*' indicates less than .05 percent but greater than 0 percent.
' $\ddagger$ ' indicates some change in the question. See relevant footnote for that drug. See relevant figure to assess the impact of the wording changes.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.

| Approximate <br> Weighted Ns | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8th Graders | 17,500 | 18,600 | 18,300 | 17,300 | 17,500 | 17,800 | 18,600 | 18,100 | 16,700 | 16,700 | 16,200 | 15,100 | 16,500 | 17,000 |
| 10th Graders | 14,800 | 14,800 | 15,300 | 15,800 | 17,000 | 15,600 | 15,500 | 15,000 | 13,600 | 14,300 | 14,000 | 14,300 | 15,800 | 16,400 |
| 12th Graders | 15,000 | 15,800 | 16,300 | 15,400 | 15,400 | 14,300 | 15,400 | 15,200 | 13,600 | 12,800 | 12,800 | 12,900 | 14,600 | 14,600 |
| College Students | 1,410 | 1,490 | 1,490 | 1,410 | 1,450 | 1,450 | 1,480 | 1,440 | 1,440 | 1,350 | 1,340 | 1,260 | 1,270 | 1,400 |
| Young Adults | 6,600 | 6,800 | 6,700 | 6,500 | 6,400 | 6,300 | 6,400 | 6,200 | 6,000 | 5,700 | 5,800 | 5,300 | 5,300 | 5,700 |

${ }^{\text {a }}$ For 12th graders, college students, and young adults only: Use of "any illicit drug" includes any use of manjuana, LSD, other ha llucinogens, crack, other cocaine, or heroin or any use of other narcotics, a mphetamines, sedatives (barbiturates), ortranquilizers not under a doctor'sorders. For 8th and 10th graders only: The use of other narcoticsand barbiturates has been excluded because these younger respondents appear to overreport use (perhapsbecause they include the use of nonprescription drugs in their answers).
${ }^{\text {b }}$ In 2001 the question text waschanged on half of the questionnaire forms foreach age group. "Other psychedelics" was changed to "other hallucinogens," and "shrooms" was added to the list of examples. For the tranquilizer list of examples, Miltown was replaced with Xanax. For 8th, 10th, and 12th graders only: The 2001 data presented here are based on the changed forms only; $N$ is one-half of $N$ indicated. In 2002 the remaining forms were changed to the new wording. The data are based on all forms beginning in 2002. Data for "any illicit drug other than marijuana" and "hallucinogens" are also affected by these changes and have been handled in a parallel manner.
${ }^{c}$ For 12th graders, college students, and young adults only: Data based on five of six forms in 1991-98; N is five-sixths of N indicated. Data based on three of six forms beginning in 1999; N is one-half of N indicated.
${ }^{\mathrm{d}}$ Inhalants are unadjusted for underreporting of amyl and butyl nitrites.
${ }^{e}$ For 12th graders only: Data based on one of six forms; $N$ is one-sixth of $N$ indicated. For college students and young adults only: Data based on two of six forms; N is two-sixths of N indic ated. Questions about nitnite use were dropped from the young adult questionnaires in 1995.
${ }^{f}$ Hallucinogens are unadjusted for undereporting of PCP.
${ }^{9}$ For 12th graders and young adults only: Data based on one of six forms; N is one-sixth of N indicated.
${ }^{\mathrm{h}}$ For 8th and 10th graders only: Data based on one of two forms in 1996; N is one-half of N indicated. Data based on one-third of N indicated in 1997-2001 due to changes in the questionnaire forms. Data based on two of four forms beginning in 2002; N is one-half of N indicated. For 12th graders only: Data based on one of six forms in 1996-2001; N is one-sixth of N indicated. Data based on two of six forms beginning in 2002; N is two-sixths of N indicated. For college students and young adults only: Data based on two of six forms in 1991-2001; N is two-sixths of N indicated. Data based on three of six forms beginning in 2002; N is one-half of N indic ated.
${ }^{\text {i }}$ For college students and young adults only: Data based on five of six forms beginning in 2002; N is five-sixths of N indic ated.
${ }^{\mathrm{j}}$ For 12th graders only: Data based on four of six forms; N is four-sixths of N indicated. For college students and young adults only: Data based on four of six forms; N is four-sixths of N indic ated.
${ }^{k}$ In 1995, the heroin question was changed in one of two forms for 8th and 10th graders, in three of six forms for 12th graders, and in two of six forms for college students and young adults. Separate questions were asked for use with injection and without injection. In 1996, the heroin question waschanged in all rema ining 8th- and 10th-grade forms. Data presented here represent the combined data from all forms.
'For 8th and 10th graders only: Data based on one of two forms in 1995; N is one-half of N indicated. Data based on all forms beginning in 1996. For 12th graders only: Data based on three of six forms; N is one-half of N indicated. For college students and young adults only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{m}$ Only drug use not under a doctor'sorders is included here.
nIn 2002 the question text waschanged in half of the questionnaire forms. The list of examples of narcoticsother than heroin was updated: Talwin, laudanum, and paregoric - all of which had negligible rates of use by 2001-were replaced with Vicodin, OxyContin, and Percocet. The 2002 data presented here are based on the changed formsonly; N is one-half of N indicated. In 2003, the remaining forms were changed to the new wording. The data are based on all forms beginning in 2003.
${ }^{\circ}$ For 8th and 10th graders only: Data based on one of four forms; N is one-third of N indicated.
${ }^{\mathrm{p}}$ For 12th graders, college students, and young adults only: Data based on two of six forms; N is two-sixths of N indic ated. ${ }^{9}$ For 12th graders only: Data based on one of six forms; $N$ is one-sixth of $N$ indicated.
'For 8th and 10th graders only: Data based on one of two forms in 1996; N is one-half of N indicated. Data based on three of four forms in 1997-98; N is two-thirds of N indicated. Data based on two of four forms in 1999-2001; N is one-third of N indicated. Data based on one of four forms beginning in 2002; N is one-sixth of N indicated. For 12th graders only: Data based on one of six forms; N is one-sixth of N indic ated. Data for 2001 and 2002 are not comparable due to changes in the questionnaire forms. Forcollege students and young adults only: Data based on two of six forms; N is two-sixths of N indicated.
${ }^{\text {s }}$ For 8th, 10th, and 12th graders only: In 1993, the question text was changed slightly in half of the forms to indic ate that a "drink" meant "more than just a few sips." The 1993 data are based on the changed forms only; N is one-half of N indicated forthese groups. In 1994 the remaining forms were changed to the new wording. The data are based on all forms beginning in 1994. In 2004, the question text was changed slightly in half of the forms. An examination of the data did not show any effect from the wording change. For college students and young adults: The revision of the question text resulted in rather little change in the reported prevalence of use. The data for all forms are used to provide the most reliable estimate of change.
${ }^{\text {t}}$ For 8th and 10th graders only: Data based on one of two forms for 1991-96 and on two of four forms beginning in 1997; N is one-half of N indicated. For 12th graders only: Data based on one of six forms; N is one-sixth of N indicated. For college students and young adults only: Questions about smokeless tobacco use were dropped from the analyses in 1989. ${ }^{\text {u }}$ For 12th graders only: Data based on two of six forms in 2000; N is two-sixths of N indicated. Data based on three of six forms in 2001; N is one-half of N indicated. Data based on one of six forms beginning in 2002; N is one-sixth of N indicated. For college students and young adults only: Data based on two of six forms; N is two-sixths of N indicated.
${ }^{\mathrm{V}}$ For 12th graders only: Data based on two of six forms in 2000; N is two-sixths of N indicated. Data based on three of six forms beginning in 2001; N is one-half of N indicated. For college students and young adults only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{w}$ For 12th graders only: The 2003 flavored alcoholic beverage data were created by adjusting the 2004 data to reflect the observed 2003 to 2004 change in a slightly different version of the flavored alcoholic beverage question. In 2004 the original question was revised to include wine coolers among the examples-a change that had very little effect on the observed prevalence of use rate in 2004.
${ }^{\times}$Daily use is defined as use on 20 ormore occasions in the past 30 days except forcigarettes and smokeless tobacco, for which actual daily use is measured, and for $5+$ drinks, for which the prevalence of having five or more drinks in a row in the last two weeks is measured.

TABLE 2-2
Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

|  | Annual |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Any llicit Drug ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 11.3 | 12.9 | 15.1 | 18.5 | 21.4 | 23.6 | 22.1 | 21.0 | 20.5 | 19.5 | 19.5 | 17.7 | 16.1 | 15.2 | -0.9 |
| 10th Grade | 21.4 | 20.4 | 24.7 | 30.0 | 33.3 | 37.5 | 38.5 | 35.0 | 35.9 | 36.4 | 37.2 | 34.8 | 32.0 | 31.1 | -0.9 |
| 12th Grade | 29.4 | 27.1 | 31.0 | 35.8 | 39.0 | 40.2 | 42.4 | 41.4 | 42.1 | 40.9 | 41.4 | 41.0 | 39.3 | 38.8 | -0.5 |
| College Students | 29.2 | 30.6 | 30.6 | 31.4 | 33.5 | 34.2 | 34.1 | 37.8 | 36.9 | 36.1 | 37.9 | 37.0 | 36.5 | 36.2 | -0.3 |
| Young Adults | 27.0 | 28.3 | 28.4 | 28.4 | 29.8 | 29.2 | 29.2 | 29.9 | 30.3 | 30.8 | 32.1 | 32.4 | 33.0 | 33.7 | +0.6 |
| Any Illic it Drug Other |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Than Manijuana ${ }^{\text {a,b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 8.4 | 9.3 | 10.4 | 11.3 | 12.6 | 13.1 | 11.8 | 11.0 | 10.5 | $10.2 \ddagger$ | 10.8 | 8.8 | 8.8 | 7.9 | -0.8 |
| 10th Grade | 12.2 | 12.3 | 13.9 | 15.2 | 17.5 | 18.4 | 18.2 | 16.6 | 16.7 | 16.7 $\ddagger$ | 17.9 | 15.7 | 13.8 | 13.5 | -0.2 |
| 12th Grade | 16.2 | 14.9 | 17.1 | 18.0 | 19.4 | 19.8 | 20.7 | 20.2 | 20.7 | 20.4 $\ddagger$ | 21.6 | 20.9 | 19.8 | 20.5 | +0.6 |
| College Students | 13.2 | 13.1 | 12.5 | 12.2 | 15.9 | 12.8 | 15.8 | 14.0 | 15.4 | 15.6 | 16.4 | 16.6 | 17.9 | 18.6 | +0.6 |
| Young Adults | 14.3 | 14.1 | 13.0 | 13.0 | 13.8 | 13.2 | 13.6 | 13.2 | 13.7 | 14.9 | 15.4 | 16.3 | 18.1 | 18.8 | +0.7 |
| Any llic it Drug |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Including Inhalants ${ }^{\text {a,c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 16.7 | 18.2 | 21.1 | 24.2 | 27.1 | 28.7 | 27.2 | 26.2 | 25.3 | 24.0 | 23.9 | 21.4 | 20.4 | 20.2 | -0.3 |
| 10th Grade | 23.9 | 23.5 | 27.4 | 32.5 | 35.6 | 39.6 | 40.3 | 37.1 | 37.7 | 38.0 | 38.7 | 36.1 | 33.5 | 32.9 | -0.6 |
| 12th Grade | 31.2 | 28.8 | 32.5 | 37.6 | 40.2 | 41.9 | 43.3 | 42.4 | 42.8 | 42.5 | 42.6 | 42.1 | 40.5 | 39.1 | -1.4 |
| College Students | 29.8 | 31.1 | 31.7 | 31.9 | 33.7 | 35.1 | 35.5 | 39.1 | 37.4 | 37.0 | 38.2 | 37.7 | 36.0 | 35.9 | 0.0 |
| Young Adults | 27.8 | 29.2 | 28.9 | 29.2 | 30.4 | 30.2 | 30.1 | 30.6 | 30.6 | 31.2 | 33.2 | 32.4 | 32.7 | 34.9 | +2.2 |
| Manijuana/Hashish |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 6.2 | 7.2 | 9.2 | 13.0 | 15.8 | 18.3 | 17.7 | 16.9 | 16.5 | 15.6 | 15.4 | 14.6 | 12.8 | 11.8 | -0.9 |
| 10th Grade | 16.5 | 15.2 | 19.2 | 25.2 | 28.7 | 33.6 | 34.8 | 31.1 | 32.1 | 32.2 | 32.7 | 30.3 | 28.2 | 27.5 | -0.8 |
| 12th Grade | 23.9 | 21.9 | 26.0 | 30.7 | 34.7 | 35.8 | 38.5 | 37.5 | 37.8 | 36.5 | 37.0 | 36.2 | 34.9 | 34.3 | -0.6 |
| College Students | 26.5 | 27.7 | 27.9 | 29.3 | 31.2 | 33.1 | 31.6 | 35.9 | 35.2 | 34.0 | 35.6 | 34.7 | 33.7 | 33.3 | -0.4 |
| Young Adults | 23.8 | 25.2 | 25.1 | 25.5 | 26.5 | 27.0 | 26.8 | 27.4 | 27.6 | 27.9 | 29.2 | 29.3 | 29.0 | 29.2 | +0.2 |
| Inhalants ${ }^{\text {c,d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 9.0 | 9.5 | 11.0 | 11.7 | 12.8 | 12.2 | 11.8 | 11.1 | 10.3 | 9.4 | 9.1 | 7.7 | 8.7 | 9.6 | +0.9 |
| 10th Grade | 7.1 | 7.5 | 8.4 | 9.1 | 9.6 | 9.5 | 8.7 | 8.0 | 7.2 | 7.3 | 6.6 | 5.8 | 5.4 | 5.9 | +0.5 |
| 12th Grade | 6.6 | 6.2 | 7.0 | 7.7 | 8.0 | 7.6 | 6.7 | 6.2 | 5.6 | 5.9 | 4.5 | 4.5 | 3.9 | 4.2 | +0.2 |
| College Students | 3.5 | 3.1 | 3.8 | 3.0 | 3.9 | 3.6 | 4.1 | 3.0 | 3.2 | 2.9 | 2.8 | 2.0 | 1.8 | 2.7 | +0.9 |
| Young Adults | 2.0 | 1.9 | 2.1 | 2.1 | 2.4 | 2.2 | 2.3 | 2.1 | 2.3 | 2.1 | 1.7 | 1.6 | 1.4 | 1.7 | +0.3 |
| Nitrites ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 0.9 | 0.5 | 0.9 | 1.1 | 1.1 | 1.6 | 1.2 | 1.4 | 0.9 | 0.6 | 0.6 | 1.1 | 0.9 | 0.8 | -0.2 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | 0.2 | 0.1 | 0.4 | 0.3 | - | - | - | - | - | - | - | - | - | - | - |
| Hallucinogens ${ }^{\text {b,f }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 1.9 | 2.5 | 2.6 | 2.7 | 3.6 | 4.1 | 3.7 | 3.4 | 2.9 | $2.8 \ddagger$ | 3.4 | 2.6 | 2.6 | 2.2 | -0.3 |
| 10th Grade | 4.0 | 4.3 | 4.7 | 5.8 | 7.2 | 7.8 | 7.6 | 6.9 | 6.9 | 6.1才 | 6.2 | 4.7 | 4.1 | 4.1 | 0.0 |
| 12th Grade | 5.8 | 5.9 | 7.4 | 7.6 | 9.3 | 10.1 | 9.8 | 9.0 | 9.4 | 8.1才 | 9.1 | 6.6 | 5.9 | 6.2 | +0.2 |
| College Students | 6.3 | 6.8 | 6.0 | 6.2 | 8.2 | 6.9 | 7.7 | 7.2 | 7.8 | 6.7 | 7.5 | 6.3 | 7.4 | 5.9 | -1.4 |
| Young Adults | 4.5 | 5.0 | 4.5 | 4.8 | 5.6 | 5.6 | 5.9 | 5.2 | 5.4 | 5.4 | 5.4 | 4.7 | 5.2 | 4.7 | -0.5 |
| (Table continued on next page) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE 2-2 (cont'd)
Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)


## TABLE 2-2 (cont'd)

## Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth,

 and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

TABLE 2-2 (cont'd)
Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

|  | Annual |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 | change |
| Rita lin ${ }^{\text {0,p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | 2.9 | 2.8 | 2.6 | 2.5 | -0.1 |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | 4.8 | 4.8 | 4.1 | 3.4 | -0.7 |
| 12th Grade | - | - | - | - | - | - | - | - | - | - | 5.1 | 4.0 | 4.0 | 5.1 | +1.1 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | 5.7 | 4.7 | 4.7 | 0.0 |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | 2.9 | 2.9 | 2.7 | -0.2 |
| Methamphetamine ${ }^{0, p}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | 3.2 | 2.5 | 2.8 | 2.2 | 2.5 | 1.5 | -1.0 ss |
| 10th Grade | - | - | - | - | - | - | - | - | 4.6 | 4.0 | 3.7 | 3.9 | 3.3 | 3.0 | -0.3 |
| 12th Grade | - | - | - | - | - | - | - | - | 4.7 | 4.3 | 3.9 | 3.6 | 3.2 | 3.4 | +0.2 |
| College Students | - | - | - | - | - | - | - | - | 3.3 | 1.6 | 2.4 | 1.2 | 2.6 | 2.9 | +0.3 |
| Young Adults | - | - | - | - | - | - | - | - | 2.8 | 2.5 | 2.8 | 2.5 | 2.7 | 2.8 | +0.1 |
| Ice ${ }^{\text {p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 1.4 | 1.3 | 1.7 | 1.8 | 2.4 | 2.8 | 2.3 | 3.0 | 1.9 | 2.2 | 2.5 | 3.0 | 2.0 | 2.1 | +0.1 |
| College Students | 0.1 | 0.2 | 0.7 | 0.8 | 1.1 | 0.3 | 0.8 | 1.0 | 0.5 | 0.5 | 0.6 | 0.8 | 0.9 | 1.1 | +0.2 |
| Young Adults | 0.3 | 0.4 | 0.8 | 0.9 | 1.2 | 0.9 | 0.9 | 1.1 | 0.9 | 1.2 | 1.1 | 1.4 | 1.3 | 1.5 | +0.3 |
| Sedatives (Barbiturates) ${ }^{\text {m }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 3.4 | 2.8 | 3.4 | 4.1 | 4.7 | 4.9 | 5.1 | 5.5 | 5.8 | 6.2 | 5.7 | 6.7 | 6.0 | 6.5 | +0.5 |
| College Students | 1.2 | 1.4 | 1.5 | 1.2 | 2.0 | 2.3 | 3.0 | 2.5 | 3.2 | 3.7 | 3.8 | 3.7 | 4.1 | 4.2 | +0.1 |
| Young Adults | 1.8 | 1.6 | 1.9 | 1.8 | 2.1 | 2.2 | 2.4 | 2.5 | 2.8 | 3.4 | 3.7 | 3.9 | 3.9 | 4.4 | +0.5 |
| Methaqualone ${ }^{\text {m,q }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 0.5 | 0.6 | 0.2 | 0.8 | 0.7 | 1.1 | 1.0 | 1.1 | 1.1 | 0.3 | 0.8 | 0.9 | 0.6 | 0.8 | +0.2 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Tranquilizers ${ }^{\text {b,m }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 1.8 | 2.0 | 2.1 | 2.4 | 2.7 | 3.3 | 2.9 | 2.6 | 2.5 | $2.6 \ddagger$ | 2.8 | 2.6 | 2.7 | 2.5 | -0.1 |
| 10th Grade | 3.2 | 3.5 | 3.3 | 3.3 | 4.0 | 4.6 | 4.9 | 5.1 | 5.4 | $5.6 \ddagger$ | 7.3 | 6.3 | 5.3 | 5.1 | -0.2 |
| 12th Grade | 3.6 | 2.8 | 3.5 | 3.7 | 4.4 | 4.6 | 4.7 | 5.5 | 5.8 | 5.7才 | 6.9 | 7.7 | 6.7 | 7.3 | +0.6 |
| College Students | 2.4 | 2.9 | 2.4 | 1.8 | 2.9 | 2.8 | 3.8 | 3.9 | 3.8 | 4.2 | 5.1 | 6.7 | 6.9 | 6.7 | -0.2 |
| Young Adults | 3.5 | 3.4 | 3.1 | 2.9 | 3.4 | 3.2 | 3.1 | 3.8 | 3.7 | 4.6 | 5.5 | 7.0 | 6.8 | 7.4 | +0.6 |
| Rohypnol ${ }^{\text {r }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | 1.0 | 0.8 | 0.8 | 0.5 | 0.5 | 0.7 | 0.3 | 0.5 | 0.6 | +0.1 |
| 10th Grade | - | - | - | - | - | 1.1 | 1.3 | 1.2 | 1.0 | 0.8 | 1.0 | 0.7 | 0.6 | 0.7 | +0.1 |
| 12th Grade | - | - | - | - | - | 1.1 | 1.2 | 1.4 | 1.0 | 0.8 | 0.9才 | 1.6 | 1.3 | 1.6 | +0.3 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | 0.7 | 0.4 | 0.3 | -0.1 |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | 0.3 | 0.5 | 0.1 | -0.4 s |

TABLE 2-2 (cont'd)
Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

|  | Annual |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | 2002 | $\underline{2003}$ | 2004 | '03-'04 <br> change |
| GHB ${ }^{\text {ou }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | 1.2 | 1.1 | 0.8 | 0.9 | 0.7 | -0.2 |
| 10th Grade | - | - | - | - | - | - | - | - | - | 1.1 | 1.0 | 1.4 | 1.4 | 0.8 | -0.6 s |
| 12th Grade | - | - | - | - | - | - | - | - | - | 1.9 | 1.6 | 1.5 | 1.4 | 2.0 | +0.6 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | 0.6 | 0.3 | 0.7 | +0.4 |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | 0.8 | 0.6 | 0.5 | -0.1 |
| Ketamine ${ }^{\text {o,v }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | 1.6 | 1.3 | 1.3 | 1.1 | 0.9 | -0.3 |
| 10th Grade | - | - | - | - | - | - | - | - | - | 2.1 | 2.1 | 2.2 | 1.9 | 1.3 | -0.6 s |
| 12th Grade | - | - | - | - | - | - | - | - | - | 2.5 | 2.5 | 2.6 | 2.1 | 1.9 | -0.2 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | 1.3 | 1.0 | 1.5 | +0.5 |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | 1.2 | 0.9 | 0.6 | -0.3 |
| Alcohol ${ }^{\text {s }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Any Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 54.0 | 53.7才 | 45.4 | 46.8 | 45.3 | 46.5 | 45.5 | 43.7 | 43.5 | 43.1 | 41.9 | 38.7 | 37.2 | 36.7 | -0.5 |
| 10th Grade | 72.3 | 70.2 $\ddagger$ | 63.4 | 63.9 | 63.5 | 65.0 | 65.2 | 62.7 | 63.7 | 65.3 | 63.5 | 60.0 | 59.3 | 58.2 | -1.1 |
| 12th Grade | 77.7 | 76.8 $\ddagger$ | 72.7 | 73.0 | 73.7 | 72.5 | 74.8 | 74.3 | 73.8 | 73.2 | 73.3 | 71.5 | 70.1 | 70.6 | +0.5 |
| College Students | 88.3 | 86.9 | 85.1 | 82.7 | 83.2 | 82.9 | 82.4 | 84.6 | 83.6 | 83.2 | 83.0 | 82.9 | 81.7 | 81.2 | -0.5 |
| Young Adults | 86.9 | 86.2 | 85.3 | 83.7 | 84.7 | 84.0 | 84.3 | 84.0 | 84.1 | 84.0 | 84.3 | 84.9 | 83.3 | 84.4 | +1.1 |
| Flavored Alcoholic |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Beverages ${ }^{\text {g,ow }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | 30.4 | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | 49.7 | - |
| 12th Grade | - | - | - | - | - | - | - | - | - | - | - | - | 55.2 | 55.8 | +0.6 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | 63.2 | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | 62.7 | - |
| Been Drunk ${ }^{\text {p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 17.5 | 18.3 | 18.2 | 18.2 | 18.4 | 19.8 | 18.4 | 17.9 | 18.5 | 18.5 | 16.6 | 15.0 | 14.5 | 14.5 | 0.0 |
| 10th Grade | 40.1 | 37.0 | 37.8 | 38.0 | 38.5 | 40.1 | 40.7 | 38.3 | 40.9 | 41.6 | 39.9 | 35.4 | 34.7 | 35.1 | +0.4 |
| 12th Grade | 52.7 | 50.3 | 49.6 | 51.7 | 52.5 | 51.9 | 53.2 | 52.0 | 53.2 | 51.8 | 53.2 | 50.4 | 48.0 | 51.8 | +3.8 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Cigarettes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Any Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| College Students | 35.6 | 37.3 | 38.8 | 37.6 | 39.3 | 41.4 | 43.6 | 44.3 | 44.5 | 41.3 | 39.0 | 38.3 | 35.2 | 36.7 | +1.5 |
| Young Adults | 37.7 | 37.9 | 37.8 | 38.3 | 38.8 | 40.3 | 41.8 | 41.6 | 41.1 | 40.9 | 41.11 | 39.1 | 38.6 | 39.0 | +0.5 |
| Bid is ${ }^{\text {Op }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | 3.9 | 2.7 | 2.7 | 2.0 | 1.7 | -0.3 |
| 10th Grade | - | - | - | - | - | - | - | - | - | 6.4 | 4.9 | 3.1 | 2.8 | 2.1 | -0.7 |
| 12th Grade | - | - | - | - | - | - | - | - | - | 9.2 | 7.0 | 5.9 | 4.0 | 3.6 | -0.4 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| (Table continued on next page) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE 2-2 (cont'd)

 Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth,and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

## Annual

'03-'04 $\underline{1991} \underline{1992} \underline{1993} \underline{1994} \underline{1995} \underline{1996} \underline{1997} \underline{1998} \underline{1999} \underline{2000} \underline{2001} \underline{2002} \underline{2003} \underline{2004}$ change
Kreteks ${ }^{\text {op }}$
8th Grade $\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad 2.6 \quad 2.6$
10th Grade $\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad 6.0$
12th Grade $\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad 10.1$
$\begin{array}{llllllllllllllll}\text { College Students } & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\ \text { Young Adults } & - & - & - & - & - & - & - & - & - & - & - & - & - & - & -\end{array}$
Steroids ${ }^{\text {p }}$
$\begin{array}{llllllllllllllll}\text { 8th Grade } & 1.0 & 1.1 & 0.9 & 1.2 & 1.0 & 0.9 & 1.0 & 1.2 & 1.7 & 1.7 & 1.6 & 1.5 & 1.4 & 1.1 & -0.3 \mathrm{~s}\end{array}$ 10th Grade 12th Grade
$\begin{array}{lllllllllllllll}1.1 & 1.1 & 1.0 & 1.1 & 1.2 & 1.2 & 1.2 & 1.2 & 1.7 & 2.2 & 2.1 & 2.2 & 1.7 & 1.5 & -0.2\end{array}$
College Students Young Adults
NOTE: $\quad$ See Table 2-1 for relevant footnotes.
SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 2-3
Trends in Thirty-Day Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)


Trends in Thirty-Day Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

|  | 30-Day |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | $\underline{1995}$ | $\underline{1996}$ | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | '03-'04 <br> change |
| LSD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.6 | 0.9 | 1.0 | 1.1 | 1.4 | 1.5 | 1.5 | 1.1 | 1.1 | 1.0 | 1.0 | 0.7 | 0.6 | 0.5 | -0.1 |
| 10th Grade | 1.5 | 1.6 | 1.6 | 2.0 | 3.0 | 2.4 | 2.8 | 2.7 | 2.3 | 1.6 | 1.5 | 0.7 | 0.6 | 0.6 | 0.0 |
| 12th Grade | 1.9 | 2.0 | 2.4 | 2.6 | 4.0 | 2.5 | 3.1 | 3.2 | 2.7 | 1.6 | 2.3 | 0.7 | 0.6 | 0.7 | +0.1 |
| College Students | 0.8 | 1.8 | 1.6 | 1.8 | 2.5 | 0.9 | 1.1 | 1.5 | 1.2 | 0.9 | 1.0 | 0.2 | 0.2 | 0.2 | -0.1 |
| Young Adults | 0.8 | 1.1 | 0.8 | 1.1 | 1.3 | 0.7 | 0.9 | 1.0 | 0.8 | 0.8 | 0.7 | 0.3 | 0.2 | 0.1 | 0.0 |
| Hallucinogens |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Other Than LSD ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.3 | 0.4 | 0.5 | 0.7 | 0.8 | 0.9 | 0.7 | 0.7 | 0.6 | 0.6 $\ddagger$ | 1.1 | 1.0 | 1.0 | 0.8 | -0.2 |
| 10th Grade | 0.4 | 0.5 | 0.7 | 1.0 | 1.0 | 1.0 | 1.2 | 1.4 | 1.2 | $1.2 \ddagger$ | 1.4 | 1.4 | 1.2 | 1.4 | +0.2 |
| 12th Grade | 0.7 | 0.5 | 0.8 | 1.2 | 1.3 | 1.6 | 1.7 | 1.6 | 1.6 | $1.7 \ddagger$ | 1.9 | 2.0 | 1.5 | 1.7 | +0.2 |
| College Students | 0.6 | 0.7 | 1.1 | 0.8 | 1.6 | 1.2 | 1.2 | 0.7 | 1.2 | 0.8 | 0.8 | 1.1 | 1.7 | 1.2 | -0.4 |
| Young Adults | 0.3 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.5 | 0.6 | 0.7 | 0.6 | 0.8 | 1.2 | 0.9 | -0.3 |
| PCP ${ }^{\text {g }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 0.5 | 0.6 | 1.0 | 0.7 | 0.6 | 1.3 | 0.7 | 1.0 | 0.8 | 0.9 | 0.5 | 0.4 | 0.6 | 0.4 | -0.2 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | 0.1 | 0.2 | 0.2 | 0.1 | 0.0 | 0.1 | 0.1 | 0.2 | 0.2 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 |
| MDMA (Ecstasy) ${ }^{\text {h }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | 1.0 | 1.0 | 0.9 | 0.8 | 1.4 | 1.8 | 1.4 | 0.7 | 0.8 | +0.1 |
| 10th Grade | - | - | - | - | - | 1.8 | 1.3 | 1.3 | 1.8 | 2.6 | 2.6 | 1.8 | 1.1 | 0.8 | -0.4 |
| 12th Grade | - | - | - | - | - | 2.0 | 1.6 | 1.5 | 2.5 | 3.6 | 2.8 | 2.4 | 1.3 | 1.2 | 0.0 |
| College Students | 0.2 | 0.4 | 0.3 | 0.2 | 0.7 | 0.7 | 0.8 | 0.8 | 2.1 | 2.5 | 1.5 | 0.7 | 1.0 | 0.7 | -0.3 |
| Young Adults | 0.1 | 0.3 | 0.3 | 0.2 | 0.4 | 0.3 | 0.6 | 0.8 | 1.3 | 1.9 | 1.8 | 1.3 | 0.8 | 0.6 | -0.1 |
| Cocaine |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.5 | 0.7 | 0.7 | 1.0 | 1.2 | 1.3 | 1.1 | 1.4 | 1.3 | 1.2 | 1.2 | 1.1 | 0.9 | 0.9 | 0.0 |
| 10th Grade | 0.7 | 0.7 | 0.9 | 1.2 | 1.7 | 1.7 | 2.0 | 2.1 | 1.8 | 1.8 | 1.3 | 1.6 | 1.3 | 1.7 | +0.4 |
| 12th Grade | 1.4 | 1.3 | 1.3 | 1.5 | 1.8 | 2.0 | 2.3 | 2.4 | 2.6 | 2.1 | 2.1 | 2.3 | 2.1 | 2.3 | +0.3 |
| College Students | 1.0 | 1.0 | 0.7 | 0.6 | 0.7 | 0.8 | 1.6 | 1.6 | 1.2 | 1.4 | 1.9 | 1.6 | 1.9 | 2.4 | +0.5 |
| Young Adults | 2.0 | 1.8 | 1.4 | 1.3 | 1.5 | 1.2 | 1.6 | 1.7 | 1.9 | 1.7 | 2.2 | 2.2 | 2.4 | 2.2 | -0.1 |
| Crack ${ }^{\text {i }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.3 | 0.5 | 0.4 | 0.7 | 0.7 | 0.8 | 0.7 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.7 | 0.6 | -0.1 |
| 10th Grade | 0.3 | 0.4 | 0.5 | 0.6 | 0.9 | 0.8 | 0.9 | 1.1 | 0.8 | 0.9 | 0.7 | 1.0 | 0.7 | 0.8 | +0.1 |
| 12th Grade | 0.7 | 0.6 | 0.7 | 0.8 | 1.0 | 1.0 | 0.9 | 1.0 | 1.1 | 1.0 | 1.1 | 1.2 | 0.9 | 1.0 | +0.1 |
| College Students | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.1 | 0.3 | 0.4 | 0.4 | 0.0 |
| Young Adults | 0.4 | 0.4 | 0.4 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | +0.1 |
| Other Cocaine ${ }^{\text {j }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.5 | 0.5 | 0.6 | 0.9 | 1.0 | 1.0 | 0.8 | 1.0 | 1.1 | 0.9 | 0.9 | 0.8 | 0.7 | 0.7 | 0.0 |
| 10th Grade | 0.6 | 0.6 | 0.7 | 1.0 | 1.4 | 1.3 | 1.6 | 1.8 | 1.6 | 1.6 | 1.2 | 1.3 | 1.1 | 1.5 | +0.4 s |
| 12th Grade | 1.2 | 1.0 | 1.2 | 1.3 | 1.3 | 1.6 | 2.0 | 2.0 | 2.5 | 1.7 | 1.8 | 1.9 | 1.8 | 2.2 | +0.4 |
| College Students | 1.0 | 0.9 | 0.6 | 0.3 | 0.8 | 0.6 | 1.3 | 1.5 | 1.0 | 0.9 | 1.5 | 1.4 | 1.9 | 2.2 | +0.4 |
| Young Adults | 1.8 | 1.7 | 1.1 | 1.0 | 1.3 | 1.1 | 1.5 | 1.5 | 1.6 | 1.5 | 1.8 | 2.0 | 2.1 | 2.1 | 0.0 |

Trends in Thirty－Day Prevalence of Use of Various Drugs for Eighth，Tenth， and Twelfth Graders，College Students，and Young Adults（Ages 19－28）

30－Day
＇03－＇04
$199119921993 \underline{1994} \underline{1995} \underline{1996} 1997 \underline{1998} 1999 \underline{2000} \underline{2001} 2002 \underline{2003} 2004$ change

| Heroin ${ }^{\text {k }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8th Grade | 0.3 | 0.4 | 0.4 | 0.6 | 0.6 | 0.7 | 0.6 | 0.6 | 0.6 | 0.5 | 0.6 | 0.5 | 0.4 | 0.5 | 0.0 |
| 10th Grade | 0.2 | 0.2 | 0.3 | 0.4 | 0.6 | 0.5 | 0.6 | 0.7 | 0.7 | 0.5 | 0.3 | 0.5 | 0.3 | 0.5 | ＋0．1 |
| 12th Grade | 0.2 | 0.3 | 0.2 | 0.3 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.4 | 0.5 | 0.4 | 0.5 | ＋0．1 |
| College Students | 0.1 | 0.0 | ＊ | 0.0 | 0.1 | ＊ | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.0 | ＊ | 0.1 | ＋0．1 |
| Young Adults | ＊ | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | ＊ | 0.1 | 0.1 | 0.0 |
| With a Needle ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | 0.4 | 0.5 | 0.4 | 0.5 | 0.4 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.0 |
| 10th Grade | － | － | － | － | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | ＋0．1 |
| 12th Grade | － | － | － | － | 0.3 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | －0．1 |
| College Students | － | － | － | － | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 |
| Young Adults | － | － | － | － | 0.0 | 0.0 | 0.1 | ＊ | 0.1 | ＊ | 0.2 | 0.0 | ＊ | 0.1 | 0.0 |
| Without a Needle ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | 0.3 | 0.4 | 0.4 | 0.3 | 0.4 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.0 |
| 10th Grade | － | － | － | － | 0.3 | 0.3 | 0.4 | 0.5 | 0.5 | 0.4 | 0.2 | 0.4 | 0.2 | 0.3 | ＋0．1 |
| 12th Grade | － | － | － | － | 0.6 | 0.4 | 0.6 | 0.4 | 0.4 | 0.7 | 0.3 | 0.5 | 0.4 | 0.3 | －0．1 |
| College Students | － | － | － | － | 0.0 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.3 | 0.0 | 0.0 | 0.3 | ＋0．3 |
| Young Adults | － | － | － | － | 0.1 | ＊ | 0.1 | 0.2 | 0.2 | 0.2 | 0.4 | ＊ | 0.1 | 0.1 | ＋0．1 |
| Other Narcotic ${ }^{\text {m，n }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| 10th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| 12th Grade | 1.1 | 1.2 | 1.3 | 1.5 | 1.8 | 2.0 | 2.3 | 2.4 | 2.6 | 2.9 | 3．0才 | 4.0 | 4.1 | 4.3 | ＋0．2 |
| College Students | 0.6 | 1.0 | 0.7 | 0.4 | 1.2 | 0.7 | 1.3 | 1.1 | 1.0 | 1.7 | 1．7才 | 3.2 | 2.3 | 3.0 | ＋0．7 |
| Young Adults | 0.6 | 0.7 | 0.7 | 0.6 | 0.9 | 0.7 | 0.9 | 0.9 | 1.2 | 1.4 | 1．7才 | 2.9 | 2.9 | 3.0 | ＋0．1 |
| Amphetamines ${ }^{\text {m }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 2.6 | 3.3 | 3.6 | 3.6 | 4.2 | 4.6 | 3.8 | 3.3 | 3.4 | 3.4 | 3.2 | 2.8 | 2.7 | 2.3 | －0．5 |
| 10th Grade | 3.3 | 3.6 | 4.3 | 4.5 | 5.3 | 5.5 | 5.1 | 5.1 | 5.0 | 5.4 | 5.6 | 5.2 | 4.3 | 4.0 | －0．2 |
| 12th Grade | 3.2 | 2.8 | 3.7 | 4.0 | 4.0 | 4.1 | 4.8 | 4.6 | 4.5 | 5.0 | 5.6 | 5.5 | 5.0 | 4.6 | －0．3 |
| College Students | 1.0 | 1.1 | 1.5 | 1.5 | 2.2 | 0.9 | 2.1 | 1.7 | 2.3 | 2.9 | 3.3 | 3.0 | 3.1 | 3.2 | ＋0．1 |
| Young Adults | 1.5 | 1.5 | 1.5 | 1.7 | 1.7 | 1.5 | 1.7 | 1.7 | 1.9 | 2.3 | 2.4 | 2.5 | 2.5 | 2.4 | －0．1 |
| Methamphetamine ${ }^{\text {o，p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | － | － | － | － | 1.1 | 0.8 | 1.3 | 1.1 | 1.2 | 0.6 | －0．6 ss |
| 10th Grade | － | － | － | － | － | － | － | － | 1.8 | 2.0 | 1.5 | 1.8 | 1.4 | 1.3 | －0．1 |
| 12th Grade | － | － | － | － | － | － | － | － | 1.7 | 1.9 | 1.5 | 1.7 | 1.7 | 1.4 | －0．3 |
| College Students | － | － | － | － | － | － | － | － | 1.2 | 0.2 | 0.5 | 0.2 | 0.6 | 0.2 | －0．4 |
| Young Adults | － | － | － | － | － | － | － | － | 0.8 | 0.7 | 1.0 | 1.0 | 0.7 | 0.6 | －0．1 |
| Ic ${ }^{p}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| 10th Grade | － | － | － | － | － | － | － | － | － | － | － | － | － | － | － |
| 12th Grade | 0.6 | 0.5 | 0.6 | 0.7 | 1.1 | 1.1 | 0.8 | 1.2 | 0.8 | 1.0 | 1.1 | 1.2 | 0.8 | 0.8 | ＋0．1 |
| College Students | 0.0 | 0.0 | 0.3 | 0.5 | 0.3 | 0.1 | 0.2 | 0.3 | 0.0 | 0.0 | 0.1 | 0.0 | 0.3 | 0.1 | －0．2 |
| Young Adults | ＊ | 0.1 | 0.3 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 | 0.4 | 0.4 | 0.0 |

Trends in Thirty-Day Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

30-Day
'03-'04
$1991 \underline{1992} \underline{1993} 1994 \underline{1995} \underline{1996} \underline{1997} 1998 \underline{1999} \underline{2000} \underline{2001} \underline{2002} \underline{2003} 2004$ change


## TABLE 2-3 (cont'd)

## Trends in Thirty-Day Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

30-Day
'03-'04
$1991 \underline{1992} 1993 \underline{1994} \underline{1995} \underline{1996} \underline{1997} \underline{1998} \underline{1999} \underline{2000} \underline{2001} \underline{2002} \underline{2003} \underline{2004}$ change

| Cigarettes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Any Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 14.3 | 15.5 | 16.7 | 18.6 | 19.1 | 21.0 | 19.4 | 19.1 | 17.5 | 14.6 | 12.2 | 10.7 | 10.2 | 9.2 | -1.0 |
| 10th Grade | 20.8 | 21.5 | 24.7 | 25.4 | 27.9 | 30.4 | 29.8 | 27.6 | 25.7 | 23.9 | 21.3 | 17.7 | 16.7 | 16.0 | -0.7 |
| 12th Grade | 28.3 | 27.8 | 29.9 | 31.2 | 33.5 | 34.0 | 36.5 | 35.1 | 34.6 | 31.4 | 29.5 | 26.7 | 24.4 | 25.0 | +0.6 |
| College Students | 23.2 | 23.5 | 24.5 | 23.5 | 26.8 | 27.9 | 28.3 | 30.0 | 30.6 | 28.2 | 25.7 | 26.7 | 22.5 | 24.3 | +1.9 |
| Young Adults | 28.2 | 28.3 | 28.0 | 28.0 | 29.2 | 30.1 | 29.9 | 30.9 | 30.3 | 30.1 | 30.2 | 29.2 | 28.4 | 29.2 | +0.9 |
| Smokeless Tobacco ${ }^{\text {t }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 6.9 | 7.0 | 6.6 | 7.7 | 7.1 | 7.1 | 5.5 | 4.8 | 4.5 | 4.2 | 4.0 | 3.3 | 4.1 | 4.1 | 0.0 |
| 10th Grade | 10.0 | 9.6 | 10.4 | 10.5 | 9.7 | 8.6 | 8.9 | 7.5 | 6.5 | 6.1 | 6.9 | 6.1 | 5.3 | 4.9 | -0.4 |
| 12th Grade | - | 11.4 | 10.7 | 11.1 | 12.2 | 9.8 | 9.7 | 8.8 | 8.4 | 7.6 | 7.8 | 6.5 | 6.7 | 6.7 | 0.0 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Steroids ${ }^{\text {p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.4 | 0.5 | 0.5 | 0.5 | 0.6 | 0.4 | 0.5 | 0.5 | 0.7 | 0.8 | 0.7 | 0.8 | 0.7 | 0.5 | -0.1 |
| 10th Grade | 0.6 | 0.6 | 0.5 | 0.6 | 0.6 | 0.5 | 0.7 | 0.6 | 0.9 | 1.0 | 0.9 | 1.0 | 0.8 | 0.8 | +0.1 |
| 12th Grade | 0.8 | 0.6 | 0.7 | 0.9 | 0.7 | 0.7 | 1.0 | 1.1 | 0.9 | 0.8 | 1.3 | 1.4 | 1.3 | 1.6 | +0.3 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | 0.2 | 0.1 | 0.0 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -0.2 |

NOTE: $\quad$ See Table 2-1 for relevant footnotes.
SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 2-4
Trends in Thirty-Day Prevalence of Daily Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, College Students, and Young Adults (Ages 19-28)

Daily
'03-'04
$\underline{1991} \underline{1992} \underline{1993} \underline{1994} \underline{1995} \underline{1996} \underline{1997} \underline{1998} \underline{1999} \underline{2000} \underline{2001} \underline{2002} \underline{2003} \underline{2004}$ change
Manijuana/Hashish, daily ${ }^{\text { }}$

| 8th Grade | 0.2 | 0.2 | 0.4 | 0.7 | 0.8 | 1.5 | 1.1 | 1.1 | 1.4 | 1.3 | 1.3 | 1.2 | 1.0 | 0.8 | -0.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10th Grade | 0.8 | 0.8 | 1.0 | 2.2 | 2.8 | 3.5 | 3.7 | 3.6 | 3.8 | 3.8 | 4.5 | 3.9 | 3.6 | 3.2 | -0.5 |
| 12th Grade | 2.0 | 1.9 | 2.4 | 3.6 | 4.6 | 4.9 | 5.8 | 5.6 | 6.0 | 6.0 | 5.8 | 6.0 | 6.0 | 5.6 | -0.4 |
| College Students | 1.8 | 1.6 | 1.9 | 1.8 | 3.7 | 2.8 | 3.7 | 4.0 | 4.0 | 4.6 | 4.5 | 4.1 | 4.7 | 4.5 | -0.2 |
| Young Adults | 2.3 | 2.3 | 2.4 | 2.8 | 3.3 | 3.3 | 3.8 | 3.7 | 4.4 | 4.2 | 5.0 | 4.5 | 5.3 | 5.0 | -0.3 |

Alcohol ${ }^{5 \times x}$

| Any daily use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8th Grade | 0.5 | 0.6 $\ddagger$ | 1.0 | 1.0 | 0.7 | 1.0 | 0.8 | 0.9 | 1.0 | 0.8 | 0.9 | 0.7 | 0.8 | 0.6 | -0.2 |
| 10th Grade | 1.3 | $1.2 \ddagger$ | 1.8 | 1.7 | 1.7 | 1.6 | 1.7 | 1.9 | 1.9 | 1.8 | 1.9 | 1.8 | 1.5 | 1.3 | -0.2 |
| 12th Grade | 3.6 | 3.4才 | 3.4 | 2.9 | 3.5 | 3.7 | 3.9 | 3.9 | 3.4 | 2.9 | 3.6 | 3.5 | 3.2 | 2.8 | -0.4 |
| College Students | 4.1 | 3.7 | 3.9 | 3.7 | 3.0 | 3.2 | 4.5 | 3.9 | 4.5 | 3.6 | 4.7 | 5.0 | 4.3 | 3.7 | -0.5 |
| Young Adults | 4.9 | 4.5 | 4.5 | 3.9 | 3.9 | 4.0 | 4.6 | 4.0 | 4.8 | 4.1 | 4.4 | 4.7 | 5.1 | 4.5 | -0.5 |
| Been Drunk, daily ${ }^{\text {p,x }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.1 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.0 |
| 10th Grade | 0.2 | 0.3 | 0.4 | 0.4 | 0.6 | 0.4 | 0.6 | 0.6 | 0.7 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | -0.1 |
| 12th Grade | 0.9 | 0.8 | 0.9 | 1.2 | 1.3 | 1.6 | 2.0 | 1.5 | 1.9 | 1.7 | 1.4 | 1.2 | 1.6 | 1.8 | +0.2 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $5+$ drinks in a row in last 2 weeks |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 12.9 | 13.4 | 13.5 | 14.5 | 14.5 | 15.6 | 14.5 | 13.7 | 15.2 | 14.1 | 13.2 | 12.4 | 11.9 | 11.4 | -0.5 |
| 10th Grade | 22.9 | 21.1 | 23.0 | 23.6 | 24.0 | 24.8 | 25.1 | 24.3 | 25.6 | 26.2 | 24.9 | 22.4 | 22.2 | 22.0 | -0.2 |
| 12th Grade | 29.8 | 27.9 | 27.5 | 28.2 | 29.8 | 30.2 | 31.3 | 31.5 | 30.8 | 30.0 | 29.7 | 28.6 | 27.9 | 29.2 | +1.3 |
| College Students | 42.8 | 41.4 | 40.2 | 40.2 | 38.6 | 38.3 | 40.7 | 38.9 | 40.0 | 39.3 | 40.9 | 40.1 | 38.5 | 41.7 | +3.3 |
| Young Adults | 34.7 | 34.2 | 34.4 | 33.7 | 32.6 | 33.6 | 34.4 | 34.1 | 35.8 | 34.7 | 35.9 | 35.9 | 35.8 | 37.1 | +1.3 |

Cigarettes

| Any daily use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8th Grade | 7.2 | 7.0 | 8.3 | 8.8 | 9.3 | 10.4 | 9.0 | 8.8 | 8.1 | 7.4 | 5.5 | 5.1 | 4.5 | 4.4 | -0.2 |
| 10th Grade | 12.6 | 12.3 | 14.2 | 14.6 | 16.3 | 18.3 | 18.0 | 15.8 | 15.9 | 14.0 | 12.2 | 10.1 | 8.9 | 8.3 | -0.6 |
| 12th Grade | 18.5 | 17.2 | 19.0 | 19.4 | 21.6 | 22.2 | 24.6 | 22.4 | 23.1 | 20.6 | 19.0 | 16.9 | 15.8 | 15.6 | -0.3 |
| College Students | 13.8 | 14.1 | 15.2 | 13.2 | 15.8 | 15.9 | 15.2 | 18.0 | 19.3 | 17.8 | 15.0 | 15.9 | 13.8 | 13.8 | -0.1 |
| Young Adults | 21.7 | 20.9 | 20.8 | 20.7 | 21.2 | 21.8 | 20.6 | 21.9 | 21.5 | 21.8 | 21.2 | 21.2 | 20.3 | 20.8 | +0.5 |
| 1/2 pack+/day |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 3.1 | 2.9 | 3.5 | 3.6 | 3.4 | 4.3 | 3.5 | 3.6 | 3.3 | 2.8 | 2.3 | 2.1 | 1.8 | 1.7 | -0.1 |
| 10th Grade | 6.5 | 6.0 | 7.0 | 7.6 | 8.3 | 9.4 | 8.6 | 7.9 | 7.6 | 6.2 | 5.5 | 4.4 | 4.1 | 3.3 | -0.9 s |
| 12th Grade | 10.7 | 10.0 | 10.9 | 11.2 | 12.4 | 13.0 | 14.3 | 12.6 | 13.2 | 11.3 | 10.3 | 9.1 | 8.4 | 8.0 | -0.3 |
| College Students | 8.0 | 8.9 | 8.9 | 8.0 | 10.2 | 8.4 | 9.1 | 11.3 | 11.0 | 10.1 | 7.8 | 7.9 | 7.6 | 6.8 | -0.8 |
| Young Adults | 16.0 | 15.7 | 15.5 | 15.3 | 15.7 | 15.3 | 14.6 | 15.6 | 15.1 | 15.1 | 14.6 | 14.2 | 13.9 | 13.5 | -0.4 |
| Smokeless Tobacco, daily ${ }^{\text {t }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 1.6 | 1.8 | 1.5 | 1.9 | 1.2 | 1.5 | 1.0 | 1.0 | 0.9 | 0.9 | 1.2 | 0.8 | 0.8 | 1.0 | +0.2 |
| 10th Grade | 3.3 | 3.0 | 3.3 | 3.0 | 2.7 | 2.2 | 2.2 | 2.2 | 1.5 | 1.9 | 2.2 | 1.7 | 1.8 | 1.6 | -0.2 |
| 12th Grade | - | 4.3 | 3.3 | 3.9 | 3.6 | 3.3 | 4.4 | 3.2 | 2.9 | 3.2 | 2.8 | 2.0 | 2.2 | 2.8 | +0.6 |
| College Students | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Young Adults | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

NOTE: $\quad$ See Table 2-1 for relevant footnotes.
SOURCE: The Monitoring the Future Study, the University of Michigan.

FIGURE 2-1
Trends in Annual Prevalence of an Illicit Drug Use Index Across Five Populations


NOTES: Use of "any illicit drugs" includes any use of marijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use which is not under a doctor's orders of other opiates, stimulants, barbiturates, methaqualone (excluded since 1990), or tranquilizers.

Beginning in 1982, the question about stimulant use (i.e., amphetamines) was revised to get respondents to exclude the inappropriate reporting of nonprescription stimulants. The prevalence rate dropped slightly as a result of this methodological change.

## Chapter 3

## STUDY DESIGN AND PROCEDURES

The Monitoring the Future study's design is one that yields analytic power well beyond the sum of its component parts. Those parts include the cross-sectional study, the repeated cross-sectional study, and the panel study. As a cross-sectional study, it provides point estimates of various behaviors and conditions at any given point in time. Repeating these cross-sectional studies over time allows an assessment of change across years in the same segments of the population. The panel-study feature permits the examination of change over time in the same individuals as they enter adult roles and environments and assume adult responsibilities. These are all important research objectives. However, with a series of panel studies of sequential graduating class cohorts of students, in what is known as a cohort-sequential design, we are able to distinguish among, and explain, three fundamentally different types of change: period-related, age-related, and cohort-related. It is this last feature that creates the synergistic effect in terms of analytic power.

This chapter describes this complex research design, including the sampling plans and field procedures used in both the annual in-school cross-sectional surveys of 8th-, 10th-, and 12thgrade students and the follow-up surveys into early and middle adulthood-the panel studies. Related methodological issues such as response rates, population coverage, and the validity of the measures are also discussed.

We begin by describing the design that has been used consistently over the past 30 years to survey high school seniors; then we describe the more recently instituted design for 8th and 10th graders. Finally, the design for the follow-up surveys of former 12th graders is covered. ${ }^{18,19}$

## RESEARCH DESIGN AND PROCEDURES FOR THE SURVEYS OF SENIORS

High school seniors have been surveyed in the spring of each year since 1975. Each year's data collection takes place in approximately 120 to 146 public and private high schools selected to provide an accurate representative cross section of high school seniors throughout the coterminous United States (see Figure 3-1).

[^13]
## The Population Under Study

We chose the senior year of high school because, for several reasons, it is an optimal point at which to monitor the drug use and related attitudes of youth. First, completion of high school represents the end of an important developmental stage in this society, demarcating both the end of universal education and, for many, the end of living full-time in the parental home. Therefore, it is a logical point at which to take stock of the cumulated influences of these two environments on American youth. Further, completion of high school represents the jumping-off point from which young people diverge into widely differing social environments and experiences. Senior year, then, represents a good time to take a "before" measure allowing calculation of changes that may be attributable to the many environmental and role transitions occurring in young adulthood. Finally, there were some important practical advantages to building the original system of data collections around samples of high school seniors. The need for systematically repeated, large-scale samples from which to make reliable estimates of change requires that considerable stress be laid on cost efficiency as well as feasibility. The last year of high school constitutes the final point at which a reasonably good national sample of an age-specific cohort can be drawn and studied economically.

## The Omission of Dropouts

One limitation in the study design is the exclusion of those young men and women who drop out of high school before graduation-between $15 \%$ and $20 \%$ of each age cohort nationally, according to U.S. Census statistics. Clearly, the omission of high school dropouts introduces biases in the estimation of certain characteristics of the entire age group; however, for most purposes, the small proportion of dropouts sets outer limits on the bias. Further, since the bias from missing dropouts should remain just about constant from year to year, their omission should introduce little or no bias in change estimates. Indeed, we believe the changes observed over time for those who finish high school are likely to parallel the changes for dropouts in most instances. Appendix A to Volume I addresses the likely effects of the exclusion of dropouts on estimates of drug use prevalence and trends among the entire age cohort; see that appendix for a more detailed discussion of this issue.

## Sampling Procedures

A multi-stage random sampling procedure is used to secure the nationwide sample of high school seniors each year. Stage 1 is the selection of particular geographic areas, stage 2 is the selection (with probability proportionate to size) of one or more high schools in each area, and stage 3 is the selection of seniors within each high school. Up to about 350 seniors in each school may be included. In schools with fewer seniors, the usual procedure is to include all of them in the data collection, though a smaller sample is sometimes taken to accommodate the needs of the school. When a subset of seniors is to be selected, it is done either by randomly sampling entire classrooms or by some other unbiased, random method. Weights are assigned to compensate for differential probabilities of selection at each stage of sampling. Final weights are normalized to average 1.0 (so that the weighted number of cases equals the unweighted number of cases overall). This three-stage sampling procedure has yielded the numbers of participating schools and students over the years shown in Table 3-1.

## Questionnaire Administration

About 10 days before the questionnaire administration date, the target respondents are given flyers explaining the study. Local Institute for Social Research representatives and their assistants conduct the actual questionnaire administrations following standardized procedures detailed in a project instruction manual. The questionnaires are administered in classrooms during a normal class period whenever possible; however, circumstances in some schools require the use of larger group administrations.

## Questionnaire Format

Because many questions are needed to cover all of the topic areas in the study, much of the questionnaire content intended for high school seniors is divided into six different questionnaire forms distributed to participants in an ordered sequence that ensures six virtually identical random sub-samples. (Five questionnaire forms were used between 1975 and 1988.) About onethird of each questionnaire form consists of key, or "core," variables common to all forms. All demographic variables, and nearly all of the drug use variables included in this report, are contained in this core set of measures. Many of the questions dealing with attitudes, beliefs, and perceptions of relevant features of the social environment are in a single form only, and the data are thus based on one-fifth as many cases in 1975-1988 (approximately 3,300 ) and on one-sixth as many cases beginning in 1989 (approximately 2,600). All tables in this report list the sample sizes upon which the statistics are based, stated in terms of the weighted number of cases (which is roughly equivalent to the actual number of cases).

## RESEARCH DESIGN AND PROCEDURES FOR THE SURVEYS OF LOWER GRADES

In 1991, the study expanded to include nationally representative samples of 8th- and 10th-grade students. Surveys at these two grade levels have been conducted on an annual basis since 1991.

In general, the procedures used for the annual in-school surveys of 8th- and 10th-grade students closely parallel those used for high school seniors, including the procedures for selecting schools and students, questionnaire administration, and questionnaire formats. A major exception is that only two different questionnaire forms were used from 1991 to 1996, expanding to four forms beginning in 1997, rather than the six used with seniors. Eighth and 10th graders both receive the same questionnaire forms and, for the most part, the questionnaire content is drawn from the 12th-grade questionnaires. Thus, key demographic variables and measures of drug use and related attitudes and beliefs are generally identical for all three grades. The forms used in both 8th and 10th grades have a common core (Parts B and C) that parallels the core used in 12thgrade forms. Many fewer questions about lifestyles and values are included in the 8th- and 10thgrade forms, in part because we think that many of these attitudes are likely to be more fully formed by 12th grade and, therefore, are best monitored there.

For the national survey of 8th graders each year, approximately 150 schools (mostly junior high schools and middle schools) are sampled, and approximately 17,000 students have been surveyed
annually. For the 10th graders, approximately 130 high schools are sampled and about 15,000 students surveyed annually. (See Table 3-1 for specifics.) ${ }^{20}$

## Mode of Administration

From 1991 to 1993, 8th and 10th graders were followed up similarly to the 12th graders (see footnote 20). When follow-up surveys of new cohorts of 8th and 10th graders were no longer being conducted, the collection of personal identification information for follow-up purposes was no longer necessary. For confidentiality reasons, this personal information had been gathered on a tear-off sheet at the back of each questionnaire. We believed that there were potential advantages in moving toward a fully anonymous procedure for these grade levels, including the following: (a) school cooperation might be easier to obtain; (b) any suppression effect that the confidential mode of administration might have could be both eliminated and quantified; and (c) if there were any mode of administration effect, it would be removed from the national datawhich are widely compared with results of state and local surveys (nearly all of which use anonymous questionnaires)-thus making those comparisons more valid. Therefore, in 1998 for the first time, in half of the 8th- and 10th-grade schools surveyed, the questionnaires administered were made fully anonymous. Specifically, the half-sample of schools beginning their two-year participation in Monitoring the Future in 1998 received the anonymous questionnaires, while the half-sample participating in the study for their second and final year continued to get the confidential questionnaires.

A careful examination of the 1998 results, based on the two equivalent half-samples at grade 8 , and also at grade 10 , revealed that there was no effect of this methodological change among 10th graders, and, at most, only a very modest effect in the self-reported substance use rates among 8th graders (with prevalence rates slightly higher in the anonymous condition). The net effect of this methodological change is a possible increase in the observed 8th-grade prevalence estimates for marijuana, alcohol, and cigarettes in 1998 from what they would have been had there been no change in questionnaire administration. For those three drugs, that means that the declines in use in 1998 may be slightly understated for the 8th graders only. In other words, the direction of the change is the same as that shown in the tables, but the actual declines may be slightly larger than those shown. For example, the annual prevalence of marijuana use among 8th graders is shown to have fallen by 0.8 percentage points between 1997 and 1998; however, the half-sample of 8thgrade schools receiving exactly the same type of questionnaire that was used in 1997 showed a slightly greater decline of 1.5 percentage points.

For cigarettes, this change in method appeared to have no effect on self-reported rates of daily use or half-pack per day use and to have had only a very small effect on 30-day prevalence.

[^14]Thus, for example, the 30-day prevalence of cigarette use among all of the 8th graders surveyed is shown to have fallen 0.3 percentage points between 1997 and 1998; while the half-sample of 8th-grade schools receiving exactly the same type of questionnaire as was used in 1997 showed a slightly greater decline of 0.6 percentage points. Finally, lifetime cigarette prevalence is shown as falling by 1.6 percentage points between 1997 and 1998, but in the half-sample of schools with a constant methodology, it fell by 2.6 percentage points.

We have examined in detail the effects of administration mode in a published journal article, in which we use multivariate controls to assess the effects of the change on the 8th-grade self-report data. It generally shows even less effect than is to be found without such controls. ${ }^{21}$

All tables and figures in Volume I use data from both half-samples of 8th graders surveyed in a given year, combined. This is also true for the 10th graders (for whom we found no methodological effect) and the 12th graders (for whom it is assumed there is no such effect, since none was found among the 10th graders). (See this chapter's later section entitled "Representativeness and Sample Accuracy, School Participation," for a further discussion of half-samples among all three grades.)

In 1999 the remaining half of the participating schools (all beginning the first of their two years of participation) received anonymous questionnaires, as well. Thus, from 1999 on, all data from 8th- and 10th-grade students are gathered using anonymous questionnaires. We continue to use confidential questionnaires with 12th graders in order to permit follow-up of the small proportion that are randomly selected into the panel studies.

## Questionnaire Forms and Sample Proportions

Another consequence of not interlocking the school samples at 8th and 10th grades was that we could consider having more forms of the questionnaire. ${ }^{22}$ Beginning in 1997, the number of forms was expanded to four, but the four forms are not distributed in equal numbers. Forms 1, 2, 3 , and 4 are assigned to one-third, one-third, one-sixth, and one-sixth of the students, respectively. Thus, if a question appears on only one form, it may be administered to either onethird or one-sixth of the sample. Similarly, a question in two forms may be assigned to one-third of the sample (one-sixth plus one-sixth), one-half of the sample (one-third plus one-sixth), or two-thirds of the sample (one-third plus one-third). No questions appear on three forms. Footnotes to the tables indicate what proportion of all respondents in each grade complete the question, if that proportion is other than the entire sample.

The two additional forms were introduced to allow for more questions. The new forms 1 and 2 substantially follow the content of the previous forms 1 and 2 , but each was now assigned to a third of the sample instead of half. Form 3 builds on form 1, with some questions omitted to make room for more content; and form 4 builds on the content of form 2 in a similar manner.

[^15]Much of the new content was placed in both of the new forms (forms 3 and 4), each of which is administered to one-sixth of the sample, in order to assign one-third of the total sample to those new questions.

## RESEARCH DESIGN AND PROCEDURES FOR THE FOLLOW-UP SURVEYS OF SENIORS

Beginning with the graduating class of 1976, some members of each senior class have been selected to be surveyed by mail after high school graduation. From the roughly 13,000 to 17,000 seniors originally participating in a given senior class, a representative sample of 2,400 individuals is chosen for follow-up. In order to ensure sufficient numbers of drug users in the follow-up surveys, seniors reporting 20 or more occasions of marijuana use in the previous 30 days (i.e., "daily users"), or any use of the other illicit drugs in the previous 30 days, are selected with higher probability (by a factor of 3.0 ) than the remaining seniors. Differential weighting is then used in all follow-up analyses to compensate for these differential sampling probabilities. Because those in the drug-using stratum receive a weight of only 0.33 in the calculation of all statistics to correct for their overrepresentation at the selection stage, there are actually more follow-up respondents than are reported in the weighted Ns given in the tables.

The 2,400 participants selected from each 12th-grade class are randomly split into two matching groups of 1,200 each-one group to be surveyed on even-numbered calendar years, and the other group to be surveyed on odd-numbered years. This two-year cycle is intended to reduce the burden on individual respondents, thus yielding a better retention rate across the years. By alternating the two half-samples, we have data from a given graduating class every year, even though any given respondent participates only every other year.

Until 2002, each respondent was followed for up to seven times; at the seventh follow-up, which would occur either 13 or 14 years after graduation, the respondents had reached modal age of 31 or 32. Beginning in 2002, the seventh follow-up was discontinued, and each respondent was followed for up to six times, corresponding to modal age of 29 or 30. Additional follow-ups still occur at modal ages 35, 40, and 45. (Age 45 follow-ups began in 2003, when the class of 1976 reached that age.) Our intention is to continue follow-ups at five-year intervals beyond age 45 to the extent that panel retention rates justify such continuation. Data like these, gathered on representative national samples over such a large part of the life span, are extremely rare and can provide needed insight into the etiology of substance use and other behaviors across the life course.

## Follow-Up Procedures

Using information provided by high school senior respondents on a tear-off card (containing the respondent's name, address, and phone number, and the name and address of someone who would always know how to reach them), mail contact is maintained with the subset of people selected for inclusion in the follow-up panels. Newsletters are sent to them each year, and name and address corrections are requested from both the U.S. Postal Service and the individual. Questionnaires are sent to each individual biennially in the spring of each year by certified mail.

A check for $\$ 20$, made payable to the respondent, is attached to the front of each questionnaire. ${ }^{23}$ Reminder letters and postcards are sent at fixed intervals thereafter; finally, those who have not responded receive a prompting phone call from the Survey Research Center's phone interviewing facility in Ann Arbor, Michigan. If requested, a second copy of the questionnaire is sent; but no questionnaire content is administered by phone. If a respondent asks not to be contacted further, that wish is honored.

## Follow-Up Questionnaire Format

The questionnaires used in the young adult follow-up surveys are very much like those used in the senior year. They are optically scanned; all forms contain a common core section that includes questions on drug use, background factors, and demographic factors; and they have questions about a wide range of topics at the beginning and ending sections, many of which are unique to each questionnaire form. Many of the questions asked of seniors are retained in the corresponding follow-up questionnaires, and respondents are consistently mailed the same version (or form) of the questionnaire that they first received in senior year, so that changes over time in their behaviors, attitudes, experiences, and so forth can be measured. Questions specific to high school status and experiences are dropped in the follow-up, of course, and questions relevant to post-high school status and experiences are added. Thus, there are questions about college, military service, civilian employment, marriage, parenthood, and so on. Most of these are added to the core section. For the 5 -year surveys that begin at age 35 , the questionnaire content is streamlined (only one form is used) and directed at the major family and work issues of middle adulthood. Still, many of the questions are ones repeated from the young adult surveys.

For the early follow-up cohorts, the numbers of cases on single-form questions were one-fifth the size of the total follow-up sample because five different questionnaire forms were used. Beginning with the class of 1989, a sixth form was introduced in the senior year. That new questionnaire form was first sent to follow-up respondents in 1990; single-form data since then have Ns one-sixth the total follow-up sample size. In the follow-up studies, single-form samples from a single cohort are too small to make reliable estimates; therefore, in most cases where they are reported, the data from several adjacent cohorts are combined or concatenated.

## REPRESENTATIVENESS AND SAMPLE ACCURACY

## School Participation

Schools are invited to participate in the study for a two-year period. For each school that declines to participate, a similar school (in terms of size, geographic area, urbanicity, etc.) is recruited as a replacement for that "slot." In 2004, either an original school or a replacement school was obtained in $99 \%$ of the sample units, or "slots." With very few exceptions, each school participating in the first year has agreed to participate in the second year as well. Figure 3-2 provides the year-specific school participation rates and the percentage of "slots" filled since

[^16]1977. (The data for the years prior to 1991 are for 12th grade only; beginning in 1991, the data are for 8th, 10th, and 12th grades, combined.) As shown in the figure, replacements for declining schools are obtained in the vast majority of cases.

Two questions are sometimes raised with respect to school participation rates: (a) Are participation rates so low as to compromise the representativeness of the sample? (b) Does variation in participation rates over time contribute to changes in estimates of drug use?

With respect to the first issue, the selection of replacement schools (which occurs in practically all instances of an original school refusal) almost entirely removes problems of bias in region, urbanicity, and the like that might result from certain schools refusing to participate. Other potential biases could be more subtle, however. If, for example, it turned out that most schools with "drug problems" refused to participate, the sample would be seriously biased. And if any other single factor were dominant in most refusals, that reason for refusal also might suggest a source of serious bias. In fact, however, the reasons given for a school refusing to participate tend to be varied and are often a function of happenstance specific to that particular year; only a very small proportion specifically object to the drug-related or "sensitive" nature of the content of the survey.

If it were the case that schools differed substantially in drug use, then which particular schools participated could have a greater effect on estimates of drug use. However, the great majority of variance in drug use lies within schools, not between schools. For example, for 10th graders in 1992, between-schools variance for marijuana use was $4 \%-6 \%$ of the total variance (depending on the specific measure); for inhalant use, $1 \%-2 \%$; for LSD, $2 \%-4 \%$; for crack cocaine, $1.0 \%-$ $1.5 \%$; for alcohol use, $4 \%-5 \%$; and for cigarette use, $3 \%-4 \%$. (Eighth- and 12th-grade values are similar.) To the extent that schools tend to be fairly similar in drug use, then which particular schools participate (within a selection framework that seeks national representation) has a small effect on estimates of drug use. The fact that the overwhelming majority of variance in drug use lies within schools implies that, at least with respect to drug use, schools are for the most part fairly similar. ${ }^{24}$ Further, some, if not most, of the between-schools variance is due to differences related to region, urbanicity, etc.-factors that remain well controlled in the present sampling design because of the way in which replacement schools are selected.

With respect to the second issue, the observed data from the series make it extremely unlikely that results have been significantly affected by changes in response rates. If changes in response rates seriously affected prevalence estimates, there would be noticeable bumps up or down in concert with the changing rates. But in fact this series of surveys produces results that are very smooth and change in an orderly fashion from one year to the next. This suggests that the level of school-related error in the estimates does not vary much over time. Moreover, the fact that different substances trend in distinctly different ways further refutes any likelihood that changes in response rates are affecting prevalence estimates. We have observed, for example, marijuana

[^17]use decreasing while cocaine use was stable (in the early 1980s); alcohol use declining while cigarette use was stable (in the mid- to late 1980s); and marijuana use increasing while inhalant use was decreasing (from 1994 to 1997). All of these patterns are explainable in terms of psychological, social, and cultural factors (as described in this and previous volumes in this series) and cannot be explained by the common factor of changes in response rates.

Of course, there could be some sort of a constant bias across the years; but even in the unlikely event that there was, it seems highly improbable that it would be of much consequence for policy purposes, given that it would not affect trends and likely would have a very modest effect on prevalence rates. Thus we have a high degree of confidence that school refusal rates have not seriously biased the survey results.

Nevertheless, it is apparent that, for a host of reasons, securing high school cooperation rates has become more difficult in recent years. This is a problem common to the field, not specific to Monitoring the Future. Therefore, in the study's most recent proposal for continuation we requested funding to permit the payment of schools as a means of increasing their incentives to participate. (Several other ongoing school survey studies already use payments to schools.) Such payments were approved and were implemented in the 2003 survey.

At each grade level, schools are selected in such a way that half of each year's sample comprises schools that started their participation the previous year, and half comprises schools that began participating in the current year. (Both samples are national replicates, meaning that each is drawn to be nationally representative by itself.) This staggered half-sample design is used to check on possible errors in the year-to-year trend estimates due to school turnover. For example, separate sets of one-year trend estimates are computed based on students in the half-sample of schools that participated in both 2001 and 2002, then based on the students in the half-sample that participated in both 2002 and 2003, and so on. Thus, each one-year matched half-sample trend estimate derived in this way is based on a constant set of schools (about 65 in 12th grade, for example). When the trend data derived from the matched half-sample (examined separately for each class of drugs) are compared with trends based on the total sample of schools, the results are usually highly similar, indicating that the trend estimates are affected little by turnover or shifting refusal rates in the school samples. As would be expected, the absolute prevalence-ofuse estimates for a given year are not as accurate using just the half-sample because the sample size is only half as large.

## Student Participation

In 2004, completed questionnaires were obtained from $89 \%$ of all sampled students in 8th grade, $88 \%$ in 10th grade, and $82 \%$ in 12th grade. (See Table 3-1 for response rates in earlier years.) The single most important reason that students are missed is absence from class at the time of data collection; in most cases, for reasons of cost efficiency, we do not schedule special follow-up data collections for absent students. Students with fairly high rates of absenteeism also report above-average rates of drug use; therefore, some degree of bias is introduced into the prevalence estimates by missing the absentees. Much of that bias could be corrected through the use of special weighting based on the reported absentee rates of the students who did respond; however, we decided not to use such a weighting procedure because the bias in overall drug use
estimates was determined to be quite small and because the necessary weighting procedures would have introduced greater sampling variance in the estimates. Appendix A in an earlier report ${ }^{25}$ provides a discussion of this point, and Appendix A in Volume I illustrates the changes in trend and prevalence estimates that would result if corrections for absentees had been included. Of course, some students are not absent from class but simply refuse, when asked, to complete a questionnaire. However, the proportion of explicit refusals amounts to less than $1.5 \%$ of the target sample for each grade.

## Sampling Accuracy of the Estimates

Confidence intervals (95\%) are provided in Tables 4-1a through 4-1d (Volume I) for lifetime, annual, 30-day, and daily prevalence of use for 8th-, 10th-, and 12th-grade students. As can be seen in Table 4-1a, confidence intervals for lifetime prevalence for seniors average less than $\pm 1.5 \%$ across a variety of drug classes. That is, if we took a large number of samples of this size from the universe of all schools containing 12th graders in the coterminous United States, 95 times out of 100 the sample would yield a result that would be less than 1.5 percentage points divergent from the result we would get from a comparable massive survey of all seniors in all schools. This is a high level of sampling accuracy, and it should permit detection of fairly small changes from one year to the next. Confidence intervals for the other prevalence periods (past 12 months, past 30 days, and current daily use) are generally smaller than those for lifetime use. In general, confidence intervals for 8th and 10th graders are very similar to those observed for 12th graders. Some drugs (smokeless tobacco, PCP, nitrites, and others, as indicated in Table 2-1 footnotes) are measured on only one or two questionnaire forms; these drugs will have somewhat larger confidence intervals due to their smaller sample sizes. Appendix C of Volume I contains information for the interested reader on how to calculate confidence intervals around other point estimates; it also provides the information needed to compare trends across time or to test the significance of differences between subgroups in any given year.

## PANEL RETENTION

We discuss here the nature of the problem of panel attrition generally, the response rates we have attained in the Monitoring the Future panel surveys in recent years, and evidence relevant to assessing the impact of attrition on the study's research results.

## The Problem of Panel Attrition

Virtually all longitudinal studies of drug use, including Monitoring the Future, experience attrition, which is often differential with respect to substance use. ${ }^{26}$ In addition, survey response rates in general have been declining over the past few decades, ${ }^{27}$ highlighting an important challenge in the conduct of population-based research.

[^18]A vital feature of the Monitoring the Future panel studies is their very low cost per respondent. There are many advantages to collecting panel data through low-cost mail surveys, as we have done since the outset of the study. Indeed, given the number of panel surveys we administer each year (roughly 15,000 ) across the entire coterminous United States, using low-cost mail surveys is our best (and really the only) cost-effective option. One disadvantage of this mode of data collection is that attrition rates tend to be higher than those that might be obtained with much more expensive methods, for example, intensive personal tracking and interviewing. Certainly there exist a few large epidemiological/etiological surveys that have better retention rates, but their procedures are extremely expensive and not realistic for an ongoing effort like this one. Nevertheless, our retention rates compare reasonably favorably with those of most longitudinal studies (including interview studies) reported in the field.

## Response Rates Attained

We begin with the college student segment in the follow-up sample. The series of survey data on American college students now goes back 24 years. We know about actual college attendance only from the follow-up questionnaire answers; however, we can use senior year questionnaire answers (i.e., college intentions and program of study) to predict college attendance with a high degree of accuracy. The study's retention of college-bound seniors remains quite good. Among those follow-up respondents who, in high school, reported plans to attend college and enrollment in a college-prep curriculum, the follow-up retention rates in 2001, for example, for the three most recent classes surveyed at each follow-up point were as follows: $70 \%$ in the first follow-up, one to two years past high school (based on the classes of 1998-2000); $67 \%$ in the second follow-up, three to four years past high school (based on the classes of 1996-1998); and 65\% in the third follow-up, five to six years past high school (based on the classes of 1994-1996). To date we have reported in Volume II only on college students who are one to four years past high school graduation. As the average age of attendance rises, having the extended age coverage will be of growing importance. The follow-up participation rates just noted compare favorably with another major national survey of substance use among college students, the Harvard College Alcohol Study, which in both its 1997 and 1999 surveys had cross-sectional response rates of $60 \%{ }^{28}$

Retention rates in the biennial follow-ups of all panel members ages 19-30 (corresponding to the first six follow-ups) decline with the length of the follow-up interval, of course. For the five-year period from 2000 to 2004, the response rate in the first follow-up (corresponding to 1-2 years past high school) averaged $60 \%$; for the second through sixth follow-ups (corresponding to 3-12 years past high school) response rates averaged $54 \%$. Among the very long-term respondentsthe 35 -, 40 -, and 45 -year-olds-the retention rates are quite good, apparently because some of the decline with age in retention rates reflects cohort differences. Among the 35-year-old respondents surveyed from 2000 to 2004 (corresponding to 17 years past high school), the average response rate was $51 \%$. Among the 40 -year-old respondents surveyed from 2000 to 2004, corresponding to a 22 -year follow-up interval, the average retention rate was $58 \%$. Among 45 -year-olds surveyed in 2003 and 2004, the average retention rate was $60 \%$.

[^19]In sum, the response rates attained under the current design range from respectable to quite good, especially when the low-cost nature of the procedures and the substantial length of the questionnaires are taken into account. More importantly, the evidence leaves us confident that the data resulting from these follow-up panels are reasonably accurate, which brings us to our adjustments for panel attrition and the comparison of our results with those from other sources.

## The Impact of Panel Attrition on Research Results

An important purpose of the Monitoring the Future follow-ups is to allow estimation of drug prevalence rates among American high school graduates at various age levels, as published annually in Volume II of this series. Thus, we have always been concerned about making the appropriate adjustments to account for panel attrition. In essence, our standard adjustment procedure is a post-stratification procedure in which we reweight the data from the individuals' obtained follow-up samples so that their reweighted senior year distribution on a given drug reproduces the original (senior year) distribution of use originally observed for that drug. This procedure is carried out (separately) for cigarettes, alcohol, marijuana, and (combined) other illicit drugs. As expected, this procedure produces estimates that are somewhat higher than those uncorrected for attrition, indicating that there is indeed some positive association between drug use and panel attrition. However, the adjustments are relatively modest, as is documented next.

One reason the adjustments are modest is that attrition rates do not differ greatly by levels of senior year substance use; they do differ, but less than one might expect. For example, among all respondents who had never used marijuana, an average of $81 \%$ of the classes of 1976-1993 participated in the first follow-up. The proportion responding is somewhat lower among those who had used marijuana once or twice in the past 12 months: $78 \%$. This proportion decreases gradually with increasing levels of marijuana use; but even among those who used marijuana on 20-39 occasions in the past 30 days in their high school senior year, $71 \%$ participated in the first follow-up. The corresponding participation rates for the same drug-use strata at the fourth follow-up (i.e., at ages $25-26$ ) were $68 \%$, $65 \%$, and $60 \%$, respectively. Thus, even among those who in high school were quite heavy users of marijuana, response rates at the fourth follow-up were only 8 percentage points lower than among those who had never used marijuana by high school senior year. That is not to say that we assume that all types of drug users remain in the panels at comparably high rates. We believe that people who become dependent on, or addicted to, heroin or cocaine are unlikely to be retained in reasonable proportions. That is why we are careful to not quantify or characterize these special segments of the population. But we note that they constitute very low proportions of the drug-using portion of the population and even lower proportions of the entire adult population. Therefore, for a great many purposes, our samples are extremely useful.

The National Survey on Drug Use and Health (NSDUH) would seem to provide the best available data against which to validate the estimates generated for adult age groups in Monitoring the Future because it is also based on national samples but uses cross-sectional surveys that do not carry the burden of panel attrition. (Their results, of course, may be affected by their own nonresponse rates; but that will be true of any comparison survey. The overall response rates for the NSDUH were about $73 \%$ in 1997 and 1998, and $61 \%$ in 1999.)

In some earlier analyses we compared the prevalence rates on a set of drugs-cigarettes, alcohol, marijuana, and cocaine-for which there was reasonable similarity in question wording across the two studies. The comparisons that follow are for the age group 19-28 in the Monitoring the Future panel data and for 19-28 (or 19-29 for 1999 only) in the NSDUH cross-sectional data. At that time the most recent data from NSDUH that were readily available for these comparisons were for 1999, so the following comparisons are for that year. (However, similar comparisons were run for a number of prior years, and the outcomes were highly consistent.) The comparisons are not perfect; most notably, the NSDUH data contain school dropouts and, other things equal, this inclusion would lead one to expect its rates to be higher than those from Monitoring the Future. Nevertheless, the Monitoring the Future estimates for the 30-day prevalence of marijuana actually are higher ( $14.0 \%$ without post-stratification and $15.6 \%$ with it) than the NSDUH estimate (11.0\%). The same is true for the 12-month cocaine prevalence estimate ( $4.8 \%$ without post-stratification and $5.4 \%$ with it, vs. $4.3 \%$ in the NSDUH).

The other two comparisons made were for alcohol and cigarettes. Both of these drugs show larger differences, with alcohol use consistently higher in Monitoring the Future and cigarette use consistently higher in NSDUH. We believe it likely that both are due to definitional differences in the exact question wording. In 1999, Monitoring the Future estimates of 30-day alcohol prevalence were $68.0 \%$ and $68.2 \%$ (with post-stratification) vs. $59.5 \%$ in NSDUH. For cigarettes, the 30 -day Monitoring the Future prevalence estimates were $28.3 \%$ and $30.3 \%$, respectively, vs. $37.4 \%$ in NSDUH. It is worth noting that the nature and magnitude of the differences between Monitoring the Future and NSDUH estimates tend to be quite consistent for each of the four drugs since at least 1992.

The fact that Monitoring the Future estimates for both marijuana and cocaine are higher than NSDUH estimates (especially after applying the post-stratification reweighting) suggests that attrition does not produce substantially lower estimates of drug use than would be obtained if response rates were higher. Our estimates come out as high as, and in fact somewhat higher than, the best available comparison study for estimating rates using cross-sectional data, and that despite our loss of dropouts and absentees (in high school) from the MTF samples.

It is also worth noting that even with attrition, there remain in the Monitoring the Future followup samples substantial proportions of recent users of the various substances. In recent years, about $15 \%-17 \%$ of the $19-28$-year-old respondents reported marijuana use in just the prior 30 days, and about $5 \%-7 \%$ reported past 12 -month use of cocaine. These proportions and the underlying numbers of actual cases are quite adequate for analytic purposes, particularly given that the follow-up surveys over-sample those who reported illicit drug use in the senior year surveys.

An important point worth emphasizing here is that in the present study, attrition is not necessarily as great a problem as is nonresponse in a cross-sectional study. This is because we already know a great deal about each of the follow-up nonrespondents, including their substance use, based on a lengthy questionnaire in senior year (and, for many, in subsequent years as well). Thus, adjustments can be made utilizing data that are highly informative about the lost individuals.

## Effects on Relational Analyses

While differential attrition (uncorrected) may contribute to some bias in point estimates and other univariate statistics, such attrition tends to have less influence on bivariate and multivariate statistics. This was found to be true in a secondary analysis of data from seven panel studies that followed adolescents over time, ${ }^{29}$ and we have found this to be true in our Monitoring the Future panel analyses ${ }^{30}$ and in analyses with other panel data sets. ${ }^{31}$ Thus, differential attrition may be of less concern in multivariate panel analyses focused on understanding the course, causes, and consequences of substance use. Still, as we summarized above, correcting for attrition is important, and we continue to do so.

## VALIDITY OF THE MEASURES OF SELF-REPORTED DRUG USE

Are sensitive behaviors such as drug use honestly reported? Like most studies dealing with sensitive behaviors, we have no direct, totally objective validation of the present measures; however, the considerable amount of existing inferential evidence strongly suggests that the self-report questions used in Monitoring the Future produce largely valid data. A more complete discussion of the contributing evidence that leads to this conclusion may be found in other publications; here we only briefly summarize the evidence. ${ }^{32}$

First, using a three-wave panel design, we established that the various measures of self-reported drug use have a high degree of reliability-a necessary condition for validity. ${ }^{33}$ In essence, respondents were highly consistent in their self-reported behaviors over a three- to four-year time interval. Second, we found a high degree of consistency among logically related measures of use within the same questionnaire administration. Third, the proportion of seniors reporting some illicit drug use by senior year has reached two-thirds of all respondents in peak years and over $80 \%$ in some follow-up years, constituting prima facie evidence that the degree of underreporting must be very limited. Fourth, the seniors' reports of use by their unnamed friends-about whom they would presumably have less reason to distort reports of use-have been highly consistent with self-reported use in the aggregate, in terms of both prevalence and

[^20]trends in prevalence, as will be discussed later in this report. Fifth, we have found self-reported drug use to relate in consistent and expected ways to a number of other attitudes, behaviors, beliefs, and social situations-in other words, there is strong evidence of "construct validity." Sixth, the missing data rates for the self-reported use questions are only very slightly higher than for the preceding non-sensitive questions, in spite of explicit instructions to respondents immediately preceding the drug section to leave blank those drug use questions they felt they could not answer honestly. Seventh, an examination of consistency in reporting of lifetime use conducted on the long-term panels of graduating seniors found quite low levels of recanting of earlier-reported use of the illegal drugs. ${ }^{34}$ There was a higher level of recanting for the psychotherapeutic drugs, which we interpreted as suggesting that adolescents actually may overestimate their use of some of these drugs because of misinformation about definitions that is corrected as they get older. Finally, the great majority of respondents, when asked, say they would answer such questions honestly if they were users. ${ }^{35}$

This is not to argue that self-reported measures of drug use are valid in all cases. In the present study we have gone to great lengths to create a situation and set of procedures in which students feel that their confidentiality will be protected. We have also tried to present a convincing case as to why such research is needed. The evidence suggests that a high level of validity has been obtained. Nevertheless, insofar as any remaining reporting bias exists, we believe it to be in the direction of underreporting. Thus, we believe our estimates to be lower than their true values, even for the obtained samples, but not substantially so.

One additional procedure we undertake to help assure the validity of our data is worth noting. We check for logical inconsistencies in the triplets of answers about the use of each drug (i.e., about lifetime, past year, and past 30-day use), and if a respondent exceeds a minimum number of inconsistencies across the drug use questions, his or her record is deleted from the data set. Similarly, we check for improbably high rates of use of multiple drugs and delete such cases, on the assumption that the respondents are not taking the task seriously. Fortunately, relatively few cases have to be eliminated for these reasons.

## Consistency and the Measurement of Trends

One further point is worth noting in a discussion of the validity of the findings. The Monitoring the Future project is designed to be sensitive to changes from one time period to another. A great strength of this study, in our opinion, is that the measures and procedures have been standardized and applied consistently across many years. To the extent that any biases remain because of limits in school and/or student participation, and to the extent that there are distortions (lack of validity) in the responses of some students, it seems very likely that such problems will exist in much the same proportions from one year to the next. In other words, biases in the survey

[^21]estimates will tend to be consistent from one year to another, which means that our measurement of trends should be affected very little by any such biases. The smooth and consistent nature of most trend curves reported for the various drugs provides rather compelling empirical support for this assertion.

TABLE 3-1 Sample Sizes and Response Rates

|  | Number of Public Schools |  |  | Number of Private Schools |  |  | Total Number of Schools |  |  |  | Total Number of Students |  |  |  | Student Response Rate |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th | 8th | 10th | 12th | 8th | 10th | 12th | Total | 8th | 10th | 12th | Total | 8th | 10th | 12th |
| 1975 | - | - | 111 | - | - | 14 | - | - | 125 | - | - | - | 15,791 | - | - | - | 78\% |
| 1976 | - | - | 108 | - | - | 15 | - | - | 123 | - | - | - | 16,678 | - | - | - | 77 |
| 1977 | - | - | 108 | - | - | 16 | - | - | 124 | - | - | - | 18,436 | - | - | - | 79 |
| 1978 | - | - | 111 | - | - | 20 | - | - | 131 | - | - | - | 18,924 | - | - | - | 83 |
| 1979 | - | - | 111 | - | - | 20 | - | - | 131 | - | - | - | 16,662 | - | - | - | 82 |
| 1980 | - | - | 107 | - | - | 20 | - | - | 127 | - | - | - | 16,524 | - | - | - | 82 |
| 1981 | - | - | 109 | - | - | 19 | - | - | 128 | - | - | - | 18,267 | - | - | - | 81 |
| 1982 | - | - | 116 | - | - | 21 | - | - | 137 | - | - | - | 18,348 | - | - | - | 83 |
| 1983 | - | - | 112 | - | - | 22 | - | - | 134 | - | - | - | 16,947 | - | - | - | 84 |
| 1984 | - | - | 117 | - | - | 17 | - | - | 134 | - | - | - | 16,499 | - | - | - | 83 |
| 1985 | - | - | 115 | - | - | 17 | - | - | 132 | - | - | - | 16,502 | - | - | - | 84 |
| 1986 | - | - | 113 | - | - | 16 | - | - | 129 | - | - | - | 15,713 | - | - | - | 83 |
| 1987 | - | - | 117 | - | - | 18 | - | - | 135 | - | - | - | 16,843 | - | - | - | 84 |
| 1988 | - | - | 113 | - | - | 19 | - | - | 132 | - | - | - | 16,795 | - | - | - | 83 |
| 1989 | - | - | 111 | - | - | 22 | - | - | 133 | - | - | - | 17,142 | - | - | - | 86 |
| 1990 | - | - | 114 | - | - | 23 | - | - | 137 | - | - | - | 15,676 | - | - |  | 86 |
| 1991 | 131 | 107 | 117 | 31 | 14 | 19 | 162 | 121 | 136 | 419 | 17,844 | 14,996 | 15,483 | 48,323 | 90\% | 87\% | 83 |
| 1992 | 133 | 106 | 120 | 26 | 19 | 18 | 159 | 125 | 138 | 422 | 19,015 | 14,997 | 16,251 | 50,263 | 90 | 88 | 84 |
| 1993 | 126 | 111 | 121 | 30 | 17 | 18 | 156 | 128 | 139 | 423 | 18,820 | 15,516 | 16,763 | 51,099 | 90 | 86 | 84 |
| 1994 | 116 | 116 | 119 | 34 | 14 | 20 | 150 | 130 | 139 | 419 | 17,708 | 16,080 | 15,929 | 49,717 | 89 | 88 | 84 |
| 1995 | 118 | 117 | 120 | 34 | 22 | 24 | 152 | 139 | 144 | 435 | 17,929 | 17,285 | 15,876 | 51,090 | 89 | 87 | 84 |
| 1996 | 122 | 113 | 118 | 30 | 20 | 21 | 152 | 133 | 139 | 424 | 18,368 | 15,873 | 14,824 | 49,065 | 91 | 87 | 83 |
| 1997 | 125 | 113 | 125 | 27 | 18 | 21 | 152 | 131 | 146 | 429 | 19,066 | 15,778 | 15,963 | 50,807 | 89 | 86 | 83 |
| 1998 | 122 | 110 | 124 | 27 | 19 | 20 | 149 | 129 | 144 | 422 | 18,667 | 15,419 | 15,780 | 49,866 | 88 | 87 | 82 |
| 1999 | 120 | 117 | 124 | 30 | 23 | 19 | 150 | 140 | 143 | 433 | 17,287 | 13,885 | 14,056 | 45,228 | 87 | 85 | 83 |
| 2000 | 125 | 121 | 116 | 31 | 24 | 18 | 156 | 145 | 134 | 435 | 17,311 | 14,576 | 13,286 | 45,173 | 89 | 86 | 83 |
| 2001 | 125 | 117 | 117 | 28 | 20 | 17 | 153 | 137 | 134 | 424 | 16,756 | 14,286 | 13,304 | 44,346 | 90 | 88 | 82 |
| 2002 | 115 | 113 | 102 | 26 | 20 | 18 | 141 | 133 | 120 | 394 | 15,489 | 14,683 | 13,544 | 43,716 | 91 | 85 | 83 |
| 2003 | 117 | 109 | 103 | 24 | 20 | 19 | 141 | 129 | 122 | 392 | 17,023 | 16,244 | 15,200 | 48,467 | 89 | 88 | 83 |
| 2004 | 120 | 111 | 109 | 27 | 20 | 19 | 147 | 131 | 128 | 406 | 17,413 | 16,839 | 15,222 | 49,474 | 89 | 88 | 82 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.

FIGURE 3-1
Schools Included in One Year's Data Collection
Eighth, Tenth and Twelfth Grades


Note: One dot equals one school.

FIGURE 3-2
School Response Rates


Original
Replacements
Total

| $\underline{77}$ | $\underline{78}$ | $\frac{79}{62}$ | $\underline{80}$ | $\frac{81}{71}$ | $\frac{82}{71}$ | $\frac{83}{66}$ | $\frac{84}{72}$ | $\frac{85}{67}$ | $\underline{86}$ | $\frac{87}{66}$ | $\frac{88}{71}$ | $\underline{89}$ | $\frac{90}{78}$ | $\frac{91}{70}$ | $\frac{92}{59}$ | $\frac{93}{55}$ | $\underline{94}$ | $\underline{94}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 53 | $\frac{95}{52}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 39 | 36 | 35 | 32 | 25 | 26 | 32 | 26 | 29 | 33 | 26 | 26 | 30 | 29 | 39 | 43 | 39 | 44 | 44 |
| 98 | 99 | 97 | 95 | 96 | 97 | 99 | 98 | 96 | 99 | 99 | 98 | 99 | 99 | 98 | 98 | 99 | 97 | 96 |


| $\frac{96}{53}$ | $\frac{97}{51}$ | $\underline{98}$ | $\frac{99}{51}$ | $\underline{00}$ | $\underline{01}$ | $\underline{02}$ | $\frac{03}{56}$ | $\underline{04}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 43 | 47 | 48 | 42 | 35 | 42 | 48 | 45 | 37 |
| 96 | 98 | 99 | 99 | 97 | 98 | 97 | 98 | 99 |

## Chapter 4

## PREVALENCE AND FREQUENCY OF DRUG USE AMONG EIGHTH-, TENTH- AND TWELFTH-GRADE STUDENTS

Usually the first question asked of a national epidemiological study like Monitoring the Future concerns how widespread the use of the various substances is in the population under study, and how the substances rank in popularity at various ages. The popularity of various drugs can be measured in terms of prevalence (the proportion who have used the drug once or more in a particular time interval) or in terms of frequency (how many times people have used the drug within a defined time interval). This chapter addresses these important questions using the time intervals that have been used consistently in this study-lifetime, past 12 months, and past 30 days. It also examines how use varies across a number of important demographic dimensions. The data used to address these questions in this chapter derive entirely from the most recently completed cross-sectional survey, conducted in 2004. Both prevalence and frequency-of-use data for 2004 are presented for each drug for the three standard time intervals. The prevalence of current daily use of various drugs also is provided, as are the prevalence and frequency of having five or more drinks in a row in the past two weeks. For cigarettes, the rate of smoking a halfpack or more per day is included, in addition to a measure of daily smoking. For a few drug classes added to the study in recent years, only the prevalence and frequency of use in the past 12 months are reported; this is because, due to space limitations, their use was addressed by only a single question.

Later in the chapter, prevalence estimates are given for key subgroups in the population based on six cross-break dimensions: gender, college plans, region of the country, population density (or urbanicity), socioeconomic status (as measured by the average educational level of the parents), and racial/ethnic identification. These estimates are provided separately for each of the three grade levels covered in this research-grades 8, 10, and 12.

It should be noted that all of the prevalence statistics are based on students in attendance on the day of the survey administration. Selected prevalence rate estimates for 12th-grade students, reflecting adjustments for the missing absentees, as well as for dropouts, may be found in Appendix A (18\% of 12th graders were absent on the day of the survey in 2004). (The adjustments are not particularly large and have virtually no effect on trend estimates.) The absentee and dropout adjustments for 8th and 10th graders would be much smaller than those shown in Appendix A for 12th graders, because 8th and 10th graders have considerably lower rates of absenteeism ( $11 \%$ and $12 \%$, respectively, in 2004) and far lower rates of dropping out.

## PREVALENCE AND FREQUENCY OF DRUG USE IN 2004: ALL STUDENTS

## Prevalence of Lifetime, Annual, and 30-Day Use

A number of tables and figures, upon which the following discussion is based, are provided at the end of this chapter. Prevalence-of-use estimates are provided in Tables 4-1a through 4-1d,
respectively, for lifetime, past 12 months, past 30 days, and current daily use. These tables also include the $95 \%$ confidence intervals around each estimate, which means that if samples of this size and type were drawn repeatedly from all students in that grade level in the coterminous United States, they would be expected to generate observed prevalence rates that fell within the confidence interval 95 times out of 100 . The confidence intervals take into account the effects of sample stratification, the clustering of the sample in schools, and unequal weighting. Of course, the single best estimate that we can make is the value actually observed in our sample-our point estimate.

To facilitate comparisons, Table 4-2 brings together on a single page the point estimates for all four prevalence periods.

Table 4-3 gives a more detailed breakdown for heroin by the mode of administration, differentiating use with and without a needle.

Table 4-4a provides data on frequency of use of various drugs for lifetime, 12-month, and 30-day periods.

Table 4-4b provides additional frequency-of-use estimates for alcohol, cigarettes, and smokeless tobacco.

- About half of all seniors (51\%) in 2004 reported any illicit drug use at some time in their lives (see Table $4-2$ ). Some $40 \%$ of 10th graders and $22 \%$ of 8th graders said they have used an illicit drug at some time. ${ }^{36}$
- Of all the students in each grade reporting some illicit drug use in their lifetime, around half reported using only marijuana: 43\% of all 8th-grade users of any illicit drug (or 9\% of the total 8th-grade sample), $53 \%$ of all 10th-grade users of any illicit drug (or $21 \%$ of the total 10th-grade sample), and $44 \%$ of the 12th-grade users of any illicit drug (or $22 \%$ of the total 12th-grade sample). (These figures are not explicitly provided in the tables but can be derived from the information therein.) Put another way, more than half of the 8th and 12th graders and nearly half of the 10th graders who have ever used an illicit drug have used an illicit drug other than marijuana (usually in addition to marijuana).
- When inhalants are also included in the index of illicit drug use, the proportions categorized as having ever used an illicit drug rise, especially for 8th graders. The percentages using any illicit drug including inhalants in their lifetime are $30 \%$ for 8th graders, $43 \%$ for 10th graders, and $53 \%$ for 12th graders.

[^22]- Marijuana is by far the most widely used illicit drug. Nearly half of all seniors (46\%) reported some marijuana use in their lifetime, $34 \%$ reported some use in the past year, and $20 \%$ reported some use in the past month. Among 10th graders, the corresponding rates are $35 \%, 28 \%$, and $16 \%$, respectively. Even among 8th-grade students, marijuana has been used at least once by one in six (16\%), with $12 \%$ reporting use in the prior year and $6 \%$ use in the prior month. Current daily marijuana use (defined as use on 20 or more occasions in the past 30 days) is also noteworthy. About 1 in 18 12th graders (5.6\%) used marijuana daily in the month prior to the survey, as did 1 in 31 10th graders (3.2\%) and about 1 in 125 8th graders (0.8\%).
- Inhalants have become an important class of drugs, showing the highest lifetime prevalence-of-use rate among 8th graders, the second highest among 10th graders, and the fourth highest among 12th graders of any of the illicit drugs used, with lifetime prevalence rates of $17 \%, 12 \%$, and $11 \%$, respectively. However, in terms of any use in the past 30 days (current use), inhalants rank lower in the upper grade levels because many who had used them at a younger age have discontinued use (thus making inhalants the only class of substances for which active use declines with age during adolescence).

The seemingly anomalous finding of lifetime prevalence declining across grade levels could be due to various factors. One is that there might be lower lifetime prevalence at older ages than younger because the dropout segment is represented only in the younger age groups. (The differences across grades in inhalant use are a matter of just a few percentage points.) If those who will become dropouts are unusually likely to use inhalants, lifetime use rates could decline with grade level. That would lead to a relatively stable difference between the grades in lifetime use (because dropout rates have been fairly stable in recent years); however, the degree of difference has changed some over time, as the data in Table 2-1 show, with larger differences emerging in the mid-1990s. Another possible factor is changing validity of reporting with age; but in order to account for the data, one would have to hypothesize that this tendency became stronger in the 1990s, and we have no reason to believe that it did. Cohort differences may also be a factor, but the changes in lifetime prevalence are too large to be due completely to cohort differences.

Use of amyl and butyl nitrites, a specific class of inhalants, is asked only of seniors; they have been tried by $1.3 \%$ of 2004 seniors. These inhalants have been sold legally in the past and have gone by such street names as "poppers" or "snappers" and such brand names as Locker Room and Rush. When questions specifically about nitrite use were included for the first time in one 1979 12th-grade questionnaire form, we discovered that some users of amyl and butyl nitrites did not report themselves as inhalant users, although they should have. We were able to estimate the degree to which inhalant use was being underreported. As a result, we introduced inhalants adjusted prevalence
estimates, which correct for the under-inclusion of nitrite use. Such correction has made very little difference in recent years because of the low rates of nitrite use. ${ }^{37}$

- For 8th graders, inhalant use is followed closely in the rankings by marijuana, with a lifetime prevalence-of-use rate of $16.3 \%$, and then amphetamines, at $7.5 \%$ for lifetime prevalence. ${ }^{38}$ Among 10th graders the ranking for lifetime prevalence of use is marijuana (35\%), inhalants (12.4\%), and amphetamines (11.9\%). But amphetamine use comes ahead of inhalant use in the rankings for 12th graders, with $15 \%$ of 12th graders reporting some use in their lifetime. (Considerably lower prevalence rates are found for the specific class methamphetamine, with $3 \%, 5 \%$, and $6 \%$ of 8 th, 10 th, and 12 th graders, respectively, reporting any lifetime use. Lower still is the use of crystal methamphetamine ["ice"], which has a lifetime prevalence of 4\% among 12th graders; use is not asked in the lower grades.)
- Hallucinogens are another fairly widely used class of substances. Lifetime prevalence of use is $3.5 \%$ for 8 th graders, $6.4 \%$ for 10th graders, and $9.7 \%$ for 12th graders. Until 2001, hallucinogen prevalence rates ranked this high primarily due to the prevalence of $\mathbf{L S D}$ use. Now, a larger proportion of students indicate using hallucinogens other than LSD $(3.0 \%, 5.8 \%$, and $8.7 \%$, respectively, for the three grade levels). In 2004, LSD use is $1.8 \%$ for grade $8,2.8 \%$ for grade 10, and $4.6 \%$ for grade 12.
- Another drug used for its somewhat hallucinogenic properties is ecstasy (MDMA). At present the lifetime prevalence rates for this drug stand at $2.8 \%, 4.3 \%$, and $7.5 \%$ in grades 8,10 , and 12 -rates that are higher than LSD in all three grades.
- When specific questions about $\boldsymbol{P C P}$ use were added in 1979, we discovered that some users of PCP did not report themselves as users of hallucinogens, even though PCP is explicitly included as an example in the questions about hallucinogens. Thus, from 1979 onward, we have included the hallucinogens adjusted prevalence and trend estimates for seniors to correct for this known underreporting. As with the correction for underreporting of nitrites, such correction has made very little difference in recent years among seniors because the rate of PCP use is so low. (See earlier footnote regarding nitrites.)
- Lifetime prevalence of use among seniors for the specific hallucinogenic drug PCP now stands at $1.6 \%$, substantially lower than the lifetime prevalence of the other most widely used hallucinogens, LSD (4.6\%) and ecstasy (7.5\%).
- Lifetime prevalence rates for cocaine use by 8th, 10th, and 12th graders are 3.4\%, 5.4\%, and $8.1 \%$, respectively.

[^23]- Crack, a form of cocaine that comes in small chunks or "rocks," can be smoked to produce a rapid and intense high. It currently has a relatively low lifetime prevalence-ofuse rate in all grade levels: $2.4 \%$ for 8 th graders, $2.6 \%$ for 10th graders, and $3.9 \%$ for 12th graders.

Of all students reporting any cocaine use, significant proportions have some experience with crack: over two-thirds of the 8th-grade cocaine users (70\%), about one-half of the 10th-grade users (49\%), and almost half of the 12th-grade users (46\%) reported using crack.

- Heroin is one of the least commonly used of the illicit drugs for each grade level. Lifetime use is $1.5 \%$ for 12th graders, $1.5 \%$ for 10th graders, and $1.6 \%$ for 8 th graders. For many years the heroin available in the United States had such a low purity that the only practical way to use it was by injection, usually intravenously. However, due to high production in various countries, purity rose substantially and, as a result, smoking and snorting became more common modes of use. Because of these changes, in 1995 we added separate questions on taking heroin with and without a needle. We found that significant proportions of those reporting any heroin use in the previous 12 months indicated using heroin without a needle. In 2004, one-third of the 8th graders who indicated using heroin in the past year reported using only without a needle ( $0.3 \%$ ), onethird reported using only with a needle ( $0.4 \%$ ), and one-third indicated using both ways ( $0.3 \%$ ). The proportions for 10 th grade were $0.4 \%, 0.2 \%$, and $0.2 \%$, respectively. Use was even more tilted toward use without a needle among 12th graders ( $0.5 \%, 0.2 \%$, and $0.2 \%$, respectively). See Table $4-3$ for more detail on heroin use by mode of administration.
- Other narcotics are now the third highest in the ranking for seniors (14\% lifetime prevalence). (Data for 8th and 10th graders are not reported for other narcotics because the data are of questionable validity.)
- Questions were introduced in 2002 about the use of two specific narcotic drugs, OxyContin and Vicodin. Because we often are not sure how widespread the use of such new drugs is, we have developed a measurement approach that begins with what we call a single "tripwire" question, which asks only about the frequency of use in the last 12 months. The purpose of such a question is to determine whether the drug is making sufficient inroads to justify the larger allocation of questionnaire space given to most drugs. The results for OxyContin, a specific brand of oxycodone, shows an annual prevalence rate in 2004 of $1.7 \%, 3.5 \%$, and $5.0 \%$ for grades 8,10 , and 12 , respectively. The rates for Vicodin are considerably higher, with the comparable prevalence rates being $2.5 \%, 6.2 \%$, and $9.3 \%$, respectively. These prevalence rates are far higher than for heroin. Among 12th graders (where the comparison is possible), only slightly fewer students reported that they used Vicodin in the past 12 months ( $9.3 \%$ ) than said they used any narcotic other than heroin (9.5\%), of which it is a subclass. It thus appears that some Vicodin users do not recognize and report it as a narcotic drug.
- Tranquilizers also fall in the top third of the prevalence rankings of illicit drugs, with lifetime prevalence rates of $4.0 \%, 7.3 \%$, and $10.6 \%$ for grades 8,10 , and 12 , respectively.
- Within the general class of sedatives, the specific drug methaqualone is used by many fewer seniors ( $1.3 \%$ lifetime prevalence of use) than the much broader subclass of sedatives, which are labeled in the tables as "sedatives (barbiturates)" ( $9.9 \%$ lifetime prevalence of use). ${ }^{39}$ Because methaqualone use has become so limited among 12th graders, questions about its use have not been included in the 8th- and 10th-grade questionnaires. The sedative (barbiturate) questions are included in the 8th- and 10thgrade questionnaires, but the results are not reported, because we suspect that the younger respondents include the use of drugs that are not sedatives (barbiturates).
- The illicit drug classes remain in roughly the same order whether ranked by lifetime, annual, or monthly prevalence of use, as the data in Figure 4-1 illustrate. The only important change in ranking occurs for inhalant use among the 10th and 12th graders, for whom inhalants rank lower for current use than for lifetime use. This variation occurs because, as suggested above, use of a number of inhalants such as glues and aerosols tends to be discontinued at a relatively early age. Among the 8th graders, however, it should be noted that nearly 1 in 10 (9.6\%) sniffed, "huffed," or "bagged" some inhalant in the prior 12 months, and 1 in 22 (4.5\%) did so in just the 30 -day interval preceding the survey.
- Two of the newer drugs reported to be on the scene, GHB and ketamine, were included in the 2000 survey for the first time. These two drugs were each measured with a single "tripwire" question asking about their frequency of use in the prior 12 months. Neither of these drugs turned out to have particularly high annual prevalence rates. (See Table 4-6.) In 2004, GHB, which stands for gamma-hydroxybutyrate (a central nervous system depressant) and goes by such street names as "grievous bodily harm" and "G," had annual prevalence rates of $0.7 \%, 0.8 \%$, and $2.0 \%$ in grades 8,10 , and 12 , respectively. It is known as a "date rape" drug because of its ability to induce amnesia of events that occurred while under the influence. There has been considerable adverse publicity in the media about this drug in recent years, which may explain the limited rates of use. Ketamine, also known as "special $\boldsymbol{K}$ " and " $\boldsymbol{K}$," had only slightly higher annual prevalence rates: $0.9 \%$ and $1.3 \%$, respectively, for grades 8 and 10 , and about the same annual prevalence rate among 12th graders (1.9\%). It is an anesthetic used mostly in veterinary medicine, and it can induce dream-like states and hallucinations.
- Use of either of the two major licit drugs, alcohol and cigarettes, remains more widespread than use of any of the illicit drugs. More than three out of every four 12thgrade students (77\%) have at least tried alcohol, and almost half (48\%) are current

[^24]drinkers-that is, they reported using alcohol in the 30 days prior to the survey (Table 42). Even among 8th graders, the number of students who reported some alcohol use in their lifetime is almost half (44\%), and almost a fifth (19\%) are current (past 30-day) drinkers. ${ }^{40}$

- Of greater concern than just any use of alcohol is its use to the point of inebriation: 20\% of the 8th graders, $42 \%$ of the 10th graders, and $60 \%$ of the 12th graders said they have been drunk at least once in their lifetime. The prevalence rates of self-reported drunkenness during the 30 days immediately preceding the survey are strikingly high$6 \%, 19 \%$, and $33 \%$, respectively, for grades 8,10 , and 12 .
- Another measure of heavy drinking asks respondents to report how many occasions during the previous two-week period they had consumed five or more drinks in a row. Prevalence rates for this behavior are $11 \%, 22 \%$, and $29 \%$ for the three grades, respectively. ${ }^{41}$
- Over half (53\%) of seniors reported having tried cigarettes at some time, and one-quarter ( $25 \%$ ) smoked at least some in the prior month. Even among 8th graders, nearly 3 in every 10 (28\%) reported having tried cigarettes and $9 \%$ smoked in the prior month.
- A question about bidis, a type of flavored cigarette imported from India, was included in the questionnaires for the first time in 2000, with a single "tripwire" question asking about the frequency of use in the past year. The 2004 proportions using bidis during the past year were $1.7 \%$ in 8th grade, $2.1 \%$ in 10th grade, and $3.6 \%$ in 12th grade. Presumably, 30-day and daily use would be far lower. Some observers had been concerned that bidis might become popular among American youth, but thus far, that does not seem to be the case.
- A question about kreteks, a type of clove cigarette that also is usually imported, was added in 2001 to the list of "tripwire" questions. In 2004, prevalence was found to be a bit higher than bidis, with $1.9 \%, 3.7 \%$, and $6.5 \%$ reporting use in the past 12 months in 8th, 10th, and 12th grades, respectively. But, again the low proportions suggest limited penetration.

[^25]- Smokeless tobacco or "spit tobacco" is used by a surprisingly large number of young people, considering the unattractive nature of its use. Among 8th, 10th, and 12th graders, lifetime prevalence-of-use rates are $11 \%, 14 \%$, and $17 \%$, respectively, while current (past 30 -day) prevalence-of-use rates are $4.1 \%, 4.9 \%$, and $6.7 \%$, respectively. As will be discussed later in this chapter, the rates are considerably higher among boys, who account for most of the use of smokeless tobacco.
- Questions about anabolic steroids were added to the study in 1989. These drugs bear some resemblance to a number of other drugs in the study in that their distribution and sale are legally controlled (with some important exceptions; for example, androstenedione was freely available prior to 2005, when it was scheduled as a controlled substance by the Drug Enforcement Administration) and, like those other drugs, they often find their way into an illicit market. They also carry a particular danger for HIV transmission when taken by injection. However, they differ from all the other drugs discussed here in one important way: they usually are taken not for their direct psychoactive effects (although they may have some) but rather for muscle enhancement or healing of physical injuries. Clearly, their potential unintended consequences, including the transmission of HIV, make their illicit use a public health concern. It is for these reasons that they were added to the study.

The overall prevalence rates for anabolic steroids are modest relative to many other drugs. For 8th, 10th, and 12th graders, lifetime prevalence rates are $1.9 \%, 2.4 \%$, and $3.4 \%$, respectively, while current (past 30-day) prevalence-of-use rates are $0.5 \%, 0.8 \%$, and $1.6 \%$, respectively. Annual prevalence rates are $1.1 \%, 1.5 \%$ and $2.5 \%$. However, the annual prevalence rates for males are distinctly higher at $1.3 \%, 2.3 \%$, and $3.3 \%$, respectively, compared to $1.0 \%, 0.9 \%$, and $1.7 \%$ for females.

- Another closely related class of substance is androstenedione, which is a precursor to anabolic steroids and is used for much the same purpose-to enhance strength and physique. It is different in that it has been legal to purchase over the counter (though this changed in 2005). Concern grew about adolescents' use of androstenedione when their reported use of anabolic steroids increased sharply in 1999, a year marked by press reports of its use by prominent professional athletes. A single "tripwire" question was added in 2001 to determine how widespread the use of this class of drug actually is, partly in order to check whether some of the increase in reported steroid use actually was due to androstenedione use. The 2004 annual prevalence rates for androstenedioine were $0.9 \%, 1.1 \%$, and $2.1 \%$ in 8th, 10th, and 12th grades, respectively-somewhat lower than annual steroid use for each grade. (As with steroids, the annual prevalence rates are considerably higher among males; in this case, they are $1.2 \%, 1.6 \%$, and $3.7 \%$ for males versus $0.5 \%, 0.5 \%$, and $0.6 \%$ for females.) In the questionnaire forms containing both drugs, we find that a significant proportion of those students reporting anabolic steroid use in 2004 also reported using androstenedione in the later tripwire question specifically addressing androstenedione: $18 \%, 30 \%$, and $44 \%$ in grades 8,10 , and 12 , respectively. Therefore, it is possible that some of the reported steroid use is, in fact, androstenedione
use and that some of the increase in reported steroid use in the late 1990s was indeed due to increasing use of androstenedione. ${ }^{42}$
- To deal with the issue of double-counting, and also to consider the total proportion of students using either steroids or androstenedione, we have added a table to chapter 10, where we address the issue of these performance-enhancing drugs at greater length (see Table 10-6). Our estimate of the proportion of boys using either of these drugs in the prior 12 months is $2.2 \%$ in 8th grade, $3.1 \%$ in 10th grade, and $5.3 \%$ in 12th grade. This means that about 1 in 19 12th-grade boys have used one of these drugs in just the prior year.
- Another physique-enhancing substance is creatine, though it is not usually considered a drug at all but rather a type of protein supplement that is believed by some to help build muscle mass. Because we thought that a number of boys were probably using this substance along with steroids and/or androstenedione, we added a tripwire question about its use in 2001. It turns out that we were correct; in fact, the use of creatine, which is sold over the counter, was even more widespread than we expected. This is troublesome given the limited research knowledge about the long-term effects of using this substance. In 2004 the proportion of boys reporting use of creatine in the prior 12 months was $3 \%$, $10 \%$, and $16 \%$ in grades 8,10 , and 12 . Many fewer girls reported use- $0.6 \%, 0.9 \%$, and $1.0 \%$, respectively.


## Frequency of Lifetime, Annual, and 30-Day Use

While most of the discussion in this volume focuses on prevalence-of-use rates for different time periods (i.e., lifetime, annual, and 30-day), some readers may be interested in more detailed information about the frequency with which various drugs have been used in these same time periods. Tables 4-4a and 4-4b present frequency-of-use information in the full detail contained in the original item responses.

## Prevalence of Current Daily Use

Frequent use of illicit or licit drugs is a great concern for the health and safety of adolescents. Table 4-2 (and Table 5-4 in chapter 5) and Figure 4-2 show the prevalence of current daily or near-daily use of the various classes of drugs. For all drugs except cigarettes and smokeless tobacco, respondents are considered current daily users if they indicated that they had used the drug on 20 or more occasions in the preceding 30 days. Respondents are considered daily users of cigarettes if they explicitly stated the use of one or more cigarettes per day, and daily users of smokeless tobacco if they stated using "about once a day" or more often.

- Across all three grade levels in 2004, there are more current daily users of cigarettes than of any of the other drug classes: $4.4 \%, 8.3 \%$, and $15.6 \%$ in grades 8,10 , and 12 , respectively. Many of these daily smokers say that they currently smoke a half-pack or

[^26]more per day $(1.7 \%, 3.3 \%$, and $8.0 \%$ of all respondents in grades 8,10 , and 12 , respectively).

- Daily use of smokeless tobacco is considerably lower than daily use of cigarettes, at $1.0 \%, 1.6 \%$, and $2.8 \%$ for 8th, 10th, and 12th grades, respectively. The rates among boys are quite a bit higher, however, as is discussed later in this chapter in the section on gender-differences-in-use rates.
- The proportions of 12th-grade students who use tobacco daily in either or both forms (i.e., as cigarettes and/or smokeless tobacco) are only slightly higher than the proportions who use cigarettes alone. This is because there are relatively few daily users of smokeless tobacco, as just noted, but also because about a third to a half of those daily smokeless tobacco users are also daily users of cigarettes.
- For many years alcohol was the next most frequently used drug on a daily basis at all three grade levels, but because daily marijuana use rose substantially in the 1990s, it now exceeds daily alcohol use. The daily alcohol use rates in 2004 were $0.6 \%, 1.3 \%$, and $2.8 \%$ in grades 8,10 , and 12 , respectively.
- Marijuana is now used on a daily or near-daily basis by 1 of every 18 seniors (5.6\%); somewhat fewer 10th-grade students and considerably fewer 8th-grade students use it daily ( $3.2 \%$ and $0.8 \%$, respectively). (See chapter 10 for information on levels of past daily use and cumulative daily use of marijuana over the lifetime.)
- Less than $1 \%$ of the 12th-grade respondents reported daily use of each of the illicit drugs other than marijuana. Only $0.3 \%$ reported daily use of narcotics other than heroin, or amphetamines, followed by $0.2 \%$ or fewer reporting the use of a number of other drug classes (see Table 5-4). While very low, these figures are not inconsequential, because $1 \%$ of the high school class of 2004, for example, represents some 30,000 individuals nationwide.


## NONCONTINUATION RATES

One indication of the proportion of people who try a drug but do not continue to use it can be derived from calculating the percentage of those who ever used a drug (once or more) and who did not use it in the 12 months preceding the survey. ${ }^{43}$ We use the word "noncontinuation" to describe this operational definition rather than "discontinuation" because the latter might imply discontinuing an established pattern of use, whereas our current operational definition includes noncontinuation by experimental users as well as established users. Figure 4-3 provides these noncontinuation rates for all drug classes and all three grades in 2004. This figure shows that noncontinuation rates vary widely among the various drugs.

[^27]- Among 12th graders the highest noncontinuation rate is observed for inhalants (adjusted, $60 \%)$. Many inhalants are used primarily at a younger age, and use is often not continued into the senior year. PCP follows closely (at 56\%). After PCP, the rank ordering for noncontinuation rates is as follows: LSD (52\%), heroin without a needle (50\%), crystal methamphetamine (48\%), MDMA (47\%), methamphetamine (45\%), heroin with a needle (43\%), crack cocaine (41\%), heroin in general (40\%), methaqualone and nitrites (both 39\%), hallucinogens in general (adjusted), hallucinogens other than LSD, and powder cocaine (all 36\%), cocaine in general (35\%), sedatives (barbiturates) (34\%), amphetamines (33\%), tranquilizers (31\%), narcotics other than heroin (30\%), steroids (27\%), and marijuana (25\%). Note that a number of the psychotherapeutic drugs are among those least likely to be discontinued.
- Because a relatively high proportion of marijuana users continue to use marijuana at some level over an extended period, it consistently has had one of the lowest noncontinuation rates in the senior year of any of the illicit drugs ( $25 \%$ in 2004).
- It is noteworthy that of all the seniors who have ever used crack (3.9\%), only one-quarter ( $1.0 \%$ ) are current users and only $0.1 \%$ of the total sample are current daily users. While there is no question that crack is highly addictive, the evidence from this study has consistently suggested that it is not usually addictive on the first use, as was sometimes alleged.
- In contrast to illicit drugs, noncontinuation rates for the two licit drugs are extremely low. Alcohol, tried by the great majority of seniors (77\%), is still used in the senior year by nearly all who have ever tried it ( $71 \%$ of all seniors), yielding a noncontinuation rate for alcohol of only $8 \%$.
- Noncontinuation had to be defined differently for cigarettes because respondents are not asked to report on cigarette use in the past year. The noncontinuation rate is thus defined as the percentage of those who say they ever smoked "regularly" and who also reported not smoking at all during the past 30 days. Of the seniors who said they ever were regular smokers, only $16 \%$ have ceased active use.
- Noncontinuation is defined for smokeless tobacco much the same way as for cigarettes. It also has a relatively low rate of noncontinuation by senior year-only $15 \%$ of the lifetime "regular" users had not used it in the past 30 days.


## PREVALENCE COMPARISONS FOR IMPORTANT SUBGROUPS

The differences in prevalence of use for the various drugs associated with gender, college plans, region of the country, population density, parents’ education level, and racial/ethnic identification are presented and discussed next. Tables 4-5 through 4-9 provide the statistics on the usage rates for the various subgroups defined on these dimensions.

## Gender Differences

In general, higher proportions of males than females are involved in illicit drug use, especially heavy drug use; however, this picture is a somewhat complicated one (see Tables 4-5 through 4-8).

- The proportion of 12th graders using marijuana is higher among males (annual prevalence of use is $37 \%$, versus $31 \%$ among females), and daily use of marijuana is even more concentrated among males ( $7.7 \%$ versus $3.1 \%$ for females). This is also true among 8th- and 10th-grade students (see Tables 4-6 and 4-8).
- Males have considerably higher prevalence-of-use rates on most other illicit drugs, too. The annual prevalence-of-use rates in the senior year tend to be at least one and one-half to two times as high among males as among females for nitrites, hallucinogens, hallucinogens other than LSD, LSD, PCP, MDMA, cocaine, other cocaine, heroin in general, heroin with a needle, heroin without a needle, OxyContin, Ritalin, crystal meth (ice), methaqualone, Rohypnol, GHB, ketamine, and steroids. Further, males account for an even greater share of the frequent or heavy users of these various classes of drugs.

For many of these drugs, however, there is little gender difference in use among 8th and 10th graders. In fact, for some drugs, including any illicit drug other than marijuana, inhalants, MDMA, cocaine, crack, other cocaine, heroin, heroin without a needle, Vicodin, amphetamines, methamphetamine, tranquilizers, and Rohypnol, females have slightly higher rates of annual use in 8th grade. Thus, the gender differences observed in 12th grade, with males more likely to use many drugs, seem to emerge over the course of middle to late adolescence.

- In 12th grade, females have an annual prevalence rate for amphetamines equivalent to that for males (both 9.9\%), and in the earlier grades females actually have higher rates of amphetamine use. Indeed, it is probably largely due to their higher use of amphetamines in the lower grades that females show higher levels of using some illicit drug other than marijuana in those grades.
- The proportions of high school seniors who reported using some illicit drug other than marijuana during the last year do not differ a great deal by gender ( $22 \%$ for males versus $19 \%$ for females; see Figure 5-7 in chapter 5). If going beyond marijuana is an important threshold point in the sequence of illicit drug use, then fairly similar proportions of both genders were willing to cross that threshold at least once during the year. However, on average, female users take fewer types of drugs and tend to use them with less frequency than their male counterparts.
- The use of anabolic steroids is more heavily concentrated among males: 12th-grade males have an annual prevalence-of-use rate of $3.3 \%$ compared to $1.7 \%$ among females. In 8th grade, the difference is less: $1.3 \%$ versus $1.0 \%$, respectively.
- Frequent use of alcohol also tends to be disproportionately concentrated among males. Daily alcohol use, for example, is reported by 4.1\% of the 12th-grade males versus $1.4 \%$ of the 12th-grade females. Males are more likely than females to drink large quantities of alcohol in a single sitting: 34\% of 12th-grade males reported drinking five or more drinks in a row in the prior two weeks versus $24 \%$ of 12 th-grade females. ${ }^{44}$ These gender differences generally have been observable at all three grade levels, but they become considerably larger at the upper grade levels. (This year females actually had a higher binge drinking rate in 8th grade than did males- $11.8 \%$ vs. $10.8 \%$.)
- In recent years, daily smoking rates among seniors have been similar for males and females (in 2004, 15.4\% for males versus $15.0 \%$ for females), as well as rates of smoking a half-pack or more per day ( $8.0 \%$ for males and $7.5 \%$ for females). In 8th and 10th grades, daily smoking rates are identical for the two genders ( $4.3 \%$ for both in 8th grade, and $8.2 \%$ for both in 10th grade). Smoking a half-pack or more is the same for both genders in 8th grade (1.7\%) and slightly higher among males in 10th grade (3.5\% for males and $2.9 \%$ for females).
- The smoking of bidis tends to be more concentrated among males in the two upper grades. (See Table 4-6.)
- The use of smokeless tobacco, or "spit tobacco," is almost exclusively a male behavior. Although $12 \%$ of the 12th-grade males reported some use in the prior month, only $1.6 \%$ of the females did. Rates of daily use by males are $1.7 \%$ among 8 th graders, $3.0 \%$ among 10th graders, and $5.6 \%$ among 12th graders. The comparable statistics for females are only $0.3 \%, 0.2 \%$, and $0.2 \%$, respectively.


## Differences Related to College Plans

Overall, students who say they probably or definitely will complete four years of college (referred to here as the "college-bound") have lower rates of illicit drug use in secondary school than those who say they probably or definitely will not. (See Tables 4-5 through 4-8 and Figures 5-8 through 5-9 in chapter 5.)

An interesting note is that while the great majority of students at all three grade levels expect to complete college (see Tables 4-5 through 4-8), the proportion who indicate college plans is higher at the lower grade levels than in the upper grades, despite the fact that the lower grades contain the $15 \%$ to $20 \%$ of each cohort who eventually will drop out of high school. There likely are cohort shifts in college attendance taking place, as there have been throughout the life of the study, that may partially explain this anomaly; but there is also likely a considerable age effect, as well, wherein early aspirations become reality-tested (and adjusted) as secondary school experience cumulates.

[^28]For any given drug, the differences between these two self-identified groups of college- or noncollege-bound students tend to be greatest in the 8th grade.

Annual marijuana use, for example, is reported by 33\% of the college-bound seniors versus 39\% of the noncollege-bound, but among 8th graders it is reported by only $10 \%$ of the college-bound versus $29 \%$ of the noncollege-bound. One possible explanation for this difference is that the noncollege-bound students tend to have an earlier age of initiation.

- Among 2004 seniors, $18 \%$ of the college-bound reported using any illicit drug other than marijuana in the prior year versus $26 \%$ of the noncollege-bound.
- Frequent use of many of these illicit drugs shows even larger contrasts related to college plans (see Table 4-8). Daily marijuana use among 12th graders, for example, is almost twice as high among those who do not plan to attend college (8.1\%) as among those who are college-bound (4.5\%). Among 10th graders it is four times as high and among 8th graders it is eight times as high.
- An examination of Table 4-6 will show that quite large ratio differences may be found between the college-bound and the noncollege-bound on virtually all of the illicit drugs other than marijuana; and the ratios tend to be highest in the earlier grades. In nearly all cases, the noncollege-bound have the higher annual prevalence rate.
- Frequent alcohol use also is considerably more prevalent among the noncollege-bound. For example, daily drinking is reported by $4.3 \%$ of the noncollege-bound seniors versus 2.2\% of the college-bound seniors. Binge drinking (five or more drinks in a row at least once during the preceding two weeks) is reported by $35 \%$ of the noncollege-bound seniors versus $28 \%$ of the college-bound. There are also modest differences between the noncollege-bound and college-bound seniors in lifetime ( $81 \%$ versus $76 \%$ ), annual ( $75 \%$ versus $70 \%$ ), and 30 -day ( $52 \%$ versus $47 \%$ ) prevalence of alcohol use. In the lower grades, there are even larger differences in the various drinking measures between those who say they expect to go to college and those who do not (see Tables 4-5 though 4-8).
- At all three grade levels, more noncollege-bound students use steroids compared to college-bound students.
- By far, the largest and most dramatic difference in substance use between the collegeand noncollege-bound involves cigarette smoking-5.6\% of the college-bound seniors reported smoking a half-pack or more daily compared to $16.0 \%$ of the noncollege-bound seniors. The proportional differences are even larger in the lower grades: $1.1 \%$ versus $7.4 \%$, respectively, in 8 th grade and $2.2 \%$ versus $10.8 \%$ in 10th grade. (The absence of dropouts by 12th grade undoubtedly reduces the ratio because dropouts have a particularly high rate of smoking.)


## Regional Differences

Some regional differences in the rates of illicit drug use among high school seniors may be observed in Tables 4-5 through 4-8 and Figures 5-10a-c in chapter 5. See Figure 4-4 for a regional division map showing the states included in the four regions of the country as defined by the Census Bureau. The states in each region are also listed in Appendix B.

- In 2004 the overall rates of any illicit drug use differed some among the regions. The highest rate was in the Northeast, where $44 \%$ of seniors said they had used an illicit drug in the past year, followed closely by the West (40\%), the North Central (38\%), and then the South (36\%) (see Figure 5-10a in chapter 5).
- Among 12th graders in the Northeast, West, and North Central regions, there generally has been little difference in marijuana use. (Use in the South typically has been lower than in the other three regions.) Last year and this year, however, showed greater differences, with the Northeast (at 40\% in 2004) at a somewhat higher annual prevalence than the West (at 36\%) and the North Central (at 34\%). (The South was at 30\%.)
- At present, there is little regional variation in terms of the percentage of seniors using some illicit drug other than marijuana in the past year: the West is at $22 \%$, with the South at $21 \%$, the Northeast at $20 \%$, and the North Central at $19 \%$.
- In the past, there consistently was a large regional difference in the use of ice, or crystal methamphetamine, with the West having the highest rate. The highest rate in 2004 among seniors is still in the West, with $3.5 \%$ annual prevalence, followed by the South (2.3\%), the North Central (1.8\%), and the Northeast (0.9\%).
- In the past, the largest observed regional differences have been in cocaine use, and the West tended to have the highest level of use. Regional differences in recent years are much smaller, although the West usually has the highest rate of use of both cocaine and crack.
- For some years, the South generally has had the highest rate of tranquilizer use at all three grades.
- The South also has had the highest rate of barbiturate use (reported only for 12th grade).
- Rohypnol-which, like tranquilizers and sedatives (barbiturates), is a central nervous system depressant-does not show regional differences that are at all consistent across grades.
- The use of ecstasy does not vary much by region. In 2004, use was highest in the South at $5.1 \%$, followed by the West at $3.8 \%$, the Northeast at $3.5 \%$, and the North Central at 3.0\%.
- For some years, the 30-day prevalence rates of alcohol use among seniors have been somewhat lower in the South and West than in the Northeast and North Central regions, though there has been little regional difference in the lower grades. This year the same remains true, although the differences are slight.
- The West continues to have lower rates of daily smoking than the other regions at all three grade levels (Table 4-8).
- The use of smokeless tobacco, particularly current daily use, has tended to be concentrated in the South and North Central regions.


## Differences Related to Population Density

Three levels of population density (or urbanicity) have been distinguished for analytical purposes: (a) large MSAs, which contain most of the largest Metropolitan Statistical Areas from the most recent Census data; (b) other MSAs, which are the remaining ones; and (c) non-MSAs. (See Appendix B for further details.)

In general, the differences in the use of most illicit drugs across these various-sized communities are small, reflecting how widely illicit drug use has diffused through the population (see Tables 4-5 through 4-8).

- In 12th grade, annual marijuana use is somewhat lower in the large and non-urban areas ( $32 \%$ and $30 \%$, respectively) than in the other metropolitan areas (38\%).
- At all three grade levels, amphetamine use is slightly higher in non-urban areas than in the metropolitan areas.
- In all three grades, binge drinking is lowest in the large metropolitan areas (Table 4-8). Among 10th and 12th graders, the other MSAs are highest in rates of binge drinking. For 8th graders the highest level of use is in the non-urban areas.
- Daily cigarette use is inversely related to community size at all three grade levels. (See Table 4-8.) The proportional differences are larger at the lower grades. In 2004 the daily smoking rates for 8th graders were $3.5 \%$ in the large cities, $4.1 \%$ in the other cities, and $5.9 \%$ in the nonmetropolitan areas.
- Smokeless tobacco use also is highest in the non-urban areas at all three grade levels and, again, the differences are large. Current prevalence of use (past 30 days) is three to four times as high in the non-urban areas as in the most urban (e.g., for 8th graders, 30-day prevalence is $1.9 \%$ in the large MSAs, $3.6 \%$ in the other MSAs, and $7.7 \%$ in the nonMSAs). Daily use of smokeless tobacco is even more concentrated in the more rural areas (see Table 4-8). Clearly, the use of smokeless or "spit" tobacco continues to be a largely rural phenomenon.


## Differences Related to Parental Education

The best measure of family socioeconomic status available in the study is an index of parental education, which is based on the average of the educational levels reported for both parents by the respondent (or on the data for one parent, if data for both are not available). The scale values on the questions read as follows: (1) completed grade school or less, (2) some high school, (3) completed high school, (4) some college, (5) completed college, and (6) graduate or professional school after college. The respondent is instructed to indicate on this scale the highest level of education each parent attained. (It should be noted that the average educational level obtained by students' parents has risen over the years, as is discussed in the next chapter on trends.) Tables 45 through 4-8 give the distributions for 2004 for each grade level.

- By senior year there is rather little association with family socioeconomic status for the use of most drugs. This again speaks to the extent to which illicit drug use has permeated all social strata in American society.

However, an examination of Table 4-6 shows that in 8th grade, there tends to be a negative ordinal relationship between socioeconomic level and annual prevalence of use of various drugs, although the relationships are not always entirely ordinal.

- Many of these differences have disappeared by 10th grade or 12th grade. This is true for marijuana, inhalants, hallucinogens, LSD, hallucinogens other than LSD, MDMA, other cocaine, other narcotics, OxyContin, Vicodin, amphetamines, Ritalin, sedatives (barbiturates), and tranquilizers but not for cocaine, crack, or crystal methamphetamine. For these latter drugs, the lower strata (or lowest stratum in some cases) generally continue to have the highest proportion of users, even at the upper grade levels. The diminished socioeconomic differences by 12th grade could be explained by the higher socioeconomic status teenagers "catching up" with their more precocious peers from lower socioeconomic status backgrounds.
- The prevalence of use of three of the club drugs-Rohypnol, GHB, and ketamine-tends to be highest in the lowest socioeconomic stratum at all three grade levels (Table 4-6). (Rohypnol in 10th grade is an exception.)
- With regard to alcohol, the 30-day prevalence of use is negatively associated with socioeconomic status in 8th grade; but that association is gone by 12th grade, as is true for many of the illicit drugs. The prevalence of getting drunk in the prior 30 days is also negatively associated with socioeconomic status in 8th grade; but that association is slightly positive in 12th grade.
- Steroid use shows little systematic association with parental education in any grade.
- Cigarette smoking tends to bear a strong inverse relationship with parental education among 8th graders (see Table 4-7), but this relationship attenuates considerably by grade 12. (The attenuation is much less for heavier smoking.)


## Racial/Ethnic Differences

Racial/ethnic comparisons for African Americans, Hispanics, and Whites were added to this monograph series for the first time in $1991 .{ }^{45}$ Although the design of this project did not include an oversampling of any minority groups, the large overall sample sizes at each grade level do produce fair numbers of African American and Hispanic respondents each year. However, in the findings presented in this volume, we routinely present combined data from two adjacent years to increase the sample sizes on which they are based and, thus, the reliability of the estimates. Otherwise, misleading findings about the size of racial/ethnic differences may emerge, as well as (and perhaps more importantly) misleading findings about their trends. We caution the reader that the sampling error of differences among groups is likely to be larger than would be true for other demographic and background variables such as gender or college plans because African Americans and Hispanics are more likely to be clustered by school. Table 4-9 gives the combined 2003-2004 lifetime, annual, 30-day, and selected daily use statistics for the three racial/ethnic groups at all three grade levels, along with the numbers of cases upon which the estimates are based.

- Several general points can be derived from Table 4-9. First, for virtually all drugs, licit and illicit, African American students in 12th grade reported lifetime, annual, 30-day, and daily prevalence-of-use rates that are lower-sometimes dramatically lower-than those for White or Hispanic seniors.
- Second, use rates for most drugs are generally lower for African American students in 8th and 10th grades, as well as in 12th; therefore, the low usage rates in 12th grade almost certainly are not due to differential dropout rates.
- There is an important exception with respect to marijuana (and the index of any illicit drug, which is largely driven by marijuana use). In 8th grade, African American students currently have slightly higher rates of lifetime marijuana use than White students (and roughly equivalent rates of past-year and 30-day use). Among 10th graders lifetime marijuana use is also higher for African American students than for White students, but past-year use is higher among White students and 30-day use is about the same for both groups.
- Certain drugs have consistently been far less popular among African American teens than among White teens, including inhalants, hallucinogens, LSD specifically, ecstasy, cocaine (in recent years), powder cocaine, amphetamines, crystal methamphetamines, sedatives (barbiturates), and tranquilizers.

[^29]- The third general point is that by 12th grade, White students have the highest lifetime and annual prevalence-of-use rates among the three major racial/ethnic groups for many substances, including marijuana, inhalants, LSD, hallucinogens other than LSD, MDMA, other narcotics, amphetamines, sedatives (barbiturates), tranquilizers, alcohol (in general), been drunk, occasions of heavy drinking (in last 2 weeks), cigarettes, and smokeless tobacco. Not all of these findings are replicated at lower grade levels, however.
- Hispanics, taken as a group, now have the highest lifetime, annual, and 30-day prevalence-of-use rates in their senior year for crack and ice; the highest lifetime and annual rate for heroin with a needle; and the highest lifetime rate for other cocaine and methamphetamine. Their rate of cocaine use has tended to be high compared to the other two racial/ethnic groups, particularly in the lower grades. It bears repeating that Hispanics have a considerably higher dropout rate than Whites or African Americans, based on Census Bureau statistics, which would tend to diminish any such differences by senior year.
- An examination of the racial/ethnic comparisons at lower grade levels shows Hispanics having higher rates of use of nearly all the substances on which they have the highest prevalence of use in 12th grade, as well as of several other drugs. For example, in 8th grade, $4.7 \%$ of Hispanic students reported ever having used crack, compared to $2.2 \%$ of White students and $1.5 \%$ of African American students. For heroin, the lifetime prevalence of use in 8th grade for Hispanics, Whites, and African Americans is 3.4\%, $1.5 \%$, and $1.0 \%$, respectively, and for other cocaine, $5.1 \%, 2.4 \%$, and $1.4 \%$, respectively. In other words, in 8th grade-before most dropping out occurs-Hispanics have the highest rates of use of all the substances except amphetamines; whereas by 12th grade, Whites have the highest rates of use of most drugs. Certainly the considerably higher dropout rate among Hispanics could explain this shift, and it may be the most plausible explanation. Another explanation worth consideration is that Hispanics may tend to start using drugs at a younger age but that Whites overtake them at older ages. These explanations are not mutually exclusive, of course, and to some degree both explanations may hold true. A more extensive discussion of possible explanations (including the possibility of differential validity of reporting) for the racial/ethnic differences in reported substance use can be found in Wallace et al. (1995). ${ }^{46}$
- Table 4-9 shows exceptionally large absolute and proportional differences between the three groups in their rates of daily cigarette smoking. Among 12th graders, Whites have a $18.3 \%$ daily smoking rate, Hispanics $8.2 \%$ (which may be low, in part, because of their higher dropout rate), and African Americans only 5.2\%. In fact, African Americans have dramatically lower smoking rates than Whites or Hispanics at all grade levels except for lifetime use among 8th graders.

[^30]- African American students have the lowest lifetime, annual, and 30-day prevalence rates for alcohol use except for 8th graders’ lifetime and daily use. They also have the lowest rates for self-reports of having been drunk except for lifetime use for 8th graders.
- Recent occasions of heavy drinking (having 5 or more drinks in a row during the prior two weeks) is also lowest among African Americans in all three grades; in 12th grade their rate is $11 \%$ versus $33 \%$ for Whites and $26 \%$ for Hispanics. In 8th grade, Hispanics have the highest rate at $16 \%$, compared to $11 \%$ for Whites and $10 \%$ for African Americans.


## TABLE 4-1a

# Ninety-Five Percent Confidence Limits: Lifetime Prevalence of Use for Eighth, Tenth, and Twelfth Graders, 2004 

(Approx. Ns: 8 th grade $=17,000,10$ th grade $=16,400,12$ th grade $=14,600$ )

|  | 8th Grade |  |  | 10th Grade |  |  | 12th Grade |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lower limit | Observed estimate | Upper limit | Lower limit | Observed estimate | Upper limit | Lower <br> limit | Observed estimate | Upper limit |
| Any Illicit Drug ${ }^{\text {a }}$ | 20.0 | 21.5 | 23.0 | 37.8 | 39.8 | 41.9 | 48.5 | 51.1 | 53.8 |
| Any Illic it Drug Other Than Marijuana ${ }^{\text {a }}$ | 11.1 | 12.2 | 13.4 | 17.4 | 18.8 | 20.4 | 26.7 | 28.7 | 30.7 |
| Any Illic it Drug Including Inhalants ${ }^{\mathrm{a}, \mathrm{b}}$ | 28.6 | 30.2 | 31.9 | 41.0 | 43.1 | 45.2 | 49.2 | 53.0 | 56.7 |
| Marijuana/Hashish | 15.0 | 16.3 | 17.7 | 33.1 | 35.1 | 37.1 | 43.1 | 45.7 | 48.4 |
| Inhalants ${ }^{\text {b }}$ | 16.1 | 17.3 | 18.6 | 11.4 | 12.4 | 13.6 | 9.4 | 10.9 | 12.6 |
| Inhalants, Adjusted ${ }^{\text {b,c }}$ | - | - | - | - | - | - | 9.9 | 11.4 | 13.1 |
| Amyl/Butyl Nitrites ${ }^{\text {d }}$ | - | - | - | - | - | - | 0.8 | 1.3 | 2.1 |
| Hallucinogens | 2.9 | 3.5 | 4.3 | 5.6 | 6.4 | 7.4 | 8.6 | 9.7 | 11.0 |
| Hallucinogens, Adjusted ${ }^{\text {c }}$ | - | - | - | - | - | - | 8.8 | 9.9 | 11.2 |
| LSD | 1.3 | 1.8 | 2.3 | 2.2 | 2.8 | 3.5 | 3.8 | 4.6 | 5.5 |
| Halluc inogens Other Than LSD | 2.6 | 3.0 | 3.4 | 5.3 | 5.8 | 6.5 | 8.0 | 8.7 | 9.5 |
| PCP ${ }^{\text {d }}$ | - | - | - | - | - | - | 1.1 | 1.6 | 2.5 |
| MDMA (Ecstasy) ${ }^{\text {e,f }}$ | 2.3 | 2.8 | 3.5 | 3.6 | 4.3 | 5.1 | 6.3 | 7.5 | 8.9 |
| Cocaine | 2.8 | 3.4 | 4.1 | 4.6 | 5.4 | 6.3 | 7.1 | 8.1 | 9.3 |
| Crack | 2.1 | 2.4 | 2.7 | 2.3 | 2.6 | 3.0 | 3.4 | 3.9 | 4.3 |
| Other Cocaine ${ }^{\text {g }}$ | 2.0 | 2.6 | 3.2 | 4.0 | 4.8 | 5.7 | 6.2 | 7.3 | 8.7 |
| Heroin | 1.4 | 1.6 | 1.9 | 1.3 | 1.5 | 1.8 | 1.2 | 1.5 | 1.8 |
| With a Needle ${ }^{\text {b }}$ | 0.9 | 1.1 | 1.3 | 0.6 | 0.8 | 1.0 | 0.5 | 0.7 | 1.0 |
| Without a Needle ${ }^{\text {b }}$ | 0.8 | 1.0 | 1.3 | 0.9 | 1.1 | 1.3 | 1.1 | 1.4 | 1.9 |
| Other Narcotics ${ }^{\text {h }}$ | - | - | - | - | - | - | 12.5 | 13.5 | 14.4 |
| Amphetamines ${ }^{\text {h }}$ | 6.7 | 7.5 | 8.4 | 10.9 | 11.9 | 13.1 | 13.7 | 15.0 | 16.3 |
| Methamphetamine ${ }^{\text {f,i }}$ | 2.0 | 2.5 | 3.1 | 4.5 | 5.3 | 6.2 | 5.3 | 6.2 | 7.2 |
| Crystal Meth. (Ice) ${ }^{\text {f }}$ | - | - | - | - | - | - | 3.3 | 4.0 | 4.9 |
| Sedatives (Barbiturates) ${ }^{\text {h }}$ | - | - | - | - | - | - | 9.1 | 9.9 | 10.7 |
| Sedatives, Adjusted ${ }^{\text {h,j }}$ | - | - | - | - | - | - | 9.3 | 10.1 | 11.0 |
| Methaqualone ${ }^{\text {d,h }}$ | - | - | - | - | - | - | 0.8 | 1.3 | 2.1 |
| Tranquilizers ${ }^{\text {h }}$ | 3.5 | 4.0 | 4.5 | 6.7 | 7.3 | 8.0 | 9.8 | 10.6 | 11.5 |
| Rohypnol ${ }^{\text {k }}$ | 0.6 | 1.0 | 1.6 | 0.7 | 1.2 | 1.9 | - | - | - |
| Alcohol | 42.2 | 43.9 | 45.6 | 62.5 | 64.2 | 65.9 | 75.2 | 76.8 | 78.3 |
| Flavored Alcoholic Beverages ${ }^{\text {d,l }}$ | 35.2 | 37.9 | 40.8 | 55.6 | 58.6 | 61.4 | 66.9 | 71.0 | 74.9 |
| Been Drunk ${ }^{\text {f }}$ | 18.6 | 19.9 | 21.3 | 40.5 | 42.3 | 44.0 | 57.1 | 60.3 | 63.4 |
| Cigarettes | 26.3 | 27.9 | 29.4 | 38.9 | 40.7 | 42.4 | 51.0 | 52.8 | 54.7 |
| Smokeless Tobacco ${ }^{\text {d,e }}$ | 9.5 | 11.0 | 12.6 | 12.2 | 13.8 | 15.6 | 13.5 | 16.7 | 20.4 |
| Steroids ${ }^{\text {f }}$ | 1.7 | 1.9 | 2.3 | 2.1 | 2.4 | 2.7 | 2.7 | 3.4 | 4.2 |

NOTES: '-' indicates data not available.

[^31]SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 4-1b

## Ninety-Five Percent Confidence Limits: Annual Prevalence of Use for Eighth, Tenth, and Twelfth Graders, 2004

(Approx. Ns: 8 th grade $=17,000,10$ th grade $=16,400,12$ th grade $=14,600$ )

|  | 8th Grade |  |  | 10th Grade |  |  | 12th Grade |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lower <br> limit | Observed estimate | Upper limit | Lower <br> limit | Observed estimate | Upper <br> limit | Lower <br> limit | Observed estimate | Upper limit |
| Any Illicit Drug ${ }^{\text {a }}$ | 14.0 | 15.2 | 16.4 | 29.4 | 31.1 | 32.9 | 36.3 | 38.8 | 41.4 |
| Any Illic it Drug Other Than Marijuana ${ }^{\text {a }}$ | 7.1 | 7.9 | 8.9 | 12.4 | 13.5 | 14.8 | 18.8 | 20.5 | 22.2 |
| Any Illicit Drug |  |  |  |  |  |  |  |  |  |
| Including Inhalants ${ }^{\text {a,b }}$ | 18.9 | 20.2 | 21.5 | 31.1 | 32.9 | 34.7 | 35.6 | 39.1 | 42.7 |
| Marijuana/Hashish | 10.8 | 11.8 | 12.9 | 25.8 | 27.5 | 29.2 | 31.9 | 34.3 | 36.8 |
| Inhalants ${ }^{\text {b }}$ | 8.7 | 9.6 | 10.5 | 5.2 | 5.9 | 6.7 | 3.3 | 4.2 | 5.2 |
| Inhalants, Adjusted ${ }^{\text {b,c }}$ | - | - | - | - | - | - | 3.8 | 4.6 | 5.7 |
| Amyl/Butyl Nitrites ${ }^{\text {d }}$ | - | - | - | - | - | - | 0.5 | 0.8 | 1.3 |
| Halluc inogens | 1.8 | 2.2 | 2.8 | 3.5 | 4.1 | 4.8 | 5.4 | 6.2 | 7.1 |
| Halluc inogens, Adjusted ${ }^{\text {c }}$ | - | - | - | - | - | - | 5.5 | 6.4 | 7.3 |
| LSD | 0.8 | 1.1 | 1.5 | 1.2 | 1.6 | 2.1 | 1.8 | 2.2 | 2.8 |
| Halluc inogens Other Than LSD | 1.6 | 1.9 | 2.3 | 3.3 | 3.7 | 4.2 | 5.0 | 5.6 | 6.2 |
| PCP ${ }^{\text {d }}$ | - | - | - | - | - | - | 0.4 | 0.7 | 1.2 |
| MDMA (Ecstasy) ${ }^{\text {e,f }}$ | 1.3 | 1.7 | 2.2 | 2.0 | 2.4 | 3.0 | 3.2 | 4.0 | 4.9 |
| Cocaine | 1.6 | 2.0 | 2.5 | 3.1 | 3.7 | 4.4 | 4.5 | 5.3 | 6.2 |
| Crack | 1.1 | 1.3 | 1.6 | 1.5 | 1.7 | 2.0 | 2.0 | 2.3 | 2.6 |
| Other Cocaine ${ }^{\text {g }}$ | 1.2 | 1.6 | 2.0 | 2.8 | 3.3 | 4.0 | 3.8 | 4.7 | 5.7 |
| Heroin | 0.8 | 1.0 | 1.2 | 0.7 | 0.9 | 1.1 | 0.7 | 0.9 | 1.1 |
| With a Needle ${ }^{\text {b }}$ | 0.6 | 0.7 | 0.9 | 0.3 | 0.5 | 0.6 | 0.3 | 0.4 | 0.6 |
| Without a Needle ${ }^{\text {b }}$ | 0.4 | 0.6 | 0.7 | 0.5 | 0.7 | 0.8 | 0.5 | 0.7 | 1.0 |
| Other Narcotics ${ }^{\text {h }}$ | - | - | - | - | - | - | 8.8 | 9.5 | 10.3 |
| OxyContin ${ }^{\text {f,i }}$ | 1.3 | 1.7 | 2.4 | 2.8 | 3.5 | 4.4 | 4.1 | 5.0 | 6.0 |
| Vicodin ${ }^{\text {f,i }}$ | 1.8 | 2.5 | 3.4 | 5.0 | 6.2 | 7.5 | 7.8 | 9.3 | 11.0 |
| Amphetamines ${ }^{\text {h }}$ | 4.3 | 4.9 | 5.6 | 7.7 | 8.5 | 9.4 | 9.0 | 10.0 | 11.0 |
| Ritalin ${ }^{\text {f,i }}$ | 1.9 | 2.5 | 3.2 | 2.7 | 3.4 | 4.2 | 4.2 | 5.1 | 6.2 |
| Methamphetamine ${ }^{\text {f,i }}$ | 1.2 | 1.5 | 2.0 | 2.5 | 3.0 | 3.6 | 2.8 | 3.4 | 4.1 |
| Crystal Meth. (Ice) ${ }^{\text {f }}$ | - | - | - | - | - | - | 1.7 | 2.1 | 2.6 |
| Sedatives (Barbiturates) ${ }^{\text {h }}$ | - | - | - | - | - | - | 5.9 | 6.5 | 7.2 |
| Sedatives, Adjusted ${ }^{\text {h,j }}$ | - | - | - | - | - | - | 6.0 | 6.6 | 7.3 |
| Methaqualone ${ }^{\text {d,h }}$ | - | - | - | - | - | - | 0.5 | 0.8 | 1.4 |
| Tranquilizers ${ }^{\text {h }}$ | 2.2 | 2.5 | 2.9 | 4.6 | 5.1 | 5.7 | 6.7 | 7.3 | 8.1 |
| Rohypnol ${ }^{\text {f.k }}$ | 0.3 | 0.6 | 1.0 | 0.4 | 0.7 | 1.2 | 1.2 | 1.6 | 2.1 |
| GHB ${ }^{\text {d, }}$ | 0.5 | 0.7 | 1.0 | 0.6 | 0.8 | 1.2 | 1.4 | 2.0 | 2.8 |
| Ketamine ${ }^{\text {b, },}$ | 0.6 | 0.9 | 1.2 | 1.0 | 1.3 | 1.7 | 1.5 | 1.9 | 2.3 |
| Alcohol | 35.0 | 36.7 | 38.3 | 56.5 | 58.2 | 59.9 | 68.9 | 70.6 | 72.3 |
| Flavored Alcoholic Beverages ${ }^{\text {d,I }}$ | 27.8 | 30.4 | 33.1 | 46.8 | 49.7 | 52.7 | 51.4 | 55.8 | 60.2 |
| Been Drunk ${ }^{\text {f }}$ | 13.3 | 14.5 | 15.8 | 33.4 | 35.1 | 36.7 | 48.6 | 51.8 | 55.0 |
| Cigarettes | - | - | - | - | - | - | - | - | - |
| Bid is ${ }^{\text {f.i }}$ | 1.2 | 1.7 | 2.3 | 1.6 | 2.1 | 2.8 | 2.9 | 3.6 | 4.6 |
| Kreteks ${ }^{\text {f.i }}$ | 1.4 | 1.9 | 2.6 | 3.0 | 3.7 | 4.6 | 5.5 | 6.5 | 7.7 |
| Smokeless Tobacco ${ }^{\text {d,e }}$ | - | - | - | - | - | - | - | - | - |
| Steroids ${ }^{\text {f }}$ | 0.9 | 1.1 | 1.3 | 1.3 | 1.5 | 1.8 | 2.1 | 2.5 | 3.1 |
| Androstenedione ${ }^{\text {f,i }}$ | 0.6 | 0.9 | 1.4 | 0.7 | 1.1 | 1.7 | 1.5 | 2.1 | 2.9 |
| Creatine ${ }^{\text {f,i }}$ | 1.4 | 1.9 | 2.6 | 4.4 | 5.3 | 6.3 | 7.0 | 8.1 | 9.4 |

NOTES: ' - ' indic ates data not available.
See Table 4-1d for relevant footnotes.
SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 4-1c
Ninety-Five Percent Confidence Limits: Thirty-Day Prevalence of Use for Eighth, Tenth, and Twelfth Graders, 2004
(Approx. Ns: 8 th grade $=17,000,10$ th grade $=16,400,12$ th grade $=14,600$ )

|  | 8th Grade |  |  | 10th Grade |  |  | 12th Grade |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lower <br> limit | Observed estimate | Upper limit | Lower <br> limit | Observed estimate | Upper limit | Lower <br> limit | Observed estimate | Upper <br> limit |
| Any Illicit Drug ${ }^{\text {a }}$ | 7.6 | 8.4 | 9.3 | 17.1 | 18.3 | 19.6 | 21.5 | 23.4 | 25.4 |
| Any Illic it Drug Other Than Marijuana ${ }^{\text {a }}$ | 3.6 | 4.1 | 4.6 | 6.2 | 6.9 | 7.7 | 9.7 | 10.8 | 11.9 |
| Any Illic it Drug Including Inhalants ${ }^{\text {a,b }}$ | 10.3 | 11.2 | 12.3 | 18.1 | 19.3 | 20.7 | 20.6 | 23.3 | 26.1 |
| Marijuana/Hashish | 5.7 | 6.4 | 7.2 | 14.7 | 15.9 | 17.1 | 18.2 | 19.9 | 21.8 |
| Inhalants ${ }^{\text {b }}$ | 4.0 | 4.5 | 5.0 | 2.0 | 2.4 | 2.7 | 1.1 | 1.5 | 2.0 |
| Inhalants, Adjusted ${ }^{\text {b,c }}$ | - | - | - | - | - | - | 1.5 | 1.9 | 2.4 |
| Amyl/Butyl Nitrites ${ }^{\text {d }}$ | - | - | - | - | - | - | 0.4 | 0.7 | 1.3 |
| Hallucinogens | 0.7 | 1.0 | 1.2 | 1.3 | 1.6 | 2.0 | 1.6 | 1.9 | 2.3 |
| Halluc inogens, Adjusted ${ }^{\text {c }}$ | - | - | - | - | - | - | 1.8 | 2.2 | 2.7 |
| LSD | 0.3 | 0.5 | 0.7 | 0.4 | 0.6 | 0.8 | 0.5 | 0.7 | 1.0 |
| Halluc inogens Other Than LSD | 0.6 | 0.8 | 0.9 | 1.2 | 1.4 | 1.7 | 1.4 | 1.7 | 1.9 |
| PCP ${ }^{\text {d }}$ | - | - | - | - | - | - | 0.2 | 0.4 | 0.9 |
| MDMA (Ecstasy) ${ }^{\text {e,f }}$ | 0.6 | 0.8 | 1.1 | 0.6 | 0.8 | 1.1 | 0.9 | 1.2 | 1.7 |
| Cocaine | 0.7 | 0.9 | 1.2 | 1.4 | 1.7 | 2.1 | 1.9 | 2.3 | 2.8 |
| Crack | 0.5 | 0.6 | 0.8 | 0.7 | 0.8 | 1.0 | 0.9 | 1.0 | 1.3 |
| Other Cocaine ${ }^{\text {g }}$ | 0.5 | 0.7 | 0.9 | 1.2 | 1.5 | 1.9 | 1.7 | 2.2 | 2.7 |
| Heroin | 0.4 | 0.5 | 0.6 | 0.3 | 0.5 | 0.6 | 0.3 | 0.5 | 0.6 |
| With a Needle ${ }^{\text {b }}$ | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.4 | 0.1 | 0.2 | 0.4 |
| Without a Needle ${ }^{\text {b }}$ | 0.2 | 0.3 | 0.4 | 0.2 | 0.3 | 0.4 | 0.2 | 0.3 | 0.5 |
| Other Narcotics ${ }^{\text {h }}$ | - | - | - | - | - | - | 3.9 | 4.3 | 4.8 |
| Amphetamines ${ }^{\text {h }}$ | 2.0 | 2.3 | 2.7 | 3.6 | 4.0 | 4.5 | 4.1 | 4.6 | 5.2 |
| Methamphetamine ${ }^{\text {f,i }}$ | 0.4 | 0.6 | 0.9 | 1.0 | 1.3 | 1.7 | 1.1 | 1.4 | 1.9 |
| Crystal Meth. (Ice) ${ }^{\text {f }}$ | - | - | - | - | - | - | 0.6 | 0.8 | 1.2 |
| Sedatives (Barbiturates) ${ }^{\text {h }}$ | - | - | - | - | - | - | 2.6 | 2.9 | 3.2 |
| Sedatives, Adjusted ${ }^{\text {h,j }}$ | - | - | - | - | - | - | 2.6 | 2.9 | 3.3 |
| Methaqualone ${ }^{\text {d,h }}$ | - | - | - | - | - | - | 0.3 | 0.5 | 1.0 |
| Tranquilizers ${ }^{\text {h }}$ | 1.0 | 1.2 | 1.4 | 2.1 | 2.3 | 2.7 | 2.8 | 3.1 | 3.5 |
| Rohypnol ${ }^{\text {k }}$ | 0.1 | 0.2 | 0.6 | 0.1 | 0.3 | 0.6 | - | - | - |
| Alcohol | 17.3 | 18.6 | 19.9 | 33.6 | 35.2 | 36.9 | 46.2 | 48.0 | 49.9 |
| Flavored Alcoholic Beverages ${ }^{\text {d,1 }}$ | 12.7 | 14.6 | 16.8 | 22.7 | 25.1 | 27.8 | 27.1 | 31.1 | 35.3 |
| Been Drunk ${ }^{\dagger}$ | 5.4 | 6.2 | 7.1 | 17.2 | 18.5 | 19.9 | 29.6 | 32.5 | 35.6 |
| Cigarettes | 8.2 | 9.2 | 10.3 | 14.7 | 16.0 | 17.3 | 23.4 | 25.0 | 26.7 |
| Smokeless Tobacco ${ }^{\text {d, }}$ | 3.2 | 4.1 | 5.2 | 4.0 | 4.9 | 6.2 | 4.7 | 6.7 | 9.3 |
| Steroids ${ }^{\text {f }}$ | 0.4 | 0.5 | 0.7 | 0.7 | 0.8 | 1.0 | 1.2 | 1.6 | 2.1 |

NOTES: '-' indicates data not availa ble.
See Table 4-1d for relevant footnotes.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE 4-1d

## Ninety-Five Percent Confidence Limits: Daily Prevalence of Use for Eighth, Tenth, and Twelfth Graders, 2004

(Approx. Ns: 8th grade $=17,000,10$ th grade $=16,400,12$ th grade $=14,600$ )

|  | 8th Grade |  |  | 10th Grade |  |  | 12th Grade |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lower <br> limit | Observed estimate | Upper limit | Lower <br> limit | Observed estimate | Upper <br> limit | Lower <br> limit | Observed estimate | Upper <br> limit |
| Marijuana/Hashish' | 0.6 | 0.8 | 0.9 | 2.8 | 3.2 | 3.5 | 4.9 | 5.6 | 6.4 |
| Alcohol |  |  |  |  |  |  |  |  |  |
| Daily | 0.5 | 0.6 | 0.8 | 1.1 | 1.3 | 1.5 | 2.5 | 2.8 | 3.1 |
| Been Drunk ${ }^{\text {f }}$ | 0.1 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 1.4 | 1.8 | 2.3 |
| 5+Drinks in a Row in Last 2 Weeks | 10.4 | 11.4 | 12.6 | 20.6 | 22.0 | 23.5 | 27.5 | 29.2 | 30.9 |
| Cigarettes |  |  |  |  |  |  |  |  |  |
| Daily | 3.7 | 4.4 | 5.1 | 7.3 | 8.3 | 9.3 | 14.2 | 15.6 | 17.0 |
| 1/2 Pack+/Day | 1.4 | 1.7 | 2.2 | 2.8 | 3.3 | 3.9 | 7.2 | 8.0 | 8.9 |
| Smokeless Tobacco ${ }^{\text {d,e }}$ | 0.6 | 1.0 | 1.6 | 1.1 | 1.6 | 2.3 | 1.6 | 2.8 | 4.7 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ For 12th graders only: Use of "any illic it drugs" includes any use of marijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use of other narcotics, amphetamines, barbiturates, or tranquilizers not under a doctor'sorders. For 8th and 10th graders only: The use of other narcotics and barbiturates has been excluded because these younger respondents appearto overreport use (perhaps because they include the use of nonprescription drugs in their answers).
${ }^{\mathrm{b}}$ For 12th graders only: Data based on three of six forms; N is one-half of N indic ated.
${ }^{\text {c For 12th graders only: Adjusted for underreporting of certa in drugs. See text for details. }}$
${ }^{\mathrm{d}}$ For 12th graders only: Data based on one of six forms; N is one-sixth of N indicated.
${ }^{\text {e }}$ For 8th and 10th graders only: Data based on two of four forms; N is one-half of N indicated.
${ }^{\mathrm{f}}$ For 12th graders only: Data based on two of six forms; N is two-sixths of N indicated.
${ }^{9}$ For 12th graders only: Data based on four of six forms; N is four-sixths of N indicated.
honly drug use not undera doctor's orders is included here.
'For 8th and 10th graders only: Data based on one of four forms; N is one-third of N indic ated.
jFor 12th graders only: "Sedatives, adjusted" data are a combination of barbiturate and methaqualone data. Data based on six forms of barbiturate data adjusted by one form of methaqualone data.
${ }^{\mathrm{k}}$ For 8th and 10th graders only: Data based on one of four forms; N is one-sixth of N indicated.
Daily use of manjuana and alcohol is defined as use on 20 ormore occasions in the past 30 days.

TABLE 4-2
Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, 2004

|  | Lifetime |  |  | Annual |  |  | 30-Day |  |  | Daily |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Approx. $\mathrm{N}=$ | 17,000 | 16,400 | 14,600 | 17,000 | 16,400 | 14,600 | 17,000 | 16,400 | 14,600 | 17,000 | 16,400 | 14,600 |
| Any llicit Drug ${ }^{\text {a }}$ | 21.5 | 39.8 | 51.1 | 15.2 | 31.1 | 38.8 | 8.4 | 18.3 | 23.4 | - | - | - |
| Any Illic it Drug Other Than Marijuana ${ }^{\text {a }}$ | 12.2 | 18.8 | 28.7 | 7.9 | 13.5 | 20.5 | 4.1 | 6.9 | 10.8 | - | - | - |
| Any lllic it Drug |  |  |  |  |  |  |  |  |  |  |  |  |
| Including Inhalants ${ }^{\text {a,b }}$ | 30.2 | 43.1 | 53.0 | 20.2 | 32.9 | 39.1 | 11.2 | 19.3 | 23.3 | - | - | - |
| Manjuana/Hashish | 16.3 | 35.1 | 45.7 | 11.8 | 27.5 | 34.3 | 6.4 | 15.9 | 19.9 | 0.8 | 3.2 | 5.6 |
| Inhalants ${ }^{\text {b }}$ | 17.3 | 12.4 | 10.9 | 9.6 | 5.9 | 4.2 | 4.5 | 2.4 | 1.5 | - | - | 0.1 |
| Inhalants, Adjusted ${ }^{\text {b,c }}$ | - | - | 11.4 | - | - | 4.6 | - | - | 1.9 | - | - | 0.4 |
| Amyl/Butyl Nitrites ${ }^{\text {d }}$ | - | - | 1.3 | - | - | 0.8 | - | - | 0.7 | - | - | 0.2 |
| Hallucinogens | 3.5 | 6.4 | 9.7 | 2.2 | 4.1 | 6.2 | 1.0 | 1.6 | 1.9 | - | - | 0.2 |
| Hallucinogens, Adjusted ${ }^{\text {c }}$ | - | - | 9.9 | - | - | 6.4 | - | - | 2.2 | - | - | 0.4 |
| LSD | 1.8 | 2.8 | 4.6 | 1.1 | 1.6 | 2.2 | 0.5 | 0.6 | 0.7 | - | - | 0.2 |
| Hallucinogens |  |  |  |  |  |  |  |  |  |  |  |  |
| Other Than LSD | 3.0 | 5.8 | 8.7 | 1.9 | 3.7 | 5.6 | 0.8 | 1.4 | 1.7 | - | - | 0.1 |
| PCP ${ }^{\text {d }}$ | - | - | 1.6 | - | - | 0.7 | - | - | 0.4 | - | - | 0.1 |
| MDMA (Ecstasy) ${ }^{\text {e,f }}$ | 2.8 | 4.3 | 7.5 | 1.7 | 2.4 | 4.0 | 0.8 | 0.8 | 1.2 | - | - | 0.1 |
| Cocaine | 3.4 | 5.4 | 8.1 | 2.0 | 3.7 | 5.3 | 0.9 | 1.7 | 2.3 | - | - | 0.2 |
| Crack | 2.4 | 2.6 | 3.9 | 1.3 | 1.7 | 2.3 | 0.6 | 0.8 | 1.0 | - | - | 0.1 |
| Other Cocaine ${ }^{\text {g }}$ | 2.6 | 4.8 | 7.3 | 1.6 | 3.3 | 4.7 | 0.7 | 1.5 | 2.2 | - | - | 0.1 |
| Heroin |  |  |  |  |  |  |  |  |  |  |  |  |
| Any Use | 1.6 | 1.5 | 1.5 | 1.0 | 0.9 | 0.9 | 0.5 | 0.5 | 0.5 | - | - | 0.1 |
| With a Needle ${ }^{\text {b }}$ | 1.1 | 0.8 | 0.7 | 0.7 | 0.5 | 0.4 | 0.3 | 0.3 | 0.2 | - | - | * |
| Without a Needle ${ }^{\text {b }}$ | 1.0 | 1.1 | 1.4 | 0.6 | 0.7 | 0.7 | 0.3 | 0.3 | 0.3 | - | - | * |
| Other Narcotics ${ }^{\text {h }}$ | - | - | 13.5 | - | - | 9.5 | - | - | 4.3 | - | - | 0.3 |
| OxyContin ${ }^{\text {fi, }}$ | - | - | - | 1.7 | 3.5 | 5.0 | - | - | - | - | - | - |
| Vicodin ${ }^{\text {f,i }}$ | - | - | - | 2.5 | 6.2 | 9.3 | - | - | - | - | - | - |
| Amphetamines ${ }^{\text {h }}$ | 7.5 | 11.9 | 15.0 | 4.9 | 8.5 | 10.0 | 2.3 | 4.0 | 4.6 | - | - | 0.3 |
| Rita lin ${ }^{\text {f,i }}$ | - | - | - | 2.5 | 3.4 | 5.1 | - | - | - | - | - | - |
| Methamphetamine ${ }^{\text {f,i }}$ | 2.5 | 5.3 | 6.2 | 1.5 | 3.0 | 3.4 | 0.6 | 1.3 | 1.4 | - | - | 0.2 |
| Crystal Meth. (Ice) ${ }^{\dagger}$ | - | - | 4.0 | - | - | 2.1 | - | - | 0.8 | - | - | 0.1 |
| Sedatives (Barbiturates) ${ }^{\text {h }}$ | - | - | 9.9 | - | - | 6.5 | - | - | 2.9 | - | - | 0.1 |
| Sedatives, Adjusted ${ }^{\text {h, }}$ | - | - | 10.1 | - | - | 6.6 | - | - | 2.9 | - | - | 0.2 |
| Methaqualone ${ }^{\text {d,h }}$ | - | - | 1.3 | - | - | 0.8 | - | - | 0.5 | - | - | 0.1 |
| Tranquilizers ${ }^{\text {n }}$ | 4.0 | 7.3 | 10.6 | 2.5 | 5.1 | 7.3 | 1.2 | 2.3 | 3.1 | - | - | 0.2 |
| Rohypnol ${ }^{\text {t,k }}$ | 1.0 | 1.2 | - | 0.6 | 0.7 | 1.6 | 0.2 | 0.3 | - | - | - | - |
| GHB ${ }^{\text {d, }}$, | - | - | - | 0.7 | 0.8 | 2.0 | - | - | - | - | - | - |
| Ketamine ${ }^{\text {b,i }}$ | - | - | - | 0.9 | 1.3 | 1.9 | - | - | - | - | - | - |
| Alcohol, Any Use | 43.9 | 64.2 | 76.8 | 36.7 | 58.2 | 70.6 | 18.6 | 35.2 | 48.0 | 0.6 | 1.3 | 2.8 |
| Fla vored Alcoholic |  |  |  |  |  |  |  |  |  |  |  |  |
| Beverages ${ }^{\text {d, }}$ | 37.9 | 58.6 | 71.0 | 30.4 | 49.7 | 55.8 | 14.6 | 25.1 | 31.1 | - | - | 1.2 |
| Been Drunk ${ }^{\dagger}$ | 19.9 | 42.3 | 60.3 | 14.5 | 35.1 | 51.8 | 6.2 | 18.5 | 32.5 | 0.2 | 0.4 | 1.8 |
| 5+Drinks in a Row in Last 2 Weeks | - | - | - | - | - | - | - | - | - | 11.4 | 22.0 | 29.2 |
| Cigarettes, Any Use | 27.9 | 40.7 | 52.8 | - | - | - | 9.2 | 16.0 | 25.0 | 4.4 | 8.3 | 15.6 |
| 1/2 Pack+/Day | - | - | - | - | - | - | - | - | - | 1.7 | 3.3 | 8.0 |
| Bid is ${ }^{\text {t, }}$ | - | - | - | 1.7 | 2.1 | 3.6 | - | - | - | - | - | - |
| Kreteks ${ }^{\text {t, }}$, | - | - | - | 1.9 | 3.7 | 6.5 | - | - | - | - | - | - |
| Smokeless Tobacco ${ }^{\text {d,e }}$ | 11.0 | 13.8 | 16.7 | - | - | - | 4.1 | 4.9 | 6.7 | 1.0 | 1.6 | 2.8 |
| Steroids ${ }^{\text {f }}$ | 1.9 | 2.4 | 3.4 | 1.1 | 1.5 | 2.5 | 0.5 | 0.8 | 1.6 | - | - | 0.4 |

(Table continued on next page)

# TABLE 4-2 (cont'd) <br> Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders, 2004 

NOTES: ' - ' indicates data not available.
'*' indic ates less than .05 percent but greater than 0 percent.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ For 12th graders only: Use of "any illic it drugs" includes any use of manijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use of other narcotics, amphetamines, barbiturates, or tranquilizers not under a doctor'sorders. For 8th and 10th graders only: The use of other narcotics and barbiturates has been excluded, because these younger respondents appearto overreport use (perhapsbecause they include the use of nonprescription drugs in their answers).
${ }^{\mathrm{b}}$ For 12th graders only: Data based on three of six forms; N is one-half of N indicated.
${ }^{\text {c }}$ For 12th graders only: Adjusted for undereporting of certain drugs. See text for details.
${ }^{d}$ For 12th graders only: Data based on one of six forms; $N$ is one-sixth of $N$ indicated.
${ }^{e}$ For 8th and 10th graders only: Data based on two of four forms; $N$ is one-half of $N$ indicated.
${ }^{f}$ For 12th graders only: Data based on two of six forms; $N$ is two-sixths of $N$ indicated.
${ }^{9}$ For 12th graders only: Data based on four of six forms; N is four-sixths of N indic ated.
honly drug use not under a doctor'sorders is included here.
'For 8th and 10th graders only: Data based on one of four forms; N is one-third of N indicated.
jFor 12th graders only: "Sedatives, adjusted" data are a combination of barbiturate and methaqualone data. Data based on six forms of barbiturate data adjusted by one form of methaqualone data.
${ }^{k}$ For 8th and 10th graders only: Data based on one of four forms; N is one-sixth of N indicated due to changes in the questionnaire forms.

## TABLE 4-3

Prevalence of Use of Heroin with and without a Needle for Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages of all respondents)

|  | Percentage who used in: |  |  |
| :---: | :---: | :---: | :---: |
|  | Lifetime | Past year | Past month |
| Eighth Graders |  |  |  |
| Used heroin only with a needle | 0.6 | 0.4 | 0.2 |
| Used heroin only without a needle | 0.5 | 0.3 | 0.1 |
| Used heroin both ways | 0.5 | 0.3 | 0.1 |
| Used heroin at all | 1.6 | 1.0 | 0.5 |
| Approx. weighted $\mathrm{N}=$ | 17,000 | 17,000 | 17,000 |
| Tenth Graders |  |  |  |
| Used heroin only with a needle | 0.4 | 0.2 | 0.2 |
| Used heroin only without a needle | 0.7 | 0.4 | 0.2 |
| Used heroin both ways | 0.4 | 0.2 | 0.1 |
| Used heroin at all | 1.5 | 0.9 | 0.5 |
| Approx. weighted $\mathrm{N}=$ | 16,400 | 16,400 | 16,400 |
| Twelfth Graders |  |  |  |
| Used heroin only with a needle | 0.2 | 0.2 | 0.1 |
| Used heroin only without a needle | 0.9 | 0.5 | 0.2 |
| Used heroin both ways | 0.4 | 0.2 | 0.1 |
| Used heroin at all | 1.5 | 0.9 | 0.5 |
| Approx. weighted $\mathrm{N}=$ | 7,300 | 7,300 | 7,300 |
| NOTES: Any a pparent inconsistency betw those who used with a needle, th used both ways is due to roundin Twelfth-grade data based on thr is based on all six forms. The six-fo | en the tota se who use error. <br> of six form m is app | used heroin a ut a needle, <br> t for "used ly 14,600 . | nd the sum of those who <br> at all," which |
| SOURCE: The Monitoring the Future Study, th | University | igan. |  |

## TABLE 4-4a

Frequency of Use of Various Drugs: Lifetime, Annual, and Thirty-Day Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages)


NOTES: ' - ' indic ates data not available. '*' indic ates less than .05 percent but greater than 0 percent.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Unadjusted for known underreporting of certain drugs. See text for details.
${ }^{\mathrm{b}} 12$ th grade only: Data based on three of six forms.
${ }^{c} 12$ th grade only: Data based on one of six forms.

## TABLE 4-4a (cont'd)

Frequency of Use of Various Drugs: Lifetime, Annual, and Thirty-Day
Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages)

|  | MDMA ${ }^{\text {a,b }}$ |  |  | Cocaine |  |  | Crack |  |  | OtherCocaine ${ }^{\text {c }}$ |  |  | Heroin |  |  | Heroin with a Needle ${ }^{\text {d }}$ |  |  | Heroin without a Needle ${ }^{\text {d }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Approx. $\mathrm{N}=$ | 8500 | 8200 | 4900 | 17000 | 16400 | 14600 | 17000 | 16400 | 14600 | 17000 | 16400 | 9700 | 17000 | 16400 | 14600 | 17000 | 16400 | 7300 | 17000 | 16400 | 7300 |
| Lifetime Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No occasions | 97.2 | 95.7 | 92.5 | 96.6 | 94.6 | 91.9 | 97.6 | 97.4 | 96.1 | 97.5 | 95.2 | 92.7 | 98.4 | 98.5 | 98.5 | 98.9 | 99.2 | 99.3 | 99.0 | 98.9 | 98.6 |
| 1-2 occasions | 1.9 | 2.7 | 3.6 | 1.4 | 2.2 | 2.8 | 1.4 | 1.4 | 1.8 | 1.6 | 2.7 | 2.8 | 0.8 | 0.8 | 0.7 | 0.7 | 0.5 | 0.2 | 0.6 | 0.6 | 0.8 |
| 3-5 occasions | 0.5 | 0.9 | 1.5 | 1.1 | 1.5 | 1.7 | 0.4 | 0.4 | 0.6 | 0.4 | 0.7 | 1.3 | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 |
| 6-9 occasions | 0.2 | 0.3 | 0.8 | 0.2 | 0.4 | 0.9 | 0.1 | 0.2 | 0.4 | 0.2 | 0.4 | 0.8 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 10-19 oc casions | 0.1 | 0.2 | 0.8 | 0.2 | 0.4 | 0.9 | 0.1 | 0.2 | 0.3 | 0.2 | 0.3 | 0.8 | 0.1 | 0.1 | 0.1 | 0.1 | * | 0.1 | 0.1 | 0.1 | 0.1 |
| 20-39 oc casions | 0.1 | 0.1 | 0.4 | 0.1 | 0.3 | 0.6 | 0.1 | 0.1 | 0.3 | 0.1 | 0.3 | 0.6 | 0.1 | 0.1 | 0.1 | * | 0.1 | 0.1 | * | 0.1 | 0.1 |
| 40 ormore | 0.1 | 0.2 | 0.5 | 0.4 | 0.6 | 1.3 | 0.2 | 0.2 | 0.4 | 0.2 | 0.4 | 1.0 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |
| Annual Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No occasions | 98.3 | 97.6 | 96.1 | 98.0 | 96.3 | 94.7 | 98.7 | 98.3 | 97.7 | 98.5 | 96.7 | 95.3 | 99.0 | 99.1 | 99.2 | 99.3 | 99.5 | 99.6 | 99.4 | 99.3 | 99.3 |
| 1-2 occasions | 1.0 | 1.7 | 2.2 | 0.8 | 1.5 | 2.0 | 0.8 | 0.9 | 1.0 | 1.0 | 1.9 | 1.7 | 0.5 | 0.4 | 0.4 | 0.4 | 0.2 | 0.1 | 0.4 | 0.4 | 0.4 |
| 3-5 occasions | 0.3 | 0.4 | 0.8 | 0.6 | 1.1 | 1.2 | 0.2 | 0.3 | 0.5 | 0.2 | 0.6 | 1.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 6-9 occasions | 0.1 | 0.1 | 0.5 | 0.2 | 0.3 | 0.7 | 0.1 | 0.2 | 0.3 | 0.1 | 0.3 | 0.7 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | * | 0.1 | 0.1 |
| 10-19 oc casions | 0.1 | 0.1 | 0.2 | 0.2 | 0.4 | 0.6 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.5 | 0.1 | 0.1 | 0.1 | 0.1 | * | * | * | 0.1 | * |
| 20-39 oc casions | 0.1 | * | 0.2 | * | 0.2 | 0.4 | * | 0.1 | 0.2 | 0.1 | 0.2 | 0.4 | * | * | 0.1 | * | * | * | * | * | 0.1 |
| 40 or more | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.5 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | * | * | 0.1 | * |
| 30-Day Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No occasions | 99.2 | 99.2 | 98.8 | 99.1 | 98.3 | 97.7 | 99.4 | 99.2 | 99.0 | 99.3 | 98.5 | 97.8 | 99.5 | 99.6 | 99.6 | 99.7 | 99.7 | 99.8 | 99.7 | 99.7 | 99.7 |
| 1-2 occasions | 0.5 | 0.6 | 0.6 | 0.4 | 0.7 | 1.0 | 0.4 | 0.4 | 0.5 | 0.5 | 0.9 | 0.9 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 |
| $3-5$ occasions | 0.2 | 0.1 | 0.2 | 0.3 | 0.6 | 0.5 | 0.1 | 0.2 | 0.2 | 0.1 | 0.3 | 0.5 | 0.1 | 0.1 | 0.1 | * | 0.1 | * | * | * | 0.1 |
| 6-9 occasions | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.3 | * | 0.1 | 0.2 | 0.1 | 0.2 | 0.3 | * | 0.1 | 0.1 | 0.1 | * | 0.1 | * | * | * |
| 10-19 oc casions | * | * | 0.1 | 0.1 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | * | 0.1 | 0.3 | * | * | 0.1 | * | * | * | * | * | * |
| 20-39 oc casions | * | * | 0.1 | 0.1 | 0.1 | 0.1 | * | * | * | * | * | 0.1 | * | 0.0 | * | * | * | * | 0.0 | * | 0.0 |
| 40 or more | * | * | 0.1 | * | * | 0.1 | * | * | 0.1 | * | * | 0.1 | * | 0.1 | 0.1 | * | * | * | * | * | * |

NOTES: ' - ' indic ates data not available. '*' indic ates less than .05 percent but greater than 0 percent.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 8$ th and 10th grades only: Data based on two of four forms.
${ }^{\mathrm{b}}$ 12th grade only: Data based on two of six forms.
${ }^{c} 12$ th grade only: Data based on four of six forms.
${ }^{d} 12$ th grade only: Data based on three of six forms.

## TABLE 4-4a (cont'd)

Frequency of Use of Various Drugs: Lifetime, Annual, and Thirty-Day Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages)

|  | OtherNarcotics |  |  | OxyContin ${ }^{\text {a,b }}$ |  |  | Vicodin ${ }^{\text {a,b }}$ |  |  | Amphetamines ${ }^{\text {c,d }}$ |  |  | $\begin{aligned} & \text { Meth- } \\ & \text { ampheta mine }^{\mathrm{a}, \mathrm{~b}} \end{aligned}$ |  |  | Crystal Meth.$(\text { Ice })^{b}$ |  |  | Ritalin ${ }^{\text {a,b }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Approx. $N=$ | - | - | 14600 | 5700 | 5500 | 4900 | 5700 | 5500 | 4900 | 17000 | 16400 | 14600 | 5700 | 5500 | 4900 | - | - | 4900 | 5700 | 5500 | 4900 |
| Lifetime Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No occasions | - | - | 86.5 | - | - | - | - | - | - | 92.5 | 88.1 | 85.1 | 97.5 | 94.7 | 93.8 | - | - | 96.0 | - | - | - |
| 1-2 occasions | - | - | 4.7 | - | - | - | - | - | - | 4.1 | 5.4 | 5.2 | 1.4 | 2.7 | 2.8 | - | - | 2.0 | - | - | - |
| 3-5 occasions | - | - | 2.7 | - | - | - | - | - | - | 1.3 | 2.4 | 2.9 | 0.5 | 0.6 | 0.9 | - | - | 0.5 | - | - | - |
| 6-9 occasions | - | - | 1.7 | - | - | - | - | - | - | 0.7 | 1.3 | 2.0 | 0.2 | 0.5 | 0.6 | - | - | 0.3 | - | - | - |
| 10-19 oc casions | - | - | 1.7 | - | - | - | - | - | - | 0.5 | 1.2 | 1.7 | 0.3 | 0.4 | 0.4 | - | - | 0.3 | - | - | - |
| 20-39 oc casions | - | - | 1.2 | - | - | - | - | - | - | 0.4 | 0.8 | 1.2 | 0.1 | 0.3 | 0.5 | - | - | 0.3 | - | - | - |
| 40 ormore | - | - | 1.6 | - | - | - | - | - | - | 0.5 | 1.0 | 2.0 | 0.1 | 0.7 | 1.1 | - | - | 0.5 | - | - | - |
| Annual Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No occasions | - | - | 90.5 | 98.3 | 96.5 | 95.0 | 97.5 | 93.9 | 90.7 | 95.1 | 91.5 | 90.0 | 98.5 | 97.0 | 96.6 | - | - | 97.9 | 97.5 | 96.7 | 94.9 |
| 1-2 occasions | - | - | 3.7 | 0.8 | 1.8 | 2.3 | 1.1 | 2.9 | 3.8 | 2.8 | 4.2 | 4.2 | 0.9 | 1.4 | 1.2 | - | - | 0.9 | 1.3 | 1.6 | 2.1 |
| 3-5 occasions | - | - | 2.2 | 0.3 | 0.6 | 0.9 | 0.7 | 1.3 | 2.1 | 1.0 | 1.8 | 2.0 | 0.3 | 0.5 | 0.6 | - | - | 0.5 | 0.4 | 0.6 | 1.2 |
| 6-9 occasions | - | - | 1.3 | 0.2 | 0.4 | 0.6 | 0.1 | 0.7 | 1.2 | 0.4 | 1.0 | 1.4 | 0.2 | 0.4 | 0.4 | - | - | 0.2 | 0.2 | 0.5 | 0.6 |
| 10-19 oc casions | - | - | 1.2 | 0.1 | 0.3 | 0.4 | 0.2 | 0.5 | 1.1 | 0.3 | 0.9 | 0.9 | 0.1 | 0.2 | 0.4 | - | - | 0.2 | 0.1 | 0.2 | 0.5 |
| 20-39 occasions | - | - | 0.6 | 0.1 | 0.2 | 0.3 | 0.1 | 0.3 | 0.6 | 0.2 | 0.3 | 0.8 | 0.0 | 0.3 | 0.4 | - | - | 0.1 | 0.1 | 0.1 | 0.1 |
| 40 ormore | - | - | 0.6 | 0.4 | 0.3 | 0.5 | 0.3 | 0.5 | 0.6 | 0.2 | 0.4 | 0.7 | * | 0.2 | 0.4 | - | - | 0.2 | 0.5 | 0.4 | 0.6 |
| 30-Day Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No occasions | - | - | 95.7 | - | - | - | - | - | - | 97.7 | 96.0 | 95.4 | 99.4 | 98.7 | 98.6 | - | - | 99.2 | - | - | - |
| 1-2 occasions | - | - | 2.3 | - | - | - | - | - | - | 1.5 | 2.3 | 2.5 | 0.4 | 0.7 | 0.5 | - | - | 0.5 | - | - | - |
| 3-5 occasions | - | - | 1.0 | - | - | - | - | - | - | 0.4 | 0.9 | 0.9 | 0.2 | 0.2 | 0.3 | - | - | 0.2 | - | - | - |
| 6-9 occasions | - | - | 0.5 | - | - | - | - | - | - | 0.2 | 0.4 | 0.6 | 0.0 | 0.2 | 0.1 | - | - | 0.1 | - | - | - |
| 10-19 oc casions | - | - | 0.3 | - | - | - | - | - | - | 0.1 | 0.3 | 0.4 | * | 0.1 | 0.3 | - | - | 0.1 | - | - | - |
| 20-39 oc casions | - | - | 0.1 | - | - | - | - | - | - | * | 0.1 | 0.3 | * | 0.1 | 0.1 | - | - | 0.0 | - | - | - |
| 40 or more | - | - | 0.1 | - | - | - | - | - | - | * | 0.1 | 0.1 | * | * | 0.1 | - | - | 0.1 | - | - | - |

NOTES: '—' indic ates data not available. '*' indic ates less than .05 percent but greater than 0 percent.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 8$ th and 10th grades only: Data based on one of four forms
${ }^{b}$ 12th grade only: Data based on two of six forms.
${ }^{c}$ Based on the data from the revised question, which attempts to exclude the inappropriate reporting of nonprescription stimulants.
${ }^{\text {d }}$ Only drug use not under a doctor'sorders is included here.

## TABLE 4-4a (cont'd)

Frequency of Use of Various Drugs: Lifetime, Annual, and Thirty-Day Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages)

|  | Sedatives <br> Barbiturates) ${ }^{a}$ |  |  | Methaqualone ${ }^{\text {a,b }}$ |  |  | Tranquilizers ${ }^{\text {a }}$ |  |  | Rohypnol ${ }^{\text {c,d }}$ |  |  | $\mathrm{GHB}^{\text {b, }}$ |  |  | Keta mine ${ }^{\text {c,e }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Approx. $N=$ | - | - | 14600 | - | - | 2400 | 17000 | 16400 | 14600 | 2800 | 2700 | 4900 | 5700 | 5500 | 2400 | 5700 | 5500 | 7300 |

Lifetime Frequency

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No occasions | - | - | 90.2 | - | - | 98.7 | 96.0 | 92.7 | 89.4 | 99.1 | 98.8 | - | - | - | - | - | - | - |
| 1-2 occasions | - | - | 3.9 | - | - | 0.4 | 2.2 | 3.6 | 4.5 | 0.5 | 0.8 | - | - | - | - | - | - | - |
| 3-5 occasions | - | - | 1.9 | - | - | 0.4 | 0.7 | 1.5 | 1.9 | 0.1 | 0.1 | - | - | - | - | - | - | - |
| 6-9 occasions | - | - | 1.2 | - | - | 0.2 | 0.4 | 0.7 | 1.1 | 0.1 | 0.1 | - | - | - | - | - | - | - |
| 10-19 occasions | - | - | 1.1 | - | - | 0.1 | 0.3 | 0.7 | 1.1 | 0.1 | $*$ | - | - | - | - | - | - | - |
| 20-39 occasions | - | - | 0.7 | - | - | 0.1 | 0.1 | 0.4 | 0.8 | $*$ | 0.0 | - | - | - | - | - | - | - |
| 40 or more | - | - | 1.0 | - | - | 0.2 | 0.3 | 0.5 | 1.1 | 0.1 | 0.1 | - | - | - | - | - | - | - |
| Annual Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No occasions | - | - | 93.5 | - | - | 99.2 | 97.5 | 94.9 | 92.7 | 99.4 | 99.3 | 98.4 | 99.3 | 99.2 | 98.0 | 99.1 | 98.7 | 98.1 |
| 1-2 occasions | - | - | 2.9 | - | - | 0.2 | 1.5 | 2.6 | 3.6 | 0.4 | 0.5 | 0.6 | 0.4 | 0.2 | 0.8 | 0.4 | 0.6 | 0.8 |
| 3-5 occasions | - | - | 1.5 | - | - | 0.2 | 0.4 | 1.0 | 1.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 |
| 6-9 occasions | - | - | 0.8 | - | - | 0.2 | 0.2 | 0.6 | 0.9 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.3 | $*$ | 0.2 | 0.3 |
| 10-19 occasions | - | - | 0.6 | - | - | 0.1 | 0.2 | 0.5 | 0.8 | 0.1 | $*$ | 0.1 | $*$ | $*$ | $*$ | $*$ | 0.1 | 0.1 |
| 20-39 occasions | - | - | 0.4 | - | - | 0.1 | 0.1 | 0.2 | 0.3 | 0.0 | 0.0 | 0.1 | $*$ | $*$ | $*$ | $*$ | $*$ | 0.1 |
| 40 or more | - | - | 0.4 | - | - | 0.1 | 0.1 | 0.2 | 0.5 | $*$ | $*$ | 0.3 | 0.2 | 0.2 | 0.7 | 0.2 | 0.2 | 0.4 |

30-Day Frequency

| No occasions | - | - | 97.1 | - | - | 99.5 | 98.8 | 97.7 | 96.9 | 99.8 | 99.7 | - | - | - | - | - | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1-2 occasions | - | - | 1.6 | - | - | 0.3 | 0.7 | 1.3 | 1.7 | 0.2 | 0.2 | - | - | - | - | - | - | - |
| 3-5 occasions | - | - | 0.6 | - | - | 0.1 | 0.2 | 0.5 | 0.6 | 0.1 | $*$ | - | - | - | - | - | - | - |
| 6-9 occasions | - | - | 0.3 | - | - | 0.1 | 0.2 | 0.3 | 0.4 | $*$ | $*$ | - | - | - | - | - | - | - |
| $10-19$ occasions | - | - | 0.3 | - | - | $*$ | 0.1 | 0.1 | 0.3 | 0.0 | 0.0 | - | - | - | - | - | - | - |
| 20-39 occasions | - | - | 0.1 | - | - | 0.1 | $*$ | 0.1 | 0.1 | 0.0 | 0.0 | - | - | - | - | - | - | - |
| 40 or more | - | - | $*$ | - | - | 0.0 | $*$ | $*$ | 0.1 | 0.0 | $*$ | - | - | - | - | - | - | - |

NOTES: '-' indicates data not available. '*' indic ates less than .05 percent but greater than 0 percent.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Only drug use not under a doctor'sorders is included here.
${ }^{b}$ 12th grade only: Data based on one of six forms.
${ }^{\text {c }}$ 8th and 10th grades only: Data based on one of four forms.
${ }^{d}$ 12th grade only: Data based on two of six forms.
${ }^{e} 12$ th grade only: Data based on three of six forms.

TABLE 4-4a (cont'd)

## Frequency of Use of Various Drugs: Lifetime, Annual, and Thirty-Day <br> Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

|  | Alcohol |  |  | Flavored Alcoholic Beverages ${ }^{\text {a,b }}$ |  |  | Been Drunk ${ }^{\text {c }}$ |  |  | Bidis ${ }^{\text {a,c }}$ c |  |  | Kreteks ${ }^{\text {a,c }}$ |  |  | Steroids ${ }^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Approx. $\mathrm{N}=$ | 17000 | 16400 | 14600 | 5700 | 5500 | 2400 | 17000 | 16400 | 4900 | 5700 | 5500 | 4900 | 5700 | 5500 | 4900 | 17000 | 16400 | 4900 |
| Lifetime Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nooccasions | 56.1 | 35.8 | 23.2 | 62.1 | 41.4 | 29.0 | 80.1 | 57.7 | 39.7 | - | - | - | - | - | - | 98.1 | 97.6 | 96.6 |
| 1-2 occasions | 12.1 | 11.0 | 8.3 | 11.8 | 14.6 | 13.6 | 10.7 | 15.3 | 13.2 | - | - | - | - | - | - | 1.2 | 1.3 | 1.4 |
| 3 -5 occasions | 9.9 | 12.0 | 10.8 | 9.6 | 12.6 | 12.0 | 3.7 | 8.7 | 10.6 | - | - | - | - | - | - | 0.3 | 0.3 | 0.3 |
| 6-9 occasions | 7.4 | 10.1 | 9.9 | 6.3 | 9.4 | 10.0 | 2.2 | 5.7 | 7.1 | - | - | - | - | - | - | 0.2 | 0.2 | 0.5 |
| 10-19 occasions | 6.0 | 11.3 | 12.5 | 4.0 | 9.1 | 12.4 | 1.5 | 5.2 | 8.2 | - | - | - | - | - | - | 0.1 | 0.1 | 0.2 |
| 20-39 oc casions | 4.1 | 8.0 | 11.4 | 2.8 | 6.0 | 10.5 | 0.9 | 3.5 | 7.9 | - | - | - | - | - | - | * | 0.1 | 0.2 |
| 40 or more | 4.4 | 11.9 | 24.0 | 3.5 | 6.8 | 12.6 | 0.9 | 3.9 | 13.4 | - | - | - | - | - | - | 0.1 | 0.3 | 0.8 |
| Annual Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nooccasions | 63.3 | 41.8 | 29.4 | 69.6 | 50.3 | 44.2 | 85.5 | 64.9 | 48.2 | 98.3 | 97.9 | 96.4 | 98.1 | 96.3 | 93.5 | 98.9 | 98.5 | 97.5 |
| 1-2 occasions | 17.0 | 18.2 | 16.4 | 14.1 | 18.6 | 16.2 | 9.2 | 16.1 | 16.3 | 1.1 | 1.1 | 1.9 | 1.1 | 1.9 | 3.0 | 0.7 | 0.8 | 0.9 |
| 3 -5 occasions | 8.9 | 13.0 | 13.6 | 7.6 | 12.1 | 12.8 | 2.7 | 7.6 | 10.1 | 0.2 | 0.4 | 0.7 | 0.3 | 0.6 | 1.4 | 0.2 | 0.3 | 0.3 |
| 6-9 occasions | 4.7 | 10.1 | 10.6 | 3.5 | 8.3 | 8.6 | 1.3 | 4.3 | 7.1 | 0.1 | 0.1 | 0.3 | 0.2 | 0.3 | 0.7 | 0.1 | 0.2 | 0.3 |
| 10-19 occasions | 3.0 | 8.3 | 12.5 | 2.7 | 5.7 | 10.0 | 0.8 | 3.6 | 7.4 | 0.1 | 0.1 | 0.2 | 0.1 | 0.3 | 0.5 | * | 0.2 | 0.5 |
| 20-39 occasions | 1.5 | 4.6 | 7.9 | 1.2 | 2.6 | 4.8 | 0.4 | 1.9 | 5.6 | * | 0.1 | 0.2 | * | 0.2 | 0.3 | 0.1 | 0.1 | 0.2 |
| 40 ormore | 1.4 | 4.0 | 9.6 | 1.3 | 2.5 | 3.6 | 0.3 | 1.6 | 5.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.6 | 0.1 | 0.1 | 0.3 |
| 30-Day Frequency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No occasions | 81.4 | 64.8 | 52.0 | 85.4 | 74.9 | 68.9 | 93.8 | 81.5 | 67.5 | - | - | - | - | - | - | 99.5 | 99.2 | 98.4 |
| 1-2 occasions | 11.7 | 18.5 | 20.7 | 8.3 | 13.8 | 16.4 | 4.4 | 11.5 | 15.7 | - | - | - | - | - | - | 0.3 | 0.4 | 0.6 |
| 3-5 occasions | 3.7 | 8.5 | 12.2 | 3.3 | 6.1 | 8.6 | 1.0 | 3.9 | 7.8 | - | - | - | - | - | - | 0.1 | 0.2 | 0.2 |
| 6 -9 occasions | 1.5 | 4.3 | 7.7 | 1.4 | 2.7 | 3.4 | 0.4 | 1.8 | 4.6 | - | - | - | - | - | - | 0.1 | 0.1 | 0.2 |
| 10-19 occasions | 1.1 | 2.6 | 4.7 | 0.7 | 1.4 | 1.5 | 0.2 | 0.9 | 2.6 | - | - | - | - | - | - | * | 0.1 | 0.3 |
| 20-39 occasions | 0.2 | 0.7 | 1.2 | 0.3 | 0.5 | 0.3 | 0.1 | 0.2 | 0.8 | - | - | - | - | - | - | * | 0.1 | 0.1 |
| 40 or more | 0.4 | 0.6 | 1.6 | 0.5 | 0.6 | 0.9 | 0.1 | 0.2 | 1.0 | - | - | - | - | - | - | * | * | 0.3 |

NOTES: ' -' indic ates data not available. '*' indic ates less than .05 percent but greater than 0 percent.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 8$ th and 10th grades only: Data based on one of four forms.
${ }^{\mathrm{b}}$ 12th grade only: Data based on one of six forms.
${ }^{c} 12$ th grade only: Data based on two of six forms.

## TABLE 4-4b <br> Frequency of Occasions of Heavy Drinking and Cigarette and Smokeless Tobacco Use for Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

|  | Percentage who used |  |  |
| :---: | :---: | :---: | :---: |
|  | 8th Grade | 10th Grade | 12th Grade |
| Think back over the LAST TWO WEEKS. How many times have you had five or more drinks in a row? |  |  |  |
|  |  |  |  |
| None | 88.6 | 78.0 | 70.8 |
| Once | 5.0 | 8.3 | 10.4 |
| Twice | 3.2 | 5.8 | 7.8 |
| 3 to 5 times | 2.1 | 4.9 | 7.6 |
| 6 to 9 times | 0.6 | 1.6 | 2.1 |
| 10 or more times | 0.6 | 1.4 | 1.3 |
| Approx. $N=$ | 17,000 | 16,400 | 14,600 |
| Have you ever smoked cigarettes? |  |  |  |
| Never | 72.1 | 59.3 | 47.2 |
| Once ortwice | 16.6 | 20.4 | 22.1 |
| Occasionally but not regularly | 5.2 | 9.5 | 12.3 |
| Regularly in the past | 3.0 | 4.5 | 5.7 |
| Regularly now | 3.1 | 6.3 | 12.7 |
| Approx. $\mathrm{N}=$ | 17,000 | 16,400 | 14,600 |

How frequently have you smoked cigarettes
during the past 30 days?

| Not at all (includes "never" category from question above) | 90.8 | 84.0 | 75.0 |
| :---: | :---: | :---: | :---: |
| Less than one cigarette perday | 4.8 | 7.7 | 9.5 |
| One to five cigarettesperday | 2.7 | 5.0 | 7.5 |
| About one-half pack perday | 1.0 | 1.9 | 4.7 |
| About one packperday | 0.3 | 0.8 | 2.4 |
| About one and one-half packsperday | 0.2 | 0.3 | 0.6 |
| Two packsormore perday | 0.3 | 0.3 | 0.4 |
| Approx. $\mathrm{N}=$ | 17,000 | 16,400 | 14,600 |

Have you ever taken or used smokeless tobacco
(snuff, plug, dipping tobacco, chewing tobacco)?

| Never | 89.0 | 86.2 | 83.3 |
| :--- | ---: | ---: | ---: |
| Once ortwice | 6.9 | 8.1 | 9.4 |
| Occasionally but not regularly | 1.9 | 2.9 | 3.1 |
| Regularly in the past | 0.9 | 1.1 | 1.3 |
| Regularly now |  | 1.4 | 1.7 |
|  | Approx. $N=$ | 8,500 | 8,200 |

How frequently have you taken smokeless
tobacco during the past 30 days?

| Not at all (includes "never" category from question above) | 95.9 | 95.1 | 93.3 |
| :--- | ---: | ---: | ---: |
| Once or twice | 2.0 | 2.0 | 2.6 |
| Once ortwice per week | 0.6 | 0.7 | 0.9 |
| Three to five times per week | 0.4 | 0.6 | 0.5 |
| About once a day | 0.3 | 0.4 | 0.7 |
| More than once a day |  | 0.8 | 1.2 |
|  | Approx. $N=$ | 8,500 | 8,200 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.

## TABLE 4-5

## Lifetime Prevalence of Use of Various Drugs by Subgroups

 Eighth, Tenth, and Twelfth Graders, 2004(Entries are percentages)

|  |  |  |  |  |  |  | Any | it Drug | Other |  |  |  |  |  |  |  | yl/Bu |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | pprox. ${ }^{\text {N }}$ |  |  | Illic it |  |  | Mariju | na |  | arijuan |  |  | halants |  |  | Sitnite |  |  | cinog | ns ${ }^{\text {c }}$ |
| Grade: | 8th | 10th | 12th |
| Total | 17,000 | 16,400 | 14,600 | 21.5 | 39.8 | 51.1 | 12.2 | 18.8 | 28.7 | 16.3 | 35.1 | 45.7 | 17.3 | 12.4 | 10.9 | - | - | 1.3 | 3.5 | 6.4 | 9.7 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8,100 | 7,900 | 6,800 | 21.6 | 41.0 | 52.8 | 10.7 | 17.8 | 29.0 | 17.6 | 37.2 | 48.5 | 16.7 | 12.2 | 12.0 | - | - | 1.7 | 3.6 | 7.4 | 12.2 |
| Female | 8,500 | 8,300 | 7,200 | 21.2 | 38.5 | 49.0 | 13.6 | 19.8 | 27.7 | 14.9 | 32.8 | 42.6 | 18.0 | 12.8 | 9.7 | - | - | 0.9 | 3.3 | 5.5 | 6.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 1,600 | 1,900 | 2,800 | 43.3 | 57.3 | 59.1 | 26.1 | 33.1 | 36.6 | 36.9 | 51.7 | 52.6 | 28.1 | 20.5 | 14.6 | - | - | 3.0 | 11.7 | 14.4 | 12.7 |
| Complete 4 years | 15,000 | 14,300 | 11,000 | 19.1 | 37.3 | 48.5 | 10.8 | 16.9 | 26.0 | 14.1 | 32.8 | 43.5 | 16.3 | 11.3 | 9.9 | - | - | 0.9 | 2.6 | 5.3 | 8.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3,200 | 3,600 | 3,100 | 18.4 | 40.3 | 55.3 | 9.7 | 18.3 | 28.5 | 13.6 | 36.0 | 51.2 | 17.1 | 12.8 | 10.2 | - | - | 1.7 | 2.8 | 6.9 | 11.1 |
| North Central | 4,000 | 4,600 | 3,800 | 20.2 | 36.7 | 50.7 | 11.7 | 16.9 | 27.2 | 15.4 | 32.1 | 45.6 | 17.0 | 11.5 | 10.1 | - | - | 0.8 | 3.5 | 5.7 | 8.3 |
| South | 6,300 | 4,900 | 5,000 | 23.6 | 42.5 | 48.3 | 13.4 | 20.7 | 28.8 | 18.0 | 37.4 | 42.0 | 17.4 | 12.1 | 11.6 | - | - | 1.0 | 3.6 | 6.2 | 9.1 |
| West | 3,500 | 3,300 | 2,700 | 21.9 | 39.5 | 52.0 | 12.9 | 19.5 | 30.7 | 16.8 | 34.8 | 46.5 | 17.7 | 13.8 | 11.5 | - | - | 2.2 | 3.9 | 7.3 | 11.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5,000 | 5,000 | 4,200 | 19.6 | 38.0 | 48.0 | 10.7 | 15.2 | 25.5 | 15.0 | 33.6 | 42.8 | 16.0 | 11.4 | 11.0 | - | - | 1.3 | 2.8 | 4.5 | 9.4 |
| Other MSA | 7,900 | 7,800 | 6,800 | 22.1 | 40.1 | 54.2 | 12.9 | 20.2 | 30.4 | 16.9 | 35.1 | 49.3 | 18.1 | 12.6 | 10.3 | - | - | 1.3 | 3.9 | 7.8 | 11.1 |
| Non-MSA | 4,100 | 3,600 | 3,600 | 22.5 | 41.6 | 48.8 | 12.8 | 20.9 | 29.1 | 16.7 | 37.0 | 42.2 | 17.5 | 13.6 | 12.0 | - | - | 1.3 | 3.6 | 6.3 | 7.5 |
| Parental Education: ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,200 | 1,300 | 1,000 | 34.1 | 50.4 | 51.3 | 22.8 | 23.5 | 30.1 | 25.7 | 45.6 | 43.1 | 23.4 | 13.8 | 13.1 | - | - | 4.2 | 7.3 | 6.7 | 8.2 |
| 2.5-3.0 | 3,400 | 3,400 | 3,400 | 27.0 | 44.7 | 52.7 | 13.9 | 21.7 | 29.7 | 21.7 | 40.3 | 47.3 | 19.1 | 13.8 | 12.4 | - | - | 1.8 | 4.1 | 7.8 | 9.7 |
| 3.5-4.0 | 4,000 | 4,200 | 4,000 | 22.7 | 43.0 | 54.4 | 12.8 | 20.6 | 30.9 | 17.0 | 37.6 | 49.0 | 19.1 | 12.7 | 11.2 | - | - | 1.5 | 3.2 | 6.4 | 10.2 |
| 4.5-5.0 | 4,300 | 4,300 | 3,600 | 17.3 | 34.7 | 48.2 | 10.2 | 16.2 | 26.9 | 12.7 | 30.0 | 43.3 | 16.0 | 12.1 | 9.9 | - | - | 0.2 | 2.9 | 5.4 | 9.7 |
| 5.5-6.0 (High) | 2,500 | 2,400 | 2,000 | 15.5 | 32.0 | 47.5 | 9.1 | 14.8 | 24.5 | 10.5 | 27.5 | 42.8 | 13.1 | 10.3 | 9.4 | - | - | 0.6 | 2.3 | 6.0 | 9.0 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Subgroup Ns may vary depending on the number of forms in which the use of each drug was asked about.
${ }^{\mathrm{b}} 12$ th grade only: Data based on three of six forms; N is one-half of N indicated.
${ }^{c}$ Unadjusted for known undereporting of certain drugs. See text for details.
${ }^{d} 12$ th grade only: Data based on one of six forms; $N$ is one-sixth of $N$ indic ated.
${ }^{e}$ Parental education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high school,
(3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-5 (cont'd)

## Lifetime Prevalence of Use of Various Drugs by Subgroups Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

|  |  | LSD |  | Halluc inogens Other than LSD |  |  | PCP ${ }^{\text {a }}$ |  |  | MDMA $^{\text {b,c }}$ |  |  | Cocaine |  |  | Crack |  |  | OtherCocaine ${ }^{\text {d }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 1.8 | 2.8 | 4.6 | 3.0 | 5.8 | 8.7 | - | - | 1.6 | 2.8 | 4.3 | 7.5 | 3.4 | 5.4 | 8.1 | 2.4 | 2.6 | 3.9 | 2.6 | 4.8 | 7.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.8 | 3.2 | 5.8 | 3.0 | 6.8 | 11.3 | - | - | 2.3 | 2.5 | 4.2 | 8.2 | 3.1 | 5.4 | 9.4 | 2.3 | 2.7 | 4.2 | 2.3 | 4.8 | 8.5 |
| Female | 1.7 | 2.4 | 3.2 | 2.8 | 4.9 | 5.9 | - | - | 0.8 | 3.2 | 4.4 | 6.7 | 3.7 | 5.3 | 6.8 | 2.5 | 2.5 | 3.5 | 2.8 | 4.7 | 6.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 6.9 | 7.5 | 6.8 | 10.4 | 12.9 | 11.5 | - | - | 2.6 | 8.3 | 8.7 | 10.5 | 10.4 | 13.1 | 13.0 | 8.1 | 6.9 | 7.0 | 8.2 | 11.6 | 10.9 |
| Complete 4 years | 1.2 | 2.1 | 3.7 | 2.2 | 4.9 | 7.6 | - | - | 1.4 | 2.2 | 3.7 | 6.6 | 2.6 | 4.3 | 6.6 | 1.8 | 2.0 | 2.9 | 1.9 | 3.8 | 6.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.5 | 2.8 | 4.6 | 2.3 | 6.3 | 10.1 | - | - | 2.7 | 2.9 | 3.6 | 7.9 | 2.9 | 4.6 | 7.4 | 2.0 | 2.0 | 3.3 | 2.2 | 4.2 | 6.2 |
| North Central | 1.6 | 2.4 | 3.7 | 3.0 | 5.2 | 7.5 | - | - | 2.0 | 2.2 | 3.5 | 5.4 | 3.0 | 4.4 | 6.6 | 2.2 | 2.3 | 3.4 | 2.0 | 3.9 | 6.4 |
| South | 1.9 | 2.7 | 5.1 | 3.1 | 5.5 | 8.0 | - | - | 1.1 | 3.4 | 4.7 | 8.7 | 3.6 | 5.4 | 8.4 | 2.3 | 2.3 | 3.7 | 3.0 | 4.8 | 8.1 |
| West | 2.0 | 3.5 | 5.0 | 3.3 | 6.6 | 10.2 | - | - | 1.0 | 2.6 | 5.6 | 7.7 | 3.9 | 7.6 | 10.7 | 2.9 | 4.3 | 5.4 | 2.8 | 6.5 | 8.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.6 | 1.8 | 4.7 | 2.2 | 4.1 | 8.4 | - | - | 2.1 | 3.0 | 3.3 | 8.5 | 3.3 | 4.8 | 8.0 | 2.5 | 2.4 | 3.6 | 2.4 | 4.2 | 6.9 |
| Other MSA | 2.0 | 3.4 | 5.0 | 3.3 | 6.9 | 9.8 | - | - | 1.6 | 3.1 | 5.2 | 7.4 | 3.5 | 5.6 | 8.3 | 2.3 | 2.7 | 3.6 | 2.6 | 5.0 | 7.7 |
| Non-MSA | 1.4 | 2.8 | 3.7 | 3.3 | 5.9 | 7.0 | - | - | 1.2 | 2.2 | 3.8 | 6.6 | 3.3 | 5.6 | 8.1 | 2.3 | 2.7 | 4.7 | 2.6 | 5.2 | 7.3 |
| Parental Education: ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 4.1 | 2.8 | 5.1 | 6.2 | 6.1 | 6.8 | - | - | 3.2 | 7.1 | 6.2 | 9.0 | 7.0 | 9.6 | 11.9 | 4.7 | 5.5 | 6.8 | 5.9 | 7.8 | 9.3 |
| 2.5-3.0 | 1.8 | 3.4 | 5.0 | 3.5 | 7.0 | 8.7 | - | - | 1.4 | 3.2 | 5.8 | 9.1 | 4.3 | 6.2 | 8.4 | 3.1 | 2.9 | 5.2 | 3.4 | 5.6 | 6.9 |
| 3.5-4.0 | 1.7 | 2.8 | 4.5 | 2.7 | 5.9 | 9.2 | - | - | 1.6 | 2.8 | 3.7 | 8.0 | 3.3 | 5.6 | 8.1 | 2.4 | 2.6 | 3.4 | 2.3 | 5.1 | 7.7 |
| 4.5-5.0 | 1.6 | 2.4 | 4.3 | 2.4 | 4.9 | 9.0 | - | - | 1.6 | 2.5 | 3.7 | 6.1 | 2.7 | 4.1 | 7.4 | 1.7 | 1.9 | 2.8 | 2.0 | 3.8 | 7.1 |
| 5.5-6.0 (High) | 1.1 | 2.3 | 3.8 | 2.0 | 5.3 | 8.2 | - | - | 1.2 | 2.2 | 3.2 | 5.6 | 1.9 | 3.0 | 6.8 | 1.5 | 1.5 | 2.5 | 1.3 | 2.6 | 6.2 |

-' indicates data not available.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 12$ th grade only: Data based on one of six forms; N is one-sixth of N indicated.
${ }^{b} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{\text {c }} 8$ th and 10th grades only: Data based on two of four forms; N is one-half of N indicated.
${ }^{d} 12$ th grade only: Data based on four of six forms; N is four-sixths of N indic ated.
${ }^{\text {e }}$ Parental education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high school,
(3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-5 (cont'd)

## Lifetime Prevalence of Use of Various Drugs by Subgroups

 Eighth, Tenth, and Twelfth Graders, 2004(Entries are percentages)

|  | Heroin <br> Any Use |  |  | Heroin with a Needle ${ }^{\text {a }}$ |  |  | Heroin without <br> a Needle ${ }^{\text {a }}$ |  |  | Other <br> Narcotics ${ }^{\text {b }}$ |  |  | Amphetamines ${ }^{\text {b }}$ |  |  | Methamphetamine ${ }^{\mathrm{c}, \mathrm{d}}$ |  |  | Crystal Meth.$(\text { (lce })^{d}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 1.6 | 1.5 | 1.5 | 1.1 | 0.8 | 0.7 | 1.0 | 1.1 | 1.4 | - | - | 13.5 | 7.5 | 11.9 | 15.0 | 2.5 | 5.3 | 6.2 | - | - | 4.0 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.4 | 1.6 | 2.0 | 1.0 | 0.9 | 1.1 | 0.9 | 1.2 | 1.8 | - | - | 15.1 | 5.8 | 10.4 | 14.1 | 2.0 | 4.7 | 6.6 | - | - | 4.1 |
| Female | 1.8 | 1.4 | 1.0 | 1.2 | 0.7 | 0.3 | 1.1 | 1.0 | 1.0 | - | - | 11.9 | 9.2 | 13.4 | 15.5 | 2.7 | 5.8 | 5.7 | - | - | 3.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 6.2 | 4.6 | 2.6 | 4.4 | 2.6 | 1.5 | 4.1 | 3.0 | 2.5 | - | - | 17.1 | 13.7 | 19.5 | 20.5 | 10.1 | 11.7 | 10.9 | - | - | 6.4 |
| Complete 4 years | 1.1 | 1.1 | 1.1 | 0.8 | 0.5 | 0.4 | 0.7 | 0.8 | 1.1 | - | - | 12.3 | 6.9 | 10.9 | 13.3 | 1.7 | 4.4 | 4.7 | - | - | 3.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.6 | 1.6 | 1.3 | 1.1 | 0.7 | 0.8 | 0.8 | 1.2 | 1.7 | - | - | 13.9 | 4.8 | 11.3 | 14.8 | 2.3 | 4.8 | 3.6 | - | - | 1.7 |
| North Central | 1.5 | 1.2 | 1.3 | 1.1 | 0.7 | 0.4 | 0.9 | 0.9 | 0.9 | - | - | 13.0 | 7.5 | 11.3 | 16.1 | 2.9 | 3.7 | 5.7 | - | - | 3.4 |
| South | 1.5 | 1.5 | 1.8 | 1.0 | 0.7 | 0.8 | 1.1 | 1.1 | 1.6 | - | - | 12.8 | 8.5 | 13.9 | 14.9 | 2.4 | 5.4 | 7.1 | - | - | 4.8 |
| West | 1.9 | 1.8 | 1.5 | 1.3 | 1.2 | 0.7 | 1.2 | 1.2 | 1.7 | - | - | 14.9 | 8.1 | 10.5 | 13.7 | 2.5 | 7.8 | 8.1 | - | - | 6.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.7 | 1.5 | 1.4 | 1.3 | 0.8 | 0.8 | 1.1 | 1.0 | 1.5 | - | - | 12.0 | 6.2 | 8.8 | 12.0 | 2.1 | 4.4 | 5.8 | - | - | 4.2 |
| Other MSA | 1.7 | 1.5 | 1.6 | 1.1 | 0.9 | 0.7 | 1.1 | 1.1 | 1.6 | - | - | 14.6 | 8.1 | 12.9 | 15.6 | 2.8 | 5.8 | 5.4 | - | - | 3.6 |
| Non-MSA | 1.3 | 1.4 | 1.4 | 0.8 | 0.6 | 0.5 | 0.8 | 1.1 | 1.1 | - | - | 13.1 | 8.0 | 14.3 | 17.1 | 2.4 | 5.4 | 8.0 | - | - | 4.6 |
| Parental Education: ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 3.7 | 2.6 | 2.6 | 2.7 | 1.9 | 0.7 | 2.4 | 1.8 | 2.4 | - | - | 11.0 | 13.8 | 13.1 | 11.9 | 5.5 | 9.5 | 8.4 | - | - | 6.9 |
| 2.5-3.0 | 1.7 | 1.7 | 1.6 | 1.2 | 0.8 | 0.9 | 1.1 | 1.2 | 1.7 | - | - | 13.3 | 8.6 | 13.8 | 16.6 | 2.8 | 6.0 | 7.3 | - | - | 5.9 |
| 3.5-4.0 | 1.7 | 1.5 | 1.2 | 1.3 | 0.7 | 0.5 | 1.0 | 1.2 | 1.3 | - | - | 14.8 | 8.5 | 14.1 | 17.6 | 2.7 | 6.3 | 5.9 | - | - | 3.7 |
| 4.5-5.0 | 1.3 | 1.3 | 1.4 | 0.8 | 0.7 | 0.6 | 0.8 | 0.9 | 1.5 | - | - | 14.0 | 6.5 | 10.4 | 13.1 | 1.6 | 3.4 | 5.3 | - | - | 2.3 |
| 5.5-6.0 (High) | 0.9 | 0.9 | 1.4 | 0.6 | 0.5 | 0.8 | 0.6 | 0.7 | 0.9 | - | - | 12.3 | 5.1 | 9.1 | 12.6 | 1.7 | 3.0 | 5.6 | - | - | 2.0 |

-' indicates data not available.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 12$ th grade only: Data based on three of six forms; N is one-half of N indicated.
${ }^{\text {b }}$ Only drug use not undera doctor's orders is included here.
${ }^{\text {c }} 8$ th and 10th grades only: Data based on one of four forms; N is one-third of N indicated.
${ }^{d} 12$ th grade only: Data based on two of six forms; $N$ is two-sixths of $N$ indic ated.
${ }^{\text {e Parental }}$ education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high school,
(3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-5 (cont'd)

Lifetime Prevalence of Use of Various Drugs by Subgroups
Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages)

|  | Sedatives (Barbiturates) ${ }^{\text {a }}$ |  |  | Methaqualone ${ }^{\text {a,b }}$ |  |  | Tranquilizers ${ }^{\text {a }}$ |  |  | Rohypnol ${ }^{\text {c }}$ |  |  |  | Alcohol |  | Flavored Alcoholic Beverages ${ }^{\text {b,d }}$ |  |  | Been Drunk ${ }^{\text {e }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | - | - | 9.9 | - | - | 1.3 | 4.0 | 7.3 | 10.6 | 1.0 | 1.2 | - | 43.9 | 64.2 | 76.8 | 37.9 | 58.6 | 71.0 | 19.9 | 42.3 | 60.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | 10.4 | - | - | 1.8 | 3.1 | 6.9 | 11.2 | 0.8 | 1.1 | - | 43.1 | 63.3 | 76.3 | 33.0 | 56.8 | 67.7 | 19.2 | 41.9 | 60.1 |
| Female | - | - | 9.2 | - | - | 0.8 | 4.8 | 7.7 | 9.8 | 1.1 | 1.3 | - | 44.5 | 64.9 | 77.2 | 42.1 | 59.8 | 73.6 | 20.5 | 42.4 | 59.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | 13.3 | - | - | 1.7 | 9.3 | 13.0 | 13.3 | 4.4 | 2.5 | - | 60.4 | 75.8 | 81.2 | 53.5 | 72.2 | 76.6 | 36.4 | 55.7 | 64.0 |
| Complete 4 years | - | - | 8.9 | - | - | 0.9 | 3.4 | 6.5 | 9.9 | 0.6 | 1.0 | - | 42.3 | 62.7 | 75.6 | 36.4 | 56.6 | 69.9 | 18.4 | 40.6 | 58.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | 8.1 | - | - | 1.6 | 3.0 | 7.7 | 9.1 | 0.3 | 1.2 | - | 43.5 | 68.2 | 81.7 | 36.3 | 61.3 | 76.0 | 18.5 | 47.2 | 65.7 |
| North Central | - | - | 9.2 | - | - | 1.1 | 3.0 | 5.1 | 9.0 | 1.3 | 0.7 | - | 46.5 | 60.4 | 77.0 | 42.8 | 55.5 | 73.7 | 20.9 | 38.3 | 63.5 |
| South | - | - | 11.5 | - | - | 1.4 | 5.2 | 9.6 | 12.6 | 1.2 | 1.4 | - | 45.6 | 66.6 | 73.6 | 39.7 | 59.6 | 67.3 | 20.8 | 44.8 | 55.3 |
| West | - | - | 9.7 | - | - | 1.0 | 3.6 | 6.6 | 10.8 | 0.8 | 1.6 | - | 38.2 | 61.7 | 76.5 | 30.7 | 58.3 | 68.8 | 18.6 | 38.6 | 58.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | 8.5 | - | - | 1.3 | 3.0 | 5.1 | 8.4 | 0.6 | 1.0 | - | 41.8 | 63.1 | 74.7 | 34.8 | 57.9 | 70.4 | 18.2 | 37.9 | 56.3 |
| Other MSA | - | - | 10.4 | - | - | 1.6 | 4.7 | 8.0 | 11.9 | 1.1 | 1.2 | - | 45.0 | 64.3 | 78.1 | 38.5 | 57.9 | 71.9 | 20.2 | 43.0 | 62.9 |
| Non-MSA | - | - | 10.4 | - | - | 0.8 | 3.8 | 9.0 | 10.6 | 1.2 | 1.4 | - | 44.3 | 65.6 | 76.6 | 40.6 | 60.9 | 70.2 | 21.6 | 46.7 | 59.7 |
| Parental Education: ${ }^{\text {f }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | 10.0 | - | - | 2.1 | 7.1 | 9.0 | 8.8 | 2.4 | 1.1 | - | 54.7 | 72.4 | 75.7 | 50.3 | 64.2 | 66.3 | 28.8 | 47.3 | 54.1 |
| 2.5-3.0 | - | - | 10.9 | - | - | 1.7 | 4.8 | 8.4 | 11.5 | 1.7 | 0.8 | - | 52.1 | 69.5 | 78.5 | 47.4 | 66.8 | 72.0 | 23.8 | 47.9 | 60.4 |
| 3.5-4.0 | - | - | 11.6 | - | - | 1.0 | 4.5 | 8.4 | 12.6 | 0.3 | 1.8 | - | 47.5 | 66.9 | 80.2 | 42.8 | 60.3 | 74.9 | 21.5 | 44.7 | 63.9 |
| 4.5-5.0 | - | - | 8.3 | - | - | 0.9 | 2.9 | 6.3 | 9.8 | 0.8 | 1.0 | - | 38.8 | 61.3 | 74.3 | 33.3 | 56.4 | 71.2 | 17.8 | 39.4 | 59.0 |
| 5.5-6.0 (High) | - | - | 7.9 | - | - | 0.6 | 2.9 | 5.4 | 8.3 | 0.1 | 1.0 | - | 36.5 | 56.8 | 74.8 | 29.5 | 50.1 | 65.4 | 14.7 | 37.0 | 58.5 |

NOTE: '—' indic ates data not available.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Only drug use not under a doctor's orders is included here.
${ }^{b}$ 12th grade only: Data based on one of six forms; $N$ is one-sixth of $N$ indicated.
${ }^{c}$ 8th and 10th grades only: Data based on one of four forms; $N$ is one-sixth of $N$ indicated.
${ }^{\text {d }} 8$ th and 10th grades only: Data based on one of four forms; N is one-third of N indicated.
${ }^{e}$ 12th grade only: Data based on two of six forms; $N$ is two-sixths of $N$ indicated.
'Parental education is an average score of mother's education and father'seducation reported on the following scale: (1) Completed grade school or less, (2) Some high school,
(3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables

TABLE 4-5 (cont'd)

## Lifetime Prevalence of Use of Various Drugs by Subgroups

 Eighth, Tenth, and Twelfth Graders, 2004(Entries are percentages)

| Grade: | Cigarettes |  |  | Smokeless Tobacco ${ }^{\text {a,b }}$ |  |  | Steroids ${ }^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8th | 10th | 12th | 8th | 10th | 12th | 8th | 10th | 12th |
| Total | 27.9 | 40.7 | 52.8 | 11.0 | 13.8 | 16.7 | 1.9 | 2.4 | 3.4 |
| Gender: |  |  |  |  |  |  |  |  |  |
| Male | 27.4 | 40.4 | 53.4 | 15.3 | 22.2 | 26.9 | 2.3 | 3.5 | 4.4 |
| Female | 27.9 | 40.6 | 51.6 | 6.7 | 5.9 | 7.4 | 1.6 | 1.4 | 2.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 54.6 | 62.6 | 65.5 | 27.7 | 26.3 | 24.2 | 4.9 | 3.9 | 3.3 |
| Complete 4 years | 24.9 | 37.7 | 49.0 | 9.2 | 12.1 | 14.5 | 1.6 | 2.2 | 3.3 |
| Region: |  |  |  |  |  |  |  |  |  |
| Northeast | 22.5 | 39.0 | 53.6 | 6.9 | 13.7 | 10.7 | 1.5 | 2.1 | 4.5 |
| North Central | 30.2 | 38.6 | 54.6 | 10.6 | 11.3 | 18.9 | 1.9 | 1.9 | 3.5 |
| South | 32.3 | 47.1 | 53.7 | 15.5 | 19.6 | 20.4 | 2.2 | 3.1 | 3.0 |
| West | 21.9 | 35.9 | 47.9 | 6.7 | 8.9 | 13.8 | 1.9 | 2.3 | 2.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |
| Large MSA | 23.5 | 35.1 | 48.8 | 5.6 | 9.5 | 11.7 | 1.7 | 1.9 | 3.5 |
| Other MSA | 27.1 | 40.5 | 53.0 | 10.4 | 12.1 | 15.3 | 2.0 | 2.3 | 3.8 |
| Non-MSA | 34.7 | 48.8 | 57.3 | 18.3 | 23.5 | 25.2 | 2.1 | 3.3 | 2.5 |
| Parental Education: ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 44.7 | 52.6 | 56.5 | 16.9 | 13.4 | 14.0 | 3.0 | 2.4 | 5.3 |
| 2.5-3.0 | 36.8 | 49.2 | 57.5 | 14.7 | 16.0 | 20.4 | 2.2 | 3.2 | 3.9 |
| 3.5-4.0 | 29.9 | 43.9 | 56.2 | 11.1 | 15.8 | 14.4 | 1.9 | 2.5 | 3.7 |
| 4.5-5.0 | 21.2 | 33.8 | 48.1 | 9.3 | 11.5 | 19.8 | 1.7 | 2.2 | 2.3 |
| 5.5-6.0 (High) | 16.3 | 28.9 | 43.5 | 6.7 | 12.0 | 13.6 | 1.3 | 1.6 | 3.1 |

## NOTE: '-' indic ates data not available.

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 8$ th and 10th grades only: Data based on two of four forms; N is one-half of N indicated.
${ }^{b}$ 12th grade only: Data based on one of six forms; $N$ is one-sixth of $N$ indicated.
${ }^{c} 12$ th grade only: Data based on two of six forms; $N$ is two-sixths of $N$ indic ated.

(3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-6

## Annual Prevalence of Use of Various Drugs by Subgroups Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

|  | Approx. ${ }^{\text {a }}$ |  |  | Any llicit Drug |  |  | Any lllic it Drug Other Than Manjuana |  |  | Marijuana |  |  | Inhalants ${ }^{\text {b,c }}$ |  |  | Amyl/Butyl Nitrites ${ }^{\text {d }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 17,000 | 16,400 | 14,600 | 15.2 | 31.1 | 38.8 | 7.9 | 13.5 | 20.5 | 11.8 | 27.5 | 34.3 | 9.6 | 5.9 | 4.2 | - | - | 0.8 |
| Gender. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8,100 | 7,900 | 6,800 | 15.0 | 32.0 | 41.4 | 7.0 | 12.7 | 21.5 | 12.3 | 29.0 | 37.4 | 8.8 | 5.8 | 4.8 | - | - | 1.2 |
| Female | 8,500 | 8,300 | 7,200 | 15.2 | 30.2 | 35.9 | 8.8 | 14.2 | 18.7 | 11.2 | 25.8 | 30.8 | 10.5 | 6.1 | 3.4 | - | - | 0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 1,600 | 1,900 | 2,800 | 33.6 | 46.9 | 44.4 | 18.0 | 25.3 | 26.0 | 29.0 | 41.9 | 39.0 | 17.9 | 11.2 | 5.6 | - | - | 1.5 |
| Complete 4 years | 15,000 | 14,300 | 11,000 | 13.2 | 28.9 | 36.8 | 6.9 | 11.9 | 18.4 | 10.0 | 25.4 | 32.6 | 8.7 | 5.2 | 3.8 | - | - | 0.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3,200 | 3,600 | 3,100 | 13.0 | 32.8 | 43.9 | 5.9 | 13.7 | 20.4 | 10.2 | 29.2 | 40.1 | 8.9 | 6.1 | 4.3 | - | - | 1.0 |
| North Central | 4,000 | 4,600 | 3,800 | 14.2 | 28.8 | 38.2 | 7.7 | 12.0 | 19.1 | 10.9 | 25.3 | 34.0 | 9.6 | 5.7 | 3.8 | - | - | 0.5 |
| South | 6,300 | 4,900 | 5,000 | 16.8 | 32.9 | 35.7 | 9.0 | 14.8 | 20.8 | 12.9 | 29.0 | 30.1 | 9.9 | 5.6 | 4.1 | - | - | 0.5 |
| West | 3,500 | 3,300 | 2,700 | 15.5 | 29.8 | 39.6 | 8.2 | 13.5 | 21.9 | 12.3 | 26.4 | 35.6 | 9.6 | 6.6 | 4.6 | - | - | 1.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5,000 | 5,000 | 4,200 | 14.0 | 28.9 | 36.3 | 6.9 | 10.4 | 18.0 | 10.8 | 25.9 | 32.3 | 8.8 | 5.0 | 4.0 | - | - | 0.4 |
| Other MSA | 7,900 | 7,800 | 6,800 | 15.9 | 32.0 | 42.4 | 8.5 | 15.1 | 22.3 | 12.4 | 27.8 | 37.9 | 10.3 | 6.3 | 4.1 | - | - | 1.0 |
| Non-MSA | 4,100 | 3,600 | 3,600 | 15.3 | 32.3 | 34.9 | 8.0 | 14.5 | 19.7 | 11.9 | 29.0 | 29.7 | 9.2 | 6.5 | 4.3 | - | - | 0.7 |
| Parental Education: ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,200 | 1,300 | 1,000 | 25.7 | 37.7 | 34.7 | 15.2 | 16.5 | 18.7 | 19.7 | 33.2 | 28.7 | 12.6 | 6.2 | 4.6 | - | - | 2.4 |
| 2.5-3.0 | 3,400 | 3,400 | 3,400 | 18.5 | 34.0 | 37.7 | 8.8 | 15.6 | 20.0 | 15.4 | 30.6 | 33.1 | 10.2 | 6.9 | 4.9 | - | - | 1.0 |
| 3.5-4.0 | 4,000 | 4,200 | 4,000 | 16.7 | 33.6 | 42.1 | 8.4 | 14.6 | 23.0 | 12.8 | 29.5 | 36.9 | 11.0 | 5.7 | 5.0 | - | - | 0.9 |
| 4.5-5.0 | 4,300 | 4,300 | 3,600 | 12.1 | 27.7 | 38.2 | 6.8 | 11.6 | 19.7 | 9.0 | 24.3 | 34.4 | 9.3 | 5.7 | 3.4 | - | - | 0.2 |
| 5.5-6.0 (High) | 2,500 | 2,400 | 2,000 | 10.9 | 26.2 | 37.4 | 5.9 | 11.0 | 17.6 | 7.7 | 22.5 | 34.0 | 6.9 | 5.1 | 3.2 | - | - | 0.2 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Subgroup Ns may vary depending on the number of forms in which the use of each drug was asked about.
${ }^{\mathrm{b}}$ 12th grade only: Data based on three of six forms; N is one-half of N indicated.
${ }^{\text {c }}$ Unadjusted for known undereporting of certain drugs. See text for details.
${ }^{d} 12$ th grade only: Data based on one of six forms; $N$ is one-sixth of $N$ indicated.
${ }^{\text {e Parental education is an average score of mother'seducation and father'seducation reported on the following scale: (1) Completed grade school orless, (2) Some }}$ high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

TABLE 4-6 (cont'd)
Annual Prevalence of Use of Various Drugs by Subgroups
Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages)

|  | Hallucinogens ${ }^{\text {a }}$ |  |  | LSD |  |  | Hallucinogens Otherthan LSD |  |  | PCP ${ }^{\text {b }}$ |  |  | MDMA ${ }^{\text {c,d }}$ |  |  | Cocaine |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 2.2 | 4.1 | 6.2 | 1.1 | 1.6 | 2.2 | 1.9 | 3.7 | 5.6 | - | - | 0.7 | 1.7 | 2.4 | 4.0 | 2.0 | 3.7 | 5.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 2.3 | 4.6 | 8.4 | 1.1 | 1.8 | 3.1 | 1.9 | 4.3 | 7.7 | - | - | 0.9 | 1.7 | 2.4 | 4.7 | 1.7 | 3.9 | 6.5 |
| Female | 2.1 | 3.5 | 3.8 | 1.1 | 1.4 | 1.2 | 1.8 | 3.2 | 3.4 | - | - | 0.2 | 1.8 | 2.4 | 3.2 | 2.3 | 3.4 | 4.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 7.8 | 9.3 | 7.7 | 4.7 | 4.5 | 3.2 | 6.5 | 8.2 | 6.9 | - | - | 0.9 | 5.4 | 5.4 | 5.3 | 6.8 | 9.4 | 8.3 |
| Complete 4 years | 1.7 | 3.3 | 5.4 | 0.7 | 1.2 | 1.8 | 1.4 | 3.1 | 4.9 | - | - | 0.6 | 1.3 | 2.0 | 3.6 | 1.5 | 2.9 | 4.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 2.0 | 4.7 | 7.0 | 1.0 | 1.7 | 2.3 | 1.6 | 4.3 | 6.7 | - | - | 0.9 | 1.8 | 2.6 | 3.5 | 1.9 | 3.4 | 5.0 |
| North Central | 1.9 | 3.7 | 5.3 | 0.9 | 1.5 | 1.8 | 1.7 | 3.3 | 4.6 | - | - | 0.6 | 1.4 | 1.9 | 3.0 | 1.6 | 3.2 | 4.2 |
| South | 2.4 | 3.6 | 5.7 | 1.2 | 1.4 | 2.6 | 1.9 | 3.3 | 4.9 | - | - | 0.6 | 1.9 | 2.6 | 5.1 | 2.1 | 3.5 | 5.4 |
| West | 2.6 | 4.7 | 7.4 | 1.2 | 1.9 | 2.3 | 2.2 | 4.2 | 6.9 | - | - | 0.6 | 1.7 | 2.7 | 3.8 | 2.4 | 4.8 | 7.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.9 | 2.9 | 5.6 | 1.1 | 1.1 | 1.9 | 1.4 | 2.7 | 5.2 | - | - | 0.6 | 2.1 | 1.8 | 4.0 | 2.2 | 3.3 | 4.7 |
| Other MSA | 2.6 | 5.0 | 7.2 | 1.3 | 1.9 | 2.6 | 2.1 | 4.4 | 6.6 | - | - | 0.9 | 1.9 | 3.1 | 4.5 | 2.1 | 3.8 | 5.8 |
| Non-MSA | 2.1 | 3.9 | 4.8 | 0.7 | 1.5 | 1.9 | 2.0 | 3.6 | 4.1 | - | - | 0.2 | 1.0 | 2.0 | 2.8 | 1.7 | 3.9 | 5.0 |
| Parental Educ ation: ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 4.8 | 3.2 | 4.9 | 2.8 | 1.3 | 3.2 | 3.9 | 2.8 | 3.3 | - | - | 1.8 | 3.6 | 3.3 | 4.6 | 3.3 | 6.5 | 7.3 |
| 2.5-3.0 | 2.5 | 4.8 | 5.6 | 1.2 | 1.7 | 2.4 | 2.0 | 4.5 | 4.9 | - | - | 0.7 | 2.2 | 3.3 | 3.7 | 2.5 | 4.2 | 5.2 |
| 3.5-4.0 | 2.1 | 3.9 | 6.6 | 1.0 | 1.4 | 1.8 | 1.7 | 3.6 | 6.0 | - | - | 0.8 | 1.7 | 2.1 | 4.6 | 2.0 | 4.0 | 5.3 |
| 4.5-5.0 | 2.0 | 3.7 | 6.4 | 1.0 | 1.4 | 2.0 | 1.6 | 3.5 | 6.3 | - | - | 0.5 | 1.2 | 2.3 | 3.8 | 1.8 | 3.0 | 5.2 |
| 5.5-6.0 (High) | 1.7 | 4.1 | 6.1 | 0.6 | 1.6 | 2.2 | 1.6 | 3.5 | 5.6 | - | - | 0.0 | 1.7 | 1.4 | 3.1 | 1.2 | 1.8 | 4.3 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Unadjusted for known undereporting of certain drugs. See text for details.
${ }^{\mathrm{b}} 12$ th grade only: Data based on one of six forms; N is one-sixth of N indic ated.
${ }^{\text {c }} 8$ th and 10th grades only: Data based on two of fourforms; N is one-half of N indicated.
${ }^{d} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{\text {e Parental education is an average score of mother'seducation and father'seducation reported on the following scale: (1) Completed grade school orless, (2) Some }}$ high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-6 (cont'd)

## Annual Prevalence of Use of Various Drugs by Subgroups <br> Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

|  | Crack |  |  | OtherCocaine ${ }^{\text {a }}$ |  |  | Heroin <br> Any Use |  |  | Heroin with <br> a Needle ${ }^{\text {b }}$ |  |  | Heroin without a Needle ${ }^{\text {b }}$ |  |  | Other <br> Narcotics ${ }^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 1.3 | 1.7 | 2.3 | 1.6 | 3.3 | 4.7 | 1.0 | 0.9 | 0.9 | 0.7 | 0.5 | 0.4 | 0.6 | 0.7 | 0.7 | - | - | 9.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.1 | 1.8 | 2.5 | 1.3 | 3.6 | 5.8 | 0.9 | 1.0 | 1.2 | 0.7 | 0.6 | 0.6 | 0.4 | 0.8 | 0.9 | - | - | 10.9 |
| Female | 1.5 | 1.5 | 1.9 | 1.8 | 3.0 | 3.5 | 1.0 | 0.7 | 0.4 | 0.7 | 0.3 | 0.1 | 0.7 | 0.5 | 0.4 | - | - | 8.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 4.9 | 4.6 | 3.9 | 5.4 | 8.3 | 6.8 | 4.2 | 2.8 | 1.6 | 3.1 | 1.6 | 1.0 | 2.5 | 2.2 | 1.5 | - | - | 12.4 |
| Complete 4 years | 1.0 | 1.2 | 1.7 | 1.1 | 2.6 | 3.9 | 0.6 | 0.6 | 0.6 | 0.4 | 0.3 | 0.2 | 0.4 | 0.5 | 0.4 | - | - | 8.7 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.2 | 1.4 | 1.7 | 1.6 | 3.2 | 4.4 | 1.1 | 1.1 | 0.9 | 0.7 | 0.5 | 0.6 | 0.6 | 0.9 | 1.1 | - | - | 9.9 |
| North Central | 1.2 | 1.5 | 2.1 | 1.1 | 3.0 | 3.9 | 0.8 | 0.7 | 0.6 | 0.6 | 0.4 | 0.2 | 0.4 | 0.5 | 0.4 | - | - | 8.7 |
| South | 1.3 | 1.4 | 2.2 | 1.7 | 3.2 | 4.9 | 0.9 | 1.0 | 1.0 | 0.6 | 0.5 | 0.4 | 0.6 | 0.7 | 0.5 | - | - | 9.1 |
| West | 1.8 | 2.6 | 3.3 | 1.8 | 4.1 | 5.8 | 1.2 | 0.8 | 0.9 | 0.9 | 0.5 | 0.5 | 0.7 | 0.5 | 1.0 | - | - | 11.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.5 | 1.5 | 2.0 | 1.7 | 2.9 | 3.9 | 1.2 | 0.9 | 0.8 | 1.0 | 0.5 | 0.6 | 0.7 | 0.6 | 0.8 | - | - | 8.1 |
| Other MSA | 1.3 | 1.8 | 2.2 | 1.6 | 3.4 | 5.4 | 1.0 | 0.9 | 1.0 | 0.7 | 0.5 | 0.4 | 0.6 | 0.8 | 0.9 | - | - | 10.7 |
| Non-MSA | 1.2 | 1.7 | 2.8 | 1.3 | 3.6 | 4.2 | 0.6 | 0.7 | 0.6 | 0.5 | 0.3 | 0.2 | 0.3 | 0.5 | 0.2 | - | - | 8.9 |
| Parental Education: ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 2.2 | 3.5 | 3.3 | 3.1 | 5.7 | 6.3 | 1.9 | 1.5 | 1.4 | 1.6 | 1.0 | 0.2 | 1.5 | 1.0 | 1.1 | - | - | 6.8 |
| 2.5-3.0 | 1.7 | 1.9 | 2.9 | 1.9 | 3.7 | 3.6 | 1.1 | 1.0 | 0.9 | 0.8 | 0.5 | 0.6 | 0.6 | 0.7 | 0.8 | - | - | 8.8 |
| 3.5-4.0 | 1.3 | 1.6 | 1.9 | 1.5 | 3.7 | 5.1 | 1.0 | 0.8 | 0.7 | 0.7 | 0.4 | 0.3 | 0.6 | 0.7 | 0.6 | - | - | 10.8 |
| 4.5-5.0 | 1.1 | 1.4 | 1.8 | 1.3 | 2.8 | 5.1 | 0.7 | 0.7 | 0.9 | 0.6 | 0.3 | 0.4 | 0.4 | 0.5 | 0.7 | - | - | 10.5 |
| 5.5-6.0 (High) | 1.0 | 0.8 | 1.7 | 0.9 | 1.6 | 3.7 | 0.6 | 0.5 | 0.6 | 0.5 | 0.3 | 0.4 | 0.3 | 0.4 | 0.3 | - | - | 8.8 |

NOTE: ' - ' indic ates data not available.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }} 12$ th grade only: Data based on four of six forms; N is four-sixths of N indic ated.
${ }^{\mathrm{b}}$ 12th grade only: Data based on three of six forms; N is one-half of N indic ated.
'Only drug use not undera doctor's orders is included here.
${ }^{\text {d P Parental education is an average score of mother'seducation and father'seducation reported on the following scale: (1) Completed grade school or less, (2) Some }}$ high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-6 (cont'd)

## Annual Prevalence of Use of Various Drugs by Subgroups Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

|  | OxyContin ${ }^{\text {a,b }}$ |  |  | Vicodin ${ }^{\text {a,b }}$ |  |  | Amphetamines ${ }^{\text {c }}$ |  |  | $\underline{\text { Rita lin }}{ }^{\text {a,b }}$ |  |  | Methamphetamine ${ }^{a, b}$ |  |  | Crystal Meth$(\text { lce })^{b}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 1.7 | 3.5 | 5.0 | 2.5 | 6.2 | 9.3 | 4.9 | 8.5 | 10.0 | 2.5 | 3.4 | 5.1 | 1.5 | 3.0 | 3.4 | - | - | 2.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.8 | 3.8 | 6.1 | 2.4 | 6.2 | 10.7 | 3.7 | 7.3 | 9.9 | 2.6 | 3.6 | 6.0 | 1.1 | 2.7 | 3.7 | - | - | 2.6 |
| Female | 1.6 | 3.1 | 3.4 | 2.6 | 6.0 | 7.6 | 6.1 | 9.6 | 9.9 | 2.4 | 3.0 | 4.0 | 1.7 | 3.3 | 3.1 | - | - | 1.6 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 6.9 | 7.2 | 8.2 | 7.1 | 11.6 | 11.6 | 8.9 | 14.8 | 13.3 | 8.8 | 5.5 | 6.8 | 6.6 | 6.0 | 6.7 | - | - | 4.4 |
| Complete 4 years | 1.2 | 3.0 | 3.8 | 2.0 | 5.4 | 8.3 | 4.5 | 7.6 | 8.9 | 1.8 | 3.0 | 4.4 | 1.0 | 2.6 | 2.4 | - | - | 1.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.1 | 4.6 | 4.6 | 1.0 | 6.4 | 9.1 | 2.8 | 8.5 | 9.5 | 1.6 | 4.5 | 4.1 | 1.0 | 2.5 | 1.3 | - | - | 0.9 |
| North Central | 1.3 | 2.5 | 4.2 | 3.2 | 6.4 | 8.4 | 5.1 | 8.2 | 10.2 | 2.4 | 2.7 | 6.0 | 2.1 | 2.2 | 3.3 | - | - | 1.8 |
| South | 2.2 | 4.8 | 5.9 | 2.1 | 5.0 | 7.0 | 5.7 | 9.6 | 10.3 | 3.0 | 3.8 | 4.7 | 1.4 | 2.9 | 4.0 | - | - | 2.3 |
| West | 1.8 | 1.9 | 4.7 | 3.6 | 7.1 | 15.4 | 4.9 | 7.3 | 9.5 | 2.5 | 2.4 | 5.5 | 1.6 | 4.7 | 4.9 | - | - | 3.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.9 | 2.1 | 4.6 | 1.8 | 4.8 | 8.3 | 4.0 | 6.2 | 8.0 | 1.7 | 2.6 | 4.2 | 1.5 | 2.7 | 2.8 | - | - | 2.3 |
| Other MSA | 2.6 | 3.7 | 5.2 | 3.0 | 6.9 | 10.9 | 5.4 | 9.6 | 10.6 | 3.0 | 3.6 | 5.6 | 1.7 | 3.4 | 2.6 | - | - | 1.4 |
| Non-MSA | 1.1 | 5.1 | 4.9 | 2.4 | 6.4 | 7.2 | 5.0 | 9.2 | 11.1 | 2.4 | 3.7 | 4.9 | 1.2 | 2.5 | 5.5 | - | - | 3.2 |
| Parental Educ ation: ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 3.5 | 3.7 | 3.7 | 4.9 | 6.4 | 7.8 | 9.7 | 9.2 | 7.5 | 4.2 | 4.8 | 5.2 | 4.4 | 4.5 | 5.5 | - | - | 4.0 |
| 2.5-3.0 | 2.1 | 4.0 | 4.8 | 4.1 | 8.2 | 8.8 | 5.2 | 9.9 | 11.0 | 2.9 | 3.4 | 4.2 | 1.3 | 3.7 | 4.1 | - | - | 2.7 |
| 3.5-4.0 | 2.2 | 4.1 | 6.5 | 3.2 | 6.2 | 10.1 | 5.6 | 10.1 | 12.3 | 2.7 | 3.0 | 6.3 | 1.8 | 3.3 | 3.1 | - | - | 2.4 |
| 4.5-5.0 | 1.3 | 2.6 | 3.1 | 1.1 | 5.1 | 8.4 | 4.2 | 7.2 | 8.2 | 2.1 | 2.9 | 4.6 | 1.0 | 2.3 | 2.8 | - | - | 1.0 |
| 5.5-6.0 (High) | 0.7 | 2.8 | 4.3 | 0.9 | 5.0 | 10.1 | 3.5 | 6.3 | 8.4 | 1.9 | 3.7 | 4.5 | 0.9 | 1.7 | 3.0 | - | - | 0.9 |

NOTE: '-' indicates data not available.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 8$ th and 10th grades only: Data based on one of four forms; N is one-third of N indicated
${ }^{\mathrm{b}}$ 12th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
'Only drug use not undera doctor's orders is included here.
${ }^{\text {d Parental education is an average score of mother'seducation and father's education reported on the following scale: (1) Completed grade school orless, (2) Some }}$ high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-6 (cont'd)

## Annual Prevalence of Use of Various Drugs by Subgroups <br> Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

| Grade: | Sedatives (Barbiturates) ${ }^{\text {a }}$ |  |  | Methaqualone ${ }^{\text {a,b }}$ |  |  | Tranquilizers ${ }^{\text {a }}$ |  |  | Rohypnol ${ }^{\text {c,d }}$ |  |  | $\mathrm{GHB}^{\text {b,e }}$ |  |  | Ketamine ${ }^{\text {e,f }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8th | 10th | 12th |
| Total | - | - | 6.5 | - | - | 0.8 | 2.5 | 5.1 | 7.3 | 0.6 | 0.7 | 1.6 | 0.7 | 0.8 | 2.0 | 0.9 | 1.3 | 1.9 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | 7.0 | - | - | 1.3 | 1.9 | 4.7 | 8.0 | 0.5 | 0.8 | 2.3 | 0.8 | 1.1 | 2.9 | 0.9 | 1.5 | 2.7 |
| Female | - | - | 6.0 | - | - | 0.3 | 3.2 | 5.5 | 6.5 | 0.7 | 0.6 | 0.7 | 0.6 | 0.4 | 0.8 | 0.7 | 0.9 | 0.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | 9.3 | - | - | 1.4 | 6.2 | 9.6 | 9.1 | 2.4 | 1.4 | 3.0 | 3.4 | 2.0 | 3.9 | 4.0 | 2.5 | 3.0 |
| Complete 4 years | - | - | 5.6 | - | - | 0.4 | 2.1 | 4.5 | 6.8 | 0.4 | 0.6 | 1.0 | 0.4 | 0.6 | 1.3 | 0.5 | 1.1 | 1.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | 5.4 | - | - | 0.9 | 1.7 | 5.0 | 6.5 | 0.3 | 0.8 | 0.8 | 0.6 | 1.1 | 1.5 | 0.5 | 1.6 | 1.8 |
| North Central | - | - | 5.9 | - | - | 0.7 | 2.1 | 3.5 | 6.2 | 0.8 | 0.3 | 1.3 | 0.8 | 0.7 | 2.0 | 0.9 | 0.8 | 1.6 |
| South | - | - | 7.8 | - | - | 0.9 | 3.4 | 7.3 | 9.0 | 0.5 | 0.9 | 2.1 | 0.7 | 0.9 | 2.5 | 1.0 | 1.7 | 2.2 |
| West | - | - | 6.3 | - | - | 0.5 | 2.2 | 4.1 | 7.0 | 0.7 | 0.9 | 1.8 | 0.8 | 0.6 | 1.7 | 0.9 | 1.1 | 1.9 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | 5.5 | - | - | 0.8 | 1.8 | 3.2 | 5.5 | 0.5 | 0.6 | 1.8 | 0.7 | 0.9 | 2.3 | 1.0 | 1.0 | 1.9 |
| Other MSA | - | - | 7.1 | - | - | 1.0 | 3.1 | 5.7 | 8.5 | 0.8 | 0.7 | 1.6 | 0.9 | 0.7 | 1.9 | 0.8 | 1.4 | 2.2 |
| Non-MSA | - | - | 6.6 | - | - | 0.4 | 2.4 | 6.4 | 7.3 | 0.3 | 0.8 | 1.2 | 0.4 | 0.8 | 1.9 | 0.7 | 1.5 | 1.3 |
| Parental Education: ${ }^{9}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | 6.6 | - | - | 2.1 | 4.7 | 5.8 | 5.0 | 2.4 | 0.4 | 3.4 | 1.9 | 1.5 | 2.1 | 1.8 | 2.7 | 2.2 |
| 2.5-3.0 | - | - | 7.0 | - | - | 1.2 | 2.8 | 5.6 | 7.9 | 0.1 | 0.4 | 1.8 | 0.6 | 0.9 | 2.2 | 0.7 | 1.4 | 2.0 |
| 3.5-4.0 | - | - | 8.0 | - | - | 0.3 | 3.0 | 5.7 | 9.0 | 0.2 | 1.0 | 1.5 | 1.0 | 0.3 | 1.8 | 1.0 | 0.9 | 1.7 |
| 4.5-5.0 | - | - | 5.1 | - | - | 0.2 | 2.0 | 4.6 | 7.1 | 0.6 | 0.6 | 0.6 | 0.5 | 0.7 | 0.5 | 0.9 | 1.0 | 1.4 |
| 5.5-6.0 (High) | - | - | 5.5 | - | - | 0.5 | 1.7 | 4.1 | 5.4 | 0.1 | 1.0 | 1.5 | 0.4 | 0.7 | 2.7 | 0.4 | 1.0 | 1.7 |

${ }^{\mathrm{b}}$ 12th grade only: Data based on one of six forms; N is one-sixth of N indicated.
${ }^{\text {c } 8 \text { th }}$ and 10th grades only: Data based on one of four forms; N is one-sixth of N indicated.
${ }^{d} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{\text {e }} 8$ th and 10th grades only: Data based on one of fourforms; N is one-third of N indicated.
${ }^{f} 12$ th grade only: Data based on three of six forms; $N$ is one-half of $N$ indic ated.
${ }^{9}$ Parental education is an average score of mother'seducation and father'seducation reported on the following scale: (1) Completed grade school or less, (2) Some high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-6 (cont'd)

## Annual Prevalence of Use of Various Drugs by Subgroups

Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages)

|  | Alcohol |  |  | Flavored Alcoholic |  |  | Been Drunk ${ }^{\text {c }}$ |  |  | Bidis ${ }^{\text {a }}$. |  |  | Kreteks $^{\text {a,c }}$ |  |  | Steroids ${ }^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 36.7 | 58.2 | 70.6 | 30.4 | 49.7 | 55.8 | 14.5 | 35.1 | 51.8 | 1.7 | 2.1 | 3.6 | 1.9 | 3.7 | 6.5 | 1.1 | 1.5 | 2.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 35.2 | 57.7 | 70.7 | 26.1 | 46.9 | 51.7 | 13.4 | 35.7 | 52.8 | 1.9 | 2.5 | 5.2 | 2.0 | 3.9 | 8.1 | 1.3 | 2.3 | 3.3 |
| Female | 37.8 | 58.7 | 70.5 | 34.1 | 51.8 | 59.6 | 15.4 | 34.3 | 50.3 | 1.5 | 1.4 | 2.0 | 1.7 | 3.1 | 4.7 | 1.0 | 0.9 | 1.7 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 51.6 | 69.2 | 74.5 | 45.9 | 62.0 | 59.8 | 28.0 | 47.6 | 55.5 | 6.6 | 4.7 | 5.9 | 8.2 | 6.9 | 9.1 | 3.2 | 2.9 | 2.8 |
| Complete 4 years | 35.3 | 56.8 | 69.5 | 28.9 | 48.0 | 54.9 | 13.3 | 33.5 | 50.3 | 1.2 | 1.7 | 2.7 | 1.3 | 3.2 | 5.7 | 0.9 | 1.4 | 2.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 37.7 | 64.0 | 76.5 | 28.8 | 52.9 | 59.8 | 13.0 | 39.9 | 57.1 | 1.3 | 2.5 | 5.4 | 1.2 | 5.0 | 9.1 | 0.8 | 1.4 | 3.8 |
| North Central | 39.6 | 54.2 | 71.4 | 35.6 | 46.4 | 57.5 | 15.7 | 31.4 | 55.6 | 1.5 | 1.4 | 2.4 | 2.0 | 2.3 | 4.4 | 1.2 | 1.4 | 2.4 |
| South | 36.7 | 59.3 | 66.6 | 31.6 | 50.7 | 52.1 | 14.9 | 36.6 | 46.9 | 1.8 | 2.1 | 3.4 | 1.6 | 3.7 | 5.2 | 1.3 | 1.9 | 2.2 |
| West | 32.3 | 56.0 | 70.0 | 23.8 | 49.2 | 56.3 | 13.9 | 32.6 | 49.3 | 2.2 | 2.5 | 4.0 | 3.1 | 4.2 | 9.3 | 1.0 | 1.4 | 2.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 35.2 | 57.3 | 68.2 | 28.1 | 47.6 | 53.0 | 13.3 | 30.8 | 46.0 | 1.8 | 1.9 | 3.6 | 1.7 | 4.0 | 6.4 | 1.0 | 1.2 | 2.6 |
| Other MSA | 37.8 | 58.7 | 72.6 | 30.2 | 50.4 | 57.8 | 14.7 | 36.2 | 56.1 | 1.8 | 2.0 | 4.6 | 2.2 | 3.3 | 8.0 | 1.1 | 1.5 | 2.9 |
| Non-MSA | 36.2 | 58.5 | 69.6 | 33.5 | 51.2 | 55.1 | 15.7 | 38.4 | 50.2 | 1.5 | 2.4 | 1.9 | 1.8 | 4.2 | 3.7 | 1.3 | 2.1 | 1.8 |
| Parental Educ ation: ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 45.6 | 61.7 | 67.2 | 39.0 | 54.1 | 48.9 | 21.8 | 36.2 | 42.7 | 3.0 | 4.7 | 3.8 | 3.3 | 3.0 | 4.5 | 1.5 | 1.5 | 4.9 |
| 2.5-3.0 | 43.0 | 62.9 | 71.7 | 37.2 | 56.7 | 56.2 | 17.0 | 39.3 | 51.2 | 1.4 | 2.6 | 2.7 | 2.1 | 3.5 | 5.6 | 1.4 | 1.8 | 2.9 |
| 3.5-4.0 | 39.0 | 60.8 | 74.0 | 34.5 | 51.7 | 60.0 | 15.5 | 36.6 | 56.4 | 1.9 | 1.8 | 3.9 | 2.3 | 4.1 | 6.1 | 1.0 | 1.7 | 2.5 |
| 4.5-5.0 | 33.2 | 56.4 | 68.9 | 28.1 | 47.3 | 57.0 | 13.1 | 33.3 | 52.5 | 1.9 | 1.2 | 3.5 | 1.5 | 3.1 | 6.5 | 1.2 | 1.5 | 1.8 |
| 5.5-6.0 (High) | 32.2 | 53.1 | 70.2 | 23.0 | 43.5 | 49.1 | 10.9 | 32.8 | 50.6 | 0.9 | 1.8 | 3.3 | 0.9 | 3.8 | 8.3 | 0.7 | 1.2 | 2.4 |

NOTE: ' - ' indicates data not available
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 8$ th and 10th grades only: Data based on one of four forms; N is one-third of N indic ated.
${ }^{5}$ 12th grade only: Data based on one of six forms; N is one-sixth of N indic ated
${ }^{c} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{\text {dParental education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some }}$ high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-7

## Thirty-Day Prevalence of Use of Various Drugs by Subgroups Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

|  | Approx. ${ }^{\text {a }}$ |  |  | Any Illic it Drug OtherAnlicit Drug $\quad$ Than Manjuana |  |  |  |  |  | Marijuana |  |  |  |  |  |  |  |  | Hallucinogens ${ }^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 17,000 | 16,400 | 14,600 | 8.4 | 18.3 | 23.4 | 4.1 | 6.9 | 10.8 | 6.4 | 15.9 | 19.9 | 4.5 | 2.4 | 1.5 | - | - | 0.7 | 1.0 | 1.6 | 1.9 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8,100 | 7,900 | 6,800 | 7.8 | 19.6 | 26.1 | 3.3 | 6.9 | 11.8 | 6.3 | 17.4 | 23.0 | 4.0 | 2.4 | 1.7 | - | - | 1.2 | 1.0 | 1.9 | 2.7 |
| Female | 8,500 | 8,300 | 7,200 | 8.8 | 16.9 | 20.3 | 4.7 | 6.8 | 9.1 | 6.3 | 14.2 | 16.6 | 5.1 | 2.3 | 1.3 | - | - | 0.3 | 0.9 | 1.2 | 0.9 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 1,600 | 1,900 | 2,800 | 22.3 | 31.5 | 28.8 | 10.3 | 13.9 | 14.9 | 19.0 | 27.5 | 24.1 | 10.2 | 4.7 | 2.1 | - | - | 1.5 | 3.4 | 3.6 | 2.7 |
| Complete 4 years | 15,000 | 14,300 | 11,000 | 6.9 | 16.5 | 21.4 | 3.4 | 5.9 | 9.2 | 4.9 | 14.2 | 18.3 | 3.9 | 2.0 | 1.4 | - | - | 0.5 | 0.7 | 1.3 | 1.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3,200 | 3,600 | 3,100 | 6.9 | 19.0 | 27.8 | 2.9 | 7.3 | 10.6 | 5.3 | 16.5 | 25.1 | 4.0 | 2.5 | 1.6 | - | - | 1.0 | 1.0 | 1.6 | 2.3 |
| North Central | 4,000 | 4,600 | 3,800 | 7.5 | 17.0 | 21.1 | 3.9 | 6.1 | 9.2 | 5.6 | 14.8 | 18.1 | 4.5 | 2.2 | 1.6 | - | - | 0.3 | 0.7 | 1.5 | 1.7 |
| South | 6,300 | 4,900 | 5,000 | 9.3 | 19.8 | 21.9 | 4.6 | 7.8 | 11.7 | 7.0 | 17.1 | 17.6 | 4.6 | 2.4 | 1.5 | - | - | 0.4 | 1.0 | 1.5 | 1.7 |
| West | 3,500 | 3,300 | 2,700 | 9.1 | 17.2 | 24.4 | 4.3 | 6.4 | 11.5 | 7.0 | 14.7 | 20.9 | 4.8 | 2.4 | 1.3 | - | - | 1.5 | 1.2 | 1.7 | 2.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5,000 | 5,000 | 4,200 | 8.6 | 15.6 | 22.0 | 3.8 | 4.9 | 9.2 | 6.6 | 13.8 | 19.1 | 4.4 | 1.9 | 1.6 | - | - | 0.3 | 0.9 | 1.0 | 1.8 |
| Other MSA | 7,900 | 7,800 | 6,800 | 8.6 | 19.5 | 25.7 | 4.5 | 7.8 | 11.6 | 6.4 | 16.7 | 22.3 | 4.8 | 2.4 | 1.4 | - | - | 1.0 | 1.1 | 2.0 | 2.1 |
| Non-MSA | 4,100 | 3,600 | 3,600 | 7.7 | 19.4 | 20.5 | 3.6 | 7.7 | 10.9 | 6.1 | 16.9 | 16.4 | 4.1 | 3.0 | 1.6 | - | - | 0.7 | 0.7 | 1.4 | 1.6 |
| Parental Education: ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,200 | 1,300 | 1,000 | 14.4 | 22.9 | 19.3 | 8.4 | 9.3 | 8.9 | 11.3 | 19.5 | 16.6 | 5.5 | 2.7 | 2.0 | - | - | 2.3 | 2.3 | 1.6 | 2.0 |
| 2.5-3.0 | 3,400 | 3,400 | 3,400 | 10.1 | 20.5 | 23.3 | 3.9 | 8.2 | 10.5 | 8.3 | 17.9 | 19.3 | 5.2 | 3.0 | 2.4 | - | - | 1.0 | 1.0 | 1.8 | 1.9 |
| 3.5-4.0 | 4,000 | 4,200 | 4,000 | 9.3 | 20.0 | 25.5 | 4.2 | 7.5 | 12.2 | 7.0 | 17.3 | 21.1 | 5.6 | 2.3 | 1.2 | - | - | 0.7 | 0.8 | 1.7 | 1.8 |
| 4.5-5.0 | 4,300 | 4,300 | 3,600 | 6.4 | 15.5 | 22.3 | 3.8 | 5.5 | 9.8 | 4.4 | 13.2 | 19.8 | 4.1 | 2.2 | 1.4 | - | - | 0.2 | 1.0 | 1.3 | 1.7 |
| 5.5-6.0 (High) | 2,500 | 2,400 | 2,000 | 5.5 | 14.6 | 22.6 | 3.2 | 5.2 | 9.9 | 3.6 | 12.7 | 19.8 | 2.6 | 1.5 | 1.0 | - | - | 0.2 | 0.7 | 1.5 | 1.8 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Subgroup Ns may vary depending on the number of forms in which the use of each drug was asked about.
${ }^{\mathrm{b}} 12$ th grade only: Data based on three of six forms; N is one-half of N indicated.
${ }^{\text {c }}$ Unadjusted for known underreporting of certain drugs. See text for details.
${ }^{d} 12$ th grade only: Data based on one of six forms; $N$ is one-sixth of $N$ indic ated.
${ }^{\text {e Parental education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high school, }}$ (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.
(Entries are percentages)

|  |  | LSD |  | Hallucinogens Other than LSD |  |  | $P C P^{\text {a }}$ |  |  | MDMA ${ }^{\text {b,c }}$ |  |  | Cocaine |  |  | Crack |  |  | OtherCocaine ${ }^{\text {d }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 0.5 | 0.6 | 0.7 | 0.8 | 1.4 | 1.7 | - | - | 0.4 | 0.8 | 0.8 | 1.2 | 0.9 | 1.7 | 2.3 | 0.6 | 0.8 | 1.0 | 0.7 | 1.5 | 2.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 0.5 | 0.8 | 1.1 | 0.7 | 1.7 | 2.4 | - | - | 0.6 | 0.7 | 1.0 | 1.6 | 0.8 | 1.9 | 2.9 | 0.5 | 1.0 | 1.2 | 0.7 | 1.7 | 2.6 |
| Female | 0.5 | 0.4 | 0.3 | 0.7 | 1.1 | 0.8 | - | - | 0.2 | 0.9 | 0.6 | 0.9 | 1.0 | 1.4 | 1.7 | 0.7 | 0.6 | 0.7 | 0.7 | 1.3 | 1.7 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 1.9 | 1.4 | 1.4 | 2.8 | 3.2 | 2.2 | - | - | 0.9 | 3.0 | 1.8 | 2.3 | 3.0 | 4.2 | 4.1 | 2.2 | 1.7 | 1.9 | 2.6 | 3.6 | 3.7 |
| Complete 4 years | 0.3 | 0.5 | 0.4 | 0.5 | 1.2 | 1.3 | - | - | 0.3 | 0.6 | 0.6 | 1.0 | 0.7 | 1.3 | 1.7 | 0.4 | 0.6 | 0.7 | 0.5 | 1.2 | 1.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.4 | 0.5 | 0.7 | 0.8 | 1.4 | 2.0 | - | - | 0.6 | 0.7 | 0.5 | 0.5 | 0.9 | 1.7 | 2.1 | 0.6 | 0.8 | 1.0 | 0.5 | 1.6 | 2.0 |
| North Central | 0.4 | 0.6 | 0.7 | 0.5 | 1.3 | 1.5 | - | - | 0.5 | 0.9 | 0.5 | 0.9 | 0.9 | 1.6 | 1.7 | 0.6 | 0.8 | 0.8 | 0.6 | 1.5 | 1.6 |
| South | 0.5 | 0.6 | 0.8 | 0.8 | 1.4 | 1.4 | - | - | 0.2 | 0.8 | 1.0 | 1.9 | 0.9 | 1.5 | 2.5 | 0.6 | 0.5 | 1.2 | 0.8 | 1.3 | 2.3 |
| West | 0.7 | 0.7 | 0.6 | 1.0 | 1.5 | 1.8 | - | - | 0.6 | 0.8 | 1.0 | 1.2 | 1.0 | 2.0 | 3.1 | 0.7 | 1.2 | 1.2 | 0.8 | 1.6 | 2.8 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.6 | 0.3 | 0.6 | 0.6 | 1.0 | 1.7 | - | - | 0.5 | 1.1 | 0.4 | 1.4 | 1.1 | 1.5 | 2.1 | 0.9 | 0.8 | 0.9 | 0.9 | 1.4 | 1.9 |
| Other MSA | 0.5 | 0.8 | 0.9 | 0.9 | 1.8 | 1.8 | - | - | 0.5 | 0.8 | 1.1 | 1.3 | 0.8 | 1.6 | 2.6 | 0.5 | 0.9 | 1.1 | 0.6 | 1.4 | 2.4 |
| Non-MSA | 0.3 | 0.6 | 0.6 | 0.7 | 1.1 | 1.4 | - | - | 0.2 | 0.5 | 0.6 | 1.0 | 0.8 | 2.0 | 2.1 | 0.6 | 0.8 | 1.2 | 0.5 | 1.8 | 1.9 |
| Parental Education: ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1.3 | 0.6 | 1.3 | 2.0 | 1.4 | 1.8 | - | - | 1.8 | 2.6 | 1.5 | 2.9 | 1.7 | 3.1 | 4.0 | 1.2 | 1.8 | 2.0 | 1.6 | 2.6 | 3.6 |
| 2.5-3.0 | 0.4 | 0.7 | 0.9 | 0.8 | 1.6 | 1.6 | - | - | 0.6 | 1.1 | 0.9 | 1.2 | 0.8 | 2.0 | 2.1 | 0.5 | 0.9 | 1.3 | 0.6 | 1.7 | 1.3 |
| 3.5-4.0 | 0.4 | 0.6 | 0.6 | 0.6 | 1.5 | 1.5 | - | - | 0.3 | 0.6 | 0.5 | 1.4 | 1.0 | 1.7 | 2.4 | 0.7 | 0.7 | 0.9 | 0.7 | 1.6 | 2.4 |
| 4.5-5.0 | 0.6 | 0.5 | 0.6 | 0.6 | 1.1 | 1.5 | - | - | 0.1 | 0.5 | 0.8 | 0.5 | 0.9 | 1.3 | 1.8 | 0.6 | 0.7 | 0.7 | 0.6 | 1.3 | 1.8 |
| 5.5-6.0 (High) | 0.3 | 0.5 | 0.3 | 0.7 | 1.3 | 1.7 | - | - | 0.0 | 0.4 | 0.6 | 1.1 | 0.7 | 0.8 | 2.3 | 0.5 | 0.4 | 0.7 | 0.5 | 0.8 | 2.7 |

-' indicates data not available.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }} 12$ th grade only: Data based on one of six forms; N is one-sixth of N indicated.
${ }^{b} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{\text {c } 8 t h ~ a n d ~ 10 t h ~ g r a d e s ~ o n l y: ~ D a t a ~ b a s e d ~ o n ~ t w o ~ o f ~ f o u r ~ f o r m s ; ~} \mathrm{~N}$ is one-half of N indicated.
${ }^{d} 12$ th grade only: Data based on four of six forms; N is four-sixths of N indic ated.
${ }^{\text {e Parental }}$ education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-7 (cont'd)

## Thirty-Day Prevalence of Use of Various Drugs by Subgroups Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

|  | Heroin Any Use |  |  | Heroin with a Needle ${ }^{\text {a }}$ |  |  | Heroin without <br> a Needle ${ }^{\text {a }}$ |  |  | Other <br> Narcotic ${ }^{\text {b }}$ |  |  | Amphetamines ${ }^{\text {b }}$ |  |  | Meth- <br> amphetamine ${ }^{\mathrm{c}, \mathrm{d}}$ |  |  | Crystal Meth. (Ice) ${ }^{\text {d }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | - | - | 4.3 | 2.3 | 4.0 | 4.6 | 0.6 | 1.3 | 1.4 | - | - | 0.8 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 0.4 | 0.7 | 0.7 | 0.3 | 0.4 | 0.4 | 0.2 | 0.5 | 0.4 | - | - | 5.3 | 1.5 | 3.4 | 4.6 | 0.5 | 1.4 | 1.7 | - | - | 1.1 |
| Female | 0.4 | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | - | - | 3.3 | 3.0 | 4.6 | 4.5 | 0.7 | 1.2 | 1.1 | - | - | 0.6 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 1.8 | 1.6 | 0.8 | 1.5 | 1.1 | 0.3 | 0.9 | 1.1 | 0.6 | - | - | 6.3 | 5.4 | 7.3 | 6.5 | 2.6 | 3.5 | 2.8 | - | - | 1.8 |
| Complete 4 years | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | - | - | 3.7 | 1.9 | 3.6 | 4.0 | 0.3 | 1.0 | 1.0 | - | - | 0.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.5 | 0.6 | 0.5 | 0.4 | 0.4 | 0.3 | 0.2 | 0.4 | 0.4 | - | - | 4.4 | 1.3 | 4.4 | 4.6 | 0.5 | 1.5 | 0.5 | - | - | 0.4 |
| North Central | 0.3 | 0.3 | 0.4 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 | - | - | 3.7 | 2.3 | 3.6 | 4.6 | 0.5 | 1.0 | 1.3 | - | - | 0.6 |
| South | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.1 | 0.3 | 0.3 | 0.4 | - | - | 4.6 | 2.6 | 4.5 | 5.1 | 0.7 | 0.9 | 1.9 | - | - | 1.1 |
| West | 0.6 | 0.4 | 0.4 | 0.5 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | - | - | 4.6 | 2.5 | 3.5 | 3.9 | 0.4 | 2.0 | 1.7 | - | - | 1.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.6 | 0.4 | 0.4 | 0.5 | 0.3 | 0.2 | 0.4 | 0.3 | 0.3 | - | - | 3.5 | 1.9 | 2.8 | 3.6 | 0.5 | 1.2 | 1.3 | - | - | 0.9 |
| Other MSA | 0.4 | 0.5 | 0.6 | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | 0.5 | - | - | 4.6 | 2.6 | 4.6 | 4.9 | 0.7 | 1.6 | 1.0 | - | - | 0.7 |
| Non-MSA | 0.3 | 0.4 | 0.2 | 0.3 | 0.3 | 0.2 | 0.1 | 0.2 | 0.1 | - | - | 4.7 | 2.1 | 4.5 | 5.4 | 0.4 | 0.7 | 2.3 | - | - | 1.1 |
| Parental Education: ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1.1 | 0.8 | 0.6 | 1.0 | 0.7 | 0.2 | 0.7 | 0.5 | 0.5 | - | - | 2.5 | 4.6 | 4.9 | 3.0 | 1.6 | 2.7 | 1.8 | - | - | 2.3 |
| 2.5-3.0 | 0.4 | 0.3 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.4 | - | - | 4.3 | 2.2 | 4.9 | 5.1 | 0.6 | 1.8 | 1.1 | - | - | 1.2 |
| 3.5-4.0 | 0.6 | 0.5 | 0.4 | 0.4 | 0.2 | 0.1 | 0.3 | 0.3 | 0.4 | - | - | 5.0 | 2.6 | 4.9 | 5.7 | 1.0 | 0.9 | 1.9 | - | - | 0.7 |
| 4.5-5.0 | 0.4 | 0.3 | 0.4 | 0.3 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | - | - | 4.4 | 2.1 | 3.1 | 3.8 | 0.1 | 0.9 | 1.4 | - | - | 0.3 |
| 5.5-6.0 (High) | 0.3 | 0.4 | 0.6 | 0.2 | 0.2 | 0.6 | 0.2 | 0.3 | 0.1 | - | - | 4.0 | 1.5 | 3.0 | 4.0 | 0.5 | 0.9 | 1.2 | - | - | 0.6 |

- -' indic ates data not available.

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 12$ th grade only: Data based on three of six forms; N is one-half of N indicated.
${ }^{\text {b }}$ Only drug use not undera doctor's orders is included here.
${ }^{\text {c }} 8$ th and 10th grades only: Data based on one of four forms; N is one-third of N indicated.
${ }^{d} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated
${ }^{\text {e Parental }}$ education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high school,
(3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.
(Entries are percentages)

|  | Sedatives (Barbiturates) ${ }^{\text {a }}$ |  |  | Methaqualone ${ }^{\text {a,b }}$ |  |  | Tranquilizers ${ }^{\text {a }}$ |  |  | Rohypnol ${ }^{\text {c }}$ |  |  | Flavored AlcoholicAlcoholBeverages |  |  |  |  |  | Been Drunk ${ }^{\text {e }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Total | - | - | 2.9 | - | - | 0.5 | 1.2 | 2.3 | 3.1 | 0.2 | 0.3 | - | 18.6 | 35.2 | 48.0 | 14.6 | 25.1 | 31.1 | 6.2 | 18.5 | 32.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | 3.2 | - | - | 0.8 | 0.9 | 2.3 | 3.6 | 0.3 | 0.3 | - | 17.9 | 36.3 | 51.1 | 12.7 | 24.5 | 28.9 | 5.8 | 20.2 | 36.0 |
| Female | - | - | 2.5 | - | - | 0.2 | 1.6 | 2.3 | 2.5 | 0.2 | 0.3 | - | 19.0 | 34.0 | 45.1 | 16.3 | 25.6 | 33.2 | 6.6 | 17.0 | 29.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | 3.9 | - | - | 0.7 | 3.2 | 4.5 | 4.2 | 0.4 | 1.0 | - | 32.6 | 47.5 | 52.1 | 28.1 | 32.5 | 34.7 | 16.1 | 27.5 | 34.7 |
| Complete 4 years | - | - | 2.6 | - | - | 0.3 | 1.0 | 2.0 | 2.8 | 0.2 | 0.2 | - | 17.2 | 33.6 | 47.0 | 13.3 | 24.2 | 30.3 | 5.2 | 17.4 | 31.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | 2.1 | - | - | 0.8 | 0.8 | 2.4 | 2.8 | 0.1 | 0.4 | - | 18.0 | 40.4 | 53.9 | 14.9 | 26.6 | 33.5 | 4.8 | 22.4 | 38.1 |
| North Central | - | - | 2.2 | - | - | 0.4 | 1.1 | 1.5 | 1.8 | 0.3 | 0.2 | - | 19.3 | 30.9 | 49.5 | 16.2 | 22.5 | 35.3 | 6.8 | 16.6 | 34.2 |
| South | - | - | 4.0 | - | - | 0.6 | 1.6 | 3.7 | 4.6 | 0.4 | 0.2 | - | 18.8 | 36.4 | 43.5 | 15.1 | 25.6 | 25.9 | 6.4 | 18.7 | 29.3 |
| West | - | - | 2.7 | - | - | 0.2 | 1.1 | 1.3 | 2.7 | 0.1 | 0.4 | - | 17.9 | 33.7 | 47.3 | 11.7 | 26.5 | 32.1 | 6.4 | 16.7 | 29.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | 2.4 | - | - | 0.4 | 0.9 | 1.3 | 2.4 | 0.1 | 0.4 | - | 18.1 | 32.0 | 44.1 | 14.4 | 22.4 | 27.0 | 5.4 | 15.1 | 27.4 |
| Other MSA | - | - | 3.3 | - | - | 0.6 | 1.4 | 2.8 | 3.6 | 0.4 | 0.3 | - | 19.1 | 37.0 | 51.7 | 14.2 | 26.1 | 33.4 | 6.5 | 20.5 | 37.3 |
| Non-MSA | - | - | 2.7 | - | - | 0.4 | 1.1 | 2.9 | 3.0 | 0.1 | 0.0 | - | 18.1 | 35.8 | 45.5 | 15.6 | 26.5 | 30.9 | 6.5 | 19.0 | 29.1 |
| Parental Education: ${ }^{\text {f }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | 2.5 | - | - | 1.1 | 3.0 | 2.7 | 2.6 | 0.3 | 0.1 | - | 24.2 | 38.6 | 42.1 | 19.5 | 27.3 | 28.5 | 10.0 | 17.7 | 25.5 |
| 2.5-3.0 | - | - | 3.2 | - | - | 0.6 | 1.3 | 2.8 | 3.7 | 0.1 | 0.3 | - | 22.1 | 38.5 | 46.8 | 17.5 | 30.5 | 31.0 | 7.4 | 21.0 | 32.3 |
| 3.5-4.0 | - | - | 3.6 | - | - | 0.1 | 1.5 | 2.7 | 3.5 | 0.2 | 0.4 | - | 20.0 | 37.5 | 52.4 | 17.8 | 25.0 | 33.6 | 6.8 | 18.9 | 35.1 |
| 4.5-5.0 | - | - | 2.1 | - | - | 0.2 | 0.9 | 2.0 | 3.0 | 0.3 | 0.1 | - | 16.3 | 32.6 | 47.7 | 11.8 | 24.9 | 29.4 | 5.0 | 17.3 | 33.7 |
| 5.5-6.0 (High) | - | - | 2.9 | - | - | 0.5 | 0.7 | 1.5 | 2.0 | 0.1 | 0.5 | - | 15.8 | 32.4 | 47.4 | 11.5 | 20.8 | 29.8 | 4.4 | 19.3 | 32.6 |

[^32]SOURCE: The Monitoring the Future Study, the University of Michigan.
a Only drug use not undera doctor's orders is included here.
${ }^{\mathrm{b}} 12$ th grade only: Data based on one of six forms; N is one-sixth of N indicated.
${ }^{\text {c }} 8$ th and 10th grades only: Data based on one of fourforms; $N$ is one-sixth of $N$ indicated.
${ }^{d} 8$ th and 10th grades only: Data based on one of four forms; N is one-third of N indicated.
${ }^{e} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
'Parental education is an average score of mother's education and father'seducation reported on the following scale: (1) Completed grade school orless, (2) Some high school,
(3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-7 (cont'd)

## Thirty-Day Prevalence of Use of Various Drugs by Subgroups Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

| Grade: | Cigarettes |  |  | Smokeless <br> Tobacco ${ }^{\text {a,b }}$ |  |  | Steroids ${ }^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8th | 10th | 12th | 8th | 10th | 12th | 8th | 10th | 12th |
| Total | 9.2 | 16.0 | 25.0 | 4.1 | 4.9 | 6.7 | 0.5 | 0.8 | 1.6 |
| Gender: |  |  |  |  |  |  |  |  |  |
| Male | 8.3 | 16.2 | 25.3 | 6.4 | 9.0 | 12.2 | 0.6 | 1.3 | 2.1 |
| Female | 9.9 | 15.7 | 24.1 | 1.7 | 1.0 | 1.6 | 0.5 | 0.4 | 1.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 25.6 | 33.1 | 36.8 | 12.3 | 12.2 | 11.9 | 2.0 | 1.5 | 2.5 |
| Complete 4 years | 7.4 | 13.6 | 21.6 | 3.2 | 3.9 | 4.9 | 0.4 | 0.7 | 1.3 |
| Region: |  |  |  |  |  |  |  |  |  |
| Northeast | 7.2 | 16.6 | 25.9 | 3.4 | 5.1 | 5.1 | 0.3 | 0.8 | 3.0 |
| North Central | 10.8 | 14.6 | 28.3 | 4.2 | 3.7 | 7.4 | 0.7 | 0.7 | 1.0 |
| South | 10.3 | 20.4 | 24.6 | 5.5 | 7.3 | 8.4 | 0.6 | 1.0 | 1.1 |
| West | 7.4 | 10.9 | 20.1 | 2.0 | 3.0 | 4.3 | 0.6 | 0.7 | 1.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |
| Large MSA | 7.7 | 12.0 | 20.8 | 1.9 | 3.0 | 3.8 | 0.4 | 0.6 | 1.1 |
| Other MSA | 8.9 | 16.6 | 26.3 | 3.6 | 4.3 | 5.6 | 0.6 | 0.8 | 2.0 |
| Non-MSA | 11.6 | 20.4 | 27.6 | 7.7 | 9.0 | 12.1 | 0.6 | 1.2 | 1.4 |
| Parental Education: ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 15.8 | 19.3 | 21.0 | 6.9 | 3.7 | 6.1 | 1.1 | 1.1 | 3.7 |
| 2.5-3.0 | 12.2 | 19.9 | 28.7 | 6.0 | 5.8 | 8.8 | 0.7 | 0.9 | 2.0 |
| 3.5-4.0 | 9.6 | 17.8 | 26.3 | 3.5 | 5.2 | 4.6 | 0.5 | 0.9 | 1.6 |
| 4.5-5.0 | 6.7 | 12.6 | 23.8 | 3.2 | 4.4 | 7.9 | 0.4 | 0.8 | 0.8 |
| 5.5-6.0 (High) | 5.2 | 10.8 | 19.9 | 2.9 | 4.4 | 5.4 | 0.4 | 0.6 | 1.0 |

NOTE: '-' indicates data not available.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }} 8$ th and 10th grades only: Data based on two of four forms; N is one-half of N indicated.
${ }^{\mathrm{b}}$ 12th grade only: Data based on one of six forms; N is one-sixth of N indic ated.
${ }^{\mathrm{c}} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{\text {d Parental education is an average score of mother'seducation and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high school, }}$ (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables

## TABLE 4-8

## Thirty-Day Prevalence of Daily Use of Various Drugs by Subgroups Eighth, Tenth, and Twelfth Graders, 2004

(Entries are percentages)

| Grade: |  |  |  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Manijuana |  |  | Alcohol |  |  |  |  |  | Cigarettes |  |  |  |  |  | Smokeless Tobacco ${ }^{\text {a }}$ |  |  |
|  | Approx. $N^{\text {b }}$ |  |  | Daily |  |  | Daily |  |  | 5+Drinks ${ }^{\text {c }}$ |  |  | One or More Daily |  |  | Half-pack or More Daily |  |  | Daily |  |  |
|  | 8th | 10th | 12th |
| Total | 17,000 | 16,400 | 14,600 | 0.8 | 3.2 | 5.6 | 0.6 | 1.3 | 2.8 | 11.4 | 22.0 | 29.2 | 4.4 | 8.3 | 15.6 | 1.7 | 3.3 | 8.0 | 1.0 | 1.6 | 2.8 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8,100 | 7.900 | 6,800 | 0.9 | 4.1 | 7.7 | 0.6 | 1.8 | 4.1 | 10.8 | 23.8 | 34.3 | 4.3 | 8.2 | 15.4 | 1.7 | 3.5 | 8.0 | 1.7 | 3.0 | 5.6 |
| Female | 8,500 | 8,300 | 7,200 | 0.6 | 2.2 | 3.1 | 0.6 | 0.7 | 1.4 | 11.8 | 20.2 | 24.2 | 4.3 | 8.2 | 15.0 | 1.7 | 2.9 | 7.5 | 0.3 | 0.2 | 0.2 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 1,600 | 1,900 | 2,800 | 3.3 | 9.0 | 8.1 | 2.2 | 3.7 | 4.3 | 25.1 | 32.9 | 34.6 | 15.4 | 21.4 | 26.9 | 7.4 | 10.8 | 16.0 | 3.8 | 5.0 | 5.0 |
| Complete 4 years | 15,000 | 14,300 | 11,000 | 0.4 | 2.3 | 4.5 | 0.5 | 1.0 | 2.2 | 10.0 | 20.4 | 27.6 | 3.1 | 6.4 | 12.2 | 1.1 | 2.2 | 5.6 | 0.7 | 1.1 | 2.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3,200 | 3,600 | 3,100 | 0.5 | 3.3 | 6.8 | 0.3 | 0.9 | 3.3 | 9.8 | 25.5 | 33.2 | 3.3 | 8.5 | 16.2 | 1.4 | 3.6 | 9.0 | 1.0 | 2.1 | 1.9 |
| North Central | 4,000 | 4,600 | 3,800 | 0.6 | 3.0 | 5.1 | 0.6 | 1.0 | 2.6 | 12.5 | 18.3 | 30.2 | 5.7 | 7.4 | 18.5 | 2.3 | 3.0 | 8.8 | 0.6 | 0.8 | 3.0 |
| South | 6,300 | 4,900 | 5,000 | 0.9 | 3.4 | 5.0 | 0.8 | 1.6 | 2.8 | 11.6 | 22.4 | 26.1 | 4.7 | 11.0 | 15.8 | 1.8 | 4.3 | 8.9 | 1.7 | 2.6 | 3.7 |
| West | 3,500 | 3,300 | 2,700 | 0.9 | 3.0 | 6.1 | 0.6 | 1.6 | 2.5 | 11.5 | 22.6 | 28.6 | 3.3 | 5.2 | 10.1 | 1.2 | 1.8 | 4.1 | 0.3 | 0.6 | 1.7 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5,000 | 5,000 | 4,200 | 0.6 | 2.5 | 5.2 | 0.5 | 0.7 | 2.5 | 10.6 | 19.6 | 25.5 | 3.5 | 5.6 | 12.6 | 1.3 | 1.9 | 6.0 | 0.4 | 0.8 | 0.8 |
| Other MSA | 7,900 | 7,800 | 6,800 | 0.8 | 3.3 | 6.3 | 0.5 | 1.5 | 3.3 | 11.3 | 23.4 | 31.9 | 4.1 | 8.1 | 16.1 | 1.6 | 3.3 | 8.2 | 0.6 | 1.3 | 2.2 |
| Non-MSA | 4,100 | 3,600 | 3,600 | 0.8 | 3.8 | 4.7 | 0.9 | 1.5 | 2.3 | 12.8 | 22.2 | 28.2 | 5.9 | 12.3 | 18.0 | 2.4 | 5.2 | 10.0 | 2.6 | 3.4 | 6.2 |
| Parental Educ ation: ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,200 | 1,300 | 1,000 | 1.6 | 5.3 | 5.5 | 1.5 | 1.6 | 3.4 | 19.2 | 27.1 | 22.9 | 10.1 | 11.4 | 14.2 | 5.6 | 6.6 | 8.6 | 2.8 | 1.5 | 3.0 |
| 2.5-3.0 | 3,400 | 3,400 | 3,400 | 0.8 | 3.8 | 5.5 | 0.6 | 1.6 | 3.0 | 14.9 | 24.4 | 28.8 | 5.6 | 11.5 | 19.4 | 2.1 | 5.3 | 10.9 | 1.1 | 1.8 | 4.2 |
| 3.5-4.0 | 4,000 | 4,200 | 4,000 | 0.7 | 3.4 | 5.9 | 0.6 | 1.1 | 2.9 | 11.6 | 22.6 | 30.9 | 4.2 | 9.3 | 16.3 | 1.5 | 3.8 | 8.2 | 0.8 | 2.4 | 2.0 |
| 4.5-5.0 | 4,300 | 4,300 | 3,600 | 0.5 | 2.0 | 5.5 | 0.2 | 1.1 | 2.0 | 9.5 | 19.7 | 30.5 | 2.8 | 5.4 | 13.7 | 0.8 | 1.4 | 6.1 | 0.7 | 0.7 | 2.6 |
| 5.5-6.0 (High) | 2,500 | 2,400 | 2,000 | 0.3 | 1.7 | 3.7 | 0.4 | 1.2 | 2.6 | 7.2 | 20.4 | 27.8 | 1.9 | 4.2 | 10.3 | 0.6 | 1.0 | 4.7 | 0.8 | 0.9 | 1.9 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ 8th and 10th grades only: Data based on two of four forms; N is one-half of N indicated. 12th grade only: Data based on one of six forms; N is one-sixth of N indicated.
${ }^{\text {b }}$ Subgroup Ns may vary depending on the number of forms in which the use of each drug wasasked about.
${ }^{\text {c }}$ This measure refers to having five or more drinks in a row in the last two weeks.
${ }^{\text {d Parental education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high school, }}$ (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.

## TABLE 4-9

Racial/Ethnic Comparisons of Lifetime, Annual, Thirty-Day, and Daily Prevalence of Use of Various Drugs
Eighth, Tenth, and Twelfth Graders, 2004
Note: Percentages are based on 2003 and 2004 data combined. ${ }^{\text {a }}$

|  | Any llici it Druq ${ }^{\text {b }}$ |  |  | Any Illic it Drug OtherThan Marijuana ${ }^{\text {b }}$ |  |  | Marijuana |  |  | Inhalants ${ }^{\text {c,d }}$ |  |  | Hallucinogens ${ }^{\text {d }}$ |  |  | LSD |  | 12th | Halluc inogens Other Than LSD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th | 8th | 10th |  | 8th | 10th | 12th |
| Lifetime: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 20.4 | 40.1 | 53.4 | 12.8 | 21.2 | 31.4 | 15.1 | 35.1 | 48.2 | 16.7 | 13.4 | 12.3 | 3.8 | 7.7 | 11.6 | 1.8 | 3.6 | 5.8 | 3.2 | 6.9 | 10.2 |
| Black | 23.4 | 41.4 | 41.7 | 8.1 | 7.7 | 9.6 | 19.9 | 38.0 | 39.1 | 12.0 | 7.7 | 6.0 | 2.2 | 1.4 | 1.7 | 1.5 | 0.6 | 1.1 | 1.4 | 1.1 | 1.4 |
| Hispanic | 30.7 | 46.4 | 49.6 | 18.2 | 23.6 | 26.8 | 23.7 | 39.9 | 42.7 | 19.9 | 14.3 | 9.9 | 5.3 | 7.4 | 8.3 | 3.1 | 3.5 | 4.9 | 4.0 | 6.4 | 6.7 |
| Annual: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 14.9 | 32.2 | 42.0 | 8.7 | 15.7 | 22.8 | 11.5 | 28.2 | 37.3 | 9.6 | 6.5 | 4.7 | 2.5 | 4.9 | 7.0 | 1.1 | 1.9 | 2.2 | 2.2 | 4.4 | 6.4 |
| Black | 14.6 | 29.3 | 27.7 | 4.4 | 4.6 | 6.5 | 12.8 | 27.0 | 25.5 | 5.4 | 2.1 | 1.3 | 1.2 | 0.8 | 1.2 | 0.8 | 0.4 | 0.8 | 0.8 | 0.7 | 0.9 |
| Hispanic | 20.9 | 34.5 | 34.4 | 10.4 | 15.1 | 16.2 | 16.7 | 29.8 | 29.5 | 10.6 | 5.7 | 2.9 | 2.9 | 3.8 | 4.1 | 1.8 | 1.7 | 1.7 | 2.2 | 3.2 | 3.7 |
| 30-Day: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 8.4 | 19.3 | 25.7 | 4.4 | 8.0 | 11.8 | 6.2 | 16.5 | 22.1 | 4.3 | 2.6 | 1.7 | 1.0 | 1.8 | 2.0 | 0.4 | 0.6 | 0.6 | 0.8 | 1.6 | 1.7 |
| Black | 9.1 | 17.5 | 16.8 | 2.6 | 2.3 | 4.0 | 7.7 | 16.3 | 15.2 | 3.0 | 0.9 | 0.9 | 0.6 | 0.4 | 0.7 | 0.5 | 0.2 | 0.6 | 0.3 | 0.3 | 0.5 |
| Hispanic | 12.1 | 20.0 | 19.9 | 5.9 | 7.5 | 8.6 | 9.3 | 17.1 | 16.6 | 4.9 | 2.3 | 0.9 | 1.7 | 1.3 | 1.4 | 1.0 | 0.7 | 0.7 | 1.3 | 1.0 | 1.2 |
| Daily: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | 0.7 | 3.5 | 6.3 | - | - | - | - | - | - | - | - | - | - | - | - |
| Black | - | - | - | - | - | - | 1.2 | 2.8 | 3.2 | - | - | - | - | - | - | - | - | - | - | - | - |
| Hispanic | - | - | - | - | - | - | 1.1 | 2.9 | 4.0 | - | - | - | - | - | - | - | - | - | - | - | - |

NOTES: '-' indicates data not available.
The following sample sizes are based on the 2003 and 2004 surveys combined:

| Sample Sizes: | 8th Grade | 10th Grade | 12th Grade |
| :---: | :---: | :---: | :---: |
| White | 20,400 | 19,900 | 19,600 |
| Black | 3,900 | 4,600 | 3,200 |
| an | ,200 | ,500 | ,800 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE 4-9 (cont'd)

Racial/Ethnic Comparisons of Lifetime, Annual, Thirty-Day, and Daily Prevalence of Use of Various Drugs
Eighth, Tenth, and Twelfth Graders, 2004
Note: Percentages are based on 2003 and 2004 data combined. ${ }^{\text {a }}$

|  | MDMA ${ }^{\text {e,f }}$ |  |  | Cocaine |  |  | Crack |  |  | Other Cocaine ${ }^{\text {g }}$ |  |  | Heroin |  |  | Heroin with a Needle ${ }^{\text {c }}$ |  |  | Heroin without a Needle ${ }^{\text {c }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Lifetime: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 3.0 | 5.2 | 8.6 | 3.1 | 5.3 | 8.5 | 2.2 | 2.4 | 3.7 | 2.4 | 4.8 | 7.5 | 1.5 | 1.6 | 1.4 | 0.9 | 0.8 | 0.6 | 1.0 | 1.1 | 1.6 |
| Black | 2.5 | 1.6 | 2.9 | 2.1 | 1.1 | 1.8 | 1.5 | 0.7 | 1.5 | 1.4 | 0.9 | 1.7 | 1.0 | 0.6 | 0.9 | 0.7 | 0.4 | 0.6 | 0.7 | 0.5 | 1.0 |
| Hispanic | 4.1 | 5.8 | 7.8 | 6.8 | 9.5 | 10.5 | 4.7 | 5.4 | 5.4 | 5.1 | 8.3 | 9.1 | 3.4 | 1.8 | 1.4 | 2.4 | 1.2 | 0.9 | 2.0 | 1.3 | 1.2 |
| Annual: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 1.9 | 3.1 | 4.7 | 1.9 | 3.7 | 5.6 | 1.3 | 1.6 | 2.2 | 1.5 | 3.4 | 4.8 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 | 0.3 | 0.5 | 0.6 | 0.7 |
| Black | 1.6 | 0.9 | 1.6 | 1.0 | 0.8 | 1.2 | 0.8 | 0.4 | 1.3 | 0.8 | 0.7 | 1.1 | 0.7 | 0.4 | 0.7 | 0.5 | 0.2 | 0.5 | 0.5 | 0.3 | 0.7 |
| Hispanic | 2.3 | 3.0 | 3.7 | 3.6 | 5.8 | 5.5 | 2.6 | 3.1 | 3.0 | 2.8 | 5.1 | 4.8 | 1.7 | 1.2 | 1.0 | 1.3 | 0.8 | 0.7 | 1.0 | 0.9 | 0.7 |
| 30-Day: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 0.7 | 1.0 | 1.3 | 0.8 | 1.5 | 2.3 | 0.5 | 0.7 | 0.9 | 0.6 | 1.3 | 2.0 | 0.4 | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 |
| Black | 0.8 | 0.5 | 0.8 | 0.6 | 0.5 | 0.9 | 0.5 | 0.3 | 1.1 | 0.5 | 0.4 | 0.9 | 0.3 | 0.3 | 0.6 | 0.2 | 0.2 | 0.4 | 0.1 | 0.2 | 0.5 |
| Hispanic | 1.5 | 1.0 | 1.2 | 1.8 | 2.8 | 2.5 | 1.4 | 1.4 | 1.3 | 1.4 | 2.4 | 2.1 | 0.8 | 0.5 | 0.4 | 0.7 | 0.4 | 0.3 | 0.5 | 0.3 | 0.3 |
| Daily: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Black | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Hispanic | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

NOTE: '-' indicates data not available.
SOURCE: The Monitoring the Future Study, the University of Michigan
${ }^{\text {a }}$ To derive percentagesforeach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.
${ }^{\mathrm{b}}$ 8th and 10th grades only: The use of other narcoticsand barbiturates has been excluded because these younger respondents appearto overreport use (perhaps because they include the use of nonprescription drugs in their answers). 12th grade only: Use of "any illic it drug" includes any use of marijuana, LSD, other halluc inogens, crack, other cocaine, or heroin, or a ny use of other narcotics, a mpheta mines, barbiturates, or tranquilizers not under a doctor's orders.

## TABLE 4-9 (cont'd)

Racial/Ethnic Comparisons of Lifetime, Annual, Thirty-Day, and Daily Prevalence of Use of Various Drugs
Eighth, Tenth, and Twelfth Graders, 2004
Note: Percentages are based on 2003 and 2004 data combined. ${ }^{\text {a }}$

|  | Other <br> Narcotics ${ }^{\text {h }}$ |  |  | Amphetamines ${ }^{\text {h }}$ |  |  | Methamphetamine ${ }^{\mathrm{f}, \mathrm{i}}$ |  |  | Crystal Meth. (Ice) ${ }^{f}$ |  |  | Sedatives (Barbiturates) ${ }^{h}$ |  |  | Methaqualone ${ }^{\text {h,j }}$ |  |  | Tranquilizers ${ }^{\text {b }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Lifetime: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 15.9 | 8.7 | 14.7 | 17.0 | 3.5 | 5.6 | 6.7 | - | - | 3.9 | - | - | 10.7 | - | - | 1.1 | 4.3 | 9.0 | 12.3 |
| Black | - | - | 3.5 | 3.9 | 4.5 | 4.0 | 0.9 | 1.0 | 2.0 | - | - | 2.4 | - | - | 3.4 | - | - | 0.2 | 2.5 | 2.0 | 2.5 |
| Hispanic | - | - | 8.5 | 9.0 | 11.5 | 11.5 | 4.6 | 7.8 | 7.2 | - | - | 4.7 | - | - | 8.0 | - | - | 0.9 | 5.4 | 8.2 | 8.2 |
| Annual: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 11.2 | 5.9 | 10.6 | 11.6 | 2.2 | 3.4 | 3.5 | - | - | 2.0 | - | - | 7.4 | - | - | 0.6 | 2.8 | 6.5 | 8.4 |
| Black | - | - | 2.7 | 2.1 | 2.7 | 2.4 | 0.6 | 0.8 | 1.8 | - | - | 0.7 | - | - | 2.4 | - | - | 0.2 | 1.2 | 1.3 | 1.7 |
| Hispanic | - | - | 5.5 | 5.4 | 7.3 | 7.0 | 3.0 | 4.6 | 3.4 | - | - | 2.6 | - | - | 4.7 | - | - | 0.7 | 3.4 | 4.5 | 4.5 |
| 30-Day: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 5.0 | 2.8 | 5.0 | 5.5 | 0.9 | 1.4 | 1.5 | - | - | 0.7 | - | - | 3.3 | - | - | 0.3 | 1.3 | 2.9 | 3.4 |
| Black | - | - | 1.5 | 0.9 | 1.2 | 1.5 | 0.3 | 0.3 | 1.7 | - | - | 0.6 | - | - | 1.2 | - | - | 0.2 | 0.7 | 0.7 | 1.0 |
| Hispanic | - | - | 2.3 | 2.7 | 3.3 | 3.5 | 1.4 | 2.2 | 1.5 | - | - | 0.9 | - | - | 2.3 | - | - | 0.6 | 2.0 | 1.8 | 2.3 |
| Daily: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Black | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Hispanic | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

NOTE: '-' indic ates data not available.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {c }}$ 12th grade only: Data based on three of six forms; N is one-half of N indic ated.
${ }^{\text {d }}$ Unadjusted for known undereporting of certain drugs. See text for details.
e8th and 10th grades only: Data based on two of four forms; N is one-half of N indicated
${ }^{f} 12$ th grade only: Data based on two of six forms; N is two-sixths of N indic ated.
${ }^{9} 12$ th grade only: Data based on four of six forms; N is four-sixths of N indic ated.
"Only drug use not under a doctor's orders is included here.

## TABLE 4-9 (cont'd)

## Racial/Ethnic Comparisons of Lifetime, Annual, Thirty-Day, and Daily Prevalence of Use of Various Drugs <br> Eighth, Tenth, and Twelfth Graders, 2004

Note: Percentages are based on 2003 and 2004 data combined. ${ }^{\text {a }}$

|  | Alcohol |  |  | Been Drunk ${ }^{\text {f }}$ |  |  | 5+Drinks ${ }^{\text {k }}$ |  |  | Cigarettes |  |  | Half-pack orMore |  |  | Smokeless <br> Tobacco ${ }^{\text {e.j }}$ |  |  | Steroids ${ }^{\text {f }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade: | 8th | 10th | 12th |
| Lifetime: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 43.6 | 66.0 | 79.3 | 20.4 | 46.0 | 64.1 | - | - | - | 27.3 | 42.6 | 56.1 | - | - | - | 12.2 | 16.9 | 20.7 | 2.1 | 2.9 | 3.6 |
| Black | 46.9 | 61.0 | 66.7 | 15.5 | 29.5 | 33.9 | - | - | - | 28.8 | 36.7 | 39.4 | - | - | - | 7.4 | 7.5 | 4.1 | 1.7 | 1.7 | 2.0 |
| Hispanic | 52.6 | 71.6 | 77.4 | 24.4 | 44.5 | 54.7 | - | - | - | 32.1 | 45.9 | 53.3 | - | - | - | 9.2 | 10.0 | 8.8 | 2.9 | 2.9 | 3.1 |
| Annual: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 36.9 | 61.0 | 73.9 | 15.4 | 39.5 | 56.0 | - | - | - | - | - | - | - | - | - | - | - | - | 1.3 | 1.8 | 2.4 |
| Black | 33.6 | 50.1 | 55.9 | 9.4 | 19.6 | 24.4 | - | - | - | - | - | - | - | - | - | - | - | - | 0.9 | 0.7 | 1.3 |
| Hispanic | 44.0 | 64.3 | 69.6 | 16.6 | 34.5 | 41.5 | - | - | - | - | - | - | - | - | - | - | - | - | 1.7 | 1.6 | 2.4 |
| 30-Day: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 19.2 | 37.8 | 52.2 | 6.8 | 21.7 | 36.4 | - | - | - | 10.0 | 18.7 | 28.2 | - | - | - | 4.4 | 6.1 | 8.2 | 0.6 | 0.9 | 1.4 |
| Black | 16.2 | 24.6 | 29.2 | 4.1 | 8.3 | 14.3 | - | - | - | 6.9 | 9.2 | 10.1 | - | - | - | 3.0 | 2.7 | 0.6 | 0.4 | 0.4 | 1.1 |
| Hispanic | 23.5 | 39.5 | 45.4 | 8.1 | 17.0 | 24.1 | - | - | - | 10.1 | 13.9 | 18.5 | - | - | - | 4.0 | 3.3 | 3.9 | 0.9 | 0.9 | 1.8 |
| Daily: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 0.5 | 1.5 | 3.2 | 0.1 | 0.5 | 1.8 | 11.3 | 24.0 | 32.5 | 4.7 | 10.0 | 18.3 | 1.9 | 4.7 | 10.0 | 0.9 | 2.1 | 3.2 | - | - | - |
| Black | 0.6 | 0.5 | 1.2 | 0.2 | 0.2 | 0.8 | 9.8 | 11.6 | 11.4 | 2.7 | 4.4 | 5.2 | 1.1 | 1.0 | 1.6 | 0.5 | 0.6 | 0.0 | - | - | - |
| Hispanic | 1.4 | 1.7 | 2.7 | 0.6 | 0.6 | 1.8 | 16.1 | 26.9 | 26.0 | 3.5 | 6.0 | 8.2 | 1.4 | 1.5 | 2.9 | 0.9 | 0.9 | 1.1 | - | - | - |

NOTE: '-' indic ates data not available.
SOURCE: The Monitoring the Future Study, the University of Michigan
'8th and 10th grades only: Data based on one form; N is one-third of N indicated.
12th grade only: Data based on one of six forms; $N$ is one-sixth of $N$ indic ated.
kThis measure refers to having five or more drinks in a row in the last two weeks.

FIGURE 4-1
Prevalence and Recency of Use of
Various Types of Drugs for Eighth, Tenth, and Twelfth Graders, 2004

Eighth Graders

*Annual use not measured for cigarettes and smokeless tobacco.

FIGURE 4-1 (cont.)
Prevalence and Recency of Use of Various Types of Drugs for Eighth, Tenth, and Twelfth Graders, 2004

Twelfth Graders

*Annual use not measured for cigarettes and smokeless tobacco.

FIGURE 4-2
Thirty-Day Prevalence of Daily Use of
Various Types of Drugs for Twelfth Graders, 2004

Twelfth Graders


FIGURE 4-3
Noncontinuation Rates: Percentage of Lifetime Users
Who Did Not Use in Past Year
Eighth, Tenth, and Twelfth Graders, 2004

Eighth Graders

*Percent of regular smokeless tobacco users (ever) who did not use smokeless tobacco in the last 30 days.
**Percent of regular smokers (ever) who did not smoke at all in the last 30 days.

FIGURE 4-3 (cont.)
Noncontinuation Rates: Percentage of Lifetime Users
Who Did Not Use in Past Year
Eighth, Tenth, and Twelfth Graders, 2004

Twelfth Graders

*Percent of regular smokeless tobacco users (ever) who did not use smokeless tobacco in the last 30 days.
**Percent of regular smokers (ever) who did not smoke at all in the last 30 days.

## FIGURE 4-4

## States Included in the Four Regions of the Country



These are the four major regions of the country as defined by the U.S. Bureau of the Census.

## Chapter 5

## TRENDS IN DRUG USE

In a survey series like the Monitoring the Future study, the most important epidemiological findings are likely to be those concerning the changes that take place over time. What drugs are rising or declining in popularity? How fast are they changing? Among what age groups is change taking place? How different are the various demographic subgroups in terms of both their levels and trends in use? The answers to these questions have important implications for public policy and, more generally, the health of the nation. In this chapter, we review the changes that have been taking place through 2004, and we consider in what sectors of the population those changes are occurring.

Trend data are presented and discussed first for 12th graders, based on 30 years of data (1975 through 2004), then for 8th and 10th graders, based on 14 years of survey data (1991 through 2004). The outcome measures that we discuss for a wide variety of substances include lifetime use, use during the past 12 months, use during the past 30 days, and daily or near-daily use during the past 30 days. ${ }^{47}$ Trends in noncontinuation rates among 12th graders are also examined. Finally, we discuss the extent to which the trends in use differ among key demographic subgroups defined on the dimensions of gender, college plans, region of the country, population density, socioeconomic status, and race/ethnicity.

## TRENDS IN PREVALENCE OF USE 1975-2004: TWELFTH GRADERS

Tables 5-1 through 5-4 give trends in lifetime, annual, 30-day, and current daily prevalence of use for all drugs, based on the past 30 graduating classes of high school seniors. Figures 5-1 through 5-4n provide graphic depictions of some of these trends.

- We know from other studies that in the late 1960s and early 1970s, prior to the launching of the Monitoring the Future (MTF) study in 1975, marijuana use rose quite sharply from relatively negligible levels in the youth population. ${ }^{48}$ Based on MTF data, the years 1978 and 1979 marked the crest of this long and dramatic rise in marijuana use among American high school seniors (and, for that matter, among young people generally). As Tables 5-2 and 5-3 and Figure 5-4a illustrate, annual and 30-day prevalence of marijuana use leveled between 1978 and 1979, following a steady rise in the preceding years. In 1980, both statistics dropped for the first time and continued to decline every year through 1992, except for a brief pause in 1985. Following this 12 -year decline, annual

[^33]use among 12th graders rose sharply beginning in 1993. In all, it nearly doubled between 1992 and 1997, from $22 \%$ to $39 \%$. Thirty-day prevalence also rose significantly, doubling from the 1992 level of $12 \%$ to $24 \%$ in 1997. It was not until 1998 that these statistics turned around, although neither declined by a significant amount. By 2004, annual use had declined to $34 \%$, still only modestly lower than the recent peak level of 39\% in 1997.

Lifetime prevalence of marijuana use first began to drop after 1980, though more gradually than annual or 30 -day use. ${ }^{49}$ It reached a low 12 years later, in 1992, when it was $33 \%$, but by $1997,50 \%$ of all seniors had tried marijuana before leaving high school. (This was still below the peak level of $60 \%$ in 1980.) Lifetime use remained level between 1997 and 2001 and then began to decline, reaching $46 \%$ in 2003, where it remained in 2004.

Important changes in the attitudes and beliefs that young people hold in relation to marijuana have also occurred over this period, and these changes can account for much of the long-term decline in use, as well as the increase in use during much of the 1990s. (See chapter 8 for a thorough discussion of the issue.)

- Of particular importance were the even sharper fluctuations that occurred for active daily marijuana use (Table 5-4 and Figure 5-4m). Between 1975 and 1978 there was an almost twofold increase in daily use. The proportion reporting daily use in the class of 1975 (6.0\%) came as a shock to many; then that proportion rose rapidly so that by 1978 one in every nine high school seniors (10.7\%) indicated that he or she was currently using the drug on a daily or nearly daily basis (defined as use on 20 or more occasions in the last 30 days). In 1979 this rapid and troublesome increase halted, followed by a rapid reversal. By 1992 the daily usage rate had dropped to $1.9 \%$, well below the peak rate of $10.7 \%$, or even the $6.0 \%$ level first observed in 1975 . As is discussed in chapter 8 , we attribute much of this dramatic decline to a very substantial increase in concerns about possible adverse effects from regular use and to a growing perception that peers would disapprove of marijuana use, particularly regular use.

In 1993, for the first time in 15 years, daily marijuana use increased significantly, and it continued to increase significantly through 1997, reaching $5.8 \%$-three times the rate in 1992. It then held fairly level through 2004, not declining in parallel with annual or 30day prevalence. In 2004, high school seniors showed a nonsignificant $0.4 \%$ decline to $5.6 \%$, which would not seem worth mentioning if it were not in the context of the other four age populations under study all showing some decline in daily marijuana use this year. (See chapter 10 for a discussion of cumulative daily marijuana use among high school seniors. It shows that the proportion reporting having used marijuana daily for a month or more at some time in the past is considerably higher than the proportion reporting using marijuana daily in just the month immediately preceding the survey.)

[^34]- Until 1978, the proportion of seniors involved in any illicit drug use increased steadily, primarily because of the increase in marijuana use (see Figures 5-1 to 5-4a). About 54\% of the classes of 1978 and 1979 reported taking at least one illicit drug during the prior 12 months, up from our first observation of $45 \%$ in the class of 1975. Between 1979 and 1984, however, the proportion who reported using any illicit drug during the prior year dropped by 1 to 3 percentage points annually until 1985, when there was a brief pause in the decline. In 1986 the decline resumed, with annual prevalence dropping significantly to $27 \%$ by 1992 , exactly half the level observed in 1979 . As with marijuana, the annual prevalence of using any illicit drug then increased substantially from 27\% in 1992 to $42 \%$ in 1997, before leveling. By 2003, annual prevalence had fallen somewhat to $39 \%$, where it remained in 2004.
- As Table 5-1 and Figure 5-1 illustrate, between 1976 and 1981 there was a steady increase in the proportion of 12th graders using any illicit drug other than marijuana. ${ }^{50}$ The annual prevalence of such behaviors (see Table 5-2 and Figure 5-2), which rose by 9 percentage points between 1976 and 1981 (from $25 \%$ to $34 \%$ ), began a steady decline after 1981 to $15 \%$ by 1992-less than half of the 1981 prevalence. After 1992, however, annual prevalence of use rose again (along with marijuana use), to $21 \%$ by 1997, and held steady through 2004 (21\%). In the earlier period, the 30-day prevalence-of-use numbers exhibited the largest proportional drop-a $71 \%$ decline-from 22\% in 1981 to 6\% in 1992 (see Table 5-3 and Figure 5-3). In 1993 both annual and 30-day prevalence rates showed some increases, indicating that the turnaround in the early 1990s was not confined to marijuana use. Annual prevalence rose from $15 \%$ in 1992 to $21 \%$ in 1997. As a whole, the increases during the 1990s in the use of illicit drugs other than marijuana were not as sharp in either absolute or proportional terms as the increases in marijuana use.

Most of the earlier rise in the use of any illicit drug other than marijuana apparently resulted from the increasing popularity of cocaine with this age group between 1976 and 1979 and, then, to the increasing use of amphetamines between 1979 and 1981. As stated earlier in this volume, we believe that the upward shift in amphetamine use was exaggerated because some respondents included instances of using over-the-counter amphetamines in their reports of amphetamine use. Figures 5-1 through 5-3 show trends that, beginning in 1982, were based on questions reworded to encourage respondents to exclude the inappropriate reporting of these nonprescription amphetamines.

- Although the overall proportion using illicit drugs other than marijuana has changed gradually and steadily over the years, much greater fluctuations have occurred for specific drugs within this general class. This fact is important to recognize because it

[^35]shows that, while the proportion willing to try any illicit drug may put outer limits on the amplitude of fluctuations for any single drug, the various subclasses of drugs must have important determinants specific to them. In particular, they include variables such as perceived risks, peer normative attitudes, assumed benefits, and availability, as well as novelty. Such variables will be discussed in chapters 8 and 9. (See Tables 5-1 through 5-3 for the long-term trends in 12th graders’ lifetime, annual, and monthly prevalence for each class of drugs. Figures 5-4a through 5-4n graph these trends for annual prevalence, along with the trends for 8th and 10th graders.) We next discuss the trends in these specific classes of drugs.

- From 1976 to 1979, cocaine (Figure 5-4e) exhibited a substantial increase in popularity, with annual prevalence doubling in just three years from $6.0 \%$ in the class of 1976 to $12.0 \%$ in the class of 1979 . Then there was little or no further change observed in any of the cocaine prevalence statistics for seniors between 1979 and 1984, at least in the overall national statistics. (Subgroup differences in trends are discussed subsequently.) In 1985, we reported statistically significant increases in annual and monthly use of cocaine, then a leveling again in 1986. Between 1986 and 1992, however, both indicators of use decreased by three-quarters or more: annual use decreased from $12.7 \%$ to $3.1 \%$ and monthly use decreased from $6.2 \%$ to $1.3 \%$. (Reasons for this decrease are discussed in chapter 8.) Annual prevalence then rebounded; in fact, it exactly doubled from 3.1\% in 1992 to $6.2 \%$ in 1999, as did 30 -day prevalence, from $1.3 \%$ to $2.6 \%$. Finally, in 2000 the first significant decline in cocaine use in several years was observed; annual prevalence among seniors dropped to $5.0 \%$, about where it remained in 2003 (4.8\%) and 2004 (5.3\%).
- Use of crack cocaine was first measured in 1986 by a single question contained in one questionnaire form and asked only of those respondents who had reported any use of cocaine in the past 12 months. It simply asked if crack was one of the forms of cocaine they had used. It was thus an estimate of the annual prevalence of crack use.

However, prior to 1986, other indicators gathered routinely in the study showed some indirect evidence of the rapid spread of crack. For example, we found that the proportion of all seniors reporting that they had smoked cocaine (as well as used it in the past year) more than doubled between 1983 and 1986, from $2.4 \%$ to $5.7 \%$. In the same period, the proportion doubled (from $0.4 \%$ to $0.8 \%$ ) of those who said that they had both used cocaine during the prior year and at some time been unable to stop using it when they tried to stop. In addition, between 1984 and 1986 the proportion of seniors reporting active daily use of cocaine doubled (from $0.2 \%$ to $0.4 \%$ ). We think it likely that the rapid advent of crack use during this period was reflected in all of these changes.

In 1987, questions about crack use were introduced into two questionnaire forms, using our standard set of three questions that ask separately about frequency of use in lifetime, past 12 months, and past 30 days. These were added subsequently to all questionnaire forms beginning in 1990.

Between 1986 and 1991, annual crack prevalence of use declined from $4.1 \%$ to $1.5 \%$, or by about $60 \%$ (see Figure 5-4e). It then leveled for a couple of years. After 1993, annual prevalence rose steadily from $1.5 \%$ to $2.7 \%$ in 1999, before finally declining significantly in 2000 to $2.2 \%$, where it remains in 2003 and 2004. It is important to note that crack use may be disproportionately concentrated among dropouts relative to most other drugs. In general, it would seem likely that the trends among dropouts would parallel those seen among high school seniors, who represent the majority of that age population, but there could be exceptions.

- Like cocaine use, inhalant use rose steadily, but more slowly, in the late 1970s (see Figure 5-4b). Annual prevalence (unadjusted for the omission of nitrite inhalants) rose from $3.0 \%$ in 1976 to peak at $5.4 \%$ in 1979. Starting in 1979, when separate questions were introduced to measure the rising use of nitrite inhalants, an adjustment was introduced into the overall inhalant use measure to correct for the underreporting of nitrite inhalants that we had determined existed. Between 1979 and 1983, we reported some overall decline in this adjusted version-in part due to a substantial drop in the use of amyl and butyl nitrites, for which annual prevalence declined from $6.5 \%$ in 1979 to $3.6 \%$ in 1983. Both the inhalant adjusted and unadjusted measures increased modestly between 1983 and 1986, with annual use of inhalants (adjusted) increasing from 6.2\% in 1983 to $8.9 \%$ in 1986 and that of nitrites increasing less, from $3.6 \%$ to $4.7 \%$.

After 1986 there was a steep decline in annual nitrite use (from $4.7 \%$ to $0.5 \%$ in 1992) but only a modest decline in overall inhalant use (adjusted), with annual prevalence of use falling from $8.9 \%$ in 1986 to $6.4 \%$ in 1992, before rising again to $8.5 \%$ by 1996. The gradual convergence of the unadjusted and adjusted inhalant prevalence rates (seen in Figure 5-4b) suggests that the number of seniors who used nitrites but did not report themselves as inhalant users on the general inhalant use question diminished considerably by 1992, as would be expected in light of the overall decline in nitrite use. From 1992 to 1996, however, the annual prevalence of nitrite use rose slightly, from $0.5 \%$ to $1.6 \%$ in 1996-a large proportional change but on a very low base. After 1996, nitrite use gradually declined to $0.6 \%$ in 2001. It stands at $0.8 \%$ in 2004.

This unusual pattern of change, in which inhalant use unadjusted for nitrites rose over much of the life of the study while the version adjusted for nitrites stayed fairly level over most of the life of the study (Figure 5-4b), is worthy of further consideration. Essentially, inhalants other than nitrites rose in use, but after 1979 the increase was largely offset or masked in the adjusted inhalants measure by the sharp decline in the use of nitrites. In the class of 1976, when the inhalant questions were first introduced, $10.3 \%$ indicated any lifetime use (unadjusted), versus $17.4 \%$ in 1995-a substantial increase. Annual prevalence (unadjusted) more than doubled over the same interval, from $3.0 \%$ to $8.0 \%$. Since 1995, annual prevalence dropped by half, from $8.0 \%$ in 1995 to $3.9 \%$ in 2003. In 2004, for the first time in a long time, a small increase was observed (to 4.2\%): this was a year after a significant increase in inhalant use was reported for 8th graders (as discussed below), so it may reflect the beginning of a real turnaround.

- Amphetamine use remained relatively unchanged between 1975 and 1978, began to increase in 1979, and then increased sharply between 1979 and 1981 (Figure 5-4a). From 1976 through 1981, reported annual prevalence rose by 10 percentage points (from $16 \%$ to $26 \%$ ) and daily use tripled, from $0.4 \%$ to $1.2 \%$. As stated earlier, we think these increases were somewhat exaggerated, particularly in the 1980 and 1981 surveys, by respondents who included non-amphetamine over-the-counter diet and stay-awake pills, as well as "look-alike" and "sound-alike" pills, in their answers. (See chapter 10 of Volume I for data on the use of these nonprescription stimulants.) In 1982, we added new versions of the amphetamine use questions, which were more explicit in instructing respondents not to include such nonprescription pills. (These were added to only three of the five forms of the questionnaire being used at the time; the amphetamine questions were left unchanged in the other two forms until 1984.) Between 1981 and 1982, prevalence rates dropped slightly as a result of this methodological change. In all tables and figures, data for 1975 through 1981 are based on the unchanged questions, providing comparable data across time for longer-term trend estimates; data since 1982 are based on the revised questions, providing our best assessments of current prevalence and recent trends in true amphetamine use. ${ }^{51}$

In 1982 and 1983, the two years for which both adjusted and unadjusted statistics are available, the unadjusted data showed a modest amount of overreporting (see Figure 54a). Both statistics suggest that a downturn in the use of amphetamines began in 1982 and continued for a decade. For example, between 1982 and 1992 the annual prevalence for amphetamines (revised) fell by nearly two-thirds, from $20 \%$ to $7 \%$. Current use and current daily use both fell by more than two-thirds. As with a number of other drugs, the trend lines veered upwards after 1992. Annual prevalence rose significantly from 7\% in 1992 to $10 \%$ by 1997, was level from 1998 through 2002 (11\%), and declined to $10 \%$ in 2004.

Table E-2 in Appendix E gives 29-year trends for many of the specific amphetamines. These more detailed questions about specific drugs within a class are asked only of seniors. They are contained in a single questionnaire form and are asked in a branching format, wherein a respondent must first indicate that he or she used the general class of drugs (e.g., amphetamines) in the past 12 months before being branched to the more detailed questions about which specific drugs were used in the prior 12 months. The three most widely used amphetamine-type stimulants at the beginning of the study were Benzedrine, Methedrine, and Dexedrine, which had annual prevalence rates in 1976 of $3.5 \%, 3.4 \%$, and $2.9 \%$, respectively. Benzedrine use peaked in 1977 at $4.1 \%$, Methedrine in 1981 at $5.6 \%$, and Dexedrine in 1981 at $5.1 \%$. (Recall that 1981 was the peak year for amphetamine use overall.) The use of all three drugs dropped to much lower rates of use by 1987 and to negligible rates by 1991, with relatively little change since. It has always been the case that a significant portion of the respondents reporting amphetamine use indicate that they do not know the names of ones that they used, or answer "other" on the pre-defined list (see Table E-2).

[^36]- Ritalin and crystal methamphetamine have come to predominate the class of amphetamines in recent years. Non-medical use of Ritalin grew from $0.1 \%$ in 1992 to $2.8 \%$ in 1997 and 1998 and declined slightly to $2.2 \%$ in 2000 . This statistic rose significantly in 2004 to $3.9 \%$. A newer question, added in 2001, asks about Ritalin use without using a branching question format; it yields somewhat higher annual prevalence rates for this drug of $5.1 \%$ in 2001, $4.0 \%$ in 2002 and 2003, and $5.1 \%$ in 2004. While it is clear that the question without any branching yielded a higher absolute prevalence level (which we believe is the more accurate), we consider it likely that the trend story generated by the branching question over the years has been relatively accurate.
- In 1990, a full set of prevalence questions about 12th graders' use of ice (crystal methamphetamine) that can be smoked, much like crack, was added because of growing concern about its use. (See Tables 5-1 through 5-4.) Despite the widespread concern at the time that an epidemic of ice use would develop, it did not make much of an inroad into the national population of seniors, quite possibly because the dangerous reputation of crack, with which it had so many similarities, "rubbed off" on it. Annual prevalence of use held at about $1.3 \%$ from 1990, the first measurement point, through 1992, and then use began to rise gradually during the incline phase in illicit drug use generally, to $2.8 \%$ by 1996. This over twofold increase gave ice a slightly higher prevalence rate than crack had (2.1\%) in 1996. From 1996 through 2002, ice use changed rather little and stood at $3.0 \%$ in 2002. In 2003, however, a significant decline to $2.0 \%$ was observed. Use remained essentially the same, at $2.1 \%$, in 2004.
- A general measure of the use of methamphetamine (as opposed to crystal methamphetamine) was introduced in 1999, and an annual prevalence of $4.7 \%$ was observed. Use has declined slowly since then, reaching 3.4\% in 2004.
- The sustained, gradual decline in sedative use (adjusted for methaqualone use; see Figure 5-4c) between 1975 and 1979 halted in 1980 and 1981. Annual prevalence, which had dropped steadily from $12 \%$ in 1975 to $10 \%$ in 1979, increased slightly to $11 \%$ by 1981. This increase probably reflects the increase then occurring in one of the classes of sedatives, methaqualone (discussed next). The longer-term decline resumed again in 1982, and over the next decade annual prevalence dropped all the way down to $2.9 \%$, a decline of three-quarters from the peak level in 1975. After 1992, along with a number of other drugs, an increase began in the annual measure, which doubled to $6.0 \%$ by 1998 before leveling. Use has changed rather little since then.

The overall trends for sedatives (adjusted) mask differential trends occurring for the two components of the measure (barbiturate and methaqualone use), as illustrated in Figure 54c. Barbiturate use declined steadily between 1975 and 1987 before leveling off. By 1992, annual prevalence of use (2.8\%) was less than one-third of the 1975 level (10.7\%). It then rose back steadily to reach $6.2 \%$ by 2000, dropped slightly to $5.7 \%$ in 2001, and increased significantly to $6.7 \%$ in 2002. It stands at $6.5 \%$ in 2004. Methaqualone use, on the other hand, rose sharply from 1978 until 1981. In fact, it was the only drug other than amphetamines that was still rising in 1981. But in 1982 the use of methaqualone also began to decline, helping to account for the overall sedative category resuming its decline
that year. Annual prevalence for methaqualone plummeted from $7.6 \%$ in 1981 to $0.2 \%$ in 1993; it then inched up a bit in the 1990s to $1.1 \%$ in 1996, where it remained in 1999. In 2004 it stood at $0.8 \%$, a fraction of its peak level observed in 1981 (7.6\%). In fact, because of these very low prevalence rates, methaqualone questions were dropped from five of the six questionnaire forms beginning in 1990. Therefore, since 1990 the overall sedative (adjusted) data have been based on the six-form barbiturate data adjusted by the one-form methaqualone data. ${ }^{52}$

- The rising usage statistics for tranquilizers (Figure 5-4b) peaked in 1977-near the beginning of the study-probably following a considerable period of increase. They then showed a long, steady decline for 15 years, through 1992. Lifetime prevalence of use dropped by two-thirds (from $18.0 \%$ in 1977 to $6.0 \%$ in 1992), annual prevalence by three-fourths (from $10.8 \%$ to $2.8 \%$ ), and 30 -day prevalence by more than three-fourths (from $4.6 \%$ to $1.0 \%$ ). Following this significant decline, annual use began to rise after 1992, along with the use of most other illicit drugs, reaching $7.7 \%$ in 2002—about where it remains in 2004 (7.3\%).
- The annual prevalence of heroin use dropped rather steadily between 1975 and 1979 (Table 5-2 and Figure 5-4f). Lifetime prevalence dropped by exactly half, from 2.2\% in 1975 to $1.1 \%$ in 1979, and annual prevalence also dropped by half, from $1.0 \%$ in 1975 to $0.5 \%$ in 1979. This decline halted in 1979 and the statistics remained almost constant for a decade and a half. In 1994 all prevalence rates remained similar to those in 1979, with very little change in the intervening years. However, in 1995 a sharp (and statistically significant) increase occurred, with annual and 30-day prevalence rates roughly doubling, to $1.1 \%$ and $0.6 \%$, respectively. (As discussed in chapter 2 -see also Tables 5-6a through 5-6c in this chapter-we believe that the advent of non-injectable forms of heroin played a role in this increase.) However, there was no further increase in annual or 30-day prevalence-of-use rates from 1995 through 1999 (Tables 5-2 and 5-3). Nor was there any increase during this period in the use of heroin by injection or by other means (Tables 56 through $5-6 \mathrm{c}$ ). The increase in heroin use was recognized fairly quickly and gave rise to some ameliorative actions, including an anti-heroin campaign by the Partnership for a Drug-Free America. This response may well explain the unusually quick leveling in use after one year of sharp increase. However, in 2000 there was a significant increase in heroin use among 12th graders (up to $1.5 \%$ from $1.1 \%$ in 1999), due entirely to a significant increase in use without a needle (from $1.0 \%$ to $1.6 \%$ ). There was actually a significant drop in heroin use among 8th graders in 2000 at the same time that use rose among 12th graders. But in 2001 there finally was a significant decline (to $0.9 \%$ ) among 12th graders, as well. No further drop was observed through 2004 (0.9\%).

Beginning in 1995, the questions on heroin use were elaborated in order to differentiate use with and without a needle. As can be seen in Tables 5-6a through 5-6c, use without a needle has accounted for much of the heroin use among seniors since 1995. About one-

[^37]fourth of the users have used heroin both ways, but of the remainder, three to five times as many have used heroin without a needle as have used with a needle. (The ratios are different in the lower grades, as will be discussed later.)

- For the first 13 years of the study, the use of narcotics other than heroin remained quite stable, with annual prevalence fluctuating between $5.1 \%$ and $6.4 \%$ (see Figure $5-4 \mathrm{~g}$ ). There was a gradual decline in annual prevalence from 1987 (5.3\%) to 1992 (3.3\%). As with so many of the drugs, use rose gradually, but steadily, after 1992, more than doubling to $7.0 \%$ by 2000 - the highest level seen since the study began. The rate remained at $7.0 \%$ in 2002. Because we updated the question text on half of the questionnaire forms in 2002 with additional examples of narcotics other than heroin (to include OxyContin, Vicodin, and Percocet), we obtained a higher reported rate of use of other narcotics that year than with the old version ( $9.4 \%$ versus $7.0 \%$ ). All questionnaire forms used the new version of the question in 2003, and the observed rates remained essentially unchanged (at $9.3 \%$ in 2003 and $9.5 \%$ in 2004). Thus, after many years of steady increase (since 1992), this important category of drugs finally seems to have leveled.

Table E-4 in Appendix E shows many of the specific narcotic (or opiate-type) drugs that make up this class and how each of them has trended over the past 29 years. It shows some of the drugs responsible for the considerable rise in the overall class during the 1990s: codeine, the annual prevalence of which rose from a low point of $1.0 \%$ in 1995 to $4.6 \%$ by 2004; opium, which rose from a low of $0.4 \%$ in 1993 to $2.2 \%$ in 2004; and morphine, which rose from a low of $0.2 \%$ in 1993 to $2.1 \%$ in 2004. The use of methadone and Demerol also rose during the 1990s, though their annual prevalence rates remained lower than the other three drugs.

Some additional drugs were added to this list in the 2002 questionnaire, including OxyContin, Vicodin, Percocet, Percodan, and Dilaudid. In the questionnaire form that asks about the larger set of specific narcotics as part of a branching question, Vicodin had a prevalence level (5.2\% ) higher than codeine in 2004. (See Table E-4.) The 2004 rates for the other new drugs on the list were considerably lower-OxyContin, $2.8 \%$; Percocet, 2.9\%; Percodan, 0.6\%; and Dilaudid, 0.3\%. Table E-4 may be useful in terms of tracking trends and telling us something about the relative popularity of these various drugs. However, experience with students' reports on several drugs has taught us that the absolute prevalence rates evoked are likely to be higher if the question is not part of a branching question structure. Because two of these drugs also were included as tripwire questions-asking directly about the frequency of annual use-we can use these to make a better estimate of the absolute prevalence rates. In the free-standing tripwire question, OxyContin showed an annual prevalence rate of $5.0 \%$ and Vicodin, $9.3 \%$ in 2004. These are quite high prevalence rates for drugs with the addictive potential of these two drugs; they are also appreciably higher than the rates derived from the branching questions. On these questions, OxyContin showed some nonsignificant increase in 2003 and Vicodin did not change; OxyContin showed more nonsignificant increase in 2004 among high school seniors.

- Hallucinogen use (unadjusted for underreporting of PCP) declined some in the mid1970s (Figure 5-4d) from an annual prevalence of $11.2 \%$ in 1975 to $9.6 \%$ in 1978. This may well have been the tail end of a longer period of decline precipitated by rising concerns about the adverse effects of hallucinogens-particularly LSD—and especially concerns about possible brain and genetic damage. The use of hallucinogens (unadjusted for PCP use) then leveled for several years before beginning another sustained decline. The first hallucinogen figures adjusted for the underreporting of PCP use were available in 1979. Between then and 1984, annual prevalence of hallucinogens (adjusted) declined steadily from $11.8 \%$ to $7.3 \%$. The rate remained fairly level through 1986, dropped a little more through 1988, and then remained level again through 1992. In 1993 this pattern of irregular declines ended, as annual prevalence rose significantly from $6.2 \%$ in 1992 to $10.7 \%$ by 1996. Since 1996, use has declined considerably to $6.4 \%$ in 2004 , based on a revised (and improved) version of the question. ${ }^{53}$ Without that question change, the decline would have been even greater.
- LSD, one of the major drugs constituting the hallucinogen class, showed a modest decline from 1975 to 1977, followed by considerable stability through 1981 (Figure 54d). Between 1981 and 1985, there was a second period of gradual decline, with annual prevalence of use falling from $6.5 \%$ to $4.4 \%$. However, after 1985, annual prevalence began to rise very gradually to $5.6 \%$ in 1992. The rate of increase accelerated in 1993, as annual prevalence jumped to $6.8 \%$. The increase continued through 1996, with annual prevalence reaching $8.8 \%$, double the low point in 1985. Since 1996, annual prevalence has declined, including sharp decreases in 2002 and 2003, reaching $1.9 \%$ in 2003. This is the lowest prevalence recorded since the study began. We believe that the decline prior to 2002 might have resulted in part from a displacement of LSD by sharply-rising ecstasy use. After 2001, when ecstasy use began to decline, the sharp, further decline in LSD use likely resulted from a drop in availability, because attitudes generally have not moved in a way that could explain the fall in use. In 2004 there was no further decline (2.2\%).
- Prevalence-of-use statistics for the specific hallucinogen $\boldsymbol{P C P}$ showed a very sharp decline after 1979, when the use of this drug was first measured (see Figure 5-4d). Annual prevalence dropped from $7.0 \%$ in 1979 to $2.2 \%$ in 1982. After leveling for a few years, it dropped further to $1.3 \%$ by 1987, which is about where it remained until 1993. The speed with which this drug fell from popularity strongly suggests that it achieved a reputation as a dangerous drug very quickly. From 1993 to 1996, annual use increased (as did the use of most of the other illicit drugs)-to $2.6 \%$ by 1996. Also, as with most other drugs, the increase halted in 1997. By 2004 the annual prevalence for 12th graders was down to $0.7 \%$, the lowest prevalence we have ever recorded for this drug.

[^38]- Table E-1 in Appendix E shows the 29-year trends for a number of specific hallucinogenic drugs. In the early years of the study, mescaline, concentrated THC, peyote, and PCP were far more widely used than they are today.

Concentrated THC was at a peak annual prevalence of 5.7\% in 1977 but fell to about 1\% by 1984 and has varied relatively little since, although there was a slight upward surge in the mid-1990s. (It is at $1.3 \%$ in 2004.)

Mescaline was at a 5\% peak from 1976 through 1978 (and possibly earlier) but fell below $1 \%$ by 1988 and has varied rather little since. (Annual prevalence is $0.6 \%$ in 2004.) Peyote use was at $1.8 \%$ annual prevalence at the first measurement in 1976 and fell to $0.6 \%$ by 1982 , which is about where it has remained in the years since ( $0.7 \%$ in 2004).

Psilocybin, derived from mushrooms, also showed a decline between the mid-1970s and the early 1980s, followed by a long period of low levels of reported use. Use rose from 1992 to 1996, however, as occurred for many drugs, before leveling again. But it is clear from the 2001 modification of the question stem to include the popular term "shrooms" that many users no longer know the drug as psilocybin. The prevalence rate more than tripled between 2000 and 2001, jumping from $1.4 \%$ to $4.9 \%$, even though use levels were stable immediately before and after the wording change. We believe it likely that all of this change in percentages was due to the revision of the question, which led psilocybin users to once again include that use in their answers to the psilocybin question (and to the question about hallucinogens other than LSD). In the last year, use increased from 4.6\% in 2003 to $5.7 \%$ in 2004. Psilocybin (or "shrooms") is clearly the most widely used hallucinogenic drug by teenagers today.

- The drug ecstasy (MDMA) had been in the surveys of young adults for several years before we added it in 1996 to the questionnaires given to secondary school students. We had been concerned about the possibility of stimulating an interest among secondary school students in a previously little-known drug-particularly given its alluring name. In 1996, we found that $6.1 \%$ of the seniors had tried the drug and that $4.6 \%$ reported use in the prior 12 months. Over the next two years, annual prevalence fell to $3.6 \%$ in 1998, but in 1999 it increased sharply to $5.6 \%$ and then rose sharply again in 2000 to $8.2 \%$. The rate of increase slowed some in 2001, when use reached $9.2 \%$. The sharp increase in the popularity of this drug was followed by a decrease, to $7.4 \%$, in 2002 and an even sharper decrease, to $4.5 \%$, in 2003. The decline decelerated in 2004 with a drop to $4.0 \%$.

Chapter 8 shows that perceived risk for ecstasy jumped substantially in 2001, likely helping to explain the deceleration in the rise in use that year. However, we know from other analyses that ecstasy was still diffusing to more communities in 2001, partially explaining its continued rise in use. (As Volume II reveals, this dramatic increase in use through 2001 was not confined to teenagers.) The 2001 increases in perceived risk led us to predict the downturn in use that did in fact occur in 2002-once again demonstrating the importance of these beliefs in restraining drug use. Perceived risk increased sharply again in 2002 and 2003 as use plummeted, but the increase in risk in 2004 was only 1.4 percentage points. The reported availability of ecstasy, which had risen substantially in
recent years, quite probably played a role in its sudden resurgence. Availability has dropped modestly since 2001 and took a large drop of almost 10 percentage points in 2004 (see chapter 9). Ecstasy was particularly popular at "raves" and dance clubs during its ascent in popularity, earning it the label "club drug."

- Another "club drug," Rohypnol, was added to the study in 1996, in part because of the extensive publicity it received as a "date rape" drug. The annual prevalence rate on this drug has remained low (between $0.8 \%$ and $1.6 \%$ ) in the years since, no doubt in part due to the early and extensive negative publicity it received. The peak prevalence of $1.4 \%$ occurred in 1998, and use was down to $0.9 \%$ by 2001. In 2002 the standard triplet question (asking about lifetime, past-year, and past-month use of Rohypnol) was replaced with a "tripwire" question asking only about use in the past year. As a result of this change in the structure and location of the question, the 2002 annual prevalence (1.6\%) is not necessarily comparable to the 2001 annual prevalence estimate ( $0.9 \%$ ). Its use remained at $1.6 \%$ in 2004.
- The use of steroids, specifically anabolic steroids, has been included in the study since 1989. The question is preceded by an introduction that states, "Steroids, or anabolic steroids, are sometimes prescribed by doctors to promote healing from certain types of injuries. Some athletes, and others, have used them to try to increase muscle development." The question then asks, "On how many occasions have you taken steroids on your own-that is, without a doctor telling you to take them?" Since it does not explicitly state that they must be prescription-controlled substances, we think it likely that some respondents include over-the-counter compounds like androstenedione in their answers. However, some special analyses presented in chapter 4 indicate that it has tended to be a minority of self-reported steroid users who also reported using androstenedione in the same year $(18 \%, 30 \%$, and $44 \%$ of steroid users in grades 8,10 , and 12 in 2004 also reported using androstenedione). Among 12th graders, annual prevalence of steroid use stood at $1.9 \%$ in 1989, fell to a low of $1.1 \%$ by 1992, and then rose gradually during the remainder of the 1990s to $1.8 \%$ by 1999. Use leveled in grade 12 at $1.7 \%$ in 2000, rose significantly to $2.4 \%$ in 2001, and leveled again in 2002 at $2.5 \%$, where it remained in 2004. (See chapter 10 for a discussion of findings on androstenedione use and also the use of creatine.)
- As these varied patterns of use show, the overall proportion of high school seniors using any illicit drugs other than marijuana in their lifetime has changed over the years, but the mix of drugs they used has changed even more. A number of drug classes showed dramatic declines (particularly in the 1980s), some showed substantial increases, and some remained fairly stable. Further, the periods in which they either increased or declined varied considerably for the different drugs, although between 1992 and 1996 the use of many drugs increased and by 1997 the use of most had stabilized.
- With respect to the licit drugs, in the last half of the 1970s there was a small upward shift in the prevalence of alcohol use among seniors (see Figure 5-4i). To illustrate, between 1975 and 1979 the annual prevalence-of-use rate rose steadily from $85 \%$ to $88 \%$, the monthly rate from $68 \%$ to $72 \%$, and the daily rate from $5.7 \%$ to $6.9 \%$. As with marijuana,

1979 was the peak year for annual use. Over the next six years, between 1979 and 1985, alcohol prevalence rates fell gradually. Annual prevalence fell from $88 \%$ to $86 \%$, monthly from $72 \%$ to $66 \%$, and daily from $6.9 \%$ to $5.0 \%$. All three rates remained fairly level from about 1985 to 1987, after which they showed some further decline. Thirty-day prevalence, for example, fell from $66 \%$ in 1987 to $51 \%$ in 1992, down by more than a quarter from its peak level in 1978 (72\%). The prevalence of daily alcohol use fell from $4.8 \%$ to $3.4 \%$ between 1987 and 1992, followed by a sharper drop to $2.5 \%$ in 1993 (based on the original form of the question), down by almost two-thirds from its peak level in 1979 (6.9\%). No further declines were observed in 1994, however, based on a slightly revised set of alcohol usage questions. ${ }^{54}$ If anything, there was evidence of some increase in use, though none of the changes reached statistical significance. From 1993 through 1997, as many forms of illicit drug use rose, there also was a slight upward drift in the annual, 30-day, and daily prevalence-of-use rates for alcohol. But between 1997 and 2001 there was a slight (and offsetting) downward drift in annual and 30-day use. Daily use declined some after 1998 and then increased again in 2001. In 2002 there was evidence of a decrease in alcohol use, though not yet a statistically significant one (both lower grades showed significant declines). In 2003 the declines continued in 12th grade, though again not reaching statistical significance; but the declines did not continue into 2004, except for daily use.

- A similar pattern was observed in the prevalence of occasional heavy drinking (Table 54 and Figure 5-4j). When asked whether they had taken five or more drinks in a row during the prior two weeks, $37 \%$ of the seniors in 1975 said they had. This proportion rose gradually to a peak of $41 \%$ by 1979, and it remained at this peak level through 1983. In both 1984 and 1985, we observed drops of 2 percentage points in this troublesome statistic, bringing it down to $37 \%$, exactly where it had been in 1975 . There was no further change in 1986 or 1987, but over the next six years it dropped another 10 percentage points, from $38 \%$ in 1987 to $28 \%$ in 1993-two-thirds of its peak level of $41 \%$. After 1992, it increased gradually and modestly to $32 \%$ in 1998 and then declined some through 2003 (back to 28\%, where it stood a decade earlier). It remained essentially unchanged in 2004 (29\%). Obviously some important and substantial reductions in binge drinking by teens occurred in the 1980s. We discuss some of the likely reasons for these important changes in chapter 8.
- Beginning in 1991, respondents were asked to report how often they had been drunk in their lifetime, in the past 12 months, and in the past 30 days. Thirty-day prevalence of self-reported drunkenness showed declines between 1991 and 1993 (from 32\% to 29\%), followed by gradual increases through 1997 (34\%), as would be expected given the data above (Tables 5-1 through 5-4 and Figure 5-4i). This rate stands at 33\% in 2004.
- Still another category of alcoholic beverage has emerged, flavored alcoholic beverages, sometimes called "malternatives" (because their alcohol often derives from malt) or

[^39]"alcopops." A single "tripwire" question, asking just about the frequency of use in the past 12 months, was introduced in 2003 to determine how widespread the use of these beverages is. (The question text was "During the last 12 months, on how many occasions [if any] have you drunk flavored alcoholic beverages, sometimes called "alcopops" [like Mike's Hard Lemonade, Skyy Blue, Smirnoff Ice, Zima]?") It showed an annual prevalence of $55 \%$ among 12th graders; because of this high amount of use, more extensive measurement was introduced into the 2004 questionnaires. The annual prevalence of use for these beverages was slightly higher in 2004 (56\%). Thirty-day prevalence in 2004 was $71 \%$, while lifetime prevalence for 12th graders was $31 \%$.

- Note that there is no evidence that the 13-year decline in marijuana use observed between 1979 and 1992 led to any concomitant increase in alcohol use, as many observers suggested would happen. In fact, through 1992 there was some parallel decline in annual, monthly, and daily alcohol use, as well as in occasional heavy drinking. Earlier, when marijuana use rose in the late 1970s, alcohol use moved up along with it. As marijuana use rose again in the 1990s, alcohol use seemed to be edging up with it, although certainly not rising as sharply. In sum, there is little evidence here to support what we have termed "the displacement hypothesis," which implies that an increase in marijuana use will somehow lead to a decline in alcohol use, or vice versa. Instead, both substances appear to move more in harmony, perhaps both reflecting changes in a more general construct such as the tendency to use psychoactive substances, whether licit or illicit, or the frequency with which teens "party" or not.
- Use levels of the various specific classes of alcoholic beverages-beer, wine, wine coolers, and liquor, are reported in Appendix D. (See Tables D-72 through D-85.) Table D-74 shows that there has been a quite substantial drop in the current prevalence of beer consumption among 12th graders. Current prevalence fell from $64 \%$ in 1979 to $42 \%$ by 1992, increasing a bit to $47 \%$ in 1996 (when the use of most substances increased) and falling since then to $38 \%$ by 2003 (the lowest value ever reported), where it remained in 2004. Occasions of heavy beer drinking fell from $38 \%$ in 1983 to $25 \%$ in 1992, and stands at $24 \%$ in 2004.
- Trends in the consumption of hard liquor follow a pattern similar to that for beer, although the fluctuations are not as large. Use declined appreciably, from $48 \%$ in 1980 to $29 \%$ by 1992, before rising briefly to $37 \%$ in 1998 and then falling again to $34 \%$ by 2003. The observed rate was $36 \%$ in 2004. The proportion reporting occasions of heavy liquor consumption (five or more drinks in the prior 30 days) fell from 23\% in 1980 to $16 \%$ by 1992, then rose by 1998 to $24 \%$, where it remains in 2004.
- The results for wine are less clear because in 1988 a new question about wine coolers was introduced, which had the effect of sharply reducing self-reported wine use. (No doubt, up to that point users of wine coolers reported such use under wine.) Reported wine use fell modestly from $38 \%$ current prevalence in 1982 to $34 \%$ in 1987. After the introduction of the wine cooler question, reported wine use was $23 \%$ in 1988, declining to $14 \%$ by 1994 . It then rose slightly to $18 \%$ by 1996 before declining again to $13 \%$ in 2002, where it leveled in 2003 and 2004 (14\%). Lower proportions of seniors engage in
occasions of heavy wine consumption than of heavy beer or liquor consumption. The high point was in 1982, at 15\%, and the low from 2002 through 2004, at approximately 5\%.
- Self-reported use of wine coolers began quite high when the question was first introduced in 1988, at $37 \%$ 30-day prevalence. However, use began to decline immediately and fell to $19 \%$ in 1993, rose slightly to $21 \%$ by 1997 as use of a number of drugs increased, and then continued to decline to $14 \%$ in 2004. As with wine, heavy wine cooler consumption is not as common as for beer and liquor. The high rate of $14 \%$ was observed in 1988, while the low was in 2003, at $7.1 \%$, reflecting a decline of one-half.
- Cigarette use among high school seniors peaked in 1976 and 1977, as measured by lifetime, 30-day, and daily prevalence. (Annual prevalence of use is not asked.) Over the next four years, 30-day prevalence dropped substantially, from 38\% in the class of 1977 to $29 \%$ in the class of 1981 (see Tables 5-3 and 5-4 and Figure 5-4k). More importantly, daily cigarette use dropped over that same interval from $29 \%$ to $20 \%$, and daily use of a half-pack or more from $19 \%$ to $14 \%$. But by 1982 and 1983 the decline had clearly halted. The earlier decline resumed briefly in 1984; daily use fell from $21 \%$ (in 1983) to $19 \%$, and daily use of a half-pack or more dropped from $14 \%$ to $12 \%$. In the eight years between 1984 and 1992, there was very little further change: 30-day prevalence fell from $29 \%$ to $28 \%$, daily use from $19 \%$ to $17 \%$, and daily use of a half-pack or more from $12 \%$ to $10 \%$. Despite the general decline in the use of most other drugs during this period, despite the declines in smoking rates among adults, despite the increasingly restrictive legislation with regard to smoking debated and enacted at state and local levels, and despite prevention efforts made in many school systems, there was a noteworthy lack of any appreciable decline in smoking rates among teens during this eight-year period. After 1992 both the 30 -day smoking rate and the current daily smoking rate actually rose significantly, with monthly use increasing steadily from $28 \%$ in 1992 to $37 \%$ by 1997 and daily use increasing from $17 \%$ to $25 \%$. Finally, by 1998, a turnaround of this upward trend began to emerge, and it accelerated in 2000. Thirty-day prevalence fell significantly from $37 \%$ in 1997 to $24 \%$ by 2003, including a sharp drop in 2003. There was no further decline in 2004, however (25\%). Daily prevalence also fell significantly from a recent peak of $25 \%$ in 1997 to $16 \%$ by 2003, where it remained in 2004.
- We believe that the intense public debate over cigarette policies likely played an important role in bringing about the very significant downturn in adolescent smoking, particularly the declines during the 1990s. Other developments, however, may well have contributed, including (a) increases in cigarette prices, brought about in part by the tobacco industry settlement with the states; (b) substantially increased prevention activities, including ad campaigns, in a number of states; (c) the removal of certain types of advertising (including billboards) nationwide under the terms of the tobacco settlement; (d) the initiation of a national anti-smoking ad campaign by the American Legacy Foundation; and (e) efforts by the Food and Drug Administration (FDA), in cooperation with the states, to reduce youth access to cigarettes. (The FDA effort eventually was brought to an end by a ruling of the Supreme Court, but the effort may be continuing at the state level, judging by the continuing decline in reported availability by

8th and 10th graders.) Further, the fact that smoking has been falling sooner and faster at lower grade levels suggests that smoking among seniors is likely to continue dropping as a result of the cumulated cohort effects working their way up the age spectrum.

- Questions about the use of smokeless tobacco (Figure 5-4l), which includes chewing tobacco and snuff, were first introduced in 1986. They were omitted in 1990 and 1991 and then reintroduced in 1992. Results show a high rate of use for the sample overall, particularly for males, who account for nearly all of the use. The trends for the period 1986 to 1989 showed a decline in use, with 30 -day prevalence for all 12th graders falling steadily from $11.5 \%$ to $8.4 \%$. When the questions were reintroduced in 1992, the usage rate (11.4\%) almost matched the 1986 level. Use rose slightly, to $12.2 \%$ in 1995, but then fell back by nearly half, to $6.5 \%$ by 2002 and $6.7 \%$ in 2003 and 2004. In 2004 one-sixth (17\%) of all seniors had tried smokeless tobacco in their lifetime and $2.8 \%$ were current daily users. In sum, the use of smokeless tobacco has fallen substantially since 1995 among seniors, while their use of cigarettes has been falling since 1997.


## TRENDS IN PREVALENCE OF USE 1991-2004: EIGHTH AND TENTH GRADERS

To facilitate cross-grade comparisons, trend data for all three grades (8th, 10th, and 12th) are included in Tables 5-5a through 5-5d and Figures 5-4a through 5-4n. (Note that Tables 2-1 through 2-3 in chapter 2, "Key Findings: An Overview and Integration Across Five Populations," augment Tables 5-5a through 5-5d with trend data on college students and young adults.) Our discussion of trends in use at 8th and 10th grades is delimited to a much shorter historical period than for 12th graders because data on them were first gathered in 1991.

- Since data first became available in 1991 for all three grade levels, the 8th-, 10th-, and 12th-grade trends in the use of illicit drugs have moved largely, though not completely, in parallel. From 1991 through 1996, this has meant some increase in use at all grade levels for most drugs. (It is important to note, however, that the 8th graders were the first to show the increase for many of the drugs over the period 1991-1992.) In 1997, the prevalence rates for most drugs leveled off, or began to level off, in all grades; in 1998 most rates showed some decline in all grades. Just as the 8th graders were the first to show an increase in the early 1990s, they also were the first to show many of the decreases in the late 1990s. We believe that this pattern of younger teens first exhibiting many of the turnarounds in use indicates that they are the most sensitive to new social forces in the society. Because they are considerably less likely to have established usage patterns, their behavior may simply be more malleable.
- Marijuana use (Figure 5-4a) rose particularly sharply among 8th graders in the 1990s, with annual prevalence tripling between 1991 and 1996, from $6.2 \%$ to $18.3 \%$. Starting a year later, use rose significantly among 10th and 12th graders as well. Between 1992 and 1997 among 10th graders, annual prevalence of use more than doubled, rising from 15\% to $35 \%$. It increased by more than two-thirds, from $22 \%$ to $39 \%$, among 12th graders. In 1997 the prevalence rates began to decline among 8th graders. (Figure 5-4a shows that the increase was decelerating in grades 10 and 12.) By 1998 the upper grades had started
to decline as well. Eighth graders have shown a steady decline since their peak in 1996 ( $18 \%$ annual prevalence), reaching $12 \%$ by 2004 -a decline of one-third. While both 10th and 12th graders have shown some decline since their peaks in 1997 (at 35\% and $39 \%$, respectively), their progress had not been as steady or as large. In 2002, however, 10th-grade use declined significantly to $30 \%$ and then in 2003 declined further to $28 \%$, where it remains in 2004. Clearly there has been an end to the rapid rise in marijuana use among teenagers that began in the early 1990s, but whatever downturn has occurred has been fairly modest so far. It is important to note that the two directional changes have occurred so far among 8th graders first. As mentioned above, this suggests that 8th graders may be the most immediately responsive to changing influences in the larger social environment. The lag in the decline in the later grades could also reflect some cohort effects (i.e., lingering effects of changes in use that occurred when the students were in lower grades).
- Daily marijuana use also went up sharply in the 1990s in all three grades (see Figure 5$4 \mathrm{~m})$. In fact, in proportional terms, the increases were larger than those for annual prevalence. For the period 1992-1996, daily use among 8th graders increased, from $0.2 \%$ to $1.5 \%$, before declining significantly to $1.1 \%$ in 1997. For the period 1992-1997, daily use among 10th graders rose more, from $0.8 \%$ to $3.7 \%$, and among 12th graders from $1.9 \%$ to $5.8 \%$. Since 1997 the daily prevalence rates have remained relatively level in all grades, illustrating how changes in daily use tend to lag changes in annual prevalence, for instance.
- Annual hallucinogen use (Figure 5-4d) rose in all three grade levels from 1991 to 1996, followed by some decline in all three grades from 1996 through 2000. In 2001 the question text was changed and the 10th and 12th graders showed further significant decreases between 2001 and 2003; but there was no further change in 2004. The two components of the hallucinogens class, LSD and hallucinogens other than LSD, have generally followed the same pattern. By 2003, LSD use was at the lowest level ever recorded in this study.
- The increase in $\boldsymbol{L S D}$ use in the early 1990s (Figure 5-4d) is of particular interest because LSD was one of the first drugs to decline in use in the long-term epidemic, almost surely due to growing concerns about its dangers in the early to mid-1970s. The more recent increase in its use may reflect the effects of what we have labeled "generational forgetting"-that is, replacement cohorts do not have as much concern about its dangers as their predecessors did, because they have not had comparable opportunities for direct and vicarious learning about the consequences of using the drug. ${ }^{55}$ As is described later, the downturn in LSD use in recent years generally has not been accompanied by the expected changes in perceived risk and disapproval, suggesting to us that the decline may be due more to a displacement by another drug, such as ecstasy, than to any increased aversion to LSD per se. There also has been a decline in the reported availability of LSD since the mid-1990s, which may help explain the recent declines in use.

[^40]- Annual crack use was at quite low levels in 1991 (Table 5-5b and Figure 5-4e). It began to rise among 8th graders after 1991, among 10th graders after 1992, and among 12th graders after 1993. From these quite low rates, the annual prevalence-of-use rate roughly tripled among 8th graders (from $0.7 \%$ in 1991 to $2.1 \%$ in 1998) and 10th graders (from $0.9 \%$ in 1992 to $2.5 \%$ in 1998), and it rose by two-thirds among 12th graders (from 1.5\% in 1993 to $2.7 \%$ in 1999). Crack was one of the very few drug classes still showing evidence of continued increase in 1998. After 1998, crack use declined gradually among 8th graders, from $2.1 \%$ annual prevalence in 1998 to $1.3 \%$ by 2004. Among 10th graders, crack use has fallen from $2.5 \%$ annual prevalence in 1998 to $1.6 \%$ in 2003 (and $1.7 \%$ in 2004). Twelfth graders’ crack use reached a peak in 1999 and has had a more modest decline since (from $2.7 \%$ in 1999 to $2.2 \%$ in 2003 and $2.3 \%$ in 2004).
- The use of other cocaine also rose some during the 1990s at all three grade levels, though it clearly did not attain the levels observed in the mid-1980s. Among 8th graders, annual prevalence of use rose from $1.0 \%$ in 1991 to $2.5 \%$ in 1996 before leveling. Increases began after 1992 in the older grades, paused in 1998, and then continued into 1999. Between 1992 and 1999, the increases were from $1.7 \%$ to $4.4 \%$ among 10th graders and from $2.6 \%$ to $5.8 \%$ among 12th graders. Use has declined from the peak in 1998 in 8th grade (from $2.4 \%$ to $1.6 \%$ in 2004) and from the peak in 1999 in 10th and 12th grades (down to $3.3 \%$ and $4.7 \%$, respectively, in 2004). Thus, both powder cocaine and crack cocaine use increased considerably in proportional terms during the 1990s; but because each started from a very low base, the absolute increases were relatively small, and neither class of drugs has reached the levels they had attained in the mid-1980s. Since the late 1990s there has been some decline in use, though that decline does not appear to be continuing into 2004.
- The use of amphetamines (Figure 5-4a) also increased at all three grade levels during the 1990s, reaching annual prevalence rates by 1996 of $9.1 \%$ for 8th graders (versus $6.2 \%$ in 1991), $12.4 \%$ for 10th graders (versus $8.2 \%$ in 1992), and $9.5 \%$ for 12th graders (versus $7.1 \%$ in 1992). Like several other drugs, the rise in amphetamine use appears to have begun a year earlier (in 1992) among 8th graders than among 10th and 12th graders. These trends diverged a little in 1997, as use fell significantly in 8th grade, leveled in 10th grade, and continued to increase in 12th grade. By 1998, and continuing into 1999, use among both 8th graders and 10th graders was declining and use at 12th grade had leveled. Thus, we once again see a staggered inflection point in the trends, quite likely reflecting a cohort effect. In the lower two grades, use leveled in 2000 but appeared to resume its decline in 2002. In 2003 the upper two grades showed significant declines, but in 2004 the decline continued in 10th grade (though the one-year decline was not significant) but did not continue in 12th.
- Between 1991 and 1995, inhalant use (Figure 5-4b) rose by more than a third among 8th and 10th graders, with annual prevalence of use reaching $12.8 \%$ and $9.6 \%$, respectively. (Recall that inhalant use tends to be higher in the lower grades.) Among 12th graders, use rose from $6.2 \%$ to $8.0 \%$ between 1992 and 1995. Between 1995 and 2002, however, inhalant use declined gradually at all grade levels, and the total decline was appreciable. The 2002 figures were the lowest recorded by the study for 8th and 10th graders.

Unfortunately, there was a significant increase among 8th graders in 2003, from $7.7 \%$ to $8.7 \%$-one that continued into 2004 (9.6\%). (Tenth and 12th graders continued to decline in 2003, but both grades showed a small increase in 2004, suggesting that the inhalant situation may well be in the middle of an unwelcome turnaround.)

As Figure 5-4b illustrates, inhalant use, unadjusted for the use of nitrite inhalants, had been on the rise among 12th graders for a long time. Very likely the same was true among 8th and 10th graders, although our data on them cover only 1991 forward. The anti-inhalant campaign launched by the Partnership for a Drug-Free America in 1995 (partly in response to the results reported from Monitoring the Future) may have played an important role in reversing this troublesome long-term trend. (There was a jump in the perceived risk of inhalant use between the 1995 and 1996 surveys, as is discussed in chapter 8.) The gradual declines continued into 2001. However, in 2002, 8th graders' perceived risk of trying inhalants decreased significantly, which was followed by a significant increase in use the next year; 10th graders' perceived risk of regular use also decreased significantly. Clearly, this raises the possibility that generational forgetting of the dangers of inhalant use is beginning to occur and may continue if the issue is not addressed.

- Tranquilizer use is not nearly as prevalent today as it was 30 years ago, but it showed a very gradual increase at all three grade levels in the early 1990s (see Table 5-5b and Figure 5-4b). From 1991 to 1996, annual prevalence increased at the 8th-grade level, from $1.8 \%$ to $3.3 \%$, before starting a decline (reaching $2.5 \%$ in 1999). The increase at 10th and 12th grades started later and continued through 1999, before leveling: from $3.3 \%$ in 1994 to $5.4 \%$ in 1999 among 10th graders, and from $2.8 \%$ in 1992 to $5.8 \%$ in 1999 among 12th graders. This divergence over those three years between the downward trend for 8th graders and the continuing increase among 10th and 12th graders is quite unusual. However, it is consistent with the finding that the 8th graders are showing more and earlier declines in general, for example, for marijuana.
- There was a large proportional increase in heroin use between 1991 and 1996 at all three grade levels. Use peaked in 1996 among 8th graders and a year later in the upper two grades, doubling or tripling at each grade level (see Figure 5-4f). Usage rates then remained quite stable through 1999 before showing a divergence, with use declining significantly among 8th graders in 2000 and rising significantly among 12th graders. In 2001 significant declines finally were observed in the upper two grades, as well. There have been only modest further declines since, but heroin use is now lower in all three grades than it was in the peak years of 1999 for 8th graders, 1997-2000 for 10th graders, and 2000 for 12th graders.

As mentioned, we believe that the availability of very pure heroin, which could be taken by non-injection means, contributed in an important way to the sharp rise in heroin use in the early 1990s. The importance of non-injectable heroin use by 1995 is documented in Tables 5-6a through 5-6c, which shows for each grade the proportion of users (based on several prevalence periods) who used heroin either by injection or non-injection means, or by both means. For 8th graders, the tables show a rough equivalence between the two
methods of administration (with and without a needle) from 1995 to 1999. Among 10th graders over the same time interval, somewhat more have used heroin without than with a needle, and this difference was greater for 12th graders. But in 2001 all three grade levels showed significant declines in the proportion of students using heroin without a needle. There has not been much further change since 2002 (except for some further decline among 10th graders in 2003).

- As noted above, ecstasy (MDMA) use fell among 12th graders from 1996 (when it was first measured) through 1998 (see Table 5-5a), and the same happened at 8th and 10th grade, as well. But in 1999 there was a significant increase in the upper two grades-one of the more important increases to occur in 1999. The 8th graders did not show this resurgence, however, until a year later, in 2000, when they had a significant increase in ecstasy use, as did the 12th graders. Annual prevalence of ecstasy use rose some in all three grades in 2001, but by lesser amounts, suggesting a clear deceleration in the rise. In 2002, annual use finally reversed direction and fell in all three grades, though only the 10th-grade decline was statistically significant. In 2003 a sharper drop occurred that was significant in all three grades; but in 2004 the declines in all three grades were quite modest and nonsignificant, indicating a sharp slowing of the decline in use.

We predicted this important turnaround in ecstasy use from the sharp increase in perceived risk observed for ecstasy in 2001—an increase that continued into 2004. We believe that one reason ecstasy use did not decline in 2001, given the sharp change in perceived risk, was that it was still in the process of diffusing to a larger proportion of communities in the country. While the diffusion process continued into 2002—based on the proportions of schools having at least some lifetime use of ecstasy reported by the student sample-the changes in beliefs about harmfulness more than compensated for the diffusion. It is worth noting that ecstasy, in contrast to many of the other drugs, was not showing a pattern of change in either the increase or decline phases that typifies cohort effects. For the most part, the shifts were parallel across grades (and also among young adults, as is documented in Volume II of this report).

- At all three grade levels, the annual prevalence of Rohypnol use remained fairly stable through 1998 from when it was first measured in 1996. Decline then followed at all three grades through 2000, resulting in annual prevalence rates that were quite low: $0.5 \%$ in 8th grade and $0.8 \%$ in both 10th and 12th grades. Since 2000 there has been little systematic change in Rohypnol use. (Note that in 2002, at 12th grade only, the question was relocated to a different questionnaire form, so change must be calculated separately for the periods prior and subsequent to that change.)
- Ketamine and GHB, both club drugs that were added to the questionnaires in the form of "tripwire" questions beginning in 2000, showed little change in their relatively low usage levels through 2003. In 2004 both drugs showed significant declines among 10th graders. The annual prevalence of GHB in 2004 is $0.7 \%, 0.8 \%$, and $2.0 \%$ in grades 8,10 , and 12 ; while for Ketamine the corresponding rates are $0.9 \%, 1.3 \%$, and $1.9 \%$.
- The use of steroids among 8th and 10th graders fluctuated rather little between 1991 and 1998, but both grades showed a sharp and highly statistically significant jump in use in 1999 (Table 5-5b). As is described in the later section in this chapter on "Gender Differences in Trends," this jump occurred almost entirely among boys. (Twelfth grade is the only grade level at which there is a measure of perceived risk for steroids, and even though 12th-grade use did not jump in 1999, perceived risk fell sharply that year and the next. It seems likely that perceived risk fell among 8th and 10th graders, as well, in which case it may well have contributed to the sudden increase in use.) In 2000, only the 10th graders showed a further increase (significant) in use, and in 2001 only the 12th graders did so, possibly reflecting some cohort effect. Annual prevalence has declined steadily among 8th graders since 2000, falling from $1.7 \%$ in 2000 to $1.1 \%$ in 2004. That was followed by a drop among 10th graders from $2.2 \%$ in 2002 to $1.5 \%$ in 2004. No decline has yet occurred among 12th graders, who stand at $2.5 \%$-about where they have been for the past four years. If, as we suspect, a cohort effect is working its way up the age spectrum, use among 12th graders could be expected to drop in 2005.
- Two other substances that are also used for enhancing athletic performance and musculature, and that are correlated with steroid use-androstenedione and creatineare discussed in chapter 10 (see Tables 10-4 and 10-5). Both were first measured in 2001. By 2004 the use of androstenedione in all three grades is below recent peak levels. The proportion of students using either steroids and/or androstenedione is also below peak levels, though the decline has been least so far at 12th grade. The proportions of boys using either substance reached impressively high levels ( $8.0 \%$ of seniors in 2001, $7.3 \%$ in 2002, $5.8 \%$ in 2003, and $5.3 \%$ in 2004). Creatine use reached $22 \%$ among 12th-grade boys in 2001, falling to $16 \%$ by 2004.
- From 1991 to 1993, the lifetime, annual, and 30-day prevalence measures for alcohol (Figure 5-4i) showed a small decline in all three grades (except for 30-day use among 8th graders). Between 1993 and 1996 in the case of 8th and 10th graders, and 1993 to 1997 in the case of 12th graders, there was a slight upward drift in the annual and 30-day prevalence rates. (This corresponds to the period in which the use of a number of illicit drugs, and also cigarettes, was rising.) Between 1996 and 2001, there was some decline in drinking among 8th graders (for example, 30-day prevalence dropped from $26 \%$ in 1996 to $22 \%$ in 2001); but there was not much change in the upper grades during this time. In 2002, alcohol use for 8th and 10th graders decreased significantly for all prevalence periods (lifetime, annual, and 30-day). Twelfth graders' use of alcohol also decreased for all levels of use, though the changes were not statistically significant that year. Since 2002 there has been little change in 30-day drinking, though annual statistics have continued to drift downward in all three grades.
- Occasional heavy drinking (Figure 5-4j)—defined as having five or more drinks in a row at least once in the prior two weeks-had been rising gradually among 8th graders after 1991, among 10th graders after 1992, and among 12th graders after 1993. After rising 3 to 4 percentage points in each case, it began to decline in 8th grade after 1996, in 10th grade after 1997, and in 12th grade after 1998; but it changed rather little during the next several years. At 8th grade, heavy drinking has decreased since 1999 (from 15.2\% to
$11.4 \%$ in 2004); at 10th grade it has decreased significantly since 2000 (from $26.2 \%$ to $22.0 \%$ in 2004); and at 12th grade, since 1998 (from $31.5 \%$ to $29.2 \%$ in 2004).
- Students' reports of having been drunk in the past 30 days show a roughly similar pattern. The 30-day prevalence rate of having been drunk has been declining since 1999 in 8th, since 2000 in 10th grade, and since 2001 in 12th grade. These declines leveled off, however after 2002.
- Information on the use of the various specific classes of alcoholic beverages-beer, wine, wine coolers, flavored alcoholic beverages, and liquor-may be found in Appendix D, Tables D-72 through D-86.
- Cigarette smoking generally is not expected to move synchronously across the three grade levels, because changes have usually been the result of cohort effects rather than secular trends. (See chapter 6 for a further discussion of this point.) However, the prevalence of current smoking began to rise among 8th and 10th graders after 1991 and among 12th graders after 1992, and until 1996 it had been moving steadily upward in all three grades (see Figure 5-4k). In 1996, current smoking peaked in grades 8 and 10, and it peaked a year later among 12th graders. The proportional increases in the smoking rates were considerable during this period-about a $50 \%$ increase in the two lower grades and a $31 \%$ increase at 12th grade.

Because of this general parallel movement, which is more characteristic of a secular trend, we are inclined to look for some contemporaneous historical correlates to explain the changes in this period. One possible explanation is that use rose because cigarette prices dropped on average due to increased price competition among brands. Another is that cigarette advertising and promotion had grown and/or become more effective at reaching youth. Still a third possibility is that the portrayal of smoking had increased appreciably in the entertainment media. We believe there is some evidence supportive of all three possibilities; but whatever the causes, they seemed to reach young people across the spectrum. Therefore, we infer that the changes in cigarette use must have resulted from culture-wide influences of the type just mentioned.

In 1997 the 30-day smoking rate began to decline among 8th graders, to level among 10th graders, and to continue to increase among 12th graders; but by 1998 there was evidence of a decline in all three grades, one that continued into 2003. In 2004 the decline halted in 12th grade, whereas it continued in the lower grades but at a much decelerated rate. As mentioned earlier, we think that the extensive adverse publicity generated by the state attorneys general, the President, and Congress in the debate over a possible legal settlement with the tobacco companies may have contributed importantly to this turnaround by influencing youth attitudes toward cigarette companies and their products. Substantial price increases, the removal of some forms of advertising (such as billboard advertising and the Joe Camel campaign), the implementation of vigorous anti-smoking advertising (particularly that launched by the American Legacy Foundation and some of the states), and strong prevention programs in some states all may have contributed.

Despite the substantial recent declines, still $9 \%$ of the 8th graders, $16 \%$ of the 10th graders, and $25 \%$ of the 12th graders are current smokers.

- While there may have been some growth in the use of smokeless tobacco in the early 1990s (Figure 5-4l), there is evidence of a fair decline in recent years at all three grade levels through 2002. The results for 2003 and 2004 suggest that this decline may be ending.


## TRENDS IN NONCONTINUATION RATES: TWELFTH GRADERS

Table 5-7a shows how the noncontinuation rates observed for the various classes of drugs have changed over time among 12th graders. Noncontinuation refers to use of the drug in one's lifetime but not in the past 12 months. The noncontinuation rate is the percent of lifetime users who did not report using the drug in the past 12 months.

- Marijuana showed some increase in noncontinuation rates between 1979 (16\%) and 1984 (27\%). This increase gave rise to the greater drop observed in annual than in lifetime prevalence of use, because the latter is influenced only by changes in the initiation rate, whereas the former is influenced by both the initiation rate and the noncontinuation rate. Between 1984 and 1987 there was no further increase, followed by another rise to $35 \%$ in 1991. The noncontinuation rate's sharp fall after 1991 to $17 \%$ by 1995 helps to explain the sharp turnaround in the annual and 30-day prevalence-of-use rates during the 1990s. By 1998 the noncontinuation rate among 12th graders had climbed some to $24 \%$, where it has remained quite stable over the last six years.
- The noncontinuation rate for cocaine decreased from $38 \%$ in 1976 to $22 \%$ in 1979, corresponding to a period of increase in the annual prevalence of use. It then remained fairly stable through 1986, corresponding to a period of stability in the actual prevalence statistics. After 1986 the noncontinuation rate rose substantially-from $25 \%$ in 1986 to $55 \%$ in 1991 -as annual use fell dramatically. This pattern strongly suggests that the sharp increase in perceived risk, which began in 1986, influenced both the initiation rate and the quitting rate. After 1991 the noncontinuation rate began declining fairly rapidly once again, reaching 31\% by 1996. (Recall that the overall use of cocaine was increasing during that period.) After 1996, noncontinuation rates rose again-corresponding to a period of leveling in overall use-reaching $42 \%$ by 2000, where it remained in 2001. It stood at $35 \%$ in 2004. In sum, changes in the noncontinuation rate have contributed appreciably to the overall changes, both increases and decreases, in the prevalence of cocaine use over the last 30 years.
- Crack cocaine also showed a sharp rise in noncontinuation, from 28\% in 1987 to 52\% in 1991, as prevalence-of-use rates declined. The noncontinuation rate fell back to $30 \%$ by 1995 as usage rates rose. Noncontinuation rates for crack then began to increase once again, reaching $43 \%$ by 1998, when overall use leveled. There has been rather modest change since 1998-41\% in 2004.
- Noncontinuation of amphetamine use has also fluctuated widely over the years. It rose between 1982 (27\%) and 1992 (49\%). (Earlier data, based on the unrevised questions, suggest that the change probably began after 1981.) Between 1992 and 1996, when overall use was rising, noncontinuation fell from $49 \%$ to $38 \%$. This statistic then remained fairly level, corresponding to a period of leveling in use, though it was down to $33 \%$ by 2004.
- Much of the previous decline in sedative use also was accounted for by a changing rate of noncontinuation for the specific substances involved. For example, in the case of barbiturates, the noncontinuation rate rose from $36 \%$ in 1979 to $52 \%$ in 1988. It then declined in the 1990s to $37 \%$ by 1995, when it leveled for several years, and then after 1998 declined to $30 \%$ in 2002. It stands at $34 \%$ in 2004. The figure for methaqualone was $29 \%$ in 1979 , rising dramatically to $61 \%$ by 1988 and $52 \%$ in 1989. Since 1990, use rates have been very low, and because the questions about methaqualone are on only one form, noncontinuation rates tend to be much more variable than for other drugs; the rate has generally run in the range of $40 \%$ in recent years.
- As overall use of tranquilizers declined, users showed a steady, gradual increase in their noncontinuation rates between 1975 and 1982, from 38\% to 50\%. There was little further systematic change for a decade until 1992. After 1992, though, in the period of rising overall use, there was a decline, from $53 \%$ in 1992 to $36 \%$ in 1996. It has remained fairly level since then ( $31 \%$ in 2004).
- Between 1982 and 1991, the LSD noncontinuation rate fluctuated within a rather narrow range (between $37 \%$ and $41 \%$ ), without a clear trend developing. Between 1991 and 1996, though, the noncontinuation rate dropped from $41 \%$ to $30 \%$, accounting for some of the increase in overall LSD use occurring during that period. Since 1996 the rate has risen very appreciably, to $68 \%$ by 2003 (followed by $52 \%$ in 2004), as overall use has declined dramatically.
- Steroid use had a sharp, 14-percentage-point increase in noncontinuation (to 48\%) in 1992, a year in which there was an increase in the perceived dangers of using steroids. Since 1998, when use began to increase among 12th graders and noncontinuation began to decrease, the rate has fallen back some to around $35 \%$ to $40 \%$, reaching $27 \%$ in 2004.
- Although alcohol has always had an extremely low rate of noncontinuation, that rate increased gradually from about 1988 to 1993, perhaps reflecting the changed norms regarding its use (see chapter 8 ). These norms, in turn, may have reflected both the influence of several states' change in the legal drinking age and a greater emphasis on the dangers of drunk driving. There has been little further change since 1993, however, during a period in which there has been relatively little change in use overall.

Table 5-7b provides noncontinuation rates for seniors who were more established users, here defined as those who reported having used a drug 10 or more times during their lifetime. It shows that noncontinuation is far less likely among heavier users than among all users of a given drug. Further, while the trends in noncontinuation mentioned earlier generally have been similar
to trends observed in the noncontinuation rates for heavier users of those same drugs, the degree of fluctuation has tended to be considerably smaller among the heavier users.

The reader is cautioned that the number of cases in each cell in Table 5-7b is considerably smaller than in most other tables, particularly when overall usage rates are low to start with; therefore, the trend data are much more uneven.

- Note that the noncontinuation rate of marijuana users who had used the drug at least 10 times has been very low throughout the past 30 years. It has ranged from a low of $4.0 \%$ in 1975 to a high of $12.3 \%$ in 1990.
- Noncontinuation rates for experienced users of inhalants actually dropped in the late 1970s, perhaps as a result of the advent of nitrites-which are used at older ages than most of the other inhalants. However, when the use of nitrites declined during the 1980s, and again in the late 1990s, the noncontinuation rates for experienced users failed to increase.
- Note the sharp rise in the late 1980s in the noncontinuation rates for cocaine and crack, even among these more experienced users. The noncontinuation rates peaked in 1991 before falling back as the use of these drugs became more popular. After about 1996, the noncontinuation rate rose modestly but has changed rather little in the past couple of years.


## IMPLICATIONS FOR PREVENTION

Whenever prevention programs are designed-whether for schools, families, communities, or the media-questions arise as to what should be prevented and what can be prevented. While it is axiomatic that the initiation of use should and can be prevented, there generally has been considerably less consensus as to whether the discontinuation of use is a realistic goal. We believe the results just presented help to inform that debate considerably.

It is clear that the totality of social forces that brought about the large declines in drug use during the 1980s and the substantial increases in use during the 1990s operated through their effects on both initiation rates and noncontinuation rates. Put another way, the decreases and subsequent increases in annual and 30-day prevalence-of-use rates were considerably larger than could be explained by fluctuations in initiation rates alone. These findings show that noncontinuation can and does change appreciably and, therefore, that any comprehensive prevention strategy should include increasing cessation as one of its objectives_particularly cessation from early stage use, as we discuss next.

It is important to distinguish among users at different levels of involvement. A comparison of the rates in Table $5-7 \mathrm{a}$, based on all previous users, and Table $5-7 \mathrm{~b}$, based on only people who reported having used a given drug 10 or more times, is highly instructive. Clearly, very appreciable proportions of beginning users can be dissuaded from continuing their use; but once they have reached a certain level of involvement (even as few as 10 occasions of use), only very
modest proportions have been so dissuaded-even in the best of times. This makes early intervention not only a viable goal for prevention but also a particularly important one.

## COMPARISONS AMONG SUBGROUPS IN TRENDS IN PREVALENCE

This section provides trend comparisons for key population subgroups defined on the following six dimensions: gender, college plans, region of the country, population density, socioeconomic status, and racial/ethnic group. In general, we will focus on the results from 12th graders, because there is a considerably shorter trend interval available for 8th and 10th graders. Appendix D to this volume contains tables providing trends for these various subgroups for all three grades and on nearly all drugs. The tables are organized by drug, and within drug by grade level. There exists a matching set of figures showing for all three grade levels each drug's use trends by subgroup on each dimension (e.g., males vs. females or college-bound vs. noncollegebound). However, because of their sheer number, as well as the cost of color printing, these figures are not included in the present volume. They may be readily accessed on the Monitoring the Future Web site at www.monitoringthefuture.org. (Click on "Publications" and then, under "Occasional Papers," locate Occasional Paper No. 61. ${ }^{56}$ ) For anyone spending much time looking at subgroup differences, accessing these graphic depictions of them will prove valuable.

## Gender Differences in Trends

- Trends in the proportion of males and females who used any illicit drug in the prior year have differed some. Annual prevalence rose among 12th-grade males between 1975 and 1978, from $49 \%$ to $59 \%$, and then declined steadily to $29 \%$ by 1992 (see Figure 5-7). Use among females peaked later, increasing from $41 \%$ in 1975 to $51 \%$ in 1981 and then dropping to $25 \%$ by 1992. (If amphetamine use is not included in the statistics, use by females peaked earlier-in 1979-and then declined as well.) Both male and female rates were up considerably by 1997 , to $44 \%$ and $40 \%$, respectively. Both have declined a bit since then, to $41 \%$ and $36 \%$, respectively, in 2004.
- In the lower grades, although trends tend to remain fairly parallel, females have generally had a slightly higher prevalence of use of any illicit drug other than marijuana, whereas in 12th grade the opposite has been true. (See Tables D-4 through D-6.)
- Most of the gender differences mentioned in chapter 4 for individual classes of drugs have remained relatively unchanged over the past 30 years-that is, any trends in overall use have been fairly parallel for males and females. There are, however, some exceptions (see Appendix D for the detailed tables or Occasional Paper No. 61 for the figures).
- The absolute differences between genders in marijuana use narrowed somewhat among 12th graders between the late 1970s and mid-1980s-a period of substantial decline. Their use rates then declined in parallel from 1986 to 1992. At all three grade levels, both genders also showed a several-year increase in marijuana use after 1992. During this

[^41]interval, the gender difference grew somewhat larger again for 12th graders. This pattern, in which a difference between subgroups tends to enlarge in periods of increasing use and to diminish during declines in use, can be seen for a number of other subgroup variables in addition to gender (see, for example, Figure 5-10b).

- This pattern certainly was the case for inhalants, though the direction of the gender difference changes between grades. In 8th grade, females tend to have higher rates of use than males; the difference was largest in the peak years of use, the mid-1990s, but has diminished substantially in recent years. In 10th grade, males have tended to have higher usage rates; the differences were again greatest in the mid-1990s but were just slightly reversed by 2002. At 12th grade, males have consistently had considerably higher rates of inhalant use, with the differences being larger in the mid-1990s when use was highest.
- Between 1975 and 1977, there was a small gender difference in tranquilizer use for 12th graders (females used them more frequently than males). This difference had virtually disappeared by 1978, and there was no gender difference for some 14 years (through 1992); but use among males rose more after 1992, opening a gender difference in which use by males has been higher. In 8th grade there has been a consistent gender difference since 1991, with slightly higher use among females. In 10th grade, tranquilizer use among females tends to be equal to or higher than use among males.
- Among seniors, gender differences in cocaine use were greatest in the peak years of use (1979 through 1986): male use was higher and then diminished sharply during the ensuing decline phase. The difference shrank considerably, but males were still higher. After 1992, the difference widened again as use increased more among males; but as a turnaround began after 1999, some convergence has once again begun to occur. There have been no appreciable gender differences in cocaine use in 8th or 10th grades since 1991, when data first became available.
- The gender differences in crack use are very similar to those for cocaine use overall: there have been higher rates of use among male 12th graders compared to females. (This is true since 1986, when data were first available. Use grew a bit more among 12th-grade males after 1992 but declined more since the turnaround after 1998). There has been little difference among 8th and 10th graders in the trends since 1991, when data first became available.
- A slight gender difference in amphetamine use among 12th graders emerged in 1980 and 1981, based on the original version of the question; but the revised question introduced in 1982 (further clarifying that nonprescription stimulants should be omitted) showed no gender difference. This strongly suggests that over-the-counter diet pills, which are used more by females, accounted for the higher use among females in those two years. Since 1982, the rates for both genders have remained very close, showing a substantial decrease in use through 1992 and a modest increase in use after that. In both 8th and 10th grades, females consistently reported higher use than males. Females had a sharper increase in use from 1992 to 1996, when use was rising, and a sharper decrease in use during declines.
- The use of crystal methamphetamine or ice (data available only for 12th graders) has been consistently higher among males.
- Methamphetamine use has been consistently higher for males at 12th grade and lower at 8th grade, with no consistent difference at 10th grade.
- Use of Ritalin without medical direction has been higher among males for the four years on which we have data. The largest difference is seen at 12th grade.
- Among 10th and 12th graders, heroin use has been consistently higher among males. The same was true among 8th graders until 1999, but males and females have had similar rates since then. These gender differences have pertained for use of heroin both with and without a needle.
- The use of sedatives (barbiturates) has consistently been higher among boys in 12th grade (the only grade reported), with the difference narrowing when use was declining (1975 to 1992) and enlarging when use was increasing (1992 to 2002).
- Trends for the two genders in the use of narcotics other than heroin converged during a long period of decline in use among seniors from 1979 to 1992. (Males had always had higher rates of use among 12th graders, the only ones for whom we report data.) However, males showed a much sharper increase in use after 1992, again opening a substantial gap.
- Among 12th graders the gender differences in alcohol use narrowed slightly between 1975 and 1987. For example, the 30-day prevalence rates for males and females differed by 13 percentage points in 1975 ( $75 \%$ versus $62 \%$, respectively), but that difference was halved (to 7 percentage points) by 1987. (In 2004 the difference was 6 percentage points.) Although substantial gender differences in daily use and occasions of heavy drinking still remain, by 1993 differences had narrowed there also (Figures 5-5 and 5-6a). For example, between 1975 and 1993 the proportion of males who reported having had five or more drinks in a row during the prior two weeks showed a net decrease of 14 percentage points ( $49 \%$ to $35 \%$ ), whereas such use among females decreased by only 5 percentage points, from $26 \%$ to $21 \% .{ }^{57}$ By 1998, rates for both genders had risen some, to $39 \%$ and $24 \%$, respectively, opening the gap a little. Since 1998 the gender differences have narrowed. By 2004 there was no gender difference in alcohol use in 8th grade, very little in 10th grade, and a fair-sized one in 12th grade, albeit considerably smaller than the difference that existed in the early 1980s. In general, the gender difference over the years has been greatest in 12th grade, less at 10th grade, and still less (if any) at 8th grade.
- Self-reports of being drunk may be a better indicator of heavy drinking than a fixed number of drinks. Even with this measure, males are substantially higher in 30-day

[^42]prevalence of having been drunk among 12th graders, only a little higher among 10th graders, but about equal to females among 8th graders.

- On one of the six questionnaire forms administered to 12th graders, respondents are asked separately about their use of beer, wine, hard liquor, and wine coolers. (Tabular data are presented for these beverages in Tables D-72 through D-85.) The answers to these questions reveal that differences in beer consumption account for much of the large gender difference in occasions of heavy drinking: 32\% of 2004 senior males (versus $16 \%$ of the females) reported having had five or more beers in a row during the prior two weeks. Males were also more likely than females to report having had five or more drinks of hard liquor ( $29 \%$ for males versus $18 \%$ for females) but only a bit more likely to have consumed wine that heavily ( $6.2 \%$ for males and $3.5 \%$ for females). This pattern-a large gender difference in the heavy use of beer, a smaller difference in the heavy use of hard liquor, and a much smaller difference in the heavy use of wine-has been present throughout the study, with little systematic change over time. In 1988, questions on wine coolers were added and here the gender difference was reversed, with females reporting slightly higher rates of heavy drinking of wine coolers ( $8.0 \%$ for females vs. $7.5 \%$ for males in 2004). In 2003 a single question on annual use of flavored alcoholic beverages ("alcopops") was added, and then in 2004 the full set of three questions (lifetime, annual, 30-day); here too females have a higher rate of use (e.g., 30-day prevalence of $33 \%$ for female 12th graders versus $29 \%$ for males in 2004).
- In the lower grades, male and female alcohol consumption rates are more equivalent and have remained so since first measured in 1991. Unlike the 12th graders, there is virtually no gender difference in annual or 30-day prevalence of any use of alcohol or in the annual prevalence of having been drunk. These gender differences seem to emerge with age, as is the case for many of the illicit drugs. The state of emerging differences with age also holds true for binge drinking in the prior two weeks. The data consistently have shown only a small gender difference in 8th grade, a modest one in 10th grade, and a large one in 12th grade, with males higher than females. The same pattern has been true for self-reported drunkenness (see Tables D-66 through D-68). In the last few years, however, the gender differences have decreased somewhat, particularly in the upper grades, as use among males has declined more.
- In 1976 we observed that, among 12th graders, females had caught up to males in daily cigarette smoking and by 1977 had exceeded them (see Figure 5-5). Between 1977 and 1981, both genders showed a decline in the prevalence of such smoking, but use among males dropped slightly more, resulting in females maintaining higher rates of daily smoking until 1990. However, the gender difference was declining in the latter half of the 1980s, as male use began to rise gradually and female use declined a bit. The increase in daily smoking among males was greater in the 1990s, and female use did not begin to rise until after 1992. The net result was a crossover of the two lines for daily prevalence of use in 1991, followed by a roughly parallel increase from 1992 to 1997. Both genders have declined sharply and fairly parallel since 1997. In 2004 there remains only a negligible difference between them.

At the 8th- and 10th-grade levels, there has been rather little gender difference in 30-day or daily smoking levels, though 8th-grade girls had slightly higher rates in the mid- and late 1990s for 30 -day use and in the late 1990s for daily use. Both genders moved up sharply in the early 1990s until 1996, and both have shown a considerable parallel decline since.

- Very large gender differences in the use of smokeless tobacco have been consistently observed at all grade levels, with much higher rates among males. Since 1994 there has been a substantial decline overall in use of smokeless tobacco among 8th-grade males (their 30-day prevalence dropped from $12.8 \%$ in 1994 to $6.7 \%$ in 2000), a considerable drop among 10th-grade males (from 19\% to 11\% over the same period) and, since 1995, a similar decline at 12th grade (from $24 \%$ in 1995 to $14 \%$ in 2000). In the past few years, the declines among males essentially have ended at all grade levels. (See Tables D-96 through D-98.) Since girls’ use fluctuates rather little and is so low, the gender differences rise and fall with the changes in use by males.
- Like smokeless tobacco, steroid use is also much higher among males, and the trends have differed somewhat for males and females. From 1991 to 1995 (or 1996 in the case of the 10th graders) 8th- and 10th-grade girls showed a gradual increase in their steroid use, while use among boys declined some or held steady. From 1996 through 1999 (or 2000 in the case of the 10th graders) 8th- and 10th-grade boys showed a much greater increase in use than did girls in those grades, widening the gender gap. Girls, however, have shown a fairly steady increase in their use of steroids from the early 1990s through 2002, despite their low levels relative to boys. This increase halted in the lower grades in 2003, though. Only in 12th grade did female use continue to increase, likely carrying forward a cohort effect. Despite the gradual long-term increase in reported steroid use among females, their annual prevalence rates remain quite low in 2004: 1.0\% among 8thgrade females, $0.9 \%$ among 10th-grade females, and $1.7 \%$ among 12th-grade females.


## Trend Differences Related to College Plans

It is important to realize that the proportion of young people expecting to attend college has risen quite dramatically over the past 30 years covered by this study. ${ }^{58}$ In the mid-1970s, only about half of 12th graders surveyed said that they "definitely would" or "probably would" complete a four-year college program. (They constitute the "college-bound" in the current discussion.) By the early 2000s, however, between $75 \%$ and $80 \%$ of graduating seniors met this definition for being college-bound. This means that the two groups compared here (college-bound and noncollege-bound) are changing proportions of the total population and, therefore, do not represent exactly comparable segments of the population across time.

There has been rather little such upward drift in college plans during the 1990s at lower grade levels, but generally $78 \%$ to $90 \%$ of each class already expects to attend college. Whether or not

[^43]these expectations are realistic, the reader is reminded that at these lower grades the noncollegebound constitute a very small proportion of the whole class.

- Both college-bound and noncollege-bound students have shown fairly parallel trends in overall illicit drug use over the years (see Figure 5-8), with the noncollege-bound consistently having the higher rate of use. ${ }^{59}$
- Changes in the use of the other specific drug classes also have been generally parallel for the two groups since 1976, with only minor exceptions (see Appendix D or Occasional Paper No. 61 on the study's Web site for comparisons on the various drugs).
- Changes in marijuana use have been fairly parallel for the two groups at all three grade levels.
- Cocaine use has been higher among the noncollege-bound throughout the periods studied, and particularly so in the two lower grades. For crack cocaine, the differences have been even more pronounced. Between 1983 and 1986, annual cocaine use increased very little among the college-bound seniors but rose by about one-quarter among the noncollege-bound seniors, very likely due to the greater popularity of crack among the noncollege-bound. From 1986 through 1993, both groups showed large declines in cocaine use and some convergence in their rates. During the period of increasing use in the 1990s, the differences enlarged again, particularly in the lower grade levels. Just as the increase in cocaine use was sharper among the noncollege-bound through most of the 1990s at all grade levels, the declines since 1998 were also sharper. The already large differences in crack use enlarged considerably during the increases of the early to mid1990s. There has been some convergence during the decline phase since 1998.
- As the overall prevalence of use of many drugs fell through 1992 among 12th graders, there was some convergence of usage rates between the college-bound and noncollegebound due to a greater drop in use among the noncollege-bound. This has just been illustrated for cocaine and crack, and it also was true for tranquilizers, sedatives, methaqualone, amphetamines, barbiturates, nitrite inhalants, hallucinogens other than LSD, LSD, and narcotics other than heroin. But as the use of several of these drugs began to increase after 1992, the differences grew larger for many of them at all grade levels (e.g., LSD, psychedelics other than LSD, amphetamines, and tranquilizers). The increases were sharper, and in some cases started earlier, among the noncollege-bound. In more recent years a number of these drugs have begun to decline in use, and with that decline has come a narrowing of the differences once again. This has been particularly true for LSD, for example.
- For many years there was only a modest absolute difference in the low annual heroin prevalence rates observed in 12th grade between the college- and noncollege-bound

[^44]students (the college-bound were lower). In general, however, the noncollege-bound have been about twice as likely to have used heroin in the prior year. (See Table D-36.)

At the lower grade levels there has been a larger proportional and absolute difference in heroin use between these two groups, and in both grades the noncollege-bound group showed a sharper rise in heroin use in the 1990s than did their counterparts who said they expected to complete four years of college (see Tables D-34 and D-35). That increase was particularly sharp among the noncollege-bound 8th graders (who now comprise only about $10 \%$ of the 8 th-grade sample). The noncollege-bound have generally had considerably higher rates of heroin use, particularly use with a needle (see Tables D-37 through D-39).

- The noncollege-bound consistently have had higher rates of $\mathbf{L S D}$ use than the collegebound in all years measured at all three grade levels, and their use has generally moved in the same direction over time (see Tables D-16 through D-18). The differences between them enlarged at all three grade levels during the 1990s as use increased, particularly in the lower grades. In 8th grade, the small noncollege-bound stratum generally has been three to five times as likely to use LSD as their peers have. During the decline phase in LSD use over the last several years, the differences have narrowed considerably, but they are still substantial.
- The use of ecstasy (MDMA) among seniors started out higher among the noncollegebound in 1996, the year it was first measured, but from then until 2000 the rates of use were fairly close. In the lower grades, however, the differences have been larger and more consistent, with the noncollege-bound having considerably higher rates of ecstasy use. Both groups showed an increase in 2000 and 2001 at all grade levels, but the increases were much sharper among the noncollege-bound in the lower grades. (As Tables D-22 through D-24 show, these figures are based on relatively low case counts, making one-year subgroup differences in trends potentially unreliable.) Since 2001, as use has declined, the noncollege/college-bound differences have narrowed in the lower grades but not in 12th grade.
- Ritalin use has been much higher among noncollege-bound 8th and 10th graders than among their counterparts, and somewhat higher among noncollege-bound 12th graders than among their counterparts. (Use was first measured in 2001.)
- Methamphetamine use has been much higher among the noncollege-bound in all grades since use was first measured in 1999.
- Sedative (barbiturate) use and tranquilizer use both have been higher among the noncollege-bound, with the differences expanding during periods of higher use and contracting during periods of declining use.
- For 30-day alcohol prevalence, the noncollege-bound have consistently been higher than the college-bound, though the differences have generally been much smaller at 12th grade than in the lower grades. Between 1992 and 1993, the gap at all three grade levels
widened a bit due to a greater drop among the college-bound. Because the enlarging of the gap coincided with the revision of alcohol-use questions (see footnote in the "Trends in Prevalence of Use 1975-2004: Twelfth Graders" section of this chapter), it is likely that the revision contributed to this enlargement. The proportional differential in all of the different alcohol measures is greatest at 8th grade, still substantial but less at 10th, and least at 12th. (The question revision, instructing respondents to omit occasions in which they had no more than a few sips, appears to have affected the annual prevalence measure considerably more than it did the other alcohol use measures.)
- Among 12th graders, the binge drinking rates of the two groups converged modestly from 1981 to about 1990 (see Table D-71) as the overall prevalence rate declined, though the rate for the college-bound still remained considerably lower. Both groups showed modest increases after 1993; but as use has declined some in recent years, the decline has been a bit sharper among the noncollege-bound.

In 8th and 10th grades there have been very large differences in binge drinking rates, and the two groups were diverging during much of the 1990s because the noncollege-bound exhibited a larger increase in binge drinking. Both groups showed evidence of decline through 2002 (see Tables D-69 and D-70).

- At all three grade levels there have been very large differences in the current prevalence of cigarette smoking between the noncollege-bound (who have higher rates of use) and the college-bound. (For example, in 2004 the daily smoking rate was almost five times as high among the noncollege-bound 8th graders, at $15.4 \%$, as among the college-bound, at $3.1 \%$.) In general, the broad contours of change have been fairly similar for the two groups at the 12th-grade level, but there was some convergence that occurred roughly over the period 1980 through 1993, as current smoking very gradually declined among the noncollege-bound but gradually increased among the college-bound. In 1980 there was a 17-percentage-point differential in current smoking ( $40 \%$ vs. $22 \%$ ), which declined to a 10-percentage-point differential by 1993 ( $37 \%$ vs. 27\%).

At the 8th- and 10th-grade levels, current smoking rates for the two groups diverged during the early to mid-1990s, with both groups increasing but the noncollege-bound increasing more. Then, at all three grade levels, the college-bound were the first to show a turnaround in current smoking in the mid- to late 1990s, leading their noncollege-bound peers by a year or two. At grades 10 and 12 both groups have shown little further decline in smoking in 2004, but both groups showed a continuing decline at 8th grade, albeit a decelerated one. (See Tables D-87 through D-95 for subgroup trends in cigarette smoking.)

- The use of smokeless tobacco also has consistently been much higher among the noncollege-bound at all grade levels, and the proportional differences have been very large in the 8th and 10th grades. (See Tables D-96 through D-101.) Again, the downturn in use in the mid-1990s began first among the college-bound, followed by their peers a year later at each grade. Both groups have shown a considerable drop in use in all three grades since the early 1990s.
- There has been a large and reasonably consistent difference in the rates of steroid use (Tables D-102 through D-104) in the two groups at all three grade levels, with the noncollege-bound considerably more likely to use steroids than the college-bound. During the phase of increasing steroid use in the late 1990s, both groups showed an increase; but the increases were greatest among the noncollege-bound, enlarging the differences between the groups at all three grade levels. Some convergence in steroid use between the two groups has occurred at 10th and 12th grades over the past few years.


## Regional Differences in Trends

Data on subgroup trends for the four regions of the country may be found in tabular form in Appendix D in this volume and in graphic form in Occasional Paper No. 61 on the study's Web site, as described at the beginning of this section.

- In all four regions of the country, the proportions of high school seniors using any illicit drug during the past 12 months reached their peaks in 1978 or 1979 (see Figure 5-10a and Table D-3). In the late 1970s and early 1980s, the Northeast region was consistently highest, the South lowest, and the North Central and West in between. Through the 1980s and continuing through 1992, use declined overall. The South maintained its position as having the lowest rate of use, with the other regions having rates of use similar to each other. From 1992 to 1997, the annual use of any illicit drug increased in all four regions by roughly equivalent amounts, with use in the South remaining lowest. Since then there has been some leveling or decline in annual prevalence in all four regions. Annual prevalence in 2004 ranged from a low of $36 \%$ in the South to $38 \%$ in the North Central, $40 \%$ in the West, and $44 \%$ in the Northeast. As can be seen from these numbers, the regional differences have been relatively modest in recent years.

Among 8th and 10th graders, the regional differences have generally been minor. All regions showed increases in illicit drug use from 1991 to 1996 (see Tables D-1 and D-2). As with 12th graders, leveling or declines have occurred in the most recent years.

- As noted earlier, a major factor in the early rise of illicit drug use other than marijuana (Figure 5-10a) was an increase in reported amphetamine use. The rise in amphetamine use among seniors appeared in all four regions; however, the rise in lifetime prevalence of use from 1978 to 1981 was only 6 percentage points in the South, whereas in the other regions the percentages rose between 9 and 12 points. In essence, the South was least affected by both the rise and the fall in reported amphetamine use-a pattern later repeated with cocaine. Since 1995, there has been little systematic difference among the regions in levels of amphetamine use among 12th graders. At 8th and 10th grades, the North Central and the South have had higher rates than the Northeast and West in recent years.
- The long-term marijuana trends for 12th graders generally have shown quite parallel trends in all four regions since 1975, with the Northeast usually having the highest level and the South having the lowest level. Marijuana use rose substantially in all four regions after 1991 for 8th graders and after 1992 for 10th and 12th graders. Between 1996 and 2004, all regions showed a leveling or turnaround at all grade levels. In the last four years
marijuana use has been lowest in the South among 12th graders, but not among 8th or 10th graders.
- Cocaine use has shown very different trends in the four regions of the country, leading to the emergence for a period of years of one of the largest regional differences observed for any of the drugs. (See Figure 5-10b for differences among 12th graders in lifetime prevalence-of-use trends.) In the mid-1970s, there was relatively little regional variation in cocaine use, but as the nation's cocaine epidemic grew, large regional differences emerged. By 1981, annual use had roughly tripled in the West and Northeast, nearly doubled in the North Central, and increased by "only" 26\% in the South. This pattern of large regional differences held for about six years, until a sharper decline in the Northeast and the West substantially reduced the differences. At all three grade levels there was a modest overall increase in use in all regions from the early 1990s through 1996 or 1997, followed by a leveling or turnaround in nearly all cases. For most of the years of the study, the West has had the highest level of cocaine use at all three grade levels, but in recent years the differences have not been very large.
- When crack use was first measured among 12th graders in 1986, there were large regional differences, with the West and Northeast having far higher rates than the North Central and South (as also was true for powder cocaine). Crack use dropped appreciably in all four regions over the next several years (though rates did not peak in the North Central until 1987 or in the South until 1989, perhaps due to continued diffusion of the drug to areas that previously did not have access). The declines were large and very sharp in the West and Northeast. By 1991 little regional difference remained, although the West still had the highest rate of use. After 1991 or 1992 there were increases in all regions, but particularly in the West. Again, the West showed the largest increases and the highest levels of use at all three grades, while the other three regions were fairly similar in their rates of use. All regions showed evidence of a leveling or decline in crack use at all three grade levels in recent years, along with a diminution of regional differences.
- The use of crystal methamphetamine or "ice," which is asked only of the 12th graders, has consistently had the highest rate of use in the West. The other regions show rates of use that are lower than the West but similar to each other. Methamphetamine, which was added in 1999 for all grades, also has shown high rates in the West and, in the past few years (following a decline), the lowest rate in the Northeast.
- Between 1975 and 1981, sizable regional differences in hallucinogen use emerged for 12th graders as use in the South dropped appreciably. In 1981, both the North Central and the West had annual prevalence rates of use that were about $21 / 2$ times higher than the South ( $10.3 \%, 10.4 \%$, and $4.1 \%$, respectively), while use in the Northeast was 3 times as high (12.9\%). After 1981 through the remainder of the decade, hallucinogen use dropped appreciably in all regions except in the South (which continued to have the lowest rate), considerably reducing these regional differences. In the early 1990s, use was still consistently lower than average in the South, but the differences among the other three regions were small. A considerable increase in use in the South between 1991 and 1995 brought its annual rate close to the level of the other regions. Since the mid-1990s there
has been a decline in all regions, and the differences among the regions are now quite modest.
- Among high school seniors, the use of $\operatorname{LSD}$ has been consistently lowest in the South. Between 1988 and 1993, the use of LSD did not vary much among the other three regions for the 12th graders, although in earlier years the trend story was quite similar to that described for hallucinogens as a group of drugs. Between 1993 and 1996, use went up quite sharply in the Northeast region, once again creating regional differences. A sharp decline since 1996 in the Northeast, followed by sharp declines in all other regions, greatly diminished regional differences by 2004.

Regional differences in LSD use among 8th and 10th graders have generally been quite small, although the West had the highest rates of use among 8th graders from 1991 to 1998 and among 10th graders from 1991 to 1994. After 1997 the West had a sharp decline in LSD use among 8th graders, which reduced regional differences again. At 10th grade the other regions rose in their use, catching up with the West and eliminating regional differences by 1995. Since then all regions have shown considerable declines in use, and there are now negligible differences among them.

- Between 1996, when ecstasy (MDMA) use was first measured, and 1998, use fell some at all grade levels in all regions. (The one exception was the West in 12th grade, where it remained stable.) In 1999, when ecstasy use increased significantly in grades 10 and 12, the largest increase by far in both grades occurred in the Northeast, although all regions showed some increase in one or both of those grades. Then, in 2000, use rose some in the other three regions at all grade levels, including 8th grade, but not in the Northeast; the rise was particularly sharp in the West among 12th graders. In 2001 the North Central region showed a sharp rise in 12th-grade use, followed by an even sharper drop in 2002. The South, the only region showing further increase in 2002, had only a fairly small increase in 12th grade. All regions have shown a sharp decline in use in the last few years at all three grade levels, and the remaining regional differences are minor.
- Between 1979 and 1982, PCP use dropped precipitously in all regions for 12th graders. The drop was greatest in the Northeast, which in 1979 had a usage rate roughly double that of all the other regions. In general, PCP use was low and relatively stable from 1982 through 1995. Annual prevalence of PCP increased in the Northeast beginning in 1996; during the interval from 1996 to 1999, PCP use was again higher in the Northeast region than in the other regions.
- Some classes of drugs have shown little systematic difference as a function of region over the years in which their use has been measured. These include inhalants, heroin, heroin without a needle, and heroin with a needle.
- The use of narcotics other than heroin has not varied much by region among 12th graders (the only ones for whom use is reported), with the exception that the South has fairly consistently had a lower rate than the other three regions. This was particularly true prior to 1988.
- Among 12th graders from the mid-1970s through the early 1980s, the Northeast and the North Central had appreciably higher 30-day prevalence and heavy drinking rates of alcohol use than did the South and West. From the early 1980s to the early 1990s, all four regions exhibited substantial declines in 30-day alcohol prevalence and occasions of heavy drinking, with the Northeast and North Central declining most. As a result, the regional differences diminished somewhat; however, the relative positions of the four regions have remained essentially unchanged. During the last several years, there has been some decline in alcohol use in all regions at all grade levels. The South and the West still have the lowest rates and the Northeast and North Central the highest among 12th graders.
- At the lower grades there has been rather little regional difference for 30-day prevalence and for heavy drinking since 1991, when data were first collected on these measures, and the trends have generally been quite similar across regions.
- All these trends in regional differences for 30-day prevalence of alcohol use also apply to the two measures of heavy drinking-self-reported occasions of drunkenness and binge drinking in the prior two weeks.
- Among 12th graders, the West had a considerably lower 30-day prevalence of smoking from the mid-1970s (when the study began) through the mid-1980s, though sharper declines in the South brought its smoking rate down near to the West's by 1984. It is noteworthy that from 1992 to 1994-a period of overall increase in cigarette smokingthe West was the only region that did not show an increase in daily smoking in 12th grade (although by 1995, use had begun to increase in the West as well). This lack of increase in the West may well be due to the fact that California conducted a major antismoking campaign in those years. There also was a similar lag and a lower increase in the West at 10th grade than in other regions; the 8th graders in the West showed the least increase compared to other regions and also remained the lowest of the four regions. Despite the fact that the regional differences were more pronounced during the 1990s due to this divergence by the West, all regions at all grade levels showed an important drop in smoking rates from the mid- to late 1990s through the early 2000s. Unfortunately, all four regions showed a leveling in 12th-grade smoking in the past year or two; this consistency across regions suggests an end to the long decline at that grade level.
- The use of smokeless tobacco has generally been highest in the South for 8th and 10th graders, followed closely by the North Central. Among 12th graders, however, use in the North Central rose sharply after 1989, giving that region the highest rates in general until about 2000, with the South usually ranking second. During the late 1990s, use of smokeless tobacco fell in all regions in all three grades. However, the decline in the North Central has been particularly steep in all grades, resulting in the South having the highest prevalence of smokeless tobacco use in all grades.
- In general, the regions have moved fairly parallel with regard to steroid use at all three grade levels. In particular, the sharp increase in steroid use that occurred at grades 8 and 10 between 1998 and 1999 was observed in all regions, suggesting that a culture-wide
influence was at work-quite possibly a public role model using steroids (or a steroid precursor). (Note that, because of the smaller samples on which this question is based in 12th grade compared to other drugs, the trend curves for that grade are more uneven.)


## Trend Differences Related to Population Density

Appendix D contains tabular trend data on all drugs for the three levels of community size distinguished here. (Their definitions may be found in Appendix B.) Selected figures are presented in this chapter, and a complete set of figures that are far easier to read than tables may be found in Occasional Paper No. 61 on the study's Web site, as described at the beginning of this section on subgroup trends.

- Proportions of seniors using any illicit drug in all three levels of community size peaked in 1979, at which time there were appreciable differences in usage rates, with the large cities having the highest rate and the non-urban areas the lowest (see Figure 5-11a). Usage rates declined from 1979 to 1992, when the annual prevalence in all three areas converged at $27 \%$, virtually eliminating the prior differences. (Most of the narrowing was due to changing overall levels of marijuana use.) There were increases in use of any illicit drugs among all three levels of community size after 1992, but the increases have been smallest among the nonmetropolitan segment, leaving that segment with slightly lower rates than the other two groups. The increases halted after 1995 in the large metropolitan areas and after 1997 in the other metropolitan areas and the nonmetropolitan areas. (There was also a lag in the beginning of the decline that began in the late 1970s, with the nonmetropolitan areas declining last.) In both 10th and 12th grades, a decline in use in the large city stratum between 2001 and 2003 brought that stratum to the lowest position of the three strata. At the lower two grade levels there generally has been rather little difference in use as a function of community size, though the "other metropolitan areas" have had the highest levels through most of the period since 1991.
- The overall proportion of 12th-grade students involved in the use of any illicit drug other than marijuana peaked in communities of all sizes in 1981 and then fell until 1991 or 1992 (Figure 5-11a). Since 1989 the large metropolitan areas generally have shown slightly lower rates than the other two strata-a reversal of earlier differences. After 1991 or 1992, the rates for all three strata started to increase gradually, though the increase halted in 1996 for the large metropolitan areas, after 1997 for the other metropolitan areas, and after 1999 in the nonmetropolitan areas. At grades 8 and 10, the large metropolitan areas have generally had somewhat lower rates of use since 1991 than the other two strata, though their trend lines have been fairly parallel until the last three years. The large MSA stratum has shown a substantial drop in this index since 2001 in both 8th and 10th grades, with the result that the large MSAs have the lowest prevalence rate in all three grade levels.
- During the years in which the use of various drugs increased, significant differences emerged among the three levels of population density in the use of several specific classes of drugs. Figure 5-11b shows the trends for the annual prevalence of use of alcohol, marijuana, and cocaine: The differences among the three population density
strata were greatest (with large cities at the top) in the peak years of use for each drug, but as use declined during the 1980s, the three strata tended to converge.
- For example, the increase in cocaine use between 1976 and 1979, although dramatic at all levels of population density, was clearly greatest in the large cities. Between 1980 and 1984, use was fairly stable in all groups, but in 1985 it showed a rise in all groups. In 1986, use stabilized again in all groups, and in 1987 it began a long-term decline. Just as the earlier rise had been greatest in the large cities, so was the decline (see Figure 5-11b). By 1991 there were only small differences by population density in cocaine use among seniors, and this remained the case through 1998. Then use started down in the large metropolitan areas a year before it did in the other two strata, resulting in some differences in usage levels. The large cities now have the lowest annual prevalence for cocaine use at 12th grade, instead of the highest-a reversal of the differences in all of the years prior to 1989. There have been very small differences in cocaine use at the 8thand 10th-grade levels since 1991, when data were first available.
- In the late 1980s, the use of crack among 12th graders declined more in the large cities (where it had been at a considerably higher level) than in the smaller areas. Between 1986, when it was first measured among 12th graders, and the low point in 1991, annual use decreased by 4.7 percentage points (from $5.9 \%$ to $1.2 \%$ ) in the large cities, by 1.8 percentage points (to $1.7 \%$ ) in the other cities, and by 2.3 percentage points (to $1.2 \%$ ) in the nonmetropolitan areas. In other words, the previous differences virtually disappeared. There were increases after 1991 or 1992 in all three grades, although use in the nonmetropolitan areas rose more than in the other two strata. As a result, the nonmetropolitan areas have generally had the highest rates of crack use at 8th and 12th grades in the years since, and for most of those years at 10th grade, as well.
- In the early years of the study, marijuana use consistently had been correlated positively with community size among 12th graders, with the greatest differences occurring in 1978, one of the peak years of usage (see Figure 5-11b). After that, both the absolute and the proportional differences diminished as use declined quite steadily through 1992. Between 1991 or 1992 and 1997, communities in all size categories showed a turnaround in marijuana use; in fact, the turnaround began a year earlier in the nonmetropolitan areas. As use increased, beginning in the early 1990s, the differences began to re-emerge, though this time the differences are mostly between the two metropolitan strata versus the nonmetropolitan (which has a lower prevalence). At the lower grades the differences among strata have been small, and they have tended to trend in parallel.
- In general, the three levels of population density have shown fairly equivalent rates of heroin use-a fact that may surprise many-and quite parallel trends.
- In the latter 1970s, the use of narcotics other than heroin among 12th graders was consistently highest in the large metropolitan areas and lowest in the nonmetropolitan areas. All groups declined in use through the early 1990s, then increased again; however, the differences among groups were diminished such that by 1995 the annual prevalence
for all three groups converged at $5 \%$. Since then there has not been a very consistent association between community size and prevalence rate.
- OxyContin use, which was first asked about in 2002, has been lowest in the large cities across all three grades. Vicodin use, which also was first included in 2002, has shown less clear association with population density.
- Amphetamine use has generally been highest in the nonmetropolitan areas in recent years at all three grade levels. The differences are modest.
- Methamphetamine use has tended to be lowest in the large cities at all three grade levels, at least since the question was introduced in 1999.
- The use of ice (crystal methamphetamine) was added to the questionnaires (for seniors only) in 1990. While use in all strata rose for some years, it rose most in the large cities, where it peaked in 1996 at a rate well above the less urban strata. However, use in the large cities declined rapidly, and since 1998 there has been little difference in use among the three strata.
- Sedative (barbiturate) use is reported only for 12th graders. The rates among the three population density strata were very close and declined very much in parallel from 1975 through 1988. Then the large metropolitan areas declined further and developed the lowest rate of use. All three strata had an increase in use in the 1990s, but the large metropolitan areas continue to have the lowest rate of use.
- Among 12th graders, there was a greater decline in 30-day alcohol prevalence in the large cities from 1980 to 1983, which virtually eliminated the previous differences among the three strata. (See Table D-65.) From 1983 to 1992 or 1993, there were essentially parallel (and substantial) declines in all three strata. Since the early 1990s, alcohol use largely leveled out in all strata at all three grade levels before starting to decline in all. At the lower grades the trend lines have been fairly parallel and about equivalent for all three strata.
- For occasions of heavy drinking, the trends for the three grades are fairly similar to those for 30-day prevalence, except that the nonmetropolitan areas tended to have the highest rates of this behavior in the 1990s at all grade levels. (See Tables D-69 through D-71.) This high rate of use emerged at 8th grade due to a larger increase in heavy drinking in the nonmetropolitan areas than in the other strata. It has existed fairly consistently since 1991 at 10th grade. The pattern is less clear at 12th grade, but the large city stratum has generally had the lowest prevalence of the three strata.
- In the early to mid-1990s, there were increases in cigarette smoking in all three strata for all three grade levels. (See Figure 5-11c and also Tables D-87 through D-89.) The increases were particularly sharp and lasted longer in the nonmetropolitan areas, thus creating a greater difference than previously existed, with use highest in the nonmetropolitan areas and lowest in the large cities. In 1997, use began declining in the

8th and 10th grades in the large and smaller cities, while it continued to increase in nonmetropolitan areas. That increase continued in 1998 and 1999 in 8th grade as the other two strata continued to decline, creating quite a large difference in their smoking rates. Among 10th graders a similar difference emerged, but smoking finally began to decline in 1999 in the nonmetropolitan areas, as well. In 12th grade all three strata have shown some decline over the past seven years, but still the nonmetropolitan areas clearly have the highest smoking rate in all three grades, and the large cities have the lowest.

- The remaining drugs, including smokeless tobacco and steroids, show little systematic variation in trends related to population density.


## Differences in Trends by Socioeconomic Status

The measure of socioeconomic status used in this study-namely, the average educational attainment level of the respondent's parents-is described in the previous chapter and in Appendix B. Five different strata are distinguished, and the students are sorted into those strata based on the educational level of their parents. It should be noted that the overall average educational level of parents has risen over the years; thus each of the five categories contains a slowly-changing proportion of the sample. Figures 5-12a through 5-12f show trends for six selected measures of drug use. Trend data, by subgroup, for all drugs may be found in tabular form in Appendix D and in graphic form in Occasional Paper No. 61 on the study's Web site, as described at the beginning of this section.

- In general, there has been little change over time in the relationship between the socioeconomic status (SES) of the family of origin and prevalence-of-use rates for most of the drugs.
- Marijuana use at 12th grade, for example, has had little association with socioeconomic level throughout the life of the study, except that the lowest SES stratum consistently has had a slightly lower prevalence-of-use rate than all the others. All levels showed similar declines in use from the late 1970s through 1992 (Figure 5-12a), and all levels showed comparable increases after 1992 in all three grades, before leveling and/or declining a bit in the late 1990s and early 2000s. At the 8th-grade level, there tends to be more of a negative correlation between marijuana and parental education level, and it grew stronger in the mid-1990s. The same occurred in 10th grade, as well, though the differences are not as large.
- Cocaine has shown the largest and most interesting change in its association with socioeconomic status (Figure 5-12b). During the incline phase of the cocaine epidemicfrom 1975 through 1981-a strong positive association evolved among high school seniors between cocaine use and SES, with the greatest increase in use occurring in the highest SES group and the least increase in the lowest SES group. From 1981 to 1985, use in the top SES levels declined some, while use in the lowest SES group increased substantially between 1982 and 1985-an increase that likely reflected the introduction of the less expensive form of cocaine, crack.

The net effect of these changes was the elimination of SES group differences in cocaine use; after 1985, there was little or no systematic association between overall cocaine use and socioeconomic status. The strong positive association that existed for roughly eight years disappeared. All SES levels showed a substantial decrease in cocaine use between 1986 and 1991, with little differential change. In the upturn between about 1991 and 1997, some reversal in the relationship emerged, with the lowest SES group having the highest use.

In the lower grades since 1991, when data were first available, the use of both crack and other cocaine (but particularly crack) has been highest in the lowest SES stratum. Otherwise, the differences among strata have been small. (A similar pattern has been true in 12th grade for crack since 1992.)

- Aside from the fairly consistent, slightly lower level of $\operatorname{LSD}$ use among the lowest SES group than among the four other strata, there was little association at the 12th-grade level between SES and the use of this drug over the interval from 1975 through about 1984 (see Figure 5-12c). As the overall usage level for LSD gradually increased after 1984, a modest positive association emerged, although it diminished some in degree by the mid1990s and was virtually erased during the downturn in use in the years since. In 8th grade, the lowest socioeconomic stratum has had the highest usage level, with hardly any other differences. There have been practically no systematic differences in 10th grade by socioeconomic status.
- Little difference is observed across the five SES categories in reported use of inhalants. (See Tables D-10 through D-12.) There has been very little association in the lower grades and no systematic change in association. In recent years, the highest SES stratum has tended to have the lowest usage rates in the lower grades.
- Overall, among 12th graders, little difference has existed among the SES groups in their trends in amphetamine use (see Figure 5-12d). In earlier years (1976 through 1990), there was usually a slight curvilinear relationship, with the two highest and the lowest SES groups tending to be low in amphetamine use. From 1991 through 1995, the two or three highest SES groups had the lowest rates of amphetamine use. Since 1992, increases in use have occurred in all strata. In 8th and 10th grades, amphetamine use generally has been slightly negatively correlated with SES; while the increases in use through 1995 or 1996 occurred in all groups, they were sharpest in the lower two strata. More recently, all strata in grades 8 and 10 have shown some decline in use over the last several years.
- Methamphetamine use has tended to be highest in the lowest SES stratum at all three grades since it was first included in 1999. The other four strata are fairly similar. In recent years, use of crystal methamphetamine (ice) has also tended to be highest in the lowest SES stratum.
- Since 1991, when the surveys of the lower grades began, the lowest SES stratum has had the highest level of heroin use, including using heroin both with and without a needle. Otherwise there is little systematic difference among the various strata. A similar pattern
emerged among the 12th graders after 1994 and still exists, except that using heroin with a needle has now fallen to the level of the other strata in 12th grade.
- By way of contrast, the use of narcotics other than heroin is lowest in the lowest SES stratum with relatively little difference among the other strata. This pattern has been generally true since the beginning of the study among 12th graders (the only grade for which this behavior is reported).
- The use of sedatives (barbiturates) has shown no systematic relationship to SES since the beginning of the study, and all strata have moved in parallel. (Only data for 12th grade are reported.)
- Tranquilizer use at 12th grade has also shown no systematic association with SES. However, in the lower grades the lowest SES stratum has tended to have the highest prevalence, particularly at 8th grade. The various strata have moved in parallel for the most part.
- The picture for alcohol use among 12th graders is similar to the one described earlier for marijuana use among 12th graders: that is, there has been little difference in the 30-day prevalence rates among the SES strata except that the lowest stratum consistently has had a lower prevalence than all the others; and all strata have moved approximately in parallel. The story for binge drinking is similar (Figure 5-12e).

At the lower grade levels, however, the story is a bit different. Binge drinking generally has been inversely correlated with SES, and the association has been strongest in the 8th grade. Trends for the various strata have generally been parallel, nonetheless.

- Prior to 1981, daily use of cigarettes among 12th graders generally was ordinally and inversely related to SES, with each successively higher SES group smoking less (Figure 5-12f). Between 1981 and 1991, this ordinal relationship diminished substantially because (a) the two highest SES groups showed some gradual increase in use, (b) the next two strata remained unchanged, and (c) the lowest SES group showed a continuing decline in use, which brought it from the highest smoking stratum to the lowest (probably due to its racial composition, as will be discussed in the next section). The net result of this and other trends was a near elimination of the SES differences among 12th-grade students. From 1992 to 1997, all strata showed an increase in daily smoking. From 1997 to 2003, there were sharp declines in smoking in the two highest SES strata and a later and slower downturn in the other strata-once again opening up some differences by SES, though not nearly as large as the differences that existed in the 1970s and 1980s.

It is possible that the introduction of the Joe Camel advertising campaign in 1988 helped account for the closing of the socioeconomic gap in the late 1980s and that its termination in 1997 helped account for the reemergence of that gap. We know that between 1986 and 1997, the rise in smoking was sharper among 12th-grade boys than among girls and the Camel brand was particularly popular among boys and among those from the more
educated strata. ${ }^{60}$ So, the Joe Camel ad campaign may have been particularly effective with boys from more educated strata, raising the smoking rate of their SES strata and nearly eliminating the relationship between SES and smoking that existed before and after the years of the campaign.

In 8th and 10th grades, all strata showed an increase in their 30-day smoking rates from 1991 to 1996, after which there was a period of downturn. The lowest SES stratum was the last to show a downturn, increasing the differences by SES groups. In 8th grade, smoking has been consistently negatively correlated with SES, with quite large proportional differences among the strata.

## Racial/Ethnic Differences in Trends

While the three major racial/ethnic groups examined here-Whites, African Americans, and Hispanics-have quite different levels of use of some drugs, they have similar trends in almost all cross-time changes in drug use. ${ }^{61}$ (Cigarette use is an exception, as discussed later.) Data have been examined here for these three groups using two-year moving averages of prevalence in order to provide smoother and more reliable trend lines. ${ }^{62}$ Even then, they tend to be a bit "bumpy," especially for Hispanics, for whom we have the least data and for whom there is a higher degree of clustering by school in the sample. See Appendix D for the racial/ethnic trend data on all classes of drugs and Occasional Paper No. 61 on the Monitoring the Future Web site for the graphic presentation of these trends, following the directions given at the beginning of this section on subgroup differences.

- Figure 5-13a shows the trends in annual marijuana use for the three groups and illustrates that they have moved generally in parallel-particularly during the long decline phase. Generally, among 12th graders, Whites have had the highest level of use and African Americans the lowest, with Hispanics in between. Use fell more in the decline phase (roughly 1979-1992) among African Americans than it did in the other two groups, expanding the differences among them. But use also rose more among African American 12th graders in the "relapse phase" of the epidemic (roughly 1992-1997), once again narrowing the gap. Their use also leveled earlier (in 1997) than it did among Whites (in 1999). (Recall that we are using two-year averages, which slightly moves some of the inflection points from what we have been discussing previously.) All three groups showed a rise in marijuana use in all three grade levels in the mid-1990s, followed by a leveling and then decline in the late 1990s and early 2000s.

[^45]${ }^{62}$ A given year's value in a two-year moving average is based on the mean of the observed values for that year and the previous year.

While the trends for Whites and Hispanics are quite parallel to each other, their relative positions change across grade levels. In 8th grade, Hispanics have the highest rate of use, while Whites and African Americans are similar and have a considerably lower rate. By 10th grade, Whites have rates of use similar to Hispanics (though use has started to drop earlier in recent years among Hispanics), and African Americans have lower rates than either Whites or Hispanics. By 12th grade, Whites quite consistently have had the highest rates, Hispanics slightly lower ones, and African Americans the lowest. As in the 10th grade, Hispanics began to show a decline in use earlier than Whites in recent years. We believe that differential dropout rates (Hispanics have the highest rate of dropping out) may account for much or all of these shifts in relative position across the three grade levels.

- Figure 5-13a shows the long-term trends for annual cocaine use among 12th graders. It clearly shows that the rise in cocaine use (in 1976-1979) occurred more sharply among Whites and Hispanics than among African Americans. The decline among African Americans appears to have begun earlier, but perhaps of greatest importance, all three groups participated in the sustained decline in cocaine use after 1986. Since 1984 Hispanics have generally had somewhat higher cocaine use rates than Whites, though a sharper decrease among Hispanics in the past four years has brought them to the same level as Whites. Cocaine use by African Americans fell to very low levels by the early 1990s and stabilized there. In the lower grades there are large differences among these three racial/ethnic groups in cocaine use, with African Americans consistently reporting very low (and unchanging) rates of use, and Hispanics consistently reporting relatively high rates, with Whites in the middle. Only Whites and Hispanics showed a rise in cocaine use in the early 1990s, and both groups have shown a parallel decrease since.
- There have generally been large disparities among the three racial/ethnic groups in their use of both cocaine powder and crack cocaine. At the 12th-grade level in 1991, there was a crossover of Whites, who formerly had a higher prevalence of use of cocaine powder, and Hispanics. Use among Whites fell very sharply from the first measurement point in 1988 through 1992, leaving Hispanics at higher levels, where they remained until 2002 (when a sharper drop in their use led to another crossover). By 2004 they had identical rates of use. For crack, however, Hispanics have had the highest rate of use in all three grades since the first measurement in 1987 (on 12th graders), and African American students have consistently had the lowest. Crack has been the dominant form of cocaine used by African American 12th graders, which was not true for Whites; and it should be noted that African Americans are the only ones to show some increase in crack use in the past several years-an increase that continued into 2004.

In the two lower grades, use of cocaine powder rose the most among Hispanics from 1991 through 1996 or 1997, whereas over the same interval, use rose some among Whites and very little among African Americans. Hispanics have had considerably higher rates of use than the other two groups at both grade levels. They also have considerably higher use of crack. Indeed, at the lower two grade levels, the trends for crack and powder cocaine are very similar to each other.

- African American students at all grade levels have maintained much lower rates of inhalant use than Whites or Hispanics, and they have not shown nearly as much fluctuation in their use over time. At 10th and 12th grades, Whites have generally had the highest rates of inhalant use (with Hispanics not far below); at 8th grade, usage rates for both Whites and Hispanics have generally been quite similar. At the 12th-grade level, the rise in reported inhalant use (unadjusted for the underreporting of nitrites) occurred about equally among Whites and Hispanics from 1976 through 1995, whereas African Americans showed practically no increase in their already low levels of use. They now have an annual prevalence that is approximately a third (or less) that of Whites. A similar picture emerges in 8th and 10th grades, except that the increase in the early and mid1990s among Hispanics and Whites was even steeper than the increase in 12th grade. Since 1998 the 8th-grade Hispanics have also had slightly higher usage rates than the Whites. There have been important decreases among both White and Hispanic students in all three grades over approximately nine years (and modest decreases among African American students); but all three groups showed some increase since 2002 at 8th grade and a leveling (or among Hispanics an increase) in the upper grades. It is clear from the data on both levels and trends that inhalant drugs have not been popular with African American teenagers. Another class of drugs that has been similarly unpopular with them is hallucinogens.
- With regard to LSD and hallucinogens in general, African Americans have consistently had far lower rates of use than Whites or Hispanics. Whites have had the highest rate of hallucinogen use for the life of the study at the 10th- and 12th-grade levels. There has not been a consistent difference in 8th grade, although in most years Hispanics have had the highest use. African American youth have had negligible rates of use in 8th grade.

African Americans also have shown rather little change in their rates of use over the time intervals covered by this study. By way of contrast, both Whites and Hispanics showed sharp increases in LSD use among seniors (after 1989) and among 10th graders (after 1992). Among 8th graders both groups showed an increase (after 1992), which was sharpest for Whites until their use began to decline in 1998, while use among Hispanics continued rising briefly. Both Whites and Hispanics have shown a very sharp decrease in LSD use in recent years at all three grade levels, with little change occurring in the very low rates of use among African Americans.

- Ecstasy, another drug used for its hallucinogenic effects, also has remained relatively unpopular among African American students at all grade levels. While use rose sharply among both Whites and Hispanics in the late 1990s, the increase among African Americans has been far less and has started from a much lower level. (They did show some increase in use, however, that peaked in 2001 in the upper grades but not yet in grade 8.) All groups at all grade levels have shown an appreciable decline since about 2001 in their reported ecstasy use, except that use is still rising among 8th-grade African Americans.
- While the rates of heroin use have tended to be relatively low in all three groups, some systematic differences can be discerned. At 8th grade, Hispanics consistently have the
highest reported levels of use, followed by Whites, with African Americans coming in lower than either of them (and showing less fluctuation over time). At 10th grade, Whites and Hispanics have shown practically identical rates of use and trends in those rates. African Americans again have shown lower rates with limited variation over time. At 12th grade, for which there is a longer interval available for analysis, Hispanics showed the highest rate from 1977 (the first measurement point) through 1979, but after that Hispanics and Whites have had fairly similar levels and trends in use. Annual prevalence among African American 12th graders started low (close to the rates among Whites) and remained there through the late 1990s, even as use among Whites and Hispanics rose during the late 1990s. Heroin use among African American 12th graders rose some in recent years, while it dropped among White and Hispanic seniors, bringing the rates for the three racial/ethnic groups very close to one another.
- Use of narcotics other than heroin has consistently been highest among White students in 12th grade (data are not reported for 8th and 10th grades), considerably lower among Hispanics, and lowest among African American students. The differences have been enlarged in recent years due to greater-than-average increases among White students since about 1993. Use of OxyContin, a specific drug within this class, is highest among Whites in all three grades (except for 2004, when 8th-grade Hispanics are highest); in the upper grades the other two groups have had very similar rates of use. Vicodin has relatively low rates of use among African Americans in all three grades; Whites have the highest rate of use in the upper grades, with Hispanics falling in between.
- The substantial decline in the use of amphetamines, which began among 12th graders in 1982 and ran through 1992, narrowed the substantial differences among the three ethnic groups somewhat, although all three groups showed some decline. The decline was greatest among Whites, who started with the highest rates, and least among African Americans, who started with the lowest. Hispanics have been about midway between the other two groups. Between 1992 and 2002, there was some increase in amphetamine use among Whites (Hispanic use also increased between 1992 and 2000) but little among African Americans. In the lower grades, the three groups generally have the same rank order in their levels of amphetamine use; African American students showed little change in their low levels of use since 1991, even though the other two groups showed first an increase and then (after about 1996 or 1997) a decrease in use. It is noteworthy that, at least for the years for which data are available, African American students at all three grade levels have reported extremely low rates of use of methamphetamine and crystal methamphetamine.
- Among 12th graders, the substantial differences in the use of sedatives (barbiturates), tranquilizers, and narcotics other than heroin converged somewhat until the early 1990s for the three racial/ethnic groups as use of these drugs declined over a fairly long period. In general, Whites consistently had the highest usage rates for each drug in senior year and also the largest declines; African Americans had the lowest rates and, therefore, the smallest absolute declines. During the early 1990s increase in the use of these drugs, Whites showed the greatest increase and African Americans little or none-again enlarging the difference between them. Hispanics have consistently fallen in the middle.
- The 30-day prevalence of alcohol use has shown relatively consistent racial/ethnic differences over time at each grade level. Among 12th graders, Whites have had the highest rates, African Americans considerably lower ones, and Hispanics rates between the two (though closer to Whites than to African Americans). Their cross-time trends have been generally parallel, although Whites showed the greatest decline in drinking between 1988 and 1993, narrowing the difference between them and Hispanics. At 10th grade, Whites and Hispanics have generally had equivalent rates and African Americans substantially lower ones. At 8th grade, Hispanics consistently have had the highest drinking rates, while Whites have fallen in the middle. African Americans have the lowest rate of drinking in 8th grade, though the differences have narrowed a bit as the other two groups have shown continuing declines and African Americans have shown some rise in use in the past two years.
- The trends for occasional heavy drinking have been very similar to those just discussed for current drinking, though the absolute rates are lower, of course. African Americans consistently have had appreciably lower rates than the other two groups at all three grade levels, though at 8th grade the differences have been narrowing over the last few years. The rates of binge drinking among Hispanic and African American 8th graders had been falling since the mid-1990s, while such drinking among Whites had been falling only since around 2000. (See Figure 5-13b and Tables D-69 through D-71.) Subgroup differences for the different classes of alcoholic beverages may be seen in Appendix D and in Occasional Paper 61, which is available on the study's Web site.
- Cigarette smoking showed quite dramatic differential trends during the 1980s. Among seniors, the three racial/ethnic groups had daily smoking rates that were not substantially different in the late 1970s (see Figure 5-13b). All three groups showed declines between 1977 and 1981, with the declines somewhat stronger for African Americans and Hispanics, clearly leaving Whites with the highest smoking rates by 1981. After that, African Americans exhibited a consistent and continuing decline through 1993, while rates among Whites increased gradually and rates among Hispanics stayed level. By 1991, African Americans had a rate of daily smoking that was only one-fourth that of Whites. After 1992, current (30-day) smoking rose among all three ethnic groups, though the increase was clearly the greatest among Whites.

In the 8th and 10th grades, all three ethnic groups showed a sharp rise in daily smoking use during the 1990s, though all showed some signs of leveling and then decreasing by the mid- to late 1990s. At 10th grade, the increase was sharpest among Whites (similar to 12th-grade trends); use among Whites has been substantially higher in 10th grade than among Hispanics, whose use in turn has been substantially higher than that of African Americans. At 8th grade, the smoking rates for Whites and Hispanics have been quite close and both much higher than among African American 8th graders. At 8th and 10th grades, the downturn of the late 1990s began a year or two later among African Americans than it did among the other two groups. All three groups have shown appreciable reductions in smoking at all three grade levels, resulting in some reduction of the differences among the three groups.

- The use of anabolic steroids has tended to be lowest among African Americans, particularly since the sharp increase in use in the late 1990s among Whites and Hispanics. (African Americans exhibited that increase at 10th grade only, but that use declined earlier and more sharply than among their White and Hispanic counterparts in 10th grade.) Whites and Hispanics have had quite parallel trends at 8th and 10th grades, with about equivalent rates of use. At 12th grade the trend lines for the two minority groups are irregular due to the smaller number of respondents for this drug, making trend comparisons more difficult.
- Summing across the drugs, it may be seen that African American students have the lowest rates of use of virtually all licit and illicit drugs at all three grade levels being examined here. And they have consistently had exceptionally low rates of use for particular drugs, including inhalants, hallucinogens taken as a class, LSD, other hallucinogens, ecstasy, methamphetamine, and crystal methamphetamine (ice). Further, for the past decade their cigarette smoking rates also have been exceptionally low.
- In 8th grade, Hispanic students have tended to have the highest rates of use of a number of drugs, including marijuana, crack, cocaine powder, heroin, tranquilizers, and heavy drinking. By 12th grade the differences between Hispanic and White students narrow considerably or are reversed; in 2004, however, Hispanic 12th graders had the highest rates of LSD, crack, heroin, heroin with a needle, Rohypnol, and ice. As we have said earlier, we believe that Hispanics' considerably higher rate of school dropouts may do much to explain these changes in ordering across the grade levels.
- By 12th grade, White students have tended to have the highest rates of use of any illicit drug, any illicit drug other than marijuana, marijuana, inhalants, hallucinogens, LSD, narcotics other than heroin, amphetamines, sedatives (barbiturates), tranquilizers, alcohol, binge drinking, cigarette smoking (by a large margin), and smokeless tobacco.

TABLE 5-1
Long-Term Trends in Lifetime Prevalence of Use of Various Drugs for Twelfth Graders

|  | Percentage who everused |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Any Illic it Drug ${ }^{\text {a,b }}$ | 55.2 | 58.3 | 61.6 | 64.1 | 65.1 | 65.4 | 65.6 | 64.4 | 62.9 | 61.6 | 60.6 | 57.6 | 56.6 | 53.9 | 50.9 |  |
| Any Illic it Drug Other Than Marijuana ${ }^{\text {a,b,c }}$ | 36.2 | 35.4 | 35.8 | 36.5 | 37.4 | 38.7 | 42.8 | 41.1 | 40.4 | 40.3 | 39.7 | 37.7 | 35.8 | 32.5 | 31.4 |  |
| Marijuana/Hashish | 47.3 | 52.8 | 56.4 | 59.2 | 60.4 | 60.3 | 59.5 | 58.7 | 57.0 | 54.9 | 54.2 | 50.9 | 50.2 | 47.2 | 43.7 |  |
| Inhalants ${ }^{\text {d }}$ | - | 10.3 | 11.1 | 12.0 | 12.7 | 11.9 | 12.3 | 12.8 | 13.6 | 14.4 | 15.4 | 15.9 | 17.0 | 16.7 | 17.6 |  |
| Inhalants, Adjusted ${ }^{\text {d,e }}$ | - | - | - | - | 18.2 | 17.3 | 17.2 | 17.7 | 18.2 | 18.0 | 18.1 | 20.1 | 18.6 | 17.5 | 18.6 |  |
| Amyl/Butyl Nitrites ${ }^{\text {f.g }}$ | - | - | - | - | 11.1 | 11.1 | 10.1 | 9.8 | 8.4 | 8.1 | 7.9 | 8.6 | 4.7 | 3.2 | 3.3 |  |
| Hallucinogens ${ }^{\text {c }}$ | 16.3 | 15.1 | 13.9 | 14.3 | 14.1 | 13.3 | 13.3 | 12.5 | 11.9 | 10.7 | 10.3 | 9.7 | 10.3 | 8.9 | 9.4 |  |
| Hallucinogens, Adjusted ${ }^{\text {c,h }}$ | - | - | - | - | 17.7 | 15.6 | 15.3 | 14.3 | 13.6 | 12.3 | 12.1 | 11.9 | 10.6 | 9.2 | 9.9 |  |
| LSD | 11.3 | 11.0 | 9.8 | 9.7 | 9.5 | 9.3 | 9.8 | 9.6 | 8.9 | 8.0 | 7.5 | 7.2 | 8.4 | 7.7 | 8.3 |  |
| Halluc inogens Other Than LSD ${ }^{\text {c }}$ | 14.1 | 12.1 | 11.2 | 11.6 | 10.7 | 9.8 | 9.1 | 8.0 | 7.3 | 6.6 | 6.5 | 5.7 | 5.4 | 4.1 | 4.3 |  |
| PCP ${ }^{\text {f.g }}$ | - | - | - | - | 12.8 | 9.6 | 7.8 | 6.0 | 5.6 | 5.0 | 4.9 | 4.8 | 3.0 | 2.9 | 3.9 |  |
| MDMA (Ecstasy) ${ }^{\text {f }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cocaine | 9.0 | 9.7 | 10.8 | 12.9 | 15.4 | 15.7 | 16.5 | 16.0 | 16.2 | 16.1 | 17.3 | 16.9 | 15.2 | 12.1 | 10.3 |  |
| Crack ${ }^{\text {i }}$ | - | - | - | - | - | - | - | - | - | - | - | - | 5.4 | 4.8 | 4.7 |  |
| Other Cocaine ${ }^{\mathrm{j}}$ | - | - | - | - | - | - | - | - | - | - | - | - | 14.0 | 12.1 | 8.5 |  |
| Heroin ${ }^{\text {k }}$ | 2.2 | 1.8 | 1.8 | 1.6 | 1.1 | 1.1 | 1.1 | 1.2 | 1.2 | 1.3 | 1.2 | 1.1 | 1.2 | 1.1 | 1.3 |  |
| With a needle ${ }^{1}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Without a needle ${ }^{1}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Other Narcotics ${ }^{\text {m,n }}$ | 9.0 | 9.6 | 10.3 | 9.9 | 10.1 | 9.8 | 10.1 | 9.6 | 9.4 | 9.7 | 10.2 | 9.0 | 9.2 | 8.6 | 8.3 |  |
| Amphetamines ${ }^{\text {b,m }}$ | 22.3 | 22.6 | 23.0 | 22.9 | 24.2 | 26.4 | $32.2 \ddagger$ | 27.9 | 26.9 | 27.9 | 26.2 | 23.4 | 21.6 | 19.8 | 19.1 |  |
| Methamphetamine ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Crystal Meth. (Ice) ${ }^{0}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sedatives (Barbiturates) ${ }^{\text {m }}$ | 16.9 | 16.2 | 15.6 | 13.7 | 11.8 | 11.0 | 11.3 | 10.3 | 9.9 | 9.9 | 9.2 | 8.4 | 7.4 | 6.7 | 6.5 |  |
| Sedatives, Adjusted ${ }^{\text {m,p}}$ | 18.2 | 17.7 | 17.4 | 16.0 | 14.6 | 14.9 | 16.0 | 15.2 | 14.4 | 13.3 | 11.8 | 10.4 | 8.7 | 7.8 | 7.4 |  |
| Methaqualone ${ }^{\text {m,q }}$ | 8.1 | 7.8 | 8.5 | 7.9 | 8.3 | 9.5 | 10.6 | 10.7 | 10.1 | 8.3 | 6.7 | 5.2 | 4.0 | 3.3 | 2.7 |  |
| Tranquilizers ${ }^{\text {c,m }}$ | 17.0 | 16.8 | 18.0 | 17.0 | 16.3 | 15.2 | 14.7 | 14.0 | 13.3 | 12.4 | 11.9 | 10.9 | 10.9 | 9.4 | 7.6 |  |
| Rohypnol ${ }^{\text {f }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Alcohol ${ }^{\text {r }}$ | 90.4 | 91.9 | 92.5 | 93.1 | 93.0 | 93.2 | 92.6 | 92.8 | 92.6 | 92.6 | 92.2 | 91.3 | 92.2 | 92.0 | 90.7 |  |
| Been Drunk ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cigarettes | 73.6 | 75.4 | 75.7 | 75.3 | 74.0 | 71.0 | 71.0 | 70.1 | 70.6 | 69.7 | 68.8 | 67.6 | 67.2 | 66.4 | 65.7 |  |
| Smokeless Tobacco ${ }^{\text {f,s }}$ | - | - | - | - | - | - | - | - | - | - | - | 31.4 | 32.2 | 30.4 | 29.2 |  |
| Steroids ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 3.0 |  |

TABLE 5-1 (cont'd)
Long-Term Trends in Lifetime Prevalence of Use of Various Drugs for Twelfth Graders


## Footnotes for Table 5-1 to Table 5-4

Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
'-' indic ates data not available.
'*' indic ates less than .05 percent but greater than 0 percent.
' $\ddagger$ ' indicates some change in the question. See relevant footnote for that drug. See relevant figure to assess the impact of the wording changes. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. Daily use is defined as use on 20 or more occasions in the past 30 days except for $5+$ drinks, cigarettes, and smokeless tobacco, for which actual daily use is measured.
${ }^{\text {a }}$ Use of "any illicit drug" includes any use of marijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use of other narcotics, amphetamines, sedatives (barbiturates), methaqualone (excluded since 1990), or tranquilizers not under a doctor'sorders.
${ }^{\text {b }}$ Beginning in 1982 the question about amphetamine use was revised to get respondents to exclude the inappropriate reporting of nonprescription amphetamines. The prevalence of use rate dropped slightly asa result of this methodological change.
${ }^{c}$ In 2001 the question text waschanged in half of the questionnaire forms foreach grade. "Other psychedelics" waschanged to "other hallucinogens," and "shrooms" was added to the list of examples. For the tranquilizer list of examples, Miltown was replaced with Xanax. The 2001 data presented here are based on the changed forms only; $N$ is one-half of $N$ indicated. In 2002 the remaining forms were changed to the new wording. Data based on all forms beginning in 2002. Data for "any illicit drug other than marijuana" and "hallucinogens" are also affected by these changes and have been handled in a parallel manner.
${ }^{d}$ Data based on four of five forms in 1976-88; N is four-fifths of N indic ated. Data based on five of six forms in 1989-98; N is five-sixths of N indicated. Beginning in 1999 , data based on three of six forms; N is three-sixths of N indic ated.
${ }^{\mathrm{e}}$ Adjusted for undereporting of a myl and butyl nitrites. See text for details.
${ }^{f}$ Data based on one form; N is one-fifth of N indicated in 1979-88 and one-sixth of N indicated beginning in 1989. Data for MDMA based on two of six forms beginning in 2002; N is two-sixths of N indicated. Data for Rohypnol for 2001 and 2002 are not comparable due to changes in the questionnaire forms.
${ }^{9}$ Question text changed slightly in 1987.
${ }^{\text {h}}$ Adjusted for underreporting of PCP. See text for details.
'Data based on one of five forms in 1986; N is one-fifth of N indicated. Data based on two forms in 1987-89; N is two-fifths of N indicated in 1987-88 and two-sixths of N indic ated in 1989. Data based on six forms beginning in 1990.
Data based on one form in 1987-89; N is one-fifth of N indic ated in 1987-88 and one-sixth of N indicated in 1989. Data based on four of six forms beginning in 1990; N is four-sixths of N indic ated.
${ }^{k}$ In 1995 the heroin question waschanged in half of the questionnaire forms. Separate questions were asked for use with injection and without injection. Data presented here represent the combined data from all forms.
'Data based on three of six forms; N is three-sixths of N indic ated.
${ }^{m}$ Only drug use not under a doctor'sorders is included here.
${ }^{n}$ In 2002 the question text waschanged in half of the questionnaire forms. The list of examples of narcotics other than heroin was updated: Talwin, laudanum, and paregoric - all of which had negligible rates of use by 2001-were replaced with Vicodin, OxyContin, and Percocet. The 2002 data presented here are based on the changed formsonly; N is one-half of N indicated. In 2003, the remaining forms were changed to the new wording. Data based on all forms beginning in 2003.
${ }^{\circ}$ Data based on two of six forms; N is two-sixths of N indic ated. Steroid data based on one of six forms in 1989-90; N is one-sixth of N indicated in 1989-90. Steroid data based on two of six forms since 1991; N is two-sixths of N indic ated since 1991.
${ }^{p}$ Data based on five forms in 1975-88, six forms in 1989, one form in 1990 ( N is one-sixth of N indic ated in 1990), and six forms of data adjusted by one-form data beginning in 1991.
${ }^{9}$ Data based on five forms in 1975-88, six forms in 1989, and one of six forms beginning in 1990; N is one-sixth of N indic ated beginning in 1990.
'Data based on five forms in 1975-88 and on six forms in 1989-92. In 1993, the question text waschanged slightly in three of six forms to indic ate that a "drink" meant "more than a few sips." The 1993 data are based on the changed forms only; N is one-half of N indicated. In 1994 the remaining forms were changed to the new wording. Data based on all forms beginning in 1994. In 2004, the question text waschanged slightly in half of the forms. An examination of the data did not show any effect from the wording change.
The prevalence of use of smokeless tobacco was not asked of 12th graders in 1990 and 1991. Priorto 1990 the prevalence of use question on smokelesstobacco was located near the end of one 12th-grade questionnaire form, whereas after 1991 the question wasplaced earlier and in a different form. This shift could explain the discontinuities between the corresponding data.
${ }^{t}$ Data based on two of six forms in 2000; N is two-sixths of N indic ated. Data based on three of six forms beginning in 2001; N is three-sixths of N indicated. Data for GHB based on one form beginning in 2002; N is one-sixth of N indic ated.

TABLE 5-2
Long-Term Trends in Annual Prevalence of Use of Various Drugs for Twelfth Graders
Percentage who used in last twelve months

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Class of: |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Any llicit Drug ${ }^{\text {a,b }}$ | 45.0 | 48.1 | 51.1 | 53.8 | 54.2 | 53.1 | 52.1 | 49.4 | 47.4 | 45.8 | 46.3 | 44.3 | 41.7 | 38.5 | 35.4 |  |
| Any Illic it Drug Other Than Marijuana ${ }^{\text {a,b,c }}$ | 26.2 | 25.4 | 26.0 | 27.1 | 28.2 | 30.4 | 34.0 | 30.1 | 28.4 | 28.0 | 27.4 | 25.9 | 24.1 | 21.1 | 20.0 |  |
| Marjuana/Hashish | 40.0 | 44.5 | 47.6 | 50.2 | 50.8 | 48.8 | 46.1 | 44.3 | 42.3 | 40.0 | 40.6 | 38.8 | 36.3 | 33.1 | 29.6 |  |
| Inhalants ${ }^{\text {d }}$ | - | 3.0 | 3.7 | 4.1 | 5.4 | 4.6 | 4.1 | 4.5 | 4.3 | 5.1 | 5.7 | 6.1 | 6.9 | 6.5 | 5.9 |  |
| Inhalants, Adjusted ${ }^{\text {d,e }}$ | - | - | - | - | 8.9 | 7.9 | 6.1 | 6.6 | 6.2 | 7.2 | 7.5 | 8.9 | 8.1 | 7.1 | 6.9 |  |
| Amyl/Butyl Nitrites ${ }^{\text {f,g }}$ | - | - | - | - | 6.5 | 5.7 | 3.7 | 3.6 | 3.6 | 4.0 | 4.0 | 4.7 | 2.6 | 1.7 | 1.7 |  |
| Hallucinogens ${ }^{\text {c }}$ | 11.2 | 9.4 | 8.8 | 9.6 | 9.9 | 9.3 | 9.0 | 8.1 | 7.3 | 6.5 | 6.3 | 6.0 | 6.4 | 5.5 | 5.6 |  |
| Hallucinogens, Adjusted ${ }^{\text {c,n }}$ | - | - | - | - | 11.8 | 10.4 | 10.1 | 9.0 | 8.3 | 7.3 | 7.6 | 7.6 | 6.7 | 5.8 | 6.2 |  |
| LSD | 7.2 | 6.4 | 5.5 | 6.3 | 6.6 | 6.5 | 6.5 | 6.1 | 5.4 | 4.7 | 4.4 | 4.5 | 5.2 | 4.8 | 4.9 |  |
| Hallucinogens Other Than LSD ${ }^{\text {c }}$ | 9.4 | 7.0 | 6.9 | 7.3 | 6.8 | 6.2 | 5.6 | 4.7 | 4.1 | 3.8 | 3.6 | 3.0 | 3.2 | 2.1 | 2.2 |  |
| PCP ${ }^{\text {f.g }}$ | - | - | - | - | 7.0 | 4.4 | 3.2 | 2.2 | 2.6 | 2.3 | 2.9 | 2.4 | 1.3 | 1.2 | 2.4 |  |
| MDMA (Ecstasy) ${ }^{\dagger}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cocaine | 5.6 | 6.0 | 7.2 | 9.0 | 12.0 | 12.3 | 12.4 | 11.5 | 11.4 | 11.6 | 13.1 | 12.7 | 10.3 | 7.9 | 6.5 |  |
| Crack ${ }^{\text {d }}$ | - | - | - | - | - | - | - | - | - | - | - | 4.1 | 3.9 | 3.1 | 3.1 |  |
| Other Cocaine ${ }^{j}$ | - | - | - | - | - | - | - | - | - | - | - | - | 9.8 | 7.4 | 5.2 |  |
| Heroin ${ }^{\text {k }}$ | 1.0 | 0.8 | 0.8 | 0.8 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | 0.5 | 0.6 | 0.5 | 0.5 | 0.5 | 0.6 |  |
| With a needle ${ }^{1}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Without a needle ${ }^{1}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Other Narcotics ${ }^{\text {m,n}}$ | 5.7 | 5.7 | 6.4 | 6.0 | 6.2 | 6.3 | 5.9 | 5.3 | 5.1 | 5.2 | 5.9 | 5.2 | 5.3 | 4.6 | 4.4 |  |
| OxyContin ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Vicodin ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Amphetamines ${ }^{\text {b,m }}$ | 16.2 | 15.8 | 16.3 | 17.1 | 18.3 | 20.8 | $26.0 \ddagger$ | 20.3 | 17.9 | 17.7 | 15.8 | 13.4 | 12.2 | 10.9 | 10.8 |  |
| Rita lin ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Methamphetamine ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Crystal Meth. (Ice) ${ }^{0}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sedatives (Barbiturates) ${ }^{m}$ | 10.7 | 9.6 | 9.3 | 8.1 | 7.5 | 6.8 | 6.6 | 5.5 | 5.2 | 4.9 | 4.6 | 4.2 | 3.6 | 3.2 | 3.3 |  |
| Sedatives, Adjusted ${ }^{\text {m,p }}$ | 11.7 | 10.7 | 10.8 | 9.9 | 9.9 | 10.3 | 10.5 | 9.1 | 7.9 | 6.6 | 5.8 | 5.2 | 4.1 | 3.7 | 3.7 |  |
| Methaqualone ${ }^{\text {m,q}}$ | 5.1 | 4.7 | 5.2 | 4.9 | 5.9 | 7.2 | 7.6 | 6.8 | 5.4 | 3.8 | 2.8 | 2.1 | 1.5 | 1.3 | 1.3 |  |
| Tranquilizers ${ }^{\text {c,m }}$ | 10.6 | 10.3 | 10.8 | 9.9 | 9.6 | 8.7 | 8.0 | 7.0 | 6.9 | 6.1 | 6.1 | 5.8 | 5.5 | 4.8 | 3.8 |  |
| Rohypnol ${ }^{\text {f }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| GHB ${ }^{\text {t }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Ketamine ${ }^{\text {t }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Alcohol' | 84.8 | 85.7 | 87.0 | 87.7 | 88.1 | 87.9 | 87.0 | 86.8 | 87.3 | 86.0 | 85.6 | 84.5 | 85.7 | 85.3 | 82.7 |  |
| Been Drunk ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cigarettes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Bid is ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Kreteks ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Smokeless Tobacco ${ }^{\text {f,s }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Steroids ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.9 |  |

TABLE 5-2 (cont'd)
Long-Term Trends in Annual Prevalence of Use of Various Drugs for Twelfth Graders


SOURCE: The Monitoring the Future Study, the University of Mic higan.

TABLE 5-3
Long-Term Trends in Thirty-Day Prevalence of Use of Various Drugs for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\text { Cont'd }>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\underline{1975}$ | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Any llicic it Drug ${ }^{\text {a,b }}$ | 30.7 | 34.2 | 37.6 | 38.9 | 38.9 | 37.2 | 36.9 | 32.5 | 30.5 | 29.2 | 29.7 | 27.1 | 24.7 | 21.3 | 19.7 |  |
| Any Illic it Drug Other Than Marijuana ${ }^{\text {a,b,c }}$ | 15.4 | 13.9 | 15.2 | 15.1 | 16.8 | 18.4 | 21.7 | 17.0 | 15.4 | 15.1 | 14.9 | 13.2 | 11.6 | 10.0 | 9.1 |  |
| Marijuana/Hashish | 27.1 | 32.2 | 35.4 | 37.1 | 36.5 | 33.7 | 31.6 | 28.5 | 27.0 | 25.2 | 25.7 | 23.4 | 21.0 | 18.0 | 16.7 |  |
| Inhalants ${ }^{\text {d }}$ | - | 0.9 | 1.3 | 1.5 | 1.7 | 1.4 | 1.5 | 1.5 | 1.7 | 1.9 | 2.2 | 2.5 | 2.8 | 2.6 | 2.3 |  |
| Inhalants, Adjusted ${ }^{\text {d,e }}$ | - | - | - | - | 3.2 | 2.7 | 2.5 | 2.5 | 2.5 | 2.6 | 3.0 | 3.2 | 3.5 | 3.0 | 2.7 |  |
| Amyl/Butyl Nitrites ${ }^{\text {f.g }}$ | - | - | - | - | 2.4 | 1.8 | 1.4 | 1.1 | 1.4 | 1.4 | 1.6 | 1.3 | 1.3 | 0.6 | 0.6 |  |
| Hallucinogens ${ }^{\text {c }}$ | 4.7 | 3.4 | 4.1 | 3.9 | 4.0 | 3.7 | 3.7 | 3.4 | 2.8 | 2.6 | 2.5 | 2.5 | 2.5 | 2.2 | 2.2 |  |
| Hallucinogens, Adjusted ${ }^{\text {c,h }}$ | - | - | - | - | 5.3 | 4.4 | 4.5 | 4.1 | 3.5 | 3.2 | 3.8 | 3.5 | 2.8 | 2.3 | 2.9 |  |
| LSD | 2.3 | 1.9 | 2.1 | 2.1 | 2.4 | 2.3 | 2.5 | 2.4 | 1.9 | 1.5 | 1.6 | 1.7 | 1.8 | 1.8 | 1.8 |  |
| Halluc inogens Other Than LSD ${ }^{\text {c }}$ | 3.7 | 2.3 | 3.0 | 2.7 | 2.4 | 2.3 | 2.1 | 1.7 | 1.5 | 1.6 | 1.3 | 1.3 | 1.1 | 0.7 | 0.8 |  |
| PC ${ }^{\text {f.g }}$ | - | - | - | - | 2.4 | 1.4 | 1.4 | 1.0 | 1.3 | 1.0 | 1.6 | 1.3 | 0.6 | 0.3 | 1.4 |  |
| MDMA (Ecstasy) ${ }^{\text {f }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cocaine | 1.9 | 2.0 | 2.9 | 3.9 | 5.7 | 5.2 | 5.8 | 5.0 | 4.9 | 5.8 | 6.7 | 6.2 | 4.3 | 3.4 | 2.8 |  |
| Crack | - | - | - | - | - | - | - | - | - | - | - | - | 1.3 | 1.6 | 1.4 |  |
| OtherCocaine ${ }^{\text {j }}$ | - | - | - | - | - | - | - | - | - | - | - | - | 4.1 | 3.2 | 1.9 |  |
| Heroin ${ }^{\text {k }}$ | 0.4 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 |  |
| With a needle ${ }^{1}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Without a needle' | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Other Narcotics ${ }^{\text {m,n}}$ | 2.1 | 2.0 | 2.8 | 2.1 | 2.4 | 2.4 | 2.1 | 1.8 | 1.8 | 1.8 | 2.3 | 2.0 | 1.8 | 1.6 | 1.6 |  |
| Amphetamines ${ }^{\text {b,m }}$ | 8.5 | 7.7 | 8.8 | 8.7 | 9.9 | 12.1 | $15.8 \ddagger$ | 10.7 | 8.9 | 8.3 | 6.8 | 5.5 | 5.2 | 4.6 | 4.2 |  |
| Methamphetamine ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Crystal Meth. (Ice) ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sedatives (Barbiturates) ${ }^{\text {m }}$ | 4.7 | 3.9 | 4.3 | 3.2 | 3.2 | 2.9 | 2.6 | 2.0 | 2.1 | 1.7 | 2.0 | 1.8 | 1.4 | 1.2 | 1.4 |  |
| Sedatives, Adjusted m,p | 5.4 | 4.5 | 5.1 | 4.2 | 4.4 | 4.8 | 4.6 | 3.4 | 3.0 | 2.3 | 2.4 | 2.2 | 1.7 | 1.4 | 1.6 |  |
| Methaqualone ${ }^{\text {m,q }}$ | 2.1 | 1.6 | 2.3 | 1.9 | 2.3 | 3.3 | 3.1 | 2.4 | 1.8 | 1.1 | 1.0 | 0.8 | 0.6 | 0.5 | 0.6 |  |
| Tranquilizers ${ }^{\text {c,m }}$ | 4.1 | 4.0 | 4.6 | 3.4 | 3.7 | 3.1 | 2.7 | 2.4 | 2.5 | 2.1 | 2.1 | 2.1 | 2.0 | 1.5 | 1.3 |  |
| Rohypnol ${ }^{\text {f }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Alcohol ${ }^{\text {r }}$ | 68.2 | 68.3 | 71.2 | 72.1 | 71.8 | 72.0 | 70.7 | 69.7 | 69.4 | 67.2 | 65.9 | 65.3 | 66.4 | 63.9 | 60.0 |  |
| Been Drunk ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cigarettes | 36.7 | 38.8 | 38.4 | 36.7 | 34.4 | 30.5 | 29.4 | 30.0 | 30.3 | 29.3 | 30.1 | 29.6 | 29.4 | 28.7 | 28.6 |  |
| Smokeless Tobacco ${ }^{\text {f,s }}$ | - | - | - | - | - | - | - | - | - | - | - | 11.5 | 11.3 | 10.3 | 8.4 |  |
| Steroids ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.8 |  |

NOTE: See Table 5-1 for relevant footnotes.

TABLE 5－3（cont＇d）
Long－Term Trends in Thirty－Day Prevalence of Use of Various Drugs for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Class of： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | 2004 | change |
| Approx． $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Any Illic it Drug ${ }^{\text {a，b }}$ | 17.2 | 16.4 | 14.4 | 18.3 | 21.9 | 23.8 | 24.6 | 26.2 | 25.6 | 25.9 | 24.9 | 25.7 | 25.4 | 24.1 | 23.4 | －0．8 |
| Any Illic it Drug Other Than Marijuana ${ }^{\text {a，b，c }}$ | 8.0 | 7.1 | 6.3 | 7.9 | 8.8 | 10.0 | 9.5 | 10.7 | 10.7 | 10.4 | $10.4 \ddagger$ | 11.0 | 11.3 | 10.4 | 10.8 | ＋0．4 |
| Manjuana／Hashish | 14.0 | 13.8 | 11.9 | 15.5 | 19.0 | 21.2 | 21.9 | 23.7 | 22.8 | 23.1 | 21.6 | 22.4 | 21.5 | 21.2 | 19.9 | －1．3 |
| Inhalants ${ }^{\text {d }}$ | 2.7 | 2.4 | 2.3 | 2.5 | 2.7 | 3.2 | 2.5 | 2.5 | 2.3 | 2.0 | 2.2 | 1.7 | 1.5 | 1.5 | 1.5 | 0.0 |
| Inhalants，Adjusted ${ }^{\text {d，e }}$ | 2.9 | 2.6 | 2.5 | 2.8 | 2.9 | 3.5 | 2.9 | 2.9 | 3.1 | 2.4 | 2.4 | 2.1 | 1.8 | 2.3 | 1.9 | －0．4 |
| Amyl／Butyl Nitrites ${ }^{\text {f，g }}$ | 0.6 | 0.4 | 0.3 | 0.6 | 0.4 | 0.4 | 0.7 | 0.7 | 1.0 | 0.4 | 0.3 | 0.5 | 0.6 | 0.7 | 0.7 | 0.0 |
| Hallucinogens ${ }^{\text {c }}$ | 2.2 | 2.2 | 2.1 | 2.7 | 3.1 | 4.4 | 3.5 | 3.9 | 3.8 | 3.5 | 2．6 $\ddagger$ | 3.3 | 2.3 | 1.8 | 1.9 | ＋0．1 |
| Hallucinogens，Adjusted ${ }^{\text {c，h }}$ | 2.3 | 2.4 | 2.3 | 3.3 | 3.2 | 4.6 | 3.8 | 4.1 | 4.1 | 3.9 | 3．0才 | 3.5 | 2.7 | 2.7 | 2.2 | －0．5 |
| LSD | 1.9 | 1.9 | 2.0 | 2.4 | 2.6 | 4.0 | 2.5 | 3.1 | 3.2 | 2.7 | 1.6 | 2.3 | 0.7 | 0.6 | 0.7 | ＋0．1 |
| Halluc inogens Other Than LSD ${ }^{\text {c }}$ | 0.8 | 0.7 | 0.5 | 0.8 | 1.2 | 1.3 | 1.6 | 1.7 | 1.6 | 1.6 | 1．7才 | 1.9 | 2.0 | 1.5 | 1.7 | ＋0．2 |
| PCP ${ }^{\text {f．g }}$ | 0.4 | 0.5 | 0.6 | 1.0 | 0.7 | 0.6 | 1.3 | 0.7 | 1.0 | 0.8 | 0.9 | 0.5 | 0.4 | 0.6 | 0.4 | －0．2 |
| MDMA（Ecstasy）${ }^{\text {f }}$ | － | － | － | － | － | － | 2.0 | 1.6 | 1.5 | 2.5 | 3.6 | 2.8 | 2.4 | 1.3 | 1.2 | 0.0 |
| Cocaine | 1.9 | 1.4 | 1.3 | 1.3 | 1.5 | 1.8 | 2.0 | 2.3 | 2.4 | 2.6 | 2.1 | 2.1 | 2.3 | 2.1 | 2.3 | ＋0．3 |
| Crack | 0.7 | 0.7 | 0.6 | 0.7 | 0.8 | 1.0 | 1.0 | 0.9 | 1.0 | 1.1 | 1.0 | 1.1 | 1.2 | 0.9 | 1.0 | ＋0．1 |
| Other Cocaine ${ }^{\text {j }}$ | 1.7 | 1.2 | 1.0 | 1.2 | 1.3 | 1.3 | 1.6 | 2.0 | 2.0 | 2.5 | 1.7 | 1.8 | 1.9 | 1.8 | 2.2 | ＋0．4 |
| Heroin ${ }^{\text {k }}$ | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.4 | 0.5 | 0.4 | 0.5 | ＋0．1 |
| With a needle ${ }^{1}$ | － | － | － | － | － | 0.3 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | －0．1 |
| Without a needle＇ | － | － | － | － | － | 0.6 | 0.4 | 0.6 | 0.4 | 0.4 | 0.7 | 0.3 | 0.5 | 0.4 | 0.3 | －0．1 |
| Other Narcotic s ${ }^{\text {m，n}}$ | 1.5 | 1.1 | 1.2 | 1.3 | 1.5 | 1.8 | 2.0 | 2.3 | 2.4 | 2.6 | 2.9 | $3.0 \ddagger$ | 4.0 | 4.1 | 4.3 | ＋0．2 |
| Amphetamines ${ }^{\text {b，m }}$ | 3.7 | 3.2 | 2.8 | 3.7 | 4.0 | 4.0 | 4.1 | 4.8 | 4.6 | 4.5 | 5.0 | 5.6 | 5.5 | 5.0 | 4.6 | －0．3 |
| Methamphetamine ${ }^{\circ}$ | － | － | － | － | － | － | － | － | － | 1.7 | 1.9 | 1.5 | 1.7 | 1.7 | 1.4 | －0．3 |
| Crystal Meth．（Ice）${ }^{\circ}$ | 0.6 | 0.6 | 0.5 | 0.6 | 0.7 | 1.1 | 1.1 | 0.8 | 1.2 | 0.8 | 1.0 | 1.1 | 1.2 | 0.8 | 0.8 | ＋0．1 |
| Sedatives（Barbiturates）${ }^{m}$ | 1.3 | 1.4 | 1.1 | 1.3 | 1.7 | 2.2 | 2.1 | 2.1 | 2.6 | 2.6 | 3.0 | 2.8 | 3.2 | 2.9 | 2.9 | 0.0 |
| Sedatives，Adjusted ${ }^{\text {m，p}}$ | 1.4 | 1.5 | 1.2 | 1.3 | 1.8 | 2.3 | 2.3 | 2.1 | 2.8 | 2.8 | 3.1 | 3.0 | 3.4 | 3.0 | 2.9 | －0．1 |
| Methaqualone ${ }^{\text {m，q }}$ | 0.2 | 0.2 | 0.4 | 0.1 | 0.4 | 0.4 | 0.6 | 0.3 | 0.6 | 0.4 | 0.2 | 0.5 | 0.3 | 0.4 | 0.5 | ＋0．1 |
| Tranquilizers ${ }^{\text {c，m }}$ | 1.2 | 1.4 | 1.0 | 1.2 | 1.4 | 1.8 | 2.0 | 1.8 | 2.4 | 2.5 | 2．6 $\ddagger$ | 2.9 | 3.3 | 2.8 | 3.1 | ＋0．4 |
| Rohypnol ${ }^{\text {f }}$ | － | － | － | － | － | － | 0.5 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | － | － | － | － |
| Alcohol ${ }^{\text {r }}$ | 57.1 | 54.0 | 51．3才 | 48.6 | 50.1 | 51.3 | 50.8 | 52.7 | 52.0 | 51.0 | 50.0 | 49.8 | 48.6 | 47.5 | 48.0 | $+0.5$ |
| Been Drunk ${ }^{\circ}$ | － | 31.6 | 29.9 | 28.9 | 30.8 | 33.2 | 31.3 | 34.2 | 32.9 | 32.9 | 32.3 | 32.7 | 30.3 | 30.9 | 32.5 | ＋1．6 |
| Cigarettes | 29.4 | 28.3 | 27.8 | 29.9 | 31.2 | 33.5 | 34.0 | 36.5 | 35.1 | 34.6 | 31.4 | 29.5 | 26.7 | 24.4 | 25.0 | ＋0．6 |
| Smokeless Tobacco ${ }^{\text {f，s }}$ | － | － | 11.4 | 10.7 | 11.1 | 12.2 | 9.8 | 9.7 | 8.8 | 8.4 | 7.6 | 7.8 | 6.5 | 6.7 | 6.7 | 0.0 |
| Steroids ${ }^{\circ}$ | 1.0 | 0.8 | 0.6 | 0.7 | 0.9 | 0.7 | 0.7 | 1.0 | 1.1 | 0.9 | 0.8 | 1.3 | 1.4 | 1.3 | 1.6 | ＋0．3 |

TABLE 5-4

## Long-Term Trends in Thirty-Day Prevalence of Daily Use of Various Drugs for Twelfth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Marijuana/Hashish | 6.0 | 8.2 | 9.1 | 10.7 | 10.3 | 9.1 | 7.0 | 6.3 | 5.5 | 5.0 | 4.9 | 4.0 | 3.3 | 2.7 | 2.9 |  |
| Inhalants ${ }^{\text {d }}$ | - | * | * | 0.1 | * | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 |  |
| Inhalants, Adjusted ${ }^{\text {d,e }}$ | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 |  |
| Amyl/ Butyl Nitrites ${ }^{\text {f,g }}$ | - | - | - | - | * | 0.1 | 0.1 | 0.0 | 0.2 | 0.1 | 0.3 | 0.5 | 0.3 | 0.1 | 0.3 |  |
| Hallucinogens ${ }^{\text {c }}$ | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | * | 0.1 |  |
| Hallucinogens, Adjusted ${ }^{\text {c,h }}$ | - | - | - | - | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | * | 0.3 |  |
| LSD | * | * | * | * | * | * | 0.1 | * | 0.1 | 0.1 | 0.1 | * | 0.1 | * | * |  |
| Halluc inogens Other Than LSD ${ }^{\text {c }}$ | - | 0.1 | 0.1 | * | * | * | 0.1 | * | * | 0.1 | * | * | * | * | * |  |
| PCP ${ }^{\text {f.g }}$ | - | - | - | - | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 0.2 | 0.3 | 0.1 | 0.2 |  |
| MDMA (Ecstasy) ${ }^{\text {f }}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cocaine | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.4 | 0.4 | 0.3 | 0.2 | 0.3 |  |
| Crack | - | - | - | - | - | - | - | - | - | - | - | - | 0.1 | 0.1 | 0.2 |  |
| OtherCocaine ${ }^{j}$ | - | - | - | - | - | - | - | - | - | - | - | - | 0.2 | 0.2 | 0.1 |  |
| Heroin ${ }^{\text {k }}$ | 0.1 | * | * | * | * | * | * | * | 0.1 | * | * | * | * | * | 0.1 |  |
| With a needle ${ }^{1}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Without a needle' | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Other Narcotics ${ }^{\text {m,n}}$ | 0.1 | 0.1 | 0.2 | 0.1 | * | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 |  |
| Amphetamines ${ }^{\text {b,m }}$ | 0.5 | 0.4 | 0.5 | 0.5 | 0.6 | 0.7 | $1.2 \ddagger$ | 0.7 | 0.8 | 0.6 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 |  |
| Methamphetamine ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Crystal Meth. (Ice) ${ }^{0}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sedatives (Barbiturates) ${ }^{\text {m }}$ | 0.1 | 0.1 | 0.2 | 0.1 | * | 0.1 | 0.1 | 0.1 | 0.1 | * | 0.1 | 0.1 | 0.1 | * | 0.1 |  |
| Sedatives, Adjusted ${ }^{\text {m,p}}$ | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |  |
| Methaqualone ${ }^{\text {m,q }}$ | * | * | * | * | * | 0.1 | 0.1 | 0.1 | * | * | * | * | * | 0.1 | * |  |
| Tranquilizers ${ }^{\text {c,m }}$ | 0.1 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | * | * | 0.1 | * | 0.1 |  |
| Rohypnolf | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Alcohol ${ }^{\text {r }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Daily ${ }^{\text {r }}$ | 5.7 | 5.6 | 6.1 | 5.7 | 6.9 | 6.0 | 6.0 | 5.7 | 5.5 | 4.8 | 5.0 | 4.8 | 4.8 | 4.2 | 4.2 |  |
| Been drunk daily ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| $5+$ drinks in a row in last 2 weeks | 36.8 | 37.1 | 39.4 | 40.3 | 41.2 | 41.2 | 41.4 | 40.5 | 40.8 | 38.7 | 36.7 | 36.8 | 37.5 | 34.7 | 33.0 |  |
| Cigarettes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Daily | 26.9 | 28.8 | 28.8 | 27.5 | 25.4 | 21.3 | 20.3 | 21.1 | 21.2 | 18.7 | 19.5 | 18.7 | 18.7 | 18.1 | 18.9 |  |
| Half-pack or more perday | 17.9 | 19.2 | 19.4 | 18.8 | 16.5 | 14.3 | 13.5 | 14.2 | 13.8 | 12.3 | 12.5 | 11.4 | 11.4 | 10.6 | 11.2 |  |
| Smokeless Tobac co ${ }^{\text {f,S }}$ | - | - | - | - | - | - | - | - | - | - | - | 4.7 | 5.1 | 4.3 | 3.3 |  |
| Steroids ${ }^{\circ}$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.1 |  |

NOTE: See Table 5-1 for relevant footnotes.

TABLE 5-4 (cont'd)
Long-Term Trends in Thirty-Day Prevalence of Daily Use of Various Drugs for Twelfth Graders


SOURCE: The Monitoring the Future Study, the University of Michigan.

# TABLE 5-5a <br> Trends in Lifetime Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders 

Lifetime
'03-'04


TABLE 5-5a (cont'd)
Trends in Lifetime Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders


TABLE 5-5a (cont'd)
Trends in Lifetime Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders

Lifetime
'03-'04
$\underline{1991} 1992 \underline{1993} \underline{1994} \underline{1995} \underline{1996} \underline{1997} \underline{1998} 1999 \underline{2000} \underline{2001} \underline{2002} \underline{2003} \underline{2004}$ change
Sedatives (Barbiturates) ${ }^{k}$ 8th Grade 10th Grade 12th Grade
Methaqualone ${ }^{\mathrm{e}, \mathrm{k}}$ 8th Grade 10th Grade 12th Grade
Tranquilizers ${ }^{\text {b }}$, 8th Grade 10th Grade 12th Grade
Rohypnol ${ }^{\circ}$ 8th Grade 10th Grade 12th Grade Alcohol ${ }^{p}$

Any Use $\begin{array}{lllllllllllllll}\text { 8th Grade } & 70.1 & 69.3 \ddagger & 55.7 & 55.8 & 54.5 & 55.3 & 53.8 & 52.5 & 52.1 & 51.7 & 50.5 & 47.0 & 45.6 & 43.9\end{array}$ 10th Grade 12th Grade

Flavored Alcoholic Beverages ${ }^{\mathrm{e}, \mathrm{m}}$ 8th Grade 10th Grade 12th Grade Been Drunk ${ }^{n}$ 8th Grade 10th Grade 12th Grade

Cigarettes
Any Use
$\begin{array}{llllllllllllllll}\text { 8th Grade } & 44.0 & 45.2 & 45.3 & 46.1 & 46.4 & 49.2 & 47.3 & 45.7 & 44.1 & 40.5 & 36.6 & 31.4 & 28.4 & 27.9 & -0.5\end{array}$ $\begin{array}{llllllllllllllll}\text { 10th Grade } & 55.1 & 53.5 & 56.3 & 56.9 & 57.6 & 61.2 & 60.2 & 57.7 & 57.6 & 55.1 & 52.8 & 47.4 & 43.0 & 40.7 & -2.3\end{array}$ $\begin{array}{llllllllllllllllll}\text { 12th Grade } & 63.1 & 61.8 & 61.9 & 62.0 & 64.2 & 63.5 & 65.4 & 65.3 & 64.6 & 62.5 & 61.0 & 57.2 & 53.7 & 52.8 & -0.9\end{array}$

Smokeless Tobacco ${ }^{\text {a }}$ 8th Grade 10th Grade 12th Grade
Steroids ${ }^{\text {n }}$

| 8th Grade | 1.9 | 1.7 | 1.6 | 2.0 | 2.0 | 1.8 | 1.8 | 2.3 | 2.7 | 3.0 | 2.8 | 2.5 | 2.5 | 1.9 | -0.6 s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10th Grade | 1.8 | 1.7 | 1.7 | 1.8 | 2.0 | 1.8 | 2.0 | 2.0 | 2.7 | 3.5 | 3.5 | 3.5 | 3.0 | 2.4 | -0.6 s |
| 12th Grade | 2.1 | 2.1 | 2.0 | 2.4 | 2.3 | 1.9 | 2.4 | 2.7 | 2.9 | 2.5 | 3.7 | 4.0 | 3.5 | 3.4 | -0.2 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

# TABLE 5-5b <br> Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders 



TABLE 5-5b (cont'd)
Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders


TABLE 5-5b (cont'd)
Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders

Annual

'03-'04
$\underline{1991} 1992 \underline{1993} \underline{1994} \underline{1995} \underline{1996} \underline{1997} \underline{1998} \underline{1999} \underline{2000} \underline{2001} \underline{2002} \underline{2003} \underline{2004}$ change

| Rita lin ${ }^{\text {m,n }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | 2.9 | 2.8 | 2.6 | 2.5 | -0.1 |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | 4.8 | 4.8 | 4.1 | 3.4 | -0.7 |
| 12th Grade | - | - | - | - | - | - | - | - | - | - | 5.1 | 4.0 | 4.0 | 5.1 | +1.1 |
| Methampheta |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | 3.2 | 2.5 | 2.8 | 2.2 | 2.5 | 1.5 | -1.0 ss |
| 10th Grade | - | - | - | - | - | - | - | - | 4.6 | 4.0 | 3.7 | 3.9 | 3.3 | 3.0 | -0.3 |
| 12th Grade | - | - | - | - | - | - | - | - | 4.7 | 4.3 | 3.9 | 3.6 | 3.2 | 3.4 | +0.2 |
| Ice ${ }^{\text {n }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 1.4 | 1.3 | 1.7 | 1.8 | 2.4 | 2.8 | 2.3 | 3.0 | 1.9 | 2.2 | 2.5 | 3.0 | 2.0 | 2.1 | +0.1 |
| Sedatives (Barb |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 3.4 | 2.8 | 3.4 | 4.1 | 4.7 | 4.9 | 5.1 | 5.5 | 5.8 | 6.2 | 5.7 | 6.7 | 6.0 | 6.5 | +0.5 |
| Methaqualone |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 0.5 | 0.6 | 0.2 | 0.8 | 0.7 | 1.1 | 1.0 | 1.1 | 1.1 | 0.3 | 0.8 | 0.9 | 0.6 | 0.8 | +0.2 |
| Tranquilizers ${ }^{\text {b,k }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 1.8 | 2.0 | 2.1 | 2.4 | 2.7 | 3.3 | 2.9 | 2.6 | 2.5 | $2.6 \ddagger$ | 2.8 | 2.6 | 2.7 | 2.5 | -0.1 |
| 10th Grade | 3.2 | 3.5 | 3.3 | 3.3 | 4.0 | 4.6 | 4.9 | 5.1 | 5.4 | $5.6 \ddagger$ | 7.3 | 6.3 | 5.3 | 5.1 | -0.2 |
| 12th Grade | 3.6 | 2.8 | 3.5 | 3.7 | 4.4 | 4.6 | 4.7 | 5.5 | 5.8 | $5.7 \ddagger$ | 6.9 | 7.7 | 6.7 | 7.3 | +0.6 |
| Rohypnol ${ }^{\circ}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | 1.0 | 0.8 | 0.8 | 0.5 | 0.5 | 0.7 | 0.3 | 0.5 | 0.6 | +0.1 |
| 10th Grade | - | - | - | - | - | 1.1 | 1.3 | 1.2 | 1.0 | 0.8 | 1.0 | 0.7 | 0.6 | 0.7 | +0.1 |
| 12th Grade | - | - | - | - | - | 1.1 | 1.2 | 1.4 | 1.0 | 0.8 | 0.9\# | 1.6 | 1.3 | 1.6 | +0.3 |
| GHB ${ }^{\text {m,r }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | 1.2 | 1.1 | 0.8 | 0.9 | 0.7 | -0.2 |
| 10th Grade | - | - | - | - | - | - | - | - | - | 1.1 | 1.0 | 1.4 | 1.4 | 0.8 | -0.6 s |
| 12th Grade | - | - | - | - | - | - | - | - | - | 1.9 | 1.6 | 1.5 | 1.4 | 2.0 | +0.6 |
| Ketamine ${ }^{\text {m,s }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | 1.6 | 1.3 | 1.3 | 1.1 | 0.9 | -0.3 |
| 10th Grade | - | - | - | - | - | - | - | - | - | 2.1 | 2.1 | 2.2 | 1.9 | 1.3 | -0.6 s |
| 12th Grade | - | - | - | - | - | - | - | - | - | 2.5 | 2.5 | 2.6 | 2.1 | 1.9 | -0.2 |
| Alcohol ${ }^{\text {p }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Any Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 54.0 | 53.7 $\ddagger$ | 45.4 | 46.8 | 45.3 | 46.5 | 45.5 | 43.7 | 43.5 | 43.1 | 41.9 | 38.7 | 37.2 | 36.7 | -0.5 |
| 10th Grade | 72.3 | 70.2 $\ddagger$ | 63.4 | 63.9 | 63.5 | 65.0 | 65.2 | 62.7 | 63.7 | 65.3 | 63.5 | 60.0 | 59.3 | 58.2 | -1.1 |
| 12th Grade | 77.7 | $76.8 \ddagger$ | 72.7 | 73.0 | 73.7 | 72.5 | 74.8 | 74.3 | 73.8 | 73.2 | 73.3 | 71.5 | 70.1 | 70.6 | +0.5 |

# TABLE 5-5b (cont'd) <br> Trends in Annual Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders 

Annual
'03-'04
$1991 \underline{1992} 19931994 \underline{1995} 19961997 \underline{1998} \underline{1999} \underline{2000} \underline{2001} 2002 \underline{2003} \underline{2004}$ change
Flavored Alcoholic Beverages ${ }^{\text {e,m,t }}$

| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | 30.4 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | 49.7 | - |
| 12th Grade | - | - | - | - | - | - | - | - | - | - | - | - | 55.2 | 55.8 | +0.6 |
| Been Drunk ${ }^{\text {n }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 17.5 | 18.3 | 18.2 | 18.2 | 18.4 | 19.8 | 18.4 | 17.9 | 18.5 | 18.5 | 16.6 | 15.0 | 14.5 | 14.5 | 0.0 |
| 10th Grade | 40.1 | 37.0 | 37.8 | 38.0 | 38.5 | 40.1 | 40.7 | 38.3 | 40.9 | 41.6 | 39.9 | 35.4 | 34.7 | 35.1 | +0.4 |
| 12th Grade | 52.7 | 50.3 | 49.6 | 51.7 | 52.5 | 51.9 | 53.2 | 52.0 | 53.2 | 51.8 | 53.2 | 50.4 | 48.0 | 51.8 | +3.8 |
| $\mathrm{dis}^{\mathrm{m}, \mathrm{n}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | 3.9 | 2.7 | 2.7 | 2.0 | 1.7 | -0.3 |
| 10th Grade | - | - | - | - | - | - | - | - | - | 6.4 | 4.9 | 3.1 | 2.8 | 2.1 | -0.7 |
| 12th Grade | - | - | - | - | - | - | - | - | - | 9.2 | 7.0 | 5.9 | 4.0 | 3.6 | -0.4 |
| reteks ${ }^{\text {m,n}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | 2.6 | 2.6 | 2.0 | 1.9 | -0.1 |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | 6.0 | 4.9 | 3.8 | 3.7 | -0.2 |
| 12th Grade | - | - | - | - | - | - | - | - | - | - | 10.1 | 8.4 | 6.7 | 6.5 | -0.2 |

Steroids ${ }^{\text {n }}$
$\begin{array}{llllllllllllllll}\text { 8th Grade } & 1.0 & 1.1 & 0.9 & 1.2 & 1.0 & 0.9 & 1.0 & 1.2 & 1.7 & 1.7 & 1.6 & 1.5 & 1.4 & 1.1 & -0.3 \\ s\end{array}$
$\begin{array}{llllllllllllllll} & 1.1 & 1.1 & 1.0 & 1.1 & 1.2 & 1.2 & 1.2 & 1.2 & 1.7 & 2.2 & 2.1 & 2.2 & 1.7 & 1.5 & -0.2\end{array}$

| 12th Grade | 1.4 | 1.1 | 1.2 | 1.3 | 1.5 | 1.4 | 1.4 | 1.7 | 1.8 | 1.7 | 2.4 | 2.5 | 2.1 | 2.5 | +0.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NOTE: $\quad$ See Table 5-5a for relevant footnotes.
SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 5-5c
Trends in Thirty-Day Prevalence of Use of Various Drugs
for Eighth, Tenth, and Twelfth Graders

30-Day
'03-'04
$1991199219931994 \underline{1995} 1996 \underline{1997} 1998199920002001 \quad 2002 \quad 20032004$ change

| Any Illic it Drug ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8th Grade | 5.7 | 6.8 | 8.4 | 10.9 | 12.4 | 14.6 | 12.9 | 12.1 | 12.2 | 11.9 | 11.7 | 10.4 | 9.7 | 8.4 | -1.3 s |
| 10th Grade | 11.6 | 11.0 | 14.0 | 18.5 | 20.2 | 23.2 | 23.0 | 21.5 | 22.1 | 22.5 | 22.7 | 20.8 | 19.5 | 18.3 | -1.2 |
| 12th Grade | 16.4 | 14.4 | 18.3 | 21.9 | 23.8 | 24.6 | 26.2 | 25.6 | 25.9 | 24.9 | 25.7 | 25.4 | 24.1 | 23.4 | -0.8 |
| Any Illic it Drug Other |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Than Manjuana ${ }^{\text {a,b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 3.8 | 4.7 | 5.3 | 5.6 | 6.5 | 6.9 | 6.0 | 5.5 | 5.5 | $5.6 \ddagger$ | 5.5 | 4.7 | 4.7 | 4.1 | -0.6 |
| 10th Grade | 5.5 | 5.7 | 6.5 | 7.1 | 8.9 | 8.9 | 8.8 | 8.6 | 8.6 | $8.5 \ddagger$ | 8.7 | 8.1 | 6.9 | 6.9 | 0.0 |
| 12th Grade | 7.1 | 6.3 | 7.9 | 8.8 | 10.0 | 9.5 | 10.7 | 10.7 | 10.4 | 10.4 $\ddagger$ | 11.0 | 11.3 | 10.4 | 10.8 | +0.4 |
| Any Illic it Drug |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Including Inhalants ${ }^{\text {a,c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 8.8 | 10.0 | 12.0 | 14.3 | 16.1 | 17.5 | 16.0 | 14.9 | 15.1 | 14.4 | 14.0 | 12.6 | 12.1 | 11.2 | -0.8 |
| 10th Grade | 13.1 | 12.6 | 15.5 | 20.0 | 21.6 | 24.5 | 24.1 | 22.5 | 23.1 | 23.6 | 23.6 | 21.7 | 20.5 | 19.3 | -1.2 |
| 12th Grade | 17.8 | 15.5 | 19.3 | 23.0 | 24.8 | 25.5 | 26.9 | 26.6 | 26.4 | 26.4 | 26.5 | 25.9 | 24.6 | 23.3 | -1.3 |
| Marijuana/Hashish |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 3.2 | 3.7 | 5.1 | 7.8 | 9.1 | 11.3 | 10.2 | 9.7 | 9.7 | 9.1 | 9.2 | 8.3 | 7.5 | 6.4 | -1.2 s |
| 10th Grade | 8.7 | 8.1 | 10.9 | 15.8 | 17.2 | 20.4 | 20.5 | 18.7 | 19.4 | 19.7 | 19.8 | 17.8 | 17.0 | 15.9 | -1.2 |
| 12th Grade | 13.8 | 11.9 | 15.5 | 19.0 | 21.2 | 21.9 | 23.7 | 22.8 | 23.1 | 21.6 | 22.4 | 21.5 | 21.2 | 19.9 | -1.3 |
| Inhalants ${ }^{\text {c,d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 4.4 | 4.7 | 5.4 | 5.6 | 6.1 | 5.8 | 5.6 | 4.8 | 5.0 | 4.5 | 4.0 | 3.8 | 4.1 | 4.5 | +0.4 |
| 10th Grade | 2.7 | 2.7 | 3.3 | 3.6 | 3.5 | 3.3 | 3.0 | 2.9 | 2.6 | 2.6 | 2.4 | 2.4 | 2.2 | 2.4 | +0.1 |
| 12th Grade | 2.4 | 2.3 | 2.5 | 2.7 | 3.2 | 2.5 | 2.5 | 2.3 | 2.0 | 2.2 | 1.7 | 1.5 | 1.5 | 1.5 | 0.0 |
| Nitrites ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 0.4 | 0.3 | 0.6 | 0.4 | 0.4 | 0.7 | 0.7 | 1.0 | 0.4 | 0.3 | 0.5 | 0.6 | 0.7 | 0.7 | 0.0 |
| Halluc inogens ${ }^{\text {b,f }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.8 | 1.1 | 1.2 | 1.3 | 1.7 | 1.9 | 1.8 | 1.4 | 1.3 | $1.2 \ddagger$ | 1.6 | 1.2 | 1.2 | 1.0 | -0.2 |
| 10th Grade | 1.6 | 1.8 | 1.9 | 2.4 | 3.3 | 2.8 | 3.3 | 3.2 | 2.9 | $2.3 \ddagger$ | 2.1 | 1.6 | 1.5 | 1.6 | +0.1 |
| 12th Grade | 2.2 | 2.1 | 2.7 | 3.1 | 4.4 | 3.5 | 3.9 | 3.8 | 3.5 | $2.6 \ddagger$ | 3.3 | 2.3 | 1.8 | 1.9 | +0.1 |
| LSD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.6 | 0.9 | 1.0 | 1.1 | 1.4 | 1.5 | 1.5 | 1.1 | 1.1 | 1.0 | 1.0 | 0.7 | 0.6 | 0.5 | -0.1 |
| 10th Grade | 1.5 | 1.6 | 1.6 | 2.0 | 3.0 | 2.4 | 2.8 | 2.7 | 2.3 | 1.6 | 1.5 | 0.7 | 0.6 | 0.6 | 0.0 |
| 12th Grade | 1.9 | 2.0 | 2.4 | 2.6 | 4.0 | 2.5 | 3.1 | 3.2 | 2.7 | 1.6 | 2.3 | 0.7 | 0.6 | 0.7 | +0.1 |
| Halluc inogens Other Than LSD ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.3 | 0.4 | 0.5 | 0.7 | 0.8 | 0.9 | 0.7 | 0.7 | 0.6 | $0.6 \ddagger$ | 1.1 | 1.0 | 1.0 | 0.8 | -0.2 |
| 10th Grade | 0.4 | 0.5 | 0.7 | 1.0 | 1.0 | 1.0 | 1.2 | 1.4 | 1.2 | $1.2 \ddagger$ | 1.4 | 1.4 | 1.2 | 1.4 | +0.2 |
| 12th Grade | 0.7 | 0.5 | 0.8 | 1.2 | 1.3 | 1.6 | 1.7 | 1.6 | 1.6 | $1.7 \ddagger$ | 1.9 | 2.0 | 1.5 | 1.7 | +0.2 |
| PCP ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 10th Grade | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12th Grade | 0.5 | 0.6 | 1.0 | 0.7 | 0.6 | 1.3 | 0.7 | 1.0 | 0.8 | 0.9 | 0.5 | 0.4 | 0.6 | 0.4 | -0.2 |

TABLE 5-5c (cont'd)
Trends in Thirty-Day Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders


TABLE 5-5c (cont'd)
Trends in Thirty-Day Prevalence of Use of Various Drugs for Eighth, Tenth, and Twelfth Graders

30-Day
'03-'04
$19911992 \underline{1993} 1994 \underline{1995} \underline{1996} \underline{1997} \underline{1998} \underline{1999} \underline{2000} \underline{2001} \underline{2002} \underline{2003} \underline{2004}$ change
Sedatives (Barbiturates) ${ }^{k}$ 8th Grade $\begin{array}{lccccccccccccccc}\text { 10th Grade } & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - \\ & 1.4 & 1.1 & 1.3 & 1.7 & 2.2 & 2.1 & 2.1 & 2.6 & 2.6 & 3.0 & 2.8 & 3.2 & 2.9 & 2.9 & 0.0\end{array}$ 12th Grade
Methaqualone ${ }^{e, k}$ 8th Grade 10th Grade 12th Grade

Tranquilizers ${ }^{\mathrm{b}, \mathrm{k}}$ 8th Grade 10th Grade 12th Grade
Rohypnol ${ }^{\circ}$ 8th Grade 10th Grade 12th Grade Alcohol ${ }^{p}$
Any Use $\begin{array}{lllllllllllllll}\text { 8th Grade } & 25.1 & 26.1 \neq 24.3 & 25.5 & 24.6 & 26.2 & 24.5 & 23.0 & 24.0 & 22.4 & 21.5 & 19.6 & 19.7 & 18.6 & -1.2\end{array}$ 10th Grade
12th Grade
Flavored Alcoholic Beverages ${ }^{\mathrm{e}, m}$ 8th Grade 10th Grade 12th Grade Been Drunk ${ }^{\text {n }}$ 8th Grade 10th Grade 12th Grade

Cigarettes
Any Use $\begin{array}{llllllllllllllll}\text { 8th Grade } & 14.3 & 15.5 & 16.7 & 18.6 & 19.1 & 21.0 & 19.4 & 19.1 & 17.5 & 14.6 & 12.2 & 10.7 & 10.2 & 9.2 & -1.0\end{array}$ 10th Grade $\begin{array}{llllllllllllllll}20.8 & 21.5 & 24.7 & 25.4 & 27.9 & 30.4 & 29.8 & 27.6 & 25.7 & 23.9 & 21.3 & 17.7 & 16.7 & 16.0 & -0.7\end{array}$ $\begin{array}{lllllllllllllll}28.3 & 27.8 & 29.9 & 31.2 & 33.5 & 34.0 & 36.5 & 35.1 & 34.6 & 31.4 & 29.5 & 26.7 & 24.4 & 25.0 & +0.6\end{array}$
Smokeless Tobacco ${ }^{\text {q }}$ 8th Grade 10th Grade 12th Grade
Steroids ${ }^{\text {n }}$

| 8th Grade | 0.4 | 0.5 | 0.5 | 0.5 | 0.6 | 0.4 | 0.5 | 0.5 | 0.7 | 0.8 | 0.7 | 0.8 | 0.7 | 0.5 | -0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10th Grade | 0.6 | 0.6 | 0.5 | 0.6 | 0.6 | 0.5 | 0.7 | 0.6 | 0.9 | 1.0 | 0.9 | 1.0 | 0.8 | 0.8 | +0.1 |
| 12th Grade | 0.8 | 0.6 | 0.7 | 0.9 | 0.7 | 0.7 | 1.0 | 1.1 | 0.9 | 0.8 | 1.3 | 1.4 | 1.3 | 1.6 | +0.3 |

NOTE: See Table 5-5a for relevant footnotes.
SOURCE: The Monitoring the Future Study, the University of Michigan.

# TABLE 5-5d <br> Trends in Thirty-Day Prevalence of Daily Use of Various Drugs for Eighth, Tenth, and Twelfth Graders 

Daily
'03-'04
$1991199219931994 \underline{1995} \underline{1996} 1997199819992000 \underline{2001} \underline{2002} \underline{2003} \underline{2004}$ change

| Marijuana/Hashish, daily ${ }^{\text {u }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8th Grade | 0.2 | 0.2 | 0.4 | 0.7 | 0.8 | 1.5 | 1.1 | 1.1 | 1.4 | 1.3 | 1.3 | 1.2 | 1.0 | 0.8 | -0.2 |
| 10th Grade | 0.8 | 0.8 | 1.0 | 2.2 | 2.8 | 3.5 | 3.7 | 3.6 | 3.8 | 3.8 | 4.5 | 3.9 | 3.6 | 3.2 | -0.5 |
| 12th Grade | 2.0 | 1.9 | 2.4 | 3.6 | 4.6 | 4.9 | 5.8 | 5.6 | 6.0 | 6.0 | 5.8 | 6.0 | 6.0 | 5.6 | -0.4 |
| Alcohol ${ }^{\text {p,u }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Any da ily use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.5 | $0.6 \ddagger$ | 1.0 | 1.0 | 0.7 | 1.0 | 0.8 | 0.9 | 1.0 | 0.8 | 0.9 | 0.7 | 0.8 | 0.6 | -0.2 |
| 10th Grade | 1.3 | $1.2 \ddagger$ | 1.8 | 1.7 | 1.7 | 1.6 | 1.7 | 1.9 | 1.9 | 1.8 | 1.9 | 1.8 | 1.5 | 1.3 | -0.2 |
| 12th Grade | 3.6 | 3.4\# | 3.4 | 2.9 | 3.5 | 3.7 | 3.9 | 3.9 | 3.4 | 2.9 | 3.6 | 3.5 | 3.2 | 2.8 | -0.4 |
| Been Drunk, daily ${ }^{\text {n,u }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 0.1 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.0 |
| 10th Grade | 0.2 | 0.3 | 0.4 | 0.4 | 0.6 | 0.4 | 0.6 | 0.6 | 0.7 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | -0.1 |
| 12th Grade | 0.9 | 0.8 | 0.9 | 1.2 | 1.3 | 1.6 | 2.0 | 1.5 | 1.9 | 1.7 | 1.4 | 1.2 | 1.6 | 1.8 | +0.2 |
| 5+drinks in a row in last 2 weeks |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 12.9 | 13.4 | 13.5 | 14.5 | 14.5 | 15.6 | 14.5 | 13.7 | 15.2 | 14.1 | 13.2 | 12.4 | 11.9 | 11.4 | -0.5 |
| 10th Grade | 22.9 | 21.1 | 23.0 | 23.6 | 24.0 | 24.8 | 25.1 | 24.3 | 25.6 | 26.2 | 24.9 | 22.4 | 22.2 | 22.0 | -0.2 |
| 12th Grade | 29.8 | 27.9 | 27.5 | 28.2 | 29.8 | 30.2 | 31.3 | 31.5 | 30.8 | 30.0 | 29.7 | 28.6 | 27.9 | 29.2 | +1.3 |
| Cigarettes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Any daily use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 7.2 | 7.0 | 8.3 | 8.8 | 9.3 | 10.4 | 9.0 | 8.8 | 8.1 | 7.4 | 5.5 | 5.1 | 4.5 | 4.4 | -0.2 |
| 10th Grade | 12.6 | 12.3 | 14.2 | 14.6 | 16.3 | 18.3 | 18.0 | 15.8 | 15.9 | 14.0 | 12.2 | 10.1 | 8.9 | 8.3 | -0.6 |
| 12th Grade | 18.5 | 17.2 | 19.0 | 19.4 | 21.6 | 22.2 | 24.6 | 22.4 | 23.1 | 20.6 | 19.0 | 16.9 | 15.8 | 15.6 | -0.3 |
| 1/2 pack+/day |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 3.1 | 2.9 | 3.5 | 3.6 | 3.4 | 4.3 | 3.5 | 3.6 | 3.3 | 2.8 | 2.3 | 2.1 | 1.8 | 1.7 | -0.1 |
| 10th Grade | 6.5 | 6.0 | 7.0 | 7.6 | 8.3 | 9.4 | 8.6 | 7.9 | 7.6 | 6.2 | 5.5 | 4.4 | 4.1 | 3.3 | -0.9 s |
| 12th Grade | 10.7 | 10.0 | 10.9 | 11.2 | 12.4 | 13.0 | 14.3 | 12.6 | 13.2 | 11.3 | 10.3 | 9.1 | 8.4 | 8.0 | -0.3 |
| Smokeless Tobacco, daily ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th Grade | 1.6 | 1.8 | 1.5 | 1.9 | 1.2 | 1.5 | 1.0 | 1.0 | 0.9 | 0.9 | 1.2 | 0.8 | 0.8 | 1.0 | +0.2 |
| 10th Grade | 3.3 | 3.0 | 3.3 | 3.0 | 2.7 | 2.2 | 2.2 | 2.2 | 1.5 | 1.9 | 2.2 | 1.7 | 1.8 | 1.6 | -0.2 |
| 12th Grade | - | 4.3 | 3.3 | 3.9 | 3.6 | 3.3 | 4.4 | 3.2 | 2.9 | 3.2 | 2.8 | 2.0 | 2.2 | 2.8 | +0.6 |

NOTE: See Table 5-5a for relevant footnotes.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## Footnotes for Table 5-5a to Table 5-5d

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. '-' indicates data not available.
' $\ddagger$ ' indic ates some change in the question. See relevant footnote for that drug.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.

| Weighted Ns | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8th Graders | 17,500 | 18,600 | 18,300 | 17,300 | 17,500 | 17,800 | 18,600 | 18,100 | 16,700 | 16,700 | 16,200 | 15,100 | 16,500 |
| 17,000 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10th Graders | 14,800 | 14,800 | 15,300 | 15,800 | 17,000 | 15,600 | 15,500 | 15,000 | 13,600 | 14,300 | 14,000 | 14,300 | 15,800 |
| 16,400 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12th Graders | 15,000 | 15,800 | 16,300 | 15,400 | 15,400 | 14,300 | 15,400 | 15,200 | 13,600 | 12,800 | 12,800 | 12,900 | 14,600 | 14,600.

a For 12th graders only: Use of "any illicit drug" includes any use of manijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use of other narcotics, a mphetamines, sedatives (barbiturates), or tra nquilizers not under a doctor'sorders. For 8th and 10th graders only: The use of other narcotics and barbiturates has been excluded because these younger respondents appearto overreport use (perhaps because they include the use of nonprescription drugs in their answers).
${ }^{\text {b }}$ In 2001 the question text waschanged on half of the questionnaire forms foreach age group. "Otherpsychedelics" was changed to "other halluc inogens," and "shrooms" was added to the list of examples. For the tranquilizer list of examples, Miltown was replaced with Xanax. For 8th, 10th, and 12th graders only: The 2001 data presented here are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed to the new wording. The data are based on all forms beginning in 2002. Data for "any illicit drug other than marijuana" and "hallucinogens" are also affected by these changes and have been handled in a parallel manner.
${ }^{c}$ For 12th graders only: Data based on five of six forms in 1991-98; N is five-sixths of N indicated. Data based on three of six forms beginning in 1999; N is one-half of N indic ated.
${ }^{\mathrm{d}}$ Inhalants are unadjusted for underreporting of a myl and butyl nitrites.
${ }^{e}$ For 12th graders only: Data based on one of six forms; $N$ is one-sixth of $N$ indicated.
${ }^{f} H a l l u c$ inogens are unadjusted for undereporting of PCP.
${ }^{9}$ For 8th and 10th graders only: Data based on one of two forms in 1996; $N$ is one-half of $N$ indicated. Data based on one-third of N indicated in 1997-2001 due to changes in the questionnaire forms. Data based on two of four forms beginning in 2002; N is one-half of N indic ated. For 12th graders only: Data based on one of six forms in 1996-2001; N is one-sixth of N indicated. Data based on two of six forms beginning in 2002; N is two-sixths of N indicated.
${ }^{\mathrm{h}}$ For 12th graders only: Data based on four of six forms; N is four-sixths of N indicated.
${ }^{\text {I I I }}$ 1995, the heroin question waschanged in one of two forms for 8th and 10th graders and in three of six forms for 12th graders. Separate questions were asked for use with injection and without injection. In 1996, the heroin question was changed in all remaining 8th- and 10th-grade forms. Data presented here represent the combined data from all forms. ${ }^{j}$ For 8th and 10th graders only: Data based on one of two forms in 1995; N is one-half of N indicated. Data based on all forms beginning in 1996. For 12th graders only: Data based on three of six forms; N is one-half of N indicated.
kOnly drug use not under a doctor'sorders is included here.
In 2002 the question text waschanged in half of the questionnaire forms. The list of examples of narcotic sother than heroin was updated: Talwin, laudanum, and paregoric -all of which had negligible rates of use by 2001-were replaced with Vicodin, OxyContin, and Percocet. The 2002 data presented here are based on the changed formsonly; N is one-half of N indicated. In 2003, the remaining forms were changed to the new wording. The data are based on all forms beginning in 2003.
${ }^{m}$ For 8th and 10th graders only: Data based on one of four forms; N is one-third of N indicated.
${ }^{\mathrm{n}}$ For 12th graders only: Data based on two of six forms; N is two-sixths of N indicated.
${ }^{\circ}$ For 8th and 10th graders only: Data based on one of two forms in 1996; N is one-half of N indicated. Data based on three of four forms in 1997-98; N is two-thirds of N indic ated. Data based on two of four forms in 1999-2001; N is one-third of N indicated. Data based on one of four forms beginning in 2002; N is one-sixth of N indicated. For 12th graders only: Data based on one of six forms in 1996-2001; $N$ is one-sixth of $N$ indicated. Data based on two of six forms beginning in 2002; $N$ is one-third of N indicated. Data for 2001 and 2002 are not comparable due to changes in the questionnaire forms.
${ }^{\mathrm{p}}$ For 8th, 10th, and 12th graders: In 1993, the question text waschanged slightly in half of the forms to indic ate that a "drink" meant "more than just a few sips." The 1993 data are based on the changed forms only; N is one-half of N indicated for these groups. In 1994 the remaining forms were changed to the new wording. The data are based on all forms beginning in 1994. In 2004, the question text was changed slightly in half of the forms. An examination of the data did not show any effect from the wording change.
${ }^{\mathrm{q}}$ For 8th and 10th graders only: Data based on one of two forms for 1991-96 and on two of four forms beginning in 1997; N is one-half of N indicated. For 12th graders only: Data based on one of six forms; N is one-sixth of N indicated.
${ }^{\text {r }}$ For 12th graders only: Data based on two of six forms in 2000; N is two-sixths of N indicated. Data based on three of six forms in 2001; N is one-half of N indicated. Data based on one of six forms beginning in 2002; N is one-sixth of N indicated. ${ }^{5}$ For 12th graders only: Data based on two of six forms in 2000; N is two-sixths of N indicated. Data based on three of six forms beginning in 2001; N is one-half of N indicated.
${ }^{\text {t FFor 12th graders only: The } 2003 \text { flavored alcoholic beverage data were created by adjusting the } 2004 \text { data to reflect the }}$ observed 2003 to 2004 change in a slightly different version of the flavored alcoholic beverage question. In 2004 the original question was revised to include wine coolers among the examples-a change that had very little effect on the observed prevalence of use rate in 2004.
"Daily use is defined as use on 20 or more occasions in the past 30 days except forcigarettes and smokeless tobacco, for which actual daily use is measured, and for 5+drinks, for which the prevalence of having five or more drinks in a row in the last two weeks is measured.

# TABLE 5-6a <br> Trends in Lifetime Prevalence of Use of Heroin with and without a Needle for Eighth, Tenth, and Twelfth Graders 



NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
Any apparent inconsistency between the total who used heroin at all and the sum of those who used with a needle, those who used without a needle, and those who used both ways is due to rounding error.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
Eighth- and tenth-grade data based on one of two forms in 1995 and on all forms after 1995; twelfth-grade data based on three of six forms except for "used heroin at all," which is based on all six forms.
SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 5-6b
Trends in Annual Prevalence of Use of Heroin with and without a Needle for Eighth, Tenth, and Twelfth Graders

|  |  |  |  | ercenta | ge who | used in | ast yea |  |  |  | $\begin{gathered} \text { '03-'04 } \\ \text { change } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Eighth Graders |  |  |  |  |  |  |  |  |  |  |  |
| Used heroin: |  |  |  |  |  |  |  |  |  |  |  |
| Only with a needle | 0.5 | 0.6 | 0.4 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3 | 0.3 | 0.4 | +0.1 |
| Only without a needle | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.0 |
| Both ways | 0.4 | 0.4 | 0.3 | 0.4 | 0.4 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.0 |
| Used heroin at all | 1.4 | 1.6 | 1.3 | 1.3 | 1.4 | 1.1 | 1.0 | 0.9 | 0.9 | 1.0 | 0.0 |
| Approx. $\mathrm{N}=$ | 8800 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Tenth Graders |  |  |  |  |  |  |  |  |  |  |  |
| Used heroin: |  |  |  |  |  |  |  |  |  |  |  |
| Only with a needle | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.0 |
| Only without a needle | 0.5 | 0.6 | 0.7 | 0.6 | 0.8 | 0.8 | 0.5 | 0.5 | 0.3 | 0.4 | +0.2 s |
| Both ways | 0.3 | 0.3 | 0.4 | 0.4 | 0.3 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | 0.0 |
| Used heroin at all | 1.1 | 1.2 | 1.4 | 1.4 | 1.4 | 1.4 | 0.9 | 1.1 | 0.7 | 0.9 | +0.2 |
| Approx. $\mathrm{N}=$ | 8500 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Twelfth Graders |  |  |  |  |  |  |  |  |  |  |  |
| Used heroin: |  |  |  |  |  |  |  |  |  |  |  |
| Only with a needle | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | +0.1 |
| Only without a needle | 0.6 | 0.6 | 0.7 | 0.6 | 0.8 | 1.1 | 0.6 | 0.6 | 0.4 | 0.5 | +0.1 |
| Both ways | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | -0.1 |
| Used heroin at all | 1.1 | 1.0 | 1.2 | 1.0 | 1.1 | 1.5 | 0.9 | 1.0 | 0.8 | 0.9 | +0.1 |
| Approx. $\mathrm{N}=$ | 7700 | 7200 | 7700 | 7600 | 6800 | 6400 | 6400 | 6500 | 7300 | 7300 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
Any apparent inconsistency between the total who used heroin at all and the sum of those who used with a needle, those who used without a needle, and those who used both ways is due to rounding error.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
Eighth- and tenth-grade data based on one of two forms in 1995 and on all forms after 1995; twelfth-grade data based on three of six forms except for "used heroin at all," which is based on all six forms.
SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 5-6c
Trends in Thirty-Day Prevalence of Use of Heroin with and without a Needle for Eighth, Tenth, and Twelfth Graders

|  | Percentage who used in past month |  |  |  |  |  |  |  |  |  | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Eighth Graders |  |  |  |  |  |  |  |  |  |  |  |
| Used heroin: |  |  |  |  |  |  |  |  |  |  |  |
| Only with a needle | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.0 |
| Only without a needle | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 |
| Both ways | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 |
| Used heroin at all | 0.6 | 0.7 | 0.6 | 0.6 | 0.6 | 0.5 | 0.6 | 0.5 | 0.4 | 0.5 | 0.0 |
| Approx. $\mathrm{N}=$ | 8800 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Tenth Graders |  |  |  |  |  |  |  |  |  |  |  |
| Used heroin: |  |  |  |  |  |  |  |  |  |  |  |
| Only with a needle | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | +0.1 |
| Only without a needle | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.0 |
| Both ways | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.0 |
| Used heroin at all | 0.6 | 0.5 | 0.6 | 0.7 | 0.7 | 0.5 | 0.3 | 0.5 | 0.3 | 0.5 | +0.1 |
| Approx. $\mathrm{N}=$ | 8500 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Twelfth Graders |  |  |  |  |  |  |  |  |  |  |  |
| Used heroin: |  |  |  |  |  |  |  |  |  |  |  |
| Only with a needle | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | +0.1 |
| Only without a needle | 0.3 | 0.1 | 0.3 | 0.3 | 0.3 | 0.5 | 0.2 | 0.3 | 0.2 | 0.2 | +0.1 |
| Both ways | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -0.1 |
| Used heroin at all | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.4 | 0.5 | 0.4 | 0.5 | +0.1 |
| Approx. $\mathrm{N}=$ | 7700 | 7200 | 7700 | 7600 | 6800 | 6400 | 6400 | 6500 | 7300 | 7300 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
Any apparent inconsistency between the total who used heroin at all and the sum of those who used with a needle, those who used without a needle, and those who used both ways is due to rounding error.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
Eighth- and tenth-grade data based on one of two forms in 1995 and on all forms after 1995; twelfth-grade data based on three of six forms except for "used heroin at all," which is based on all six forms.
SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 5-7a
Trends in Noncontinuation Rates among Twelfth Graders Who Ever Used Drug in Lifetime

|  | Percentage who did not use in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\underline{1975}$ | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | $\underline{1983}$ | $\underline{1984}$ | $\underline{1985}$ | 1986 | 1987 | $\underline{1988}$ | $\underline{1989}$ |  |
| Marijuana/Hashish | 15.4 | 15.7 | 15.6 | 15.2 | 15.9 | 19.1 | 22.5 | 24.5 | 25.8 | 27.1 | 25.1 | 23.8 | 27.7 | 29.9 | 32.3 |  |
| Inhalants | - | 70.9 | 66.7 | 65.8 | 57.5 | 61.3 | 66.7 | 64.8 | 68.4 | 64.6 | 63.0 | 61.6 | 59.4 | 61.1 | 66.5 |  |
| Inhalants, Adjusted | - | - | - | - | 50.8 | 55.7 | 65.5 | 63.3 | 64.4 | 58.4 | 59.8 | 55.7 | 56.5 | 59.4 | 62.9 |  |
| Amyl/Butyl Nitrites | - | - | - | - | 41.4 | 48.6 | 63.4 | 63.3 | 57.1 | 50.6 | 49.4 | 45.3 | 44.7 | 46.9 | 48.5 |  |
| Halluc inogens ${ }^{\text {a }}$ | 31.3 | 37.7 | 36.7 | 32.9 | 29.8 | 30.1 | 32.3 | 35.2 | 38.7 | 39.3 | 38.8 | 38.1 | 37.9 | 38.2 | 40.4 |  |
| Hallucinogens, Adjusted ${ }^{\text {a }}$ | - | - | - | - | 31.2 | 32.5 | 35.7 | 38.0 | 36.7 | 40.6 | 36.9 | 36.1 | 36.8 | 37.0 | 37.4 |  |
| LSD | 36.3 | 41.8 | 43.9 | 35.1 | 30.5 | 30.1 | 33.7 | 36.5 | 39.3 | 41.3 | 41.3 | 37.5 | 38.1 | 37.7 | 41.0 |  |
| Hallucinogens Other Than LSD ${ }^{\text {a }}$ | 33.3 | 42.1 | 38.4 | 37.1 | 36.4 | 36.7 | 38.5 | 41.3 | 43.8 | 42.4 | 44.6 | 47.4 | 40.7 | 48.8 | 48.8 |  |
| PCP | - | - | - | - | 45.3 | 54.2 | 59.0 | 63.3 | 53.6 | 54.0 | 40.8 | 50.0 | 56.7 | 58.6 | 38.5 |  |
| MDMA (Ecstasy) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cocaine | 37.8 | 38.1 | 33.3 | 30.2 | 22.1 | 21.7 | 24.8 | 28.1 | 29.6 | 28.0 | 24.3 | 24.9 | 32.2 | 34.7 | 36.9 |  |
| Crack | - | - | - | - | - | - | - | - | - | - | - | - | 27.8 | 35.4 | 34.0 |  |
| Other Cocaine | - | - | - | - | - | - | - | - | - | - | - | - | 30.0 | 38.8 | 38.8 |  |
| Heroin | 54.5 | 55.6 | 55.6 | 50.0 | 54.5 | 54.5 | 54.5 | 50.0 | 50.0 | 61.5 | 50.0 | 54.5 | 58.3 | 54.5 | 53.8 |  |
| With a needle | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Without a needle | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Other Narcotics ${ }^{\text {b }}$ | 36.7 | 40.6 | 37.9 | 39.4 | 38.6 | 35.7 | 41.6 | 44.8 | 45.7 | 46.4 | 42.2 | 42.2 | 42.4 | 46.5 | 47.0 |  |
| Amphetamines | 27.4 | 30.1 | 29.1 | 25.3 | 24.4 | 21.2 | 19.3 | 27.2 | 33.5 | 36.6 | 39.7 | 42.7 | 43.5 | 44.9 | 43.5 |  |
| Methamphetamine | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Crystal Meth. (Ice) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sedatives (Barbiturates) | 36.7 | 40.7 | 40.4 | 40.9 | 36.4 | 38.2 | 41.6 | 46.6 | 47.5 | 50.5 | 50.0 | 50.0 | 51.4 | 52.2 | 49.2 |  |
| Sedatives, Adjusted | 35.7 | 39.5 | 37.9 | 38.1 | 32.2 | 30.9 | 34.4 | 40.1 | 45.1 | 50.4 | 50.8 | 50.0 | 52.9 | 52.6 | 50.0 |  |
| Methaqualone | 37.0 | 39.7 | 38.8 | 38.0 | 28.9 | 24.2 | 28.3 | 36.4 | 46.5 | 54.2 | 58.2 | 59.6 | 62.5 | 60.6 | 51.9 |  |
| Tranquilizers ${ }^{\text {c }}$ | 37.6 | 38.7 | 40.0 | 41.8 | 41.1 | 42.8 | 45.6 | 50.0 | 48.1 | 50.8 | 48.7 | 46.8 | 49.5 | 48.9 | 50.0 |  |
| Rohypnol | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Alcohol ${ }^{\text {d }}$ | 6.2 | 6.7 | 5.9 | 5.8 | 5.3 | 5.7 | 6.0 | 6.5 | 5.7 | 7.1 | 7.2 | 7.4 | 7.0 | 7.3 | 8.8 |  |
| Been Drunk | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cigarettes ${ }^{\text {e }}$ | 16.0 | 16.7 | 16.2 | 17.9 | 19.6 | 21.4 | 20.8 | 19.1 | 18.6 | 18.5 | 15.9 | 17.0 | 17.1 | 18.2 | 18.5 |  |
| Smokeless Tobacco ${ }^{\text {e }}$ | - | - | - | - | - | - | - | - | - | - | - | 21.8 | 18.4 | 25.7 | 26.2 |  |
| Steroids | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 36.7 |  |

TABLE 5-7a (cont'd)

## Trends in Noncontinuation Rates among Twelfth Graders Who Ever Used Drug in Lifetime

|  | Percentage who did not use in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | $\underline{1993}$ | 1994 | 1995 | $\underline{1996}$ | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |
| Manjuana/Hashish | 33.7 | 34.9 | 32.8 | 26.3 | 19.6 | 16.8 | 20.3 | 22.4 | 23.6 | 23.9 | 25.2 | 24.5 | 24.3 | 24.3 | 24.9 |
| Inhalants | 61.7 | 62.5 | 62.7 | 59.8 | 56.5 | 54.0 | 54.2 | 58.4 | 59.2 | 63.6 | 58.5 | 65.4 | 61.5 | 65.2 | 61.5 |
| Inhalants, Adjusted | 59.5 | 61.7 | 62.4 | 58.2 | 55.2 | 52.8 | 51.4 | 56.8 | 57.0 | 62.5 | 57.5 | 64.5 | 60.5 | 63.1 | 59.6 |
| Amyl/Butyl Nitrites | 33.3 | 43.7 | 66.7 | 35.7 | 35.3 | 26.7 | 11.1 | 40.0 | 48.1 | 47.1 | 25.0 | 68.4 | 26.7 | 43.8 | 38.5 |
| Hallucinogens ${ }^{\text {a }}$ | 37.2 | 39.6 | 35.9 | 32.1 | 33.3 | 26.8 | 27.9 | 35.1 | 36.2 | 31.4 | 37.7 $\ddagger$ | 34.4 | 45.0 | 44.3 | 36.1 |
| Halluc inogens, Adjusted ${ }^{\text {a }}$ | 38.1 | 39.0 | 34.0 | 31.0 | 33.3 | 26.0 | 26.2 | 35.1 | 36.1 | 31.0 | 36.0才 | 32.8 | 43.8 | 40.4 | 35.4 |
| LSD | 37.9 | 40.9 | 34.9 | 34.0 | 34.3 | 28.2 | 30.2 | 38.2 | 39.7 | 33.6 | 40.5 | 39.4 | 58.3 | 67.8 | 52.2 |
| Hallucinogens Other Than LSD ${ }^{\text {a }}$ | 48.8 | 45.9 | 48.5 | 43.6 | 36.7 | 29.6 | 35.3 | 38.7 | 35.2 | 35.8 | $36.2 \ddagger$ | 37.1 | 41.3 | 40.0 | 35.6 |
| PCP | 57.1 | 51.7 | 41.7 | 51.7 | 42.9 | 33.3 | 35.0 | 41.0 | 46.2 | 47.1 | 32.4 | 48.6 | 64.5 | 48.0 | 56.3 |
| MDMA (Ecstasy) | - | - | - | - | - | - | 24.6 | 42.0 | 37.9 | 30.0 | 25.5 | 21.4 | 29.5 | 45.8 | 46.7 |
| Cocaine | 43.6 | 55.1 | 49.2 | 45.9 | 39.0 | 33.3 | 31.0 | 36.8 | 38.7 | 36.7 | 41.9 | 41.5 | 35.9 | 37.7 | 34.6 |
| Crack | 45.7 | 51.6 | 42.3 | 42.3 | 36.7 | 30.0 | 36.4 | 38.5 | 43.2 | 41.3 | 43.6 | 43.2 | 39.5 | 38.9 | 41.0 |
| Other Cocaine | 46.5 | 54.3 | 50.9 | 46.3 | 42.3 | 33.3 | 34.4 | 39.0 | 41.7 | 34.1 | 41.6 | 40.5 | 37.1 | 37.3 | 35.6 |
| Heroin | 61.5 | 55.6 | 50.0 | 54.5 | 50.0 | 31.3 | 44.4 | 42.9 | 50.0 | 45.0 | 37.5 | 50.0 | 41.2 | 46.7 | 40.0 |
| With a needle | - | - | - | - | - | 28.6 | 37.5 | 44.4 | 50.0 | 55.6 | 50.0 | 57.1 | 50.0 | 42.9 | 42.9 |
| Without a needle | - | - | - | - | - | 28.6 | 41.2 | 42.9 | 50.0 | 44.4 | 33.3 | 46.7 | 50.0 | 55.6 | 50.0 |
| Other Narcotic ${ }^{\text {b }}$ | 45.8 | 47.0 | 45.9 | 43.8 | 42.4 | 34.7 | 34.2 | 36.1 | 35.7 | 34.3 | 34.0 | $32.3 \ddagger$ | 30.7 | 29.5 | 29.6 |
| Amphetamines | 48.0 | 46.8 | 48.9 | 44.4 | 40.1 | 39.2 | 37.9 | 38.2 | 38.4 | 37.4 | 32.7 | 32.7 | 33.9 | 31.3 | 33.3 |
| Methamphetamine | - | - | - | - | - | - | - | - | - | 42.7 | 45.6 | 43.5 | 46.3 | 48.4 | 45.2 |
| Crystal Meth. (Ice) | 51.9 | 57.6 | 55.2 | 45.2 | 47.1 | 38.5 | 36.4 | 47.7 | 43.4 | 60.4 | 45.0 | 39.0 | 36.2 | 48.7 | 47.5 |
| Sedatives (Barbiturates) | 50.0 | 45.2 | 49.1 | 46.0 | 41.4 | 36.5 | 35.5 | 37.0 | 36.8 | 34.8 | 32.6 | 34.5 | 29.5 | 31.8 | 34.3 |
| Sedatives, Adjusted | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Methaqualone | 69.6 | 61.5 | 62.5 | 75.0 | 42.9 | 41.7 | 45.0 | 41.2 | 31.3 | 38.9 | 62.5 | 27.3 | 40.0 | 40.0 | 38.5 |
| Tranquilizers ${ }^{\text {c }}$ | 51.4 | 50.0 | 53.3 | 45.3 | 43.9 | 38.0 | 36.1 | 39.7 | 35.3 | 37.6 | 36.0才 | 29.3 | 32.5 | 34.3 | 31.1 |
| Rohypnol | - | - | - | - | - | - | 8.3 | 33.3 | 53.3 | 50.0 | 46.7 | 47.1 | - | - | - |
| Alcohol ${ }^{\text {d }}$ | 9.9 | 11.7 | 12.2 $\ddagger$ | 9.1 | 9.2 | 8.7 | 8.5 | 8.4 | 8.7 | 7.8 | 8.8 | 8.0 | 8.8 | 8.5 | 8.1 |
| Been Drunk | - | 19.4 | 20.7 | 20.6 | 17.8 | 16.9 | 16.0 | 17.1 | 16.7 | 14.6 | 16.9 | 16.7 | 18.2 | 17.4 | 14.1 |
| Cigarettes ${ }^{\text {e }}$ | 18.2 | 17.4 | 18.6 | 16.9 | 15.9 | 14.6 | 13.5 | 13.1 | 14.3 | 16.1 | 16.3 | 17.5 | 17.3 | 17.2 | 15.9 |
| Smokeless Tobacco ${ }^{\text {e }}$ | - | - | 29.6 | 25.5 | 33.1 | 26.5 | 27.3 | 26.2 | 17.9 | 20.7 | 15.1 | 18.9 | 20.4 | 16.2 | 15.3 |
| Steroids | 41.4 | 33.3 | 47.6 | 40.0 | 45.8 | 34.8 | 26.3 | 41.7 | 37.0 | 37.9 | 32.0 | 35.1 | 37.5 | 40.0 | 26.5 |

(Table continued on next page)

## TABLE 5-7a (cont'd)

## Trends in Noncontinuation Rates among Twelfth Graders Who Ever Used Drug in Lifetime

NOTES: '-' indic ates data not a vailable.
' $\ddagger$ ' indic ates some change in the question. See relevant footnote for that drug.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ In 2001 the question text waschanged in half of the questionnaire forms. "Other psychedelics" waschanged to "other hallucinogens," and "shrooms" was added to the list of examples. The 2001 data are based on the changed forms only. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms.
${ }^{\mathrm{b}}$ In 2002 the question text was changed in half of the questionnaire forms. In the list of examples of narcotics other than heroin, Talwin, laudanum, and paregoric were replaced with Vicodin, OxyContin, and Percocet. The 2002 data are based on the changed formsonly. In 2003, the remaining forms were changed to the new wording. Beginning in 2003, the data are based on all forms.
${ }^{\text {c }}$ In 2001, for the tranquilizer list of examples, Miltown was replaced with Xanax in half of the questionnaire forms. The 2001 data are based on the changed forms only. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms.
${ }^{\text {d }}$ In 1993, the question text was changed slightly in half of the questionnaire forms to indicate that a "drink" meant "more than a few sips." The 1993 data are based on the changed formsonly. In 1994 the remaining forms were changed to the new wording. Beginning in 1994, the data are based on all forms.
${ }^{e}$ Percentage of regular users (ever) who did not use at all in the last 30 days.

TABLE 5-7b
Trends in Noncontinuation Rates among Twelfth Graders Who Used Drug Ten or More Times in Lifetime

|  | Percentage who did not use in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Classof: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Manjuana/Hashish | 4.0 | 4.0 | 4.1 | 3.7 | 4.6 | 5.4 | 7.2 | 7.6 | 8.3 | 8.8 | 7.8 | 7.9 | 9.2 | 9.9 | 10.6 |  |
| Inhalants | - | 48.9 | 42.6 | 34.6 | 23.8 | 25.2 | 23.8 | 27.2 | 23.1 | 23.4 | 25.8 | 15.3 | 21.1 | 21.5 | 25.9 |  |
| Amyl/Butyl Nitrites | - | - | - | - | $\dagger$ |  |
| Halluc inogens ${ }^{\text {a }}$ | 10.8 | 16.1 | 15.2 | 10.8 | 8.1 | 8.4 | 7.7 | 7.5 | 13.0 | 14.1 | 12.2 | 11.1 | 11.9 | 16.6 | 21.8 |  |
| LSD | 15.2 | 17.3 | 18.0 | 12.2 | 7.4 | 6.4 | 7.1 | 7.5 | 15.3 | 12.1 | 12.6 | 12.2 | 11.5 | 16.0 | 21.2 |  |
| Hallucinogens Other Than LSD ${ }^{\text {a }}$ | - | 16.6 | 14.4 | 13.3 | 11.5 | 13.1 | 7.7 | 8.2 | 8.5 | 14.5 | 13.7 | 16.0 | 15.8 | 20.1 | 19.5 |  |
| PCP | - | - | - | - | $\dagger$ |  |
| MDMA (Ecstasy) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cocaine | 7.7 | 8.2 | 6.2 | 3.8 | 3.1 | 3.1 | 3.1 | 2.9 | 6.2 | 3.1 | 2.5 | 3.5 | 7.6 | 11.4 | 11.3 |  |
| Crack ${ }^{\text {b }}$ | - | - | - | - | - | - | - | - | - | - | - | - | 13.4 | 2.1 | 5.2 |  |
| OtherCocaine | - | - | - | - | - | - | - | - | - | - | - | - | 10.2 | 6.1 | 16.2 |  |
| Heroin | $\dagger$ |  |
| With a needle | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Without a needle | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Other Narcotics ${ }^{\text {c }}$ | 9.6 | 11.6 | 9.7 | 9.9 | 8.7 | 10.8 | 10.1 | 13.5 | 16.4 | 15.4 | 12.2 | 13.8 | 15.6 | 19.3 | 15.2 |  |
| Amphetamines | 8.0 | 9.8 | 7.6 | 7.4 | 6.1 | 4.1 | 4.4 | 8.4 | 10.7 | 12.7 | 17.5 | 17.6 | 17.5 | 16.0 | 17.4 |  |
| Methamphetamine | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Crystal Meth. (Ice) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sedatives (Barbiturates) | 13.4 | 16.5 | 12.9 | 13.5 | 11.2 | 11.7 | 8.9 | 12.6 | 17.7 | 22.8 | 20.6 | 19.7 | 20.7 | 23.4 | 18.0 |  |
| Sedatives, Adjusted | 13.6 | 16.2 | 12.4 | 12.8 | 8.6 | 10.5 | 7.6 | 8.6 | 16.4 | 20.8 | 23.6 | 19.7 | 23.1 | 25.2 | 17.3 |  |
| Methaqualone | 13.5 | 15.9 | 11.9 | 13.1 | 6.1 | 6.0 | 4.9 | 8.0 | 16.3 | 23.3 | 26.7 | 24.9 | 32.2 | 29.8 | 18.6 |  |
| Tranquilizers ${ }^{\text {e }}$ | 12.0 | 13.0 | 11.1 | 14.4 | 14.1 | 14.3 | 16.3 | 16.0 | 14.8 | 18.8 | 19.2 | 15.0 | 17.1 | 15.8 | 11.7 |  |
| Rohypnol | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Alcohol ${ }^{\text {f }}$ | 0.6 | 0.8 | 0.6 | 0.9 | 0.7 | 0.8 | 1.0 | 0.9 | 0.9 | 1.1 | 1.2 | 1.0 | 1.1 | 1.2 | 1.5 |  |
| Been Drunk | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Steroids | $\dagger$ | t | $\dagger$ |  |

TABLE 5-7b (cont'd)
Trends in Noncontinuation Rates among Twelfth Graders
Who Used Drug Ten or More Times in Lifetime

|  | Percentage who did not use in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | 2004 |
| Manjuana/Hashish | 12.3 | 10.5 | 10.9 | 7.8 | 5.0 | 4.7 | 6.6 | 7.7 | 8.2 | 8.5 | 9.0 | 8.7 | 9.4 | 8.4 | 8.9 |
| Inhalants | 24.0 | 23.7 | 28.6 | 21.8 | 26.4 | 21.6 | 24.8 | 25.2 | 28.0 | 27.8 | 23.0 | 30.8 | 25.7 | 23.8 | 30.1 |
| Amyl/Butyl Nitrites | $\dagger$ |
| Hallucinogens ${ }^{\text {a }}$ | 16.5 | 17.4 | 11.5 | 12.1 | 14.3 | 10.6 | 9.0 | 12.2 | 16.4 | 12.8 | $12.9 \ddagger$ | 12.3 | 20.0 | 21.5 | 12.1 |
| LSD | 16.0 | 18.5 | 11.4 | 11.9 | 15.3 | 11.5 | 10.5 | 16.8 | 20.3 | 14.3 | 15.7 | 14.6 | 28.6 | 47.8 | 23.0 |
| Halluc inogens Other Than LSD ${ }^{\text {a }}$ | 22.6 | 29.3 | 19.6 | 16.2 | 16.0 | 10.1 | 15.5 | 15.9 | 17.5 | 13.4 | $6.2 \ddagger$ | 10.8 | 11.0 | 18.4 | 9.7 |
| PCP | $\dagger$ |
| MDMA (Ecstasy) | - | - | - | - | - | - | $\dagger$ | $\dagger$ | $\dagger$ | $\dagger$ | $\dagger$ | 2.5 | 8.3 | 33.2 | 17.7 |
| Cocaine | 19.6 | 25.3 | 20.2 | 14.1 | 22.9 | 9.6 | 8.8 | 12.0 | 12.4 | 12.3 | 18.1 | 15.6 | 11.3 | 11.8 | 13.2 |
| Crack ${ }^{\text {b }}$ | 26.2 | 31.1 | 15.3 | 16.4 | 16.8 | 6.3 | 8.3 | 17.4 | 19.5 | 16.0 | 13.5 | 7.1 | 10.9 | 12.1 | 13.7 |
| Other Cocaine | 18.5 | 24.3 | 23.2 | 14.7 | 24.1 | 15.5 | 13.9 | 14.6 | 17.1 | 13.1 | 22.5 | 14.9 | 11.7 | 11.0 | 15.6 |
| Heroin | $\dagger$ |
| With a needle | - | - | - | - | - | $\dagger$ |
| Without a needle | - | - | - | - | - | $\dagger$ | + | $\dagger$ | $\dagger$ |
| Other Narcotics ${ }^{\text {c }}$ | 15.9 | 16.1 | 16.8 | 16.7 | 16.8 | 12.6 | 11.5 | 10.1 | 12.4 | 12.2 | 10.8 | $9.7 \pm$ | 8.3 | 9.2 | 8.2 |
| Amphetamines | 18.1 | 17.2 | 19.8 | 13.5 | 13.8 | 11.9 | 10.2 | 10.8 | 15.0 | 12.7 | 11.2 | 7.7 | 10.0 | 8.9 | 12.9 |
| Methamphetamine | - | - | - | - | - | - | - | - | - | 12.4 | 22.8 | 19.2 | 23.9 | 29.1 | 13.5 |
| Crystal Meth. (Ice) | $\dagger$ | $11.2^{\text {d }}$ | $\dagger$ | $23.1{ }^{\text {d }}$ |
| Sedatives (Barbiturates) | 19.8 | 19.7 | 23.4 | 11.0 | 14.9 | 10.9 | 8.3 | 11.1 | 12.5 | 10.7 | 7.0 | 5.6 | 5.7 | 6.9 | 8.5 |
| Sedatives, Adjusted | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Methaqualone | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Tranquilizers ${ }^{\text {e }}$ | 19.3 | 13.1 | 21.0 | 6.7 | 13.8 | 6.2 | 6.9 | 13.9 | 13.6 | 9.9 | 5.3才 | 8.1 | 5.8 | 11.2 | 7.9 |
| Rohypnol | - | - | - | - | - | - | $\dagger$ | - | - |
| Alcohol ${ }^{\text {f }}$ | 1.9 | 1.9 | 2.3才 | 2.5 | 2.1 | 2.0 | 1.6 | 1.9 | 1.9 | 1.7 | 1.7 | 1.3 | 1.9 | 1.5 | 1.3 |
| Been Drunk | - | 3.3 | 4.1 | 4.6 | 3.3 | 2.8 | 2.1 | 3.6 | 2.8 | 1.8 | 2.6 | 2.3 | 2.0 | 2.9 | 2.1 |
| Steroids | $\dagger$ | t | † | $\dagger$ | $\dagger$ | $\dagger$ |

(Table continued on next page)

TABLE 5-7b (cont'd)

## Trends in Noncontinuation Rates among Twelfth Graders

 Who Used Drug Ten or More Times in LifetimeNOTES: ' - ' indic ates data not available.
' $\dagger$ ' indic ates that the cell entry was omitted because it was based on fewer than 50 seniors who used 10 ormore times. All other cells are based on more than 50 cases.
' $\ddagger$ ' indic ates some change in the question. See relevant footnote for that drug.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ In 2001 the question text waschanged in half of the questionnaire forms. "Other psychedelics" was changed to "other hallucinogens," and "shrooms" was added to the list of examples. The 2001 data are based on the changed forms only. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms.
${ }^{\mathrm{b}}$ Based on 85 cases in 1987, 54 cases in 1988, and 56 cases in 1989. Crack was included in all six questionnaire forms beginning in 1990.
${ }^{c}$ In 2002 the question text was changed in half of the questionnaire forms. In the list of examples of narcoticsother than heroin, Talwin, laudanum, and paregoric were replaced with Vicodin, OxyContin, and Percocet. The 2002 data are based on the changed formsonly. In 2003, the remaining forms were changed to the new wording. Beginning in 2003, the data are based on all forms.
${ }^{d}$ Based on 55 cases in 2002 and 56 cases in 2004.
${ }^{e}$ In 2001, for the tranquilizer list of examples, Miltown was replaced with Xanax in half of the questionnaire forms. The 2001 data are based on the changed forms only. In 2002 the remaining formswere changed. Beginning in 2002, the data are based on all forms.
${ }^{\text {In }} 1993$, the question text waschanged slightly in half of the questionnaire forms to indicate that a "drink" meant "more than a few sips." The 1993 data are based on the changed formsonly. In 1994 the remaining forms were changed to the new wording. Beginning in 1994, the data are based on all forms.

FIGURE 5-1
Trends in Lifetime Prevalence of an Illicit Drug Use Index for Twelfth Graders


NOTES: Use of "any illicit drugs" includes any use of marijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use which is not under a doctor's orders of other opiates, stimulants, barbiturates, methaqualone (excluded since 1990), or tranquilizers.

Beginning in 1982, the question about stimulant use (i.e., amphetamines) was revised to get respondents to exclude the inappropriate reporting of nonprescription stimulants. The prevalence rate dropped slightly as a result of this methodological change.

Beginning in 2001, revised sets of questions on other hallucinogen and tranquilizer use were introduced. Data for "any illicit drug other than marijuana" are affected by these changes. From 2001 on, data points are based on revised questions.

FIGURE 5-2
Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders


NOTES: Use of "any illicit drugs" includes any use of marijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use which is not under a doctor's orders of other opiates, stimulants, barbiturates, methaqualone (excluded since 1990), or tranquilizers.

Beginning in 1982, the question about stimulant use (i.e., amphetamines) was revised to get respondents to exclude the inappropriate reporting of nonprescription stimulants. The prevalence rate dropped slightly as a result of this methodological change.

Beginning in 2001, revised sets of questions on other hallucinogen and tranquilizer use were introduced. Data for "any illicit drug other than marijuana" are affected by these changes. From 2001 on, data points are based on revised questions.

FIGURE 5-3
Trends in Thirty-Day Prevalence of an Illicit Drug Use Index for Twelfth Graders


NOTES: Use of "any illicit drugs" includes any use of marijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use which is not under a doctor's orders of other opiates, stimulants, barbiturates, methaqualone (excluded since 1990), or tranquilizers.

Beginning in 1982, the question about stimulant use (i.e., amphetamines) was revised to get respondents to exclude the inappropriate reporting of nonprescription stimulants. The prevalence rate dropped slightly as a result of this methodological change.

Beginning in 2001, revised sets of questions on other hallucinogen and tranquilizer use were introduced. Data for "any illicit drug other than marijuana" are affected by these changes. From 2001 on, data points are based on revised questions.

## FIGURE 5-4a

Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders

*The dotted lines connect percentages that result if nonprescription stimulants are excluded.

FIGURE 5-4b
Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders

*Eighth and tenth graders are not asked about nitrite use.
**Adjusted for underreporting of amyl and butyl nitrites.
***Beginning in 2001, a revised set of questions on tranquilizer use was introduced. From 2001 on, data points are based on the revised question.

FIGURE 5-4c
Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders



*Eighth and tenth graders are not asked about sedative, barbiturate, and methaqualone use.
**Beginning in 2004, a revised set of questions on barbiturate use was introduced. From 2004 on, data points are based on the revised question

FIGURE 5-4d
Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders

*Eighth and tenth graders are not asked about PCP use.
**In 2001, a revised set of questions on other hallucinogen use was introduced. Data for hallucinogens were affected by these changes. From 2001 on, data points are based on the revised questions.

FIGURE 5-4e
Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders


FIGURE 5-4f
Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders




FIGURE 5-4g
Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders


*Eighth and tenth graders are not asked about ice use.
**Eighth and tenth graders are not asked about use of narcotics other than heroin. In 2002, a revised set of questions on other narcotic use was introduced. From 2002 on, data points are based on the revised question.

FIGURE 5-4h
Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders


*For 12th graders only, data for Rohypnol for 2001 are not comparable with data for 2002 due to changes in the questionnaire forms.

FIGURE 5-4i
Trends in Annual Prevalence of Various Drugs for Eighth, Tenth, and Twelfth Graders

*In 1993, a revised set of questions on alcohol use was introduced. From 1993 on, data points are based on the revised question.

FIGURE 5-4j
Trends in Two-Week Prevalence of Heavy Drinking for Eighth, Tenth, and Twelfth Graders


FIGURE 5-4k
Trends in Thirty-Day Prevalence and Thirty-Day Prevalence of Daily Use of Cigarettes for Eighth, Tenth, and Twelfth Graders


FIGURE 5-4l

## Trends in Thirty-Day Prevalence and Thirty-Day Prevalence of Daily Use of Smokeless Tobacco for Eighth, Tenth, and Twelfth Graders


*Twelfth graders: Smokeless tobacco data not available in 1990 or 1991.

FIGURE 5-4m
Trends in Thirty-Day Prevalence of Daily Use of Marijuana for Eighth, Tenth, and Twelfth Graders


## FIGURE 5-4n

Trends in Annual Prevalence of Steroids for Eighth, Tenth, and Twelfth Graders


FIGURE 5-5
Trends in Thirty-Day Prevalence of Daily Use of Marijuana, Alcohol, and Cigarettes for Twelfth Graders
by Total and by Gender


NOTE: Daily use for alcohol and marijuana is defined as use on 20 or more occasions in the past 30 days. Daily
use of cigarettes is defined as smoking one or more cigarettes per day in the past 30 days.
*In 1993, a revised set of questions on alcohol use was introduced. From 1993 on, data points are based on the revised question.

## FIGURE 5-6a

Trends in Two-Week Prevalence of Heavy Drinking Among Twelfth Graders by Gender


FIGURE 5-6b
Trends in Annual Prevalence of Steroid Use Among Twelfth Graders by Gender


FIGURE 5-7
Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders
by Gender

*Beginning in 2001, revised sets of questions on other hallucinogen and tranquilizer use were introduced. Data for "any illicit drug other than marijuana" are affected by these changes. From 2001 on, data points are based on the revised questions.

FIGURE 5-8
Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders
by College Plans

*Beginning in 2001, revised sets of questions on other hallucinogen and tranquilizer use were introduced. Data for "any illicit drug other than marijuana" are affected by these changes. From 2001 on, data points are based on the revised questions.

FIGURE 5-9
Trends in Thirty-Day Prevalence of Cigarette Use for Eighth, Tenth, and Twelfth Graders
by College Plans




FIGURE 5-10a
Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders
by Region of the Country

*Beginning in 2001, revised sets of questions on other hallucinogen and tranquilizer use were introduced. Data for "any illicit drug other than marijuana" are affected by these changes. From 2001 on, data points are based on the revised questions.

## FIGURE 5-10b

Trends in Lifetime Prevalence of Cocaine Use for Twelfth Graders
by Region of the Country


FIGURE 5-10c
Trends in Thirty-Day Prevalence of Cigarette Use for Twelfth Graders
by Region of the Country


FIGURE 5-11a
Trends in Annual Prevalence of an Illicit Drug Use Index for Twelfth Graders
by Population Density

*Beginning in 2001, revised sets of questions on other hallucinogen and tranquilizer use were introduced. Data for "any illicit drug other than marijuana" are affected by these changes. From 2001 on, data points are based on the revised questions.

FIGURE 5-11b
Trends in Annual Prevalence of Alcohol, Marijuana, and Cocaine Use for Twelfth Graders
by Population Density

*Beginning in 1993, a revised set of questions on alcohol use was introduced. From 1993 on, data points are based on the revised questions. See text for details.

FIGURE 5-11c
Trends in Thirty-Day Prevalence of Cigarettes and Smokeless Tobacco, and Annual Prevalence of MDMA Use for Twelfth Graders
by Population Density

*Question was not asked in 1990 or 1991.

FIGURE 5-12a
Marijuana: Trends in Annual Prevalence by Average Education of Parents for Twelfth Graders


FIGURE 5-12b
Cocaine: Trends in Annual Prevalence by Average Education of Parents for Twelfth Graders


FIGURE 5-12c
LSD: Trends in Annual Prevalence by Average Education of Parents for Twelfth Graders


FIGURE 5-12d
Amphetamines: Trends in Annual Prevalence by Average Education of Parents for Twelfth Graders


NOTE: Beginning in 1982, the question about stimulant use (i.e., amphetamines) was revised to get respondents to exclude the inappropriate reporting of nonprescription stimulants. The prevalence rate dropped slightly as a result of this methodological change.

FIGURE 5-12e
Heavy Drinking: Trends in Two-Week Prevalence of 5 or More Drinks in a Row by Average Education of Parents for Twelfth Graders


FIGURE 5-12f
Cigarettes: Trends in Daily Prevalence by Average Education of Parents for Twelfth Graders


FIGURE 5-13a
Trends in Annual Prevalence of Marijuana and Cocaine Use for Twelfth Graders
by Race/Ethnicity
(Two-year moving average*)

*Each point plotted here is the mean of the specified year and the previous year.

FIGURE 5-13b
Trends in Prevalence of 5 or More Drinks in a Row in the Past 2 Weeks and Daily Use of Cigarettes for Twelfth Graders by Race/Ethnicity
(Two-year moving average*)



[^46]FIGURE 5-13c
Trends in Annual Prevalence of Inhalant and LSD Use for Twelfth Graders
by Race/Ethnicity
(Two-year moving average*)


*Each point plotted here is the mean of the specified year and the previous year.

## Chapter 6

## INITIATION RATES AND TRENDS IN INITIATION RATES AT LOWER GRADE LEVELS

Students participating in the Monitoring the Future study are asked at what grade (if ever) they first used each of the drugs under study. Thus it is possible to show for all drugs, both licit and illicit, the grade of initiation, which translates roughly into the age of initiation. Knowing the age at which young people begin to use various drugs helps us better understand the etiology of substance use and provides a guide to the timing and nature of various interventions (e.g., media campaigns or in-school curricula) in the school, the home, and the larger society. Any such interventions are likely to be considerably less effective in preventing drug use if administered after the ages of peak initiation. They also may be less effective if they substantially precede this decision-making period. We know that users' ages of peak initiation vary according to drug and tend to progress from drugs perceived as the least risky, deviant, or illegal toward those that are more so.

Age of initiation data exist for high school seniors since 1975. The results reported in this series of monographs provide a retrospective view of trends in lifetime prevalence of use at earlier grade levels. Because these trends span a much longer time period than the study itself, we continue to include here the series of figures based on seniors' responses, even though we now measure drug usage rates directly from 8th and 10th graders. We also have included retrospective figures for 8th graders’ reported grade of first use.

One would not necessarily expect a particular year's 8th, 10th, and 12th graders to give the same retrospective prevalence rate for a drug, even for a given grade level (e.g., 6th grade), because the three groups differ in a number of ways:

- The lower grades contain the eventual school dropouts, while 12th grade does not. The lower grades also have lower absentee rates. For any given year, both factors should cause the prevalence-of-use rates derived directly from 8th graders to be higher for a given calendar year than the retrospective prevalence rates for 8th grade derived from the same cohort of young people who are still students in 10th grade or 12th grade.
- Because each class cohort was in 8th grade in a different year, any broad secular (historical) trend in the use of a drug could contribute to differences in respondents' reports of their experiences when they were in 8th grade.
- Because the 8th, 10th, and 12th graders are in three different class cohorts, any lasting differences among cohorts ("cohort effects") could contribute to a difference at any grade level, including 8th grade.

Two types of method artifacts could also explain observed differences in the retrospective reports of use by 8th, 10th, and 12th graders:

- Memory errors are more likely to occur for the older respondents. They may forget that an event ever occurred (although this may be unlikely for use of drugs) or they may not accurately remember when an event occurred. For example, an event may be remembered as having occurred more recently than it actually did—a kind of "forward telescoping" of the recalled timing of events. ${ }^{63}$
- The definition of the eligible "event" may change as a respondent gets older. Thus, an older student may be less likely to include an occasion of taking a sip from someone's beer as an alcohol use event, or an older student may be more likely to exclude appropriately an over-the-counter stimulant when asked about amphetamine use events. While we attempt to ask the questions as clearly as possible, some of these drug definitions are fairly subtle and are likely to be more difficult for the younger respondents. Indeed, we have omitted from this report 8th and 10th graders' data on their use of barbiturates and narcotics other than heroin precisely because we judged them to contain erroneous information. ${ }^{64}$


## INCIDENCE OF USE BY GRADE LEVEL

Tables 6-1 through 6-3 provide retrospective initiation of the use of various drugs as reported by students surveyed in 8th, 10th, and 12th grades, respectively. Obviously, the older students have a larger age span over which they can report initiation. Table 6-4 combines the retrospective initiation rates from all three sets of respondents in order to facilitate a comparison of reported initiation rates by particular grade levels.

The set of questions from which the data are derived have a common stem: "When (if ever) did you FIRST do each of the following things? Don't count anything you took because a doctor told you to." The first event is "smoke your first cigarette," followed by "smoke cigarettes on a daily basis," followed by "try an alcoholic beverage-more than just a few sips," etc. The answer alternatives are stated in terms of the grade level at which first use occurred.

- Eighth-, 10th-, and 12th-grade respondents all retrospectively reported very low usage rates by the end of 6th grade for $\operatorname{LSD}$, hallucinogens other than LSD, crack cocaine, cocaine powder, heroin, and steroids (all lower than 1\%) and for hallucinogens, cocaine, and tranquilizers (all less than 1.5\%). Any use of amphetamines by 6th grade was reported by less than $2.5 \%$.

[^47]- Among the 8th-grade respondents in 2004, 5.2\% of them—or about 1 in every 19 —said they had tried marijuana by the end of 6th grade. The older respondents give lower retrospective estimates of their marijuana use by 6th grade: $4.3 \%$ among 10th-grade respondents and $2.6 \%$ among 12th-grade respondents.
- In general, the legal drugs (alcohol and tobacco) are the most likely to have been initiated at an early age, with inhalants and marijuana likely to come next.
- Cigarette smoking tends to be initiated particularly early. Based on the data from current 8th graders (Table 6-1), their peak years for initiation of cigarette smoking appear to have been in the 6th and 7th grades (14\%)-or between ages 11 and 13-but a considerable number initiated smoking even earlier. In fact, $11 \%$ of the 2004 8th-grade respondents reported having had their first cigarette by 5th grade. Based on the data from 12th graders, their daily smoking was initiated primarily in grades 7 through 11, and then the rate of initiation dropped off in grade 12 (see Table 6-3).

Because educational attainment is very highly correlated with smoking, the differential inclusion of eventual dropouts could account for much of the difference between 6thgrade smoking rates derived in 2004 from 8th graders (17\%) and those derived from 12th graders (13\%). In addition, teen smoking rates were dropping substantially in the interval between 1997, when today's 12th graders were in 5th grade, and 2001, when today’s 8th graders were in 5th grade.

- Smokeless tobacco use also tends to be initiated quite early, as Tables 6-1 through 6-3 illustrate, with grades 7 through 10 tending to show the highest rates of initiation. Of the 8th-grade respondents in 2004, some $5.8 \%$ reported that they had tried smokeless tobacco by 6th grade, and $11.0 \%$ by 8 th grade. Among boys, of course, these rates are substantially higher.
- Inhalant use tends to occur early, with peak initiation rates in grades 6 through 9. In fact, among 8th-grade respondents in 2004, 6.4\% had already tried inhalants by the end of the 5th grade.

Of the illicit drugs, only inhalants show very large differences in the incidence rates reported by the three grade levels responding. While only $1.8 \%$ of the 12 th graders in 2004 reported using inhalants by the end of 6th grade, a much higher $10.2 \%$ of the 2004 8th graders reported such use by 6th grade. Although any of the explanations offered earlier might explain these differences, we believe that early inhalant use may be particularly associated with dropping out. In addition, use of non-nitrite inhalants such as glues, aerosols, and butane had been increasing for some time (up to 1995, and again in 2003), and these inhalants tend to be used at younger ages.

- For alcohol, we are inclined to rely on the data from seniors, which suggest that the peak years of initiation are 7th through 11th grades. While the first occasion of drunkenness is most likely to occur in grades 7 through 11, $5.6 \%$ of the 2004 8th graders reported first
having been drunk by the end of 6th grade, and 19.9\% report having been drunk by the end of 8th grade.

Alcohol use by the end of 6th grade is reported by $20.9 \%$ of the 2004 8th graders but by only $7.7 \%$ of the 2004 12th graders. Several factors may contribute to this difference. One is that eventual dropouts undoubtedly are more likely than average to drink at an early age. Another is related to the issue of what is meant by "first use." The questions for all grades refer specifically to the first use of "an alcoholic beverage-more than just a few sips," but it is likely that the older students (12th graders) are more inclined to report only use that is not adult-approved and not to count having less than a glass with parents or for religious purposes. Younger students (8th graders) are less likely to have had a full drink or more and may be more likely to report first use of a limited amount. Thus, the 8th-grade data probably exaggerate the phenomenon of having more than a few sips, whereas the 12th-grade data may understate it. Note that the data from the three groups of respondents tend to converge as we ask about lifetime alcohol use by the time they reach higher grade levels.

- The illicit drugs other than marijuana generally do not reach peak initiation rates until the high school years (grades 9 through 11 for most drugs, but 10 through 12 for cocaine powder and crack), consistent with the progression model noted earlier.

Of all the 12th-grade respondents who said they had tried a drug by the end of 12th grade, the proportion of users saying that they had initiated the use of that drug by grade 9 is presented here. This listing gives a good measure of the order of age initiation (with some exceptions): ${ }^{65}$

```
cigarettes (71\%)
inhalants (65\%)
heroin (60\%) \({ }^{66}\)
alcohol (56\%)
marijuana (56\%)
smokeless tobacco (56\%)
nitrite inhalants (54\%)
methaqualone (54\%)
LSD (48\%)
been drunk (47\%)
daily cigarette smoking (47\%)
sedatives (barbiturates) (46\%)
hallucinogens (40\%)
tranquilizers (37\%)
narcotics other than heroin (36\%)
amphetamines (35\%)
hallucinogens other than LSD (34\%)
```

[^48]```
PCP (31%)
crack (31%)
cocaine (27%)
steroids (26%)
other forms of cocaine (26%)
```


## TRENDS IN LIFETIME PREVALENCE AT EARLIER GRADE LEVELS

Using the retrospective data provided by members of each senior class concerning their grade of first use, it has been possible to reconstruct lifetime prevalence-of-use trend curves for lower grade levels over many earlier years. Obviously, data from school dropouts are not included in any of the curves based on 12th graders. Figures 6-1 through 6-25 present the reconstructed lifetime prevalence curves for earlier grade levels for most drugs. When comparable data are available, starting with Figure 6-4, there is also a panel showing retrospective prevalence curves based on data gathered from 8th graders, who have been included in the study since 1991. These curves should include data from nearly all the eventual dropouts.

When comparing the upper figures, based on retrospective data provided by 12th-grade respondents, with the lower figures, based on retrospective data provided by 8th-grade respondents, the reader should keep in mind that they are often plotted on different scales. We used different scales to improve the clarity of each figure, although the different scales somewhat complicate the task of comparing across the figures.

We have chosen to speak here about changes in lifetime prevalence attained at the various grade levels, rather than in terms of "average age of initiation." Average age of initiation (age at which a drug is first used) is another way to talk about the type of data presented in this chapter, but we think that it can be misleading at times. For example, the average age of initiation could be lower in more recent classes because fewer people are initiating use at later ages than were doing so previously (perhaps due to a downward secular trend at that time); and yet there may be no increase in the proportion of them starting at younger ages at all. Or the average age of initiation could be rising because more people are initiating at older ages (perhaps because of a recent upward secular trend), again with no necessary change in the proportion starting at young ages. We suspect that most readers, when they hear that the average age of initiation has gone down, conceptualize this fact as reflecting some shift in the propensity to use at younger ages, independent of any secular trends, and therein lies the potential confusion. For this reason, we have chosen to talk in terms of trends in lifetime prevalence attained by each class of students as they reach different grade levels.

- Based on the retrospective data provided by successive 12th-grade classes, Figure 6-1 shows the trends at each grade level for lifetime use of any illicit drug. It shows that all grade levels had a continuous increase in illicit drug involvement through the 1970s. Fortunately, the increase in use below 7th grade was quite small; the retrospective rate in 1969 (based on the class of 1975) for 6th grade or below was $1.1 \%$. That figure increased modestly through 1978, leveled for a time, and then declined in the late 1980s, from $3.5 \%$ in 1986 to $2.1 \%$ in 1989. The lines for the other grade levels all show much steeper
upward slopes, followed by earlier and longer declines. For example, about 37\% of 10th graders in 1973 had initiated the use of some illicit drug compared with 52\% by 1980. This statistic fell to $28 \%$ by 1991 and then leveled. It increased from 1993 to 1995, before leveling by 1996.
- Most of the early increase in any illicit drug use was due to increasing proportions using marijuana. We know this from the results in Figure 6-2, which shows trends for each grade level in the proportion having used any illicit drug other than marijuana in their lifetime. Compared with Figure 6-4 for marijuana use, these trend lines are relatively flat throughout the 1970s and, if anything, begin to taper off among 9th and 10th graders between 1975 and 1977. The biggest cause of increases in these curves from 1978 to 1981 was the rise in reports of amphetamine use. As noted earlier, we suspect that at least some of this rise in reports was artifact due to the improper inclusion by some respondents of non-prescription stimulants. If amphetamine use is removed from the calculations, even greater stability is shown in the proportion using illicit drugs other than marijuana or amphetamines (see Figure 6-3).

Similarly, much of the increase in illicit drug use in the early 1990s was due to increases in marijuana use. The inclines in the lines are far sharper in Figure 6-1 than in Figure 6-2.

- As the top panel of Figure 6-4 shows, throughout the 1970s lifetime prevalence of marijuana use rose steadily at all grade levels down through the 7th and 8th grades. Beginning in 1980, lifetime prevalence of marijuana use began to decline in grades 9 through 12. Declines in grades 7 and 8 began a year later, in 1981.

There was also some small increase in marijuana use during the 1970s at the elementary school level, below 7th grade. Based on the retrospective data from 12th graders, we know that by 6th grade or lower their use rose gradually from $0.6 \%$ for the class of 1975 (who were 6th graders in 1968-1969) to a peak of $4.3 \%$ for the class of 1984 (who were 6th graders in 1977-1978). Use began dropping thereafter, and for the 12th-grade class of 1999 (who were 6th graders in 1992-1993) it was down to $1.1 \%$. (The most up-to-date data from the 2004 8th graders, which are slightly incomparable due to the inclusion of eventual dropouts among 8th graders, yield a prevalence estimate of $5.2 \%$ for these students when they were 6th graders in 2002.) The retrospective data from 8th graders clearly indicate that marijuana use among 6th graders increased a little after 1991 but then leveled by the mid-1990s.

Both the top and bottom panels of Figure 6-4 show the accelerating increase in marijuana lifetime prevalence of use that began after 1991 in grades 6 through 11 and after 1992 in grade 12. The recent upturn in the index of any illicit drug use (Figure 6-1) was due to the sharp increase in marijuana use (Figure 6-4), although the proportions using any illicit drug other than marijuana (Figure 6-2) rose modestly. The data from 8th graders suggest that the increase in marijuana use leveled off a little earlier in the lower grades (by 1995 in grade 6, by 1996 in grade 7) in what appears to be a cohort effect (i.e., where specific cohorts had lower use rates in 8th grade and these lower rates stayed with them as they progressed through high school).

- Questions about grade of first use for inhalants (unadjusted for nitrites) were introduced in 1978. The retrospective trend curves (top panel of Figure 6-5) suggest that during the mid-1970s, experience with inhalants decreased slightly for most grade levels and then began to rise. Initiation of use rose almost continually in the upper grade levels, peaking with the classes of 1989 and 1990. The 12th-grade class of 1992 showed lower rates of initiation than its two predecessor classes at all grade levels. The classes of 1993 and 1994 had upward trends again, followed by a dip roughly in the classes of 1995 through 2002. The lifetime prevalence rates at the different grade levels remained fairly flat in the classes of 2003 and 2004. Among the 8th-grade respondents (lower panel of Figure 6-5), an upward trend began in 1992 for grades 7 and 8 before leveling around 1996. This was followed by a gradual decline until the 8th-grade class of 2003, which showed a slight increase in inhalant initiation at all grade levels; further increases occurred in the class of 2004. (As noted previously, the Partnership for a Drug-Free America initiated its antiinhalant media campaign in 1995, quite likely contributing to the decline in use from 1995 through 2002.)
- Retrospective data are available for the nitrite inhalants since 1980 (Figure 6-6). These do not show the long-term increase observed for the overall inhalant category. To the contrary, they show a substantial decline. Many nitrite users fail to include their nitrite use when responding to general questions about inhalant use. However, since nitrite use has dropped to a very low level, respondents' omission of nitrites has had much less effect on the adjusted inhalants statistics (not graphed here) in recent years than it did when nitrite use was much more common.
- Lifetime prevalence of hallucinogen use (unadjusted for under-reporting of PCP) began declining among students at most grade levels in the mid-1970s (see Figure 6-7), and this gradual decline continued through the mid-1980s. Recent years have shown some fluctuations, with an increase in lifetime prevalence between roughly 1992 and 1997. The classes of 1998-2004 showed some decline in their initiation rates during their later years in high school. Eighth graders showed some decline after 1996 in their retrospective data. When the term "shrooms" (a commonly used term for hallucinogenic mushrooms) was added to the list of examples for "other hallucinogens" in 2001, the absolute level of reported hallucinogen use increased somewhat, but the trend lines continued the decline that was already underway.
- Trend curves for the specific hallucinogen $\operatorname{LSD}$ (Figure 6-8) are similar in shape (though at lower rates, of course) to the ones just discussed. Unlike LSD, the lifetime prevalence rates for hallucinogens other than LSD (Figure 6-9) declined rather sharply from the mid-1970s through the late 1980s-particularly in the upper grades-before leveling. After 1991, use increased through 1997; the 1998 and 1999 classes of 12th graders showed some decline, but a leveling occurred through the class of 2001. As mentioned above, the inclusion of "shrooms" in the example list beginning in 2001 seemed to increase reported use considerably, but the decline resumed in 2002 using the new measure. In the lower grades, the use of other hallucinogens seemed to peak even earlier-in 1996 for the 8th graders.
- There are fewer trend data for $\boldsymbol{P C P}$, since retrospective questions about grade of first use for this drug were not added until 1980. However, some interesting results have emerged. A sharp downturn began around 1979 (see Figure 6-10), and use declined substantially in all grade levels in which there had been appreciable use, until 1987. Through 1993 or 1994 there was little further change in the overall lifetime prevalence rates, which remained very low. A brief period of increase in use then occurred, followed by another leveling and then further decline.
- The initiation of cocaine at various grade levels is displayed in Figure 6-11. For the 12thgrade classes, one clear contrast to the marijuana pattern is that more than half of cocaine initiation takes place in grades 10 through 12 (rather than earlier, as has been the case for marijuana in most years). Further, most of the increase in cocaine experience between 1976 and 1980 occurred in grades 11 and 12, not earlier. After 1980, lifetime prevalence of cocaine generally remained fairly level through 1986, after which it showed a significant decline among 11th and 12th graders. (There seemed to be less of a decline in the lower grades.) Lifetime prevalence-of-use rates leveled briefly after 1992 in the upper grades. But rates began to rise in grades 6, 7, and 8 after 1990 (see lower panel, Figure 611). In the upper grades, lifetime prevalence of use began to rise after 1994 or 1995 but has been declining in recent years, at least until the class of 2004, which shows a slight rise. As seems to be true for a number of drugs, the increase that occurred in the early and mid-1990s suggests a cohort effect for cocaine use, following a long period of what could best be described as secular trends.
- Questions on grade of first use for crack were first asked of the class of 1987. The retrospective data show the lifetime prevalence of crack falling after 1986 at all grade levels in which there was any appreciable use (see Figure 6-12). Rates then leveled but in the mid-1990s began inching up. Rates reported by 8th graders showed a sharper rise in the 7th and 8th grades in the 1990s, beginning after 1992, before leveling in the late 1990s (see lower panel, Figure 6-12). Again, the pattern of change seems to be a cohort effect, with changes first occurring at earlier ages and then echoing in subsequent years up the age spectrum.
- The use of powdered cocaine clearly fell more sharply than did that of crack in the early decline phase (see Figure 6-13), again with the decline occurring mostly in grades 11 and 12. Cocaine powder showed a sharper increase than did crack during the 1990s among 12th graders, before leveling after 1998 and then declining gradually after 1999. In the class of 2004 it leveled or perhaps even increased some. Eighth-grade use also rose sharply in the 1990s, stabilized, and then declined in the more recent classes (until the 8th-grade class of 2003, after which the decline moderated).
- Though somewhat difficult to discern in Figure 6-14, the heroin lifetime prevalence figures for grades 9 through 12 began declining in the mid-1970s, leveled by 1979, and showed no evidence of reversal until the 1990s. After about 1991, lifetime prevalence of use increased at all grade levels above 6th grade. Beginning in 1996 or 1997, however, there was a leveling or decline in all grades for which data are available. Seventh and 8th graders were the first to show the most recent decline.
- The lifetime prevalence of use of narcotics other than heroin remained relatively flat at all grade levels from the mid-1970s through 1990, with the class of 1991 showing the first evidence of a decline when they reached the upper grades (see Figure 6-15). Rates then leveled briefly before showing some increase in the mid-1990s, particularly in the upper grades. The class of 1998 (when they passed through the various grade levels) was the first to show a leveling for this class of drugs, as well as a number of the other drugs. There has been little change in the initiation of this class of drugs in recent years, at least until the class of 2002 began to show a further upturn. (Note that the dotted lines beginning in 2002 indicate that there was a wording change in the question about use of narcotics other than heroin, in which Vicodin and OxyContin were added as examples; the question about grade of first use, which asked about "any narcotic other than heroin" was not changed. This wording change had the effect of shifting self-reported use up some in the upper grades.) The classes of 2003 and 2004 have shown a general upward shift in initiation rates as they passed through all grade levels above 7th grade.
- The lifetime prevalence statistics for amphetamines peaked briefly for grades 9 through 12 during the mid-1970s (see Figure 6-16). However, they showed a sharp rise in the late 1970s at virtually all grade levels. As stated earlier, we believe that some, perhaps most, of this upturn was artifactual in the sense that the inappropriate inclusion of nonprescription amphetamines by the 12th-grade respondents accounted for much of it. However, regardless of the cause, beginning in 1979 a clear upward secular trend was observed across all cohorts and grade levels. The unadjusted data from the class of 1983 gave the first indication of a reversal of this trend. The data from the classes of 1982 through 1992, based on an improved wording of the question, suggest that the use of amphetamines leveled around 1982 and thereafter fell appreciably in grades 9 through 12. The classes of 1993 and 1994 showed an upturn in use in the upper grade levels. Since then the initiation rates of amphetamine use have been a bit "bumpy" but have not risen overall. The recent surveys of 8th and 10th graders show that some upturn also occurred among them after 1992. The lower panel of Figure 6-16 shows an increase in grade 7, as well, which began after 1991 and lasted through 1995 for grade 7 and 1996 for grade 8. Once again, the pattern of change in the 1990s is consistent with a cohort-related change. The 8th graders have shown a gradual decline in initiation for some years, reflected primarily in the 7th- and 8th-grade retrospective lifetime prevalence rates.
- As shown in the figures for the two subclasses of sedatives-barbiturates and methaqualone-their trend stories have been quite different (see Figures 6-17 and 6-18). Lifetime prevalence of barbiturate use fell sharply for the upper grade levels for all classes from 1974 or 1975 until the late 1970s; the lower grade levels showed some increase in the late 1970s (perhaps reflecting the advent of some look-alike, barbituratetype drugs); and in the mid-1980s most grade levels resumed the decline in barbiturate initiation. In the late 1980s there was a leveling of the rates, followed by signs of an upturn by the mid-1990s at all grade levels. This upturn seems to have leveled off with the class of 2003 as they passed through the different grades. A slightly revised question wording was introduced in 2004, making a 2003-to-2004 comparison difficult.
- During the mid-1970s, methaqualone use started to fall off at about the same time as did barbiturate use in nearly all grade levels, but it dropped rather little and then flattened (see Figure 6-18). Between 1978 and 1981, there was a moderate resurgence in use at all grade levels; but after 1982 there was a sharp decline at all grade levels to near zero by the early 1990s. Only a very slight increase in initiation occurred in the mid-1990s, and use has fallen back some since then.
- Lifetime prevalence of tranquilizer use (Figure 6-19) also began to decline at all grade levels in the mid-1970s. It is noteworthy that, as with sedatives, the overall decline in tranquilizer use has been considerably greater in the upper grade levels than in the lower ones. Overall, it would appear that the tranquilizer trend lines have been following a course similar to those of barbiturates. So far, the curves are different only in that tranquilizer use continued a steady decline among 11th and 12th graders after 1977 (at least through the class of 1990), while the barbiturate use decline was interrupted for a while in the early 1980s. Since 1992, there has been a slight increase in lifetime prevalence of tranquilizer use in grades 8 and above, but the classes of 2000 and 2001 reported slightly decreased initiation rates. The retrospective data reported by 8th graders show mostly level lifetime prevalence rates for the different grades since 1996 (except at 8th grade, where there was a gradual increase during the mid-1990s). In 2001, Xanax was added to the list of examples in the question, increasing reported use in all grades that year. Since the class of 2001, there has been little change in use on the modified question among 12th-grade classes, but the data from 8th graders show a slight fall-off in use.
- The curves for lifetime prevalence of alcohol use at grades 11 and 12 (Figure 6-20) are very flat between the early 1970s and late 1980s, reflecting little change in lifetime prevalence of use over more than a decade. Subsequent classes (1989-1993) showed slight declines, which ended with the class of 1993. By way of contrast, in the retrospective data reported by seniors, the lifetime prevalence curves for 7th through 10th grade showed slight upward slopes in the early 1970s and an even sharper upward trend in the mid-1980s. The latter trend indicates that, compared to the earlier cohorts (prior to the class of 1978), those later classes initiated use at slightly earlier ages on average. Thus, while $27 \%$ of the class of 1975 had first used alcohol in 8th grade or earlier, $36 \%$ in the class of 1993 had done so. Females accounted for most of the change; 42\% of females in the class of 1975 had first used alcohol prior to 10th grade, compared to $53 \%$ in the class of 1993. Because all of the results from the class of 1994 onward are based on the revised questions about alcohol use, these data are not strictly comparable to the earlier trend data. The revised data from the classes of 1993 through 2004, which qualify the alcohol use question with the phrase "more than just a few sips," show a very gradual decline. The lower panel of Figure 6-20, based on data from 8th-grade respondents, also shows a gradual, steady decline in lifetime prevalence of use from the late 1980s through 2004 in grades 4 through 8.

Beginning in 1986, we added questions asking 12th graders when did they first "drink enough to feel drunk or very high." Figure 6-21, which gives trends in the lifetime prevalence of having been drunk, shows fairly similar curves to those for lifetime prevalence of alcohol use. The classes of 1990 through 1993 showed modest declines in
this behavior at all grade levels above 6th grade for a few years, before leveling. Based on the answers from 8th graders, there has been some gradual decline in lifetime incidence of drunkenness in the lower grades throughout most of the 1990s and into the early 2000s, consistent with their gradually increasing rate of abstention mentioned previously.

- Questions asking seniors "when did you smoke your first cigarette?" were added in 1986. (A question about daily smoking was included from the beginning of the study in 1975.) Figure 6-22 shows that for the class of 1986 the rate of cigarette smoking initiation was quite high by grade 6 (i.e., in 1980); over $20 \%$ had used cigarettes by 6th grade. ${ }^{67}$ In subsequent classes, this measure fell gradually; $13 \%$ of the class of 2004 reported having initiated cigarette smoking by the end of 6th grade, that is, by 1998.

Substantial additional initiation occurs in grades 7 and 8, as can be seen in the wide gap between the bottom two lines in the upper panel of Figure 6-22. Over 40\% of the class of 1986 had smoked a cigarette by the end of 8th grade; 29\% of the class of 2004 had initiated use by then (i.e., by 2000). Initiation rates declined very gradually in the classes of 1986 through 1992 when students were at each grade level, from grade 6 onward. The classes of 1994 through 1999 showed some increase in initiation rates when these students were in grades 10 through 12, but only the classes of 1997 through 1999 reflected some increase in the lower grades. This altered pattern is suggestive of a change in the underlying phenomenon, from the traditional cohort effect for cigarettes to some secular trending, as well. The data gathered from 8th-grade respondents also show some increase in lifetime prevalence from when they were first surveyed in 1991, through 1996; again, this increase was not observable when they were at lower grade levels-in fact, the lower grades showed some falloff in initiation rates in the late 1980s and early 1990s.

The important decline in teen smoking that began in the mid-1990s and continues today can be seen in the lower panel, based on responses from 8th-grade students. This chart also shows evidence of a secular trend, in that the sharp decline since 1996 at 8th grade is not much reflected in the data from these students when they were in earlier grades until the 8th-grade class of 2002. The decline in initiation of smoking has been decelerating in the 8th-grade class over the past two years.

- Figure 6-23 presents the other smoking measure contained in the study, one included since the study's inception in 1975: lifetime prevalence of cigarette smoking "on a daily basis." It shows that lifetime initiation rates for daily smoking began to peak at the lower grade levels in the early to mid-1970s. This peaking did not become apparent among high school seniors until some years later. In essence, these changes largely reflect cohort effects-patterns of change that emerge consistently across different class cohorts as they progress in age. Differences between cohorts in smoking at early ages tend to endure in later life, most likely due to the highly addictive nature of nicotine.

[^49]The classes of 1982 and 1983 showed some leveling of the previous decline in daily smoking, but the classes of 1984 through 1986 resumed the decline while the students were in earlier grade levels. The data from the classes of 1987 and 1988 showed another pause in the decline. As we have said, from the class of 1975 through the class of 1992, the predominant pattern of change observed was that of a cohort effect. ${ }^{68}$ Each "bulge" or "dip" in the prevalence-of-use rate at a lower grade was echoed at higher grades as those same class cohorts passed through the higher grades. After 1992, however, a somewhat different pattern emerged-one more akin to a secular trend-in which all age groups moved in parallel during the same historical period. Figure 6-23 shows that all grade levels above 6th grade displayed a sharp increase in initiation rates from 1991 or 1992 through 1995 or 1996. The lower grades seem to be exhibiting the resumption of a cohort-effect pattern starting with the 8th-grade class of 1997. It should be noted that the presence of a secular trend effect does not necessarily negate the presence of a cohort effect; the two can co-occur. The class of 1998 was the first to show a leveling, when they were in the lower grades, and then a decline by the time they reached the upper grades. In the past few years, there appears to be somewhat of a downward secular trend observed in all grades, though the 8th-grade data from 2003 and 2004 suggest that a sharp deceleration of this downward trend is occurring. Needless to say, this deceleration is an unfortunate development given the great importance of curbing this behavior for the future health and longevity of these cohorts of young people.

- Questions about smokeless tobacco use (Figure 6-24) were first asked of seniors in the class of 1986. These prevalence questions were dropped from the 1990 and 1991 surveys of 12th graders but reinstated in 1992. The 1986-1989 survey questions were located near the end of one questionnaire form; the questions in 1992 were located in a different form and placed early in the form. As a result of the changed placement of the questions, the estimates based on the earlier version and the later version are not strictly comparable; therefore, it may be misleading to connect the two trend lines. Both sets of trend lines, however, clearly demonstrate that smokeless tobacco use also shows strong evidence of enduring cohort differences-or "cohort effects."

There appears to have been a rise in smokeless tobacco use in classes prior to the class of 1986, but the trend reversed in the 12th-grade classes following 1986 (see Figure 6-24). The decline seemed to continue in the classes of 1992 through 2004 (and quite possibly it was also present in the two missing classes-1990 and 1991-although we cannot say for certain). The lower panel in Figure 6-24 generally shows a pattern of continuing decline at the lower grade levels in more recent years, although there was a pause in the decline (from 1993 to 1996) just as there was among cohorts of 12th graders in those years. The data from 8th graders also show a pause in the longer-term decline from 1993 through 1996, suggesting that an upward secular trend may have been occurring during that period, parallel to the one for cigarettes. In the 12th-grade cohorts of 2001 through 2004, a sharp decline in the initiation of smokeless tobacco is observed in all grades as these

[^50]students progressed through the grades. As with cigarettes, this decline has decelerated sharply in the last two cohorts surveyed at each grade level.

- Information on grade of first use for steroids was not gathered prior to 1989; therefore, more limited trend information is available (Figure 6-25). However, the data do show some of the pattern characteristics of cohort change predominating over secular trends. There was some decline in initiation between the classes of 1989 and 1991, followed by a leveling off. ${ }^{69}$ Only a small amount of variation in initiation occurred among the 8th and 10th grades. The data from both 8th- and 12th-grade students, however, show some increase in use in the late 1990s-an increase that looks more like a secular trend than a cohort effect. It can be seen in the data from 8th graders that there has been some decline in use occurring across the last four cohorts, at least when they were in grades 7 and 8 . At 12th grade, the 2004 cohort shows a decline in all grades (except in 12th grade).

[^51]
## TABLE 6-1

## Incidence of Use of Various Drugs by Grade <br> Eighth Graders, 2004

(Entries are percentages)

Grade in which drug was first used:

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4th (or below) | 0.9 | 3.9 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.3 | 6.3 | 1.1 | 5.9 | 0.3 |
| 5th | 1.1 | 2.5 | 0.1 | 0.1 | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 | 0.6 | 0.2 | 5.4 | 1.4 | 4.8 | 0.6 |
| 6th | 3.2 | 3.8 | 0.5 | 0.4 | 0.4 | 0.6 | 0.4 | 0.4 | 0.2 | 1.3 | 0.4 | 9.2 | 3.2 | 6.4 | 1.3 |
| 2.8 | 2.0 | 0.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7th | 5.8 | 4.5 | 1.0 | 0.5 | 1.0 | 1.0 | 0.7 | 0.9 | 0.5 | 2.5 | 1.6 | 13.8 | 6.8 | 7.2 | 2.1 |
| 8th | 5.3 | 2.7 | 1.4 | 0.7 | 1.3 | 1.3 | 0.9 | 1.0 | 0.6 | 2.8 | 1.5 | 9.2 | 7.5 | 3.6 | 1.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.3 | 0.6 |
| Never used | 83.7 | 82.7 | 96.5 | 98.2 | 97.0 | 96.6 | 97.6 | 97.4 | 98.4 | 92.5 | 96.0 | 56.1 | 80.1 | 72.1 | 93.9 |

NOTES: All drugs were asked about in all four forms except for the following: halluc inogens, LSD, halluc inogens other than LSD, heroin, amphetamines, tranquilizers, and smokeless

$$
\text { tobacco, which were asked about in two forms only. The approximate } \mathrm{N} \text { forall forms was } 17,000 .
$$

SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Data based on the percentage of regular smokers (ever).

TABLE 6-2

## Incidence of Use of Various Drugs by Grade <br> Tenth Graders, 2004

(Entries are percentages)

Grade in which
drug was first used:

| 4th (or below) | 0.8 | 1.7 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 4.0 | 0.7 | 5.1 | 0.3 | 1.4 | 0.1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5th | 0.9 | 1.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | 2.7 | 0.8 | 4.0 | 0.3 | 0.6 | 0.0 |
| 6th | 2.6 | 1.4 | 0.3 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.6 | 0.3 | 5.8 | 1.9 | 5.1 | 0.8 | 1.2 | 0.1 |
| 7th | 5.2 | 2.2 | 0.6 | 0.4 | 0.5 | 0.4 | 0.2 | 0.3 | 0.1 | 1.1 | 0.7 | 10.5 | 4.9 | 7.3 | 1.7 | 1.6 | 0.3 |
| 8th | 7.8 | 2.7 | 1.1 | 0.5 | 1.0 | 0.8 | 0.5 | 0.7 | 0.2 | 2.7 | 1.4 | 15.8 | 9.5 | 7.7 | 2.2 | 2.6 | 0.4 |
| 9th | 10.8 | 2.0 | 2.2 | 1.0 | 2.0 | 1.9 | 0.9 | 1.7 | 0.6 | 4.6 | 3.0 | 18.0 | 15.8 | 7.9 | 3.4 | 4.2 | 0.7 |
| 10th | 5.8 | 1.3 | 1.8 | 0.6 | 1.8 | 1.9 | 0.7 | 1.7 | 0.3 | 2.6 | 1.7 | 7.5 | 8.7 | 3.5 | 2.2 | 2.2 | 0.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Never used | 66.1 | 87.6 | 93.6 | 97.2 | 94.2 | 94.6 | 97.4 | 95.2 | 98.5 | 88.1 | 92.7 | 35.8 | 57.7 | 59.3 | 89.2 | 86.2 | 97.6 |

NOTES: All drugs were asked about in all four forms except for the following: halluc inogens, LSD, halluc inogens other than LSD, heroin, amphetamines, tranquilizers, and smokeless tobacco, which were asked about in two forms only. The approximate N forall forms was 16,400.
SOURCE: The Monitoring the Future Study, the University of Mic higan
${ }^{\text {a }}$ Data based on the percentage of regular smokers (ever).

TABLE 6-3

## Incidence of Use of Various Drugs by Grade <br> Twelfth Graders, 2004

(Entries are percentages)


Grade in which drug
was first used:

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6th (or below) | 3.3 | 1.4 | 2.6 | 1.8 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.0 | 0.2 | 0.7 | 0.3 | 0.7 | 0.2 | 0.6 | 7.7 | 2.6 | 12.8 | 1.3 | 2.6 | 0.2 |  |
| 7th-8th |  | 12.5 | 3.8 | 11.3 | 3.3 | 0.2 | 1.5 | 0.8 | 1.0 | 0.2 | 0.7 | 0.4 | 0.6 | 0.3 | 1.5 | 2.4 | 1.6 | 0.3 | 1.2 | 18.5 | 12.2 | 16.0 | 3.5 | 3.9 | 0.2 |
| 9th | 13.1 | 6.4 | 11.7 | 2.0 | 0.3 | 2.2 | 1.3 | 1.8 | 0.2 | 1.3 | 0.6 | 1.3 | 0.4 | 2.6 | 2.5 | 2.3 | 0.2 | 2.1 | 16.9 | 13.8 | 8.9 | 3.9 | 2.8 | 0.5 |  |
| 10th | 9.8 | 6.3 | 8.7 | 1.7 | 0.2 | 2.0 | 0.9 | 2.1 | 0.6 | 1.8 | 1.0 | 1.7 | 0.2 | 3.0 | 4.9 | 2.3 | 0.2 | 2.3 | 15.0 | 13.4 | 6.2 | 3.7 | 2.9 | 0.7 |  |
| 11th | 7.6 | 6.9 | 7.0 | 1.4 | 0.3 | 2.4 | 1.0 | 2.1 | 0.3 | 2.3 | 0.9 | 2.3 | 0.2 | 3.8 | 3.4 | 1.7 | 0.2 | 2.5 | 11.5 | 11.6 | 5.0 | 3.8 | 2.6 | 0.9 |  |
| 12th | 4.8 | 4.0 | 4.4 | 0.6 | 0.1 | 1.4 | 0.5 | 1.4 | 0.2 | 1.7 | 0.8 | 1.4 | 0.2 | 1.8 | 1.5 | 1.2 | 0.1 | 1.8 | 7.2 | 6.7 | 3.8 | 2.3 | 1.9 | 0.9 |  |

$\begin{array}{llllllllllllllllllllllll}\text { Neverused } & 48.9 & 71.3 & 54.3 & 89.1 & 98.7 & 90.3 & 95.4 & 91.3 & 98.4 & 91.9 & 96.1 & 92.7 & 98.5 & 86.5 & 85.0 & 90.1 & 98.7 & 89.4 & 23.2 & 39.7 & 47.2 & 81.6 & 83.3 \\ 96.6\end{array}$
NOTES: Percentages are based on two of the six foms ( $\mathrm{N}=$ approximately 4,900 ) except forcocaine, crack, and cigarettes, forwhich percentages are based on three of the six forms ( $\mathrm{N}=$ = approximately 7,300 ), and inhalants, nitrites, PCP , other forms of cocaine, and steroids, for which percentages are based on one of the six forms ( $\mathrm{N}=$ approximately 2,400 ).
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Unadjusted for known underreporting of certain drugs. See text fordetails.
${ }^{\mathrm{b}}$ Based on the data from the revised question, which attempts to exclude the inappropriate reporting of nonprescription amphetamines.
${ }^{\text {c }}$ Data based on the percentage of regular smokers (ever).
${ }^{d}$ For the 12 th graders, the question about the grade of initiation of use originally asked about initiation in "grade 7 or grade 8 ." In lateryears, the question asked about initiation in each grade separately. In Figures $6-1$ through 6-25, the lines labeled " 8 th grade" contain data for the initiation of use in 7 th and 8 th gradescombined.

TABLE 6-4

## Incidence of Use of Various Drugs: A Comparison of Responses

from Eighth, Tenth, and Twelfth Graders, 2004
(Entries are percentages)

|  |  | $\operatorname{sr}^{2}$ |  | $\begin{gathered} s^{0} e^{0} \\ 50 \\ 5 \end{gathered}$ |  | $\begin{aligned} & c^{e^{s^{C}}} \\ & C^{C^{C^{x}}} \end{aligned}$ |  |  | $\frac{x^{2}}{r^{2}}$ |  | cric |  |  |  | $5$ $c^{\circ}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grade level ofrespondents: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th | 5.2 | 10.2 | 1.0 | 0.6 | 0.8 | 1.0 | 0.8 | 0.7 | 0.5 | 2.2 | 1.0 | 20.9 | 5.6 | 17.1 | 2.3 | 5.8 | 0.7 |
| 10th | 4.3 | 4.2 | 0.6 | 0.4 | 0.5 | 0.4 | 0.3 | 0.3 | 0.3 | 1.0 | 0.5 | 12.4 | 3.4 | 14.3 | 1.4 | 3.2 | 0.3 |
| 12th | 2.6 | 1.8 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.0 | 0.2 | 0.3 | 0.6 | 7.7 | 2.6 | 12.8 | 1.3 | 2.6 | 0.2 |
| Percentage who used by end of 8th grade |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8th | 16.3 | 17.3 | 3.5 | 1.8 | 3.0 | 3.4 | 2.4 | 2.6 | 1.6 | 7.5 | 4.0 | 43.9 | 19.9 | 27.9 | 6.2 | 11.0 | 1.9 |
| 10th | 17.3 | 9.1 | 2.4 | 1.3 | 2.0 | 1.6 | 1.0 | 1.3 | 0.6 | 4.8 | 2.6 | 38.7 | 17.8 | 29.3 | 5.3 | 7.4 | 1.0 |
| 12th | 13.9 | 5.1 | 1.7 | 0.9 | 1.2 | 0.9 | 0.6 | 0.6 | 0.6 | 2.7 | 1.8 | 26.2 | 14.8 | 28.8 | 4.8 | 6.5 | 0.5 |
| Percentage who used by end of 10th grade |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10th | 33.9 | 12.4 | 6.4 | 2.8 | 5.8 | 5.4 | 2.6 | 4.8 | 1.5 | 11.9 | 7.3 | 64.2 | 42.3 | 40.7 | 10.8 | 13.8 | 2.4 |
| 12th | 34.2 | 8.8 | 6.0 | 3.2 | 5.1 | 4.0 | 2.2 | 3.6 | 1.1 | 10.1 | 6.3 | 58.1 | 42.0 | 43.9 | 12.4 | 12.2 | 1.7 |

NOTES: For 8th and 10th graders, all drugs were asked about in all four forms except for the following: halluc inogens, LSD, hallucinogens other than LSD, heroin, ampheta mines,
tranquilizers, and smokeless tobacco, which were asked about in two forms only. The approximate N for all forms for 8 th graders was 17,000 and for 10 th graders was 16,400 . For 12th graders, percentages are based on two of the six forms ( $N=$ approximately 4,900 ) except forcocaine, crack, and cigarettes, forwhich percentages are based on three of the six forms ( $N=$ approximately 7,300 ), and inhalants, nitrites, PCP, otherforms of cocaine, and steroids, for which percentages are based on one of the six forms ( $\mathrm{N}=$ approximately 2,400 ).
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Unadjusted for underreporting of certain drugs. See text for details.
${ }^{\mathrm{b}}$ Based on the data from the revised question, which attempts to exclude the inappropriate reporting of nonprescription amphetamines.
${ }^{\text {c }}$ Data based on the percentage of regular smokers (ever).

FIGURE 6-1
Use of Any Illicit Drug: Trends in Lifetime
Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth Graders


NOTE: The dashed lines connect percentages that result if nonprescription stimulants are excluded.

FIGURE 6-2
Use of Any Illicit Drug Other Than Marijuana:
Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth Graders


NOTE: The dashed lines connect percentages that result if nonprescription stimulants are excluded.

Beginning in 2001, revised sets of questions on other hallucinogen and tranquilizer use were introduced. Data for "any illicit drug other than marijuana" are affected by these changes. Beginning in 2001, the dashed lines also connect percentages that are based on data from the revised questions.

## FIGURE 6-3

Use of Any Illicit Drug Other Than Marijuana or Amphetamines:
Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth Graders


FIGURE 6-4
Marijuana: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


FIGURE 6-5
Inhalants: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


## FIGURE 6-6

Nitrites: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth Graders


FIGURE 6-7
Hallucinogens: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


Notes: Hallucinogens unadjusted for any underreporting of PCP are graphed here.
Beginning in 2001, a revised set of questions on other hallucinogen use was introduced. Data for "hallucinogens" are affected by these changes. The dashed lines connect percentages that are based on data from the revised questions.

FIGURE 6-8
LSD: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


FIGURE 6-9

## Hallucinogens Other Than LSD: Trends in Lifetime Prevalence for Earlier Grade Levels

Based on Retrospective Reports From Twelfth and Eighth Graders


NOTE: Beginning in 2001, a revised set of questions on "hallucinogens other than LSD" was introduced, in which "other psychedelics" was changed to "other hallucinogens" and "shrooms" was added to the list of examples. The dashed lines connect percentages that are based on data from the revised questions.

FIGURE 6-10
PCP: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth Graders


FIGURE 6-11
Cocaine: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


FIGURE 6-12
Crack Cocaine: Trends in Lifetime Prevalence for Earlier Grade Levels Based on Retrospective Reports From Twelfth and Eighth Graders


FIGURE 6-13
Other Forms of Cocaine: Trends in Lifetime
Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


FIGURE 6-14
Heroin: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


FIGURE 6-15
Narcotics Other Than Heroin: Trends in Lifetime Prevalence
for Earlier Grade Levels
Based on Retrospective Reports From Twelfth Graders


NOTE: Beginning in 2002, a revised set of questions on "narcotics other than heroin" was introduced. The dashed lines connect percentages that are based on data from the revised questions.

FIGURE 6-16
Amphetamines: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


NOTE: The dashed lines connect percentages that result if nonprescription stimulants are excluded.

FIGURE 6-17

## Sedatives (Barbiturates): Trends in Lifetime Prevalence

 for Earlier Grade LevelsBased on Retrospective Reports From Twelfth Graders


NOTE: Beginning in 2004, a revised set of questions on barbiturates was introduced.
The dashed lines connect percentages that are based on data from the revised questions.

FIGURE 6-18
Methaqualone: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth Graders


FIGURE 6-19
Tranquilizers: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


NOTE: Beginning in 2001, a revised set of questions on tranquilizer use was introduced in which "Xanax" replaced "Miltown" in the list of examples. The dashed lines connect percentages that are based on data from the revised questions.

FIGURE 6-20
Alcohol: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


NOTE: Beginning in 1993, a revised set of questions on alcohol use were introduced, in which respondents were told that an occasion of use meant "more than just a few sips." The dashed lines connect percentages that are based on data from the revised questions. See text for details.

FIGURE 6-21
Been Drunk: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


FIGURE 6-22
Cigarettes: Trends in Lifetime Prevalence for Earlier Grade Levels Based on Retrospective Reports From Twelfth and Eighth Graders


FIGURE 6-23
Cigarette Smoking on a Daily Basis: Trends in Lifetime
Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


## FIGURE 6-24

Smokeless Tobacco: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


NOTE: Prevalence of smokeless tobacco was not asked of 12th graders in 1990 and 1991. Prior to 1990 the prevalence question on smokeless tobacco was located near the end of one 12th-grade questionnaire form, whereas after 1991 the question was placed earlier and in a different form. This shift could explain the discontinuation between the corresponding lines for each grade.

FIGURE 6-25
Steroids: Trends in Lifetime Prevalence for Earlier Grade Levels
Based on Retrospective Reports From Twelfth and Eighth Graders


## Chapter 7

## DEGREE AND DURATION OF DRUG HIGHS

The experience of being "high" is, for most people, a primary reason for using illicit drugs. While laboratory studies can assess the multi-dimensional differences in subjective experiences associated with using specific drugs, they cannot ascertain trends at the population level nor drug-to-drug variations in the degree or duration of highs being experienced. Monitoring these experiences can be helpful in interpreting changes and differences and, at times, in informing policy. For many years Monitoring the Future has asked users of the various drugs to report on the intensity and duration of the highs they experience when using them, recognizing that the subjective experience of being "high" varies from drug to drug. Twelfth-grade respondents are asked in one of the six questionnaire forms to indicate-for each drug that they report having used in the past 12 months-how high they usually get and how long they usually stay high. The 2004 results from those questions are discussed in this chapter, along with trends since 1975 in the degree and duration of the highs usually associated with each of the drugs. Because these questions were not asked of 8th and 10th graders, all data in this chapter are derived from the 12th-grade respondents only. These data do not address the many qualitative differences in the experience of being high, but they provide a useful description of two important dimensions of the subjective experience of the altered states of consciousness associated with using these psychoactive substances.

## DEGREE AND DURATION OF HIGHS AMONG TWELFTH GRADERS

Figure $7-1$ shows the proportion of 2004 seniors who said that they usually get "very" high, "moderately" high, "a little" high, or "not at all" high when they use a given type of drug. The percentages are based on all respondents who reported use of the given drug class in the previous 12 months, and each bar cumulates to $100 \%$. The ordering of the drugs from left to right is based on the percentage of users of each drug who reported that they usually get "very" high. The numbers of cases are sometimes small because the statistics are based on self-reported users in only one of the six randomly assigned questionnaire forms used with seniors. The reader is advised to note the sample sizes, which are given in the accompanying tables. To illustrate, in 2004 the number answering for other hallucinogens was 151; for LSD, 77; for marijuana, 851; for cocaine, 124; for tranquilizers, 126; for narcotics other than heroin, 182; for amphetamines, 206; and for alcohol, 1,785.

- Hallucinogens (LSD and hallucinogens other than LSD) and heroin usually produce the most intense highs. Beginning in 1982, this question was omitted for heroin because of the small number of cases available each year. An averaging across earlier years indicated that it would rank very close to LSD, with a substantial majority of past-year users saying they usually get very high when they use it.
- Following in intensity of highs produced are marijuana and cocaine. Three-quarters of the users of marijuana said they usually get moderately high or very high when using the drug, and about two-thirds of the cocaine users also said they usually get moderately high or very high.
- A lower proportion of the users of three psychotherapeutic drug classes-narcotics other than heroin, tranquilizers, and amphetamines (in that order)—say that they use them to get high; still, substantial proportions of users (from $60 \%$ for other narcotics to $38 \%$ for both tranquilizers and amphetamines) said they usually get moderately or very high after taking these drugs.
- Relatively few of the large proportion of 12th graders using alcohol said that they usually get very high when drinking, although half said they usually get at least moderately high. For a given individual, we would expect more variability in the degree of intoxication achieved with alcohol from occasion to occasion than with most other drugs. Therefore, many drinkers probably get very high at least sometimes, even if that is not "usually" the case, which is what the question asks. Certainly the prevalence of occasional heavy drinking (having 5 or more drinks in a row) and self-reported drunkenness would suggest that to be the case.

Figure 7-2 presents the data on the duration of the highs usually obtained by users of each drug class. The drugs are arranged in the same order as in Figure 7-1 (intensity of highs) to permit an examination of the amount of correspondence between the degree and duration of highs.

- As can be seen in Figure 7-2, those drugs that result in the most intense highs generally tend to result in the longest highs, as well. For example, LSD and hallucinogens other than LSD hold the top two positions on both dimensions.
- The correspondence between degree and duration of highs is not perfect. For example, the highs obtained with marijuana tend to be relatively intense in degree but not long in duration compared to many other drugs. About half of marijuana users (53\%) said they usually stay high only one to two hours. Still, more than one-third of the users (35\%) reported usually staying high three to six hours, and another $6.2 \%$ usually stay high for seven hours or more.
- Cocaine users also report staying high for shorter periods than the users of a number of other drugs, despite the fact that they tend to have more intense highs relative to most others. Two-thirds say either that they stay high only one to two hours (50\%) or that they usually do not get high (16\%); of the remaining third, $22 \%$ say they usually stay high three to six hours and only $12 \%$ stay high seven hours or more.

In sum, drugs vary considerably in both degree and duration of the highs usually obtained from them. Sizeable proportions of the users of all these drugs responded that they usually get high for at least three hours per occasion. For a number of drugs-particularly the hallucinogens, but
also cocaine, tranquilizers, and amphetamines-appreciable proportions usually stay high for seven hours or more.

## TRENDS IN DEGREE AND DURATION OF DRUG HIGHS

Over the life of the study many important shifts have occurred in the degree and duration of highs usually experienced by those young people using drugs. Recall that only those 12th-grade students who used drugs in the prior 12 months answered these questions.

In Tables 7-1 through 7-8 we have presented trends in the degree and duration of highs experienced with the various drugs in two ways. First, the results are presented as a percent of recent users of the drug in question to provide an indication of the quantity consumed by users. They are also displayed as a percent of all respondents so that the reader may get a sense of what proportion of the entire age group is in various degrees of involvement with each drug. Most of the following discussion concentrates on changes in the proportions of recent users.

- Between 1978 and 1983-a period of considerable decline in marijuana use-there was a modest downward trend in the degree of the highs usually attained by marijuana users. To illustrate, in 1978, 73\% of marijuana users said they usually get "moderately high" or "very high," but by 1983 only 64\% said so. Later, from about 1988 through 1996, there was a fairly steady increase observed in the degree of the highs attained by marijuana users. The latter half of this interval overlapped the period of steadily increasing use. (See Figure 7-3 for a charting of the cross-time trends in degree and durations of highs reported by past-year users.) From 1997 to 2004, there was little change in the degree of highs and relatively little change in use. Overall, the proportion of marijuana users has increased from around $65 \%$ in the early 1980 s to around $75 \%$ in the early 2000 s.

Some interesting changes also took place in the average duration of marijuana highs between 1978 and 1983. Most marijuana users said they usually stay high either one to two hours or three to six hours. Between 1975 and 1983 there was a steady decline in the proportion of users saying they stay high three or more hours (from 52\% in 1975 to $35 \%$ in 1983). Until 1979, the downward shift could have been due almost entirely to the fact that progressively more seniors were using marijuana; and the users in later classes, who might not have been users if they had been in earlier classes, probably tended to be relatively light users. We deduce this from the fact that the percentage of all seniors reporting three- to six-hour highs remained relatively unchanged from 1975 to 1979, while the percentage of all seniors reporting only one- to two-hour highs increased steadily-from 16\% in 1975 to $25 \%$ in 1979.

After 1979, however, the prevalence of marijuana use began to decline substantially, but the shift toward shorter average highs still continued through 1983. Thus, we must attribute this shift to another factor, and the one that seems most likely is a general shift toward a less frequent (or less intense) use of the drug, even among the most marijuana-prone segment. The drop in the prevalence of daily marijuana smoking after 1979, disproportionately large relative to the drop in overall prevalence, is consistent with
this interpretation. Also consistent is the fact that the average number of joints smoked per day (among those who reported any use in the prior 12 months) also dropped. In $1976,55 \%$ of the past-year users of marijuana indicated that they averaged less than one joint per day in the prior 30 days, but by 1988 this proportion had risen to $83 \%$. In sum, not only were fewer high school students using marijuana than in the early years of this study, but those who were using the drug seemed to be using it less frequently and to be taking smaller amounts (and doses of the active ingredient) per occasion, at least through 1988. By the mid-1990s, though, after an increase in the prevalence of use, a higher proportion of users again reported getting "very high" and staying high longer. There was not much change from 1997 to 2004. The lower intensity of marijuana highs through the 1980s is of particular interest in light of evidence from other sources that the THC content of marijuana had risen substantially since the late 1970s. The evidence here would suggest that users titrated their intake to achieve a certain (perhaps declining) level of high and, thus, were smoking less marijuana as measured by volume.

- There are no clearly discernible long-term patterns in the intensity of highs being reported by users of $\boldsymbol{L S D}$ through about 2002, since which there has been a drop, as use has declined. The average duration of the highs experienced by LSD users has declined considerably since the late 1990s. For hallucinogens other than LSD the duration of highs has not varied much. The degree of highs increased some from the mid-1990s through 2003. Both degree and duration may have begun to decline in 2004, though another year of confirmation is needed to say for sure. (See Table 7-2.)
- The degree of high obtained from cocaine showed some decline between 1975 and 1981 as prevalence increased. It has since remained fairly stable (see Table 7-4). At the onset phase of the cocaine epidemic (1976-1979), the average duration of highs also shortened as the proportion of users reporting highs of two hours or less rose from $30 \%$ to $49 \%$, perhaps reflecting that many of the additional users were less committed users. The proportion reporting these short highs continued to rise through 1989 to $64 \%$, revealing that during the early part of the decline phase of the epidemic (1986-1992) the average duration of cocaine highs continued to decrease, just as it had done during the rise of the epidemic. This may reflect the fact that as concerns about the dangers of cocaine use grew, even those who decided to use cocaine became more moderate in their use for fear of it leading to addiction.
- For narcotics other than heroin, a general decline occurred between 1975 and 1992 both in the intensity of highs usually experienced and in the duration of those highs (see Table $7-5$ ). In 1975, $39 \%$ of past-year users said they usually got "very high" compared to only $12 \%$ in 1992. The proportion usually staying high for seven or more hours dropped from $28 \%$ in 1975 to $11 \%$ in 1992. This shift was due, in part, to a substantial increase in the proportion of users who said they do not take these drugs "to get high" ( $4.1 \%$ in 1975, increasing to $27.7 \%$ by 1992). Because the actual prevalence of narcotic use dropped only modestly over that interval, these findings suggest that an increasing use for selfmedication may have masked, to some degree, a fair-sized decrease in recreational use. Put another way, the drop in recreational use may have been even steeper than is apparent
from the modest amount of decline in prevalence. Since the early 1990s, considerably fewer users of narcotics other than heroin say that they "usually don't get high" (down from $39 \%$ in 1990 to $15 \%$ in 2004), but somewhat more say that they get high for one to two hours, as well as for three to six hours.
- Between 1975 and 1981, as amphetamine use increased among seniors, the average degree of high decreased (see Table 7-6), much as occurred with cocaine. The proportion of recent users who said they usually got very high or moderately high fell from $60 \%$ in 1975 to $37 \%$ in 1981. Consistent with this change, the proportion of users saying they simply "don't take them to get high" increased from $9.3 \%$ in 1975 to $20.2 \%$ by 1981, remaining roughly at that level through 1990. As use rose some in the 1990s, the numbers on degree and duration of highs have been a bit "bouncy" and have not shown any consistent trends. In general, about $20 \%$ of the users, when asked how high they usually get, said they "don't take them to get high."

Also, the average reported duration of amphetamine highs declined over the longer term: $41 \%$ of the 1975 users said they usually stayed high seven or more hours compared to only $17 \%$ of the 1981 users. ${ }^{70}$ In 2004, $38 \%$ of users said they usually stay high that long.

The substantial decreases in both the degree and duration of highs between 1975 and 1981 strongly suggest a shift in the purposes for amphetamine use. An examination of data on self-reported reasons for use tends to confirm this conclusion. Between the mid1970s and the mid-1980s, there was a decline in the frequency with which recent users mentioned social/recreational reasons for use and an increase in mentions of use for instrumental purposes. ${ }^{71}$ The late 1980s saw some decline in the instrumental purposes ("to stay awake," "to get more energy," "to get through the day") and a leveling in the mentions of social/recreational reasons. In the 1990s, as use rose a bit, there was only a very slight upturn in mentions of social/recreational reasons for use, followed by a leveling by the late 1990s.

With respect to the social/recreational shifts from 1979 to 1984, the percentage of all recent users citing "to feel good or get high" as a reason for amphetamine use declined from $58 \%$ to $45 \%$; in 2004, the figure was $49 \%$. Similarly, "to have a good time with my friends" declined from $38 \%$ to $30 \%$ between 1979 and 1984; in 2004, the figure was $28 \%$. There were shifts toward more instrumental use between 1976 and 1984: "to lose weight" increased by 15 percentage points (to 41\%); "to get more energy" increased by 14 percentage points (to $69 \%$ ); "to stay awake" increased by 10 percentage points (to $62 \%$ ); and "to get through the day" increased by 10 percentage points (to 32\%). Since about 1988, these instrumental objectives have been mentioned somewhat less often by

[^52]users. In 2004, "to lose weight" was mentioned by $28 \%$ of recent users, "to get more energy" by $58 \%$, "to stay awake" by $45 \%$, and "to get through the day" by $20 \%$.

Despite the earlier relative decline in recreational reasons for use of amphetamines, it also appears that the absolute level of recreational use increased somewhat, though clearly not as steeply as the trends through 1981 in overall use might have suggested. The percentage of seniors reporting exposure to people using amphetamines "to get high or for kicks," discussed further in chapter 9, showed a definite increase between 1976 and 1981. There was no further increase in exposure to people using amphetamines for those purposes in 1982, suggesting that recreational use, as well as overall use, had leveled off. Since then, such exposure has decreased considerably (from $50 \%$ in 1982 to $27 \%$ of all seniors in 2004), suggesting a substantial drop in the total number of people using amphetamines for recreational purposes.

- The degree and duration of highs achieved by tranquilizer users decreased in the 1980s (see Table 7-7). Only $15 \%$ of the 1980 senior users said they did not take them to get high, compared with $35 \%$ of 1990 users. However, as use rose during the 1990s, the proportion of users saying they do not use tranquilizers to get high declined to between $9 \%$ and $20 \%$ in recent years, indicating that recreational use played an important role in this rise.
- Data are not collected for highs experienced in the use of inhalants, the specific nitrites, PCP, ecstasy, or heroin.
- The intensity and duration of highs associated with alcohol use generally have been stable throughout the study period (see Table 7-8) with the following exceptions: (a) the proportion of all seniors who report getting "very high" rose some in the 1990s (from $5.6 \%$ in 1993 to $9.0 \%$ in 1998; it was $9.7 \%$ in 2004) and (b) the proportion of all seniors saying they usually stay high on alcohol for seven hours or more rose slightly over the same interval (from 3.4\% in 1993 to $5.4 \%$ in 2004).

TABLE 7-1

## Marijuana: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you use marijuana or hashish how high do you usually get? a | Classof: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underline{1975}$ | $\underline{1976}$ | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | $\underline{1985}$ | $\underline{1986}$ | 1987 | 1988 | 1989 | Cont'd |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Not at all high | 6.9 | 5.7 | 7.5 | 6.3 | 6.0 | 6.3 | 4.9 | 4.6 | 6.6 | 6.8 | 7.2 | 5.1 | 6.8 | 6.6 | 7.6 |  |
| A little high | 22.1 | 20.9 | 22.5 | 20.3 | 22.5 | 23.5 | 29.0 | 26.3 | 29.4 | 29.0 | 27.2 | 27.6 | 29.5 | 30.2 | 22.8 |  |
| Moderately high | 45.5 | 47.7 | 43.5 | 46.8 | 47.5 | 47.7 | 45.7 | 45.6 | 41.9 | 36.9 | 41.8 | 43.8 | 40.9 | 40.3 | 44.1 |  |
| Very high | 25.5 | 25.7 | 26.5 | 26.6 | 24.0 | 22.6 | 20.4 | 23.5 | 22.0 | 27.4 | 23.8 | 23.5 | 22.9 | 22.9 | 25.5 |  |
| Approx. $\mathrm{N}=$ | 1142 | 1266 | 1448 | 1873 | 1606 | 1495 | 1607 | 1588 | 1366 | 1264 | 1298 | 1177 | 1174 | 1142 | 782 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 60.0 | 55.5 | 52.4 | 49.8 | 49.4 | 52.4 | 53.2 | 54.7 | 58.2 | 59.9 | 59.0 | 61.2 | 63.5 | 64.9 | 71.6 |  |
| Not at all high | 2.8 | 2.5 | 3.6 | 3.2 | 3.0 | 3.0 | 2.3 | 2.1 | 2.8 | 2.7 | 2.9 | 2.0 | 2.5 | 2.3 | 2.2 |  |
| A little high | 8.8 | 9.3 | 10.7 | 10.2 | 11.4 | 11.2 | 13.6 | 11.9 | 12.3 | 11.6 | 11.2 | 10.7 | 10.7 | 10.6 | 6.5 |  |
| Moderately high | 18.2 | 21.2 | 20.7 | 23.5 | 24.0 | 22.7 | 21.4 | 20.6 | 17.5 | 14.8 | 17.2 | 17.0 | 14.9 | 14.1 | 12.5 |  |
| Very high | 10.2 | 11.4 | 12.6 | 13.4 | 12.2 | 10.8 | 9.6 | 10.6 | 9.2 | 11.0 | 9.8 | 9.1 | 8.4 | 8.1 | 7.2 |  |
| Approx. $\mathrm{N}=$ | 2855 | 2845 | 3042 | 3731 | 3175 | 3143 | 3437 | 3506 | 3268 | 3154 | 3163 | 3033 | 3219 | 3250 | 2755 |  |
| When you use marijuana or hashish how long do you usually stay high? a |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Usually don't get high | 8.5 | 8.0 | 9.5 | 8.0 | 8.4 | 8.5 | 7.6 | 7.0 | 9.9 | 9.6 | 9.3 | 8.2 | 11.1 | 9.6 | 10.8 |  |
| One to two hours | 39.7 | 43.2 | 42.6 | 47.4 | 48.7 | 51.7 | 52.5 | 53.8 | 55.6 | 51.7 | 52.4 | 55.0 | 52.9 | 56.0 | 51.9 |  |
| Three to six hours | 45.4 | 43.7 | 42.7 | 39.0 | 37.4 | 35.0 | 35.7 | 34.2 | 30.4 | 33.1 | 34.0 | 32.9 | 32.2 | 30.2 | 33.3 |  |
| Seven to 24 hours | 5.9 | 4.9 | 4.7 | 5.1 | 5.0 | 4.1 | 4.0 | 4.5 | 3.5 | 5.0 | 3.9 | 3.3 | 3.7 | 3.8 | 3.3 |  |
| More than 24 hours | 0.5 | 0.2 | 0.6 | 0.5 | 0.5 | 0.7 | 0.2 | 0.5 | 0.6 | 0.7 | 0.4 | 0.6 | 0.1 | 0.4 | 0.8 |  |
| Approx. $\mathrm{N}=$ | 1141 | 1261 | 1449 | 1873 | 1619 | 1500 | 1607 | 1593 | 1357 | 1268 | 1295 | 1176 | 1172 | 1147 | 787 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 60.0 | 55.5 | 52.4 | 49.8 | 49.2 | 52.3 | 53.2 | 54.6 | 58.4 | 59.9 | 59.0 | 61.2 | 63.6 | 64.8 | 71.5 |  |
| Usually don't get high | 3.4 | 3.6 | 4.5 | 4.0 | 4.3 | 4.0 | 3.6 | 3.2 | 4.1 | 3.8 | 3.8 | 3.2 | 4.0 | 3.4 | 3.1 |  |
| One to two hours | 15.9 | 19.2 | 20.3 | 23.8 | 24.7 | 24.6 | 24.5 | 24.4 | 23.1 | 20.7 | 21.5 | 21.3 | 19.3 | 19.7 | 14.8 |  |
| Three to six hours | 18.2 | 19.4 | 20.3 | 19.6 | 19.0 | 16.7 | 16.7 | 15.5 | 12.7 | 13.3 | 13.9 | 12.8 | 11.7 | 10.7 | 9.5 |  |
| Seven to 24 hours | 2.4 | 2.2 | 2.2 | 2.6 | 2.5 | 2.0 | 1.9 | 2.0 | 1.4 | 2.0 | 1.6 | 1.3 | 1.3 | 1.3 | 0.9 |  |
| More than 24 hours | 0.2 | 0.1 | 0.3 | 0.3 | 0.2 | 0.3 | 0.1 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.0 | 0.1 | 0.2 |  |
| Approx. $\mathrm{N}=$ | 2853 | 2834 | 3044 | 3731 | 3188 | 3149 | 3437 | 3511 | 3259 | 3158 | 3160 | 3032 | 3218 | 3255 | 2760 |  |

[^53]${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-1 (cont'd)

## Marijuana: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you use marijuana or hashish how high do you usually get? a | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Not at all high | 5.8 | 7.2 | 7.8 | 9.0 | 7.0 | 8.1 | 5.7 | 5.4 | 6.1 | 6.8 | 6.3 | 5.4 | 5.4 | 5.1 | 5.4 |
| A little high | 23.2 | 21.6 | 25.9 | 19.4 | 21.7 | 22.3 | 17.9 | 18.6 | 22.0 | 19.8 | 22.6 | 18.7 | 23.2 | 17.7 | 19.2 |
| Moderately high | 40.8 | 42.8 | 39.3 | 45.9 | 40.6 | 40.8 | 47.5 | 45.1 | 43.6 | 43.7 | 39.6 | 42.8 | 41.7 | 44.6 | 42.6 |
| Very high | 30.3 | 28.4 | 27.0 | 25.8 | 30.7 | 28.8 | 28.9 | 30.9 | 28.4 | 29.8 | 31.4 | 33.1 | 29.7 | 32.7 | 32.8 |
| Approx. $\mathrm{N}=$ | 694 | 591 | 605 | 669 | 779 | 916 | 788 | 998 | 944 | 812 | 809 | 776 | 713 | 809 | 851 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 72.7 | 76.2 | 76.8 | 74.8 | 69.6 | 64.1 | 66.5 | 61.2 | 62.6 | 63.6 | 61.8 | 63.0 | 66.3 | 66.6 | 65.2 |
| Not at all high | 1.6 | 1.7 | 1.8 | 2.3 | 2.1 | 2.9 | 1.9 | 2.1 | 2.3 | 2.5 | 2.4 | 2.0 | 1.8 | 1.7 | 1.9 |
| A little high | 6.3 | 5.1 | 6.0 | 4.9 | 6.6 | 8.0 | 6.0 | 7.2 | 8.2 | 7.2 | 8.6 | 6.9 | 7.8 | 5.9 | 6.7 |
| Moderately high | 11.1 | 10.2 | 9.1 | 11.6 | 12.4 | 14.7 | 15.9 | 17.5 | 16.3 | 15.9 | 15.1 | 15.8 | 14.1 | 14.9 | 14.8 |
| Very high | 8.3 | 6.7 | 6.3 | 6.5 | 9.3 | 10.4 | 9.7 | 12.0 | 10.6 | 10.8 | 12.0 | 12.2 | 10.0 | 10.9 | 11.4 |
| Approx. $\mathrm{N}=$ | 2542 | 2487 | 2614 | 2655 | 2558 | 2549 | 2355 | 2570 | 2526 | 2231 | 2121 | 2098 | 2114 | 2423 | 2447 |


| When you use manjuana or hashish how long do you usually stay high? ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Usually don't get high | 7.8 | 8.5 | 9.5 | 10.9 | 9.5 | 8.7 | 6.4 | 6.1 | 7.4 | 7.6 | 8.7 | 5.8 | 6.9 | 6.3 | 6.1 |
| One to two hours | 53.3 | 49.5 | 47.2 | 48.6 | 47.4 | 46.0 | 46.9 | 49.6 | 51.4 | 51.8 | 52.0 | 48.3 | 55.5 | 51.2 | 52.5 |
| Three to six hours | 33.1 | 34.4 | 37.7 | 36.8 | 36.1 | 37.6 | 39.3 | 37.1 | 35.7 | 33.5 | 34.9 | 38.2 | 32.4 | 37.2 | 35.3 |
| Seven to 24 hours | 5.4 | 6.9 | 4.9 | 3.2 | 5.5 | 6.7 | 6.2 | 6.0 | 5.1 | 5.9 | 3.6 | 6.0 | 5.1 | 4.8 | 4.3 |
| More than 24 hours | 0.4 | 0.8 | 0.8 | 0.4 | 1.4 | 1.0 | 1.2 | 1.1 | 0.4 | 1.2 | 0.9 | 1.6 | 0.1 | 0.6 | 1.9 |
| Approx. $\mathrm{N}=$ | 694 | 589 | 602 | 666 | 774 | 911 | 789 | 996 | 945 | 814 | 807 | 781 | 713 | 812 | 848 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 72.7 | 76.3 | 76.9 | 74.9 | 69.7 | 64.2 | 66.5 | 61.2 | 62.6 | 63.6 | 61.9 | 62.9 | 66.3 | 66.5 | 65.3 |
| Usually don't get high | 2.1 | 2.0 | 2.2 | 2.7 | 2.9 | 3.1 | 2.1 | 2.4 | 2.8 | 2.8 | 3.3 | 2.2 | 2.3 | 2.1 | 2.1 |
| One to two hours | 14.6 | 11.7 | 10.9 | 12.2 | 14.4 | 16.5 | 15.7 | 19.3 | 19.2 | 18.9 | 19.8 | 17.9 | 18.7 | 17.1 | 18.2 |
| Three to six hours | 9.0 | 8.1 | 8.7 | 9.2 | 11.0 | 13.5 | 13.2 | 14.4 | 13.4 | 12.2 | 13.3 | 14.2 | 10.9 | 12.5 | 12.2 |
| Seven to 24 hours | 1.5 | 1.6 | 1.1 | 0.8 | 1.7 | 2.4 | 2.1 | 2.3 | 1.9 | 2.1 | 1.4 | 2.2 | 1.7 | 1.6 | 1.5 |
| More than 24 hours | 0.1 | 0.2 | 0.2 | 0.1 | 0.4 | 0.4 | 0.4 | 0.4 | 0.2 | 0.4 | 0.3 | 0.6 | 0.1 | 0.2 | 0.6 |
| Approx. $\mathrm{N}=$ | 2542 | 2485 | 2611 | 2652 | 2553 | 2544 | 2356 | 2568 | 2527 | 2233 | 2119 | 2103 | 2114 | 2426 | 2444 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-2
LSD: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take LSD how high do you usually get? ${ }^{\text {a }}$ | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underline{1975}$ | $\underline{1976}$ | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | $\underline{1983}$ | $\underline{1984}$ | 1985 | $\underline{1986}$ | 1987 | 1988 | 1989 | Cont'd |
| \% of Recent Users $\sqrt{ }$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Not at all high | 0.2 | 1.7 | 1.6 | 0.5 | 2.8 | 2.0 | 1.6 | 2.7 | 0.0 | 2.5 | 1.2 | 3.3 | 2.5 | 1.3 | 4.9 |  |
| A little high | 4.8 | 1.9 | 7.4 | 4.9 | 8.4 | 5.0 | 9.6 | 4.1 | 4.2 | 5.6 | 3.7 | 4.1 | 4.3 | 4.1 | 6.6 |  |
| Moderately high | 16.2 | 22.4 | 19.3 | 24.7 | 14.9 | 23.4 | 23.3 | 26.4 | 26.9 | 24.8 | 16.2 | 23.3 | 21.9 | 20.4 | 17.4 |  |
| Very high | 78.8 | 73.9 | 71.7 | 69.9 | 73.9 | 69.5 | 65.5 | 66.8 | 68.9 | 67.1 | 78.9 | 69.3 | 71.4 | 74.2 | 71.1 |  |
| Approx. $\mathrm{N}=$ | 213 | 193 | 183 | 223 | 228 | 228 | 236 | 249 | 200 | 168 | 151 | 168 | 192 | 175 | 133 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 92.5 | 93.6 | 94.4 | 93.7 | 92.9 | 92.8 | 93.2 | 92.9 | 93.9 | 94.7 | 95.3 | 94.5 | 94.0 | 94.6 | 95.2 |  |
| Not at all high | 0.0 | 0.1 | 0.1 | 0.0 | 0.2 | 0.1 | 0.1 | 0.2 | 0.0 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 |  |
| A little high | 0.4 | 0.1 | 0.4 | 0.3 | 0.6 | 0.4 | 0.6 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 |  |
| Moderately high | 1.2 | 1.4 | 1.1 | 1.6 | 1.1 | 1.7 | 1.6 | 1.9 | 1.6 | 1.3 | 0.8 | 1.3 | 1.3 | 1.1 | 0.8 |  |
| Very high | 5.9 | 4.7 | 4.0 | 4.4 | 5.2 | 5.0 | 4.4 | 4.7 | 4.2 | 3.5 | 3.7 | 3.8 | 4.3 | 4.0 | 3.4 |  |
| Approx. $\mathrm{N}=$ | 2840 | 3016 | 3268 | 3540 | 3228 | 3182 | 3488 | 3506 | 3277 | 3166 | 3179 | 3060 | 3214 | 3271 | 2763 |  |
| When you take LSD how long do you usually stay high? ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Usually don't get high | 1.6 | 2.3 | 2.5 | 0.5 | 3.4 | 2.3 | 1.6 | 1.5 | 0.0 | 3.2 | 1.2 | 3.3 | 2.5 | 1.0 | 6.1 |  |
| One to two hours | 1.3 | 1.7 | 3.8 | 3.9 | 4.0 | 2.5 | 5.4 | 3.6 | 2.6 | 2.5 | 3.3 | 2.0 | 4.9 | 2.0 | 4.1 |  |
| Three to six hours | 22.7 | 30.7 | 30.5 | 31.9 | 33.1 | 34.6 | 35.5 | 30.7 | 43.6 | 29.4 | 32.4 | 32.8 | 27.6 | 28.2 | 19.2 |  |
| Seven to 24 hours | 69.8 | 59.9 | 59.8 | 58.5 | 52.1 | 55.4 | 54.6 | 62.5 | 49.3 | 60.9 | 60.3 | 59.8 | 59.4 | 64.3 | 65.9 |  |
| More than 24 hours | 4.6 | 5.5 | 3.4 | 5.3 | 7.4 | 5.2 | 2.9 | 1.7 | 4.6 | 4.0 | 2.8 | 2.2 | 5.6 | 4.5 | 4.7 |  |
| Approx. $\mathrm{N}=$ | 215 | 193 | 182 | 224 | 228 | 226 | 236 | 252 | 199 | 168 | 153 | 168 | 191 | 178 | 133 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 92.5 | 93.6 | 94.4 | 93.7 | 92.9 | 92.9 | 93.2 | 92.8 | 93.9 | 94.7 | 95.2 | 94.5 | 94.1 | 94.6 | 95.2 |  |
| Usually don't get high | 0.1 | 0.1 | 0.1 | 0.0 | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.3 |  |
| One to two hours | 0.1 | 0.1 | 0.2 | 0.3 | 0.3 | 0.2 | 0.4 | 0.3 | 0.2 | 0.1 | 0.2 | 0.1 | 0.3 | 0.1 | 0.2 |  |
| Three to six hours | 1.7 | 2.0 | 1.7 | 2.0 | 2.3 | 2.5 | 2.4 | 2.2 | 2.6 | 1.6 | 1.6 | 1.8 | 1.6 | 1.5 | 0.9 |  |
| Seven to 24 hours | 5.2 | 3.8 | 3.3 | 3.7 | 3.7 | 3.9 | 3.7 | 4.5 | 3.0 | 3.2 | 2.9 | 3.3 | 3.5 | 3.5 | 3.2 |  |
| More than 24 hours | 0.3 | 0.4 | 0.2 | 0.3 | 0.5 | 0.4 | 0.2 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 | 0.2 |  |
| Approx. $\mathrm{N}=$ | 2867 | 3016 | 3250 | 3556 | 3227 | 3180 | 3487 | 3509 | 3276 | 3166 | 3181 | 3060 | 3214 | 3274 | 2763 |  |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-2 (cont'd)
LSD: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take LSD Classof: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| how high do you usually get? ${ }^{\text {a }}$ | 1990 | 1991 | 1992 | $\underline{1993}$ | 1994 | $\underline{1995}$ | 1996 | 1997 | $\underline{1998}$ | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | 2003 | $\underline{2004}$ |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Not at all high | 0.6 | 4.0 | 1.7 | 1.8 | 1.1 | 3.0 | 4.0 | 2.3 | 4.3 | 0.0 | 4.8 | 3.3 | 4.7 | 1.9 | 10.3 |
| A little high | 2.0 | 6.9 | 2.9 | 10.8 | 6.3 | 7.4 | 5.2 | 9.2 | 5.5 | 4.6 | 6.7 | 8.2 | 7.0 | 12.7 | 10.5 |
| Moderately high | 33.8 | 23.0 | 32.4 | 30.1 | 29.3 | 21.7 | 20.6 | 21.1 | 31.2 | 19.1 | 22.3 | 28.9 | 22.4 | 16.3 | 18.0 |
| Very high | 63.6 | 66.2 | 63.1 | 57.4 | 63.2 | 67.9 | 70.2 | 67.4 | 59.0 | 76.3 | 66.1 | 59.6 | 66.0 | 69.2 | 61.3 |
| Approx. $\mathrm{N}=$ | 138 | 140 | 146 | 209 | 175 | 205 | 184 | 250 | 188 | 176 | 145 | 144 | 79 | 42 | 77 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 94.5 | 94.4 | 94.4 | 92.1 | 93.1 | 91.9 | 92.2 | 90.2 | 92.6 | 92.1 | 93.2 | 93.1 | 96.3 | 98.3 | 96.8 |
| Not at all high | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 | 0.2 | 0.3 | 0.0 | 0.3 | 0.2 | 0.2 | 0.0 | 0.3 |
| A little high | 0.1 | 0.4 | 0.2 | 0.8 | 0.4 | 0.6 | 0.4 | 0.9 | 0.4 | 0.4 | 0.5 | 0.6 | 0.3 | 0.2 | 0.3 |
| Moderately high | 1.9 | 1.3 | 1.8 | 2.4 | 2.0 | 1.8 | 1.6 | 2.1 | 2.3 | 1.5 | 1.5 | 2.0 | 0.8 | 0.3 | 0.6 |
| Very high | 3.5 | 3.7 | 3.5 | 4.5 | 4.3 | 5.5 | 5.5 | 6.6 | 4.4 | 6.0 | 4.5 | 4.1 | 2.5 | 1.2 | 2.0 |
| Approx. $\mathrm{N}=$ | 2527 | 2494 | 2619 | 2655 | 2547 | 2517 | 2347 | 2543 | 2525 | 2226 | 2128 | 2089 | 2126 | 2412 | 2425 |

When you take LSD
how long do you usually stay high? a
\% of Recent Users

| Usually don't get high |  | 0.6 | 3.5 | 1.7 | 3.4 | 0.5 | 3.8 | 2.2 | 2.4 | 3.2 | 0.6 | 3.4 | 3.0 | 1.4 | 2.0 | 7.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 6.7 | 4.5 | 5.5 | 3.8 | 5.7 | 2.5 | 5.0 | 3.9 | 2.6 | 1.9 | 3.7 | 4.0 | 8.2 | 9.3 | 11.3 |
| Three to six hours |  | 24.4 | 16.0 | 21.4 | 27.7 | 20.1 | 21.1 | 19.6 | 25.4 | 29.7 | 21.9 | 31.7 | 32.7 | 40.6 | 31.9 | 31.6 |
| Seven to 24 hours |  | 63.1 | 73.8 | 66.3 | 62.3 | 70.6 | 67.0 | 70.0 | 62.3 | 61.4 | 71.0 | 55.6 | 55.9 | 43.3 | 52.4 | 37.4 |
| More than 24 hours |  | 5.2 | 2.2 | 5.0 | 2.9 | 3.0 | 5.7 | 3.3 | 6.0 | 3.2 | 4.6 | 5.6 | 4.4 | 6.5 | 4.4 | 12.2 |
|  | Approx. $\mathrm{N}=$ | 137 | 141 | 147 | 205 | 176 | 203 | 186 | 252 | 186 | 173 | 143 | 145 | 79 | 40 | 77 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 94.6 | 94.4 | 94.4 | 92.3 | 93.1 | 91.9 | 92.1 | 90.1 | 92.6 | 92.2 | 93.3 | 93.1 | 96.3 | 98.3 | 96.8 |
| Usually don't get high |  | 0.0 | 0.2 | 0.1 | 0.3 | 0.0 | 0.3 | 0.2 | 0.2 | 0.2 | 0.0 | 0.2 | 0.2 | 0.1 | 0.0 | 0.2 |
| One to two hours |  | 0.4 | 0.3 | 0.3 | 0.3 | 0.4 | 0.2 | 0.4 | 0.4 | 0.2 | 0.1 | 0.3 | 0.3 | 0.3 | 0.2 | 0.4 |
| Three to six hours |  | 1.3 | 0.9 | 1.2 | 2.1 | 1.4 | 1.7 | 1.6 | 2.5 | 2.2 | 1.7 | 2.1 | 2.3 | 1.5 | 0.5 | 1.0 |
| Seven to 24 hours |  | 3.4 | 4.2 | 3.7 | 4.8 | 4.9 | 5.4 | 5.6 | 6.2 | 4.5 | 5.5 | 3.7 | 3.9 | 1.6 | 0.9 | 1.2 |
| More than 24 hours |  | 0.3 | 0.1 | 0.3 | 0.2 | 0.2 | 0.5 | 0.3 | 0.6 | 0.2 | 0.4 | 0.4 | 0.3 | 0.2 | 0.1 | 0.4 |
|  | Approx. $\mathrm{N}=$ | 2526 | 2495 | 2619 | 2651 | 2548 | 2515 | 2349 | 2545 | 2524 | 2223 | 2126 | 2090 | 2126 | 2411 | 2425 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-3
Hallucinogens Other Than LSD: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take hallucinogens other than |  |  |  |  |  |  |  | lass 0 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LSD how high do you usually get? ${ }^{\text {a }}$ | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | Cont'd |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Not at all high | 2.4 | 1.2 | 1.2 | 1.2 | 2.1 | 0.9 | 2.3 | 2.5 | 4.0 | 4.9 | 3.2 | 3.4 | 5.6 | 3.1 | 1.0 |  |
| A little high | 7.9 | 9.6 | 8.4 | 8.3 | 9.6 | 10.4 | 12.9 | 10.3 | 8.2 | 10.8 | 9.5 | 13.6 | 13.6 | 8.8 | 8.2 |  |
| Moderately high | 35.5 | 39.6 | 40.8 | 36.3 | 37.7 | 38.9 | 37.9 | 35.9 | 36.6 | 38.0 | 36.1 | 36.8 | 32.1 | 28.7 | 33.4 |  |
| Very high | 54.1 | 49.7 | 49.6 | 54.3 | 50.6 | 49.9 | 46.9 | 51.3 | 51.2 | 46.3 | 51.3 | 46.3 | 48.6 | 59.5 | 57.4 |  |
| Approx. $\mathrm{N}=$ | 322 | 237 | 246 | 326 | 253 | 255 | 246 | 201 | 170 | 153 | 134 | 114 | 115 | 85 | 53 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 90.4 | 93.0 | 93.0 | 92.7 | 91.9 | 91.8 | 92.8 | 94.2 | 94.7 | 95.1 | 95.7 | 96.2 | 96.4 | 97.4 | 98.1 |  |
| Not at all high | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.0 |  |
| A little high | 0.8 | 0.7 | 0.6 | 0.6 | 0.8 | 0.9 | 0.9 | 0.6 | 0.4 | 0.5 | 0.4 | 0.5 | 0.5 | 0.2 | 0.2 |  |
| Moderately high | 3.4 | 2.8 | 2.9 | 2.6 | 3.0 | 3.2 | 2.7 | 2.1 | 1.9 | 1.9 | 1.5 | 1.4 | 1.2 | 0.8 | 0.6 |  |
| Very high | 5.2 | 3.5 | 3.5 | 4.0 | 4.1 | 4.1 | 3.4 | 3.0 | 2.7 | 2.3 | 2.2 | 1.8 | 1.8 | 1.6 | 1.1 |  |
| Approx. $\mathrm{N}=$ | 3354 | 3386 | 3514 | 4466 | 3127 | 3098 | 3407 | 3466 | 3235 | 3129 | 3142 | 3004 | 3182 | 3220 | 2734 |  |
| When you take hallucinogens other than LSD how long do you usually stay high? ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Usually don't get high | 2.0 | 1.2 | 1.1 | 1.3 | 2.5 | 1.3 | 2.8 | 3.6 | 4.8 | 4.0 | 0.9 | 5.2 | 7.2 | 3.9 | 4.2 |  |
| One to two hours | 8.5 | 9.4 | 7.0 | 8.4 | 8.3 | 7.8 | 8.3 | 6.6 | 7.9 | 8.9 | 12.9 | 9.1 | 9.8 | 7.8 | 16.5 |  |
| Three to six hours | 41.3 | 46.1 | 45.5 | 47.7 | 48.2 | 49.1 | 47.1 | 52.6 | 54.1 | 48.7 | 46.7 | 43.3 | 46.0 | 46.2 | 35.3 |  |
| Seven to 24 hours | 45.6 | 39.9 | 44.1 | 41.1 | 37.2 | 39.6 | 38.7 | 34.4 | 30.5 | 36.0 | 37.1 | 40.6 | 35.8 | 40.5 | 42.1 |  |
| More than 24 hours | 2.7 | 3.4 | 2.3 | 1.5 | 3.8 | 2.2 | 3.1 | 2.8 | 2.7 | 2.5 | 2.5 | 1.9 | 1.3 | 1.6 | 1.9 |  |
| Approx. $\mathrm{N}=$ | 322 | 238 | 243 | 326 | 249 | 254 | 246 | 203 | 171 | 153 | 132 | 115 | 116 | 84 | 55 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 90.4 | 93.0 | 93.0 | 92.7 | 92.0 | 91.8 | 92.8 | 94.1 | 94.7 | 95.1 | 95.8 | 96.2 | 96.4 | 97.4 | 98.0 |  |
| Usually don't get high | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | 0.2 | 0.0 | 0.2 | 0.3 | 0.1 | 0.1 |  |
| One to two hours | 0.8 | 0.7 | 0.5 | 0.6 | 0.7 | 0.6 | 0.6 | 0.4 | 0.4 | 0.4 | 0.5 | 0.3 | 0.4 | 0.2 | 0.3 |  |
| Three to six hours | 4.0 | 3.2 | 3.2 | 3.5 | 3.8 | 4.0 | 3.4 | 3.1 | 2.9 | 2.4 | 2.0 | 1.7 | 1.7 | 1.2 | 0.7 |  |
| Seven to 24 hours | 4.4 | 2.8 | 3.1 | 3.0 | 3.0 | 3.2 | 2.8 | 2.0 | 1.6 | 1.8 | 1.6 | 1.6 | 1.3 | 1.1 | 0.8 |  |
| More than 24 hours | 0.3 | 0.2 | 0.2 | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 |  |
| Approx. $\mathrm{N}=$ | 3354 | 3400 | 3471 | 4466 | 3123 | 3096 | 3407 | 3467 | 3236 | 3129 | 3140 | 3005 | 3183 | 3219 | 2736 |  |

[^54]${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-3 (cont'd)

## Hallucinogens Other Than LSD: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take halluc inogens other than |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LSD how high do you usually get? ${ }^{\text {a }}$ | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Not at all high | 2.5 | 5.0 | 1.0 | 7.6 | 8.8 | 3.1 | 4.0 | 3.1 | 1.9 | 2.8 | 1.7 | 5.1 | 0.6 | 0.9 | 5.0 |
| A little high | 5.8 | 9.9 | 18.2 | 10.8 | 12.6 | 4.4 | 7.9 | 10.7 | 5.3 | 7.2 | 4.5 | 5.6 | 5.4 | 2.8 | 10.0 |
| Moderately high | 41.2 | 41.0 | 32.0 | 37.4 | 25.5 | 24.5 | 26.9 | 20.4 | 38.0 | 16.1 | 26.4 | 31.3 | 39.5 | 25.2 | 31.7 |
| Very high | 50.5 | 44.1 | 48.8 | 44.2 | 53.1 | 68.1 | 61.2 | 65.9 | 54.8 | 73.8 | 67.5 | 58.1 | 54.6 | 71.0 | 53.3 |
| Approx. $\mathrm{N}=$ | 58 | 39 | 47 | 62 | 67 | 86 | 103 | 120 | 110 | 98 | 97 | 126 | 108 | 129 | 151 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 97.7 | 98.4 | 98.2 | 97.6 | 97.3 | 96.6 | 95.6 | 95.2 | 95.6 | 95.6 | 95.3 | 93.9 | 94.9 | 94.6 | 93.7 |
| Not at all high | 0.1 | 0.1 | 0.0 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.0 | 0.1 | 0.3 |
| A little high | 0.1 | 0.2 | 0.3 | 0.3 | 0.3 | 0.1 | 0.4 | 0.5 | 0.2 | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 | 0.6 |
| Moderately high | 1.0 | 0.6 | 0.6 | 0.9 | 0.7 | 0.8 | 1.2 | 1.0 | 1.7 | 0.7 | 1.2 | 1.9 | 2.0 | 1.4 | 2.0 |
| Very high | 1.2 | 0.7 | 0.9 | 1.0 | 1.4 | 2.3 | 2.7 | 3.2 | 2.4 | 3.3 | 3.2 | 3.6 | 2.8 | 3.9 | 3.4 |
| Approx. $\mathrm{N}=$ | 2498 | 2472 | 2591 | 2629 | 2523 | 2515 | 2319 | 2500 | 2486 | 2213 | 2079 | 2058 | 2116 | 2385 | 2394 |

When you take halluc inogens other than
LSD how long do you usually stay high? a

| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Usua lly don't get high |  | 2.5 | 7.6 | 6.1 | 3.6 | 7.2 | 3.1 | 2.4 | 4.3 | 2.1 | 2.8 | 2.1 | 3.8 | 2.0 | 2.1 | 2.3 |
| One to two hours |  | 13.8 | 12.3 | 15.3 | 6.9 | 11.5 | 6.2 | 8.8 | 5.3 | 2.6 | 7.1 | 10.0 | 8.0 | 7.9 | 3.8 | 14.4 |
| Three to six hours |  | 46.8 | 25.9 | 38.9 | 51.9 | 41.5 | 35.0 | 55.6 | 57.9 | 56.0 | 44.9 | 52.0 | 49.5 | 57.2 | 49.9 | 54.0 |
| Seven to 24 hours |  | 25.8 | 52.4 | 33.3 | 37.7 | 39.8 | 50.2 | 29.5 | 30.6 | 37.3 | 42.2 | 32.7 | 35.5 | 32.9 | 42.0 | 28.4 |
| More than 24 hours |  | 11.2 | 1.8 | 6.4 | 0.0 | 0.0 | 5.5 | 3.6 | 2.0 | 1.9 | 3.1 | 3.2 | 3.1 | 0.0 | 2.1 | 1.0 |
|  | Approx. $\mathrm{N}=$ | 60 | 40 | 48 | 59 | 68 | 86 | 101 | 118 | 110 | 98 | 97 | 125 | 108 | 131 | 149 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 97.6 | 98.4 | 98.1 | 97.8 | 97.3 | 96.6 | 95.6 | 95.3 | 95.6 | 95.6 | 95.3 | 93.9 | 94.9 | 94.5 | 93.8 |
| Usua lly don't get high |  | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
| One to two hours |  | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.4 | 0.2 | 0.1 | 0.3 | 0.5 | 0.5 | 0.4 | 0.2 | 0.9 |
| Three to six hours |  | 1.1 | 0.4 | 0.7 | 1.2 | 1.1 | 1.2 | 2.4 | 2.7 | 2.5 | 2.0 | 2.4 | 3.0 | 2.9 | 2.7 | 3.4 |
| Seven to 24 hours |  | 0.6 | 0.8 | 0.6 | 0.8 | 1.1 | 1.7 | 1.3 | 1.4 | 1.7 | 1.9 | 1.5 | 2.2 | 1.7 | 2.3 | 1.8 |
| More than 24 hours |  | 0.3 | 0.0 | 0.1 | 0.0 | 0.0 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.0 | 0.1 | 0.1 |
|  | Approx. $\mathrm{N}=$ | 2499 | 2473 | 2592 | 2626 | 2524 | 2515 | 2317 | 2498 | 2486 | 2213 | 2079 | 2057 | 2117 | 2387 | 2392 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-4
Cocaine: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take cocaine |  |  |  |  |  |  |  | Class of: |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| how high do you usually get? ${ }^{\text {a }}$ | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | Cont'd |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I don't take it to get high | 1.1 | 0.8 | 0.3 | 0.0 | 2.1 | 1.9 | 0.6 | 2.1 | 1.9 | 2.8 | 3.1 | 4.1 | 3.6 | 4.9 | 4.6 |  |
| Not at all high | 3.5 | 2.9 | 4.5 | 5.5 | 3.6 | 3.6 | 7.4 | 6.4 | 10.1 | 6.0 | 6.8 | 4.6 | 5.9 | 5.7 | 7.9 |  |
| A little high | 18.8 | 11.8 | 17.9 | 17.6 | 19.6 | 22.9 | 22.1 | 22.7 | 25.7 | 23.5 | 24.5 | 24.6 | 18.8 | 19.1 | 12.1 |  |
| Moderately high | 40.1 | 45.1 | 45.9 | 38.2 | 50.6 | 43.7 | 42.4 | 44.5 | 37.0 | 39.3 | 43.1 | 43.4 | 44.0 | 43.3 | 39.7 |  |
| Very high | 36.6 | 39.5 | 31.4 | 38.6 | 24.2 | 27.9 | 27.5 | 24.3 | 25.3 | 28.4 | 22.5 | 23.5 | 27.7 | 27.0 | 35.7 |  |
| Approx. $\mathrm{N}=$ | 124 | 166 | 223 | 335 | 394 | 360 | 434 | 421 | 343 | 362 | 409 | 407 | 329 | 264 | 156 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 94.4 | 94.0 | 92.8 | 91.0 | 87.5 | 88.4 | 87.2 | 87.9 | 89.4 | 88.4 | 87.0 | 86.4 | 89.5 | 91.7 | 94.2 |  |
| I don't take it to get high | 0.1 | 0.0 | 0.0 | 0.0 | 0.3 | 0.2 | 0.1 | 0.3 | 0.2 | 0.3 | 0.4 | 0.6 | 0.4 | 0.4 | 0.3 |  |
| Not at all high | 0.2 | 0.2 | 0.3 | 0.5 | 0.5 | 0.4 | 0.9 | 0.8 | 1.1 | 0.7 | 0.9 | 0.6 | 0.6 | 0.5 | 0.5 |  |
| A little high | 1.1 | 0.7 | 1.3 | 1.6 | 2.5 | 2.7 | 2.8 | 2.7 | 2.7 | 2.7 | 3.2 | 3.3 | 2.0 | 1.6 | 0.7 |  |
| Moderately high | 2.2 | 2.7 | 3.3 | 3.4 | 6.3 | 5.1 | 5.4 | 5.4 | 3.9 | 4.6 | 5.6 | 5.9 | 4.6 | 3.6 | 2.3 |  |
| Very high | 2.0 | 2.4 | 2.3 | 3.5 | 3.0 | 3.2 | 3.5 | 2.9 | 2.7 | 3.3 | 2.9 | 3.2 | 2.9 | 2.2 | 2.1 |  |
| Approx. $\mathrm{N}=$ | 2214 | 2767 | 3097 | 3722 | 3142 | 3105 | 3400 | 3473 | 3235 | 3114 | 3142 | 2992 | 3130 | 3179 | 2685 |  |
| When you take cocaine how long do you usually stay high? ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Usually don't get high | 3.4 | 2.8 | 3.6 | 5.8 | 5.8 | 7.2 | 8.2 | 8.2 | 14.5 | 9.7 | 9.2 | 8.7 | 9.8 | 12.8 | 11.3 |  |
| One to two hours | 31.0 | 27.6 | 31.9 | 33.2 | 43.3 | 38.2 | 45.9 | 43.2 | 41.3 | 43.7 | 48.6 | 55.2 | 44.7 | 49.3 | 52.6 |  |
| Three to six hours | 47.5 | 46.8 | 49.4 | 39.6 | 36.5 | 36.0 | 33.8 | 34.5 | 34.1 | 33.6 | 31.8 | 27.7 | 29.2 | 25.6 | 20.9 |  |
| Seven to 24 hours | 14.4 | 19.6 | 13.1 | 20.9 | 14.1 | 17.3 | 9.8 | 13.3 | 8.7 | 11.8 | 8.5 | 7.1 | 13.0 | 10.1 | 9.8 |  |
| More than 24 hours | 3.7 | 3.1 | 1.9 | 0.5 | 0.3 | 1.3 | 2.3 | 0.8 | 1.4 | 1.1 | 1.9 | 1.3 | 3.3 | 2.3 | 5.3 |  |
| Approx. $\mathrm{N}=$ | 125 | 165 | 220 | 331 | 392 | 357 | 432 | 419 | 344 | 360 | 403 | 408 | 329 | 262 | 151 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 94.4 | 94.0 | 92.8 | 91.0 | 87.5 | 88.5 | 87.3 | 87.9 | 89.4 | 88.4 | 87.1 | 86.4 | 89.5 | 91.7 | 94.4 |  |
| Usually don't get high | 0.2 | 0.2 | 0.3 | 0.5 | 0.7 | 0.8 | 1.0 | 1.0 | 1.5 | 1.1 | 1.2 | 1.2 | 1.0 | 1.1 | 0.6 |  |
| One to two hours | 1.7 | 1.7 | 2.3 | 3.0 | 5.4 | 4.4 | 5.8 | 5.2 | 4.4 | 5.1 | 6.2 | 7.5 | 4.7 | 4.1 | 3.0 |  |
| Three to six hours | 2.7 | 2.8 | 3.6 | 3.6 | 4.6 | 4.2 | 4.3 | 4.2 | 3.6 | 3.9 | 4.1 | 3.8 | 3.1 | 2.1 | 1.2 |  |
| Seven to 24 hours | 0.8 | 1.2 | 0.9 | 1.9 | 1.8 | 2.0 | 1.2 | 1.6 | 0.9 | 1.4 | 1.1 | 1.0 | 1.4 | 0.8 | 0.6 |  |
| More than 24 hours | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.1 | 0.3 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 |  |
| Approx. $\mathrm{N}=$ | 2232 | 2750 | 3056 | 3678 | 3140 | 3102 | 3398 | 3471 | 3235 | 3112 | 3137 | 2993 | 3130 | 3178 | 2680 |  |

TABLE 7-4 (cont'd)
Cocaine: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When youtake cocaine Classof |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| how high do you usually get? ${ }^{\text {a }}$ | $\underline{1990}$ | 1991 | 1992 | $\underline{1993}$ | 1994 | $\underline{1995}$ | $\underline{1996}$ | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I don't take it to get high | 3.9 | 2.7 | 3.1 | 7.7 | 2.6 | 4.6 | 9.5 | 4.6 | 7.6 | 5.1 | 5.1 | 11.7 | 4.6 | 2.4 | 5.1 |
| Not at all high | 10.2 | 11.3 | 6.4 | 12.1 | 10.5 | 8.9 | 5.1 | 5.1 | 10.8 | 7.1 | 8.6 | 8.9 | 8.9 | 12.8 | 12.2 |
| A little high | 18.1 | 13.2 | 22.1 | 19.7 | 16.3 | 12.9 | 13.2 | 15.4 | 16.6 | 12.0 | 29.1 | 14.4 | 14.3 | 12.6 | 17.9 |
| Moderately high | 36.1 | 45.1 | 31.8 | 33.6 | 33.0 | 27.8 | 46.7 | 30.6 | 35.2 | 45.9 | 29.0 | 32.2 | 42.9 | 41.8 | 35.8 |
| Very high | 31.8 | 27.8 | 36.5 | 27.0 | 37.5 | 45.8 | 25.4 | 44.3 | 29.8 | 29.9 | 28.2 | 32.7 | 29.3 | 30.5 | 29.0 |
| Approx. $\mathrm{N}=$ | 109 | 71 | 66 | 89 | 79 | 85 | 76 | 127 | 119 | 126 | 99 | 99 | 90 | 97 | 124 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 95.6 | 97.1 | 97.4 | 96.5 | 96.8 | 96.5 | 96.6 | 94.8 | 95.1 | 94.2 | 95.1 | 95.1 | 95.6 | 95.8 | 94.6 |
| I don't take it to get high | 0.2 | 0.1 | 0.1 | 0.3 | 0.1 | 0.2 | 0.3 | 0.2 | 0.4 | 0.3 | 0.3 | 0.6 | 0.2 | 0.1 | 0.3 |
| Not at all high | 0.5 | 0.3 | 0.2 | 0.4 | 0.3 | 0.3 | 0.2 | 0.3 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 0.7 |
| A little high | 0.8 | 0.4 | 0.6 | 0.7 | 0.5 | 0.4 | 0.4 | 0.8 | 0.8 | 0.7 | 1.4 | 0.7 | 0.6 | 0.5 | 1.0 |
| Moderately high | 1.6 | 1.3 | 0.8 | 1.2 | 1.1 | 1.0 | 1.6 | 1.6 | 1.7 | 2.7 | 1.4 | 1.6 | 1.9 | 1.8 | 1.9 |
| Very high | 1.4 | 0.8 | 0.9 | 0.9 | 1.2 | 1.6 | 0.9 | 2.3 | 1.5 | 1.7 | 1.4 | 1.6 | 1.3 | 1.3 | 1.6 |
| Approx. $\mathrm{N}=$ | 2480 | 2420 | 2560 | 2550 | 2473 | 2463 | 2261 | 2452 | 2424 | 2169 | 2024 | 2020 | 2053 | 2308 | 2318 |

When you take cocaine
how long do you usually stay high? ${ }^{\text {a }}$
\% of Recent Users

| Usually don't get high |  | 11.6 | 21.5 | 6.6 | 16.9 | 10.4 | 13.0 | 6.3 | 10.5 | 14.1 | 9.8 | 15.0 | 12.1 | 7.3 | 14.1 | 16.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 52.0 | 34.0 | 41.8 | 42.7 | 52.8 | 41.4 | 51.8 | 51.3 | 44.4 | 39.7 | 39.8 | 40.9 | 48.9 | 39.6 | 50.1 |
| Three to six hours |  | 25.9 | 32.3 | 25.0 | 24.2 | 20.1 | 18.7 | 22.9 | 24.9 | 29.6 | 36.1 | 28.5 | 25.0 | 29.1 | 32.1 | 22.3 |
| Seven to 24 hours |  | 8.1 | 10.4 | 20.2 | 12.9 | 12.8 | 21.1 | 11.5 | 13.2 | 6.7 | 12.9 | 11.4 | 18.2 | 10.8 | 11.0 | 8.8 |
| More than 24 hours |  | 2.5 | 1.7 | 6.5 | 3.3 | 3.9 | 5.7 | 7.5 | 0.0 | 5.2 | 1.5 | 5.3 | 3.9 | 3.9 | 3.3 | 2.9 |
|  | Approx. $\mathrm{N}=$ | 108 | 72 | 64 | 92 | 74 | 83 | 69 | 128 | 115 | 126 | 98 | 99 | 86 | 93 | 124 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 95.6 | 97.0 | 97.5 | 96.4 | 97.0 | 96.6 | 96.9 | 94.8 | 95.2 | 94.2 | 95.2 | 95.1 | 95.8 | 96.0 | 94.7 |
| Usually don't get high |  | 0.5 | 0.6 | 0.2 | 0.6 | 0.3 | 0.4 | 0.2 | 0.5 | 0.7 | 0.6 | 0.7 | 0.6 | 0.3 | 0.6 | 0.9 |
| One to two hours |  | 2.3 | 1.0 | 1.0 | 1.5 | 1.6 | 1.4 | 1.6 | 2.7 | 2.1 | 2.3 | 1.9 | 2.0 | 2.1 | 1.6 | 2.7 |
| Three to six hours |  | 1.1 | 1.0 | 0.6 | 0.9 | 0.6 | 0.6 | 0.7 | 1.3 | 1.4 | 2.1 | 1.4 | 1.2 | 1.2 | 1.3 | 1.2 |
| Seven to 24 hours |  | 0.4 | 0.3 | 0.5 | 0.5 | 0.4 | 0.7 | 0.4 | 0.7 | 0.3 | 0.7 | 0.6 | 0.9 | 0.5 | 0.4 | 0.5 |
| More than 24 hours |  | 0.1 | 0.0 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.0 | 0.2 | 0.1 | 0.3 | 0.2 | 0.2 | 0.1 | 0.2 |
|  | Approx. $\mathrm{N}=$ | 2479 | 2420 | 2559 | 2553 | 2468 | 2461 | 2254 | 2453 | 2421 | 2168 | 2022 | 2020 | 2048 | 2305 | 2317 |

[^55]${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-5
Other Narcotics: Trends in Degree and Duration of Feeling High for Twelfth Graders


When you take narcotics other than heroin
how long do you usually stay high? a
\% of Recent Users

| Usually don't get high |  | 6.8 | 15.4 | 7.4 | 24.6 | 17.8 | 15.7 | 24.2 | 17.0 | 23.9 | 23.2 | 25.1 | 24.7 | 41.4 | 23.7 | 38.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 8.8 | 16.7 | 32.5 | 19.3 | 24.6 | 29.5 | 30.4 | 36.4 | 26.7 | 29.3 | 30.9 | 30.9 | 25.9 | 26.6 | 18.2 |
| Three to six hours |  | 56.5 | 44.1 | 46.2 | 50.2 | 44.3 | 42.1 | 33.2 | 34.0 | 38.6 | 38.1 | 29.9 | 35.3 | 24.9 | 41.4 | 22.6 |
| Seven to 24 hours |  | 24.5 | 20.5 | 11.1 | 15.9 | 12.1 | 12.4 | 9.8 | 12.0 | 8.4 | 8.8 | 13.3 | 9.2 | 5.8 | 7.5 | 15.6 |
| More than 24 hours |  | 3.4 | 3.2 | 2.8 | 0.0 | 1.2 | 0.2 | 2.3 | 0.6 | 2.4 | 0.6 | 0.8 | 0.0 | 2.0 | 0.8 | 4.8 |
|  | Approx. $\mathrm{N}=$ | 78 | 130 | 124 | 173 | 151 | 164 | 180 | 116 | 94 | 121 | 128 | 102 | 112 | 79 | 65 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 94.3 | 94.3 | 93.6 | 94.0 | 95.0 | 94.5 | 94.5 | 96.5 | 97.0 | 96.0 | 95.8 | 96.5 | 96.4 | 97.5 | 97.5 |
| Usually don't get high |  | 0.4 | 0.9 | 0.5 | 0.9 | 0.9 | 0.9 | 1.3 | 0.6 | 0.7 | 0.9 | 1.0 | 0.9 | 1.5 | 0.6 | 1.0 |
| One to two hours |  | 0.5 | 1.0 | 2.1 | 1.2 | 1.2 | 1.6 | 1.7 | 1.3 | 0.8 | 1.2 | 1.3 | 1.1 | 0.9 | 0.7 | 0.4 |
| Three to six hours |  | 3.2 | 2.5 | 3.0 | 3.0 | 2.2 | 2.3 | 1.8 | 1.2 | 1.2 | 1.5 | 1.2 | 1.2 | 0.9 | 1.0 | 0.6 |
| Seven to 24 hours |  | 1.4 | 1.2 | 0.7 | 1.0 | 0.6 | 0.7 | 0.5 | 0.4 | 0.3 | 0.3 | 0.6 | 0.3 | 0.2 | 0.2 | 0.4 |
| More than 24 hours |  | 0.2 | 0.2 | 0.2 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 |
|  |  | Approx. $\mathrm{N}=$ | 1368 | 2281 | 1938 | 2883 | 3040 | 2982 | 3275 | 3353 | 3116 | 3043 | 3067 | 2908 | 3092 | 3139 | 2654 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appearin just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-5 (cont'd)
Other Narcotics: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take narcotic sother than heroin how high do you usually get? ${ }^{\text {a }}$ | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | $\underline{2004}$ |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I don't take them to get high | 36.6 | 20.5 | 27.7 | 25.1 | 22.7 | 13.7 | 23.4 | 12.8 | 12.6 | 14.2 | 19.6 | 18.6 | 15.4 | 19.4 | 7.4 |
| Not at all high | 10.1 | 9.9 | 26.7 | 18.0 | 10.8 | 13.0 | 12.3 | 5.0 | 9.8 | 10.6 | 9.0 | 0.0 | 11.6 | 4.6 | 8.9 |
| A little high | 18.5 | 20.6 | 19.2 | 12.8 | 22.8 | 13.9 | 20.0 | 27.4 | 27.5 | 14.7 | 20.8 | 27.8 | 23.0 | 21.2 | 23.9 |
| Moderately high | 19.5 | 36.9 | 14.2 | 27.9 | 29.0 | 34.0 | 23.4 | 43.0 | 26.0 | 38.3 | 30.2 | 31.6 | 35.3 | 40.3 | 42.3 |
| Very high | 15.3 | 12.1 | 12.1 | 16.3 | 14.8 | 25.5 | 20.9 | 11.8 | 24.1 | 22.3 | 20.4 | 21.9 | 14.8 | 14.5 | 17.5 |
| Approx. $\mathrm{N}=$ | 71 | 46 | 74 | 56 | 58 | 51 | 82 | 96 | 113 | 89 | 102 | 82 | 133 | 158 | 182 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 97.1 | 98.1 | 97.1 | 97.8 | 97.7 | 97.9 | 96.4 | 96.0 | 95.3 | 95.9 | 94.9 | 95.9 | 93.5 | 93.1 | 92.2 |
| I don't take them to get high | 1.1 | 0.4 | 0.8 | 0.6 | 0.5 | 0.3 | 0.8 | 0.5 | 0.6 | 0.6 | 1.0 | 0.8 | 1.0 | 1.3 | 0.6 |
| Not at all high | 0.3 | 0.2 | 0.8 | 0.4 | 0.3 | 0.3 | 0.4 | 0.2 | 0.5 | 0.4 | 0.5 | 0.0 | 0.8 | 0.3 | 0.7 |
| A little high | 0.5 | 0.4 | 0.6 | 0.3 | 0.5 | 0.3 | 0.7 | 1.1 | 1.3 | 0.6 | 1.1 | 1.1 | 1.5 | 1.5 | 1.9 |
| Moderately high | 0.6 | 0.7 | 0.4 | 0.6 | 0.7 | 0.7 | 0.9 | 1.7 | 1.2 | 1.6 | 1.5 | 1.3 | 2.3 | 2.8 | 3.3 |
| Very high | 0.4 | 0.2 | 0.4 | 0.4 | 0.3 | 0.5 | 0.8 | 0.5 | 1.1 | 0.9 | 1.0 | 0.9 | 1.0 | 1.0 | 1.4 |
| Approx. $\mathrm{N}=$ | 2465 | 2410 | 2538 | 2553 | 2492 | 2442 | 2261 | 2407 | 2409 | 2167 | 2001 | 1996 | 2035 | 2299 | 2334 |

When you take narcotics other than heroin
how long do you usually stay high? ${ }^{\text {a }}$
\% of Recent Users

| Usually don't get high |  | 38.5 | 31.3 | 36.8 | 36.3 | 31.7 | 22.4 | 27.8 | 20.6 | 18.8 | 21.5 | 23.1 | 15.2 | 22.8 | 17.6 | 15.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 24.0 | 23.0 | 26.7 | 18.1 | 31.6 | 23.8 | 22.7 | 35.7 | 26.1 | 30.1 | 25.9 | 36.7 | 29.7 | 34.4 | 35.4 |
| Three to six hours |  | 29.1 | 38.2 | 26.0 | 29.9 | 35.2 | 36.2 | 32.5 | 36.1 | 37.8 | 29.2 | 42.9 | 40.2 | 33.0 | 36.8 | 42.0 |
| Seven to 24 hours |  | 5.7 | 7.5 | 5.6 | 13.0 | 0.7 | 15.4 | 14.2 | 7.6 | 14.4 | 17.4 | 3.9 | 7.8 | 14.5 | 10.0 | 6.7 |
| More than 24 hours |  | 2.7 | 0.0 | 5.0 | 2.7 | 0.9 | 2.3 | 2.7 | 0.0 | 2.9 | 1.7 | 4.2 | 0.0 | 0.0 | 1.2 | 0.8 |
|  | Approx. $\mathrm{N}=$ | 69 | 49 | 76 | 57 | 60 | 49 | 82 | 96 | 111 | 89 | 97 | 84 | 136 | 156 | 182 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 97.2 | 98.0 | 97.0 | 97.8 | 97.6 | 98.0 | 96.4 | 96.0 | 95.4 | 95.9 | 95.1 | 95.8 | 93.3 | 93.2 | 92.2 |
| Usually don't get high |  | 1.1 | 0.6 | 1.1 | 0.8 | 0.8 | 0.5 | 1.0 | 0.8 | 0.9 | 0.9 | 1.1 | 0.6 | 1.5 | 1.2 | 1.2 |
| One to two hours |  | 0.7 | 0.5 | 0.8 | 0.4 | 0.8 | 0.5 | 0.8 | 1.4 | 1.2 | 1.2 | 1.3 | 1.5 | 2.0 | 2.3 | 2.8 |
| Three to six hours |  | 0.8 | 0.8 | 0.8 | 0.7 | 0.8 | 0.7 | 1.2 | 1.4 | 1.7 | 1.2 | 2.1 | 1.7 | 2.2 | 2.5 | 3.3 |
| Seven to 24 hours |  | 0.2 | 0.2 | 0.2 | 0.3 | 0.0 | 0.3 | 0.5 | 0.3 | 0.7 | 0.7 | 0.2 | 0.3 | 1.0 | 0.7 | 0.5 |
| More than 24 hours |  | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.2 | 0.0 | 0.0 | 0.1 | 0.1 |
|  |  | Approx. $\mathrm{N}=$ | 2463 | 2413 | 2540 | 2554 | 2493 | 2441 | 2261 | 2407 | 2406 | 2167 | 1996 | 1998 | 2037 | 2297 | 2334 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-6
Amphetamines: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take amphetamines Classof: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| how high do you usually get? ${ }^{\text {a }}$ | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | Cont'd |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I don't take them to get high | 9.3 | 10.7 | 15.1 | 14.7 | 16.8 | 17.1 | 20.2 | 21.0 | 24.2 | 22.8 | 20.4 | 18.7 | 20.7 | 23.9 | 19.3 |  |
| Not at all high | 4.6 | 5.0 | 7.5 | 6.2 | 7.7 | 8.9 | 11.5 | 9.1 | 11.9 | 9.3 | 12.8 | 10.8 | 12.2 | 14.2 | 14.0 |  |
| A little high | 26.4 | 26.1 | 24.0 | 25.9 | 26.5 | 34.0 | 31.4 | 36.8 | 33.0 | 34.8 | 36.7 | 42.6 | 40.0 | 29.1 | 30.8 |  |
| Moderately high | 44.6 | 43.8 | 39.2 | 40.2 | 36.4 | 30.8 | 30.6 | 28.5 | 27.0 | 29.5 | 24.9 | 23.3 | 20.6 | 24.8 | 24.4 |  |
| Very high | 15.1 | 14.4 | 14.1 | 13.0 | 12.6 | 9.3 | 6.3 | 4.6 | 3.9 | 3.5 | 5.2 | 4.6 | 6.6 | 8.0 | 11.5 |  |
| Approx. $\mathrm{N}=$ | 410 | 406 | 449 | 542 | 507 | 575 | 788 | 622 | 463 | 418 | 380 | 305 | 265 | 196 | 153 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 83.8 | 84.2 | 83.7 | 82.9 | 83.6 | 81.2 | 76.5 | 82.0 | 85.6 | 86.7 | 87.9 | 89.8 | 91.7 | 93.9 | 94.4 |  |
| I don't take them to get high | 1.5 | 1.7 | 2.5 | 2.5 | 2.8 | 3.2 | 4.8 | 3.8 | 3.5 | 3.0 | 2.5 | 1.9 | 1.7 | 1.5 | 1.1 |  |
| Not at all high | 0.7 | 0.8 | 1.2 | 1.1 | 1.3 | 1.7 | 2.7 | 1.6 | 1.7 | 1.2 | 1.6 | 1.1 | 1.0 | 0.9 | 0.8 |  |
| A little high | 4.3 | 4.1 | 3.9 | 4.4 | 4.3 | 6.4 | 7.4 | 6.6 | 4.8 | 4.6 | 4.5 | 4.3 | 3.3 | 1.8 | 1.7 |  |
| Moderately high | 7.2 | 6.9 | 6.4 | 6.9 | 6.0 | 5.8 | 7.2 | 5.1 | 3.9 | 3.9 | 3.0 | 2.4 | 1.7 | 1.5 | 1.4 |  |
| Very high | 2.4 | 2.3 | 2.3 | 2.2 | 2.1 | 1.7 | 1.5 | 0.8 | 0.6 | 0.5 | 0.6 | 0.5 | 0.5 | 0.5 | 0.6 |  |
| Approx. $\mathrm{N}=$ | 2531 | 2570 | 2755 | 3170 | 3098 | 3055 | 3354 | 3455 | 3211 | 3129 | 3131 | 2994 | 3170 | 3217 | 2741 |  |

When you take amphetamines
how long do you usually stay high? a
\% of Recent Users

| Usually don't get high |  | 10.7 | 11.2 | 11.9 | 14.5 | 15.4 | 17.9 | 24.4 | 17.5 | 22.7 | 25.3 | 26.1 | 21.3 | 24.4 | 29.3 | 25.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 11.4 | 12.1 | 15.3 | 17.0 | 18.7 | 19.9 | 20.3 | 25.2 | 23.2 | 27.0 | 31.4 | 36.8 | 37.4 | 30.4 | 36.9 |
| Three to six hours |  | 37.0 | 48.4 | 38.4 | 39.5 | 40.1 | 43.4 | 38.2 | 45.5 | 42.6 | 35.7 | 31.2 | 31.0 | 23.3 | 26.0 | 26.5 |
| Seven to 24 hours |  | 37.0 | 26.1 | 31.6 | 27.1 | 23.8 | 17.7 | 16.3 | 11.0 | 9.7 | 11.9 | 10.8 | 10.1 | 12.9 | 13.1 | 7.2 |
| More than 24 hours |  | 3.8 | 2.1 | 2.9 | 1.9 | 2.0 | 1.1 | 0.8 | 0.8 | 1.8 | 0.2 | 0.6 | 0.8 | 2.0 | 1.1 | 4.2 |
|  | Approx. $\mathrm{N}=$ | 412 | 413 | 446 | 546 | 521 | 583 | 810 | 627 | 478 | 424 | 392 | 309 | 267 | 202 | 154 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 83.8 | 84.2 | 83.7 | 82.9 | 83.3 | 81.0 | 76.0 | 81.9 | 85.2 | 86.5 | 87.5 | 89.7 | 91.6 | 93.7 | 94.4 |
| Usually don't get high |  | 1.7 | 1.8 | 1.9 | 2.5 | 2.6 | 3.4 | 5.8 | 3.2 | 3.4 | 3.4 | 3.3 | 2.2 | 2.0 | 1.8 | 1.4 |
| One to two hours |  | 1.8 | 1.9 | 2.5 | 2.9 | 3.1 | 3.8 | 4.9 | 4.6 | 3.4 | 3.7 | 3.9 | 3.8 | 3.1 | 1.9 | 2.1 |
| Three to six hours |  | 6.0 | 7.6 | 6.3 | 6.7 | 6.7 | 8.3 | 9.2 | 8.2 | 6.3 | 4.8 | 3.9 | 3.2 | 2.0 | 1.6 | 1.5 |
| Seven to 24 hours |  | 6.0 | 4.1 | 5.1 | 4.6 | 4.0 | 3.4 | 3.9 | 2.0 | 1.4 | 1.6 | 1.3 | 1.0 | 1.1 | 0.8 | 0.4 |
| More than 24 hours |  | 0.6 | 0.3 | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.0 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 |
|  | Approx. $\mathrm{N}=$ | 2543 | 2614 | 2736 | 3193 | 3111 | 3063 | 3375 | 3460 | 3227 | 3135 | 3142 | 2998 | 3172 | 3223 | 2742 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appearin just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-6 (cont'd)
Amphetamines: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take amphetamines |  |  |  |  |  |  |  | lasso |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| how high do you usually get? ${ }^{\text {a }}$ | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I don't take them to get high | 15.8 | 24.7 | 15.8 | 18.6 | 19.9 | 16.1 | 30.6 | 18.1 | 18.9 | 19.6 | 17.3 | 22.4 | 27.4 | 20.3 | 18.8 |
| Not at all high | 18.8 | 10.8 | 19.2 | 20.5 | 12.0 | 17.0 | 9.3 | 16.0 | 12.4 | 12.9 | 11.4 | 11.8 | 15.3 | 13.7 | 14.2 |
| A little high | 30.0 | 35.5 | 28.6 | 30.6 | 29.1 | 27.5 | 25.4 | 27.3 | 27.3 | 26.9 | 23.5 | 15.9 | 23.9 | 22.6 | 29.4 |
| Moderately high | 24.9 | 16.8 | 23.0 | 19.9 | 26.8 | 28.1 | 18.3 | 23.2 | 25.1 | 25.9 | 28.2 | 27.4 | 18.6 | 29.9 | 24.6 |
| Very high | 10.5 | 12.1 | 13.4 | 10.3 | 12.2 | 11.3 | 16.4 | 15.3 | 16.3 | 14.6 | 19.6 | 22.5 | 14.8 | 13.5 | 13.1 |
| Approx. $\mathrm{N}=$ | 131 | 107 | 105 | 127 | 144 | 145 | 138 | 183 | 198 | 141 | 126 | 145 | 146 | 177 | 206 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 94.8 | 95.7 | 96.0 | 95.2 | 94.3 | 94.2 | 94.0 | 92.6 | 92.0 | 93.7 | 93.9 | 92.9 | 93.0 | 92.6 | 91.4 |
| I don't take them to get high | 0.8 | 1.1 | 0.6 | 0.9 | 1.1 | 0.9 | 1.8 | 1.3 | 1.5 | 1.2 | 1.1 | 1.6 | 1.9 | 1.5 | 1.6 |
| Not at all high | 1.0 | 0.5 | 0.8 | 1.0 | 0.7 | 1.0 | 0.6 | 1.2 | 1.0 | 0.8 | 0.7 | 0.8 | 1.1 | 1.0 | 1.2 |
| A little high | 1.6 | 1.5 | 1.1 | 1.5 | 1.7 | 1.6 | 1.5 | 2.0 | 2.2 | 1.7 | 1.4 | 1.1 | 1.7 | 1.7 | 2.5 |
| Moderately high | 1.3 | 0.7 | 0.9 | 1.0 | 1.5 | 1.6 | 1.1 | 1.7 | 2.0 | 1.6 | 1.7 | 1.9 | 1.3 | 2.2 | 2.1 |
| Very high | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 0.6 | 1.0 | 1.1 | 1.3 | 0.9 | 1.2 | 1.6 | 1.0 | 1.0 | 1.1 |
| Approx. $\mathrm{N}=$ | 2513 | 2473 | 2609 | 2634 | 2538 | 2514 | 2300 | 2490 | 2482 | 2233 | 2058 | 2053 | 2101 | 2383 | 2404 |

When you take ampheta mines
how long do you usually stay high? ${ }^{\text {a }}$
\% of Recent Users

| Usually don't get high |  | 30.0 | 38.8 | 31.3 | 33.7 | 34.6 | 27.9 | 32.7 | 29.0 | 23.1 | 21.7 | 24.1 | 30.1 | 36.4 | 27.2 | 29.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 33.2 | 23.4 | 32.2 | 31.5 | 28.7 | 23.8 | 25.1 | 26.7 | 26.5 | 29.0 | 26.9 | 27.8 | 18.2 | 25.0 | 21.8 |
| Three to six hours |  | 22.5 | 19.0 | 11.0 | 25.0 | 20.7 | 29.7 | 27.2 | 29.8 | 28.0 | 37.5 | 34.2 | 23.9 | 22.3 | 24.5 | 27.0 |
| Seven to 24 hours |  | 12.9 | 12.8 | 18.1 | 6.9 | 10.7 | 13.6 | 11.6 | 12.6 | 16.9 | 8.6 | 14.2 | 17.0 | 18.1 | 18.4 | 21.0 |
| More than 24 hours |  | 1.4 | 6.0 | 7.5 | 3.0 | 5.3 | 4.9 | 3.4 | 1.9 | 5.5 | 3.2 | 0.6 | 1.1 | 5.0 | 5.0 | 0.8 |
|  | Approx. $\mathrm{N}=$ | 131 | 109 | 102 | 125 | 146 | 147 | 136 | 178 | 195 | 134 | 123 | 143 | 143 | 172 | 206 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 94.8 | 95.6 | 96.1 | 95.3 | 94.3 | 94.2 | 94.1 | 92.8 | 92.1 | 94.0 | 94.0 | 93.0 | 93.2 | 92.8 | 91.4 |
| Usually don't get high |  | 1.6 | 1.7 | 1.2 | 1.6 | 2.0 | 1.6 | 1.9 | 2.1 | 1.8 | 1.3 | 1.4 | 2.1 | 2.5 | 2.0 | 2.5 |
| One to two hours |  | 1.7 | 1.0 | 1.3 | 1.5 | 1.6 | 1.4 | 1.5 | 1.9 | 2.1 | 1.7 | 1.6 | 1.9 | 1.2 | 1.8 | 1.9 |
| Three to six hours |  | 1.2 | 0.8 | 0.4 | 1.2 | 1.2 | 1.7 | 1.6 | 2.1 | 2.2 | 2.3 | 2.0 | 1.7 | 1.5 | 1.8 | 2.3 |
| Seven to 24 hours |  | 0.7 | 0.6 | 0.7 | 0.3 | 0.6 | 0.8 | 0.7 | 0.9 | 1.3 | 0.5 | 0.9 | 1.2 | 1.2 | 1.3 | 1.8 |
| More than 24 hours |  | 0.1 | 0.3 | 0.3 | 0.1 | 0.3 | 0.3 | 0.2 | 0.1 | 0.4 | 0.2 | 0.0 | 0.1 | 0.3 | 0.4 | 0.1 |
|  | Approx. $\mathrm{N}=$ | 2513 | 2475 | 2607 | 2633 | 2539 | 2516 | 2298 | 2485 | 2479 | 2226 | 2055 | 2051 | 2098 | 2378 | 2404 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-7
Tranquilizers: Trends in Degree and Duration of Feeling High for Twelfth Graders

| uilizers Classof: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| how high do you usually get? ${ }^{\text {a }}$ | $\underline{1975}$ | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | $\underline{1983}$ | 1984 | 1985 | $\underline{1986}$ | 1987 | 1988 | 1989 | Cont'd |
| \%of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I don't take them to get high | 17.9 | 18.5 | 23.6 | 23.0 | 16.8 | 14.7 | 19.1 | 25.3 | 20.2 | 24.3 | 21.7 | 30.7 | 30.4 | 42.7 | 34.8 |  |
| Not at all high | 11.1 | 16.2 | 12.4 | 14.0 | 15.0 | 17.6 | 17.0 | 17.3 | 17.1 | 16.7 | 17.6 | 24.0 | 20.8 | 12.9 | 22.6 |  |
| A little high | 30.1 | 24.1 | 29.5 | 27.0 | 27.0 | 27.5 | 28.7 | 30.0 | 27.7 | 29.9 | 37.5 | 19.2 | 18.4 | 22.4 | 16.6 |  |
| Moderately high | 28.9 | 31.4 | 25.8 | 29.1 | 30.5 | 29.8 | 22.9 | 18.5 | 26.0 | 21.4 | 19.8 | 17.3 | 18.2 | 14.1 | 21.5 |  |
| Very high | 11.9 | 9.8 | 8.7 | 6.8 | 10.8 | 10.5 | 12.4 | 8.8 | 9.0 | 7.7 | 3.4 | 8.9 | 12.2 | 7.9 | 4.5 |  |
| Approx. $\mathrm{N}=$ | 159 | 213 | 243 | 267 | 218 | 205 | 223 | 154 | 128 | 115 | 144 | 122 | 125 | 99 | 68 |  |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 89.4 | 89.7 | 89.2 | 90.1 | 92.9 | 93.2 | 93.3 | 95.5 | 96.0 | 96.3 | 95.4 | 95.9 | 96.0 | 96.9 | 97.5 |  |
| I don't take them to get high | 1.9 | 1.9 | 2.5 | 2.3 | 1.2 | 1.0 | 1.3 | 1.1 | 0.8 | 0.9 | 1.0 | 1.3 | 1.2 | 1.3 | 0.9 |  |
| Not at all high | 1.2 | 1.7 | 1.3 | 1.4 | 1.1 | 1.2 | 1.1 | 0.8 | 0.7 | 0.6 | 0.8 | 1.0 | 0.8 | 0.4 | 0.6 |  |
| A little high | 3.2 | 2.5 | 3.2 | 2.7 | 1.9 | 1.9 | 1.9 | 1.4 | 1.1 | 1.1 | 1.7 | 0.8 | 0.7 | 0.7 | 0.4 |  |
| Moderately high | 3.1 | 3.2 | 2.8 | 2.9 | 2.2 | 2.0 | 1.5 | 0.8 | 1.0 | 0.8 | 0.9 | 0.7 | 0.7 | 0.4 | 0.5 |  |
| Very high | 1.3 | 1.0 | 0.9 | 0.7 | 0.8 | 0.7 | 0.8 | 0.4 | 0.4 | 0.3 | 0.2 | 0.4 | 0.5 | 0.2 | 0.1 |  |
| Approx. $\mathrm{N}=$ | 1500 | 2068 | 2250 | 2697 | 3073 | 3040 | 3330 | 3420 | 3186 | 3074 | 3119 | 2963 | 3141 | 3199 | 2710 |  |

When you take tranquilizers
how long do you usually stay high? a
\% of Recent Users

| Usually don't get high |  | 29.9 | 33.0 | 31.6 | 32.7 | 27.8 | 27.9 | 31.1 | 31.9 | 38.8 | 36.9 | 36.8 | 46.0 | 50.4 | 48.3 | 45.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 17.6 | 24.1 | 22.5 | 26.0 | 21.3 | 25.4 | 27.2 | 25.0 | 21.6 | 25.7 | 24.7 | 25.3 | 20.0 | 19.3 | 19.9 |
| Three to six hours |  | 42.9 | 35.6 | 38.8 | 32.3 | 40.2 | 32.4 | 32.1 | 33.3 | 32.5 | 27.8 | 33.5 | 22.4 | 21.8 | 23.7 | 28.5 |
| Seven to 24 hours |  | 9.5 | 6.5 | 6.1 | 8.7 | 9.4 | 14.2 | 9.5 | 9.8 | 6.3 | 9.5 | 3.5 | 4.4 | 7.3 | 8.0 | 3.0 |
| More than 24 hours |  | 0.0 | 0.7 | 1.0 | 0.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 1.6 | 1.9 | 0.4 | 0.8 | 3.3 |
|  | Approx. $\mathrm{N}=$ | 158 | 214 | 242 | 269 | 221 | 200 | 221 | 151 | 132 | 114 | 134 | 121 | 129 | 95 | 65 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 89.4 | 89.7 | 89.2 | 90.1 | 92.8 | 93.4 | 93.4 | 95.6 | 95.9 | 96.3 | 95.7 | 95.9 | 95.9 | 97.0 | 97.6 |
| Usually don't get high |  | 3.2 | 3.4 | 3.4 | 3.2 | 2.0 | 1.8 | 2.1 | 1.4 | 1.6 | 1.4 | 1.6 | 1.9 | 2.1 | 1.4 | 1.1 |
| One to two hours |  | 1.9 | 2.5 | 2.4 | 2.6 | 1.5 | 1.7 | 1.8 | 1.1 | 0.9 | 1.0 | 1.1 | 1.0 | 0.8 | 0.6 | 0.5 |
| Three to six hours |  | 4.5 | 3.7 | 4.2 | 3.2 | 2.9 | 2.1 | 2.1 | 1.5 | 1.3 | 1.0 | 1.4 | 0.9 | 0.9 | 0.7 | 0.7 |
| Seven to 24 hours |  | 1.0 | 0.7 | 0.7 | 0.9 | 0.7 | 0.9 | 0.6 | 0.4 | 0.3 | 0.4 | 0.1 | 0.2 | 0.3 | 0.2 | 0.1 |
| More than 24 hours |  | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
|  | Approx. $\mathrm{N}=$ | 1491 | 2078 | 2241 | 2717 | 3075 | 3034 | 3328 | 3417 | 3190 | 3072 | 3110 | 2962 | 3144 | 3196 | 2707 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-7 (cont'd)
Tranquilizers: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you take tranquilizers how high do you usually get? ${ }^{\text {a }}$ | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underline{1990}$ | 1991 | 1992 | $\underline{1993}$ | 1994 | $\underline{1995}$ | $\underline{1996}$ | 1997 | 1998 | $\underline{1999}$ | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | 2004 |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I don't take them to get high | 34.5 | 48.3 | 31.0 | 29.0 | 30.5 | 26.6 | 18.3 | 19.3 | 19.6 | 11.3 | 9.4 | 20.1 | 16.6 | 16.1 | 14.3 |
| Not at all high | 11.5 | 13.9 | 18.6 | 29.5 | 19.2 | 18.6 | 9.4 | 13.4 | 8.0 | 7.9 | 10.9 | 11.8 | 10.4 | 7.5 | 13.4 |
| A little high | 26.1 | 19.7 | 16.1 | 19.0 | 22.0 | 18.9 | 34.0 | 25.2 | 24.9 | 22.1 | 35.2 | 21.4 | 17.2 | 23.2 | 24.1 |
| Moderately high | 18.2 | 17.3 | 21.2 | 14.6 | 24.4 | 24.0 | 28.1 | 23.9 | 37.9 | 39.7 | 33.7 | 29.4 | 34.2 | 32.0 | 32.3 |
| Very high | 9.8 | 0.8 | 13.2 | 7.8 | 4.0 | 11.8 | 10.2 | 18.2 | 9.5 | 19.1 | 10.9 | 17.3 | 21.6 | 21.2 | 16.0 |
| Approx. $\mathrm{N}=$ | 75 | 51 | 57 | 68 | 58 | 67 | 54 | 83 | 80 | 77 | 69 | 95 | 98 | 110 | 126 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 97.0 | 97.9 | 97.8 | 97.4 | 97.7 | 97.3 | 97.6 | 96.6 | 96.8 | 96.5 | 96.6 | 95.3 | 95.3 | 95.4 | 94.7 |
| I don't take them to get high | 1.0 | 1.0 | 0.7 | 0.8 | 0.7 | 0.7 | 0.4 | 0.6 | 0.6 | 0.4 | 0.3 | 0.9 | 0.8 | 0.8 | 0.8 |
| Not at all high | 0.3 | 0.3 | 0.4 | 0.8 | 0.4 | 0.5 | 0.2 | 0.5 | 0.3 | 0.3 | 0.4 | 0.6 | 0.5 | 0.4 | 0.7 |
| A little high | 0.8 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.8 | 0.9 | 0.8 | 0.8 | 1.2 | 1.0 | 0.8 | 1.1 | 1.3 |
| Moderately high | 0.6 | 0.4 | 0.5 | 0.4 | 0.6 | 0.6 | 0.7 | 0.8 | 1.2 | 1.4 | 1.1 | 1.4 | 1.6 | 1.5 | 1.7 |
| Very high | 0.3 | 0.0 | 0.3 | 0.2 | 0.1 | 0.3 | 0.2 | 0.6 | 0.3 | 0.7 | 0.4 | 0.8 | 1.0 | 1.0 | 0.9 |
| Approx. $\mathrm{N}=$ | 2509 | 2448 | 2571 | 2598 | 2523 | 2500 | 2292 | 2469 | 2468 | 2205 | 2046 | 2033 | 2088 | 2356 | 2363 |

When you take tranquilizers
how long do you usually stay high? a
\% of Recent Users

| Usually don't get high |  | 35.8 | 47.2 | 48.7 | 50.2 | 43.6 | 34.0 | 30.6 | 22.1 | 25.1 | 11.5 | 13.4 | 25.2 | 23.8 | 22.6 | 20.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 20.7 | 20.5 | 19.1 | 19.1 | 18.7 | 25.4 | 22.6 | 35.2 | 31.4 | 36.4 | 34.3 | 19.0 | 27.6 | 27.8 | 27.8 |
| Three to six hours |  | 31.1 | 25.0 | 18.9 | 19.1 | 31.3 | 28.5 | 32.7 | 35.7 | 36.0 | 41.9 | 45.8 | 38.6 | 35.1 | 38.1 | 38.5 |
| Seven to 24 hours |  | 9.7 | 5.6 | 12.2 | 11.6 | 3.0 | 8.9 | 11.5 | 6.1 | 4.7 | 9.0 | 4.6 | 11.0 | 12.6 | 11.5 | 10.8 |
| More than 24 hours |  | 2.8 | 1.6 | 1.2 | 0.0 | 3.5 | 3.2 | 2.6 | 1.0 | 2.9 | 1.3 | 1.9 | 6.3 | 1.0 | 0.0 | 2.0 |
|  | Approx. $\mathrm{N}=$ | 67 | 48 | 55 | 72 | 51 | 62 | 54 | 79 | 81 | 74 | 70 | 95 | 98 | 106 | 128 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 97.3 | 98.0 | 97.9 | 97.2 | 98.0 | 97.5 | 97.7 | 96.8 | 96.7 | 96.6 | 96.6 | 95.3 | 95.3 | 95.5 | 94.6 |
| Usually don't get high |  | 1.0 | 0.9 | 1.0 | 1.4 | 0.9 | 0.8 | 0.7 | 0.7 | 0.8 | 0.4 | 0.5 | 1.2 | 1.1 | 1.0 | 1.1 |
| One to two hours |  | 0.6 | 0.4 | 0.4 | 0.5 | 0.4 | 0.6 | 0.5 | 1.1 | 1.0 | 1.2 | 1.2 | 0.9 | 1.3 | 1.3 | 1.5 |
| Three to six hours |  | 0.8 | 0.5 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 1.1 | 1.2 | 1.4 | 1.6 | 1.8 | 1.7 | 1.7 | 2.1 |
| Seven to 24 hours |  | 0.3 | 0.1 | 0.3 | 0.3 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.5 | 0.6 | 0.5 | 0.6 |
| More than 24 hours |  | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | 0.3 | 0.1 | 0.0 | 0.1 |
|  | Approx. $\mathrm{N}=$ | 2501 | 2446 | 2570 | 2602 | 2516 | 2495 | 2291 | 2465 | 2468 | 2202 | 2047 | 2032 | 2088 | 2352 | 2365 |

[^56]${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-8

## Alcohol: Trends in Degree and Duration of Feeling High for Twelfth Graders



When you drink alcoholic beverages
how long do you usually stay high? ${ }^{\text {a }}$
\% of Recent Users

| Usually don't get high |  | 25.7 | 24.6 | 22.6 | 21.3 | 21.7 | 22.7 | 20.9 | 20.5 | 21.4 | 20.3 | 21.5 | 20.9 | 20.8 | 22.9 | 24.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 40.5 | 38.5 | 38.8 | 39.8 | 41.9 | 39.5 | 40.3 | 41.3 | 40.8 | 42.2 | 41.5 | 40.6 | 43.8 | 42.0 | 41.3 |
| Three to six hours |  | 30.1 | 33.8 | 34.8 | 35.7 | 32.7 | 33.8 | 35.6 | 34.4 | 33.7 | 33.1 | 33.5 | 34.9 | 31.5 | 32.1 | 31.6 |
| Seven to 24 hours |  | 3.4 | 3.0 | 3.5 | 3.1 | 3.4 | 3.8 | 3.1 | 3.4 | 3.9 | 4.0 | 3.1 | 3.2 | 3.7 | 2.9 | 2.8 |
| More than 24 hours |  | 0.2 | 0.2 | 0.3 | 0.1 | 0.2 | 0.2 | 0.1 | 0.4 | 0.3 | 0.3 | 0.4 | 0.4 | 0.2 | 0.1 | 0.2 |
|  | Approx. $\mathrm{N}=$ | 2403 | 2358 | 2547 | 3098 | 2746 | 2697 | 2892 | 2947 | 2792 | 2588 | 2608 | 2509 | 2711 | 2748 | 2202 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 15.2 | 14.3 | 13.0 | 12.3 | 12.6 | 13.3 | 14.8 | 14.1 | 14.1 | 17.1 | 16.1 | 16.1 | 14.7 | 14.8 | 18.8 |
| Usually don't get high |  | 21.8 | 21.1 | 19.7 | 18.7 | 19.0 | 19.7 | 17.8 | 17.6 | 18.3 | 16.9 | 18.0 | 17.5 | 17.8 | 19.5 | 19.6 |
| One to two hours |  | 34.3 | 33.0 | 33.8 | 34.9 | 36.6 | 34.2 | 34.3 | 35.5 | 35.0 | 35.0 | 34.8 | 34.1 | 37.4 | 35.8 | 33.5 |
| Three to six hours |  | 25.5 | 29.0 | 30.3 | 31.3 | 28.6 | 29.3 | 30.4 | 29.6 | 28.9 | 27.4 | 28.1 | 29.3 | 26.9 | 27.3 | 25.6 |
| Seven to 24 hours |  | 2.9 | 2.6 | 3.0 | 2.7 | 3.0 | 3.3 | 2.7 | 2.9 | 3.3 | 3.4 | 2.6 | 2.7 | 3.2 | 2.5 | 2.2 |
| More than 24 hours |  | 0.2 | 0.2 | 0.3 | 0.1 | 0.2 | 0.2 | 0.1 | 0.3 | 0.2 | 0.2 | 0.3 | 0.4 | 0.2 | 0.1 | 0.2 |
|  | Approx. $\mathrm{N}=$ | 2834 | 2751 | 2928 | 3532 | 3142 | 3109 | 3393 | 3431 | 3252 | 3124 | 3110 | 2990 | 3177 | 3226 | 2712 |

[^57]${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

TABLE 7-8 (cont'd)

## Alcohol: Trends in Degree and Duration of Feeling High for Twelfth Graders

| When you drink alcoholic beverages |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| how high do you usually get? ${ }^{\text {a }}$ | 1990 | 1991 | 1992 | 1993 | 1994 | $\underline{1995}$ | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |
| \% of Recent Users |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Not at all high | 23.0 | 20.6 | 24.2 | 23.8 | 19.7 | 20.7 | 23.2 | 22.0 | 20.68 | 21.1 | 22.4 | 20.5 | 23.2 | 21.0 | 23.5 |
| A little high | 32.3 | 36.8 | 32.5 | 32.2 | 32.7 | 32.6 | 29.9 | 28.9 | 29.8 | 27.3 | 26.1 | 26.7 | 30.1 | 28.6 | 25.8 |
| Moderately high | 36.2 | 34.0 | 35.6 | 36.5 | 38.3 | 36.5 | 35.5 | 37.5 | 37.5 | 41.7 | 38.8 | 40.9 | 35.1 | 37.6 | 37.6 |
| Very high | 8.5 | 8.6 | 7.7 | 7.5 | 9.2 | 10.1 | 11.4 | 11.6 | 12.1 | 10.0 | 12.7 | 11.8 | 11.7 | 12.9 | 13.1 |
| Approx. $\mathrm{N}=$ | 1965 | 1898 | 1965 | 1960 | 1866 | 1867 | 1664 | 1915 | 1874 | 1619 | 1567 | 1591 | 1530 | 1691 | 1785 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months | 21.2 | 22.7 | 23.6 | 25.4 | 26.4 | 25.7 | 28.2 | 24.7 | 25.6 | 27.0 | 26.2 | 24.2 | 28.7 | 30.1 | 26.5 |
| Not at all high | 18.1 | 15.9 | 18.5 | 17.8 | 14.5 | 15.4 | 16.6 | 16.6 | 15.3 | 15.4 | 16.6 | 15.6 | 16.5 | 14.7 | 17.3 |
| A little high | 25.5 | 28.5 | 24.8 | 24.0 | 24.1 | 24.2 | 21.5 | 21.8 | 22.2 | 19.9 | 19.3 | 20.2 | 21.4 | 20.0 | 18.9 |
| Moderately high | 28.5 | 26.3 | 27.2 | 27.2 | 28.2 | 27.1 | 25.5 | 28.2 | 27.9 | 30.5 | 28.6 | 31.0 | 25.1 | 26.3 | 27.7 |
| Very high | 6.7 | 6.7 | 5.9 | 5.6 | 6.8 | 7.5 | 8.2 | 8.7 | 9.0 | 7.3 | 9.4 | 9.0 | 8.3 | 9.0 | 9.7 |
| Approx. $\mathrm{N}=$ | 2493 | 2454 | 2572 | 2627 | 2533 | 2514 | 2318 | 2542 | 2517 | 2217 | 2123 | 2099 | 2145 | 2418 | 2427 |

When you drink a lc oholic beverages
how long do you usually stay high? ${ }^{\text {a }}$
\% of Recent Users

| Usua lly don't get high |  | 24.7 | 23.0 | 27.0 | 26.1 | 22.5 | 23.2 | 25.3 | 23.5 | 22.6 | 22.5 | 24.6 | 21.5 | 24.9 | 22.3 | 24.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| One to two hours |  | 39.4 | 40.1 | 37.3 | 38.8 | 40.5 | 36.7 | 33.1 | 33.6 | 36.8 | 32.3 | 32.2 | 33.7 | 33.7 | 32.7 | 31.5 |
| Three to six hours |  | 31.7 | 31.7 | 30.7 | 30.4 | 32.2 | 34.2 | 35.7 | 36.9 | 34.5 | 39.6 | 37.0 | 38.5 | 35.7 | 39.1 | 36.5 |
| Seven to 24 hours |  | 4.0 | 4.6 | 4.7 | 4.3 | 4.2 | 5.4 | 5.3 | 5.2 | 5.7 | 5.1 | 5.4 | 5.6 | 5.1 | 5.4 | 6.7 |
| More than 24 hours |  | 0.3 | 0.6 | 0.3 | 0.3 | 0.6 | 0.6 | 0.5 | 0.9 | 0.5 | 0.5 | 0.9 | 0.7 | 0.6 | 0.6 | 0.6 |
|  | Approx. $\mathrm{N}=$ | 1949 | 1884 | 1951 | 1950 | 1857 | 1849 | 1657 | 1897 | 1853 | 1614 | 1552 | 1586 | 1523 | 1681 | 1775 |
| \% of All Respondents |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| No use in last 12 months |  | 21.3 | 22.8 | 23.7 | 25.5 | 26.4 | 25.9 | 28.3 | 24.8 | 25.8 | 27.0 | 26.4 | 24.3 | 28.8 | 30.2 | 26.6 |
| Usually don't get high |  | 19.4 | 17.8 | 20.6 | 19.5 | 16.5 | 17.2 | 18.2 | 17.6 | 16.8 | 16.4 | 18.1 | 16.3 | 17.7 | 15.5 | 18.1 |
| One to two hours |  | 31.0 | 31.0 | 28.5 | 28.9 | 29.8 | 27.2 | 23.7 | 25.3 | 27.3 | 23.6 | 23.7 | 25.5 | 24.0 | 22.8 | 23.2 |
| Three to six hours |  | 24.9 | 24.4 | 23.4 | 22.7 | 23.7 | 25.3 | 25.6 | 27.7 | 25.6 | 28.9 | 27.2 | 29.2 | 25.5 | 27.3 | 26.8 |
| Seven to 24 hours |  | 3.2 | 3.5 | 3.6 | 3.2 | 3.1 | 4.0 | 3.8 | 3.9 | 4.2 | 3.7 | 3.9 | 4.2 | 3.6 | 3.8 | 4.9 |
| More than 24 hours |  | 0.2 | 0.5 | 0.2 | 0.2 | 0.4 | 0.4 | 0.4 | 0.7 | 0.4 | 0.4 | 0.7 | 0.5 | 0.4 | 0.4 | 0.5 |
|  | Approx. $\mathrm{N}=$ | 2477 | 2441 | 2558 | 2616 | 2525 | 2496 | 2311 | 2524 | 2497 | 2211 | 2108 | 2095 | 2138 | 2408 | 2418 |

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These questions appear in just one form. They are asked only of respondents who report use of the drug in the prior 12 months (i.e., "recent users").

FIGURE 7-1
Degree of Drug Highs Attained by Recent Users
Twelfth Graders, 2004


NOTE: Data are based on answers from respondents reporting any use of the drug in the prior 12 months. Heroin is not included in this figure because these particular questions are not asked of the small number of heroin users.

FIGURE 7-2
Duration of Drug Highs Attained by Recent Users
Twelfth Graders, 2004


NOTE: Data are based on answers from respondents reporting any use of the drug in the prior 12 months. Heroin is not included in this figure because these particular questions are not asked of the small number of heroin users.

FIGURE 7-3
Trends in Annual Prevalence of Marijuana, Percent of Recent Users Getting Moderately or Very High, and Percent of Recent Users Staying High Three or More Hours for Twelfth Graders


## Chapter 8

## ATTITUDES AND BELIEFS ABOUT DRUG USE

One of the Monitoring the Future study's most important theoretical contributions to the general understanding of young people's drug use has been to demonstrate that beliefs and attitudes about drugs are determinants of both the rise and the fall of drug use. Because we expected that certain attitudes and beliefs about drugs would prove to be important in explaining drug use, we allocated a considerable amount of questionnaire content to their measurement at the study's 1975 inception. This investment has yielded a great deal of payoff in the years since.

In this section we present the cross-time results for three of these important sets of attitude and belief questions: (a) 8th-, 10th-, and 12th-grade students' beliefs about how harmful the various kinds of drug use are for the user, (b) the degree to which students personally disapprove of various kinds of drug use, and (c) high school seniors' attitudes about various forms of legal prohibition. Chapter 9 presents results on the closely related topics of parents' and friends' attitudes about drugs, as students perceive them.

The data presented next show inverse relationships in any given year, at the aggregate level, between (a) the level of reported use of a drug and (b) the level of perceived risk and disapproval of using that drug. For example, of the illicit drugs, marijuana has the highest level of use and one of the lowest levels of perceived risk and disapproval of use. These relationships suggest that individuals who believe that the use of a particular drug involves risk of harm and/or who disapprove of its use are less likely to use that drug; indeed, strong correlations also exist at the individual level between use of a drug and attitudes and beliefs about those drugs. ${ }^{72}$ Those seniors who use a given drug are less likely to disapprove of its use and to see its use as dangerous.

Many of the attitudes and beliefs about drug use reported next have changed dramatically during the life of the study, as have actual drug-using behaviors. Beginning in 1979, scientists, policymakers and, in particular, the electronic and print media gave considerable attention to young people's increasing level of regular marijuana use documented by this study and to the potential hazards associated with such use. As discussed later in this chapter, seniors’ attitudes and beliefs about the regular use of marijuana shifted in a more conservative direction after 1979-a shift that coincided with a reversal in the previous rapid rise of daily use and that very likely reflected the impact of the increased public attention. Between 1986 and 1987, a similar and even more dramatic shift occurred for cocaine use and continued for some years. During much of the 1990s, however, there was an important turnaround or "relapse" in these attitudes, accompanied by increased use of quite a number of the illicit drugs, in particular marijuana. In the early 2000s, increased recognition of the hazards of ecstasy use appeared to contribute to a sharp downturn in use.
${ }^{72}$ Johnston, L. D. (2003). Alcohol and illicit drugs: The role of risk perceptions. In Dan Romer (Ed.), Reducing adolescent risk: Toward an integrated approach (pp. 56-74). Thousand Oaks, CA: Sage.

## PERCEIVED HARMFULNESS OF DRUG USE

## Beliefs About Harmfulness Among Twelfth Graders

For many drugs, the level of risk attributed to use varies considerably with the level of use being considered. Expecting this to be the case, we structured the questions about illicit drugs to differentiate among "using once or twice," "using occasionally," and "using regularly." Questions about the harmfulness of alcohol and tobacco use also specify different levels of use appropriate to those substances. The respondent is asked, "How much do you think people risk harming themselves (physically or in other ways), if they . . ." The sentence is completed with a series of phrases about drug use, such as, ". . . try marijuana once or twice?" followed by ". . . smoke marijuana occasionally?" followed by ". . . smoke marijuana regularly?"

- A substantial majority of high school seniors perceive that regular use of any of the illicit drugs entails a great risk of harm for the user. As Table $8-3$ shows, between $82 \%$ and $87 \%$ of the seniors perceive a great risk of harm from regular use of cocaine, crack, cocaine powder, and heroin. About one-half to nearly three-quarters of seniors attribute great risk to regular use of $\boldsymbol{L S D}$, amphetamines, and sedatives (barbiturates) ( $70 \%, 64 \%$, and $54 \%$, respectively).
- Regular use of marijuana is judged to involve a great risk to the user by just over half (55\%) of all seniors.
- About three-quarters of all seniors (74\%) now judge smoking one or more packs of cigarettes per day as entailing a great risk of harm for the user.
- Regular use of alcohol is more explicitly defined in several questions providing specificity on the amount of use. Nearly one-quarter of seniors (23\%) associate great risk of harm with having one or two drinks nearly every day, more than two-fifths (44\%) think there is great risk involved in having five or more drinks once or twice each weekend, and almost three-fifths (59\%) think the user takes a great risk in consuming four or five drinks nearly every day. Still, it is noteworthy that some $41 \%$ do not view even heavy daily drinking as entailing great risk.
- Far fewer respondents believe that a person runs a great risk of harm by trying a drug once or twice-what we refer to here as experimental use. Still, substantial proportions of high school seniors view even experimenting with most of the illicit drugs as risky. The percentages associating great risk with experimental use rank as follows: $58 \%$ for ecstasy, $57 \%$ for heroin, $56 \%$ for steroids, $52 \%$ for ice, $51 \%$ for cocaine, $48 \%$ for crack, $47 \%$ for PCP, 45\% for cocaine powder, 36\% for amphetamines and LSD, and 25\% for sedatives (barbiturates).
- By way of contrast, only $16 \%$ of seniors see experimenting with marijuana as entailing great risk (compared with $25 \%$ who see great risk in occasional use and $55 \%$ who feel that way about regular use).
- Just 9\% of seniors believe there is much risk involved in trying an alcoholic beverage once or twice.


## Eighth and Tenth Graders' Beliefs About Harmfulness

An abbreviated set of the same questions on harmfulness has been asked of 8th and 10th graders since 1991. Questions were also added in 1991 about the perceived harmfulness of using inhalants (see Table 8-1). Other questions regarding perceived risk were added in 1993 about LSD use, in 1995 about use of heroin without a needle, in 1999 about smoking one to five cigarettes per day, and in 2001 about ecstasy use. (The question about perceived risk of steroid use was dropped in 1995 because at that time steroid use was rather stable and it was judged desirable to replace the question with one about another drug.) Though in general the findings are quite similar to those for seniors, there are some interesting differences.

- The most important difference is observed for regular cigarette smoking. Unfortunately, perceived risk is lowest at the ages when initiation is most likely to occur: while nearly three-quarters of seniors (74\%) see great risk in smoking a pack a day or more, only $68 \%$ of 10 th graders and $62 \%$ of 8 th graders see this risk.
- Relatively few students see great risk in smoking one to five cigarettes per day: 38\% of the 8th graders and $40 \%$ of the 10th graders. (Twelfth graders are not asked this question.)
- Regular use of smokeless tobacco is viewed as entailing great risk by about $41 \%$ of 8th graders, $48 \%$ of 10th graders, and $45 \%$ of 12th graders, which means that over half do not see great risk of harm. Again, because this behavior is often initiated at early ages, these figures are disturbingly low.
- In contrast to tobacco use, the younger students, particularly 8th graders, are somewhat more likely than seniors to see marijuana use as dangerous. For example, in 2004 about twice as many 8th graders (51\%) as 12th graders (25\%) see occasional marijuana use as entailing great risk of harm.
- Tenth graders are most likely to see the use of cocaine powder and crack as dangerous. This unusual pattern has been replicated every year since 1991. Perhaps 10th graders are more aware of the dangers of these drugs than 8th graders. However, 10th graders are less exposed to individuals actually using these drugs than are 12th graders, thus not allowing them to have "local" knowledge about the level of danger.
- Similarly, seeing the use of heroin (without using a needle) as dangerous is highest in 10th grade and has been so since this question was added in 1995.
- Eighth and 10th graders are slightly more likely than 12th graders to see weekend binge drinking as dangerous: $57 \%$ for 8 th graders, $52 \%$ for 10th graders, and $44 \%$ for 12th graders. The younger students are also somewhat more likely than seniors to see daily drinking (one or two drinks nearly every day) and experimentation as risky.
- The pattern for ecstasy use is similar to that for cigarettes, with younger students seeing less risk in its use than seniors: $43 \%$ of 8 th graders, $52 \%$ of 10 th graders, and $58 \%$ of 12th graders see great risk in trying ecstasy. Because 12th graders are considerably more likely to have been exposed to ecstasy use and its consequences, this differential might be used effectively in some prevention messages to younger students.
- Experimentation with inhalants is seen as dangerous by relatively low proportions of 8th and 10th graders ( $39 \%$ and $47 \%$ ). (The question about risk of inhalant use is not asked of 12th graders.)


## TRENDS IN PERCEIVED HARMFULNESS OF DRUG USE

## Trends in Perceived Harmfulness Among Twelfth Graders

Several very important trends in student beliefs about the dangers associated with using various drugs have occurred over the life of the study. (See Table 8-2 and Figures 8-1a through 8-12a.)

- Some of the most important trends have involved marijuana use. (See Figure 8-1a.) From the beginning of the study in 1975 through 1978, the degree of harmfulness perceived to be associated with all levels of marijuana use declined as use increased sharply. (See Figure 8-4.) In 1979, for the first time, the proportion of seniors seeing risk to the user increased. This increase in perceived risk preceded an appreciable downturn in use (which began a year later in 1980) and continued fairly steadily through 1991, as use fell dramatically. However, in 1992 perceived risk began to drop again, which presaged a sharp increase in use beginning in 1993. As Figures 8-1a and 8-4 illustrate, perceived risk continued to drop until 1997 and use continued to rise until 1997. This clear and consistent concordance in trends supports our belief that the changes in beliefs about the harmfulness of marijuana use played a critical role in causing both the downturn and the subsequent upturn in use. In both cases, the reversal in perceived risk preceded the reversal in actual use by a year, as we have documented in the present series of monographs.
- In the earlier years of this study, the most impressive increase (in absolute terms) in perceived risk occurred for regular marijuana use. The proportion of seniors who viewed regular marijuana use as involving a great risk doubled in just seven years, from $35 \%$ to $70 \%$ between 1978 and 1985. Subsequently, the proportion increased more slowly, reaching 79\% by 1991. That dramatic change occurred during a period when a substantial amount of scientific and media attention was devoted to the potential dangers of heavy marijuana use. Young people also had ample opportunity for vicarious learning about the effects of heavy use through observation because such use was widespread among their peers. (Recall that one in nine seniors was an active daily marijuana user in 1978.) Concerns about the harmfulness of occasional and experimental use also increased, and those increases were even larger in proportional terms, though not in absolute terms. For example, the proportion of seniors seeing great risk in trying marijuana rose from $8 \%$ in 1978 to $27 \%$ in 1991, and for occasional marijuana use it rose from $12 \%$ to $41 \%$ over the same interval.

Several factors offer possible explanations for the turnaround and decline in perceived risk of marijuana use during the early 1990s. First, some of the forces that gave rise to the earlier increases in perceived risk became less influential: (a) because of lower use rates overall, fewer students had opportunities for vicarious learning by observing firsthand the effects of heavy marijuana use among their peers; (b) media coverage of the harmful effects of drug use, as well as of incidents resulting from drug use (particularly marijuana), decreased substantially in the early 1990s (as has been documented by media surveys of national news programs); (c) media coverage of the anti-drug advertising campaign of the Partnership for a Drug-Free America also declined appreciably (as has been documented by both the Partnership and our own data from seniors on their levels of recalled exposure to such ads); and (d) congressional funding for drug abuse prevention programs and curricula in the schools was cut appreciably in the early 1990s. In addition, forces encouraging use became more visible; in particular, a number of rap, grunge, and other rock groups started to sing the praises of using marijuana (and sometimes other drugs), perhaps influencing young people to think that using drugs might not be so dangerous after all. Finally, the drug experiences of many parents may have inhibited them from discussing drugs with their children and may have caused them uncertainty in knowing how to handle the apparent hypocrisy of telling their children not to do what they themselves did as teens. We believe that all of these factors may have contributed to the resurgence of marijuana use in the 1990s.

By the mid-1990s many of these sources of influence had reversed direction, laying the groundwork for an end to the rise in marijuana use (and illicit drug use more generally). First, because there was considerably more use among young people and among many of their public role-model groups, the opportunity for vicarious learning by observing the consequences of use began to increase. And as this study and others began to call the public's attention to the resurgence of the drug epidemic among youth, news stories on the subject increased substantially. Other institutions also changed their ways. The recording industry appeared to be producing fewer pro-drug lyrics and messages, in large part because of growing concern with overdose deaths among their artists. (A similar dynamic seems to have occurred in the fashion industry with the resulting demise of "heroin chic.") Various government initiatives to prevent drug use by young people were also launched, including the Department of Health and Human Services (DHHS) Secretary's Marijuana Use Prevention Initiative. This initiative, aimed at dealing with the worsening situation documented by this study and others, was launched at the 1994 annual national press conference reporting the results from Monitoring the Future. Federal funding for drug prevention in the schools also increased appreciably.

In addition, parents have been exhorted repeatedly in recent years to talk to their children about drugs, and it appears from recent surveys that more of them have done so. Finally, in the late 1990s, a new federally sponsored media campaign involving paid advertising
as initiated. Data from Monitoring the Future indicate that the campaign has been reaching increasing numbers of young people. ${ }^{73}$

- Trends among 12th graders in their perceived risk of regular marijuana use and in their 30-day prevalence of use are combined in Figure 8-4 to illustrate more clearly their degree of covariance over time, which we interpret as reflecting a causal connection. ${ }^{74}$ The trend line for the perceived availability of marijuana is included in Figure 8-4 to show its relative stability at a very high level and, thus, its inability to explain the substantial fluctuations in usage levels over time.

We have hypothesized that perceived risk operates not only directly on the individual's use but also indirectly through its impact on personal disapproval. In turn, personal disapproval operates directly on use and, in the collective, indirectly by influencing peer norms. (See chapter 9 for evidence on how closely perceptions of friends’ disapproval track personal disapproval at the aggregate level.) Presumably there is some lag in these indirect effects: while the 12th graders’ perceived risk began to fall in 1992, their personal disapproval did not begin to decline for experimental marijuana use until 1993, when it dropped sharply and use rose sharply. These shifts continued through 1997.

From 1997 through 2002, there was some decline in perceived risk of regular use of marijuana but no further increase in use; in fact, actual use declined slightly (by about 2 percentage points in 2002 for all three measures-monthly, annual, and lifetime). This pattern was, of course, not consistent with the earlier findings of risk and use moving in opposite directions. The decline in use of marijuana without a corresponding (or leading) increase in perceived risk associated specifically with that drug may reflect some general decrease in young people's motivation to use drugs (conceivably associated with the shock of the 9-11 events in late 2001) or possibly a change in some other predisposing factor, such as cigarette smoking (which is strongly correlated with marijuana use). However, perceived risk rose in 2003, not only among 12th graders but among younger students as well. We suggested that the rise may be predictive of a further decline in marijuana use in the coming year, and indeed there was a small nonsignificant drop in use in 2004. There was no significant change in perceived risk among 12th graders in 2004.

[^58]- Like marijuana, cocaine has shown a pattern of closely corresponding trends between perceived risk and actual use. (See Figure 8-5.) First, the percentage who perceived great risk in trying cocaine once or twice dropped steadily from 43\% to 31\% between 1975 and 1980, corresponding to a period of rapidly-increasing use. However, rather than reversing sharply, as did perceived risk for marijuana use, perceived risk for experimental cocaine use moved rather little from 1980 to 1986, corresponding to a fairly stable period in actual use. Then, from 1986 to 1987, perceived risk for experimenting with cocaine did jump sharply from $34 \%$ to $48 \%$ in a single year, and in that year the first significant decline in use took place (see Figure 8-5). From 1987 to 1990, perceived risk continued to rise as use fell. Perceived risk peaked around 1990 or 1991 and then decreased slightly until 1995 (as use rose modestly), when a significant decline in perceived risk of trying cocaine occurred. Perceived risk was stable between 1995 and 1998, declined slightly until 2000, and leveled since then. Use increased through 1999 and declined in 2000, and since then there has been little change in use.
- Trends in attitudes toward crack and cocaine powder use have been similar to those toward cocaine use. Crack use showed some decline in perceived risk of experimental use through 1999, to $48 \%$. Since then, perceived risk increased slightly, to $51 \%$ in 2002; then in 2003, it fell back to $47 \%$. It was virtually unchanged in 2004 at $48 \%$. (We believe that some "generational forgetting" of the hazards of crack may be operating here.)
- We believe these changes in beliefs have had an important impact on behavior. As Figure 8-2a illustrates, perceived risk for regular cocaine use began to rise in the 1980s, increasing gradually from $69 \%$ in 1980 to $82 \%$ in 1986; however, that fairly substantial change did not translate into a change in actual behavior, and we believe the explanation is that very few high school seniors were regular users or ever expected to be. Thus, as we had predicted earlier, it was not until seniors' attitudes about behaviors they saw as relevant to themselves began to change (i.e., attitudes about experimental and occasional cocaine use) that the behaviors also began to shift. ${ }^{75,{ }^{76}}$ Figure $8-5$ shows trends in perceived risk, perceived availability, and actual use simultaneously-again, to illustrate that shifts in perceived risk could explain the downturn in use while shifts in availability could not.

We attribute changes in actual cocaine use between 1986 and 1991 to changes in risk associated with experimental and occasional use. We believe the changes in these attitudes resulted from three factors: (a) the greatly increased media coverage of cocaine use and its dangers that occurred in that interval (particularly in 1986); (b) an increasing number of anti-drug, and specifically anti-cocaine, "spots"; and (c) the widely publicized

[^59]1986 deaths, attributed to cocaine use, of sports stars Len Bias and Don Rogers. The death of the sports stars, we believe, helped to bring home the notions, first, that no oneregardless of age or physical condition-is invulnerable to being killed by cocaine and, second, that one does not have to be an addict or regular user to suffer such adverse consequences. In the media coverage that occurred during that period, the addictive potential of cocaine was emphasized heavily, in large part due to what can best be described as a media frenzy over crack use.

As with marijuana, 1991 saw an end to the increase in the perceived risk of cocaine use. Perceived risk began to fall after 1991, and a year later (after 1992) actual use began rising among seniors. (See Figure 8-5.) The significant reversal of trends in beliefs set the stage for a resurgence in use, particularly when combined with the fact that the proportions of students using two of the so-called "gateway drugs"-cigarettes and marijuana-also had been rising. From 1992 to 1999, the proportion of 12th graders using cocaine in the prior 12 months rose steadily from $3.1 \%$ to $6.2 \%$ before decreasing significantly to $5.0 \%$ in 2000, about where it has remained through 2004. The decline in seniors' cocaine use in 2000 was not accompanied by any increase in perceived risk. Thus, there must be other reasons for the decline. One possibility is that the decline reflects a more general anti-drug attitude among high school seniors. Another possibility is that some other drug may be substituting for cocaine to some extent-possibly ecstasy.

Both crack and cocaine powder had been showing a similar rise in use during much of the 1990s, as well as a subsequent decline in 2000. As we shall see later, similar downturns in perceived risk occurred in the 8th and 10th grades through 1998, except that they started a year earlier among the 8th graders and resulted in larger changes in 8th and 10th grades than in 12th grade.

- For most of the illicit drugs other than marijuana and cocaine, the period from 1975 (at the beginning of the study) to 1979 revealed a modest but consistent trend in the direction of fewer seniors associating much risk with experimental or occasional use of such drugs. (See Table 8-3 and Figures 8-7a, 8-8a, and 8-9a.) This trend continued for amphetamines and sedatives (barbiturates), but not for other drugs, until about 1984.

In the early 1980s, there was little change in perceived risk, although perceived risk of harm from experimental or occasional use of all the illicit drugs other than marijuana dropped slightly in 1985 and 1986. However, the perceived risk of experimental or occasional use of all drugs except PCP began to increase in 1987, reached a peak in 1990 or 1991, and then began to decline noticeably until about 1996.

- For heroin use, perceived risk declined gradually between 1975 and 1986 (perhaps as the result of generational forgetting of the dangers of heroin), even though use dropped and then stabilized in that interval. There was then an upward shift in 1987 (the same year in which there was a dramatic rise in perceived risk for cocaine) to a new level, where it held for four years. In 1992 risk dropped to a lower plateau again, a year or two before use started to rise. As perceived risk fell in the early 1990s, use by seniors rose, with annual prevalence of use nearly tripling from $0.4 \%$ in 1991 to $1.1 \%$ by 1995. (Use also
rose in the lower grades.) From 1995 through 1998 there was some increase in perceived risk (an increase that was also observed in the lower grades; see Tables 8-1 and 8-2 and Figure 8-9a). Usage rates then pretty much stabilized. Perhaps not entirely coincidentally, the Partnership for a Drug-Free America launched a media campaign aimed at deglamorizing heroin in 1996. While the target audience was young adults, many secondary school students undoubtedly saw the ads as well. Annual use of heroin by 12th graders decreased from $1.5 \%$ in 2000 to $0.8 \%$ in 2003 following the upturn in perceived risk between 1995 and 1998.
- In sum, between 1975 and 1978 (or 1979) there was a distinct decline among high school seniors in perceived harmfulness associated with use of all the illicit drugs. After 1978, concerns about regular marijuana use increased dramatically, and concerns about the use of marijuana at less frequent levels increased considerably. After 1986, there was a sharp increase in the risks associated with cocaine use-particularly at the experimental and occasional use levels-and some increase in perceived risk of use of virtually all the other illicit drugs (see Figures 8-7a, 8-8a, and 8-9a). Between 1991 and 1995, the trends reversed, with fewer seniors seeing use of these drugs as being dangerous. By 1996 and 1997 among seniors, the decline in perceived risk of marijuana use had sharply decelerated (see Figure 8-1a), the decline in perceived risk of cocaine use had leveled (see Figure 8-2a), the decline in the perceived risk of $\boldsymbol{L S D}$ use had decelerated (see Figure 8-8a), and the perceived risk of using heroin was actually rising (see Figure 8-9a). Only for sedative (barbiturate) use (asked only of seniors, see Figure 8-7a) was there any appreciable further decline in perceived risk. In 1998, perceived risk for a few drugs gave evidence of rising-marijuana, LSD, and amphetamines (though the increases were not always statistically significant)—but in 1999 perceived risk declined some for these drugs and almost all others. In 2001 the only significant increase in perceived risk of illicit drug use was for ecstasy (MDMA), which rose from $38 \%$ in 2000 to $46 \%$ in 2001. In 2002 and 2003, perceived risk of ecstasy use again rose significantly (to 52\% in 2002 and to $56 \%$ in 2003). Perceived risk of trying $\boldsymbol{L S D}$ also rose significantly in 2002, while perceived risk of regular marijuana use decreased significantly.
- The sharp decline in seniors' perceived risk of $\mathbf{L S D}$ use between 1991 and 1997 was particularly noteworthy, confirming our concerns about generational forgetting-that attitudes and beliefs of the newer generation of young people were not influenced by the direct and vicarious learning experiences that helped to make their predecessors more cautious about using LSD (see Figure 8-8a). In the late 1960s and early 1970s, young people became aware of the risks of bad trips, uncontrollable flashbacks, dangerous behaviors under the influence, etc. Today's teenagers know much less about those risks. Fortunately, the decline in perceived risk of LSD has been much more modest since 1995. (See Figure 8-8a and Table 8-3.)

Despite the fact that perceived risk had been declining some in recent years, as had disapproval of LSD use, actual use has been falling, and at an accelerating rate. Obviously, this decline in use cannot be explained by a change in attitudes and thus raises the question of whether there was any substitution from another drug. As it happens, another drug popular in the club scene and also used for its hallucinogenic properties,
ecstasy, had been in ascent and may have had some substitution effect. From 1998 to 2001, ecstasy use more than doubled as LSD use was in decline. However, after 2001 both drugs were in decline, suggesting that there may no longer have been a displacement effect. Indeed, after 2001 there was a sharp decline in availability of LSD, which may have played a role in its further sharp drop in use. In 2002 perceived risk and disapproval of $\boldsymbol{L S D}$ use both increased significantly as use continued to decrease significantly. Since then perceived risk has held steady, but disapproval of LSD use has continued to climb (see Figures 8-8a and 8-8b).

- Perceived risk for ecstasy (MDMA) use was asked only of 12th graders from 1997 to 2000; in 2001 it was added to the 8th- and 10th-grade questionnaires, as well. Between 1997 and 2000, the percentage of 12th graders seeing a great risk in trying ecstasy increased slightly from $34 \%$ to $38 \%$, but in 2001 there was a significant increase of 8 percentage points, up to $46 \%$. In 2002 and 2003 risk again increased significantly (to $52 \%$ in 2002 and to $56 \%$ in 2003) and the increase continued into 2004 (58\%).

As documented in the next chapter, there was a dramatic rise in the availability of ecstasy to American teens up to 2001, which may well help to explain its spread (see Figure 8-6). Another belief-the perceived benefits of using a drug-was, like perceived risk, almost surely a determinant of use. It is possible that there may have been a change in the perceived benefits of ecstasy use; but unfortunately for these purposes, we do not measure this belief. In any case, the significant increases in perceived risk in 2000 through 2003 were encouraging. We stated in the 2001 report in this series that we believed the use of this drug would not decline until more young people came to see its use as dangerous. In 2002, use of MDMA decreased some for all three grades (though only the 10th-grade decrease was significant), and in 2003, use decreased significantly for all three grades, presumably reflecting the increased perceptions of risk. These trends continued into 2004, though they were less sharp.

We believe that the unusually rapid changes in perceptions of risk about ecstasy reflect the effects of a three-part effort: much media coverage of adverse events associated with ecstasy use; the substantial efforts of the National Institute on Drug Abuse to disseminate information about the adverse consequences associated with ecstasy use; and efforts by the Partnership for a Drug-Free America and the Office of National Drug Control Policy to discourage ecstasy use through an ad campaign, begun in 2002, that addressed the hazards of use.

- The risks associated with experimental use of crystal methamphetamine (ice) fell from $62 \%$ in 1991 to $53 \%$ in 1998, as annual use increased from $1.4 \%$ to $3.0 \%$. Perceived risk stabilized through 2001 and was at $52 \%$ in 2004, while use dropped slightly to $2.5 \%$ in 2001 and rose slightly to $3.0 \%$ in 2002 before showing a significant drop to $2.0 \%$ in 2003, about where it remained in 2004.
- The perceived risk of trying PCP, though very high relative to other drugs in 1988, fell by 14 percentage points from its peak level of $59 \%$ in 1988 to $45 \%$ in 1999, about where it has remained since. Again, we suspect that teens in more recent classes are simply
much less familiar with the drug and its considerable dangers compared to those who grew up in an earlier period; we have termed this phenomenon "generational forgetting." (Annual prevalence of use rose among seniors, from $1.4 \%$ in 1993 to $2.6 \%$ in 1996, as perceived risk declined; use has since declined to $0.7 \%$ by 2004, while perceived risk first declined and then leveled.)
- After showing little systematic change in the latter half of the 1970s, the perceived risks associated with alcohol use at various levels rose during the 1980s (though not as dramatically as the perceived risks associated with marijuana and cocaine use) (see Figure 8-10a). The proportion perceiving great risk of harm in having one or two drinks nearly every day rose from $20 \%$ in 1980 to $33 \%$ in 1991 before falling all the way back to $20 \%$ by 2003. The latter decline was due perhaps in part to publicity about the value of moderate alcohol consumption in protecting against heart disease. Interestingly, perceived risk increased significantly to $23 \%$ in 2004 . The proportion of 12th graders perceiving great risk in having four or five drinks nearly every day rose slightly from $65 \%$ in 1981 to $71 \%$ in 1990 and subsequently declined, standing at 59\% in 2004.

The corresponding figure on perceived risk of occasional heavy drinking (having five or more drinks once or twice a weekend) rose quite substantially, from $35 \%$ in 1979 to $49 \%$ in 1992, and then it, too, decreased-to $43 \%$ by 1997. In 2004 it stands at $44 \%$. (Actual prevalence of occasional binge drinking declined appreciably between 1981 and 1993, from $41 \%$ to $28 \%$, rose slightly to $32 \%$ by 1998 , and since then has fallen back to $29 \%$ by 2004.) The increases in perceived risk tended to be followed by some declines in the actual behaviors, while the decreases in perceived risk tended to be followed by some increases in those behaviors-once again suggesting the importance of these beliefs in influencing use. The increase in perceived risk during the 1980s may have been due in large part to the many efforts aimed at discouraging drunk driving-a point discussed in more detail in an article published earlier. ${ }^{77}$ In recent years, occasional heavy drinking has changed rather little as perceived risk has held fairly steady.

- Despite all that is known today about the health consequences of cigarette smoking, more than a quarter ( $26 \%$ ) of 12th-grade students still do not believe that there is a great risk in smoking a pack or more of cigarettes per day (see Figure 8-11a).

Over a longer period, the number of seniors who thought smoking a pack or more a day involved great risk to the user increased, from 51\% in 1975 to $64 \%$ in 1980. This shift corresponded with, and to some degree preceded, the downturn in current smoking found in this age group (compare Figures 5-4k and 8-11a). Between 1980 and 1984, the perceived risk statistic showed no further increase and use showed no further decrease. Then, from 1984 to 1993 perceived risk inched up from $64 \%$ to $70 \%$ while use remained quite stable. Risk then declined a bit in 1994 and 1995 (as it did in the lower grades, as well) and use rose through 1997. Between 1995 and 1998, perceived risk rose about 5 percentage points, presaging a decline in smoking that began in 1998. Overall, in the 13-

[^60]year interval between 1984 and 1997, the percentage of seniors perceiving great risk in regular smoking rose only about 5 percentage points, while use rose, not fell, by 7 percentage points. Clearly, influences other than perceived risk were at work during this period. Between 1997 and 2002, perceived risk rose by another 5 percentage points from $69 \%$ to $74 \%$, where it remains in 2004; use finally fell, by 12 percentage points (from $37 \%$ to $25 \%$ in 2004).

- With regard to the regular use of smokeless tobacco, relatively few seniors reported much risk (see Figure 8-12a), although there was a fair increase in the proportion who did, from $26 \%$ in 1986 (when the belief was first measured) to $39 \%$ in 1993. From 1993 to 1995 such concerns decreased a bit, declining to $33 \%$ in 1995, but then rose again to reach $45 \%$ by 2001, where it remains in 2004. As perceived risk has risen since 1995, regular use (30-day prevalence) of smokeless tobacco declined appreciably from 1995 to 2002 ( $12 \%$ to $7 \%$ ). Since 2002, use has held steady.


## Trends in Perceived Harmfulness Among Eighth and Tenth Graders

Data on perceived risk for 8th and 10th graders are not available for many of the drugs for which 12th-grade data are available, because the younger students were given a more limited set of questions.

- From the early 1990s until 1997, 8th and 10th graders showed troublesome declines in perceived risk for marijuana use, as did the seniors (see Tables 8-1 and 8-2 and Figure 81a). Indeed, the decreases in the perceived risk of marijuana use, which had been occurring at least since 1991 for 8th graders and since 1992 for 10th graders, became very sharp. For 8th graders, perceived risk of trying marijuana dropped from $40 \%$ in 1991 to $25 \%$ in 1997. For 10th graders, this measure dropped from $32 \%$ in 1992 to $19 \%$ in 1997. As is clear from Figure 8-1a, however, these declines in perceived risk for marijuana use had been decelerating, and they stalled among 10th and 12th graders through 2001. Among 8th graders there was actually a reverse, with perceived risk standing at $28 \%$ in 2001, where it remained in 2002, followed by a significant increase to $30 \%$ in 2003 and another significant increase to $32 \%$ in 2004. The increased risk among 8th graders was accompanied by declining use. Among 10th graders, in 2002 and 2003, perceived risk for experimental and occasional use increased significantly. In 2002, use decreased significantly for annual, 30-day, and daily use. Use has gradually declined among 10th graders since 2002, coinciding with the increase in perceived risk.
- For crack and cocaine powder there was a large drop in perceived risk between 1991 and 1995 for both 8th and 10th graders. (For crack the declines were 12 and 10 percentage points for the two grades, respectively, and for cocaine powder, 11 and 6 percentage points.) There was some further erosion in these beliefs in the years following, though little further change since 1999 (see Tables 8-1 and 8-2). Use of both drugs rose from a low point in 1991 or 1992 to a recent high point in 1998 over the same interval that perceived risk fell.
- Perceived risk of $\boldsymbol{L S D}$ use has generally been declining in 8th and 10th grades since it was first measured in 1993, including statistically significant declines in 2001 in both
grades for risk of regular use and in 2002 for 10th-grade risk of regular use. Use, which had been increasing fairly steadily in all grades through 1996, has shown some appreciable decline in all grades since then. As we pointed out earlier, the recent drop in LSD use cannot be explained by concomitant changes in perceived risk. As is discussed in the next chapter, there has been some decline in the reported availability of LSD since the mid-1990s.
- Questions about the dangers of inhalant use have been asked only of 8th and 10th graders. Perceived risk was relatively stable between 1991 and 1995, showed a clear jump in 1996, and then held steady through 2000 (see Tables $8-1$ and $8-2$ ). Partly in response to the findings of growing inhalant use among teenagers from this study, the Partnership for a Drug-Free America launched a media campaign in 1995 to increase adolescents’ awareness of the dangers associated with inhalant use. The data here are consistent with the notion that their efforts were successful, because the increase in perceived risk occurred in the years that bracket the intervention and because most of the other drugs had not yet begun to show an increase in perceived risk at that point. In 2001, perceived risk of inhalant use rose significantly in both grades, and use declined (but not significantly). Since 2001, perceived risk has fallen in both grades, and among 8th graders use rose in 2003 for the first time in almost a decade. That was followed by a nonsignificant rise in use in all three grades in 2004. We suspect that generational forgetting of the dangers of inhalant use may now be taking place, which suggests that it may be time for another advertising campaign and public information campaign on the subject (among other potential interventions).
- For steroids, a noteworthy and constructive change occurred in 1992 across all three grade levels. There were increases of between 5 and 6 percentage points across the three grade levels in respondents saying there is a "great risk" to the user in taking steroids. Between $70 \%$ and $73 \%$ of each grade level reported that level of risk. This suggested that the widely publicized experience of professional football player Lyle Alzado, who was dying of a brain tumor he believed resulted from his steroid use, had an important effect on young people's beliefs regarding the harmfulness of this drug. The effect this "unfortunate role model" had was similar to the effect of Len Bias' death on beliefs about the dangers of cocaine use, except that in Lyle Alzado's case he intentionally set about making his experience an object lesson for young people. ${ }^{78}$ Unfortunately, the increases in perceived risk did not continue, and perceived risk slipped a bit in all three grades between 1992 and 1994 (after 1994 the question was dropped in the lower grades).

Among 12th graders, perceived risk held steady for the next four years, followed by an unusually sharp, 6-percentage-point drop in 1999, which coincided with a sharp rise in use that year among 8th and 10th graders. (Perceived risk is measured only among the 12th graders, so their answers serve as the best estimate we have of how this belief was

[^61]changing among secondary schools students more generally.) We believe it likely that another public figure, whose use of a steroid precursor was widely reported in 1998, served unwittingly as a role model that year, this time associating the use of steroids with athletic success. In 2000 there was a continued sharp decline in perceived risk of steroid use among 12th graders and a continued increase in use among 10th graders (but not among 8th graders). In 2001, perceived risk leveled for the 12th graders as use increased significantly, and use leveled for 8th and 10th graders. There was little further change in perceived risk in 2002, establishing a lower plateau than in previous years, and use remained fairly level at all grades. In 2003, perceived risk showed a nonsignificant decline among 12th graders, while use leveled for 8th and 12th graders and decreased significantly among 10th graders. And in 2004 perceived risk rose slightly in 12th grade (again the only grade on which it is measured), while use continued to decline some in the lower grades, but not yet in 12th grade.

- The dangers associated with having five or more drinks of alcohol once or twice each weekend slipped during much of the 1990s; in the case of 8th graders it dropped from $59 \%$ in 1991 to $52 \%$ in 1996, and in the case of 10th graders it dropped from $56 \%$ in 1992 to $51 \%$ in 1996. During the same intervals, self-reported occasions of heavy drinking rose gradually. Since 1999, perceived risk has increased in the 8th grade while use has declined. In the 10th grade, both measures were fairly stable between 1996 and 2001; in 2002, use declined significantly, while perceived risk increased slightly. Again, there seems to be some direct association between perceptions of risk and actual behavior, as we have seen for a number of the illicit drugs. There was no further change in perceived risk for either grade in 2003, and use declined very slightly.
- Relatively few 12th graders recognize the risk associated with pack-a-day cigarette smoking, but even fewer 8th and 10th graders do so (see Figure 8-11a). From 1993 to 1995, perceived risk of smoking decreased some at all grade levels as smoking rates rose in all grades. After 1995, perceived risk rose in all three grade levels, including significant increases for 8th and 10th graders in 2000. Beginning in 1997, smoking rates began to decline in grades 8 and 10 and a year later began to decline among 12th graders, so an increase in perceived risk very likely helped to drive the important decline in youth smoking that has taken place in recent years.

A number of incidents in this historical period may well have contributed to the decline in teen smoking. A series of public debates brought considerable adverse publicity to the product and the industry and eventually led to the widely publicized tobacco settlement between the states' attorneys general and the tobacco companies. Additional deterrents included increased cigarette prices, substantial tobacco prevention efforts in several large states, the anti-smoking ad campaigns (the largest of which was funded by the American Legacy Foundation), the withdrawal of advertising from billboards, and the elimination of the Joe Camel ads (that we think may have been particularly successful with adolescent boys from the upper end of the socioeconomic spectrum).

Cigarette smoking continued to decline in all grades in 2001 and 2002, but perceived risk leveled off in grades 8 and 10. (Only the 12th graders showed a continuing rise in
perceived risk, which may reflect some residual cohort effects.) From 2000 through 2003, perceived risk leveled in the lower grades, as well as in 2003 in grade 12, perhaps presaging an end to the declines in use. Of course, as we have just listed, many factors likely have contributed to the downturn, and changes in some (in particular, cigarette prices) seem likely to play a role in determining future trends. Fortunately, in 2004 all three grades saw some increase in perceived risk associated with regular smoking; but use declined only a little that year in the lower grades, and not at all in grade 12.

- Twelfth graders showed a considerable increase in the level of risk perceived to be associated with the regular use of smokeless tobacco between 1986 (when this variable was first measured) and 1993, and the lower grades showed a parallel change during this period in the years for which data are available (1991-1993). All three grades showed some decline from 1993 to 1995 and then increased by about the same amount between 1995 and 2000 (see Figure 8-12a). During this period of substantial increase in perceived risk between 1995 and 2000, a considerable decline in the use of smokeless tobacco took place. As with cigarettes, perceived risk became fairly level between 2000 and 2002 as the decline in use in 10th grade halted. (Use continued to drop in 8th and 12th grades.) It thus appears that one important reason for the appreciable declines in smokeless tobacco use during the latter half of the 1990s was the fact that an increasing proportion of young people were persuaded of the dangers of using it. In 2003, perceived risk increased for all three grades (not significantly) and in 2004 the increase continued in 8th and 12th grades. Use has leveled in the past two years in grades 8 and 12 while it has continued to decline gradually among 10th graders.


## PERSONAL DISAPPROVAL OF DRUG USE

At the beginning of the Monitoring the Future study, we included a set of questions to measure the moral sentiment respondents attach to various types of drug use. The phrasing, "Do you disapprove of people (who are 18 or older) doing each of the following?" was adopted. The answer alternatives are "don’t disapprove," "disapprove," and "strongly disapprove." For 8th and 10th grades, a fourth response, "can’t say, drug unfamiliar," is included, and the parenthetical phrase "who are 18 or older" is omitted from the question stem. Responses of "disapprove" or "strongly disapprove" are combined and reported here as "disapproval." For 8th and 10th graders, "can't say, drug unfamiliar" was included in calculating the percentages. The questions each specify a level of drug involvement, such as "trying marijuana," "using marijuana occasionally," or "using marijuana regularly," just as in the questions about perceived risk.

## Extent of Disapproval Among Twelfth Graders

- The vast majority of 12th graders do not condone regular use of any of the illicit drugs (see Table 8-6). Even regular marijuana use is disapproved (or strongly disapproved) by $81 \%$, and regular use of each of the other illicit drugs is disapproved by between $93 \%$ and $97 \%$ of today's high school seniors.
- For each of the drugs included in this set of questions, fewer respondents indicate disapproval of experimental or occasional use than of regular use. However, the
differences are not great for the use of illicit drugs other than marijuana, because nearly all seniors disapprove of even experimenting with them. For example, the proportions disapproving of experimental use are $82 \%$ for cocaine powder, $84 \%$ for sedatives (barbiturates), $87 \%$ for crack, $88 \%$ for ecstasy, $88 \%$ for LSD, and $94 \%$ for heroin. The extent of disapproval of illicit drug use by peers no doubt is underestimated by adolescents themselves and, as we have written elsewhere, provides the basis for some potentially powerful prevention messages in the form of normative education. ${ }^{79}$
- For marijuana, the rate of disapproval varies substantially for different usage levels, although not as much as it has in the past. More than half (53\%) disapprove of trying marijuana once or twice, about two-thirds (65\%) disapprove of its occasional use, and $81 \%$ disapprove of regular use. Looked at another way, only $19 \%$ say they don't disapprove of regular marijuana use.
- Smoking a pack (or more) of cigarettes per day is now disapproved by more than threequarters (76\%) of 12th-grade students.
- Taking one or two drinks nearly every day is disapproved by $70 \%$ of high school seniors. Curiously, weekend binge drinking (five or more drinks once or twice each weekend) is disapproved by fewer seniors (66\%), despite the fact that many more seniors see a great risk in weekend binge drinking (44\%) than in having one or two drinks nearly every day (23\%).

One likely explanation for these anomalous findings may be that a greater proportion of this age group are themselves weekend binge drinkers rather than moderate daily drinkers. Therefore, they may express attitudes consistent with their own behavior, even though such attitudes may be somewhat inconsistent with their beliefs about possible consequences. It also may be that the ubiquitous advertising of alcohol use in partying situations has managed to increase social acceptability from what it would be in the absence of such advertising. In any case, this divergence between the perceived risk associated with the two behaviors and the levels of disapproval of them helps to illustrate the point that, while perceived risk may influence disapproval (as we have hypothesized), other factors also play a role in determining levels of disapproval.

## Extent of Disapproval Among Eighth and Tenth Graders

- Attitudes about inhalant use have been asked only of the 8th- and 10th-grade students, and in 2004 the great majority ( $85 \%$ and $89 \%$, respectively) said they disapprove of even trying inhalants.
- Currently, the rates of disapproval for the use of crack and cocaine powder are about equivalent across all grade levels (see Tables 8-4 and 8-5).

[^62]- Marijuana use shows the greatest grade-related difference in disapproval rates-the lower the grade level, the higher the rate of disapproval. To illustrate, in 2004, $53 \%$ of 12th graders said they disapprove of trying marijuana compared to $60 \%$ of 10th graders and $76 \%$ of 8 th graders (see Tables 8-4 through 8-6). There now is considerable evidence that these attitudes do shift with age-that there is an "age effect" common to all cohorts. For example, the 8th graders of 1991 for the most part constituted the 10th graders of 1993 and the 12th graders of 1995, and their disapproval of trying marijuana fell from $85 \%$ in 8 th grade, to $70 \%$ by 10th grade, and to $57 \%$ by 12th grade. This drop far exceeds the secular trend at any given grade level. (It is also possible that, in addition to any age effects, there are lasting differences between class cohorts-i.e., cohort effects.)

Another possible explanation for this decrease in disapproval with age is that secondary school students’ attitudes about use are age-graded-that is, that they may disapprove more of an 8th grader using marijuana, less so for a 10th grader, and still less for a 12th grader. The question stem used at the lower grades does not specify the age of the person about whom they are answering, and the respondents may simply assume that the question is about people their age. The question asked of 12th graders over the years specifies people "who are 18 or older," and this lower limit corresponds closely to their current age.

- Disapproval of alcohol use is also higher at the lower grade levels than among 12th graders. For example, $66 \%$ of the 12th graders said they disapprove of weekend binge drinking versus $72 \%$ of the 10th graders and $82 \%$ of the 8 th graders.
- For cigarette use, disapproval is also higher at lower grade levels: 76\% of 12th graders, $83 \%$ of 10th graders, and $86 \%$ of 8th graders said they disapprove of someone smoking one or more packs per day. Oddly enough, the 8th graders, who are least likely to see regular smoking as dangerous, are the most likely to disapprove of it. This disparity may help to explain why so many do begin to smoke. In the absence of an underlying belief that smoking really represents a hazard to them, many may not be deterred by the predominant peer norms alone.


## TRENDS IN DISAPPROVAL OF DRUG USE

As illustrated below, while the perceived risk associated with a drug often reverses course a year prior to the actual use of that drug, disapproval tends to move in a way more synchronous with use. In other words, it tends to rise when use falls and fall when use rises. Table 8-6 provides the long-term trends in disapproval for 12th grade. See also the "b" panels of Figures 8-1 through 812.

## Trends in Disapproval Among Twelfth Graders

- Between 1975 and 1977, a substantial decrease occurred in disapproval of marijuana use at any level of frequency (see Figure 8-1b and Table 8-6). Compared with the class of 1975, the proportion of seniors in the class of 1977 who disapproved of experimenting was 14 percentage points lower, the proportion who disapproved of occasional use was

11 percentage points lower, and the proportion who disapproved of regular use was 6 percentage points lower. These undoubtedly were continuations of longer-term trends that began in the late 1960s, as the norms of American young people against illicit drug use seriously eroded. Between 1977 and 1990, however-a 13-year interval-there was a substantial reversal of that trend as disapproval of experimental marijuana use rose by 34 percentage points, disapproval of occasional use by 36 percentage points, and disapproval of regular use by 26 percentage points. There were no further significant changes in 1991 or 1992, although disapproval of experimental use continued to rise gradually.

Beginning in 1993 (a year after perceived risk began to decline), a sharp drop in disapproval of marijuana use emerged. Between 1992 and 1997, disapproval dropped 19 percentage points for experimental use, 17 percentage points for occasional use, and 11 percentage points for regular use. These changes accompanied a significant increase in the self-reported use of marijuana. By the mid-1990s, the decline in disapproval of marijuana use began to decelerate, and there has been relatively little systematic change since 1997.

- From 1975 to 1980, the proportion of seniors who disapproved of trying amphetamines remained extremely stable at $75 \%$ (see Figure $8-7$ and Table $8-6$ ). This proportion dropped some (to 71\%) in 1981, the peak year for amphetamine use, and then increased gradually over a decade until it reached $87 \%$ in 1991, where it remained in 1992. After 1992, a reversal began: disapproval dropped by 7 percentage points by 1996. Selfreported use increased over the same period. There was a slight rise in disapproval after 2001.
- During the late 1970s, personal disapproval of experimenting with sedatives (barbiturates) increased (from 78\% in 1975 to 84\% in 1979) and then remained relatively stable through 1984, when it began to increase again (see Figure 8-7b). By 1990, disapproval had reached 91\%. Use declined substantially from 1975 to 1992 as disapproval rose. Between 1993 and 1996, disapproval dropped to $85 \%$ as use rose; but, as with amphetamines, disapproval began to rise again in 1997, then leveled beginning in 1998 at about $86 \%$, with little change thereafter.
- Concurrent with the years of increase in actual cocaine use, disapproval of experimental use of cocaine declined somewhat, from a high of $82 \%$ in 1976 to a low of $75 \%$ in 1979 (see Figure $8-2 \mathrm{~b}$ ). It then leveled for four years, before edging upward for a couple of years to $80 \%$ by 1986. There was a sharp rise in disapproval between 1986 and 1987, the same interval in which perceived risk rose dramatically. This rise continued through 1991, reaching 94\% of seniors disapproving of trying cocaine. Between 1992 and 1997, disapproval slowly declined to $88 \%$ in 1997 (as use steadily increased) before leveling. Disapproval of trying cocaine powder and crack cocaine (see Figure 8-3b) peaked in 1992, after which there was a modest falloff. Since 1996, however, there has been practically no change in seniors’ disapproval of crack or powder cocaine.
- We believe that the parallel or slightly lagged trends between perceived risk and disapproval-particularly for marijuana and cocaine use-are no accident. We
hypothesize that perceived risk is an important influence on a person's level of disapproval of a drug-using behavior, although there surely are other influences as well. As levels of personal disapproval change, these individually held attitudes are communicated among friends and acquaintances, and thus perceived norms change as well (as is illustrated in the next chapter). It is noteworthy that as perceived risk for use of most of the illicit drugs began to reverse in 1991 or 1992, personal disapproval of use of virtually all of them appeared to level. In 1993, personal disapproval among seniors began to drop for use of nearly all of the illicit drugs (see Table 8-6), and it continued to fall for use of many of these substances through 1997, although it leveled for many drugs after that. Since 2001, disapproval for a number of drugs has been increasing some. This time lag suggests that perceived risk influences disapproval, which, in turn, changes peer norms.
- Disapproval of trying ecstasy has been asked of the 12th graders since 1997 and of 8th and 10th graders only since 2001. Disapproval among 12th graders declined slightly, from $82 \%$ in 1999 to $80 \%$ in 2001, during a period when use was increasing and perceived risk was just beginning to increase. But in 2002, disapproval increased significantly to $84 \%$, at the same time that use decreased and perceived risk continued its increase. Thus, increases in perceived risk may have contributed to the recent increase in personal disapproval, albeit with a fair amount of lag. And the increased disapproval in 2002 at all three grade levels likely helps explain the decreases in use that occurred among all three grade levels. In 2003, disapproval increased for all grades (significantly so for 8th and 10th graders), risk increased significantly for all grades, and use decreased significantly for all grades. In 2004, as use continued a much-decelerated gradual downward drift, disapproval continued to increase significantly in 10th and 12th grades.
- Despite the large changes that were taking place in adult use of cigarettes, and presumably in adult attitudes about smoking, young people's disapproval of regular cigarette smoking (a pack or more per day) changed surprisingly little throughout much of the life of this study. Disapproval increased from 66\% to 71\% between 1976 and 1980, slightly ahead of the downturn in use between 1977 and 1981. Disapproval fluctuated slightly throughout the 1980s and 1990s, with some increase between 1982 (69\%) and 1986 (75\%) and some gradual decline through 1997 (to $67 \%$, almost exactly where it started 21 years earlier). (Recall that use increased from 1992 through 1997 as disapproval was declining.) Since 1997, disapproval has increased steadily and was at $76 \%$ in 2004; use declined steadily in the same interval. The earlier lack of appreciable change in students' disapproval of smoking is surprising because many anti-smoking laws and policies had been enacted during the 1980s and 1990s. Very likely, the tobacco industry's promotion and advertising efforts helped to account for this lack of change in disapproval, as did the widespread portrayal of smoking by characters-often the lead characters-in movies and on television.
- Figure 8-10b tracks disapproval rates for several different patterns of alcohol use. It shows that 12th graders’ disapproval of most forms of alcohol use rose throughout the 1980s and into the early 1990s. Then, between 1992 or 1993 and 1998 or 1999 there was
considerable falloff in the proportion disapproving of many of these behaviors, except for weekend binge drinking.

With regard to abstention, the proportion of seniors who disapproved of even trying one or two drinks of alcohol doubled, from a low point of $16 \%$ in 1980 to $33 \%$ by 1992. It fell back to $25 \%$ by 1998 and increased slightly to $27 \%$ in 2000 , about where it remained in 2004 (26\%). It seems likely that the increased minimum drinking age in many states between 1981 and 1987 contributed to these changes in attitude about abstention, since more recent senior classes grew up under the higher minimum drinking age. ${ }^{80}$ If so, this illustrates the considerable capacity of laws to influence informal norms. It also seems likely that the activities of Mothers Against Drunk Driving (MADD), which peaked in 1984, and of the designated driver effort, which occurred mostly from 1989 to 1992, helped to influence these attitudes. ${ }^{81}$

- Disapproval of weekend heavy drinking rose gradually but quite substantially, from a low of $56 \%$ in 1981 to a high of $71 \%$ by 1992. Over that same 11-year interval, the selfreported rate of occasional heavy drinking declined from a high of $41 \%$ in 1981 to a low of $28 \%$ in 1992. While the ad campaigns mentioned earlier dealt specifically with drinking and driving, we believe that the negative connotations may well have generalized to heavy drinking in any circumstance.

After 1992, disapproval of weekend heavy drinking briefly fell, from $71 \%$ in 1992 to 65\% by 1994. Since 1994, it has remained fairly stable at 63\%-66\% through 2004.

## Trends in Disapproval Among Eighth and Tenth Graders

Tables 8-4 and 8-5 provide 12-year trends (1991-2003) in disapproval for 8th and 10th graders. The lower panels in many of the figures in this chapter provide the same information graphically for the individual drugs, when data for the lower grade levels are available.

- In 1992, 10th- and 12th-grade students showed little change in disapproval of the use of illicit drugs, but 8th graders showed some erosion in their attitudes with respect to using marijuana, cocaine powder, and crack. In 1993, rates of disapproval for using these drugs continued to decline among 8th graders and began to decline among 10th and 12th graders, as well (see Tables 8-4 through 8-6 and Figures 8-1b and 8-3b). Between 1993 and 1996, disapproval of both marijuana use and $\boldsymbol{L S D}$ use declined in all three grades.
- The declines in personal disapproval were particularly sharp for marijuana at all three grade levels; marijuana was the drug that showed the greatest increase in use during that period. Between 1991 and 1997, the proportion of 8th graders who disapproved of trying

[^63]marijuana fell from 85\% to 68\%. Personal disapproval among 10th graders fell from 75\% to $54 \%$, and among 12th graders it fell from $69 \%$ to $51 \%$ over the same interval. Finally, in 1998 there were some early signs of a reversal in this trend at all grade levels, although none of the increases reached statistical significance. In 1999 we saw a significant increase in disapproval of experimental use for the 8th graders, a leveling of disapproval rates for 10th graders, and some further decline in this measure for 12th graders. The 8thgraders’ level of disapproval has slowly diverged (upward) from the other two grades after 1995, which is consistent with the gradual drop in use at 8th grade. Since about 2001, disapproval of marijuana use has been rising in all three grades.

- From 1993 to 1996, disapproval of $\boldsymbol{L S D}$ use declined (as did perceived risk), and selfreported use increased. Since about 1997, disapproval trends diverged among the three grades, with rates rising in 12th grade, holding fairly steady in 10th grade, and declining in 8th grade (see Figure 8-8b). As noted earlier, the use of LSD has decreased in recent years in all three grades despite the fact that there has been little or no increase in either perceived risk or disapproval at any grades (except for an increase in disapproval among the 12th graders, which continued into 2004). This "disconnect" between these attitudes and beliefs and actual use suggests that other important factors are at work. Two possibilities are a displacement of use by the rise in ecstasy, at least in the early years of the downturn in LSD use, and also the large drop in the reported availability of LSD since the mid-1990s, but particularly since 2001.
- Disapproval of crack and cocaine powder fell some from 1991 through 1996 among 8th graders, from 1991 through 1998 among 10th graders, and from 1992 through 1998 among 12th graders. These attitudes have changed rather little since then. The softening in attitudes about using crack and cocaine powder eventually translated into changes in usage levels. For example, crack use rose from 1991 through 1998 in 8th grade, from 1992 through 1998 in 10th grade, and from 1993 through 1999 in 12th grade. Since those recent peaks in use, there has been some falloff at all grades in the use of both crack and powder cocaine. As with LSD, this recent general decline in use occurred for the most part without any significant increases in risk or disapproval, suggesting the possibility that there is some substitution by another drug occurring. Ecstasy would seem the most logical candidate because it was the only drug on a steep ascent for several years.
- Regarding the use of inhalants, there was a little slippage in the disapproval rates among 8th graders from 1991 to 1995 but none among 10th graders. Perceived risk for inhalants jumped between 1995 and 1996 for both grades. Disapproval inched up from 1995 through 1997 but in 1999 jumped significantly in both grades, with little change since for the 10th graders. For the 8th graders there has been some increase in disapproval since 1998; however, the increase halted in 2002, though it still remains at quite a high rate (85\%) in 2004.
- Disapproval of weekend binge drinking declined among 8th graders between 1991 and 1996 and among 10th and 12th graders between 1992 and 1997, before leveling (see Figure 8-10b). Disapproval began to rise slowly among 8th graders after 1999, and to rise
some among 10th and 12th graders after 2001. In general, self-reported binge drinking rates have moved in a manner complementary to disapproval over time.
- Disapproval of smoking one or more packs of cigarettes per day also declined significantly, from 1991 to 1996 among 8th and 10th graders and from 1992 to 1996 among 12th graders (see Figure 8-11b), corresponding to periods of sharp increases in their use of cigarettes. After 1996, however, disapproval turned upward in both lower grades, including a significant increase in 2002 among 10th graders; and the same has been happening since 1997 in grade 12. (Disapproval continued to rise in 2004 at all three grade levels.) At the same time, use has been declining in all three grades. These recent changes in attitude may well have been brought about by the extremely adverse publicity suffered by the tobacco industry during these years. Also, the Joe Camel advertising campaign ended, billboard advertising of cigarettes was removed, and a number of states and the American Legacy Foundation initiated anti-smoking campaigns aimed at youth.


## ATTITUDES REGARDING THE LEGALITY OF DRUG USE

At the beginning of the study in 1975, legal restraints on drug use appeared likely to be in a state of flux for some time. (Little did we know for how long a time.) Therefore, we decided to measure attitudes about legal sanctions. As it turns out, some dramatic changes in these attitudes have occurred during the life of the study. Table 8-7 presents a set of questions on this subject, along with the answers provided by each senior class. The set lists a sampling of illicit and licit drugs and asks respondents whether the use of each should be prohibited by law. A distinction was made between use in public and use in private-a distinction that has proven quite important. (These questions have not been asked of the 8th- and 10th-grade respondents.) The answer alternatives are "no," "yes," and "not sure."

## Attitudes of Twelfth Graders

- The great majority of high school seniors believe that the use in public of illicit drugs other than marijuana should be prohibited by law. For instance, in the case of amphetamines or sedatives (barbiturates), 70\% of the seniors believe that use in public should be prohibited, and $81 \%$ believe that such use of heroin should be prohibited. Even use in private is opposed by the majority, though by smaller proportions: for example, $52 \%$ believe that the use in private of amphetamines or sedatives (barbiturates) should be illegal, $64 \%$ hold this belief about $\boldsymbol{L S D}$ use, and $72 \%$ about heroin use.
- The great majority of seniors (69\%) also favor legally prohibiting marijuana use in public places, despite the fact that about half of them have used marijuana themselves and despite the fact that many do not judge it to be as dangerous as other drugs. Considerably fewer (41\%) feel that marijuana use in private should be prohibited.
- Among 12th graders $44 \%$ believe that cigarette smoking in "certain specified public places" should be prohibited by law. Were the question more specific as to the types of public places in which smoking might be prohibited (e.g., restaurants or hospitals), quite
different results might have emerged. Slightly more think that getting drunk in public should be prohibited (48\%).
- For all drugs included in the question, fewer seniors believe that use in private settings should be illegal than believe this about use in public. This is particularly true for getting drunk and for marijuana use.


## Trends in These Attitudes Among Twelfth Graders

- From 1975 through 1978, there were modest declines (shifts of 5 to 7 percentage points, depending on the substance) in the proportions of seniors who favored legal prohibition of private use of any of the five illicit drugs (see Table 8-7). By 1990 (12 years later), all of these proportions had increased substantially, with shifts of 8 to 31 percentage points. The proportion who thought marijuana use in private should be prohibited by law more than doubled, from $25 \%$ in 1978 to 56\% in 1990-a dramatic shift.

Then, between 1990 and 1997, positions on prohibition of all illicit drug use softened once again, particularly in the case of marijuana, for which the percentage favoring prohibitive laws fell from $56 \%$ in 1990 to $39 \%$ in 1997. Since 1997 these attitudes have been relatively stable. One exception is that the percentage thinking that smoking marijuana in public places should be prohibited declined significantly in 2001, to $68 \%$, the lowest figure since 1981. This attitude remained about the same in 2004 (69\%).

- There has been rather little change in the proportion of seniors who said smoking cigarettes "in certain specified public places" should be prohibited by law. In 1977, 42\% held this view versus $44 \%$ in 2004, 27 years later. On the other hand, given recent widespread prohibitions of smoking in many public buildings, it is possible that the assumed definition of "certain specified public places" has narrowed in the minds of many seniors.
- Attitudes about the legality of drunkenness in public or private places have changed little over the past 29 years, but there was a small change toward less tolerance of drunkenness in private. The stability of attitudes about the preferred legality for this culturally ingrained drug-using behavior contrasts sharply with the lability of attitudes regarding the legality of using illicit drugs.


## THE LEGAL STATUS OF MARIJUANA

Another set of questions asks with more specificity what legal sanctions, if any, seniors think should be attached to the use and sale of marijuana. Respondents also are asked to guess how they would be likely to react to the legalized use and sale of the drug. The answers to such a hypothetical question must be interpreted with considerable caution, of course.

## Attitudes and Predicted Responses to Legalization

- As shown in Table 8-8, in 2004 about 3 seniors out of 10 (29\%) believed that marijuana use should be treated as a crime. The same proportion thought it should be entirely legal (31\%), and slightly fewer (27\%) felt it should be treated as a minor violation-like a parking ticket-but not as a crime. (The remaining $15 \%$ said they "don't know.")
- Asked whether they thought it should be legal to sell marijuana if it were legal to use it, well over half (57\%) said "yes." However, about three-fourths of those answering "yes" ( $45 \%$ of all respondents) would permit the sale only to adults. A small minority (12\%) favored the sale to anyone, regardless of age, while $28 \%$ said that sale should not be legal even if use were made legal, and $14 \%$ said they "don't know."
- Most high school seniors felt that they would be little affected personally by the legalization of either the sale or the use of marijuana. More than half (56\%) of the respondents said that they would not use the drug even if it were legal to buy and use, and another $17 \%$ indicated they would use it about as often as they do now or less often. Only $6.0 \%$ said they would use it more often than they do at present while another $10.6 \%$ thought they would try it. (Eight percent said they did not know how their behavior would be affected if marijuana were legalized.) Still, this amounts to $17 \%$ who state that their use would increase if marijuana were legalized.

A study of the effects of decriminalization by several states during the late 1970s found no evidence of any impact on the use of marijuana among young people, nor on attitudes and beliefs concerning its use. ${ }^{82}$ However, it should be noted that decriminalization falls well short of the full legalization posited in the questions here. Moreover, the situation today is very different than it was in the late 1970s, with much more peer disapproval and more rigorous enforcement of drug laws. More recent studies suggest that there may be an impact of decriminalization, such that "youths living in decriminalized states are significantly more likely to report currently using marijuana."83

## Trends in Attitudes and Predicted Responses

- In the 12-year interval between 1978 and 1990, American young people became much more supportive of legal prohibitions of the use of all illegal drugs, whether used in private or in public (see Table 8-7).
- Between 1976 and 1979, seniors' preferences for decriminalization or legalization of marijuana remained fairly constant (see Table 8-8). But over the 11-year period between 1979 and 1990, the proportion favoring outright legalization dropped by half (from 32\% in 1979 to $16 \%$ in 1990), while there was a corresponding doubling in the proportion saying marijuana use should be a crime (from $24 \%$ to $53 \%$ ). Also reflecting this

[^64]increased conservatism about marijuana use, somewhat fewer said they would support legalized sale even if use were made legal (down from 65\% in 1979 to $48 \%$ in 1990).

After 1990 these policy attitudes began to change again. Fewer favored criminal penalties and more favored legal sale (see Table 8-8). For example, in 1996 the proportion saying that using marijuana should be entirely legal was $31 \%$, up from $16 \%$ in 1990 , and the proportion saying it should be a crime was $34 \%$, down from $53 \%$ in 1990 . For the most part, these attitudes have not changed in any systematic pattern in the last few years, although the proportion saying marijuana use should be a crime has declined another 5 percentage points since 1997. One thing that has become clear over the past 29 years is that young people's policy preferences regarding the legal status of marijuana and other drugs track rather closely the extent to which they personally disapprove of the use of those drugs and the extent to which they are using them.

- The predictions about personal marijuana use, if sale and use were legalized, have been quite similar for all high school classes. The slight shifts observed have been attributable mostly to the changing proportions of seniors who actually have used marijuana.

TABLE 8-1 Trends in Harmfulness of Drugs as Perceived by Eighth Graders


TABLE 8-2
Trends in Harmfulness of Drugs as Perceived by Tenth Graders

|  | Percentage saying "great risk"a |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| How much do you think people risk harming |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Try marijuana once ortwice | 30.0 | 31.9 | 29.7 | 24.4 | 21.5 | 20.0 | 18.8 | 19.6 | 19.2 | 18.5 | 17.9 | 19.9 | 21.1 | 22.0 | +0.9 |
| Smoke manijuana occasionally | 48.6 | 48.9 | 46.1 | 38.9 | 35.4 | 32.8 | 31.9 | 32.5 | 33.5 | 32.4 | 31.2 | 32.0 | 34.9 | 36.2 | +1.3 |
| Smoke manijuana regularly | 82.1 | 81.1 | 78.5 | 71.3 | 67.9 | 65.9 | 65.9 | 65.8 | 65.9 | 64.7 | 62.8 | 60.8 | 63.9 | 65.6 | +1.7 |
| Sniff inhalants once ortwice ${ }^{\text {b }}$ | 37.8 | 38.7 | 40.9 | 42.7 | 41.6 | 47.2 | 47.5 | 45.8 | 48.2 | 46.6 | 49.9 | 48.7 | 47.7 | 46.7 | -1.0 |
| Sniff inhalants regula ${ }^{\text {dy }}{ }^{\text {b }}$ | 69.8 | 67.9 | 69.6 | 71.5 | 71.8 | 75.8 | 74.5 | 73.3 | 76.3 | 75.0 | 76.4 | 73.4 | 72.2 | 73.0 | +0.8 |
| Take LSD once ortwice ${ }^{\text {c }}$ | - | - | 48.7 | 46.5 | 44.7 | 45.1 | 44.5 | 43.5 | 45.0 | 43.0 | 41.3 | 40.1 | 40.8 | 40.6 | -0.2 |
| Take LSD regularly ${ }^{\text {c }}$ | - | - | 78.9 | 75.9 | 75.5 | 75.3 | 73.8 | 72.3 | 73.9 | 72.0 | 68.8 | 64.9 | 63.0 | 63.1 | +0.1 |
| Try MDMA (ecstasy) once ortwice ${ }^{\text {d }}$ | - | - | - | - | - | - | - | - | - | - | 39.4 | 43.5 | 49.7 | 52.0 | +2.3 |
| Take MDMA (ecstasy) occasionally ${ }^{\text {d }}$ | - | - | - | - | - | - | - | - | - | - | 64.8 | 67.3 | 71.7 | 74.6 | +3.0 s |
| Try crack once ortwice ${ }^{\text {b }}$ | 70.4 | 69.6 | 66.6 | 64.7 | 60.9 | 60.9 | 59.2 | 58.0 | 57.8 | 56.1 | 57.1 | 57.4 | 57.6 | 56.7 | -0.9 |
| Take crack occasionally ${ }^{\text {b }}$ | 87.4 | 86.4 | 84.4 | 83.1 | 81.2 | 80.3 | 78.7 | 77.5 | 79.1 | 76.9 | 77.3 | 75.7 | 76.4 | 76.7 | +0.3 |
| Try cocaine powder once ortwice ${ }^{\text {b }}$ | 59.1 | 59.2 | 57.5 | 56.4 | 53.5 | 53.6 | 52.2 | 50.9 | 51.6 | 48.8 | 50.6 | 51.3 | 51.8 | 50.7 | -1.1 |
| Take cocaine powderoccasionally ${ }^{\text {b }}$ | 82.2 | 80.1 | 79.1 | 77.8 | 75.6 | 75.0 | 73.9 | 71.8 | 73.6 | 70.9 | 72.3 | 71.0 | 71.4 | 72.2 | +0.8 |
| Try heroin once ortwice without using a needle ${ }^{\text {c }}$ | - | - | - | - | 70.7 | 72.1 | 73.1 | 71.7 | 73.7 | 71.7 | 72.0 | 72.2 | 70.6 | 72.0 | +1.4 |
| Take heroin occasionally without using a needle ${ }^{\text {c }}$ | - | - | - | - | 85.1 | 85.8 | 86.5 | 84.9 | 86.5 | 85.2 | 85.4 | 83.4 | 83.5 | 85.4 | +1.9 |
| Try one ortwo drinks of an alcoholic beverage (beer, wine, liquor) | 9.0 | 10.1 | 10.9 | 9.4 | 9.3 | 8.9 | 9.0 | 10.1 | 10.5 | 9.6 | 9.8 | 11.5 | 11.5 | 10.8 | -0.8 |
| Take one or two drinks nearly every day | 36.1 | 36.8 | 35.9 | 32.5 | 31.7 | 31.2 | 31.8 | 31.9 | 32.9 | 32.3 | 31.5 | 31.0 | 30.9 | 31.3 | +0.4 |
| Have five ormore drinks once or twice each weekend | 54.7 | 55.9 | 54.9 | 52.9 | 52.0 | 50.9 | 51.8 | 52.5 | 51.9 | 51.0 | 50.7 | 51.7 | 51.6 | 51.7 | 0.0 |
| Smoke one ormore packs of cigarettes perday ${ }^{\text {e }}$ | 60.3 | 59.3 | 60.7 | 59.0 | 57.0 | 57.9 | 59.9 | 61.9 | 62.7 | 65.9 | 64.7 | 64.3 | 65.7 | 68.4 | +2.8 s |
| Use smokeless tobacco regularly | 40.3 | 39.6 | 44.2 | 42.2 | 38.2 | 41.0 | 42.2 | 42.8 | 44.2 | 46.7 | 46.2 | 46.9 | 48.0 | 47.8 | -0.2 |
| Take steroids ${ }^{\text {f }}$ | 67.1 | 72.7 | 73.4 | 72.5 | - |  | - |  |  |  |  |  |  |  |  |
| Approx. $\mathrm{N}=$ | 14700 | 14800 | 15300 | 15900 | 17000 | 15700 | 15600 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s 5=.001$. ' -' indic ates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ Answer a ltematives were: (1) No risk, (2) Slight risk, (3) Moderate risk, (4) Great risk, a nd (5) Can't say, drug unfa miliar. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {b }}$ Beginning in 1997, data based on two-thirds of N indicated due to changes in questionnaire forms. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {c }}$ Data based on one of two forms in 1993-96; N is one-half of N indicated. Beginning in 1997, data based on one-third of N indicated due to changes in questionnaire forms. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {e }}$ Beginning in 1999, data based on two-thirds of N indicated due to changes in questionna ire forms. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {f }}$ Data based on two forms in 1991 and 1992. Data based on one of two forms in 1993 and 1994; N is one-half of N indic ated. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE 8-3
Trends in Harmfulness of Drugs as Perceived by Twelfth Graders

| How much do you think people nisk harming themselves (physic ally or in other ways), | Percentage saying "great risk"a |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| if they. . | $\underline{1975}$ | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | $\underline{1983}$ | 1984 | 1985 | 1986 | $\underline{1987}$ | 1988 | 1989 |
| Try marijuana once ortwice | 15.1 | 11.4 | 9.5 | 8.1 | 9.4 | 10.0 | 13.0 | 11.5 | 12.7 | 14.7 | 14.8 | 15.1 | 18.4 | 19.0 | 23.6 |
| Smoke marijuana occasionally | 18.1 | 15.0 | 13.4 | 12.4 | 13.5 | 14.7 | 19.1 | 18.3 | 20.6 | 22.6 | 24.5 | 25.0 | 30.4 | 31.7 | 36.5 |
| Smoke marijuana regularly | 43.3 | 38.6 | 36.4 | 34.9 | 42.0 | 50.4 | 57.6 | 60.4 | 62.8 | 66.9 | 70.4 | 71.3 | 73.5 | 77.0 | 77.5 |
| Try LSD once or twice | 49.4 | 45.7 | 43.2 | 42.7 | 41.6 | 43.9 | 45.5 | 44.9 | 44.7 | 45.4 | 43.5 | 42.0 | 44.9 | 45.7 | 46.0 |
| Take LSD regularly | 81.4 | 80.8 | 79.1 | 81.1 | 82.4 | 83.0 | 83.5 | 83.5 | 83.2 | 83.8 | 82.9 | 82.6 | 83.8 | 84.2 | 84.3 |
| Try PCP once ortwice | - | - | - | - | - | - | - | - | - | - | - | - | 55.6 | 58.8 | 56.6 |
| Try MDMA (ecstasy) once ortwice | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Try cocaine once ortwice | 42.6 | 39.1 | 35.6 | 33.2 | 31.5 | 31.3 | 32.1 | 32.8 | 33.0 | 35.7 | 34.0 | 33.5 | 47.9 | 51.2 | 54.9 |
| Take cocaine occasionally | - | - | - | - | - | - | - | - | - | - | - | 54.2 | 66.8 | 69.2 | 71.8 |
| Take cocaine regularly | 73.1 | 72.3 | 68.2 | 68.2 | 69.5 | 69.2 | 71.2 | 73.0 | 74.3 | 78.8 | 79.0 | 82.2 | 88.5 | 89.2 | 90.2 |
| Try crack once ortwice | - | - | - | - | - | - | - | - | - | - | - | - | 57.0 | 62.1 | 62.9 |
| Take crackoccasionally | - | - | - | - | - | - | - | - | - | - | - | - | 70.4 | 73.2 | 75.3 |
| Take crack regularly | - | - | - | - | - | - | - | - | - | - | - | - | 84.6 | 84.8 | 85.6 |
| Try cocaine powderonce ortwice | - | - | - | - | - | - | - | - | - | - | - | - | 45.3 | 51.7 | 53.8 |
| Take cocaine powderoccasionally | - | - | - | - | - | - | - | - | - | - | - | - | 56.8 | 61.9 | 65.8 |
| Take cocaine powder regularly | - | - | - | - | - | - | - | - | - | - | - | - | 81.4 | 82.9 | 83.9 |
| Try heroin once ortwice | 60.1 | 58.9 | 55.8 | 52.9 | 50.4 | 52.1 | 52.9 | 51.1 | 50.8 | 49.8 | 47.3 | 45.8 | 53.6 | 54.0 | 53.8 |
| Take heroin occasionally | 75.6 | 75.6 | 71.9 | 71.4 | 70.9 | 70.9 | 72.2 | 69.8 | 71.8 | 70.7 | 69.8 | 68.2 | 74.6 | 73.8 | 75.5 |
| Take heroin regularly | 87.2 | 88.6 | 86.1 | 86.6 | 87.5 | 86.2 | 87.5 | 86.0 | 86.1 | 87.2 | 86.0 | 87.1 | 88.7 | 88.8 | 89.5 |
| Try heroin once ortwice without using a needle | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Take heroin occasionally without using a needle | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Try ampheta mines once ortwice | 35.4 | 33.4 | 30.8 | 29.9 | 29.7 | 29.7 | 26.4 | 25.3 | 24.7 | 25.4 | 25.2 | 25.1 | 29.1 | 29.6 | 32.8 |
| Take ampheta mines regularly | 69.0 | 67.3 | 66.6 | 67.1 | 69.9 | 69.1 | 66.1 | 64.7 | 64.8 | 67.1 | 67.2 | 67.3 | 69.4 | 69.8 | 71.2 |
| Try crystal meth. (ice) once ortwice | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Try barbiturates once ortwice ${ }^{\text {b }}$ | 34.8 | 32.5 | 31.2 | 31.3 | 30.7 | 30.9 | 28.4 | 27.5 | 27.0 | 27.4 | 26.1 | 25.4 | 30.9 | 29.7 | 32.2 |
| Take barbiturates regularly ${ }^{\text {b }}$ | 69.1 | 67.7 | 68.6 | 68.4 | 71.6 | 72.2 | 69.9 | 67.6 | 67.7 | 68.5 | 68.3 | 67.2 | 69.4 | 69.6 | 70.5 |
| Try one or two drinks of an alcoholic beverage (beer, wine, liquor) | 5.3 | 4.8 | 4.1 | 3.4 | 4.1 | 3.8 | 4.6 | 3.5 | 4.2 | 4.6 | 5.0 | 4.6 | 6.2 | 6.0 | 6.0 |
| Take one ortwo drinks nearly every day | 21.5 | 21.2 | 18.5 | 19.6 | 22.6 | 20.3 | 21.6 | 21.6 | 21.6 | 23.0 | 24.4 | 25.1 | 26.2 | 27.3 | 28.5 |
| Take four or five drinks nearly every day | 63.5 | 61.0 | 62.9 | 63.1 | 66.2 | 65.7 | 64.5 | 65.5 | 66.8 | 68.4 | 69.8 | 66.5 | 69.7 | 68.5 | 69.8 |
| Have five ormore drinks once ortwice each weekend | 37.8 | 37.0 | 34.7 | 34.5 | 34.9 | 35.9 | 36.3 | 36.0 | 38.6 | 41.7 | 43.0 | 39.1 | 41.9 | 42.6 | 44.0 |
| Smoke one or more packs of cigarettes perday | 51.3 | 56.4 | 58.4 | 59.0 | 63.0 | 63.7 | 63.3 | 60.5 | 61.2 | 63.8 | 66.5 | 66.0 | 68.6 | 68.0 | 67.2 |
| Use smokeless tobacco regularly | - | - | - | - | - | - | - | - | - | - | - | 25.8 | 30.0 | 33.2 | 32.9 |
| Take steroids | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 63.8 |
| Approx. $\mathrm{N}=$ | 2804 | 2918 | 3052 | 3770 | 3250 | 3234 | 3604 | 3557 | 3305 | 3262 | 3250 | 3020 | 3315 | 3276 | 2796 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01$, $55 s=.001$. ' - ' indic ates data not available. ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE 8-3 (cont'd)

## Trends in Harmfulness of Drugs as Perceived by Twelfth Graders



[^65]Trends in Disapproval of Drug Use by Eighth Graders
Percentage who "disapprove" or "strongly disapprove"a
Do you disapprove of people who ...
Try marijuana once ortwice
Smoke marijuana occasionally
Smoke manijuana regularly
Sniff inhalants once or twice ${ }^{\text {b }}$
Sniff inhalants regularly ${ }^{\text {b }}$
Take LSD once ortwice ${ }^{\text {c }}$
Take LSD regularly ${ }^{\text {c }}$
Try MDMA (ecstasy) once ortwic ${ }^{\text {d }}$
Take MDMA (ecstasy) occasionally ${ }^{d}$
Ty crack once ortwice ${ }^{\text {b }}$
Take crack occasionally ${ }^{b}$
Try cocaine powderonce ortwice ${ }^{\text {b }}$
Take cocaine powderoccasionally ${ }^{\text {b }}$
Try heroin once ortwice without using a needle ${ }^{c}$
Try heroin occasionally without using a needle ${ }^{\text {c }}$
Try one or two drinks of an alcoholic beverage
(beer, wine, liquor)
Take one ortwo drinks nearly every day
Have five or more drinks once ortwice
each weekend

|  |  |  | Perc |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | $\underline{2003}$ | 2004 |  |
| 84.6 | 82.1 | 79.2 | 72.9 | 70.7 | 67.5 | 67.6 | 69.0 | 70.7 | 72.5 | 72.4 | 73.3 | 73.8 | 75.9 | +2.1 s |
| 89.5 | 88.1 | 85.7 | 80.9 | 79.7 | 76.5 | 78.1 | 78.4 | 79.3 | 80.6 | 80.6 | 80.9 | 81.5 | 83.1 | +1.7 s |
| 92.1 | 90.8 | 88.9 | 85.3 | 85.1 | 82.8 | 84.6 | 84.5 | 84.5 | 85.3 | 84.5 | 85.3 | 85.7 | 86.8 | +1.0 |
| 84.9 | 84.0 | 82.5 | 81.6 | 81.8 | 82.9 | 84.1 | 83.0 | 85.2 | 85.4 | 86.6 | 86.1 | 85.1 | 85.1 | -0.1 |
| 90.6 | 90.0 | 88.9 | 88.1 | 88.8 | 89.3 | 90.3 | 89.5 | 90.3 | 90.2 | 90.5 | 90.4 | 89.8 | 90.1 | +0.4 |
| - | - | 77.1 | 75.2 | 71.6 | 70.9 | 72.1 | 69.1 | 69.4 | 66.7 | 64.6 | 62.6 | 61.0 | 58.1 | -2.9 |
| - | - | 79.8 | 78.4 | 75.8 | 75.3 | 76.3 | 72.5 | 72.5 | 69.3 | 67.0 | 65.5 | 63.5 | 60.5 | -3.0 s |
| - | - | - | - | - | - | - | - | - | - | 69.0 | 74.3 | 77.7 | 76.3 | -1.5 |
| - |  | - | - | - | - |  | - | - | - | 73.6 | 78.6 | 81.3 | 79.4 | -1.9 |
| 91.7 | 90.7 | 89.1 | 86.9 | 85.9 | 85.0 | 85.7 | 85.4 | 86.0 | 85.4 | 86.0 | 86.2 | 86.4 | 87.4 | +1.0 |
| 93.3 | 92.5 | 91.7 | 89.9 | 89.8 | 89.3 | 90.3 | 89.5 | 89.9 | 88.8 | 89.8 | 89.6 | 89.8 | 90.3 | +0.5 |
| 91.2 | 89.6 | 88.5 | 86.1 | 85.3 | 83.9 | 85.1 | 84.5 | 85.2 | 84.8 | 85.6 | 85.8 | 85.6 | 86.8 | +1.2 |
| 93.1 | 92.4 | 91.6 | 89.7 | 89.7 | 88.7 | 90.1 | 89.3 | 89.9 | 88.8 | 89.6 | 89.9 | 89.8 | 90.3 | +0.5 |
| - | - | - | - | 85.8 | 85.0 | 87.7 | 87.3 | 88.0 | 87.2 | 87.2 | 87.8 | 86.9 | 86.6 | -0.4 |
| - | - | - | - | 88.5 | 87.7 | 90.1 | 89.7 | 90.2 | 88.9 | 88.9 | 89.6 | 89.0 | 88.6 | -0.5 |
| 51.7 | 52.2 | 50.9 | 47.8 | 48.0 | 45.5 | 45.7 | 47.5 | 48.3 | 48.7 | 49.8 | 51.1 | 49.7 | 51.1 | +1.4 |
| 82.2 | 81.0 | 79.6 | 76.7 | 75.9 | 74.1 | 76.6 | 76.9 | 77.0 | 77.8 | 77.4 | 78.3 | 77.1 | 78.6 | +1.5 |
| 85.2 | 83.9 | 83.3 | 80.7 | 80.7 | 79.1 | 81.3 | 81.0 | 80.3 | 81.2 | 81.6 | 81.9 | 81.9 | 82.3 | +0.4 |
| 82.8 | 82.3 | 80.6 | 78.4 | 78.6 | 77.3 | 80.3 | 80.0 | 81.4 | 81.9 | 83.5 | 84.6 | 84.6 | 85.7 | +1.2 |
| 79.1 | 77.2 | 77.1 | 75.1 | 74.0 | 74.1 | 76.5 | 76.3 | 78.0 | 79.2 | 79.4 | 80.6 | 80.7 | 81.0 | +0.3 |
| 89.8 | 90.3 | 89.9 | 87.9 | - | - | - | - | - | - | - | - | - | - | - |

Approx. N = 17400 18500184001740017600180001880018100167001670016200151001650017000
NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,55 s=.001$. ' - ' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Answer altematives were: (1) Don't disapprove, (2) Disapprove, (3) Strongly disapprove, and (4) Can't say, drug unfa miliar.
${ }^{\mathrm{b}}$ Beginning in 1997, data based on two-thirds of N indic ated due to changes in questionnaire forms.
${ }^{\text {c }}$ Data based on one of two forms in 1993-96; N is one-half of N indicated. Beginning in 1997, data based on one-third of N indicated due to changes in questionnaire forms.
${ }^{d}$ Data based on one-third of N indicated.
${ }^{\text {e }}$ Beginning in 1999, data based on two-thirds of N indic ated due to changes in questionnaire forms.
foata based on two forms in 1991 and 1992. Data based on one of two forms in 1993 and 1994; N is one-half of N indicated.

## TABLE 8-5

Trends in Disapproval of Drug Use by Tenth Graders

| Do you disapprove of people who | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | $\underline{1997}$ | 1998 | $\underline{1999}$ | 2000 | 2001 | 2002 | $\underline{2003}$ | 2004 | change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Try marijuana once ortwice | 74.6 | 74.8 | 70.3 | 62.4 | 59.8 | 55.5 | 54.1 | 56.0 | 56.2 | 54.9 | 54.8 | 57.8 | 58.1 | 60.4 | +2.2 |
| Smoke marijuana occasionally | 83.7 | 83.6 | 79.4 | 72.3 | 70.0 | 66.9 | 66.2 | 67.3 | 68.2 | 67.2 | 66.2 | 68.3 | 68.4 | 70.8 | +2.4 s |
| Smoke manjuana regularly | 90.4 | 90.0 | 87.4 | 82.2 | 81.1 | 79.7 | 79.7 | 80.1 | 79.8 | 79.1 | 78.0 | 78.6 | 78.8 | 81.3 | +2.5 ss |
| Sniff inhalants once ortwice ${ }^{\text {b }}$ | 85.2 | 85.6 | 84.8 | 84.9 | 84.5 | 86.0 | 86.9 | 85.6 | 88.4 | 87.5 | 87.8 | 88.6 | 87.7 | 88.5 | +0.8 |
| Sniff inhalants regularly ${ }^{\text {b }}$ | 91.0 | 91.5 | 90.9 | 91.0 | 90.9 | 91.7 | 91.7 | 91.1 | 92.4 | 91.8 | 91.3 | 91.8 | 91.0 | 92.3 | +1.3 s |
| Take LSD once ortwice ${ }^{\text {c }}$ |  |  | 82.1 | 79.3 | 77.9 | 76.8 | 76.6 | 76.7 | 77.8 | 77.0 | 75.4 | 74.6 | 74.4 | 72.4 | -2.0 |
| Take LSD regularly ${ }^{\text {c }}$ |  |  | 86.8 | 85.6 | 84.8 | 84.5 | 83.4 | 82.9 | 84.3 | 82.1 | 80.8 | 79.4 | 77.6 | 75.9 | -1.7 |
| Try MDMA (ecstasy) once ortwice ${ }^{\text {d }}$ |  |  | - | - | - | - | - | - | - | - | 72.6 | 77.4 | 81.0 | 83.7 | +2.7 s |
| Take MDMA (ecstasy) occasionally ${ }^{\text {d }}$ |  |  |  |  |  |  | - | - |  |  | 81.0 | 84.6 | 86.3 | 88.0 | +1.8 |
| Try crack once ortwice ${ }^{\text {b }}$ | 92.5 | 92.5 | 91.4 | 89.9 | 88.7 | 88.2 | 87.4 | 87.1 | 87.8 | 87.1 | 86.9 | 88.0 | 87.6 | 88.6 | +1.0 |
| Take crackoccasionally ${ }^{\text {b }}$ | 94.3 | 94.4 | 93.6 | 92.5 | 91.7 | 91.9 | 91.0 | 90.6 | 91.5 | 90.9 | 90.6 | 91.0 | 91.0 | 91.8 | +0.8 |
| Try cocaine powderonce ortwice ${ }^{\text {b }}$ | 90.8 | 91.1 | 90.0 | 88.1 | 86.8 | 86.1 | 85.1 | 84.9 | 86.0 | 84.8 | 85.3 | 86.4 | 85.9 | 86.8 | +0.9 |
| Take cocaine powderoccasionally ${ }^{\text {b }}$ | 94.0 | 94.0 | 93.2 | 92.1 | 91.4 | 91.1 | 90.4 | 89.7 | 90.7 | 89.9 | 90.2 | 89.9 | 90.4 | 91.2 | +0.8 |
| Try heroin once ortwice without using a needle ${ }^{\text {c }}$ | - | - | - |  | 89.7 | 89.5 | 89.1 | 88.6 | 90.1 | 90.1 | 89.1 | 89.2 | 89.3 | 90.1 | +0.8 |
| Try heroin occasionally without using a needle ${ }^{\text {c }}$ | - | - | - |  | 91.6 | 91.7 | 91.4 | 90.5 | 91.8 | 92.3 | 90.8 | 90.7 | 90.6 | 91.8 | +1.2 |
| Try one or two drinks of an alcoholic beverage (beer, wine, liquor) | 37.6 | 39.9 | 38.5 | 36.5 | 36.1 | 34.2 | 33.7 | 34.7 | 35.1 | 33.4 | 34.7 | 37.7 | 36.8 | 37.6 | +0.8 |
| Take one ortwo drinks nearly every day | 81.7 | 81.7 | 78.6 | 75.2 | 75.4 | 73.8 | 75.4 | 74.6 | 75.4 | 73.8 | 73.8 | 74.9 | 74.2 | 75.1 | +0.9 |
| Have five or more drinks once ortwice each weekend | 76.7 | 77.6 | 74.7 | 72.3 | 72.2 | 70.7 | 70.2 | 70.5 | 69.9 | 68.2 | 69.2 | 71.5 | 71.6 | 71.8 | +0.1 |
| Smoke one or more packs of cigarettes perday ${ }^{\text {e }}$ | 79.4 | 77.8 | 76.5 | 73.9 | 73.2 | 71.6 | 73.8 | 75.3 | 76.1 | 76.7 | 78.2 | 80.6 | 81.4 | 82.7 | +1.3 |
| Use smokeless tobacco regularly | 75.4 | 74.6 | 73.8 | 71.2 | 71.0 | 71.0 | 72.3 | 73.2 | 75.1 | 75.8 | 76.1 | 78.7 | 79.4 | 80.2 | +0.9 |
| Take steroids ${ }^{\text {f }}$ | 90.0 | 91.0 | 91.2 | 90.8 | - | - | - | - | - | - | - | - | - | - |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15900 | 17000 | 15700 | 15600 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ Answer altematives were: (1) Don't disapprove, (2) Disapprove, (3) Strongly disapprove, and (4) Can't say, drug unfamiliar. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\mathrm{b}}$ Beginning in 1997, data based on two-thirds of N indicated due to changes in questionnaire forms. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {c }}$ Data based on one of two forms in 1993-96; N is one-half of N indicated. Beginning in 1997, data based on one-third of N indicated due to changes in questionnaire forms. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {d }}$ Data based on one-third of N indicated due to changes in questionnaire forms. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {e }}$ Beginning in 1999, data based on two-thirds of N indicated. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| f Data based on two forms in 1991 and 1992. Data based on one of two forms in 1993 and 1994; N is one-half of N indicated. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE 8-6

## Trends in Disapproval of Drug Use by Twelfth Graders

| Do you disapprove of people (who are 18 or | Percentage "disapproving"b |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ont |
| older) doing each of the following? ${ }^{\text {a }}$ | $\underline{1975}$ | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | $\underline{1985}$ | 1986 | 1987 | 1988 | 1989 |  |
| Try marijuana once ortwice | 47.0 | 38.4 | 33.4 | 33.4 | 34.2 | 39.0 | 40.0 | 45.5 | 46.3 | 49.3 | 51.4 | 54.6 | 56.6 | 60.8 | 64.6 |  |
| Smoke marijuana occasionally | 54.8 | 47.8 | 44.3 | 43.5 | 45.3 | 49.7 | 52.6 | 59.1 | 60.7 | 63.5 | 65.8 | 69.0 | 71.6 | 74.0 | 77.2 |  |
| Smoke manjuana regularly | 71.9 | 69.5 | 65.5 | 67.5 | 69.2 | 74.6 | 77.4 | 80.6 | 82.5 | 84.7 | 85.5 | 86.6 | 89.2 | 89.3 | 89.8 |  |
| Try LSD once ortwice | 82.8 | 84.6 | 83.9 | 85.4 | 86.6 | 87.3 | 86.4 | 88.8 | 89.1 | 88.9 | 89.5 | 89.2 | 91.6 | 89.8 | 89.7 |  |
| Take LSD regularly | 94.1 | 95.3 | 95.8 | 96.4 | 96.9 | 96.7 | 96.8 | 96.7 | 97.0 | 96.8 | 97.0 | 96.6 | 97.8 | 96.4 | 96.4 |  |
| Try MDMA (ecstasy) once ortwice | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Try cocaine once ortwice | 81.3 | 82.4 | 79.1 | 77.0 | 74.7 | 76.3 | 74.6 | 76.6 | 77.0 | 79.7 | 79.3 | 80.2 | 87.3 | 89.1 | 90.5 |  |
| Take cocaine regularly | 93.3 | 93.9 | 92.1 | 91.9 | 90.8 | 91.1 | 90.7 | 91.5 | 93.2 | 94.5 | 93.8 | 94.3 | 96.7 | 96.2 | 96.4 |  |
| Try crack once ortwice | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Take crack occasionally | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Take crack regularly | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Try cocaine powderonce ortwice | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Take cocaine powderoccasionally | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Take cocaine powder regularly | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Try heroin once ortwice | 91.5 | 92.6 | 92.5 | 92.0 | 93.4 | 93.5 | 93.5 | 94.6 | 94.3 | 94.0 | 94.0 | 93.3 | 96.2 | 95.0 | 95.4 |  |
| Take heroin occasionally | 94.8 | 96.0 | 96.0 | 96.4 | 96.8 | 96.7 | 97.2 | 96.9 | 96.9 | 97.1 | 96.8 | 96.6 | 97.9 | 96.9 | 97.2 |  |
| Take heroin regularly | 96.7 | 97.5 | 97.2 | 97.8 | 97.9 | 97.6 | 97.8 | 97.5 | 97.7 | 98.0 | 97.6 | 97.6 | 98.1 | 97.2 | 97.4 |  |
| Try heroin once ortwice without using a needle | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Take heroin occasionally without using a needle | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Try a mpheta mines once ortwice | 74.8 | 75.1 | 74.2 | 74.8 | 75.1 | 75.4 | 71.1 | 72.6 | 72.3 | 72.8 | 74.9 | 76.5 | 80.7 | 82.5 | 83.3 |  |
| Take amphetamines regularly | 92.1 | 92.8 | 92.5 | 93.5 | 94.4 | 93.0 | 91.7 | 92.0 | 92.6 | 93.6 | 93.3 | 93.5 | 95.4 | 94.2 | 94.2 |  |
| Try barbiturates once ortwice ${ }^{\text {c }}$ | 77.7 | 81.3 | 81.1 | 82.4 | 84.0 | 83.9 | 82.4 | 84.4 | 83.1 | 84.1 | 84.9 | 86.8 | 89.6 | 89.4 | 89.3 |  |
| Take barbiturates regularly ${ }^{\text {c }}$ | 93.3 | 93.6 | 93.0 | 94.3 | 95.2 | 95.4 | 94.2 | 94.4 | 95.1 | 95.1 | 95.5 | 94.9 | 96.4 | 95.3 | 95.3 |  |
| Try one ortwo drinks of an alc oholic beverage (beer, wine, liquor) | 21.6 | 18.2 | 15.6 | 15.6 | 15.8 | 16.0 | 17.2 | 18.2 | 18.4 | 17.4 | 20.3 | 20.9 | 21.4 | 22.6 | 27.3 |  |
| Take one ortwo drinks nearly every day | 67.6 | 68.9 | 66.8 | 67.7 | 68.3 | 69.0 | 69.1 | 69.9 | 68.9 | 72.9 | 70.9 | 72.8 | 74.2 | 75.0 | 76.5 |  |
| Take four or five drinks nearly every day | 88.7 | 90.7 | 88.4 | 90.2 | 91.7 | 90.8 | 91.8 | 90.9 | 90.0 | 91.0 | 92.0 | 91.4 | 92.2 | 92.8 | 91.6 |  |
| Have five ormore drinks once ortwice each weekend | 60.3 | 58.6 | 57.4 | 56.2 | 56.7 | 55.6 | 55.5 | 58.8 | 56.6 | 59.6 | 60.4 | 62.4 | 62.0 | 65.3 | 66.5 |  |
| Smoke one or more packs of cigarettes per day | 67.5 | 65.9 | 66.4 | 67.0 | 70.3 | 70.8 | 69.9 | 69.4 | 70.8 | 73.0 | 72.3 | 75.4 | 74.3 | 73.1 | 72.4 |  |
| Take steroids | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Approx. $\mathrm{N}=$ | 2677 | 2957 | 3085 | 3686 | 3221 | 3261 | 3610 | 3651 | 3341 | 3254 | 3265 | 3113 | 3302 | 3311 | 2799 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,55=.01,55 s=.001$. ' - ' indic ates data not available.
' $\ddagger$ ' indicates some change in the question. See relevant footnote.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE 8-6 (cont'd)

## Trends in Disapproval of Drug Use by Twelfth Graders

| Do you disapprove of people (who are 18 or older) doing each of the following? ${ }^{\text {a }}$ | Percentage "disapproving"b |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | $\underline{1991}$ | 1992 | $\underline{1993}$ | 1994 | $\underline{1995}$ | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | 2002 | $\underline{2003}$ | $\underline{2004}$ | change |
| Try marijuana once ortwice | 67.8 | 68.7 | 69.9 | 63.3 | 57.6 | 56.7 | 52.5 | 51.0 | 51.6 | 48.8 | 52.5 | 49.1 | 51.6 | 53.4 | 52.7 | -0.7 |
| Smoke marijuana occasionally | 80.5 | 79.4 | 79.7 | 75.5 | 68.9 | 66.7 | 62.9 | 63.2 | 64.4 | 62.5 | 65.8 | 63.2 | 63.4 | 64.2 | 65.4 | +1.2 |
| Smoke manjuana regularly | 91.0 | 89.3 | 90.1 | 87.6 | 82.3 | 81.9 | 80.0 | 78.8 | 81.2 | 78.6 | 79.7 | 79.3 | 78.3 | 78.7 | 80.7 | +2.1 |
| Try LSD once ortwice | 89.8 | 90.1 | 88.1 | 85.9 | 82.5 | 81.1 | 79.6 | 80.5 | 82.1 | 83.0 | 82.4 | 81.8 | 84.6 | 85.5 | 87.9 | +2.4 s |
| Take LSD regularly | 96.3 | 96.4 | 95.5 | 95.8 | 94.3 | 92.5 | 93.2 | 92.9 | 93.5 | 94.3 | 94.2 | 94.0 | 94.0 | 94.4 | 94.6 | +0.2 |
| Try MDMA (ecstasy) once ortwice |  |  | - | - | - | - | - | 82.2 | 82.5 | 82.1 | 81.0 | 79.5 | 83.6 | 84.7 | 87.7 | +3.0 s |
| Try cocaine once ortwice | 91.5 | 93.6 | 93.0 | 92.7 | 91.6 | 90.3 | 90.0 | 88.0 | 89.5 | 89.1 | 88.2 | 88.1 | 89.0 | 89.3 | 88.6 | -0.8 |
| Take cocaine regularly | 96.7 | 97.3 | 96.9 | 97.5 | 96.6 | 96.1 | 95.6 | 96.0 | 95.6 | 94.9 | 95.5 | 94.9 | 95.0 | 95.8 | 95.4 | -0.4 |
| Try crack once ortwice | 92.3 | 92.1 | 93.1 | 89.9 | 89.5 | 91.4 | 87.4 | 87.0 | 86.7 | 87.6 | 87.5 | 87.0 | 87.8 | 86.6 | 86.9 | +0.2 |
| Take crackoccasionally | 94.3 | 94.2 | 95.0 | 92.8 | 92.8 | 94.0 | 91.2 | 91.3 | 90.9 | 92.3 | 91.9 | 91.6 | 91.5 | 90.8 | 92.1 | +1.3 |
| Take crack regularly | 94.9 | 95.0 | 95.5 | 93.4 | 93.1 | 94.1 | 93.0 | 92.3 | 91.9 | 93.2 | 92.8 | 92.2 | 92.4 | 91.2 | 93.1 | +1.8 |
| Try cocaine powderonce ortwice | 87.9 | 88.0 | 89.4 | 86.6 | 87.1 | 88.3 | 83.1 | 83.0 | 83.1 | 84.3 | 84.1 | 83.3 | 83.8 | 83.6 | 82.2 | -1.4 |
| Take cocaine powderoccasionally | 92.1 | 93.0 | 93.4 | 91.2 | 91.0 | 92.7 | 89.7 | 89.3 | 88.7 | 90.0 | 90.3 | 89.8 | 90.2 | 88.9 | 90.0 | +1.1 |
| Take cocaine powder regularly | 93.7 | 94.4 | 94.3 | 93.0 | 92.5 | 93.8 | 92.9 | 91.5 | 91.1 | 92.3 | 92.6 | 92.5 | 92.2 | 90.7 | 92.6 | +1.9 |
| Try heroin once ortwice | 95.1 | 96.0 | 94.9 | 94.4 | 93.2 | 92.8 | 92.1 | 92.3 | 93.7 | 93.5 | 93.0 | 93.1 | 94.1 | 94.1 | 94.2 | +0.1 |
| Take heroin occasionally | 96.7 | 97.3 | 96.8 | 97.0 | 96.2 | 95.7 | 95.0 | 95.4 | 96.1 | 95.7 | 96.0 | 95.4 | 95.6 | 95.9 | 96.4 | +0.4 |
| Take heroin regularly | 97.5 | 97.8 | 97.2 | 97.5 | 97.1 | 96.4 | 96.3 | 96.4 | 96.6 | 96.4 | 96.6 | 96.2 | 96.2 | 97.1 | 97.1 | +0.1 |
| Try heroin once ortwice without using a needle | - | - | - | - | - | 92.9 | 90.8 | 92.3 | 93.0 | 92.6 | 94.0 | 91.7 | 93.1 | 92.2 | 93.1 | +0.9 |
| Take heroin occasionally without using a needle | - | - | - | - | - | 94.7 | 93.2 | 94.4 | 94.3 | 93.8 | 95.2 | 93.5 | 94.4 | 93.5 | 94.4 | +0.9 |
| Try ampheta mines once or twice | 85.3 | 86.5 | 86.9 | 84.2 | 81.3 | 82.2 | 79.9 | 81.3 | 82.5 | 81.9 | 82.1 | 82.3 | 83.8 | 85.8 | 84.1 | -1.7 |
| Take amphetamines regularly | 95.5 | 96.0 | 95.6 | 96.0 | 94.1 | 94.3 | 93.5 | 94.3 | 94.0 | 93.7 | 94.1 | 93.4 | 93.5 | 94.0 | 93.9 | 0.0 |
| Try barbiturates once ortwice ${ }^{\text {c }}$ | 90.5 | 90.6 | 90.3 | 89.7 | 87.5 | 87.3 | 84.9 | 86.4 | 86.0 | 86.6 | 85.9 | 85.9 | 86.6 | 87.8† | 83.7 | - |
| Take barbiturates regularly ${ }^{\text {c }}$ | 96.4 | 97.1 | 96.5 | 97.0 | 96.1 | 95.2 | 94.8 | 95.3 | 94.6 | 94.7 | 95.2 | 94.5 | 94.7 | 94.4 $\ddagger$ | 94.2 | - |
| Try one ortwo drinks of an alcoholic beverage (beer, wine, liquor) | 29.4 | 29.8 | 33.0 | 30.1 | 28.4 | 27.3 | 26.5 | 26.1 | 24.5 | 24.6 | 25.2 | 26.6 | 26.3 | 27.2 | 26.0 | -1.2 |
| Take one ortwo drinks nearly every day | 77.9 | 76.5 | 75.9 | 77.8 | 73.1 | 73.3 | 70.8 | 70.0 | 69.4 | 67.2 | 70.0 | 69.2 | 69.1 | 68.9 | 69.5 | +0.6 |
| Take four or five drinks nearly every day | 91.9 | 90.6 | 90.8 | 90.6 | 89.8 | 88.8 | 89.4 | 88.6 | 86.7 | 86.9 | 88.4 | 86.4 | 87.5 | 86.3 | 87.8 | +1.5 |
| Have five or more drinks once ortwice each weekend | 68.9 | 67.4 | 70.7 | 70.1 | 65.1 | 66.7 | 64.7 | 65.0 | 63.8 | 62.7 | 65.2 | 62.9 | 64.7 | 64.2 | 65.7 | +1.5 |
| Smoke one or more packs of cigarettes perday | 72.8 | 71.4 | 73.5 | 70.6 | 69.8 | 68.2 | 67.2 | 67.1 | 68.8 | 69.5 | 70.1 | 71.6 | 73.6 | 74.8 | 76.2 | +1.5 |
| Take steroids | 90.8 | 90.5 | 92.1 | 92.1 | 91.9 | 91.0 | 91.7 | 91.4 | 90.8 | 88.9 | 88.8 | 86.4 | 86.8 | 86.0 | 87.9 | +1.9 |
| Approx. $\mathrm{N}=$ | 2566 | 2547 | 2645 | 2723 | 2588 | 2603 | 2399 | 2601 | 2545 | 2310 | 2150 | 2144 | 2160 | 2442 | 2455 |  |

${ }^{\text {a }}$ The 1975 question asked about people who are " 20 or older."
${ }^{\mathrm{b}}$ Answer altematives were: (1) Don't disapprove, (2) Disapprove, and (3) Strongly disapprove. Percentages are shown for categories (2) and (3) combined.
'In 2004 the question text waschanged from "barbiturates" to "sedatives/barbiturates" and the list of examples waschanged from "downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results.

## TABLE 8-7

Trends in Twelfth Graders' Attitudes Regarding Legality of Drug Use

| Do you think that people (who are 18 or older) | Percentage saying "yes" ${ }^{\text {"b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| of the following? ${ }^{\text {a }}$ | $\underline{1975}$ | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Smoke marijuana in private | 32.8 | 27.5 | 26.8 | 25.4 | 28.0 | 28.9 | 35.4 | 36.6 | 37.8 | 41.6 | 44.7 | 43.8 | 47.6 | 51.8 | 51.5 |  |
| Smoke marijuana in public places | 63.1 | 59.1 | 58.7 | 59.5 | 61.8 | 66.1 | 67.4 | 72.8 | 73.6 | 75.2 | 78.2 | 78.9 | 79.7 | 81.3 | 80.0 |  |
| Take LSD in private | 67.2 | 65.1 | 63.3 | 62.7 | 62.4 | 65.8 | 62.6 | 67.1 | 66.7 | 67.9 | 70.6 | 69.0 | 70.8 | 71.5 | 71.6 |  |
| Take LSD in public places | 85.8 | 81.9 | 79.3 | 80.7 | 81.5 | 82.8 | 80.7 | 82.1 | 82.8 | 82.4 | 84.8 | 84.9 | 85.2 | 86.0 | 84.4 |  |
| Take heroin in private | 76.3 | 72.4 | 69.2 | 68.8 | 68.5 | 70.3 | 68.8 | 69.3 | 69.7 | 69.8 | 73.3 | 71.7 | 75.0 | 74.2 | 74.4 |  |
| Take heroin in public places | 90.1 | 84.8 | 81.0 | 82.5 | 84.0 | 83.8 | 82.4 | 82.5 | 83.7 | 83.4 | 85.8 | 85.0 | 86.2 | 86.6 | 85.2 |  |
| Take amphetamines or barbiturates in private ${ }^{\text {c }}$ | 57.2 | 53.5 | 52.8 | 52.2 | 53.4 | 54.1 | 52.0 | 53.5 | 52.8 | 54.4 | 56.3 | 56.8 | 59.1 | 60.2 | 61.1 |  |
| Take amphetaminesorbarbiturates in public places ${ }^{\text {c }}$ | 79.6 | 76.1 | 73.7 | 75.8 | 77.3 | 76.1 | 74.2 | 75.5 | 76.7 | 76.8 | 78.3 | 79.1 | 79.8 | 80.2 | 79.2 |  |
| Get drunk in private | 14.1 | 15.6 | 18.6 | 17.4 | 16.8 | 16.7 | 19.6 | 19.4 | 19.9 | 19.7 | 19.8 | 18.5 | 18.6 | 19.2 | 20.2 |  |
| Get drunk in public places | 55.7 | 50.7 | 49.0 | 50.3 | 50.4 | 48.3 | 49.1 | 50.7 | 52.2 | 51.1 | 53.1 | 52.2 | 53.2 | 53.8 | 52.6 |  |
| Smoke cigarettes in certain specified public places | - | - | 42.0 | 42.2 | 43.1 | 42.8 | 43.0 | 42.0 | 40.5 | 39.2 | 42.8 | 45.1 | 44.4 | 48.4 | 44.5 |  |
| Approx. $\mathrm{N}=$ | 2620 | 2959 | 3113 | 3783 | 3288 | 3224 | 3611 | 3627 | 3315 | 3236 | 3254 | 3074 | 3332 | 3288 | 2813 |  |
| NOTES: Level of signific ance of difference betwe <br> '-' indic ates data not a vailable. <br> ' $\ddagger$ ' indic ates some change in the questio <br> Any apparent inconsistency between th | n the <br> n. See chan | vo mo <br> relevan e estin | recen <br> footno and | classes <br> the pre | $s=.05$ <br> valenc | $s s=.01$ <br> of use | $5 s s=.0$ <br> stimat | forth | two m | st rece | t class | is due | to roun | ing en |  |  |
| SOURCE: The Monitoring the Future Study, the Univ ${ }^{\text {a }}$ The 1975 question asked about people who are " | rsity o <br> 20 or | Mic hig er." |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\mathrm{b}}$ Answer altematives were: (1) No, (2) Not sure, and ${ }^{\text {c }}$ In 2004 the question text waschanged from "barb etc." to just "downers." These changes likely explai | (3) $Y$ <br> iturate <br> the $d$ | to "se ontinu | atives/ <br> ty in the |  | tes" and sults. | d the lis | oxa | mples | schan | ged fro | "dow | ers, g | fballs, | $\mathrm{ds}, \mathrm{y}$ |  |  |

TABLE 8-7 (cont'd)
Trends in Twelfth Graders' Attitudes Regarding Legality of Drug Use

| Do you think that people (who are 18 or older) | Percentage saying "yes"b |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| of the following? ${ }^{\text {a }}$ | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Smoke marijuana in private | 56.0 | 51.6 | 52.4 | 48.0 | 42.9 | 44.0 | 40.4 | 38.8 | 39.8 | 39.3 | 38.8 | 39.1 | 38.4 | 40.3 | 41.4 | +1.2 |
| Smoke marijuana in public places | 81.9 | 79.8 | 78.3 | 77.3 | 72.5 | 72.9 | 70.0 | 69.4 | 72.2 | 71.5 | 72.1 | 68.3 | 67.6 | 68.6 | 69.2 | +0.5 |
| Take LSD in private | 72.9 | 68.1 | 67.2 | 63.5 | 63.2 | 64.3 | 62.0 | 61.2 | 64.7 | 62.6 | 62.9 | 63.1 | 64.2 | 64.2 | 64.4 | +0.2 |
| Take LSD in public places | 84.9 | 83.9 | 82.2 | 82.1 | 80.5 | 81.5 | 79.2 | 80.3 | 82.7 | 80.4 | 80.4 | 78.8 | 79.9 | 79.1 | 77.0 | -2.1 |
| Take heroin in private | 76.4 | 72.8 | 71.4 | 70.7 | 70.1 | 72.2 | 70.8 | 70.6 | 73.9 | 72.9 | 71.1 | 70.6 | 73.6 | 73.1 | 72.0 | -1.1 |
| Take heroin in public places | 86.7 | 85.4 | 83.3 | 84.5 | 82.9 | 84.8 | 82.3 | 84.3 | 86.4 | 84.2 | 83.9 | 81.7 | 83.7 | 83.2 | 80.9 | -2.3 |
| Take a mpheta mines or barbiturates in private ${ }^{\text {c }}$ | 64.5 | 59.7 | 60.5 | 57.4 | 55.7 | 57.5 | 54.6 | 54.6 | 58.5 | 55.1 | 56.0 | 55.9 | 56.0 | $55.8 \ddagger$ | 52.2 | - |
| Take amphetaminesor barbiturates in public places ${ }^{\text {c }}$ | 81.6 | 79.7 | 78.5 | 78.0 | 76.4 | 77.6 | 74.3 | 76.5 | 77.4 | 76.1 | 75.4 | 74.5 | 73.6 | $74.4 \ddagger$ | 69.9 | - |
| Get drunk in private | 23.0 | 22.0 | 24.4 | 22.1 | 21.0 | 21.6 | 21.4 | 20.5 | 20.2 | 20.5 | 21.5 | 22.6 | 21.0 | 21.4 | 22.0 | +0.6 |
| Get drunk in public places | 54.6 | 54.3 | 54.1 | 53.6 | 54.3 | 54.5 | 52.8 | 51.7 | 51.2 | 52.8 | 51.9 | 50.6 | 48.6 | 50.1 | 47.7 | -2.4 |
| Smoke cigarettes in certa in specified public places | 47.3 | 44.9 | 47.6 | 45.9 | 47.3 | 45.1 | 43.4 | 41.3 | 41.1 | 43.2 | 45.1 | 44.2 | 43.8 | 45.5 | 44.3 | -1.2 |
| Approx. $\mathrm{N}=$ | 2571 | 2512 | 2671 | 2759 | 2603 | 2578 | 2422 | 2587 | 2563 | 2283 | 2146 | 2161 | 2162 | 2450 | 2450 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s 5 s=.001$.
'-' indicates data not available.
' $\ddagger$ ' indic ates some change in the question. See relevant footnote.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ The 1975 question asked about people who are " 20 or older."
${ }^{\mathrm{b}}$ Answer altematives were: (1) No, (2) Not sure, and (3) Yes.
${ }^{\text {c In }} 2004$ the question text waschanged from "barbiturates" to "sedatives/barbiturates" and the list of examples waschanged from "downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results.

## TABLE 8-8

## Trends in Twelfth Graders' Attitudes Regarding Marijuana Laws



| Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 27.3 | 32.6 | 33.6 | 32.9 | 32.1 | 26.3 | 23.1 | 20.0 | 18.9 | 18.6 | 16.6 | 14.9 | 15.4 | 15.1 | 16.6 |
| 25.3 | 29.0 | 31.4 | 30.2 | 30.1 | 30.9 | 29.3 | 28.2 | 26.3 | 23.6 | 25.7 | 25.9 | 24.6 | 21.9 | 18.9 |
| 30.5 | 25.4 | 21.7 | 22.2 | 24.0 | 26.4 | 32.1 | 34.7 | 36.7 | 40.6 | 40.8 | 42.5 | 45.3 | 49.2 | 50.0 |
| 16.8 | 13.0 | 13.4 | 14.6 | 13.8 | 16.4 | 15.4 | 17.1 | 18.1 | 17.2 | 16.9 | 16.7 | 14.8 | 13.9 | 14.6 |

If it were legal for people to USE manijuana,
should it also be legal to SEL marijuana?
No
Yes, but only to adults

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 27.8 | 23.0 | 22.5 | 21.8 | 22.9 | 25.0 | 27.7 | 29.3 | 27.4 | 30.9 | 32.6 | 33.0 | 36.0 | 36.8 | 38.8 |
| 37.1 | 49.8 | 52.1 | 53.6 | 53.2 | 51.8 | 48.6 | 46.2 | 47.6 | 45.8 | 43.2 | 42.2 | 41.2 | 39.9 | 37.9 |
| 16.2 | 13.3 | 12.7 | 12.0 | 11.3 | 9.6 | 10.5 | 10.7 | 10.5 | 10.6 | 11.2 | 10.4 | 9.2 | 10.5 | 9.2 |
| 18.9 | 13.9 | 12.7 | 12.6 | 12.6 | 13.6 | 13.2 | 13.8 | 14.6 | 12.8 | 13.1 | 14.4 | 13.6 | 12.8 | 14.1 |

If manijuana were legal to use and legally available, which of the following would you be most likely to do?

| Not use it, even if it were legal and a vailable | 53.2 | 50.4 | 50.6 | 46.4 | 50.2 | 53.3 | 55.2 | 60.0 | 60.1 | 62.0 | 63.0 | 62.4 | 64.9 | 69.0 | 70.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Try it | 8.2 | 8.1 | 7.0 | 7.1 | 6.1 | 6.8 | 6.0 | 6.3 | 7.2 | 6.6 | 7.5 | 7.6 | 7.3 | 7.1 | 6.7 |
| Use it about as often asl do now | 22.7 | 24.7 | 26.8 | 30.9 | 29.1 | 27.3 | 24.8 | 21.7 | 19.8 | 19.1 | 17.7 | 16.8 | 16.2 | 13.1 | 13.0 |
| Use it more often than I do now | 6.0 | 7.1 | 7.4 | 6.3 | 6.0 | 4.2 | 4.7 | 3.8 | 4.9 | 4.7 | 3.7 | 5.0 | 4.1 | 4.3 | 2.4 |
| Use it less often than I do now | 1.3 | 1.5 | 1.5 | 2.7 | 2.5 | 2.6 | 2.5 | 2.2 | 1.5 | 1.6 | 1.6 | 2.0 | 1.3 | 1.5 | 2.1 |
| Don't know | 8.5 | 8.1 | 6.6 | 6.7 | 6.1 | 5.9 | 6.9 | 6.0 | 6.4 | 6.0 | 6.5 | 6.1 | 6.3 | 5.0 | 5.7 |
| Approx. $\mathrm{N}=$ | 2600 | 2970 | 3110 | 3710 | 3280 | 3210 | 3600 | 3620 | 3300 | 3220 | 3230 | 3080 | 3330 | 3277 | 2812 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE 8-8 (cont'd)

## Trends in Twelfth Graders' Attitudes Regarding Marijuana Laws

| There has been a great deal of public debate about whether manijuana use should |  |  |  |  |  |  |  | lass of |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| would you favor? | 1990 | 1991 | 1992 | 1993 | 1994 | $\underline{1995}$ | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ |
| Using ma nijuana should be entirely legal | 15.9 | 18.0 | 18.7 | 22.8 | 26.8 | 30.4 | 31.2 | 30.8 | 27.9 | 27.3 | 31.2 | 29.2 | 30.8 | 29.5 | 30.5 |
| It should be a minorviolation like a parking ticket, but not a crime | 17.4 | 19.2 | 18.0 | 18.7 | 19.0 | 18.0 | 21.0 | 20.7 | 24.3 | 23.7 | 23.4 | 24.5 | 24.2 | 25.8 | 26.5 |
| It should be a crime | 53.2 | 48.6 | 47.6 | 43.4 | 39.4 | 37.3 | 33.8 | 34.0 | 32.6 | 32.5 | 30.2 | 31.1 | 29.1 | 29.8 | 28.5 |
| Don't know | 13.6 | 14.3 | 15.7 | 15.1 | 14.8 | 14.4 | 13.9 | 14.5 | 15.2 | 16.5 | 15.2 | 15.3 | 15.9 | 14.9 | 14.5 |

If it were legal for people to USE manjuana,
should it also be legal to SEL manjuana?

| No | 40.1 | 36.8 | 37.8 | 36.7 | 33.1 | 32.3 | 29.4 | 29.1 | 30.2 | 30.2 | 27.4 | 30.0 | 29.1 | 30.5 | 28.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yes, but only to adults | 38.8 | 41.4 | 39.5 | 40.7 | 41.7 | 43.4 | 46.7 | 44.8 | 42.4 | 42.9 | 45.5 | 43.6 | 43.6 | 43.2 | 45.2 |
| Yes, to a nyone | 9.6 | 9.4 | 9.6 | 10.1 | 11.6 | 11.7 | 11.1 | 12.5 | 11.9 | 12.1 | 13.4 | 12.0 | 13.6 | 11.6 | 12.2 |
| Don't know | 11.6 | 12.5 | 13.1 | 12.5 | 13.7 | 12.6 | 12.8 | 13.7 | 15.5 | 14.7 | 13.6 | 14.3 | 13.7 | 14.7 | 14.3 |
| If marijuana were legal to use and legally available, which of the following would you be most likely to do? |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Not use it, even if it were legal and available | 72.9 | 70.7 | 72.5 | 69.0 | 64.6 | 60.2 | 59.9 | 56.4 | 58.3 | 59.0 | 60.3 | 58.1 | 58.6 | 57.9 | 56.4 |
| Try it | 7.0 | 6.3 | 7.4 | 7.3 | 7.6 | 8.8 | 8.8 | 9.1 | 8.1 | 9.3 | 7.3 | 9.3 | 8.4 | 10.6 | 10.6 |
| Use it about asoften asido now | 10.1 | 11.7 | 10.2 | 11.9 | 14.3 | 17.1 | 17.3 | 18.4 | 17.9 | 15.2 | 18.5 | 16.8 | 17.2 | 15.6 | 17.4 |
| Use it more often than I do now | 2.7 | 3.3 | 3.2 | 3.5 | 4.7 | 4.9 | 4.8 | 6.1 | 5.9 | 6.5 | 5.4 | 6.3 | 7.1 | 7.1 | 6.0 |
| Use it less often than Ido now | 1.1 | 1.6 | 1.0 | 1.4 | 1.5 | 1.6 | 1.6 | 2.0 | 2.0 | 1.9 | 1.6 | 2.2 | 1.7 | 1.6 | 1.6 |
| Don't know | 6.1 | 6.4 | 5.7 | 7.0 | 7.3 | 7.4 | 7.7 | 7.9 | 7.8 | 8.1 | 7.0 | 7.3 | 7.0 | 7.2 | 8.0 |
| Approx. $\mathrm{N}=$ | 2570 | 2515 | 2672 | 2768 | 2597 | 2574 | 2426 | 2585 | 2566 | 2285 | 2143 | 2160 | 2150 | 2444 | 2461 |

[^66]FIGURE 8-1a
Trends in Perceived Harmfulness of Marijuana Use for Eighth, Tenth, and Twelfth Graders

Twelfth Graders


Eighth, Tenth, and Twelfth Graders


FIGURE 8-1b
Trends in Disapproval of Marijuana Use for Eighth, Tenth, and Twelfth Graders

Twelfth Graders


Eighth, Tenth, and Twelfth Graders


FIGURE 8-2a
Trends in Perceived Harmfulness of Cocaine Use for Twelfth Graders

Twelfth Graders


NOTE: Data not available for 8th and 10th graders.

FIGURE 8-2b
Trends in Disapproval of Cocaine Use for Twelfth Graders

Twelfth Graders


NOTE: Data not available for 8th and 10th graders.

FIGURE 8-3a
Trends in Perceived Harmfulness of Crack Use for Eighth, Tenth, and Twelfth Graders

Twelfth Graders


Eighth, Tenth, and Twelfth Graders


FIGURE 8-3b
Trends in Disapproval of Crack Use for Eighth, Tenth, and Twelfth Graders

## Twelfth Graders



Eighth, Tenth, and Twelfth Graders


FIGURE 8-4
Marijuana: Trends in Perceived Availability,
Perceived Risk of Regular Use, and Prevalence of Use in Past Thirty Days for Twelfth Graders


FIGURE 8-5
Cocaine: Trends in Perceived Availability,
Perceived Risk of Trying, and
Prevalence of Use in Past Year for Twelfth Graders


FIGURE 8-6
MDMA (Ecstasy): Trends in Perceived Availability, Perceived Risk of Trying, and Prevalence of Use in Past Year for Twelfth Graders


FIGURE 8-7a
Trends in Perceived Harmfulness of Amphetamine and

## Sedative (Barbiturate)* Use for Twelfth Graders

Twelfth Graders


NOTE: Data not available for 8th and 10th graders.
*Beginning in 2004, a revised set of questions on sedatives (barbiturates) was introduced. From 2004 on, data points are based on the revised question.

FIGURE 8-7b
Trends in Disapproval of Amphetamine and Sedative (Barbiturate)* Use for Twelfth Graders


NOTE: Data not available for 8th and 10th graders.
*Beginning in 2004, a revised set of questions on sedatives (barbiturates) was introduced. From 2004 on, data points are based on the revised question.

FIGURE 8-8a
Trends in Perceived Harmfulness of LSD Use for Eighth, Tenth, and Twelfth Graders

Twelfth Graders


Eighth, Tenth, and Twelfth Graders


FIGURE 8-8b
Trends in Disapproval of LSD Use for Eighth, Tenth, and Twelfth Graders

Twelfth Graders


Eighth, Tenth, and Twelfth Graders


FIGURE 8-9a
Trends in Perceived Harmfulness of Heroin Use for Twelfth Graders

Twelfth Graders


NOTE: Data not available for 8th and 10th graders.

FIGURE 8-9b
Trends in Disapproval of Heroin Use for Twelfth Graders

Twelfth Graders


NOTE: Data not available for 8th and 10th graders.

FIGURE 8-10a
Trends in Perceived Harmfulness of Alcohol Use for Eighth, Tenth, and Twelfth Graders

Twelfth Graders


Eighth, Tenth, and Twelfth Graders


FIGURE 8-10b
Trends in Disapproval of Alcohol Use for Eighth, Tenth, and Twelfth Graders

Twelfth Graders


Eighth, Tenth, and Twelfth Graders


FIGURE 8-11a
Trends in Perceived Harmfulness of Smoking One or More Packs of Cigarettes per Day for Eighth, Tenth, and Twelfth Graders

Eighth, Tenth, and Twelfth Graders


FIGURE 8-11b
Trends in Disapproval of Smoking One or More Packs of Cigarettes per Day for Eighth, Tenth, and Twelfth Graders

Eighth, Tenth, and Twelfth Graders


FIGURE 8-12a
Trends in Perceived Harmfulness of Using Smokeless Tobacco Regularly for Eighth, Tenth, and Twelfth Graders

Eighth, Tenth, and Twelfth Graders


FIGURE 8-12b

## Trends in Disapproval of Using Smokeless Tobacco Regularly for Eighth and Tenth Graders

Eighth and Tenth Graders


NOTE: Data not available for 12th graders.

## Chapter 9

## THE SOCIAL MILIEU

In this chapter we consider some forces in the social milieu that may influence adolescents' attitudes and beliefs about drugs, as well as their use of those drugs. Illicit drugs are discussed extensively in the media, they are a topic of considerable interest and conversation among young people, and they are also a matter of much concern to parents-concern that often is strongly communicated to their children. We know, further, that young people are affected by the actual drug-taking behaviors and attitudes of their friends and acquaintances. And of course, their drug use is influenced by the availability of the various drugs. This section presents data on several of these relevant aspects of the social milieu.

First, we should note that measures of perceived parental attitudes were included near the beginning of the study, in 1975-1979, but these measures were dropped because there was little variation over time in students' responses. Thus, the data about parental attitudes presented in this chapter are based on those early results. We have retained them in the current chapter to illustrate that drug use appears to have been one area in which the perceived position of parents approached unanimity. Even at the height of the drug epidemic in 1979, a large majority of seniors reported that they believed their parents would disapprove or strongly disapprove of their engaging in any of the drug use behaviors listed in Table 9-1. (The relevant early data on parents are displayed in Figures 9-1a, 9-1b, and 9-2 but are not discussed except in comparison to peer attitudes.)

## PERCEIVED ATTITUDES OF FRIENDS: TWELFTH GRADERS

## Perceptions of Friends' Attitudes

Since the beginning of the study, a set of questions has asked 12th graders to estimate their friends' attitudes about drug use (see Table 9-1). These questions ask, "How do you think your close friends feel (or would feel) about you [taking the specified drug at the specified level]?" (These questions parallel the questions asked of students about their own attitudes, which are discussed in chapter 8.)

- In 2004, peer disapproval for experimenting with a drug was highest for trying crack (92\%), cocaine powder (91\%), cocaine (88\%), LSD (87\%), and amphetamines (85\%). Presumably, if heroin or PCP were on the list, they, too, would receive very high peer disapproval.
- Even experimenting with marijuana would be viewed with disapproval by their close friends, according to most seniors (60\%); a large majority think their friends would disapprove if they smoked marijuana regularly (77\%).
- More than three-quarters of all seniors think they would face peer disapproval if they smoked a pack or more of cigarettes daily (79\%).
- While heavy drinking on weekends was judged by more than half (59\%) to be disapproved of by their friends (many of whom exhibit that behavior themselves), substantially more (73\%) think that consumption of one or two drinks nearly every day would be disapproved of, and the great majority (83\%) would face the disapproval of their friends if they drank four or five drinks nearly every day.

In sum, peer norms among 12th-grade students differ considerably for the various drugs and also for varying degrees of involvement with those drugs, but overall they tend to be quite conservative. The great majority of seniors have friendship circles that do not condone the use of illicit drugs other than marijuana, and over half (60\%) of them believe that their friends would disapprove of their even trying marijuana.

Although we did not have the space to include these questions in the 8th- and 10th-grade questionnaires, there seems little doubt that these students would have reported at least as restrictive peer norms as the 12th graders, and quite likely more restrictive ones, based on the cross-grade comparisons in levels of personal disapproval discussed in chapter 8. (The one exception might be cigarette smoking, which is less disapproved of at lower grades.)

## A Comparison of the Attitudes of Parents, Peers, and Twelfth Graders

A comparison of seniors' perceptions of friends' disapproval with seniors' perceptions of parents' disapproval in the earlier years for which comparison is available (1975-1979) showed several interesting findings.

- First, there was rather little variability from year to year in students’ perceptions of their parents' attitudes. As discussed previously, nearly all high school seniors said their parents would disapprove of any of the drug behaviors listed. Nor was there much variability among the different drugs in perceived parental attitudes. However, peer norms varied much more from drug to drug and across time. From these facts, we may conclude that peer norms have a much greater chance of explaining variability in the respondents' own individual attitudes or use than parental norms, simply because peer norms vary more. We wish to emphasize that this is quite different than saying that parental attitudes do not matter, or even that they matter less than peer attitudes.
- Despite less variability in parental attitudes, the ordering for disapproval of drug use behaviors was much the same as for peers. That is, among the illicit drugs considered here, the highest frequencies of perceived disapproval were for trying crack, while the lowest frequencies were for trying marijuana.
- A comparison with the seniors’ own attitudes regarding drug use reveals that, on average, they are much more in accord with their peers than they were with their parents, at least in the years in which both were measured (see Figures 9-1a, 9-1b, and 9-2). The differences between seniors' own disapproval ratings in 1979 and those attributed to their parents tended to be large, with parents seen as more conservative overall in relation to every drug, licit or illicit. The largest difference occurred in the case of marijuana experimentation, of which only $34 \%$ of seniors in 1979 said they disapproved, versus

85\% who said their parents would disapprove. Although seniors' own disapproval rate of experimenting with marijuana has fluctuated considerably in the intervening years (it was $53 \%$ in 2004), it is likely that the greatest disparity would still remain between students' own attitudes and those of their parents. (Peer disapproval of marijuana experimentation stood at 60\% in 2004.)

## Trends in Perceptions of Friends' Attitudes

A number of important changes in 12th graders' perceptions of their peers' attitudes have taken place. These shifts are presented graphically in Figures 9-1a, 9-1b, and 9-2. Adjusted trend lines have been used for data collected before 1980. We discovered that the deletion in 1980 of the parental attitude questions, which were located immediately preceding the questions about friends' attitudes, removed what we judged to be an artifactual depression of the ratings of friends' attitudes, a phenomenon known as a question-context effect. This effect was particularly evident in the trend lines dealing with friends' disapproval of alcohol use, where otherwise smooth trend lines showed abrupt upward shifts in 1980. It appears that when questions about parents’ attitudes were present, respondents tended to understate peer disapproval in order to emphasize the difference between their parents' attitudes and their peers' attitudes. In the adjusted lines, we have attempted to correct for that artifactual depression in the 1975, 1977, and 1979 scores. ${ }^{84}$ We believe that the adjusted trend lines give a more accurate picture of the change that took place then. Note that the question-context effect seems to have had more influence on the questions dealing with cigarettes and alcohol than on those dealing with illicit drugs. Aside from this change attributable to question context, a number of real and important changes have occurred in friends’ disapproval:

- For each level of marijuana use-trying once or twice, occasional use, and regular usethere was a drop in perceived disapproval of both parents and friends in the late 1970s. We know from our other findings that these perceptions of peer norms correctly reflected actual shifts in the individual attitudes of their peers-that is, disapproval of marijuana use was, in fact, decreasing among seniors (see Figure 9-1a). There is little reason to suppose that such perceptions were less accurate in reflecting shifts in parents’ attitudes. Therefore, we conclude that the social norms regarding marijuana use among adolescents and adults had been relaxing before 1979. However, consistent with the seniors' reports about their own attitudes, there was a sharp reversal in peer norms, and peer disapproval of marijuana use increased for more than a decade, through 1992. In 1993 another sharp reversal occurred, with the percentage of seniors saying that their friends would disapprove dropping by 4 to 7 percentage points, depending on the level of use (i.e., once or twice, occasionally, or regularly). Perceived peer disapproval dropped another 9 to 14 percentage points by 1997 before beginning to turn upward again between 1998 and 2001 and then dropping 3 to 4 percentage points in 2002. Peer disapproval of trying marijuana

[^67]or occasionally smoking it increased significantly in 2003; in 2004 there were further (nonsignificant) increases.

- From 1975 through 1980, relatively little change occurred in either self-reported attitudes or perceived peer attitudes toward trying amphetamines once or twice (see Figure 9-1b); then, in 1981 both measures showed significant and parallel dips in disapproval, and at the same time use rose sharply. From 1981 to 1992, disapproval rose fairly steadily as use declined. Between 1992 and 1996, both friends’ disapproval and personal disapproval of experimental use decreased significantly as use increased slightly. Friends’ disapproval leveled in 1997 at $80 \%$ and by 2004 was up to $85 \%$. Meanwhile, use remained fairly level through 2002, dropped significantly in 2003, and remained there in 2004.
- Peer disapproval of trying LSD, which had been high and relatively stable for some years, decreased steadily between 1988 and 1997 as use increased significantly (see Figure 9-1b). In 1998 peer disapproval began to increase and has generally increased since then, standing at $87 \%$ in 2004; use decreased very substantially after about 1997.
- While perceived attitudes of friends were not asked about sedative (barbiturate) use, it seems likely that such perceptions moved in parallel to the seniors’ own attitudes, since such parallel movement has been observed for the use of virtually all other illicit drugs (see Figures 9-1a and 9-1b).
- Seniors' own disapproval of experimental cocaine use dropped between 1976 and 1979 as use increased, and then it rose very gradually through 1991. Questions on friends’ attitudes about cocaine use were added to the study in 1986. Between 1986 and 1992, a sharp increase in peer disapproval of experimental or occasional cocaine use was observed, with the proportion saying that their close friends would disapprove of their experimenting with cocaine rising from $80 \%$ in 1986 to $92 \%$ in 1992. This corresponds to the period in which an even larger increase in perceived risk occurred along with a precipitous drop in actual use; and we have hypothesized that the change in the perceived dangers of using cocaine contributed to changes in the acceptability of using that drug. ${ }^{85}$ From 1993 through 1995, perceived friends’ disapproval stabilized, followed by some decrease in 1996 and 1997. Friends’ disapproval increased in 1998 but remained quite stable until 2004, when there was a significant decrease. (Friends’ disapproval of crack cocaine, first asked in 1989, closely parallels the findings for cocaine in general, but at slightly higher levels of perceived disapproval.)
- With regard to regular cigarette smoking, the proportion of seniors saying that their friends would disapprove of their smoking a pack or more daily rose from 64\% (adjusted) in 1975 to $74 \%$ in 1980 (see Figure 9-2). Use declined from 1977 to 1981. Through the next 12 years, perceived peer disapproval fluctuated by only a few percentage points and then dropped significantly between 1992 and 1995, from $76 \%$ to $69 \%$. Use rose from 1992 to 1997. Reported peer disapproval flattened from 1995 to 1998 but has since

[^68]increased by 10 percentage points to $79 \%$ in 2004; use declined after 1998, including a significant decline in 2002 in daily smoking and a significant decline in 2003 in monthly use.

- For alcohol, the perceived peer norms for weekend binge drinking generally moved in parallel with seniors’ statements about their own personal disapproval. A slight decline in friends' disapproval occurred from the mid-1970s until the early 1980s, followed by a period of gradual increase between 1983 and 1992. (See Figure 9-2.) Some divergence occurred when seniors reported their own attitudes becoming less tolerant while perceived peer norms changed more slowly, suggesting some "collective ignorance" of the extent to which peers disapproved of this activity. Both measures declined some between 1992 and 1998. The proportion saying their close friends would disapprove dropped from 61\% in 1992 to $56 \%$ in 1998, where it remained in 2002 before increasing significantly to $60 \%$ in 2003 (this is the highest level of disapproval of this behavior since 1992).
- Heavy daily drinking is seen by the great majority of seniors ( $83 \%$ in 2004) as disapproved by their peers. Little systematic change occurred for almost two decades (from 1975 to 1993), followed by a slight decline between 1993 and 1997, to 83\%; it then remained fairly level through 2001 before dropping in 2002 to $80 \%$ and then rising in 2003 to $83 \%$, where it remained in 2004. Taking one or two drinks nearly every day saw some growth in peer disapproval between 1981 and 1990 (from 70\% to 79\%), but it has fallen back some in the years since then (to 73\% in 2004). Self-reports of disapproval did not show an upturn, however.
- Finally, the very close tracking of self-reported disapproval with reported friends’ disapproval, across all of the drugs about which both variables are asked of 12th graders, suggests that self-reported disapproval gives a very good approximation of perceived peer norms in the aggregate. (See Figures 9-1a, 9-1b, and 9-2.) This is valuable to know for two reasons: one is that it may not be necessary for both to be measured in most surveys; second, the self-reported disapproval provided by the 8th and 10th graders in this study may serve quite well in the aggregate to reflect peer norms.


## FRIENDS' USE OF DRUGS

It is generally acknowledged that much youthful drug use is initiated through a peer sociallearning process, and research has shown a high correlation between an individual's illicit drug use and that of his or her friends. Such a correlation can, and probably does, reflect several causal patterns: (a) a person with friends who use a drug will be more likely to try the drug; (b) conversely, the individual who is already using a drug will be more likely to introduce friends to the experience; and (c) users are more likely to establish friendships with other people who use.

Given the importance of exposure to drug use by others, it is useful to monitor students' association with others taking drugs, as well as their perceptions about the extent to which their
friends use drugs. Two sets of questions, each in a different questionnaire form and together covering nearly all of the categories of drug use treated in this report, ask seniors to indicate for each drug (a) how often during the past 12 months they were around people taking it to get high or for "kicks" and (b) what proportion of their own friends use it. (The data dealing with 12th graders' direct exposure to people using particular drugs may be found in Table 9-2. The questions dealing with their friends’ use are shown in Tables 9-5a and 9-5b.) As would be expected, respondents’ answers to these two questions are highly consistent with the respondents' self-reported drug use; thus, for example, seniors who have recently used marijuana are much more likely to report that they have been around others getting high on marijuana and that most of their friends use it. The questions on proportions of friends using the various drugs were included in the questionnaires used for 8th and 10th graders, and the results for those age groups are discussed below in a separate section.

## Exposure to Drug Use by Friends and Others: Twelfth Graders

A comparison of the aggregated responses about friends' use and about being around people in the last 12 months who were using various drugs to get high reveals a high degree of correspondence between these two indicators of exposure, even though these two questions appear in separate forms of the questionnaire. For each drug, the proportion of respondents saying "none" of their friends use it is fairly close to the proportion who say that during the last 12 months they have not been around anyone who was using that drug to get high. Similarly, the proportion reporting that "most" or "all" of their friends use a given drug bears a rough similarity to the proportion saying they have "often" been around people getting high on that drug.

- As would be expected, reports of exposure and friends' use closely parallel the figures on seniors' own use (compare Figures 4-1 and 9-4). It is no surprise that the highest levels of exposure involved alcohol; nearly one-half (48\%) said they have "often" been around people using it to get high. What may come as a surprise is that $28 \%$ of all seniors said that most or all of their friends get drunk at least once a week. (This is consistent, however, with the fact that $29 \%$ said they personally had taken five or more drinks in a row at least once during the prior two weeks.)
- After alcohol, students are exposed most frequently to marijuana. Nearly three-quarters of the 12th graders (72\%) reported having been around people using marijuana during the prior year. Some $28 \%$ said they have "often" been around people using it to get high, and another $22 \%$ said they have been exposed "occasionally." On the question about friends' use, over one-fifth (21\%) said that most or all of their friends smoke marijuana, and $80 \%$ say that they have at least some friends who use the drug. Indeed, only $19 \%$ of 12th graders today say that none of their friends use an illicit drug.
- Amphetamines rank next in exposure: $27 \%$ of seniors reported some exposure to use in the prior year and $31 \%$ said they have friends who use them.
- Among all seniors, 25\% have been around someone using hallucinogens other than LSD to get high over the past year, and about one-third (32\%) said they have friends who use them.
- For the remaining illicit drugs, any exposure to use in the past year ranges from $24 \%$ for cocaine down to $6.6 \%$ for heroin.
- A majority of seniors (52\%) reported no exposure to people using any of the illicit drugs other than marijuana during the prior year, and about a quarter (26\%) reported no exposure to any illicit drug (including marijuana) during the prior year. Thus, exposure to marijuana use is widespread (at 72\%), and exposure to the use of drugs other than marijuana occurred for just under half (48\%).
- A fifth (21\%) of seniors reported that most or all of their friends smoke cigarettes, and the great majority (84\%) report having at least some friends who smoke.


## Friends' Use of Drugs: Eighth and Tenth Graders

While the questions about exposure to use were not included in the questionnaires for 8th and 10th graders, the questions regarding the proportion of their friends who use each drug were included.

- As would be expected, for almost all of the various drugs, 8th- and 10th-grade students are less likely to have friends who use than are 12th graders (see Tables 9-3 and 9-4). For example, for marijuana, more than one-third (38\%) of the 8th graders and two-thirds (66\%) of the 10th graders said they have friends who use it, compared to $80 \%$ of the 12th graders.
- Consistent with our finding that current inhalant use is more prevalent at 8 th grade than in 10th or 12th grades, $27 \%$ of the 8th graders said they have some friends who use inhalants versus $18 \%$ of the 10th and 12th graders.
- Exposure to alcohol use by friends is widespread. Two-thirds (66\%) of the 8th graders and the great majority ( $88 \%$ ) of the 10th graders reported having friends who use alcohol. In fact, nearly one-fifth (19\%) of the 8th graders and nearly one-half (45\%) of the 10th graders said that most or all of their friends drink, and the proportions saying that most or all of their friends get drunk at least once a week are 1 in 14 (7\%) in 8th grade and 1 in 5 (19\%) in 10th grade.
- Exposure to cigarette smoking by friends is also very high for these young people, with more than half (54\%) of the 8th graders and almost three-quarters (74\%) of the 10th graders saying they have at least some friends who smoke.
- Considerably smaller proportions have friends who use smokeless tobacco: a quarter of the 8th graders (25\%) and 38\% of the 10th graders.

In sum, American adolescents-even in middle school-have a high degree of exposure to illicit drug use among their peers, whether or not they use illicit drugs themselves. They also have a very high level of exposure to smoking, drinking, and drunkenness among their peers.

## TRENDS IN EXPOSURE TO DRUG USE AND FRIENDS' USE OF DRUGS

The extent of American adolescents’ exposure to licit and illicit drug use has not been a constant; important changes have occurred over the past 30 years. Table 9-2 presents long-term trends in reported exposure to the use of various drugs by 12th graders, and Tables 9-3, 9-4, and 9-5 present trends in reported friends' use of the various drugs for all three grades.

## Trends in Exposure to Drug Use by Friends and Others: Twelfth Graders

- Between 1976 and 1978, seniors' reports of exposure to marijuana use increased in about the same proportion as did actual self-reported monthly use. Both exposure to use and actual use stabilized in 1979, and then both dropped steadily so that the proportion saying they were "often" around people using marijuana decreased by more than half between 1979 and 1992 (from 39\% to 16\%). After 1992, however, there were significant increases in such exposure, reaching $33 \%$ in 1997, paralleling the significant rise in selfreported use. By 2004 the proportion declined some to $28 \%$ among 12th graders, and use has declined some, as well.
- The proportion of seniors exposed to cocaine users showed a consistent increase from 1976 to 1979, as self-reported use also rose. Between 1979 and 1984, there was little change in exposure to use, coinciding with a period of stability in self-reported use. Then, in 1985 and 1986 there was an increase in reported exposure to use; these were the peak years in self-reported use. From 1986 through 1993, seniors’ exposure to cocaine use dropped appreciably, with the proportion saying they had any friends who used cocaine falling from $46 \%$ in 1986 to $25 \%$ in 1993 (see Tables 9-5a and 9-5b). Self-reported annual prevalence fell by three-quarters during this interval. Then self-reported cocaine use doubled between 1992 and 1999, and the proportion reporting that most or all of their friends use cocaine also nearly doubled (from $1.5 \%$ to $2.9 \%$ ). Both have been fairly level since then. (There was a drop in friends’ use in 2003, followed by an increase in 2004 that reached statistical significance.)
- The proportion having any friends who used amphetamines rose from $41 \%$ to $51 \%$ between 1979 and 1982, paralleling a sharp increase in self-reported use over that period. The proportion saying they were around people using amphetamines "to get high or for kicks" also jumped substantially between 1980 and 1982 (by 9 percentage points). ${ }^{86}$ It then fell continually, a full 26 percentage points, between 1982 and 1992 (to 25\%) as self-reported use declined quite substantially. From 1992 to 1997, both self-reported use and exposure to use increased and then leveled. Both have shown some decline since 2001.
- Although we did not ask students about their own use of MDMA (ecstasy) until 1996, we did ask about friends' use beginning in 1990. This measure stayed fairly stable at $11 \%$ to

[^69]$13 \%$ between 1990, when it was first measured, and 1993. There was a substantial increase between 1993 and 1997 in the proportion of seniors reporting having at least some friends who were using ecstasy (from 13\% to 28\%); in 1998 this declined slightly (to 25\%). In 1999 there was a small increase (to 27\%) in the proportion reporting that they had friends who used ecstasy (not as big a change as might have been expected from the sharp increase in self-reported ecstasy use that year). But in 2000, reported use by friends jumped dramatically, to $37 \%$, coincident with a sharp further increase in selfreported use. Friends' use again increased significantly in 2001 (to 42\%), while selfreported annual use also increased. In 2002, 2003, and 2004, there were significant decreases in friends’ use (to $29 \%$ by 2004), as well as appreciable decreases in selfreported use to less than half of its highest point in 2001.

- For all of the other illicit drugs (including inhalants, nitrite inhalants, LSD, other hallucinogens, tranquilizers, sedatives [barbiturates], PCP, and methaqualone) the trends in exposure and/or trends in friends' use have generally closely paralleled the trends in self-reported use.
- The proportion saying that most or all of their friends smoke cigarettes dropped steadily and substantially between 1976 and 1981, from $37 \%$ to $22 \%$. During this period selfreported use dropped markedly, and more seniors perceived their friends as disapproving of regular smoking. Between 1982 and 1992, both friends' use and self-reported use remained relatively stable; in fact, in 1992 the friends’ use rate was close to the 1981 rate ( $21 \%$ and $22 \%$, respectively). After 1992 there was a significant increase in the proportion who said most or all of their friends smoke cigarettes, up to $34 \%$ by 1997, and self-reported smoking also increased significantly during this same period. However, 1998 was a turnaround year for the 12th graders: smoking rates started to drop, as did reported friends' use. Both have dropped substantially in the years since, and in 2003 only $20 \%$ said that most or all of their friends smoke, the lowest value since 1984. In 2004, $21 \%$ reported that most or all of their friends smoke, consistent with the leveling (and even possibly an increase) in use in 12th grade that year.
- The proportion saying most or all of their friends get drunk at least once a week increased between 1976 and 1979, from $27 \%$ to $32 \%$; during the same period the prevalence of self-reported occasional heavy drinking rose by about the same amount. There then was little change in either measure for about five years. After 1983, selfreports by seniors of their own heavy drinking began to decline, but reported heavy drinking by friends showed a later, more modest decline. Self-reported heavy drinking fell from $41 \%$ to $28 \%$ between 1983 and 1993, while reports of most or all friends getting drunk at least once a week fell only from $31 \%$ to $28 \%$. Both measures then rose slightly for a few years but were fairly stable through 1997. Seniors’ self-reported heavy drinking began a very gradual decline after 1998 but increased somewhat in 2004. Reported heavy drinking by friends increased slightly from 1999 to 2001 but then decreased sharply in 2002 (to 28\%), where it remained in 2004.

The most impressive fact here is that in 2004 more than one-quarter (28\%) of all high school seniors said that most or all of their friends get drunk at least once a week; this is
almost the same proportion that said they personally have been binge drinking in the past two weeks (29\%). Only about one in five (21\%) said that none of their friends gets drunk at least once a week.

## Implications for Validity of Self-Reported Usage Questions

We have noted a high degree of correspondence in the aggregate-level data presented in this report among seniors' self-reports of their own drug use, their reports concerning friends' use, and their own exposure to such use. Drug-to-drug comparisons in any given year across these three types of measures tend to be highly parallel, as are the changes from year to year. ${ }^{87}$ We take this consistency as additional evidence of the validity of the self-report data (and of trends in the self-report data), because there should be less reason for respondents to distort answers on use by unidentified friends (or general exposure to use) than to distort reporting their own use. Figure 93 illustrates the high degree of cross-time correspondence between the proportion of seniors saying they personally used marijuana in the 30 days prior to the survey and those saying most or all of their friends use marijuana. We believe that this close correspondence provides persuasive evidence that the changing social acceptability of drug use has not reduced the truthfulness of self-reports of use.

## Trends in Friends' Use: Eighth and Tenth Graders

As with the 12th grade, the data on friends’ use among 8th and 10th graders (available since 1991) show trends that are highly consistent with the trends in self-reported use (Tables 9-3 and 9-4). These questions are included in all 8th- and 10th-grade questionnnaire forms, providing very large sample sizes.

- In 1992, 8th graders showed an increase in self-reported use of a number of drugs (including marijuana, inhalants, cocaine powder, and crack), as well as increases in the proportions of their friends using them. In 1993, these trends continued among 8th graders, who were then joined by 10th and 12th graders. By 1997, the 8th graders began to show a decline in their use of a number of drugs (including marijuana, inhalants, and heroin), and decreases in the reported proportions of their friends using them began a year later.
- For marijuana, self-reported use increased very sharply in all grades between 1992 and 1996, a change also reflected in reported use by friends. The proportions saying that any of their friends smoke marijuana rose by 10 percentage points among 8th graders and by 11 percentage points among 10th graders in 1994 alone (see Tables 9-3 and 9-4). Between 1994 and 1996, reported friends’ use in both grades rose an additional 10 percentage points. Among both 8th and 10th graders, friends’ use declined between 1996 and 2004, as did self-reported use.

[^70]- In all three grades, the proportions reporting having friends who use inhalants rose consistently from 1991 through 1996. Self-reported usage rates also rose from 1991 to 1995. In 1996, use of inhalants leveled or reversed in all three grades, as did reported friends’ use in 1997. For 8th and 10th graders, friends’ use decreased considerably in 2002 as self-reported use continued to decrease. In 2003 the 10th and 12th graders' friends' use continued to decrease while the 8th graders' friends' use increased, and selfreported use rose significantly for 8th graders, while use at the other grades continued to show slight declines. In 2004 self-reported use increased some among 8th and 10th graders and leveled among 12th graders. Friends’ use dropped among 8th and 10th graders but increased some among 12th graders. It appears that, as we have observed for some of the other drugs, the perceptions of the level of friends' use sometimes lags by a year the actual changes in self-reported use.
- For alcohol, self-reported use and friends' use have also moved in parallel since 1992. Self-reported drinking in the past 30 days was fairly stable among both 8th and 10th graders between 1993 and 1996, as was the proportion that said they have any friends who drink alcohol. Through 2001, both measures declined among 8th graders, while both leveled among 10th and 12th graders. In 2002 both measures decreased significantly for 8th and 10th graders, but only friends' use continued to decline in 2003. Self-reported use among 8th graders was the only measure to decline in 2004.

Self-reported drunkenness increased slightly in both 8th and 10th grades between 1992 and 1996, as did the proportion saying they have any friends who get drunk weekly. Here, too, both measures then declined some among 8th graders, while there was very little difference between 1997 and 2001 among 10th and 12th graders. Since 2001 there has been some decline in all three grades in both self-reported drunkenness and friends’ drunkenness.

- The data from 8th and 10th graders show a steadily increasing proportion of friends smoking cigarettes between 1991 and 1996. Self-reported smoking rates rose considerably during the same period. In 1997, both measures showed a slight reversal in both grades-a reversal that has continued into 2004. Some 78\% of 8th graders in 1996 had any friends who smoked, but by 2004 that proportion had fallen to $54 \%$, the lowest level recorded by the study so far.


## PERCEIVED AVAILABILITY OF DRUGS

One set of questions asks respondents how difficult they think it would be to obtain each of a number of different drugs if they wanted it. The answers range across five categories from "probably impossible" to "very easy." ${ }^{88}$ We use the term "perceived availability" in discussing the responses to these questions. We recognize that availability is multidimensional, and respondents may take into consideration a variety of factors, including knowing where to get

[^71]access, the difficulty of getting to an access place and, for some respondents, even possibly the monetary cost. We suspect that for most respondents, the monetary price will not be considered, and thus our measure is likely to be somewhat less general than a concept of availability that includes price.

While no systematic effort has been undertaken to assess directly the validity of these measures (because such an assessment would involve actual attempts to obtain the various substances), it must be said that the measures do have a rather high level of face validity, particularly if it is the subjective reality of "perceived availability" that is purported to be measured. It also seems quite reasonable to assume that, to a considerable extent, perceived availability tracks actual availability.

## Perceived Availability

There are substantial differences in the perceived availability of the various drugs (which provides further evidence of the validity of the measures). In general, the more widely used drugs are reported to be available by higher proportions of the age group, as would be expected (see Tables 9-6, 9-7, and 9-8). Also as would be expected, older age groups generally perceive drugs to be more available. Both associations are consistent with the notion that availability is largely attained through friendship circles. The higher the proportion of friendship circles that use a drug, the greater the proportion of students who have access to it.

- Because many inhalants-such as glues, butane, and aerosols—are universally available, we do not include a question about their availability.
- The availability of cigarettes is not asked of 12th graders because we have assumed that they are almost universally available as well. However, 8th and 10th graders are asked about the availability of cigarettes, and even at these grade levels it is seen as extremely high. In 2004, $60 \%$ of 8 th graders and $81 \%$ of 10th graders thought that cigarettes would be "fairly easy" or "very easy" for them to get if they wanted some.
- The great majority of these teens also see alcohol as readily available: in 2004, 65\% of the 8th graders, $84 \%$ of the 10th graders, and $94 \%$ of the 12th graders said they could get it "fairly easily" or "very easily."
- In contrast, far fewer younger students see that illicit drugs are as accessible. Even so, marijuana was described as "fairly easy" or "very easy" to get by two-fifths (41\%) of the 8th graders, followed by amphetamines (22\%), crack (21\%), steroids (20\%), cocaine powder (19\%), sedatives (barbiturates) (18\%), MDMA, (17\%), tranquilizers (16\%), heroin (14\%), narcotics other than heroin, LSD, ice (all at 12\%), and PCP (11\%).
- When we compare 8th, 10th, and 12th graders, we find that the perceived availability of these drugs rises sharply with grade level. For example, in 2004, $41 \%$ of 8 th graders said marijuana would be "fairly easy" or "very easy" to get, versus 73\% of 10th graders and $86 \%$ of 12th graders. In fact, for the other drugs included in the questions, the proportion of students saying they are available to them is about twice as high among 12th graders as
among 8th graders. These differences are probably attributable to the overall differences in prevalence-of-use rates across these grade levels. Adolescents in lower grades are considerably less likely to have friends who use these drugs and, thus, are less likely to have access through those friends. The differences between age groups may also reflect less willingness and/or less motivation on the part of those who deal drugs to establish contact with younger adolescents.
- Marijuana appears to be available to almost all high school seniors; $86 \%$ reported that they think it would be "very easy" or "fairly easy" for them to get it-almost twice the number who reported ever having used it (46\%).
- After marijuana, 12th-grade students indicated that amphetamines are among the easiest drugs to obtain (55\%).
- Hallucinogens other than LSD are also one of the most available drugs, at 49\%.
- Between $39 \%$ and $48 \%$ of the seniors perceived MDMA and cocaine (both at $48 \%$ ), sedatives (barbiturates) (46\%), steroids (43\%), cocaine powder (42\%), narcotics other than heroin (40\%), and crack (39\%) as readily available.
- LSD, tranquilizers, heroin, crystal methamphetamine (ice), and PCP were reported as available by smaller but still substantial minorities of seniors ( $33 \%, 30 \%, 30 \%, 27 \%$, and $24 \%$, respectively). See Table 9-8 for the full list of drugs included in the questions for 12th graders; a few of these were not asked of the younger students.
- Even drugs with lower usage rates, such as the nitrite inhalants, are seen as available by a fifth of the seniors (20\%).
- Of the 12th graders who had used each drug in the past year, we have found that on average $70 \%$ or more say that it currently would be "fairly easy" or "very easy" for them to get the same drug.


## Trends in Perceived Availability for Twelfth Graders

Trend data on availability for seniors are presented in Table 9-8 and Figures 9-5a through 9-5c. A glance at those three figures will show that there have been some substantial fluctuations in the perceived availability of most drugs over the 30 years covered by the study.

- Marijuana has been the most consistently available illicit drug, but even it showed some small variations over the years. For the first time since the study began in 1975, marijuana showed a small but statistically significant decline in perceived availability between 1982 and 1984 (down 4 percentage points to $85 \%$ ), undoubtedly due to the reduced proportion of seniors who had friends using it. There was no further change for the next four years, followed by a slight decline between 1988 and 1992. Between 1992 and 1998 there was a fair increase in availability (to 90\%), corresponding to a sharp increase in the proportion of friends using it. Between 1999 and 2001 availability held steady at $89 \%$. In 2002, availability dropped a little to $87 \%$, the same rate it was in 2003 ,
and then dropped again in 2004 to $86 \%$. What is most noteworthy, however, is how little change there has been over the years in perceived availability, as measured by how many seniors say that marijuana is "fairly" or "very" easy to get. By this measure, marijuana has been almost universally available to American high school seniors (from $83 \%$ to $90 \%$ ) over at least the past 30 years.
- The perceived availability of amphetamines jumped 13 percentage points between 1977 and 1982 (to 71\%), but it then dropped back gradually by 14 percentage points between 1982 and 1991 (to 57\%). Then, between 1991 and 1995, perceived availability increased steadily, reaching $63 \%$ in 1995, followed by a significant decrease to $59 \%$ in 1996, after which it began to drift up a bit before falling some in 1999. Perceived availability of amphetamines was level at $57 \%$ between 2000 and 2002 and dropped slightly to $55 \%$ in 2003 and 2004.
- The perceived availability of sedatives (barbiturates) (see Figure 9-5b) fell from 1975 to 1980 by 11 percentage points but then jumped 6 percentage points from 1980 to 1981, when "look-alikes" were common. From 1982 to 1991 a long gradual decline of 13 points occurred, parallel to a long-term drop in the number of sedative (barbiturate) users. Perceived availability rose slightly, along with use, in the early 1990s; but it then fell back again between 1993 and 2001, even though use continued to increase slightly through 2002. In 2003 both use and availability showed some (not statistically significant) decline. In 2004, the question text was changed (as described in Table 9-8), and this change apparently had the effect of increasing reported availability; thus, the trend between 2003 and 2004 cannot be estimated.
- Between 1977 and 1980-a period of increased overall cocaine use-there was a substantial increase ( 15 percentage points) in the perceived availability of cocaine (see Table 9-8 and Figure 9-5a). Perceived availability then leveled and even dropped some in 1983, before rising sharply and steadily through 1989. It is noteworthy that, after 1986, reported availability continued to rise as actual use of cocaine dropped sharply through 1993. Because there was an increase, and not a drop, in perceived availability between 1986 and 1989, we are inclined to discount reduction in supply as an explanation for the significant and important decline in cocaine use observed during that period.

Between 1989 and 1994, there was a significant decrease of 12 percentage points in perceived availability of cocaine-perhaps reflecting the impact of the greatly reduced proportion of seniors who had friends using cocaine. (The percentage reporting having friends who use it dropped by 11 points during that interval.) From 1994 to 1998, the perceived availability of cocaine increased slightly, as did its use among seniors. Although use continued to rise in 1999, reported availability showed a significant decline; both use and availability declined some between 1999 and 2003. In 2004 there was a nonsignificant increase in use and a significant increase in availability. Friends' use, which had been dropping after 1998, also increased significantly in 2004.

- We have asked students about the perceived availability of crack only since 1987; and over that interval it has fluctuated between $35 \%$ and $47 \%$, with no clear trend (see Figure 9-5a).
- The use of tranquilizers declined fairly steadily over the 15-year interval between 1977 and 1992, and perceived availability also declined fairly steadily and quite substantially during that interval. In fact, by 2004 the proportion of seniors who thought they could get tranquilizers "fairly easily" had fallen by more than half-from $72 \%$ in 1975 to $30 \%$ in 2004. Despite that decline in availability, tranquilizer use among 12th graders had been slowly rising through most of the 1990s and continued to do so through 2002, followed by a significant drop in 2003. This is another example where availability (which had been declining) could not explain the trends in use (which had been rising).
- The perceived availability of $\boldsymbol{L S D}$ fell sharply in the first several years covered by the study (1975-1978), perhaps reflecting the end of a longer-term steep decline (see Figure 9-5c). Perceived availability then leveled for a while before dropping further in the first half of the 1980s. Between 1986 and 1995, there followed a substantial increase in the perceived availability of LSD, which rose from 29\% to 54\% (the highest level it reached in over two decades). After 1995, there was considerable decline in perceived availability (to $33 \%$ in 2004); this decline was accompanied by a substantial decline in use between 1996 and 2001 and then a precipitous decline after that through 2003. Use leveled in 2004.
- The perceived availability of hallucinogens other than LSD followed a very similar trajectory to that of LSD from 1975 through 1986 (see Figure 9-5c) but quite a different one thereafter. From 1987 to 1995 there was a gradual rise in availability of hallucinogens other than LSD, in contrast to the sharp rise for LSD. From 1995 to 2000, the availability of LSD showed a general decline (from $54 \%$ to $47 \%$ ), while the availability of other hallucinogens changed very little (from 36\% to 35\%). While LSD and the other hallucinogens, taken as a set, were about equally available in the late 1970s, LSD availability was substantially higher in the 1990s. The availability of LSD declined again in 2001 (to 45\%). The availability of other hallucinogens showed an apparent sharp increase in 2001, but much of the apparent increase is likely due to a question change. In 2001 the question text changed from "other psychedelics" to "other hallucinogens," and the term "shrooms" was added to the list of examples. (After this change, this class of drugs is actually reported to be slightly more available than LSD.) Since 2001, availability has been fairly level.
- The availability of ecstasy (MDMA) rose quite dramatically during the 1990s (see Figure 9-5a). From 1989, when availability was first measured for this drug, through 1991, only $22 \%$ of 12th graders reported easy access. Availability then rose steadily to $39 \%$ by 1997 , where it remained for a few years. However, in 2000 it jumped dramatically to $51 \%$. Availability of ecstasy again increased to $62 \%$ in 2001-nearly three times the 1991 level. It appears quite likely that this dramatic increase in the availability of ecstasy played an important role in the sharp increase in use after 1998. In 2002, availability of ecstasy dropped some for the first time in a long time, as did use. But use dropped quite
sharply between 2001 and 2003, whereas perceived availability declined only a little in that interval and did not show a sharp decline (of 10 percentage points) until 2004. This suggests that a contraction in availability was not key to the downturn in use; rather, the fall in use may simply have resulted from fewer students having friends who were users.
- Between 1979 and 1987, self-reported use of PCP dropped substantially before stabilizing at a very low level for some years. However, perceived availability rose from $23 \%$ in 1987 (when it was first measured) to $32 \%$ in 1992 and then changed very little through 1998 before starting to decline gradually. It stood at $24 \%$ in 2004. (Self-reported use increased slightly from 1993 to 1996, leveled for several years, and has decreased some since 2000.)
- From 1975 through 1978, perceived heroin availability (see Figure 9-5b) declined some. Then a rather long, irregular, and gradual increase in perceived availability began and continued for over 14 years, through 1992. (The 1978-1992 rise more than doubled from $16 \%$ to $35 \%$ of the seniors saying heroin would be "fairly easy" or "very easy" to get.) Despite this substantial increase in perceived availability, there was very little change in use during that period. From 1992 to 2001, perceived availability stayed fairly level, although use increased in that interval (through 2000). After 2001, availability declined until 2004, when it rose to $30 \%$, while use declined after 2000 and then leveled.

The stability of heroin use during the 1980s and early 1990s, despite a substantial increase in availability, is worthy of note. It suggests that availability alone is not sufficient to stimulate trial (though it may affect the consumption pattern of established users). It was not until the 1990s that word about methods for taking heroin other than by injection started to be widely diffused. The view that these methods were less dangerous than injection removed an important deterrent for at least some teenagers, we believe. Reports that the Taliban eradicated nearly all opium crops in Afghanistan in 2001 raised the possibility that there would be a significant decline in the availability of heroin in the ensuing years because Afghanistan is a major supplier of heroin to the world market. The subsequent demise of the Taliban and a resurgence of opium cultivation in Afghanistan appear to have eliminated that possibility for the near term, at least.

- Much like heroin, other narcotics showed a gradual, upward shift in perceived availability, from $26 \%$ in 1978 to $38 \%$ in 1989. Some decline in 1991 was followed by a second period of gradual increase from 1991 through 2000 (44\%). It then fell back to $39 \%$ by 2003 and $40 \%$ in 2004. Use of other narcotics grew substantially during the 1990s through 2002, before leveling. Unfortunately, this general availability question does not address the issue of changes in the availability of specific drugs within this general class, like OxyContin and Vicodin. It seems quite likely that they had different trends in availability than the class as a whole.
- Figure 9-5b shows that heroin and other narcotics have become much more accessible to young people since 1975, while sedatives (barbiturates) and tranquilizers have become much less so. ${ }^{89}$


## Trends in Perceived Availability for Eighth and Tenth Graders

Because information on the perceived availability of drugs was first gathered from 8th and 10th graders in 1992, we can characterize change only since then. From 1992 to 1996, 8th and 10th graders showed a rise in the availability of several illicit drugs. These data are not presented graphically but are provided in Tables 9-6 and 9-7. Availability of most of the illegal drugs increased during the first half of the 1990s, with most reaching a peak around 1996 or 1997. Availability then leveled or, for the most part, began dropping for most of these drugs, reaching a recent low in 2004. These changes track the changes in self-reported use rather well.

- Ecstasy use rose between 1997 and 2001; availability undoubtedly also rose (most likely in 2000 or 2001, judging from the 12th-grade data), but it was not measured until 2001, so we cannot say by how much. In 2002 both use and availability declined some. Availability also dropped in 2003 and use declined significantly. In 2004 there was a small decline in use and a significant decline in perceived availability. As with the 12th graders, the decline in availability seemed to lag the decline in use for this drug.
- The proportion of 8th graders seeing marijuana as easy to get rose sharply between 1992 and 1996, from $42 \%$ to $55 \%$, while among 10th graders there was an even greater increase (from $65 \%$ to $81 \%$ ) over the same interval. Since 1996, availability has shown declines in both grades. Among 12th graders, however, availability did not tilt down until 1999, and it has declined very little since then.
- Between 1992 or 1993 and 1995 or 1996, the availability of several other illicit drugs (LSD, crack, powdered cocaine, heroin, and amphetamines) rose modestly among 8th and 10th graders as their use of these drugs increased. (Use is not measured in these grades for PCP and other narcotics; but availability is, and it rose also.) Both grades then showed some decline in the availability of these drugs through 1998, and most have continued to decline since.
- LSD has shown a sharp drop in availability in recent years, coinciding with a steep decline in use. Because perceived risk and disapproval did not move in a way that could explain this decline in use, but availability did, we are inclined to believe that a change in availability was driving use in this case.
- Sedatives (barbiturates) and tranquilizers did not show any increase in availability in the early 1990s in 8th or 10th grade, but both drugs did show a decline in availability after 1995 (or 1996, in the case of 10th graders) until about 2000. (Sedatives [barbiturates] showed a further decline at 10th grade in 2003 but then some increase in 2004.)

[^72]- Ice (crystal methamphetamine) is the drug that generally has been least available to 8th and 10th graders. For the 8th graders, availability was level from 1992 to 1998 but for the most part has declined gradually since. For 10th graders, availability, which increased a bit from 1992 to 1997, also has shown some decline since the late 1990s. Only around $20 \%$ say that it would be fairly easy to get. (Use of ice is not assessed among 8th and 10th graders.)
- After holding fairly steady (at very high levels) for some years, the availability of cigarettes to 8th and 10th graders began to decline modestly after 1996, very likely as a result of increased enforcement of laws prohibiting sales to minors under the Synar Amendment and the FDA regulations dealing with sales to minors. Those declines have continued and have been the greatest at 8th grade, where the proportion saying that they could get cigarettes fairly easily if they want them fell from $77 \%$ in 1996 to $60 \%$ in 2004. Over the same interval, the decline among 10th graders was from $91 \%$ to $81 \%$. Both grades showed their steepest decline in 2002.
- Alcohol has shown some declines in availability, from 76\% in 1992 among 8th graders to $65 \%$ in 2004. At 10th grade it is down modestly from the peak level of $90 \%$ in 1996 to $84 \%$ in 2004. Again, both grades showed their largest decline in 2002. Even after these modest declines, it is clear that alcohol remains accessible to the great majority of underage teens.


## The Importance of Supply Reduction Versus Demand Reduction

- Overall, it is important to note that supply reduction-that is, reducing the availability of drugs-does not appear to have played as major a role as many had assumed in three of the most important downturns in illicit drug use that have occurred to date, namely, those for marijuana, cocaine, and ecstasy (see Figures 8-4, 8-5, and 8-6). In the case of cocaine, perceived availability actually rose during much of the period of the downturn in use. (These data are corroborated by data from the Drug Enforcement Administration on trends in the price and purity of cocaine on the streets. ${ }^{90}$ ) In the case of marijuana, perceived availability has remained very high for 12th graders over the last 30 years, while use dropped substantially from 1979 through 1992. Ecstasy use did have a large increase in availability associated with its increasing use in the 1990s, but the decline phase appears to have been driven much more by changing beliefs about the dangers of using that drug than by any sharp downturn in availability. Similarly, amphetamine use declined appreciably from 1981 to 1992, with only a modest corresponding change in perceived availability. Finally, until 1995, heroin use had not risen among seniors even though availability had increased substantially.
- What did change dramatically were young peoples' beliefs about the dangers of using marijuana, cocaine, and ecstasy. As we have been saying for some years, we believe these changes led to a decrease in use directly through their impact on young peoples' demand for these drugs and indirectly through their impact on personal disapproval and,

[^73]subsequently, peer norms. Because the perceived risk of amphetamine use was changing little when amphetamine use was declining substantially (1981-1986), other factors must have helped to account for the decline in demand for that class of drugs-quite conceivably some displacement by cocaine. Because three classes of drugs (marijuana, cocaine, and amphetamines) have shown different patterns of change, it is highly unlikely that a general factor (e.g., a general shift against drug use) can explain their various trends.

- The increase in marijuana use in the 1990s among 12th graders added more compelling evidence to this interpretation. It was both preceded and accompanied by a decrease in perceived risk. (Between 1991 and 1997 there was a 21-percentage-point decline in the perceived risk of regular marijuana use.) Peer disapproval dropped sharply from 1993 through 1997, after perceived risk began to change, consistent with our interpretation that perceived risk can be an important determinant of disapproval. Perceived availability remained fairly constant from 1991 to 1993 and then increased 7 percentage points through 1998.
- To give availability its due, we do think that the expansion in the world supply of heroin, particularly in the 1990s, had the effect of dramatically raising the purity of heroin available on the streets and thus the means available for ingesting it. The advent of noninjectable forms of heroin very likely contributed to the fairly sharp increase in heroin use in the 1990s. The evidence from this study, showing that a significant portion of the selfreported heroin users in recent years are using heroin by non-injectable means, lends credibility to this interpretation. The recent dramatic decline in $\boldsymbol{L S D}$ use also is not explainable by means of concurrent changes in perceived risk or disapproval; but availability did decline sharply during this period.
- We should also note that our emphasis on attitudes and beliefs does not mean that other factors, particularly price, cannot play an important role. Analyses of data from the Monitoring the Future project have shown that price probably played an important role in the decline of marijuana use in the 1980s and in changes in cigarette use in the 1990s. ${ }^{91,92}$

[^74]TABLE 9-1
Trends in Proportion of Friends Disapproving of Drug Use for Twelfth Graders


## TABLE 9-1 (cont'd) Trends in Proportion of Friends Disapproving of Drug Use for Twelfth Graders

| How do you think your close friends feel (or would feel) about you ... | Percentage saying friends disapprove ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Trying marijuana once ortwice | 70.3 | 69.7 | 73.1 | 66.6 | 62.7 | 58.1 | 55.8 | 53.0 | 53.8 | 55.1 | 58.1 | 57.6 | 54.1 | 58.4 | 59.5 | +1.1 |
| Smoking marijuana occasionally | 76.4 | 75.8 | 79.2 | 73.8 | 69.1 | 65.4 | 63.1 | 59.9 | 60.4 | 61.6 | 63.9 | 64.3 | 60.3 | 64.2 | 65.0 | +0.9 |
| Smoking manijuana regularly | 86.7 | 85.9 | 88.0 | 83.5 | 80.6 | 78.9 | 76.1 | 74.1 | 74.7 | 74.5 | 76.1 | 77.8 | 75.3 | 77.0 | 77.3 | +0.3 |
| Trying LSD once ortwice | 87.9 | 87.9 | 87.3 | 83.5 | 83.4 | 82.6 | 80.8 | 79.3 | 81.7 | 83.2 | 84.7 | 85.5 | 84.9 | 87.5 | 87.3 | -0.2 |
| Trying cocaine once ortwice | 90.5 | 91.8 | 92.2 | 91.1 | 91.4 | 91.1 | 89.2 | 87.3 | 88.8 | 88.7 | 90.2 | 89.3 | 89.1 | 91.2 | 87.9 | -3.3 ss |
| Taking cocaine occasionally | 94.2 | 94.7 | 94.4 | 93.7 | 93.9 | 93.8 | 92.5 | 90.8 | 92.2 | 91.8 | 92.8 | 92.2 | 92.2 | 93.0 | 91.0 | -2.0 |
| Trying crack once ortwice | 95.0 | 94.4 | 94.6 | 95.1 | 93.9 | 93.8 | 93.0 | 92.3 | 93.7 | 93.9 | 94.6 | 92.3 | 93.1 | 94.5 | 92.2 | -2.3 s |
| Taking crackoccasionally | 96.5 | 95.7 | 95.9 | 96.4 | 95.3 | 96.1 | 94.7 | 94.8 | 96.2 | 96.0 | 96.9 | 95.0 | 94.7 | 95.6 | 94.3 | -1.3 |
| Trying cocaine powderonce ortwice | 93.4 | 93.3 | 94.0 | 94.2 | 93.2 | 93.5 | 92.1 | 91.4 | 91.9 | 91.8 | 93.3 | 91.9 | 92.3 | 92.7 | 90.9 | -1.8 |
| Taking cocaine powderoccasionally | 95.0 | 94.8 | 94.8 | 95.2 | 94.7 | 95.3 | 93.6 | 93.9 | 94.5 | 94.0 | 96.3 | 93.7 | 93.8 | 94.1 | 92.9 | -1.2 |
| Trying an ampheta mine once ortwice | 84.2 | 85.3 | 85.7 | 83.2 | 84.5 | 81.9 | 80.6 | 80.4 | 82.6 | 83.0 | 84.1 | 83.8 | 83.3 | 85.9 | 84.7 | -1.2 |
| Taking one ortwo drinks nearly every day | 79.0 | 76.6 | 77.9 | 76.8 | 75.8 | 72.6 | 72.9 | 71.5 | 72.3 | 71.7 | 71.6 | 73.4 | 71.6 | 74.7 | 72.8 | -1.9 |
| Taking four or five drinks nearly every day | 88.2 | 86.4 | 87.4 | 87.2 | 85.2 | 84.1 | 82.6 | 82.5 | 82.8 | 82.2 | 82.8 | 84.4 | 80.1 | 83.1 | 82.9 | -0.2 |
| Having five or more drinks once or twice each weekend | 59.0 | 58.1 | 60.8 | 58.5 | 59.1 | 58.0 | 57.8 | 56.4 | 55.5 | 57.6 | 57.7 | 57.8 | 55.6 | 60.3 | 59.4 | -0.9 |
| Smoking one or more packs of cigarettes perday | 75.3 | 74.0 | 76.2 | 71.8 | 72.4 | 69.2 | 69.3 | 68.5 | 69.0 | 71.2 | 72.6 | 74.5 | 75.7 | 79.2 | 78.6 | -0.6 |
| Approx. $\mathrm{N}=2184$ |  | 2160 | 2229 | 2220 | 2149 | 2177 | 2030 | 2095 | 2037 | 1945 | 1775 | 1862 | 1820 | 2133 | 2208 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, \mathrm{ss}=.01,5 s s=.001$. <br> '-' indic ates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to roundid |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the Universit | ty of M | chigan |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ Answer altematives were: (1) Don't disapprove, (2) D | sappr | ve, an | 3) Str | ngly | sappro | e. Pe | enta | ar | hown | rca | gorie | (2) and | 3) co | mbined |  |  |
| ${ }^{\text {b }}$ These numbers have been adjusted to correct for a la | ack of | ompa | bility | f ques | tion con | ext a | mong ad | minis | tions. | (See | xt for | isc ussio |  |  |  |  |

## TABLE 9-2

## Trends in Twelfth Graders' Exposure to Drug Use

(Entries are percentages)
During the LAST 12 MONTHS, how often have
you been around people who were taking
each of the following to get high or for "kicks"?

| you been around people who were taking each of the following to get high or for "kicks'? | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975 | 1976 | 1977 | 1978 | $\underline{1979}$ | 1980 | 1981 | 1982 | $\underline{1983}$ | 1984 | $\underline{1985}$ | $\underline{1986}$ | 1987 | 1988 | $\underline{1989}$ |
| Any illic it drug ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 17.4 | 16.5 | 15.1 | 15.0 | 15.7 | 17.3 | 18.6 | 20.6 | 22.1 | 22.3 | 24.5 | 26.1 | 28.7 | 31.4 |
| \% saying often | - | 34.8 | 39.0 | 40.7 | 40.4 | 36.3 | 36.1 | 31.4 | 29.8 | 28.3 | 27.2 | 26.3 | 23.3 | 20.8 | 22.0 |
| Any illicit drug except marijuana ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 44.9 | 44.2 | 44.7 | 41.7 | 41.5 | 37.4 | 37.5 | 40.6 | 40.2 | 40.7 | 44.7 | 48.3 | 52.2 | 52.9 |
| \% saying often | - | 11.8 | 13.5 | 12.1 | 13.7 | 14.1 | 17.1 | 16.6 | 14.2 | 14.6 | 12.9 | 12.1 | 10.2 | 9.6 | 10.7 |
| Marijuana |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 20.5 | 19.0 | 17.3 | 17.0 | 18.0 | 19.8 | 22.1 | 23.8 | 25.6 | 26.5 | 28.0 | 29.6 | 33.0 | 35.2 |
| \% saying often | - | 32.5 | 37.0 | 39.0 | 38.9 | 33.8 | 33.1 | 28.0 | 26.1 | 24.8 | 24.2 | 24.0 | 20.6 | 17.9 | 19.5 |
| LSD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 78.8 | 80.0 | 81.9 | 81.9 | 82.8 | 82.6 | 83.9 | 86.2 | 87.5 | 86.8 | 86.9 | 87.1 | 86.6 | 85.0 |
| \% saying often | - | 2.2 | 2.0 | 1.8 | 2.0 | 1.4 | 2.0 | 1.9 | 1.4 | 1.5 | 1.3 | 1.6 | 1.8 | 1.6 | 2.2 |
| Otherpsychedelics ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 76.5 | 76.7 | 76.7 | 77.6 | 79.6 | 82.4 | 83.2 | 86.9 | 87.3 | 87.5 | 88.2 | 90.0 | 91.0 | 91.2 |
| \% saying often | - | 3.1 | 3.2 | 2.9 | 2.2 | 2.2 | 2.0 | 2.6 | 1.1 | 1.7 | 1.4 | 1.5 | 1.2 | 1.1 | 1.3 |
| Cocaine |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 77.0 | 73.4 | 69.8 | 64.0 | 62.3 | 63.7 | 65.1 | 66.7 | 64.4 | 61.7 | 62.6 | 65.1 | 69.8 | 69.8 |
| \% saying often | - | 3.0 | 3.7 | 4.6 | 6.8 | 5.9 | 6.6 | 6.6 | 5.2 | 6.7 | 7.1 | 7.8 | 5.9 | 5.1 | 5.4 |
| Heroin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 91.4 | 90.3 | 91.8 | 92.4 | 92.6 | 93.4 | 92.9 | 94.9 | 94.0 | 94.5 | 94.0 | 94.2 | 94.3 | 93.5 |
| \% saying often | - | 0.8 | 1.1 | 0.9 | 0.7 | 0.4 | 0.6 | 1.0 | 0.7 | 1.1 | 0.5 | 1.0 | 0.9 | 0.8 | 1.0 |
| Othernarcotics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 81.9 | 81.3 | 81.8 | 82.0 | 80.4 | 82.5 | 81.5 | 82.7 | 82.0 | 81.6 | 84.4 | 85.6 | 85.2 | 86.2 |
| \% saying often | - | 1.8 | 2.4 | 2.0 | 1.7 | 1.7 | 1.7 | 2.4 | 2.2 | 2.0 | 1.8 | 2.1 | 1.7 | 1.7 | 1.7 |
| Amphetamines |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 59.6 | 60.3 | 60.9 | 58.1 | 59.2 | 50.5 | 49.8 | 53.9 | 55.0 | 59.0 | 63.5 | 68.3 | 72.1 | 72.6 |
| \% saying often | - | 6.8 | 7.9 | 6.7 | 7.4 | 8.3 | 12.1 | 12.3 | 10.1 | 9.0 | 6.5 | 5.8 | 4.5 | 4.1 | 4.7 |
| Barbiturates ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 69.0 | 70.0 | 73.5 | 73.6 | 74.8 | 74.1 | 74.3 | 77.5 | 78.8 | 81.1 | 84.2 | 86.9 | 87.6 | 88.2 |
| \% saying often | - | 4.5 | 5.0 | 3.4 | 3.3 | 3.4 | 4.0 | 4.3 | 3.0 | 2.7 | 1.7 | 2.1 | 1.5 | 1.4 | 1.7 |
| Tranquilizers |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 67.7 | 66.0 | 67.5 | 67.5 | 70.9 | 71.0 | 73.4 | 76.5 | 76.9 | 76.6 | 80.4 | 81.6 | 81.8 | 84.9 |
| \% saying often | - | 5.5 | 6.3 | 4.9 | 4.3 | 3.2 | 4.2 | 3.5 | 2.9 | 2.9 | 2.2 | 2.5 | 2.6 | 2.2 | 2.1 |
| Alcohol |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | - | 6.0 | 5.6 | 5.5 | 5.2 | 5.3 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 5.9 | 6.1 | 6.9 | 7.7 |
| \% saying often | - | 57.1 | 60.8 | 60.8 | 61.2 | 60.2 | 61.0 | 59.3 | 60.2 | 58.7 | 59.5 | 58.0 | 58.7 | 56.4 | 55.5 |
| Approx. $\mathrm{N}=$ | - | 2950 | 3075 | 3682 | 3253 | 3259 | 3608 | 3645 | 3334 | 3238 | 3252 | 3078 | 3296 | 3300 | 2795 |

## TABLE 9-2 (cont'd)

## Trends in Twelfth Graders' Exposure to Drug Use

(Entries are percentages)

| During the LAST 12 MONTHS, how often have |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| each of the following to get high or for "kicks"? | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ | '03-04 <br> change |
| Any illic it drug ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying not at all | 32.4 | 35.8 | 38.7 | 33.9 | 29.2 | 24.7 | 22.0 | 21.2 | 22.8 | 22.1 | 24.0 | 23.5 | 23.5 | 26.4 | 25.7 | -0.8 |
| \%saying often | 20.7 | 18.2 | 18.0 | 24.0 | 29.3 | 32.3 | 33.8 | 34.7 | 33.2 | 35.6 | 32.6 | 33.6 | 32.6 | 31.8 | 30.3 | -1.5 |
| Any illicit drug except marijuana ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying not at all | 54.6 | 60.0 | 58.4 | 57.4 | 54.7 | 52.8 | 50.3 | 52.1 | 52.7 | 53.5 | 52.8 | 50.1 | 50.7 | 53.7 | 51.7 | -2.0 |
| \%saying often | 9.2 | 7.9 | 7.5 | 9.6 | 9.4 | 11.1 | 12.1 | 11.7 | 9.9 | 11.7 | 10.5 | 11.9 | 12.6 | 10.8 | 11.4 | +0.7 |
| Marijuana |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | 36.6 | 40.4 | 43.2 | 39.0 | 32.8 | 27.3 | 24.4 | 23.2 | 24.5 | 24.2 | 26.2 | 25.1 | 25.8 | 28.6 | 27.8 | -0.8 |
| \% saying often | 17.8 | 16.0 | 15.6 | 20.9 | 27.6 | 30.7 | 31.8 | 32.9 | 31.4 | 34.4 | 30.3 | 30.8 | 30.7 | 30.4 | 28.0 | -2.4 |
| LSD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | 85.1 | 84.3 | 82.2 | 79.0 | 75.8 | 73.9 | 72.4 | 74.1 | 76.9 | 76.4 | 78.0 | 78.4 | 82.8 | 85.8 | 87.6 | +1.8 |
| \% saying often | 2.6 | 2.9 | 3.0 | 3.9 | 4.2 | 6.1 | 4.7 | 5.1 | 3.2 | 4.1 | 3.3 | 2.8 | 2.6 | 1.8 | 1.6 | -0.3 |
| Other psyc hedelics ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | 90.6 | 90.6 | 90.3 | 87.9 | 86.0 | 84.2 | 83.4 | 82.2 | 84.1 | 82.3 | 83.7 $\ddagger$ | 71.9 | 73.6 | 74.2 | 75.2 | +1.0 |
| \%saying often | 1.2 | 1.3 | 1.1 | 1.9 | 2.3 | 2.5 | 2.7 | 2.8 | 1.7 | 2.7 | 2.1才 | 3.6 | 4.5 | 3.2 | 3.2 | 0.0 |
| Cocaine |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying not at all | 72.3 | 78.7 | 80.2 | 80.8 | 81.2 | 78.4 | 75.0 | 74.4 | 73.4 | 74.2 | 75.8 | 75.5 | 75.1 | 75.2 | 75.6 | +0.5 |
| \% saying often | 4.7 | 3.4 | 2.7 | 2.9 | 2.5 | 3.2 | 4.0 | 4.2 | 3.7 | 4.6 | 4.6 | 4.5 | 5.3 | 5.0 | 4.7 | -0.3 |
| Heroin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying not at all | 94.6 | 94.9 | 94.6 | 94.3 | 92.7 | 92.1 | 91.4 | 90.9 | 91.3 | 91.9 | 90.9 | 91.3 | 91.7 | 92.7 | 93.4 | +0.7 |
| \% saying often | 0.5 | 0.9 | 0.7 | 1.1 | 0.7 | 1.2 | 1.6 | 1.2 | 0.9 | 1.3 | 1.5 | 0.7 | 1.3 | 1.2 | 1.2 | 0.0 |
| Other narcotics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | 85.8 | 88.7 | 88.9 | 87.6 | 85.1 | 84.5 | 81.5 | 79.6 | 79.3 | 78.1 | 78.9 | 78.4 | 77.5 | 78.2 | 79.7 | +1.5 |
| \% saying often | 1.6 | 1.4 | 1.3 | 1.7 | 1.7 | 2.1 | 3.4 | 2.5 | 2.8 | 3.9 | 2.9 | 3.0 | 3.8 | 3.0 | 3.3 | +0.3 |
| Amphetamines |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | 71.7 | 76.4 | 75.5 | 75.3 | 71.8 | 71.9 | 68.5 | 69.0 | 70.1 | 69.9 | 70.5 | 68.5 | 69.4 | 72.6 | 72.8 | +0.2 |
| \% saying often | 4.1 | 3.1 | 3.0 | 3.9 | 4.1 | 4.5 | 5.6 | 5.2 | 4.7 | 6.3 | 4.4 | 6.0 | 6.4 | 4.9 | 5.3 | +0.4 |
| Barbiturates ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying not at all | 86.7 | 90.0 | 89.8 | 88.1 | 87.0 | 85.5 | 84.5 | 83.9 | 83.9 | 82.9 | 83.7 | 82.9 | 82.3 | 85.2 $\ddagger$ | 78.5 | - |
| \% saying often | 1.7 | 1.2 | 1.1 | 1.6 | 1.7 | 2.0 | 2.9 | 2.5 | 2.7 | 3.8 | 2.7 | 2.7 | 4.6 | $2.8 \ddagger$ | 4.1 | - |
| Tranquilizers |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | 83.7 | 85.8 | 87.3 | 86.2 | 83.5 | 84.3 | 82.1 | 81.1 | 82.7 | 81.8 | 82.3 $\ddagger$ | 76.2 | 77.3 | 79.0 | 77.9 | -1.1 |
| \% saying often | 1.9 | 1.4 | 1.9 | 1.7 | 1.8 | 2.3 | 3.5 | 3.2 | 2.8 | 3.7 | $3.5 \ddagger$ | 4.9 | 5.8 | 4.2 | 4.1 | -0.1 |
| Alcohol |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying not at all | 6.4 | 8.3 | 9.4 | 8.2 | 10.0 | 8.8 | 8.5 | 8.6 | 7.8 | 8.2 | 9.3 | 9.2 | 10.5 | 11.7 | 12.4 | +0.6 |
| \% saying often | 56.1 | 54.5 | 53.1 | 51.9 | 54.0 | 54.0 | 54.5 | 53.9 | 54.5 | 53.5 | 50.2 | 52.7 | 50.8 | 49.0 | 48.2 | -0.8 |
| Approx. $\mathrm{N}=$ | 2556 | 2525 | 2630 | 2730 | 2581 | 2608 | 2407 | 2595 | 2541 | 2312 | 2153 | 2147 | 2162 | 2454 | 2456 |  |

## TABLE 9-2 (cont'd)

## Trends in Twelfth Graders' Exposure to Drug Use

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
'-' indicates data not available.
' $\ddagger$ ' indic ates some change in the question. See relevant footnote.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Michigan.

These estimates were derived from responses to the questions listed. "Any illicit drug" includes all drugs listed except alc ohol.
"In 2001 the question text waschanged from "other psychedelics" to "other hallucinogens" and "shrooms" was added to the list of examples. For tranquilizers, Xanax was added to the list of examples. These changes likely expla in the discontinuity in the 2001 results.
${ }^{\text {c In }} 2004$ the question text waschanged from "barbiturates" to "sedatives/barbiturates" and the list of examples waschanged from "downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results.

TABLE 9-3
Trends in Friends' Use of Drugs as Estimated by Eighth Graders

| How many of your friends would you estimate... |  |  |  |  |  |  | Clas | of: |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ | change |
| Smoke marijuana |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 21.9 | 25.1 | 30.8 | 41.1 | 46.1 | 50.8 | 50.8 | 46.7 | 44.4 | 42.6 | 46.1 | 42.3 | 40.9 | 38.3 | -2.6 |
| \%saying most orall | 3.3 | 4.1 | 6.0 | 10.5 | 12.7 | 15.2 | 13.8 | 12.6 | 12.1 | 10.4 | 11.4 | 10.0 | 9.4 | 7.8 | -1.6 s |
| Use inhalants |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 20.5 | 23.1 | 26.3 | 29.2 | 32.1 | 32.3 | 32.9 | 31.9 | 31.0 | 29.0 | 29.3 | 25.7 | 27.8 | 27.4 | -0.4 |
| \%saying most orall | 2.4 | 2.9 | 3.7 | 4.2 | 5.0 | 5.2 | 4.8 | 4.5 | 4.7 | 4.0 | 3.9 | 3.4 | 4.0 | 4.0 | 0.0 |
| Take crack |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 8.6 | 10.9 | 12.5 | 15.2 | 17.7 | 18.5 | 19.3 | 19.2 | 18.5 | 18.1 | 18.9 | 17.4 | 17.2 | 15.8 | -1.4 |
| \%saying most or all | 0.9 | 1.0 | 1.3 | 1.6 | 1.6 | 2.0 | 1.8 | 1.9 | 1.9 | 1.6 | 2.0 | 1.6 | 1.7 | 1.7 | -0.1 |
| Take cocaine powder |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 8.4 | 10.7 | 12.1 | 14.3 | 16.2 | 17.4 | 17.6 | 17.1 | 16.7 | 16.1 | 16.3 | 14.8 | 14.9 | 13.8 | -1.1 |
| \%saying most orall | 0.9 | 1.1 | 1.3 | 1.7 | 1.6 | 1.7 | 1.6 | 2.0 | 1.8 | 1.6 | 1.8 | 1.7 | 1.6 | 1.6 | -0.1 |
| Take heroin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 6.1 | 7.3 | 8.9 | 10.3 | 11.6 | 12.0 | 12.2 | 11.8 | 11.4 | 10.9 | 11.2 | 10.5 | 10.2 | 9.4 | -0.9 |
| \%saying most orall | 0.7 | 0.9 | 0.9 | 1.3 | 1.3 | 1.4 | 1.2 | 1.3 | 1.3 | 1.1 | 1.4 | 1.3 | 1.0 | 1.2 | +0.2 |
| Drink alcoholic beverages |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 72.1 | 76.4 | 75.7 | 77.0 | 75.9 | 77.1 | 75.8 | 74.6 | 73.4 | 72.7 | 72.3 | 68.1 | 65.4 | 65.9 | +0.5 |
| \% saying most orall | 21.0 | 23.7 | 25.5 | 27.4 | 27.5 | 28.8 | 25.9 | 25.0 | 24.9 | 23.6 | 22.7 | 20.1 | 19.6 | 19.3 | -0.3 |
| Get drunk at least once a week |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 42.8 | 48.0 | 48.0 | 50.3 | 48.7 | 51.2 | 48.3 | 47.6 | 48.7 | 46.6 | 45.5 | 42.3 | 40.6 | 39.8 | -0.9 |
| \%saying most orall | 7.2 | 8.4 | 9.0 | 10.6 | 9.9 | 10.9 | 9.3 | 8.8 | 9.6 | 9.1 | 8.6 | 7.4 | 7.7 | 7.1 | -0.6 |
| Smoke cigarettes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 67.7 | 72.4 | 73.8 | 76.1 | 76.1 | 78.1 | 76.9 | 75.2 | 70.9 | 67.9 | 64.2 | 58.6 | 56.0 | 54.0 | -2.1 |
| \%saying most orall | 11.8 | 14.4 | 16.7 | 19.0 | 20.5 | 22.5 | 19.7 | 19.4 | 16.4 | 13.0 | 10.6 | 9.0 | 8.9 | 8.1 | -0.9 |
| Use smokeless tobacco |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 36.5 | 37.5 | 37.3 | 38.6 | 37.8 | 37.9 | 34.5 | 32.7 | 30.0 | 28.0 | 27.3 | 24.5 | 25.1 | 24.9 | -0.3 |
| \% saying most or all | 3.8 | 4.2 | 3.8 | 4.8 | 4.7 | 5.1 | 3.5 | 3.5 | 3.5 | 2.6 | 2.9 | 2.5 | 2.9 | 3.0 | +0.1 |
| Approx. $\mathrm{N}=16000$ |  | 16600 | 16500 | 15800 | 15300 | 16100 | 16100 | 16000 | 10100 | 10000 | 9700 | 9200 | 10400 | 10500 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,55 s=.001$. ' - ' indic ates data not available. <br> In 2000, this set of questions was removed from one of the four forms that had contained it, which resulted in a slight adjustment in the average change scores that year. To corect for this, although this set of questions was asked in all four forms in 1999, the data presented here for 1999 are from only the three forms in which the questions are still a sked. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the | Universit | of Mic | igan. |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE 9-4
Trends in Friends' Use of Drugs as Estimated by Tenth Graders

| How many of your friends would you | Class of: '03-04 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | 2004 | change |
| Smoke marijuana |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 48.3 | 45.9 | 52.7 | 63.4 | 68.5 | 73.5 | 73.4 | 70.4 | 70.5 | 70.6 | 72.8 | 69.6 | 68.0 | 66.2 | -1.8 |
| \%saying most orall | 7.9 | 8.0 | 11.2 | 18.0 | 21.3 | 26.4 | 25.0 | 23.5 | 23.3 | 22.4 | 23.8 | 23.3 | 21.8 | 19.2 | -2.6 |
| Use inhalants |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 17.3 | 17.8 | 21.1 | 23.6 | 25.3 | 25.7 | 23.7 | 22.8 | 21.4 | 20.6 | 21.4 | 19.3 | 18.8 | 18.4 | -0.4 |
| \%saying most orall | 1.4 | 1.5 | 1.8 | 2.0 | 2.1 | 2.2 | 2.2 | 2.5 | 2.1 | 2.2 | 1.8 | 2.1 | 1.9 | 1.7 | -0.2 |
| Take crack |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 13.2 | 13.2 | 15.1 | 17.3 | 19.8 | 21.4 | 22.0 | 22.2 | 21.2 | 21.1 | 21.4 | 21.0 | 19.3 | 18.7 | -0.5 |
| \%saying most orall | 0.8 | 0.7 | 0.9 | 1.0 | 1.2 | 1.2 | 1.5 | 1.7 | 1.6 | 1.5 | 1.5 | 1.8 | 1.5 | 1.4 | -0.1 |
| Take cocaine powder |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 14.7 | 14.1 | 15.4 | 17.3 | 19.7 | 21.7 | 22.5 | 23.0 | 21.0 | 21.2 | 20.9 | 20.5 | 18.5 | 19.0 | +0.6 |
| \%saying most orall | 0.8 | 0.8 | 0.8 | 1.1 | 1.3 | 1.4 | 1.7 | 2.0 | 1.9 | 1.7 | 1.5 | 2.0 | 1.5 | 1.4 | -0.1 |
| Take heroin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 7.8 | 8.1 | 9.3 | 10.5 | 11.1 | 11.7 | 11.8 | 11.5 | 10.7 | 10.1 | 11.4 | 10.3 | 9.9 | 9.0 | -0.9 |
| \%saying most orall | 0.6 | 0.6 | 0.7 | 0.6 | 0.8 | 0.7 | 0.9 | 1.0 | 1.0 | 0.8 | 0.9 | 1.2 | 1.0 | 0.8 | -0.1 |
| Drink alcoholic beverages |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 92.9 | 91.3 | 91.8 | 92.8 | 92.2 | 92.4 | 92.2 | 91.4 | 91.4 | 92.0 | 91.3 | 89.4 | 87.5 | 87.7 | +0.2 |
| \%saying most orall | 49.6 | 48.2 | 49.9 | 50.3 | 50.7 | 53.4 | 50.7 | 50.1 | 50.3 | 52.0 | 50.2 | 45.7 | 44.9 | 44.5 | -0.4 |
| Get drunk at least once a week |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 75.1 | 72.6 | 74.5 | 76.9 | 75.3 | 76.7 | 76.2 | 74.9 | 75.9 | 77.3 | 76.4 | 73.1 | 72.1 | 71.1 | -1.0 |
| \%saying most orall | 19.3 | 18.6 | 20.2 | 20.3 | 20.6 | 23.1 | 21.8 | 21.2 | 22.8 | 23.5 | 22.4 | 19.9 | 20.9 | 19.0 | -1.9 |
| Smoke cigarettes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% saying any | 81.2 | 82.0 | 85.4 | 86.3 | 88.0 | 89.3 | 88.1 | 87.1 | 85.4 | 84.6 | 82.7 | 77.2 | 75.1 | 73.9 | -1.2 |
| \% saying most orall | 18.2 | 18.7 | 22.8 | 24.7 | 27.8 | 32.8 | 29.3 | 27.8 | 25.9 | 21.2 | 19.3 | 15.8 | 14.2 | 13.4 | -0.8 |
| Use smokeless tobacco |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 53.1 | 53.1 | 57.5 | 58.4 | 57.9 | 55.0 | 52.0 | 47.5 | 44.8 | 42.3 | 45.5 | 41.8 | 38.6 | 37.6 | -0.9 |
| \%saying most or all | 7.5 | 7.3 | 7.7 | 7.6 | 7.3 | 6.0 | 6.4 | 5.8 | 4.7 | 4.6 | 5.2 | 5.2 | 4.4 | 4.5 | 0.0 |
| Approx. $\mathrm{N}=14300$ |  | 14000 | 14600 | 15000 | 16100 | 14800 | 14700 | 14400 | 8700 | 9100 | 9000 | 9100 | 10100 | 10500 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,55 s=.001$. ' - ' indic ates data not available. <br> In 2000, this set of questions was removed from one of the four forms that had contained it, which resulted in a slight adjustment in the average change scores that year. To corect for this, although this set of questions was asked in all four forms in 1999, the data presented here for 1999 are from only the three forms in which the questions are still a sked. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE 9-5a

## Trends in Friends' Use of Drugs as Estimated by Twelfth Graders

(Entries are percentages)

| List of Drugs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | How many of your friends would you estimate... |  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | $\underline{1983}$ | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |  |
|  | Take any illicit drug ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | 85.8 | 84.6 | 86.9 | 87.5 | 89.0 | 87.5 | 85.4 | 86.3 | 82.6 | 81.0 | 82.4 | 82.2 | 81.7 | 79.1 | 76.9 | 71.0 |  |
|  | \%saying mostorall |  | 31.9 | 31.7 | 33.2 | 36.3 | 37.0 | 32.5 | 29.8 | 26.5 | 23.8 | 20.9 | 22.7 | 21.5 | 18.6 | 15.8 | 15.7 | 11.6 |  |
|  | Take any illicit drug other than marijuana ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | 66.7 | 55.5 | 57.5 | 56.4 | 61.3 | 62.4 | 63.3 | 64.7 | 61.2 | 61.3 | 61.8 | 63.3 | 62.4 | 56.5 | 56.2 | 50.1 |  |
|  | \%saying most orall |  | 10.6 | 8.9 | 7.7 | 8.5 | 10.4 | 11.1 | 11.9 | 10.9 | 11.0 | 10.3 | 10.4 | 10.3 | 9.2 | 6.9 | 7.7 | 5.1 |  |
|  | Smoke marijuana |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | 83.0 | 82.9 | 85.9 | 86.1 | 87.6 | 86.4 | 83.0 | 84.4 | 80.3 | 77.7 | 79.5 | 79.2 | 78.4 | 75.3 | 72.5 | 68.3 |  |
|  | \%saying mostorall |  | 30.3 | 30.6 | 32.3 | 35.3 | 35.5 | 31.3 | 27.7 | 23.8 | 21.7 | 18.3 | 19.8 | 18.2 | 15.8 | 13.6 | 13.4 | 10.1 |  |
|  | Use inhalants |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | 24.3 | 18.6 | 18.9 | 20.0 | 19.1 | 17.8 | 16.5 | 18.4 | 16.1 | 19.3 | 21.2 | 22.4 | 24.7 | 20.8 | 22.1 | 20.0 |  |
|  | \%saying mostorall |  | 1.1 | 1.1 | 1.0 | 1.1 | 1.1 | 1.2 | 0.9 | 1.3 | 1.1 | 1.1 | 1.5 | 2.0 | 1.9 | 1.2 | 1.9 | 1.0 |  |
|  | Use nitrites |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | - | - | - | - | 21.6 | 19.0 | 17.4 | 17.5 | 14.5 | 15.0 | 15.6 | 18.0 | 18.3 | 13.6 | 13.3 | 10.4 |  |
|  | \%saying mostorall |  | - | - | - | - | 1.9 | 1.3 | 1.2 | 0.9 | 0.7 | 1.2 | 1.0 | 1.2 | 1.3 | 0.7 | 0.9 | 0.6 |  |
|  | Take LSD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | 36.5 | 30.6 | 31.9 | 29.9 | 28.9 | 28.1 | 28.5 | 27.8 | 24.0 | 23.9 | 24.4 | 24.5 | 25.3 | 24.1 | 25.2 | 25.0 |  |
|  | \%saying mostorall |  | 2.7 | 2.8 | 3.0 | 2.0 | 1.9 | 1.8 | 2.2 | 2.4 | 1.4 | 2.0 | 1.5 | 1.8 | 1.6 | 1.5 | 2.4 | 1.9 |  |
|  | Take other psychedelics/hallucinogens ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | 41.2 | 30.3 | 31.4 | 29.2 | 28.2 | 28.2 | 26.3 | 25.6 | 22.1 | 21.3 | 22.0 | 22.3 | 21.7 | 17.8 | 18.1 | 15.9 |  |
|  | \%saying most orall |  | 4.7 | 3.0 | 2.8 | 2.0 | 2.2 | 2.2 | 2.1 | 1.9 | 1.6 | 1.9 | 1.4 | 1.3 | 1.2 | 0.9 | 1.4 | 1.0 |  |
|  | Take PCP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | - | - | - | - | 27.8 | 22.2 | 17.2 | 17.3 | 14.2 | 14.2 | 15.9 | 16.1 | 15.5 | 13.5 | 14.7 | 13.0 |  |
|  | \%saying most orall |  | - | - | - | - | 1.7 | 1.6 | 0.9 | 0.9 | 1.1 | 1.1 | 1.2 | 1.2 | 1.1 | 0.8 | 1.2 | 0.5 |  |
|  | Take MDMA (ecstasy) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 12.4 |  |
|  | \%saying most orall |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2.2 |  |
|  | Take cocaine |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | 33.6 | 28.8 | 30.1 | 33.2 | 38.9 | 41.6 | 40.1 | 40.7 | 37.6 | 38.9 | 43.8 | 45.6 | 43.7 | 37.7 | 37.4 | 31.7 |  |
|  | \%saying mostorall |  | 3.4 | 3.2 | 3.6 | 4.0 | 6.0 | 6.1 | 6.3 | 4.9 | 5.1 | 5.1 | 5.8 | 6.2 | 5.1 | 3.4 | 3.7 | 2.1 |  |
|  | Take crack |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | - | - | - | - | - | - | - | - | - | - | - | - | 27.4 | 25.4 | 26.1 | 19.2 |  |
|  | \%saying most orall |  | - | - | - | - | - | - | - | - | - | - | - | - | 2.2 | 1.1 | 2.1 | 0.6 |  |
| $\pm$ | Take cocaine powder |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \%saying any |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 25.3 | 24.6 |  |
|  | \%saying most orall |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2.3 | 2.5 |  |
|  |  | Approx. $\mathrm{N}=$ | 2640 | 2697 | 2788 | 3247 | 2933 | 2987 | 3307 | 3303 | 3095 | 2945 | 2971 | 2798 | 2948 | 2961 | 2587 | 2361 |  |

## TABLE 9-5a (cont'd)

## Trends in Friends' Use of Drugs as Estimated by Twelfth Graders

| How many of your friends would you estimate... | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | $\underline{1993}$ | 1994 | 1995 | $\underline{1996}$ | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Take any illicit drug ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 69.1 | 67.3 | 71.0 | 78.3 | 78.6 | 80.6 | 83.4 | 84.6 | 82.0 | 82.0 | 82.8 | 81.8 | 80.7 | 81.2 | +0.5 |
| \%saying most orall | 11.7 | 12.0 | 15.5 | 20.3 | 21.7 | 23.8 | 23.7 | 25.9 | 25.5 | 24.5 | 25.2 | 23.1 | 23.5 | 23.0 | -0.5 |
| Take any illicit drug other than marijuana ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 46.3 | 47.1 | 48.7 | 53.7 | 53.7 | 54.5 | 55.1 | 55.6 | 51.2 | 52.5 | 55.0 | 54.3 | 50.0 | 51.4 | +1.3 |
| \%saying most orall | 4.6 | 5.3 | 7.1 | 7.1 | 7.7 | 8.9 | 7.0 | 8.9 | 7.4 | 7.4 | 7.0 | 6.1 | 6.7 | 7.3 | +0.6 |
| Smoke marijuana |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 65.8 | 63.1 | 67.4 | 75.6 | 76.1 | 78.0 | 81.4 | 83.2 | 80.7 | 80.5 | 81.2 | 79.4 | 78.9 | 79.5 | +0.6 |
| \%saying most orall | 10.0 | 10.3 | 13.9 | 18.9 | 20.7 | 22.2 | 22.5 | 23.8 | 24.2 | 23.2 | 24.0 | 21.4 | 21.7 | 21.1 | -0.5 |
| Use inhalants |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 19.2 | 22.2 | 23.7 | 26.5 | 27.5 | 27.2 | 27.4 | 25.9 | 21.6 | 23.5 | 22.2 | 21.0 | 17.5 | 17.9 | +0.4 |
| \%saying mostorall | 0.7 | 1.8 | 1.8 | 2.0 | 2.0 | 2.4 | 1.9 | 2.7 | 1.8 | 1.4 | 1.4 | 1.2 | 1.1 | 1.2 | +0.1 |
| Use nitrites |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 8.9 | 9.0 | 10.7 | 10.0 | 10.7 | 11.2 | 11.9 | 12.9 | 10.9 | 11.0 | 11.9 | 11.2 | 8.5 | 9.4 | +0.9 |
| \%saying mostorall | 0.4 | 0.7 | 0.7 | 0.8 | 0.8 | 0.8 | 0.7 | 1.0 | 0.7 | 1.0 | 0.6 | 0.8 | 1.0 | 1.2 | +0.1 |
| Take LSD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 23.4 | 28.1 | 31.3 | 34.1 | 36.9 | 37.9 | 36.5 | 36.8 | 32.2 | 31.9 | 32.2 | 28.6 | 21.9 | 23.5 | +1.6 |
| \%saying most orall | 1.7 | 2.4 | 3.8 | 4.2 | 4.8 | 5.0 | 3.7 | 4.7 | 3.9 | 3.1 | 2.9 | 1.7 | 1.9 | 1.5 | -0.4 |
| Take other psychedelics/ hallucinogens ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 15.1 | 17.0 | 19.3 | 21.4 | 23.8 | 26.4 | 26.3 | 27.4 | 22.5 | 24.0才 | 35.4 | 33.6 | 30.1 | 31.9 | +1.8 |
| \%saying mostorall | 0.8 | 1.0 | 1.7 | 2.2 | 2.2 | 2.3 | 2.6 | 3.1 | 2.4 | 2.4\# | 2.9 | 2.3 | 2.4 | 2.6 | +0.2 |
| Take PCP |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 12.0 | 12.7 | 15.6 | 15.5 | 18.3 | 20.3 | 19.7 | 20.2 | 16.8 | 17.5 | 19.1 | 17.2 | 13.6 | 11.8 | -1.8 |
| \%saying most orall | 0.5 | 0.9 | 1.9 | 1.2 | 1.2 | 1.3 | 1.4 | 1.6 | 1.5 | 1.7 | 1.3 | 1.0 | 1.5 | 1.1 | -0.4 |
| Take MDMA (ecstasy) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 11.9 | 10.7 | 12.8 | 15.9 | 20.7 | 24.2 | 27.7 | 24.5 | 26.7 | 37.3 | 41.9 | 38.0 | 34.2 | 28.9 | -5.3 ss |
| \%saying most orall | 1.7 | 2.1 | 1.2 | 1.7 | 2.8 | 3.0 | 2.6 | 2.5 | 2.7 | 4.8 | 5.2 | 3.7 | 2.7 | 3.2 | +0.5 |
| Take cocaine |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 26.8 | 26.3 | 24.5 | 26.1 | 24.8 | 28.1 | 28.5 | 31.2 | 27.8 | 27.2 | 27.1 | 26.8 | 23.8 | 29.3 | +5.5 sss |
| \%saying mostorall | 1.5 | 1.5 | 2.1 | 1.5 | 2.0 | 2.2 | 2.0 | 3.2 | 2.9 | 2.0 | 1.7 | 1.7 | 2.4 | 2.3 | -0.1 |
| Take crack |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 17.6 | 17.8 | 17.9 | 20.0 | 19.2 | 21.6 | 22.2 | 24.4 | 19.0 | 21.4 | 23.4 | 21.5 | 18.7 | 22.5 | +3.8 s |
| \%saying mostorall | 0.6 | 0.7 | 0.9 | 1.0 | 1.1 | 0.9 | 1.1 | 1.7 | 1.5 | 1.4 | 0.8 | 0.8 | 1.4 | 1.6 | +0.2 |
| Take cocaine powder |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 19.8 | 19.7 | 18.1 | 20.7 | 19.2 | 22.8 | 24.8 | 22.9 | 22.0 | 21.3 | 20.1 | 22.4 | 23.2 | 25.4 | +2.2 |
| \%saying most orall | 1.8 | 2.0 | 1.6 | 1.9 | 1.7 | 1.9 | 2.0 | 1.9 | 1.9 | 1.8 | 1.5 | 1.9 | 1.9 | 3.3 | +1.4 s |
| Approx. $\mathrm{N}=$ | 2339 | 2373 | 2410 | 2337 | 2379 | 2156 | 2292 | 2313 | 2060 | 1838 | 1923 | 1968 | 2233 | 2271 |  |

TABLE 9-5b
Trends in Friends' Use of Drugs as Estimated by Twelfth Graders
(Entries are percentages)


TABLE 9-5b (cont'd)
Trends in Friends' Use of Drugs as Estimated by Twelfth Graders

| How many of your friends would you estimate... | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | Class of: |  | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 1997 | $\underline{1998}$ |  |  |  |  |  |  |  |
| Take heroin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 11.4 | 13.2 | 13.3 | 14.3 | 14.5 | 15.6 | 15.6 | 16.5 | 12.7 | 14.9 | 13.1 | 12.9 | 10.3 | 12.7 | +2.4 s |
| \%saying mostorall | 0.4 | 0.7 | 1.1 | 1.0 | 1.1 | 0.9 | 0.8 | 1.3 | 1.0 | 1.1 | 0.9 | 0.7 | 0.9 | 0.9 | 0.0 |
| Take other narcotics |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 13.7 | 14.9 | 16.1 | 18.5 | 19.5 | 21.8 | 22.2 | 24.8 | 22.9 | 23.1 | 24.0 | 27.5 | 21.6 | 24.6 | +3.0 |
| \%saying mostorall | 0.5 | 1.1 | 1.2 | 1.0 | 1.6 | 1.5 | 1.4 | 2.9 | 1.8 | 2.0 | 2.0 | 2.1 | 2.4 | 2.4 | -0.1 |
| Take amphetamines |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 24.3 | 24.3 | 27.5 | 28.1 | 30.3 | 32.2 | 32.7 | 33.8 | 30.8 | 32.9 | 33.2 | 34.4 | 28.1 | 31.4 | +3.3 |
| \%saying most orall | 1.3 | 1.3 | 2.0 | 1.8 | 2.0 | 2.8 | 2.4 | 3.4 | 2.8 | 3.1 | 2.2 | 2.4 | 2.1 | 2.9 | +0.8 |
| Take crystal meth. (ice) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 10.2 | 8.9 | 9.4 | 11.8 | 12.9 | 15.9 | 18.6 | 16.8 | 15.7 | 16.9 | 17.0 | 17.5 | 16.2 | 17.8 | +1.6 |
| \%saying most orall | 1.0 | 1.5 | 1.2 | 1.5 | 1.7 | 1.5 | 2.3 | 2.1 | 1.1 | 2.0 | 1.6 | 2.0 | 1.8 | 3.0 | +1.2 s |
| Take barbiturates ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 14.8 | 16.4 | 17.8 | 18.2 | 17.8 | 21.6 | 20.4 | 22.8 | 20.9 | 21.6 | 22.1 | 25.3 | 18.1才 | 25.2 | - |
| \%saying mostorall | 0.5 | 0.6 | 1.0 | 1.1 | 1.4 | 1.6 | 1.1 | 2.5 | 1.4 | 1.7 | 1.1 | 1.7 | 1.9才 | 2.0 | - |
| Take quaaludes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 12.0 | 13.1 | 14.2 | 14.2 | 15.5 | 18.1 | 16.1 | 17.4 | 15.5 | 16.2 | 17.8 | 18.0 | 14.2 | 16.6 | +2.4 |
| \%saying most orall | 0.5 | 0.8 | 1.1 | 1.1 | 1.3 | 1.7 | 1.1 | 2.0 | 1.4 | 1.4 | 1.2 | 1.2 | 1.2 | 1.6 | +0.3 |
| Take tranquilizers |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 13.5 | 14.6 | 15.5 | 16.5 | 15.8 | 18.1 | 17.9 | 19.7 | 16.4 | 19.4 | 18.6 | 21.2 | 17.2 | 18.3 | +1.1 |
| \%saying most orall | 0.4 | 0.7 | 0.9 | 0.9 | 1.1 | 1.4 | 0.8 | 2.3 | 1.3 | 2.1 | 1.3 | 1.6 | 1.5 | 1.7 | +0.2 |
| Drink alcoholic beverages |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 91.2 | 90.5 | 88.9 | 90.1 | 90.9 | 89.6 | 90.7 | 91.2 | 90.2 | 89.8 | 89.2 | 88.0 | 87.9 | 87.8 | -0.2 |
| \%saying mostorall | 58.6 | 56.9 | 57.0 | 59.6 | 56.4 | 56.4 | 60.9 | 61.0 | 58.2 | 57.2 | 59.2 | 53.7 | 53.1 | 53.9 | +0.7 |
| Get drunk at least once a week |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 79.8 | 79.9 | 79.2 | 81.4 | 78.9 | 78.5 | 82.4 | 81.1 | 81.5 | 79.5 | 79.6 | 78.3 | 77.3 | 79.0 | +1.7 |
| \%saying mostorall | 29.7 | 28.6 | 27.6 | 28.4 | 27.4 | 29.0 | 30.9 | 31.7 | 30.1 | 32.4 | 32.7 | 28.3 | 27.1 | 27.6 | +0.6 |
| Smoke cigarettes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 85.7 | 84.4 | 84.8 | 88.1 | 87.9 | 88.3 | 89.9 | 89.5 | 89.3 | 87.2 | 86.8 | 85.4 | 83.3 | 83.7 | +0.5 |
| \%saying most orall | 21.8 | 21.4 | 25.0 | 25.3 | 27.5 | 30.4 | 34.4 | 33.9 | 31.1 | 28.2 | 25.0 | 23.0 | 19.6 | 20.6 | +1.0 |
| Take steroids |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \%saying any | 24.7 | 21.5 | 19.0 | 18.1 | 19.5 | 17.9 | 18.9 | 18.3 | 20.0 | 19.8 | 21.7 | 21.6 | 21.1 | 22.8 | +1.7 |
| \%saying mostorall | 1.0 | 1.7 | 0.9 | 1.2 | 1.3 | 0.8 | 1.7 | 1.4 | 0.9 | 1.9 | 1.2 | 1.5 | 1.5 | 2.6 | +1.1 s |
| Approx. $\mathrm{N}=$ | 2339 | 2373 | 2410 | 2337 | 2379 | 2156 | 2292 | 2313 | 2060 | 1838 | 1923 | 1968 | 2233 | 2271 |  |

(Table continued on next page)

## TABLES 9-5a and 9-5b (cont'd)

## Trends in Friends' Use of Drugs as Estimated by Twelfth Graders

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s 5 s=.001$.
'-' indicates data not available.
' $\ddagger$ ' indicates some change in the question. See relevant footnote.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These estimates were derived from responses to the questions listed. "Any illicit drug" includes all drugs listed except MDMA (ecstasy), cocaine powder, crystal metha mpheta mine (ice), alcohol, get drunk, cigarettes, and steroids. PCP and the nitrites were not included in 1975 through 1978. Crack was not included in 1975 through 1986.
"In 2001 the question text waschanged from "other psychedelics" to "other hallucinogens" and "shrooms" was added to the list of examples. For tranquilizers, Xanax was added to the list of examples. These changes likely explain the discontinuity in the 2001 results.
${ }^{\text {c In }} 2004$ the question text was changed from "barbiturates" to "sedatives/barbiturates" and the list of examples was changed from "downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results.

TABLE 9-6 Trends in Availability of Drugs as Perceived by Eighth Graders

| How diffic ult do you think it would be for | Percentage saying "fa irly easy" or "very easy" to get ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| drugs, if you wanted some? | 1992 | 1993 | 1994 | $\underline{1995}$ | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | $\underline{2003}$ | 2004 | change |
| Manjuana | 42.3 | 43.8 | 49.9 | 52.4 | 54.8 | 54.2 | 50.6 | 48.4 | 47.0 | 48.1 | 46.6 | 44.8 | 41.0 | -3.8 sss |
| LSD | 21.5 | 21.8 | 21.8 | 23.5 | 23.6 | 22.7 | 19.3 | 18.3 | 17.0 | 17.6 | 15.2 | 14.0 | 12.3 | -1.7 s |
| PCP ${ }^{\text {b }}$ | 18.0 | 18.5 | 17.7 | 19.0 | 19.6 | 19.2 | 17.5 | 17.1 | 16.0 | 15.4 | 14.1 | 13.7 | 11.4 | -2.3 s |
| MDMA (ecstasy) ${ }^{\text {b }}$ | - | - | - | - | - | - | - | - | - | 23.8 | 22.8 | 21.6 | 16.6 | -5.0 sss |
| Crack | 25.6 | 25.9 | 26.9 | 28.7 | 27.9 | 27.5 | 26.5 | 25.9 | 24.9 | 24.4 | 23.7 | 22.5 | 20.6 | -1.9 s |
| Cocaine powder | 25.7 | 25.9 | 26.4 | 27.8 | 27.2 | 26.9 | 25.7 | 25.0 | 23.9 | 23.9 | 22.5 | 21.6 | 19.4 | -2.1 ss |
| Heroin | 19.7 | 19.8 | 19.4 | 21.1 | 20.6 | 19.8 | 18.0 | 17.5 | 16.5 | 16.9 | 16.0 | 15.6 | 14.1 | -1.5 s |
| Other narcotics ${ }^{\text {b }}$ | 19.8 | 19.0 | 18.3 | 20.3 | 20.0 | 20.6 | 17.1 | 16.2 | 15.6 | 15.0 | 14.7 | 15.0 | 12.4 | -2.6 ss |
| Amphetamines | 32.2 | 31.4 | 31.0 | 33.4 | 32.6 | 30.6 | 27.3 | 25.9 | 25.5 | 26.2 | 24.4 | 24.4 | 21.9 | -2.5 ss |
| Crystal meth. (ice) ${ }^{\text {b }}$ | 16.0 | 15.1 | 14.1 | 16.0 | 16.3 | 15.7 | 16.0 | 14.7 | 14.9 | 13.9 | 13.3 | 14.1 | 11.9 | -2.2 s |
| Barbiturates | 27.4 | 26.1 | 25.3 | 26.5 | 25.6 | 24.4 | 21.1 | 20.8 | 19.7 | 20.7 | 19.4 | 19.3 | 18.0 | -1.4 |
| Tranquilizers | 22.9 | 21.4 | 20.4 | 21.3 | 20.4 | 19.6 | 18.1 | 17.3 | 16.2 | 17.8 | 16.9 | 17.3 | 15.8 | -1.5 s |
| Alcohol | 76.2 | 73.9 | 74.5 | 74.9 | 75.3 | 74.9 | 73.1 | 72.3 | 70.6 | 70.6 | 67.9 | 67.0 | 64.9 | -2.1 ss |
| Cigarettes | 77.8 | 75.5 | 76.1 | 76.4 | 76.9 | 76.0 | 73.6 | 71.5 | 68.7 | 67.7 | 64.3 | 63.1 | 60.3 | -2.8 sss |
| Steroids | 24.0 | 22.7 | 23.1 | 23.8 | 24.1 | 23.6 | 22.3 | 22.6 | 22.3 | 23.1 | 22.0 | 21.7 | 19.7 | -2.1 ss |
| Approx. $\mathrm{N}=$ | 8355 | 16775 | 16119 | 15496 | 16318 | 16482 | 16208 | 15397 | 15180 | 14804 | 13972 | 15583 | 15944 |  |
| NOTES: Level of signific ance of difference b '-' indicates data not available. Any apparent inconsistency betwee error. | tween <br> $n$ the | the two <br> hange | stimate |  | sses: S <br> preva | $=.05, \mathrm{ss}$ <br> ence o | $=.01, s s s$ <br> use esti | $=.001 \text {. }$ <br> natesf | the two | o most | recent | lasses is | due to | rounding |
| SOURCE: The Monitoring the Future Study, the | Universily | $y$ of Mic | higan. |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ Answer altematives were: (1) Probably impo <br> ${ }^{\text {b }}$ Beginning in 1993, data based on half of form | sible, (2) <br> s ; N is | Very d | ffic ult, <br> $f \mathrm{~N}$ ind | (3) Fairly ated. | diffic ult, | (4) Failt | easy, | (5) Very | easy, an | $\mathrm{d}(6) \mathrm{C}$ | n't say, | drug un | familiar |  |

TABLE 9-7
Trends in Availability of Drugs as Perceived by Tenth Graders

| How diffic ult do you think it would be for | Percentage saying "fairly easy" or "very easy" to get ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| drugs, if you wanted some? | 1992 | $\underline{1993}$ | 1994 | $\underline{1995}$ | 1996 | $\underline{1997}$ | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Manijuana | 65.2 | 68.4 | 75.0 | 78.1 | 81.1 | 80.5 | 77.9 | 78.2 | 77.7 | 77.4 | 75.9 | 73.9 | 73.3 | -0.5 |
| LSD | 33.6 | 35.8 | 36.1 | 39.8 | 41.0 | 38.3 | 34.0 | 34.3 | 32.9 | 31.2 | 26.8 | 23.1 | 21.6 | -1.5 |
| PCP ${ }^{\text {b }}$ | 23.7 | 23.4 | 23.8 | 24.7 | 26.8 | 24.8 | 23.9 | 24.5 | 25.0 | 21.6 | 20.8 | 19.4 | 18.0 | -1.4 |
| MDMA (ecstasy) ${ }^{\text {b }}$ | - | - | - | - | - | - | - | - | - | 41.4 | 41.0 | 36.3 | 31.2 | -5.1 sss |
| Crack | 33.7 | 33.0 | 34.2 | 34.6 | 36.4 | 36.0 | 36.3 | 36.5 | 34.0 | 30.6 | 31.3 | 29.6 | 30.6 | +1.1 |
| Cocaine powder | 35.0 | 34.1 | 34.5 | 35.3 | 36.9 | 37.1 | 36.8 | 36.7 | 34.5 | 31.0 | 31.8 | 29.6 | 31.2 | +1.5 |
| Heroin | 24.3 | 24.3 | 24.7 | 24.6 | 24.8 | 24.4 | 23.0 | 23.7 | 22.3 | 20.1 | 19.9 | 18.8 | 18.7 | -0.1 |
| Other narcotics ${ }^{\text {b }}$ | 26.9 | 24.9 | 26.9 | 27.8 | 29.4 | 29.0 | 26.1 | 26.6 | 27.2 | 25.8 | 25.4 | 23.5 | 23.1 | -0.4 |
| Amphetamines | 43.4 | 46.4 | 46.6 | 47.7 | 47.2 | 44.6 | 41.0 | 41.3 | 40.9 | 40.6 | 39.6 | 36.1 | 35.7 | -0.4 |
| Crystal meth. (ice) ${ }^{\text {b }}$ | 18.8 | 16.4 | 17.8 | 20.7 | 22.6 | 22.9 | 22.1 | 21.8 | 22.8 | 19.9 | 20.5 | 19.0 | 19.5 | +0.5 |
| Barbiturates | 38.0 | 38.8 | 38.3 | 38.8 | 38.1 | 35.6 | 32.7 | 33.2 | 32.4 | 32.8 | 32.4 | 28.8 | 30.0 | +1.2 |
| Tranquilizers | 31.6 | 30.5 | 29.8 | 30.6 | 30.3 | 28.7 | 26.5 | 26.8 | 27.6 | 28.5 | 28.3 | 25.6 | 25.6 | 0.0 |
| Alcohol | 88.6 | 88.9 | 89.8 | 89.7 | 90.4 | 89.0 | 88.0 | 88.2 | 87.7 | 87.7 | 84.8 | 83.4 | 84.3 | +0.9 |
| Cigarettes | 89.1 | 89.4 | 90.3 | 90.7 | 91.3 | 89.6 | 88.1 | 88.3 | 86.8 | 86.3 | 83.3 | 80.7 | 81.4 | +0.7 |
| Steroids | 37.6 | 33.6 | 33.6 | 34.8 | 34.8 | 34.2 | 33.0 | 35.9 | 35.4 | 33.1 | 33.2 | 30.6 | 29.6 | -1.0 |
| Approx. $\mathrm{N}=$ | 7014 | 14652 | 15192 | 16209 | 14887 | 14856 | 14423 | 13112 | 13690 | 13518 | 13694 | 15255 | 15806 |  |
| NOTES: Level of signific ance of difference b <br> '-' indic ates data not available. <br> Any apparent inconsistency betwe error. | tween <br> $n$ the | the two <br> hange | most re <br> estimate | cent c <br> and th | sses: 5 <br> preva | $=.05, \text { ss }$ | $=.01,5 s s$ <br> use estim | $=.001$ <br> mates fo | rthe two | o most | ecent | lasses is | due to | rounding |
| SOURCE: The Monitoring the Future Study, the <br> ${ }^{\text {a }}$ Answer altematives were: (1) Probably impo <br> ${ }^{\text {b }}$ Beginning in 1993, data based on half of form | Univer sible, ; N is | y of Mi Very ne-half | higan. <br> iffic ult, <br> $f \mathrm{~N}$ ind | (3) Fairly cated. | diffic ult, | (4) Fairl | easy, | 5) Very | asy, a | d (6) Ca | 't say, | drug un | familiar |  |

## TABLE 9-8

Trends in Availability of Drugs as Perceived by Twelfth Graders

| How difficult do you think it would be foryou to get each of the following types of drugs, if you wanted some? | Percentage saying "fairly easy" or "very easy" to get ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Manjuana | 87.8 | 87.4 | 87.9 | 87.8 | 90.1 | 89.0 | 89.2 | 88.5 | 86.2 | 84.6 | 85.5 | 85.2 | 84.8 | 85.0 | 84.3 |  |
| Amyl/butyl nitrites | - | - | - | - | - | - | - | - | - | - | - | - | 23.9 | 25.9 | 26.8 |  |
| LSD | 46.2 | 37.4 | 34.5 | 32.2 | 34.2 | 35.3 | 35.0 | 34.2 | 30.9 | 30.6 | 30.5 | 28.5 | 31.4 | 33.3 | 38.3 |  |
| Some other psychedelic/hallucinogen ${ }^{\text {b }}$ | 47.8 | 35.7 | 33.8 | 33.8 | 34.6 | 35.0 | 32.7 | 30.6 | 26.6 | 26.6 | 26.1 | 24.9 | 25.0 | 26.2 | 28.2 |  |
| PCP | - | - | - | - | - | - | - | - | - | - | - | - | 22.8 | 24.9 | 28.9 |  |
| MDMA (ecstasy) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 21.7 |  |
| Cocaine | 37.0 | 34.0 | 33.0 | 37.8 | 45.5 | 47.9 | 47.5 | 47.4 | 43.1 | 45.0 | 48.9 | 51.5 | 54.2 | 55.0 | 58.7 |  |
| Crack | - | - | - | - | - | - | - | - | - | - | - | - | 41.1 | 42.1 | 47.0 |  |
| Cocaine powder | - | - | - | - | - | - | - | - | - | - | - | - | 52.9 | 50.3 | 53.7 |  |
| Heroin | 24.2 | 18.4 | 17.9 | 16.4 | 18.9 | 21.2 | 19.2 | 20.8 | 19.3 | 19.9 | 21.0 | 22.0 | 23.7 | 28.0 | 31.4 |  |
| Some other narcotic (including methadone) | 34.5 | 26.9 | 27.8 | 26.1 | 28.7 | 29.4 | 29.6 | 30.4 | 30.0 | 32.1 | 33.1 | 32.2 | 33.0 | 35.8 | 38.3 |  |
| Amphetamines | 67.8 | 61.8 | 58.1 | 58.5 | 59.9 | 61.3 | 69.5 | 70.8 | 68.5 | 68.2 | 66.4 | 64.3 | 64.5 | 63.9 | 64.3 |  |
| Crystal meth. (ice) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Barbiturates ${ }^{\text {c }}$ | 60.0 | 54.4 | 52.4 | 50.6 | 49.8 | 49.1 | 54.9 | 55.2 | 52.5 | 51.9 | 51.3 | 48.3 | 48.2 | 47.8 | 48.4 |  |
| Tranquilizers | 71.8 | 65.5 | 64.9 | 64.3 | 61.4 | 59.1 | 60.8 | 58.9 | 55.3 | 54.5 | 54.7 | 51.2 | 48.6 | 49.1 | 45.3 |  |
| Alcohol | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Steroids | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Approx. $\mathrm{N}=$ | 2627 | 2865 | 3065 | 3598 | 3172 | 3240 | 3578 | 3602 | 3385 | 3269 | 3274 | 3077 | 3271 | 3231 | 2806 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. <br> '-' indic ates data not a vailable. <br> ' $\ddagger$ ' indicates some change in the question. See relevant footnote. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ Answer altematives were: (1) Probably impossible, (2) Very diffic ult, (3) Fairly difficult, (4) Fairly easy, (5) Very easy, and (6) Can't say, drug unfamiliar. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\mathrm{b}}$ In 2001 the question text waschanged from "other psychedelics" to "other hallucinogens" and "shrooms" was added to the list of examples. These changes likely explain the discontinuity in the 2001 results. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {c In }} 2004$ the question text waschanged from "barbiturates" to "sedatives/barbiturates" and the list of examples waschanged from "downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE 9-8 (cont'd) Trends in Availability of Drugs as Perceived by Twelfth Graders

| How diffic ult do you think it would be for you to get each of the following types of drugs, if you wanted some? | Percentage saying "fairly easy" or "very easy" to get ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Manjuana | 84.4 | 83.3 | 82.7 | 83.0 | 85.5 | 88.5 | 88.7 | 89.6 | 90.4 | 88.9 | 88.5 | 88.5 | 87.2 | 87.1 | 85.8 | -1.3 |
| Amyl/butyl nitrites | 24.4 | 22.7 | 25.9 | 25.9 | 26.7 | 26.0 | 23.9 | 23.8 | 25.1 | 21.4 | 23.3 | 22.5 | 22.3 | 19.7 | 20.0 | +0.4 |
| LSD | 40.7 | 39.5 | 44.5 | 49.2 | 50.8 | 53.8 | 51.3 | 50.7 | 48.8 | 44.7 | 46.9 | 44.7 | 39.6 | 33.6 | 33.1 | -0.6 |
| Some other psychedelic/ hallucinogen ${ }^{\text {b }}$ | 28.3 | 28.0 | 29.9 | 33.5 | 33.8 | 35.8 | 33.9 | 33.9 | 35.1 | 29.5 | 34.5 $\ddagger$ | 48.5 | 47.7 | 47.2 | 49.4 | +2.1 |
| PCP | 27.7 | 27.6 | 31.7 | 31.7 | 31.4 | 31.0 | 30.5 | 30.0 | 30.7 | 26.7 | 28.8 | 27.2 | 25.8 | 21.9 | 24.2 | +2.3 |
| MDMA (ecstasy) | 22.0 | 22.1 | 24.2 | 28.1 | 31.2 | 34.2 | 36.9 | 38.8 | 38.2 | 40.1 | 51.4 | 61.5 | 59.1 | 57.5 | 47.9 | -9.6 sss |
| Cocaine | 54.5 | 51.0 | 52.7 | 48.5 | 46.6 | 47.7 | 48.1 | 48.5 | 51.3 | 47.6 | 47.8 | 46.2 | 44.6 | 43.3 | 47.8 | +4.5 s |
| Crack | 42.4 | 39.9 | 43.5 | 43.6 | 40.5 | 41.9 | 40.7 | 40.6 | 43.8 | 41.1 | 42.6 | 40.2 | 38.5 | 35.3 | 39.2 | +3.9 s |
| Cocaine powder | 49.0 | 46.0 | 48.0 | 45.4 | 43.7 | 43.8 | 44.4 | 43.3 | 45.7 | 43.7 | 44.6 | 40.7 | 40.2 | 37.4 | 41.7 | +4.3 s |
| Heroin | 31.9 | 30.6 | 34.9 | 33.7 | 34.1 | 35.1 | 32.2 | 33.8 | 35.6 | 32.1 | 33.5 | 32.3 | 29.0 | 27.9 | 29.6 | +1.7 |
| Some other narcotic (including methadone) | 38.1 | 34.6 | 37.1 | 37.5 | 38.0 | 39.8 | 40.0 | 38.9 | 42.8 | 40.8 | 43.9 | 40.5 | 44.0 | 39.3 | 40.2 | +0.8 |
| Amphetamines | 59.7 | 57.3 | 58.8 | 61.5 | 62.0 | 62.8 | 59.4 | 59.8 | 60.8 | 58.1 | 57.1 | 57.1 | 57.4 | 55.0 | 55.4 | +0.4 |
| Crystal meth. (ice) | 24.1 | 24.3 | 26.0 | 26.6 | 25.6 | 27.0 | 26.9 | 27.6 | 29.8 | 27.6 | 27.8 | 28.3 | 28.3 | 26.1 | 26.7 | +0.6 |
| Barbiturates ${ }^{\text {c }}$ | 45.9 | 42.4 | 44.0 | 44.5 | 43.3 | 42.3 | 41.4 | 40.0 | 40.7 | 37.9 | 37.4 | 35.7 | 36.6 | 35.3才 | 46.3 | - |
| Tranquilizers | 44.7 | 40.8 | 40.9 | 41.1 | 39.2 | 37.8 | 36.0 | 35.4 | 36.2 | 32.7 | 33.8 | 33.1 | 32.9 | 29.8 | 30.1 | +0.3 |
| Alcohol | - | - | - | - | - | - | - | - | - | 95.0 | 94.8 | 94.3 | 94.7 | 94.2 | 94.2 | 0.0 |
| Steroids | - | 46.7 | 46.8 | 44.8 | 42.9 | 45.5 | 40.3 | 41.7 | 44.5 | 44.6 | 44.8 | 44.4 | 45.5 | 40.7 | 42.6 | +1.8 |
| Approx. $\mathrm{N}=$ | 2549 | 2476 | 2586 | 2670 | 2526 | 2552 | 2340 | 2517 | 2520 | 2215 | 2095 | 2120 | 2138 | 2391 | 2169 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$.
'-' indic ates data not available.
' $\ddagger$ ' indic ates some change in the question. See relevant footnote.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Answer altematives were: (1) Probably impossible, (2) Very diffic ult, (3) Fairly diffic ult, (4) Fairly easy, (5) Very easy, and (6) Can't say, drug unfa miliar.
${ }^{\mathrm{b}}$ In 2001 the question text was changed from "other psychedelics" to "other hallucinogens" and "shrooms" was added to the list of examples. These changes likely explain the discontinuity in the 2001 results.
'In 2004 the question text waschanged from "barbiturates" to "sedatives/barbiturates" and the list of examples waschanged from "downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results.

FIGURE 9-1a
Trends in Disapproval of Illicit Drug Use
Twelfth Graders, Parents, and Peers


NOTE: The 1975, 1977, and 1979 points indicating the percentage of high school seniors who said their friends would disapprove have been adjusted to compensate for lack of comparability of question-context between administration years. (See text for discussion.)

FIGURE 9-1b

## Trends in Disapproval of Illicit Drug Use

Twelfth Graders, Parents, and Peers


NOTE: The 1975, 1977, and 1979 points indicating the percentage of high school seniors who said their friends would disapprove have been adjusted to compensate for lack of comparability of question-context between administration years. (See text for discussion.) *In 2004 the question text was changed from "barbiturates" to "sedatives/barbiturates," and the list of examples was changed from
"downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results.

FIGURE 9-2
Trends in Disapproval of Licit Drug Use


[^75] adjusted to compensate for lack of comparability of question-context between administration years. (See text for discussion.)

FIGURE 9-3
Trends in Thirty-Day Prevalence of Marijuana Use and Friends' Use of Marijuana for Twelfth Graders


FIGURE 9-4
Proportion of Friends Using Each Drug as Estimated by Eighth, Tenth, and Twelfth Graders, 2004

Eighth Graders


Tenth Graders


FIGURE 9-4 (cont.)
Proportion of Friends Using Each Drug as Estimated by Eighth, Tenth, and Twelfth Graders, 2004

Twelfth Graders


Trends in Perceived Availability of Drugs for Twelfth Graders


FIGURE 9-5b
Trends in Perceived Availability of Drugs for Twelfth Graders

*In 2004 the question text was changed from "barbiturates" to "sedatives/barbiturates," and the list of examples was changed from "downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results.

FIGURE 9-5c
Trends in Perceived Availability of Drugs for Twelfth Graders

*In 2001 the question text was changed from "other psychedelics" to "other hallucinogens," and
"shrooms" was added to the list of examples. These changes likely explain the discontinuity in the 2001 results.

## Chapter 10

## OTHER FINDINGS FROM THE STUDY

The Monitoring the Future data are used extensively to address a large number of topics related to substance use among the nation's teenagers and young adults, and there are many publications from the study other than this pair of annual monographs. In this chapter we present findings on three additional substance use behaviors of interest: (1) the use of nonprescription stimulantsdiet pills, stay-awake pills, and look-alike stimulants; (2) the use of three substances taken to enhance performance or physique-steroids, androstenedione, and creatine; and (3) the use of marijuana on a daily basis, including use over a long period of time. These findings represent original analyses not reported elsewhere. They are then followed by a series of short synopses of findings that have been published elsewhere during the past year. The interested reader may wish to secure the full original publication for one or more of these after reading the synopses.

## THE USE OF NONPRESCRIPTION STIMULANTS

As is discussed in other chapters of this report, between 1979 and 1981 we observed a substantial increase in reported stimulant use by high school seniors. We had reason to believe that a fair part of that increase was attributable to the use of nonprescription stimulants of two general types-look-alike drugs (pseudo-amphetamines, usually sold by mail order, which look like and often have names that sound like real amphetamines) and over-the-counter stimulants (primarily diet pills and stay-awake pills). These drugs usually contained caffeine, ephedrine, and/or phenylpropanolamine as their active ingredient(s).

Prompted by this development, in 1982 we introduced new questions in some of the 12th-grade questionnaire forms in order to assess more accurately the use of amphetamines and the use of the "look-alikes," diet pills, and stay-awake pills of the nonprescription variety. For example, in one of the 12th-grade questionnaire forms, beginning in 1982, respondents were asked to indicate on how many occasions (if any) they had taken nonprescription diet pills such as Dietac, Dexatrim, and Prolamine (a) in their lifetime, (b) in the prior 12 months, and (c) in the prior 30 days. (These correspond to the standard usage questions asked for all drugs.) Similar questions were asked about the use of nonprescription stay-awake pills (such as No-Doz, Vivarin, Wake, and Caffedrine) and the look-alike stimulants. (The latter are described at some length in the actual question.)

In three of the five 12th-grade questionnaire forms in 1982 and 1983 (and in all questionnaire forms thereafter) respondents were also asked about their use of prescription amphetamines outside of medically prescribed use, with explicit instructions to exclude the use of over-the-counter and look-alike drugs. These data have been collected only from 12th-grade respondents.

## Prevalence of Use in 2004 Among Seniors

- Tables 10-1a, 10-1b, and 10-1c contain the prevalence-of-use levels for these various classes of stimulants in 2004. As can be seen, a substantial proportion of 12th-grade students (15.6\%) have used over-the-counter diet pills and 5.6\% have used them in just the past month. Daily use was reported by $0.8 \%$ of seniors (data not shown).
- Based on the data presented earlier in this report, we know that very similar proportions are using actual amphetamines outside of medically prescribed use: 12th graders' selfreported prevalence rates in 2004 were $15.0 \%$ lifetime, $4.6 \%$ monthly, and $0.3 \%$ daily use.
- Currently, stay-awake pills are used by $18.4 \%$ of the seniors in their lifetime, the highest value for any of the types of stimulants; monthly and daily prevalence rates are $4.5 \%$ and 0.3\%.
- Somewhat fewer students knowingly used the look-alikes than used diet pills or amphetamines (adjusted), with $8.1 \%$ lifetime, $2.5 \%$ monthly, and $0.2 \%$ daily prevalence rates. Of course, it is possible that some proportion of those who thought they were getting real amphetamines were actually sold look-alikes, which are far cheaper for drug dealers to purchase.
- In 1983, the newly revised question on amphetamine use yielded prevalence estimates about one-quarter to one-third lower than those yielded by the original version of the question, indicating that, indeed, some distortion in the unadjusted estimates occurred as a result of respondents including some nonprescription stimulant use. However, we believe that there should be little or no such distortion in recent years, primarily due to improvement in the questions but also due to the considerable decline in use of diet pills and look-alikes, as is discussed later.


## Subgroup Differences

- Tables 10-1a through 10-1c show the prevalence figures for these drug classes for males and females separately. It can be seen that the use of diet pills is dramatically higher among females than males. In fact, the absolute prevalence levels for 12th-grade females are impressively high; $22 \%$ reported some experience with them and nearly $7 \%$-or about one in every fourteen females-reported use in just the last month. For all other types of stimulants, the prevalence rates for males and females are fairly close.
- A similar comparison between those who are planning four years of college (referred to here as the "college-bound") and those who are not has shown some differences in use of nonprescription stimulants in the past (see Tables 10-2a through 10-2c). However, in 2004 there was little difference between these two groups in their use of nonprescription stimulants. Use of diet pills is now only slightly higher among the college-bound (11\% versus $10 \%$ among the noncollege-bound in 2004). For stay-awake pills the annual prevalence rate in 2004 is $13 \%$ for the noncollege-bound versus $11 \%$ for the collegebound. The use of look-alikes is higher among the noncollege-bound (6.2\% versus 4.2\%).
- There are only modest (and not statistically significant) regional differences in annual prevalence of diet pills, with the Northeast and West at $12 \%$, the South at $11 \%$, and the North Central at 9\%. For stay-awake pills, the Northeast has the highest prevalence rate at $14 \%$ and the South the lowest at $10 \%$. The look-alikes show some regional differences: the South is at $7 \%$, the Northeast is at $5 \%$, the North Central is at $4 \%$, and the West is lowest at $3 \%$.
- With regard to community size, annual prevalence of diet pills, look-alikes, and stayawake pills is lowest in the large metropolitan areas.
- Consistent with racial/ethnic differences observed on nearly all other drugs, African American students are substantially lower in their use of all three types of over-thecounter stimulants than are Whites, and they have been for a long time (see Tables 10-2a through 10-2c). Hispanics have tended to be in the middle.
- The use of all of the nonprescription stimulants (i.e., diet pills, stay-awake pills, and look-alikes) is substantially higher among those who have used illicit drugs than among those who have not, and it is highest among those who have become most involved with illicit drugs (see Table 10-3). For example, only $1.5 \%$ of 12th graders who have abstained from any illicit drug use report ever having used a look-alike stimulant, compared to $4.2 \%$ of those who report having used only marijuana and $24.4 \%$ of those who report having used some illicit drug other than marijuana (usually in addition to marijuana). We already know that use of all the illicit drugs is correlated with two legal drugs-alcohol and cigarettes. These findings show that the constellation of correlated substance-using behaviors also includes use of over-the-counter psychoactive substances. ${ }^{93}$


## Trends in Use Among Seniors

- The questions on amphetamine use were revised in 1982 to eliminate the inappropriate reporting of the use of nonprescription stimulants. It is worth noting that the 1982 figures for the use of amphetamines adjusted (i.e., excluding the use of nonprescription stimulants) were higher than the unadjusted figures for all years prior to 1980. (See Tables 5-1 through 5-4 in chapter 5.) This suggests that amphetamine use indeed increased between 1979 and 1982-or at least increased in the use of what, to the best of the respondents' knowledge, were amphetamines. Not all of the increase in amphetamine use was artifactual. The data presented earlier on the proportion of seniors who were around people using amphetamines to "get high" support this conclusion (see chapter 9).
- The longer-term trends for the look-alikes seem to parallel fairly closely the long-term trends for illicit drug use. There was a decline in annual prevalence from 10.8\% in 1982 to $5.2 \%$ in 1991, followed by some increase (to $6.8 \%$ in 1995) and then stabilization. There was some decline again after 2001, such that by 2004 the prevalence was down to $5.0 \%$. Most of the initial decline in rate of use occurred among those who had used illicit

[^76]drugs other than marijuana-the group primarily involved in the use of look-alikes. Further, that group was a shrinking proportion of the total (see Table 10-1c).

- The use of nonprescription diet pills decreased even more substantially, in this case between 1983 and 1993. Over that interval, annual prevalence fell by about six-tenths, from $20.5 \%$ to $8.0 \%$. This was a positive development, because nearly all of them contained phenylpropanolamine, which the Food and Drug Administration has since determined to have health risks for the user. ${ }^{94}$ Nearly all the decline occurred among the group who had used illicit drugs other than marijuana. Use stabilized through the middle 1990s at around $9.4 \%$ but rose after 1998 and reached 15\% in 2002 (see Table 10-1a). Use has since fallen again to $10.7 \%$ in 2004, including statistically significant declines between 2002 and 2003 and between 2003 and 2004.
- Unlike the use of other nonprescription stimulants, the use of stay-awake pills increased substantially in the early to mid-1980s (see Table 10-1b). The annual prevalence of use increased from $12 \%$ in 1982 (when use was first measured) to $26 \%$ in 1988, dropped back somewhat to $20 \%$ by 1992, and remained fairly level until 1998, before beginning a decline that reached $12 \%$ by 2004. (Both the increase and decrease were observed most strongly among those who had used illicit drugs.)


## Trends in Subgroup Differences

- All subgroups (defined by gender, college plans, region of the country, population size, parental education, and race/ethnicity) showed similarly large increases from 1982 to 1988 in their use of stay-awake pills. Between 1988 and 1992, annual prevalence decreased for all subgroups except for one of the parental education groups, and the decrease was rather slight in the North Central region. After 1992, use stabilized in virtually all subgroups until the 1999 decline, which also occurred broadly. After 1998, use continued to decline in all subgroups, although sometimes unevenly. The proportional decline since 1998 has been greater among males than females (see Table 10-2b).
- For diet pills, trends for subgroups parallel the overall trends across time, for the most part. Diet pill use among girls has tended to run from two-and-a-half to four times as high as among boys. Girls showed a significant decline in 2004, bringing their annual prevalence down to $14.1 \%$, compared with $6.5 \%$ for the boys.
- Subgroup differences in trends in the use of look-alikes also generally reflect the overall trends. Use among most subgroups has declined some since recent peaks in 2001 or 2002.

[^77]
## PERFORMANCE-ENHANCING SUBSTANCES: "ANDRO" AND CREATINE

In seeking a better understanding of the increase in recent years of teen steroid use, we added a single "tripwire" question about the frequency of use in 2001 of androstenedione (a precursor that the body can convert to anabolic steroids) because it is used for many of the same purposes as anabolic steroids. As discussed in chapter 4, a minority of those reporting steroid use in the prior 12 months also report androstenedione ("andro") use in that same period, and a minority of those reporting andro use also report anabolic steroid use. This overlap introduces the possibility of some double counting of events in the two questions; but the majority of use is not overlapping. The 2004 annual prevalence rates for andro are $0.9 \%, 1.1 \%$, and $2.1 \%$ in grades 8 , 10 , and 12, respectively. Because use tends to be concentrated among males, their prevalence rates are higher: $1.2 \%, 1.6 \%$, and $3.7 \%$ in grades 8,10 , and 12 , respectively, compared with $0.5 \%, 0.5 \%$, and $0.6 \%$ for females in those same grades. In other words, a significant number of American males today take andro during their school years. (It should be noted that androstenedione was scheduled by the Drug Enforcement Administration [DEA] in early 2005, making its sale and possession no longer legal. However, this regulation was not in force at the time of the 2004 MTF data collection.)

Because andro is often taken for performance enhancement and physical enhancement, we decided to examine teens' use of another substance that is used for the same purposes-creatine. This substance is not a hormone or a drug, but a nutrient found in the skeletal muscle of most animals. Creatine is used to enhance performance capacity and reduce the recovery time of muscles, as well as to increase muscle mass. It is readily available over the counter, which undoubtedly helps to explain the high levels of use we found among teens. The annual prevalence of use in 2004 was $1.9 \%, 5.3 \%$, and $8.1 \%$ in grades 8,10 , and 12 , respectively. Again, the use rates are substantially higher for males: $3.3 \%, 9.8 \%$, and $15.9 \%$ in those three grades, versus $0.6 \%, 0.9 \%$, and $1.0 \%$ for females. In other words, about a sixth of all 12th-grade boys used creatine in just the prior 12 months-which seems a very high prevalence, considering that the long-term effects of using this substance apparently have not been well researched. (We made a similar observation several years ago with regard to phenylpropanolamine, which at that time was an ingredient in almost all over-the-counter diet pills being used by many adolescent females.)

As we suspected, there is a strong association between andro use and creatine consumption. The great majority of andro users in the prior 12 months indicate that they also used creatine in the same period: $74 \%, 84 \%$, and $88 \%$ in grades 8,10 , and 12 , respectively. The association is asymmetric, however, because there are many more creatine users than andro users. Of those reporting creatine use in the prior 12 months, the proportions also reporting andro use in the same interval were $35 \%, 18 \%$, and $23 \%$ in grades 8,10 , and 12 .

The self-reported use of steroids is likewise associated with creatine use. Of those reporting steroid use in the prior 12 months, the proportions also reporting creatine use were $31 \%, 53 \%$, and $59 \%$ in the three grades. Conversely, the proportions of creatine users in the past 12 months reporting steroid use in that interval were $18 \%, 18 \%$, and $20 \%$. Thus, relatively few creatine users are using steroids in these populations and more of them are taking andro. However, the
great majority of andro users are also taking creatine, while roughly only half of the anabolic steroid users are using creatine.

Tables 10-4 and 10-5 present overall and subgroup trend data on the use of andro and creatine since these substances were first included in 2001. None of the 2003-2004 changes in the use of andro is substantial or significant, but all three grades now show a rate that is lower than when andro was first measured in 2001. Creatine use is down in all three grades, showing the largest declines among 10th and 12th graders, whose annual prevalence rates are down by one-third. Subgroup data on prevalence and trends are provided in Tables $10-4$ and $10-5$, as well. They show that usage rates for both andro and creatine are substantially lower among girls than among boys. Also, those not bound for college are considerably more likely to be users of andro than those who are college-bound, but the difference in creatine use between these groups is less pronounced.

Because there is some overlap in the reporting of anabolic steroids and androstenedione, it seems useful to examine how many teens are using either. Table 10-6 permits us to do that. It presents trend data on the use of andro only, use of steroids only, use of both andro and steroids, and use of either (andro and/or steroids). The annual prevalence for the use of either drug among boys in 2004 is $2.2 \%, 3.1 \%$, and $5.3 \%$ for 8th, 10th, and 12th grades, respectively. In other words, about 1 in every 19 12th-grade boys used either steroids and/or andro in the prior year. However, these percents are all down from where they were in 2001, when they were $3.1 \%$, $5.8 \%$, and $8.0 \%$. At that time, 1 in every 12 or 13 high school senior boys had used one of these drugs during the prior year.

## THE USE OF MARIJUANA ON A DAILY BASIS

In much earlier reports in this series, we summarized a number of findings regarding daily marijuana users, including what kind of people they are, how use changes after high school for different subgroups, and what daily users see as the negative consequences of their use. ${ }^{95}$ In 1982, a special question segment was introduced in one 12th-grade questionnaire form to secure more detailed measurement of individual patterns of daily marijuana use. More specifically, respondents were asked (a) whether at any time during their lives they had ever used marijuana on a daily or near-daily basis for at least a month and, if so, (b) how recently they had done so, (c) when they first had done so, and (d) how many total months they had smoked marijuana daily, cumulating over their whole lifetime. The results of our analyses of these more in-depth data on marijuana use follow.

## Lifetime Prevalence of Daily Marijuana Use Among Seniors

- Current daily marijuana use, defined as use on 20 or more occasions in the past 30 days, has fluctuated widely since the study began, as we know from the trend data presented in

[^78]chapter 5. Among 12th-grade respondents, it rose from $6.0 \%$ in 1975 to $10.7 \%$ in 1978 , declined to $1.9 \%$ by 1992, and then began to increase again. In 1999, it stood at $6.0 \%$, the highest prevalence rate since 1982, and it remains at $5.6 \%$ in 2004, despite some decline in the annual prevalence of use.

- Using the questions on duration of daily use, we have found that, since 1982, the lifetime prevalence of daily marijuana use for a month or more has been far higher than current daily marijuana use-for example, at $17.8 \%$ in 2004 (one in every six seniors) versus $5.6 \%$ for current daily use. In other words, the proportion who described themselves as having been daily or near-daily users at some time in their lives is over three times as high as the proportion who report current daily or near-daily use.

However, we believe it very likely that this ratio has changed dramatically over the life of the study as a result of the large secular trends in daily use. Therefore, it would be inaccurate to extrapolate, for example, that the lifetime prevalence of daily use for the class of 1978 was three to four times their $10.7 \%$ current use figure for that year. (An investigation of data from a follow-up panel of the class of 1978 confirmed this assertion.)

Utilizing data collected in 1989 from follow-up panels from the graduating classes of 1976 through 1988 combined, we found that the lifetime prevalence of daily marijuana use for these graduates (ranging in age from about 19 to 31) was $20 \%$. Approximately one-fourth of the older portion of that group-graduates from the classes of 1976 through 1979-indicated having been daily marijuana users for a month or more at some time in their lives. Thus, experience with daily use of marijuana was a widespread phenomenon in the cohorts of Americans who passed through late adolescence in the peak years of the drug epidemic. In 2004 these cohorts would be in the approximate age range of 43 to 46 . Volume II provides more detailed information on the drug use history of these and other adult age groups.

## Grade of First Daily Marijuana Use

- Daily marijuana use can begin at quite a young age. Of the 2004 seniors who reported being daily marijuana users at some time in their lives (i.e., $18 \%$ of the sample), over half (55\%) of them, or $10 \%$ of all seniors, began that pattern of use before 10th grade. We are confident that different graduating classes show disparate age-associated patterns of onset, depending on the secular trends and, to a lesser degree, cohort effects that were occurring. The percentages of all seniors in 2004 who started daily marijuana use in each grade level are presented in Table 10-7. It shows that a substantial proportion began such daily marijuana use in grades 7 through 9 ( $9.2 \%$ of all males and $4.6 \%$ of all females). Incidence remained high in grade 10 and then began to drop off.


## Recency of Daily Marijuana Use by Seniors

- Three-quarters (76\%) of those 12th graders who reported ever having been daily marijuana users (for at least a one-month interval) still used marijuana that frequently in
the past year. Nearly one-quarter ( $24 \%$ ) of them said they last used the drug that frequently "about two years ago" or longer.
- More than one-third (35\%) of all seniors who said they have ever been daily marijuana users for a month or more classified themselves as having used it daily or almost daily "during the past month" ( $6.2 \%$ of the entire sample). Our operational definition of current daily users on the standard prevalence and frequency-of-use questions- 20 or more uses in the last 30 days-yields a $5.6 \%$ rate in 2004, quite close to the $6.2 \%$ rate based on the respondents' own definition. In fact, these two rates generally have been quite close across the years.


## Duration of Daily Marijuana Use by Seniors

- It seems likely that the most serious long-term health consequences associated with marijuana use will be directly related to the duration of heavy use, and in the late 1970s there was considerable concern that a large population of chronic heavy users would evolve. Thus, a question was introduced asking respondents to estimate the cumulative number of months they have smoked marijuana daily or nearly daily. While hardly an adequate measure of the many possible cross-time patterns of use, this question does provide a gross measure of the total length of exposure to heavy use.
- Table 10-7 gives the distribution of answers to this question. It shows that of the $17.8 \%$ of 2004 seniors reporting daily marijuana use lasting a month or more, one-quarter (or $25 \%$ ) of them used marijuana daily for less than three months cumulatively. Over half (56\%) reported that their intervals of daily use totaled "about one year" or less. About a third (34\%, or $6.0 \%$ of all seniors) used marijuana daily "about two years" or more, cumulatively. Fewer than one percent ( $0.7 \%$ ) reported daily use of the drug for a total of six years or longer. The most striking fact is that 1 in every 17 seniors today has smoked marijuana daily (or almost daily) for at least two years.


## Subgroup Differences

- There is a gender difference in the proportion of seniors having ever been a daily marijuana user ( $20 \%$ for males and $12 \%$ for females), and the cumulative duration of daily use is somewhat longer for males.
- Whether or not the student has college plans is strongly related to lifetime prevalence of daily marijuana use, as well as to current prevalence. Of those seniors planning four years of college, $13 \%$ had used marijuana daily at some time, compared with $25 \%$ of those without such plans. In addition, the college-bound users show a distinctly shorter cumulative duration of use, and a lower proportion of them used marijuana daily during the past month. Among those in each group who did use the drug daily, the age at onset is younger for the noncollege-bound (see Table 10-7). Long-term heavy use (for three or more years) also is higher among the noncollege-bound.
- At present there are no significant regional differences in lifetime prevalence of daily marijuana use.
- The differences in lifetime daily marijuana use associated with urbanicity are currently not significant. Lifetime prevalence of daily marijuana use is $17 \%$ in the large cities, $20 \%$ in the smaller cities, and $16 \%$ in the non-urban areas.


## Trends in Use of Marijuana on a Daily Basis

- Table 10-8a presents trend data on the lifetime prevalence of daily marijuana use for a month or more. It shows a large decline from 1982, when this measure was first used, through 1992 -from $21 \%$ to $8 \%$. By 1997 it had risen substantially to $19 \%$ before declining a bit in 2001 to $18 \%$, where it stands in the class of 2004.
- Between 1982 and 1992, the decline in lifetime prevalence of daily marijuana use was slightly stronger among males (from 20\% to 8\%) than among females (from $18 \%$ to $8 \%$ ); the absolute drop was larger among the noncollege-bound ( $23 \%$ to $11 \%$ ) than among the college-bound ( $14 \%$ to $6 \%$ ), although the proportional drop was not. In the turnaround that began in 1993, most of the increase appears to have occurred among the males and the noncollege-bound (who are at $20 \%$ and $25 \%$, respectively, in 2004).
- Lifetime prevalence of daily marijuana use has dropped in all four regions of the country. Between 1982 and 1992, it dropped in the Northeast, North Central, and South, and between 1982 and 1990, it dropped in the West. The decline was greatest in the Northeast, where it dropped from $25 \%$ in 1982 to $9 \%$ in 1992. A turnaround occurred in all regions after 1991 or 1992, with steady increases through 1997 (and even later in the South). A leveling and some decline have been observed in all regions after 1997, with the West showing the greatest decline in recent years.
- All three population density levels exhibited long-term declines in lifetime daily marijuana use from 1982 to 1992, and all showed an increase thereafter, until 1998; since then some leveling has been observed in all three strata.
- Daily prevalence of marijuana use prior to 10th grade declined from 13\% in the class of 1982 to $5 \%$ in the class of 1993. (These classes were 9th graders between 1979 and 1990.) The decline in earlier use halted among the 12th graders surveyed in 1994, and prevalence then began to climb through the class of 2001, before leveling. Subgroup trends may be examined in Table 10-8b.


## OTHER PUBLICATIONS FROM THE STUDY

A number of other publications emanate from the Monitoring the Future study each year. Further details, as well as a more complete listing, may be found under "Publications" on the project's Web site: www.monitoringthefuture.org.

## A Panel Study of American College Students ${ }^{96}$

In this study, we sought to examine how membership in fraternities and sororities relates to the prevalence and patterns of substance use in our national samples of full-time college students. We followed 10 cohorts of high school seniors (from senior year cohorts 1988-1997) who at wave 2 (age 19-20) were full-time undergraduate students ( $N=5,883$ ). Approximately 17\% became active members of fraternities or sororities. We found that active members of fraternities and sororities had higher levels of heavy episodic drinking, annual marijuana use, and current cigarette smoking than nonmembers at all three waves. Although members of fraternities reported higher levels than nonmembers of annual illicit drug use other than marijuana, no such differences existed between sorority members and nonmembers. Heavy episodic drinking and annual marijuana use increased significantly with age among members of fraternities or sororities relative to nonmembers, but there were no such differential changes for current cigarette use or annual illicit drug use other than marijuana. This study provides strong evidence both that higher rates of substance use among U.S. college students who join fraternities and sororities predate their college attendance, and that membership in a fraternity or sorority is associated with considerably greater-than-average increases in heavy episodic drinking and annual marijuana use during college. These findings have important implications for prevention and intervention efforts aimed toward college students, especially fraternity and sorority members.

## Developmental Tasks and Well-Being ${ }^{97}$

The purpose of this study was to examine how successes and difficulties with various developmental tasks of early adulthood relate to the course of well-being. Three waves of national panel data spanning ages $18-26$ were drawn from the Monitoring the Future study ( $N=$ 3,518 ). Based on self-reports, respondents were assigned scores (succeeding, maintaining, or stalling) to reflect progress in seven domains of developmental tasks: education, work, financial autonomy, romantic involvement, peer involvement, substance abuse avoidance, and citizenship. We identified four trajectory groups of well-being (based on self-esteem, self-efficacy, and social support) that reflected the course of well-being across the transition: (1) steady-to-high, (2) high-to-decreasing, (3) low-to-increasing, and (4) steady-to-low. Logistic regression analyses were conducted to predict membership in the diverging well-being trajectory groups (steady-to-high versus high-to-decreasing; low-to-increasing versus steady-to-low) as a function of developmental task domain scores. Maintaining or gaining a salutary trajectory of well-being across the transition was found to be a function of more success across the developmental tasks, specifically in the work, romantic involvement, and citizenship domains.

[^79]
## Recall and Appraisal of Anti-Smoking Advertising ${ }^{98}$

Anti-smoking ad campaigns have been an important part of the efforts to reduce smoking among American young people for the past two decades. This article tracks the overall extent of exposure to anti-smoking advertising in the media among American youth from 1997 to 2001. It also examines how youth react to such advertising and how exposure levels and reactions vary by socio-demographic characteristics. Self-reported levels of recalled exposure to both electronic and print anti-smoking advertising were measured over this interval, as were the judged impact and perceived exaggeration of such advertising. We found significant increases in overall exposure to anti-smoking advertising over the study time period. These increases were associated with (a) increases in the self-reported likelihood that anti-smoking advertising diminished the probability of individual smoking behaviors, and (b) increases in the perceived level to which anti-smoking advertising exaggerates the risks associated with smoking. Further, these trends were significantly associated with various characteristics-most notably, ethnicity, smoking behaviors, and residence in a state with an ongoing tobacco-control program having a media component. More specifically, states were grouped according to when they introduced their own anti-tobacco media campaigns; the levels and trends in recalled exposure and judged impact for these different sets of states tracked the timing of these campaign introductions, lending credence both to the validity of the measures and the effectiveness of the campaigns in reaching youth.

## Recent Trends in Youth Access to Cigarettes and in Different Means of Access ${ }^{99}$

The purpose of this paper was to examine trends in middle and high school students’ perceived ease, methods, and locations of access to cigarettes, and also to assess differences in access as a function of their socio-demographic characteristics and their own smoking status. Annual MTF data from 8th-, 10th-, and 12th-grade students were analyzed for the period 1997 through 2002. (Only 12th-grade students below the age of 18 were included in these analyses.) We found that the overall decline in perceived availability of cigarettes over that interval was due to a significant decrease in perceived ease of access among never-smokers and past smokers, but not among current daily smokers. Eighth- and 10th-grade students reported decreased individual purchasing from retail outlets, as well as decreased purchasing from vending machines. All grades reported decreased purchasing from self-service placements of cigarettes. Decreases in access were not reported across all retailer types, however. Convenience stores and gas stations remain by far the most common locations for underage cigarette purchases. No significant increases were seen in the percent of underage purchasers who report being asked to show identification when they last tried to purchase cigarettes. Both gender and ethnicity were significantly related to where and how underage youth obtained cigarettes. Although cigarette access for minors has been declining, it still remains high. We also found that perceived access to cigarettes clearly increases with level of smoking. Further, policies to reduce such access may be having some impact, as evidenced by decreased retail and vending machine purchases by minors, as well as decreased self-service purchases. Policy implications are discussed.

[^80]
## An Examination of Differences in Substance Use Among Different Hispanic Subgroups ${ }^{100}$

In this article, we examined data from nationally representative samples of 8th-grade Hispanic students in the study years 1991 through $2002(N=24,235)$. More specifically, we examined correlates of, and trends in, marijuana use, cocaine use, and episodic heavy drinking for Mexican American, Cuban American, Puerto Rican, and other Latin American (mostly Central and South American) heritages in the United States. The large annual samples, concatenated over a number of years, made analysis of these relatively small subgroups in the population possible. (Eighth grade was chosen for these analyses because dropping out of school, which tends to be higher among Hispanics generally, should be rare at this point in their educational progression.)

Substance use was found to be relatively high among most subgroups; and in general the crosstime trends for all Hispanic subgroups tracked those observed in the MTF full national samples of 8th graders (with the exception that Cuban American students showed a slight increase in alcohol use in the late 1990s). Drug use was higher among adolescents of almost all Hispanic ethnicities who did not live with both parents (the one exception being for those of other Latin American heritage). Boys and girls were equally likely to report use of cocaine and episodic heavy drinking (consuming five or more drinks in a row in the prior two weeks). However, marijuana use was lower among girls than among boys in all of the Hispanic subgroups, except Cuban Americans. Marijuana use was also lower among those whose first language spoken was Spanish for two of the Hispanic subgroups-Mexican Americans and other Latin Americans. For Mexican Americans, heavy drinking was also less likely to occur among those whose first language spoken was Spanish. A press release providing more detail on the findings may be found on the MTF Web site.

## Aims and Objectives of Monitoring the Future

Every few years the investigators on this study update an extensive description of the many aims and objectives of the study and provide a synopsis of progress that has been made on them. The latest such publication is an occasional paper in the Monitoring the Future Occasional Paper series. ${ }^{101}$ In addition, it contains a summary of the theoretical perspectives that have guided the design and development of the study over the years. As might be supposed, no one theory was considered sufficiently comprehensive to guide all of the effort; thus several perspectives have been used. This publication is available from the project in hard copy or may be downloaded from the study Web site at www.monitoringthefuture.org. Select "Publications" and then "Occasional Papers" to find Occasional Paper No. 52.

[^81]
## Design and Procedures of the Study

Another publication periodically updated in the same series (Occasional Paper No. 54) provides a more detailed description of the Monitoring the Future study design and the many field and other procedures that are used to implement that design. These descriptions go well beyond the level of detail contained in the current monographs. The latest one in this series was published in 2001. ${ }^{102}$ Like Occasional Paper No. 52, it may be downloaded from the study's Web site (www.monitoringthefuture.org) or ordered from the study in hard copy form.

## OTHER DATA ON CORRELATES AND TRENDS

Hundreds of correlates of drug use, without accompanying interpretation, may be found in the study's series of annual volumes entitled Monitoring the Future: Questionnaire Responses From the Nation's High School Seniors. ${ }^{103}$ For each year since 1975, a separate hardbound volume presents univariate and selected bivariate distributions on all questions contained in the study. A host of variables dealing explicitly with drugs-many of them not covered here-are contained in that series. Bivariate tables are provided for all questions asked each year distributed against an index of lifetime illicit drug involvement, making it possible to examine the relationships between hundreds of potential "risk factors" and drug use.

A special cross-time reference index is contained in each volume to facilitate locating the same question across different years. One can thus derive trend data on approximately 1,500 to 2,000 variables for the entire sample or for important subgroups (based on gender, race, region, college plans, and drug involvement). These volumes also can be helpful to analysts using the original MTF microdata in the Inter-university Consortium of Political and Social Research (ICPSR) archive.

Still another annual publication from the study, Occasional Paper No. 61, presents trends in graphic form for the various subgroups discussed in this volume for each of the many drug classes it contains. (It is, in essence, a graphic presentation of the subgroup data contained in tabular form in Appendix D to this volume.) Because of the length of this document and the high cost that would be associated with publishing these graphics in color, this document is available only in electronic form. It may be found on the study's Web site under "Publications" and then under "Occasional Papers." ${ }^{104}$

[^82]
## MONITORING THE FUTURE WEB SITE

Any reader wishing to get more information on the study, or to check for recent findings and publications, may reach the study's Web site at www.monitoringthefuture.org. Prior to publication in this monograph series, many of the latest findings on substance use trends and related attitudes and beliefs are posted on the Web site in two forms. The first is a pair of press releases issued in mid-December of the year in which the data were collected; and the second is a brief Overview of Key Findings monograph usually posted the following February. Hard copies of these documents are available from the study.

## TABLE 10-1a

## Nonprescription Diet Pills: Trends in Twelfth Graders'

 Lifetime, Annual, and Thirty-Day Prevalence of Use by Gender ${ }^{\text {a }}$(Entries are percentages)


NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Data based on one form. The total N each year for $1982-89$ is approximately 3,300 . The total N each year for 1990-98 is approximately 2,600 . Beginning in 1999 , the total N each year is approximately 2,200.

## TABLE 10-1b

## Stay-Awake Pills: Trends in Twelfth Graders'

Lifetime, Annual, and Thirty-Day Prevalence of Use by Gender ${ }^{\text {a }}$
(Entries are percentages)


NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Data based on one form. The total N each year for 1982-89 is approximately 3,300 . The total N each year for 1990-98 is approximately 2,600 . Beginning in 1999, the total N each year is approximately 2,200 .

## TABLE 10-1c <br> Look-Alikes: Trends in Twelfth Graders' Lifetime, Annual, and Thirty-Day Prevalence of Use by Gender ${ }^{\text {a }}$

(Entries are percentages)


NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s 5 s=.001$.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Data based on one form. The total N each year for $1982-89$ is approximately 3,300 . The total N each year for 1990-98 is approximately 2,600 . Beginning in 1999 , the total N each year is approximately 2,200 .

TABLE 10-2a
Nonprescription Diet Pills: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  | t'd $>$ |
|  | $\underline{1975}$ | 1976 | 1977 | 1978 | 1979 | $\underline{1980}$ | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | $\checkmark$ |
| Approx. $\mathrm{N}=$ | - | - | - | - | - | - | - | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | - | - | - | - | - | - | - | 20.5 | 20.5 | 18.8 | 16.9 | 15.3 | 13.9 | 12.2 | 10.9 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | - | - | - | 10.7 | 10.6 | 9.2 | 9.0 | 6.9 | 6.4 | 4.9 | 4.3 |  |
| Female | - | - | - | - | - | - | - | 29.6 | 30.0 | 27.5 | 24.4 | 23.2 | 21.1 | 18.8 | 17.2 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | - | - | - | 23.3 | 21.4 | 18.2 | 20.7 | 16.1 | 14.9 | 13.1 | 11.9 |  |
| Complete 4 years | - | - | - | - | - | - | - | 17.5 | 19.0 | 18.8 | 14.7 | 15.0 | 13.3 | 11.7 | 10.9 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | - | - | - | 19.1 | 18.5 | 18.4 | 16.5 | 14.9 | 14.3 | 10.5 | 10.4 |  |
| North Central | - | - | - | - | - | - | - | 24.6 | 23.3 | 20.2 | 19.2 | 16.6 | 15.0 | 13.7 | 15.0 |  |
| South | - | - | - | - | - | - | - | 18.2 | 19.2 | 19.6 | 14.9 | 13.9 | 13.1 | 12.0 | 9.3 |  |
| West | - | - | - | - | - | - | - | 18.9 | 21.1 | 15.8 | 17.3 | 16.4 | 13.5 | 12.1 | 8.7 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | - | - | - | 19.7 | 18.7 | 17.3 | 17.1 | 15.0 | 13.0 | 12.1 | 10.3 |  |
| Other MSA | - | - | - | - | - | - | - | 20.0 | 22.8 | 18.6 | 17.1 | 15.6 | 13.7 | 12.4 | 10.9 |  |
| Non-MSA | - | - | - | - | - | - | - | 21.7 | 19.2 | 20.5 | 16.5 | 15.2 | 15.2 | 11.9 | 11.7 |  |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | - | - | - | 19.5 | 15.9 | 19.2 | 14.6 | 12.0 | 13.5 | 13.4 | 9.5 |  |
| 2.5-3.0 | - | - | - | - | - | - | - | 21.6 | 21.3 | 18.2 | 17.8 | 15.6 | 13.1 | 12.0 | 9.9 |  |
| 3.5-4.0 | - | - | - | - | - | - | - | 20.6 | 20.2 | 20.6 | 18.0 | 16.6 | 14.5 | 11.5 | 11.8 |  |
| 4.5-5.0 | - | - | - | - | - | - | - | 19.3 | 22.4 | 17.4 | 16.8 | 15.0 | 15.9 | 12.0 | 10.4 |  |
| 5.5-6.0 (High) | - | - | - | - | - | - | - | 21.0 | 22.3 | 19.1 | 17.1 | 15.7 | 11.6 | 13.6 | 13.4 |  |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | - | - | 23.2 | 22.2 | 20.4 | 18.4 | 16.3 | 14.7 | 13.4 |  |
| Black | - | - | - | - | - | - | - | - | 6.6 | 8.1 | 6.4 | 5.5 | 7.5 | 6.9 | 4.3 |  |
| Hispanic | - | - | - | - | - | - | - | - | 11.6 | 12.6 | 14.8 | 10.8 | 7.8 | 7.9 | 9.6 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $\mathrm{s}=.05,55=.01,5 s 5=.001$. ' - ' indicates data not available. |  | rence | tween | the two | most rec | nt clas | $s$ : $s=.05$ | $5, \mathrm{ss}=.0$ | 1, $555=.00$ | 01. '-' | indicates | data no | availa |  |  |  |
| Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. <br> Data based on one of five forms in 1982-89; N is one-fifth of N indicated in Table D-107. Beginning in 1990, data based on one of six forms; N is one-sixth of N indic ated in Table D-107. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the | Future | sudy, th | Univer | of Mi | igan. |  |  |  |  |  |  |  |  |  |  |  |

[^83]TABLE 10-2a (cont'd) Nonprescription Diet Pills: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-’04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 10.4 | 8.8 | 8.4 | 8.0 | 9.3 | 9.8 | 9.3 | 9.8 | 9.6 | 10.2 | 11.1 | 11.8 | 15.1 | 13.0 | 10.7 | -2.3 s |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 4.3 | 3.0 | 4.3 | 3.2 | 2.5 | 3.5 | 3.7 | 4.9 | 4.3 | 4.0 | 4.9 | 6.2 | 8.1 | 6.9 | 6.5 | -0.4 |
| Female | 16.7 | 14.2 | 12.2 | 12.3 | 15.0 | 15.1 | 14.1 | 14.6 | 15.4 | 15.7 | 17.2 | 15.6 | 20.0 | 17.5 | 14.1 | -3.4 s |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 13.2 | 8.9 | 10.5 | 9.7 | 10.8 | 11.5 | 10.8 | 12.0 | 10.7 | 9.1 | 10.0 | 9.4 | 17.8 | 13.9 | 10.4 | -3.5 |
| Complete 4 years | 9.7 | 8.6 | 8.0 | 7.3 | 9.3 | 9.3 | 8.6 | 9.2 | 10.1 | 10.4 | 11.5 | 11.6 | 13.8 | 12.6 | 10.5 | -2.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 11.5 | 5.7 | 6.3 | 7.6 | 8.6 | 8.2 | 10.1 | 8.1 | 8.6 | 8.6 | 8.0 | 12.8 | 16.7 | 11.6 | 11.9 | +0.3 |
| North Central | 11.1 | 10.7 | 9.3 | 8.4 | 11.8 | 11.8 | 9.5 | 10.2 | 10.4 | 10.4 | 12.6 | 15.5 | 14.4 | 14.4 | 9.1 | -5.4 ss |
| South | 10.0 | 9.0 | 7.7 | 9.2 | 8.9 | 10.8 | 9.4 | 11.5 | 10.1 | 11.2 | 12.9 | 9.9 | 16.7 | 13.6 | 10.5 | -3.1 |
| West | 8.9 | 8.8 | 10.3 | 5.4 | 7.4 | 6.3 | 7.9 | 7.8 | 8.6 | 9.3 | 9.3 | 8.6 | 12.4 | 11.7 | 12.2 | +0.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 7.4 | 7.7 | 7.4 | 7.3 | 8.5 | 10.7 | 8.5 | 9.4 | 9.5 | 9.0 | 8.3 | 12.3 | 13.9 | 12.5 | 9.8 | -2.7 |
| OtherMSA | 11.2 | 9.2 | 8.4 | 6.8 | 9.9 | 8.9 | 9.3 | 8.7 | 9.1 | 9.5 | 11.5 | 11.5 | 13.6 | 10.8 | 11.5 | +0.7 |
| Non-MSA | 11.7 | 9.1 | 9.2 | 10.5 | 9.1 | 10.1 | 10.0 | 12.3 | 11.0 | 12.6 | 13.6 | 11.7 | 19.8 | 17.7 | 10.3 | -7.4 sss |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 5.1 | 9.4 | 10.6 | 6.9 | 11.0 | 8.9 | 8.3 | 14.4 | 11.8 | 9.9 | 9.8 | 5.6 | 12.7 | 15.8 | 7.0 | -8.8 s |
| 2.5-3.0 | 12.3 | 8.6 | 8.9 | 8.9 | 11.0 | 10.9 | 8.5 | 10.5 | 8.9 | 11.1 | 13.1 | 15.0 | 17.7 | 13.8 | 14.1 | +0.3 |
| 3.5-4.0 | 9.2 | 8.2 | 7.9 | 7.8 | 10.6 | 11.5 | 9.7 | 8.8 | 9.9 | 10.5 | 11.6 | 14.1 | 15.6 | 11.1 | 10.7 | -0.5 |
| 4.5-5.0 | 12.0 | 9.3 | 6.6 | 8.0 | 8.5 | 7.5 | 8.8 | 10.7 | 11.6 | 11.2 | 12.7 | 9.0 | 14.8 | 11.5 | 9.0 | -2.5 |
| 5.5-6.0 (High) | 12.2 | 8.5 | 8.2 | 6.2 | 5.3 | 9.2 | 8.4 | 9.4 | 9.6 | 7.4 | 7.4 | 7.9 | 8.5 | 13.4 | 10.1 | -3.3 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 12.5 | 11.0 | 9.8 | 9.2 | 9.7 | 10.9 | 10.9 | 10.8 | 11.2 | 11.2 | 11.8 | 12.9 | 14.8 | 15.4 | 13.1 | -2.3 s |
| Black | 2.9 | 3.5 | 3.0 | 4.5 | 6.1 | 5.3 | 4.3 | 5.3 | 4.9 | 4.2 | 5.5 | 6.5 | 5.5 | 4.6 | 4.8 | +0.2 |
| Hispanic | 9.8 | 5.6 | 4.6 | 7.1 | 7.1 | 7.5 | 7.0 | 8.2 | 9.3 | 9.8 | 10.0 | 9.1 | 13.2 | 12.7 | 7.9 | -4.8 s |

high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE 10-2b
Stay-Awake Pills: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\text { Cont'd }>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | - | - | - | - | - | - | - | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | - | - | - | - | - | - | - | 11.8 | 12.3 | 13.9 | 18.2 | 22.3 | 25.2 | 26.4 | 23.0 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | - | - | - | 12.8 | 13.8 | 15.4 | 19.7 | 22.3 | 25.5 | 27.6 | 24.8 |  |
| Female | - | - | - | - | - | - | - | 10.0 | 10.5 | 12.5 | 17.0 | 22.2 | 25.0 | 25.2 | 21.7 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | - | - | - | 11.4 | 10.8 | 12.5 | 15.5 | 18.1 | 23.1 | 23.3 | 21.8 |  |
| Complete 4 years | - | - | - | - | - | - | - | 10.5 | 12.6 | 14.0 | 20.4 | 24.9 | 26.5 | 27.5 | 24.1 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | - | - | - | 9.6 | 9.5 | 11.9 | 18.2 | 20.4 | 26.4 | 23.8 | 18.4 |  |
| North Central | - | - | - | - | - | - | - | 15.1 | 16.8 | 16.3 | 18.4 | 24.5 | 26.8 | 27.5 | 29.1 |  |
| South | - | - | - | - | - | - | - | 9.6 | 10.7 | 12.0 | 13.3 | 19.8 | 20.9 | 25.6 | 20.4 |  |
| West | - | - | - | - | - | - | - | 13.5 | 11.5 | 16.0 | 25.6 | 25.5 | 28.9 | 28.9 | 24.0 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | - | - | - | 11.5 | 11.1 | 12.2 | 17.7 | 19.0 | 25.6 | 23.2 | 20.9 |  |
| Other MSA | - | - | - | - | - | - | - | 12.4 | 14.5 | 14.0 | 19.1 | 24.1 | 24.1 | 27.7 | 22.9 |  |
| Non-MSA | - | - | - | - | - | - | - | 11.3 | 10.5 | 15.4 | 17.4 | 22.1 | 27.0 | 27.4 | 25.2 |  |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | - | - | - | 8.8 | 8.2 | 8.3 | 10.9 | 12.0 | 15.0 | 17.1 | 18.1 |  |
| 2.5-3.0 | - | - | - | - | - | - | - | 10.6 | 10.1 | 13.9 | 15.5 | 19.5 | 22.8 | 22.5 | 21.6 |  |
| 3.5-4.0 | - | - | - | - | - | - | - | 12.6 | 13.5 | 13.5 | 21.3 | 26.5 | 30.0 | 28.4 | 26.0 |  |
| 4.5-5.0 | - | - | - | - | - | - | - | 13.2 | 15.3 | 16.1 | 24.0 | 23.7 | 29.9 | 30.3 | 24.0 |  |
| 5.5-6.0 (High) | - | - | - | - | - | - | - | 13.0 | 16.7 | 18.0 | 20.2 | 28.7 | 24.9 | 32.3 | 25.1 |  |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | - | - | 13.6 | 15.0 | 18.7 | 23.7 | 27.7 | 30.4 | 29.8 |  |
| Black | - | - | - | - | - | - | - | - | 2.0 | 3.0 | 3.6 | 4.4 | 5.5 | 6.2 | 6.0 |  |
| Hispanic | - | - | - | - | - | - | - | - | 5.7 | 8.3 | 8.4 | 9.7 | 13.8 | 15.6 | 16.5 |  |
| Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. <br> Data based on one of five forms in 1982-89; $N$ is one-fifth of $N$ indic ated in Table D-107. Beginning in 1990, data based on one of six forms; $N$ is one-sixth of N indicated in Table D-107. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the | Future | dy, th | Univer | of M | an. |  |  |  |  |  |  |  |  |  |  |  |

[^84]TABLE 10-2b (cont'd)
Stay-Awake Pills: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 23.4 | 22.2 | 20.4 | 19.2 | 20.7 | 20.3 | 19.0 | 19.7 | 19.0 | 15.7 | 15.0 | 17.3 | 14.9 | 12.5 | 11.8 | -0.7 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 22.3 | 22.3 | 20.9 | 19.7 | 20.3 | 19.7 | 18.2 | 17.4 | 19.5 | 14.5 | 14.0 | 17.8 | 13.9 | 9.3 | 11.1 | +1.8 |
| Female | 24.5 | 22.0 | 20.2 | 17.6 | 20.4 | 20.1 | 18.7 | 21.0 | 18.0 | 15.9 | 15.9 | 16.5 | 14.6 | 14.3 | 12.3 | -2.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 22.9 | 21.0 | 20.5 | 18.6 | 20.1 | 21.1 | 18.2 | 21.8 | 18.5 | 14.3 | 15.5 | 18.9 | 16.1 | 14.3 | 13.0 | -1.3 |
| Complete 4 years | 24.1 | 22.3 | 21.0 | 18.7 | 20.6 | 19.7 | 18.3 | 19.1 | 18.4 | 15.1 | 14.7 | 16.5 | 14.0 | 11.9 | 11.4 | -0.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 22.0 | 18.3 | 18.2 | 20.2 | 21.2 | 18.4 | 22.5 | 19.1 | 17.6 | 16.0 | 10.2 | 14.7 | 13.9 | 10.9 | 14.0 | +3.1 |
| North Central | 28.4 | 31.8 | 25.7 | 22.0 | 26.2 | 24.2 | 19.8 | 23.8 | 22.0 | 17.3 | 19.3 | 24.4 | 18.9 | 12.9 | 12.3 | -0.6 |
| South | 20.6 | 16.1 | 17.6 | 18.7 | 20.2 | 18.8 | 17.5 | 20.1 | 18.8 | 15.6 | 13.8 | 15.4 | 13.5 | 11.6 | 9.7 | -2.0 |
| West | 22.9 | 23.4 | 20.0 | 14.9 | 13.7 | 19.1 | 16.5 | 13.3 | 16.8 | 13.3 | 16.3 | 12.4 | 13.2 | 14.9 | 12.5 | -2.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 19.0 | 16.7 | 15.2 | 16.7 | 18.4 | 18.9 | 14.4 | 15.5 | 15.3 | 9.6 | 11.0 | 15.7 | 11.9 | 9.2 | 8.3 | -0.8 |
| OtherMSA | 25.1 | 25.3 | 21.2 | 19.8 | 21.1 | 19.3 | 20.2 | 18.4 | 21.1 | 18.4 | 15.2 | 14.3 | 14.7 | 12.6 | 13.6 | +1.0 |
| Non-MSA | 24.5 | 21.7 | 23.4 | 19.9 | 22.3 | 23.6 | 20.7 | 26.8 | 18.9 | 17.3 | 19.3 | 24.3 | 19.3 | 16.5 | 12.2 | -4.3 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 15.3 | 14.9 | 16.2 | 11.0 | 16.6 | 13.2 | 11.5 | 18.2 | 11.7 | 7.9 | 7.3 | 15.3 | 8.9 | 10.3 | 5.9 | -4.4 |
| 2.5-3.0 | 23.2 | 20.2 | 22.8 | 19.0 | 18.1 | 18.1 | 19.0 | 21.0 | 16.5 | 13.4 | 15.1 | 17.1 | 13.4 | 12.0 | 13.9 | +1.8 |
| 3.5-4.0 | 25.6 | 23.9 | 22.4 | 18.6 | 21.6 | 24.3 | 17.4 | 17.6 | 19.9 | 18.3 | 17.0 | 20.3 | 16.5 | 11.4 | 13.5 | +2.1 |
| 4.5-5.0 | 28.0 | 25.1 | 20.0 | 21.1 | 24.4 | 20.4 | 23.2 | 20.2 | 20.3 | 15.6 | 16.7 | 16.2 | 14.9 | 12.7 | 11.3 | -1.4 |
| 5.5-6.0 (High) | 22.3 | 25.8 | 17.8 | 20.2 | 18.4 | 17.3 | 17.4 | 19.3 | 22.6 | 14.9 | 13.4 | 13.6 | 15.7 | 14.5 | 11.4 | -3.1 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 27.7 | 27.4 | 25.8 | 24.0 | 23.7 | 23.9 | 23.3 | 23.1 | 23.2 | 20.7 | 18.2 | 19.9 | 19.5 | 16.0 | 14.2 | -1.8 |
| Black | 6.4 | 5.1 | 3.5 | 3.5 | 3.6 | 4.8 | 4.4 | 5.3 | 6.2 | 3.6 | 3.0 | 4.2 | 3.2 | 2.2 | 1.9 | -0.3 |
| Hispanic | 14.1 | 11.6 | 11.9 | 13.3 | 14.2 | 12.3 | 9.5 | 9.6 | 10.1 | 12.3 | 11.8 | 10.6 | 12.3 | 9.4 | 5.6 | -3.7 |
| ${ }^{\text {a Parental education is an average score of mother'seducation and father'seducation reported on the following scale: (1) Completed grade school or less, (2) Some }}$ high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE 10-2c

Look-Alikes: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  | nt'd $>$ |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | - | - | - | - | - | - | - | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | - | - | - | - | - | - | - | 10.8 | 9.4 | 9.7 | 8.2 | 6.9 | 6.3 | 5.7 | 5.6 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | - | - | - | 9.5 | 9.2 | 9.7 | 8.3 | 6.5 | 6.4 | 4.2 | 6.1 |  |
| Female | - | - | - | - | - | - | - | 10.7 | 8.7 | 8.5 | 7.8 | 6.7 | 6.0 | 6.3 | 5.0 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | - | - | - | 13.6 | 11.9 | 11.2 | 10.0 | 10.0 | 8.1 | 7.0 | 8.0 |  |
| Complete 4 years | - | - | - | - | - | - | - | 7.1 | 6.1 | 7.0 | 6.5 | 4.8 | 4.9 | 3.8 | 4.6 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | - | - | - | 9.3 | 9.0 | 10.7 | 9.0 | 7.4 | 4.6 | 4.9 | 4.0 |  |
| North Central | - | - | - | - | - | - | - | 14.5 | 12.3 | 10.9 | 9.0 | 7.6 | 7.6 | 7.3 | 8.5 |  |
| South | - | - | - | - | - | - | - | 9.8 | 7.7 | 9.0 | 7.3 | 5.6 | 6.1 | 5.5 | 4.7 |  |
| West | - | - | - | - | - | - | - | 7.4 | 7.9 | 7.6 | 7.7 | 7.7 | 6.9 | 4.7 | 4.6 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | - | - | - | 10.2 | 9.5 | 10.2 | 6.1 | 7.1 | 4.4 | 4.3 | 3.3 |  |
| Other MSA | - | - | - | - | - | - | - | 10.8 | 10.0 | 9.4 | 9.2 | 6.3 | 6.4 | 6.4 | 5.9 |  |
| Non-MSA | - | - | - | - | - | - | - | 11.2 | 8.4 | 9.6 | 8.6 | 7.8 | 8.2 | 5.9 | 7.2 |  |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | - | - | - | 9.8 | 7.2 | 9.9 | 9.0 | 6.1 | 5.7 | 6.3 | 4.6 |  |
| 2.5-3.0 | - | - | - | - | - | - | - | 11.4 | 9.8 | 9.9 | 8.3 | 6.9 | 6.9 | 5.2 | 5.7 |  |
| 3.5-4.0 | - | - | - | - | - | - | - | 10.3 | 9.5 | 9.6 | 8.8 | 8.0 | 6.3 | 5.7 | 5.9 |  |
| 4.5-5.0 | - | - | - | - | - | - | - | 10.4 | 8.3 | 6.1 | 5.9 | 5.9 | 6.7 | 4.5 | 5.4 |  |
| 5.5-6.0 (High) | - | - | - | - | - | - | - | 6.9 | 6.7 | 8.1 | 7.9 | 4.3 | 4.6 | 4.3 | 5.3 |  |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | - | - | 10.9 | 10.3 | 9.8 | 8.3 | 7.1 | 6.3 | 6.1 |  |
| Black | - | - | - | - | - | - | - | - | 2.0 | 2.4 | 2.4 | 2.2 | 2.7 | 2.7 | 2.6 |  |
| Hispanic | - | - | - | - | - | - | - | - | 6.1 | 7.0 | 5.8 | 3.8 | 3.0 | 3.2 | 3.5 |  |
| Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. <br> Data based on one of five forms in 1982-89; N is one-fifth of N indic ated in Table D-107. Beginning in 1990, data based on one of six forms; N is one-sixth of N indic ated in Table D-107. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the | Future | udy, th | Univer | of Mi | gan. |  |  |  |  |  |  |  |  |  |  |  |

[^85]TABLE 10-2c (cont'd)
Look-Alikes: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 | change |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 5.6 | 5.2 | 5.4 | 6.2 | 6.0 | 6.8 | 6.5 | 6.4 | 5.7 | 5.0 | 5.8 | 7.1 | 6.6 | 5.4 | 5.0 | -0.4 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 6.6 | 4.9 | 6.2 | 6.4 | 5.9 | 7.0 | 5.7 | 7.2 | 6.0 | 4.6 | 7.0 | 7.3 | 6.8 | 5.2 | 4.3 | -0.9 |
| Female | 4.6 | 4.7 | 4.5 | 5.5 | 5.7 | 5.4 | 6.0 | 5.5 | 5.0 | 4.4 | 4.3 | 6.6 | 5.9 | 5.1 | 5.2 | +0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 7.9 | 7.2 | 4.4 | 7.6 | 7.0 | 7.5 | 7.0 | 10.1 | 6.2 | 5.2 | 8.4 | 9.9 | 8.7 | 6.7 | 6.2 | -0.5 |
| Complete 4 years | 4.4 | 3.9 | 5.4 | 5.5 | 5.7 | 6.2 | 5.5 | 4.9 | 4.8 | 4.4 | 4.9 | 5.7 | 5.7 | 4.6 | 4.2 | -0.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3.8 | 4.4 | 4.9 | 4.4 | 4.6 | 5.6 | 6.3 | 5.6 | 6.5 | 5.1 | 5.3 | 7.5 | 5.9 | 5.8 | 4.6 | -1.2 |
| North Central | 7.3 | 8.2 | 7.1 | 8.4 | 8.7 | 8.5 | 7.9 | 7.7 | 6.2 | 4.8 | 6.8 | 8.4 | 7.3 | 5.0 | 4.2 | -0.7 |
| South | 6.0 | 4.5 | 4.7 | 6.2 | 5.1 | 5.8 | 5.6 | 6.7 | 5.0 | 6.7 | 6.2 | 6.7 | 6.3 | 5.0 | 6.6 | +1.7 |
| West | 4.4 | 3.1 | 4.4 | 4.6 | 5.0 | 7.3 | 6.3 | 5.1 | 6.0 | 1.9 | 4.7 | 5.8 | 6.9 | 6.1 | 3.4 | -2.7 s |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 3.0 | 3.3 | 3.0 | 4.7 | 5.3 | 7.2 | 5.4 | 4.5 | 6.1 | 3.0 | 3.7 | 6.8 | 4.5 | 4.4 | 3.3 | -1.1 |
| Other MSA | 6.0 | 6.0 | 4.7 | 7.3 | 6.0 | 6.0 | 5.4 | 4.8 | 6.2 | 5.7 | 6.2 | 6.2 | 7.3 | 5.5 | 5.7 | +0.2 |
| Non-MSA | 7.3 | 5.4 | 8.7 | 5.5 | 6.7 | 7.6 | 9.2 | 11.7 | 4.3 | 5.9 | 7.6 | 9.4 | 8.2 | 6.5 | 5.6 | -0.8 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 3.1 | 6.6 | 4.3 | 4.9 | 8.2 | 6.5 | 3.2 | 7.0 | 3.3 | 4.7 | 5.7 | 5.2 | 8.5 | 8.0 | 4.5 | -3.5 |
| 2.5-3.0 | 6.3 | 5.1 | 5.3 | 7.5 | 6.5 | 5.3 | 6.7 | 7.1 | 5.5 | 7.3 | 5.7 | 8.2 | 5.5 | 4.6 | 6.4 | +1.8 |
| 3.5-4.0 | 5.9 | 5.1 | 6.6 | 6.5 | 4.4 | 9.5 | 5.4 | 7.4 | 5.0 | 3.4 | 5.2 | 6.8 | 7.6 | 4.4 | 4.8 | +0.5 |
| 4.5-5.0 | 5.9 | 4.7 | 4.0 | 5.6 | 7.1 | 4.9 | 6.7 | 5.8 | 6.2 | 5.0 | 7.5 | 7.2 | 5.6 | 5.1 | 4.7 | -0.4 |
| 5.5-6.0 (High) | 4.7 | 2.5 | 5.4 | 3.0 | 4.0 | 4.3 | 6.3 | 2.8 | 6.1 | 3.1 | 5.5 | 4.5 | 2.2 | 5.4 | 2.4 | -3.0 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 6.4 | 6.2 | 6.1 | 6.6 | 7.0 | 7.2 | 7.1 | 7.6 | 7.4 | 6.0 | 5.9 | 7.0 | 7.2 | 6.5 | 5.6 | -0.9 |
| Black | 2.1 | 1.5 | 1.7 | 1.6 | 1.4 | 1.9 | 1.4 | 0.9 | 0.9 | 1.0 | 1.2 | 1.9 | 1.8 | 0.7 | 0.8 | +0.2 |
| Hispanic | 3.4 | 2.2 | 1.6 | 5.3 | 5.8 | 3.6 | 3.9 | 3.6 | 3.4 | 3.4 | 4.6 | 7.1 | 8.1 | 5.5 | 3.2 | -2.3 |
| ${ }^{\text {a Parental education is an average score of mother's education and father's education reported on the following scale: (1) Completed grade school or less, (2) Some }}$ high school, (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data were allowed on one of the two variables. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE 10-3
Percentage of Twelfth Graders in Each Category of an Illicit Drug Use Index Who Have Tried Various Over-the-Counter Stimulants, 2004
(Entries are percentages)

|  | Lifetime llicit Drug Use Groupings |  |  |
| :---: | :---: | :---: | :---: |
| Their lifetime use of... | No Use | Used <br> Manijuana Only | Used Other Illic it Drugs |
| Diet pills | $6.3{ }^{\text {a }}$ | 12.7 | 35.3 |
| Stay-awake pills | 5.6 | 17.9 | 44.0 |
| Look-a likes | 1.5 | 4.2 | 24.4 |
| Approx. $\mathrm{N}=$ | 1116 | 488 | 637 |
| SOURCE: The Monitoring the Future Study, the University of Michigan |  |  |  |
| ${ }^{\text {a }}$ This means that, of those who have never used an illicit drug, 6.3 percent have used a diet pill at least once. |  |  |  |

TABLE 10-4

## Trends in Annual Prevalence of Use of Androstenedione by Subgroups for Eighth, Tenth, and Twelfth Graders

(Entries are percentages)

|  | 2004 |  |  | 8th Grade |  |  |  |  | 10th Grade |  |  |  |  | 12th Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Approx. ${ }^{\text {a }}$ |  |  |  | '03-'04 |  |  |  |  | '03-'04 |  |  |  | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ | '03-04 <br> change |
|  | 8th | 10th | 12th | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ | change | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ | change |  |  |  |  |  |
| Total | 17,000 | 16,400 | 14,600 | 1.1 | 1.2 | 1.0 | 0.9 | -0.1 | 2.2 | 1.9 | 1.7 | 1.1 | -0.6 | 3.0 | 2.5 | 2.5 | 2.1 | -0.4 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8,100 | 7,900 | 6,800 | 1.3 | 1.7 | 1.2 | 1.2 | 0.0 | 3.5 | 2.2 | 2.5 | 1.6 | -0.8 | 5.3 | 4.7 | 4.6 | 3.7 | -0.9 |
| Female | 8,500 | 8,300 | 7,200 | 1.0 | 0.8 | 0.8 | 0.5 | -0.3 | 0.9 | 1.6 | 0.9 | 0.5 | -0.5 | 0.7 | 0.4 | 0.2 | 0.6 | +0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 1,600 | 1,900 | 2,800 | 4.2 | 5.0 | 2.9 | 3.6 | +0.7 | 3.9 | 3.5 | 4.0 | 2.8 | -1.2 | 4.3 | 4.0 | 3.6 | 2.9 | -0.7 |
| Complete 4 years | 15,000 | 14,300 | 11,000 | 0.8 | 0.8 | 0.8 | 0.6 | -0.2 | 1.9 | 1.7 | 1.3 | 0.9 | -0.4 | 2.5 | 2.1 | 2.1 | 1.7 | -0.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3,200 | 3,600 | 3,100 | 0.6 | 1.3 | 0.9 | 0.6 | -0.3 | 2.1 | 1.8 | 1.6 | 1.2 | -0.4 | 3.1 | 2.8 | 2.7 | 2.1 | -0.6 |
| North Central | 4,000 | 4,600 | 3,800 | 1.1 | 1.7 | 1.0 | 1.2 | +0.2 | 1.7 | 1.4 | 1.4 | 1.2 | -0.2 | 3.4 | 2.4 | 2.3 | 2.1 | -0.2 |
| South | 6,300 | 4,900 | 5,000 | 1.6 | 1.0 | 1.2 | 0.8 | -0.4 | 2.8 | 2.4 | 2.0 | 1.3 | -0.7 | 2.8 | 2.6 | 2.4 | 2.2 | -0.1 |
| West | 3,500 | 3,300 | 2,700 | 0.8 | 0.8 | 0.6 | 0.9 | +0.3 | 1.9 | 1.9 | 1.7 | 0.6 | -1.0 | 2.9 | 2.1 | 3.0 | 1.8 | -1.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5,000 | 5,000 | 4,200 | 1.1 | 0.8 | 0.9 | 0.6 | -0.3 | 2.6 | 1.4 | 1.4 | 1.0 | -0.4 | 3.0 | 2.4 | 1.1 | 1.5 | +0.4 |
| Other MSA | 7,900 | 7,800 | 6,800 | 1.2 | 1.3 | 0.9 | 0.9 | 0.0 | 1.9 | 2.2 | 1.7 | 1.0 | -0.7 | 3.3 | 2.0 | 3.1 | 2.8 | -0.3 |
| Non-MSA | 4,100 | 3,600 | 3,600 | 0.9 | 1.7 | 1.3 | 1.2 | -0.1 | 2.4 | 2.0 | 2.1 | 1.6 | -0.5 | 2.7 | 3.4 | 3.4 | 1.5 | -1.8 |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,200 | 1,300 | 1,000 | 1.3 | 1.7 | 1.1 | 2.2 | +1.1 | 3.6 | 3.4 | 1.8 | 1.4 | -0.3 | 1.5 | 3.5 | 2.3 | 3.4 | +1.2 |
| 2.5-3.0 | 3,400 | 3,400 | 3,400 | 0.8 | 1.9 | 1.9 | 0.7 | -1.2 s | 1.7 | 1.9 | 1.0 | 0.8 | -0.1 | 3.7 | 3.1 | 2.5 | 1.8 | -0.7 |
| 3.5-4.0 | 4,000 | 4,200 | 4,000 | 1.6 | 1.0 | 0.9 | 1.3 | +0.4 | 3.4 | 1.7 | 1.9 | 1.0 | -0.9 | 2.9 | 2.7 | 3.8 | 1.9 | -1.8 s |
| 4.5-5.0 | 4,300 | 4,300 | 3,600 | 1.0 | 0.9 | 0.6 | 0.7 | +0.1 | 1.7 | 1.3 | 2.0 | 1.0 | -1.1 | 3.2 | 2.0 | 1.5 | 2.2 | +0.7 |
| 5.5-6.0 (High) | 2,500 | 2,400 | 2,000 | 1.2 | 0.9 | 0.7 | 0.2 | -0.5 | 1.4 | 2.5 | 1.6 | 1.0 | -0.6 | 1.9 | 1.4 | 1.5 | 1.4 | -0.2 |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 20,400 | 19,900 | 20,400 | - | 1.1 | 1.1 | 0.8 | -0.2 | - | 1.7 | 1.4 | 1.1 | -0.3 | - | 3.0 | 2.7 | 2.3 | -0.5 |
| Black | 3,900 | 4,600 | 3,900 | - | 0.7 | 0.5 | 0.6 | +0.1 | - | 1.9 | 2.2 | 1.8 | -0.4 | - | 0.7 | 1.2 | 2.0 | +0.8 |
| Hispanic | 3,200 | 3,500 | 3,200 | - | 1.4 | 1.3 | 1.6 | +0.3 | - | 2.6 | 2.3 | 1.6 | -0.7 | - | 3.2 | 3.0 | 2.6 | -0.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s 5 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Subgroup Ns may vary depending on the number of forms in which the use of each drug was asked about. For 8th and 10th gradesonly: Data based on one of four forms; N is one-third of $N$ indic ated. For 12th grade only: Data based on two of six forms; $N$ is two-sixths of $N$ indicated.
${ }^{\text {b }}$ Parental education is an average score of mother'seducation and father's education reported on the following scale: (1) Completed grade school or less, (2) Some high schoo (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data was allowed on one of the two variables. ${ }^{\text {c }}$ To derive percentagesforeach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE 10-5

## Trends in Annual Prevalence of Use of Creatine by Subgroups for Eighth, Tenth, and Twelfth Graders

(Entries are percentages)


NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01$, $5 s s=.001$. ' - ' indic ates data not available.
Any a pparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Subgroup Ns may vary depending on the number of forms in which the use of each drug was asked about. For 8th and 10th gradesonly: Data based on one of four forms; N is one-third of N indicated. For 12th grade only: Data based on two of six forms; N is two-sixths of N indicated.
${ }^{\text {b }}$ Parental education is an average score of mother'seducation and father's education reported on the following scale: (1) Completed grade school orless, (2) Some high schoo (3) Completed high school, (4) Some college, (5) Completed college, (6) Graduate or professional school after college. Missing data was allowed on one of the two variables. ${ }^{\text {c }}$ To derive percentagesforeach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE 10-6

Trends in Annual Prevalence of Use of Steroids and Androstenedione by Gender for Eighth, Tenth, and Twelfth Graders
(Entries are percentages)

|  | 8th Grade |  |  |  |  | 10th Grade |  |  |  |  | 12th Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2001 | 2002 | 2003 | 2004 | '03-'04 change | 2001 | 2002 | 2003 | 2004 | '03-'04 change | 2001 | 2002 | 2003 | 2004 | '03-'04 change |
| Total |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% reporting using steroids but not androstenedione | 1.2 | 1.0 | 1.2 | 0.9 | -0.2 | 1.5 | 1.5 | 1.2 | 1.1 | -0.1 | 1.5 | 1.8 | 1.1 | 1.4 | +0.4 |
| \%reporting using androstenedione but not steroids | 0.7 | 0.6 | 0.7 | 0.7 | 0.0 | 1.6 | 1.3 | 1.2 | 0.7 | -0.5 ss | 2.1 | 1.8 | 1.5 | 1.0 | -0.5 s |
| \%reporting using both | 0.4 | 0.6 | 0.3 | 0.2 | -0.1 | 0.6 | 0.7 | 0.5 | 0.5 | 0.0 | 0.9 | 0.7 | 1.1 | 1.1 | 0.0 |
| \% reporting using either or both | 2.3 | 2.2 | 2.2 | 1.8 | -0.3 | 3.7 | 3.5 | 2.9 | 2.2 | -0.7 s | 4.5 | 4.3 | 3.6 | 3.5 | -0.1 |
| Males: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% reporting using steroids but not androstenedione | 1.8 | 1.0 | 1.4 | 1.1 | -0.4 | 2.4 | 2.2 | 1.5 | 1.5 | 0.0 | 2.7 | 2.7 | 1.2 | 1.6 | +0.5 |
| \% reporting using androstenedione but not steroids | 0.8 | 0.8 | 0.8 | 1.0 | +0.1 | 2.6 | 1.2 | 1.7 | 0.9 | -0.8 ss | 4.2 | 3.6 | 2.6 | 2.1 | -0.5 |
| \% reporting using both | 0.5 | 0.9 | 0.4 | 0.2 | -0.2 | 0.9 | 1.0 | 0.8 | 0.8 | 0.0 | 1.1 | 1.1 | 2.0 | 1.6 | -0.4 |
| \% reporting using either or both | 3.1 | 2.7 | 2.6 | 2.2 | -0.4 | 5.8 | 4.4 | 4.0 | 3.1 | -0.8 | 8.0 | 7.3 | 5.8 | 5.3 | -0.5 |
| Females: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% reporting using steroids but not androstenedione | 0.7 | 0.8 | 0.9 | 0.8 | -0.1 | 0.8 | 0.8 | 1.0 | 0.7 | -0.3 | 0.5 | 1.1 | 1.0 | 1.0 | +0.1 |
| \%reporting using androstenedione but not steroids | 0.6 | 0.4 | 0.6 | 0.3 | -0.4 | 0.7 | 1.3 | 0.8 | 0.3 | -0.4 s | 0.1 | 0.2 | 0.1 | * | -0.1 |
| \%reporting using both | 0.4 | 0.4 | 0.2 | 0.2 | 0.0 | 0.3 | 0.3 | 0.2 | 0.2 | 0.0 | 0.6 | 0.2 | 0.1 | 0.7 | +0.5 s |
| \% reporting using either or both | 1.6 | 1.6 | 1.7 | 1.3 | -0.5 | 1.7 | 2.4 | 1.9 | 1.2 | -0.7 s | 1.2 | 1.5 | 1.2 | 1.6 | +0.4 |
| Approximate weighted Ns : |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 4,710 | 4,470 | 5,080 | 5,180 |  | 4,410 | 4,450 | 4,950 | 5,180 |  | 1,850 | 1,840 | 2,080 | 2,210 |  |
| Males | 2,170 | 2,060 | 2,340 | 2,510 |  | 2,040 | 2,210 | 2,340 | 2,430 |  | 870 | 810 | 990 | 960 |  |
| Females | 2,450 | 2,300 | 2,640 | 2,580 |  | 2,310 | 2,180 | 2,550 | 2,680 |  | 980 | 1,030 | 1,090 | 1,170 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$.
'*' indic ates less than .05 percent but greater than 0 percent.
Any apparent inconsistency between the total who used either substance or both substances and the sum of those who used only steroids, those who used only androstenedione, and those who used both is due to rounding error.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE 10-7

Daily Marijuana Use: Responses to Selected Questions by Subgroups for Twelfth Graders, 2004


NOTE: Entries are percentages that sum vertic a lly to 100 percent.
SOURCE: The Monitoring the Future Study, the University of Mic higan.

## TABLE 10-8a

 Trends in Daily Use of Marijuana in Lifetime by Subgroups for Twelfth Graders ${ }^{\text {a }}$|  | Percentage ever using daily for at least a month |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1982 | 1983 | 1984 | $\underline{1985}$ | 1986 | 1987 | 1988 | $\underline{1989}$ | $\underline{1990}$ | 1991 | Class of: |  |  | $\underline{1995}$ | 1996 | 1997 | 1998 | $\underline{1999}$ | $\underline{2000}$ | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
|  |  |  |  |  |  |  |  |  |  |  | 1992 | $\underline{1993}$ | 1994 |  |  |  |  |  |  |  |  |  |  |  |
| Total | 20.5 | 16.8 | 16.3 | 15.6 | 14.9 | 14.7 | 12.8 | 11.5 | 10.0 | 9.0 | 8.4 | 9.6 | 11.3 | 12.1 | 15.7 | 18.8 | 18.0 | 17.9 | 17.0 | 18.0 | 15.5 | 16.4 | 17.8 | +1.4 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 20.1 | 18.1 | 17.2 | 17.7 | 16.6 | 16.2 | 14.8 | 12.7 | 10.6 | 10.5 | 8.3 | 10.7 | 13.3 | 12.9 | 18.7 | 19.7 | 19.5 | 18.5 | 18.8 | 20.3 | 17.2 | 17.1 | 19.9 | +2.7 |
| Female | 18.0 | 13.5 | 12.9 | 12.0 | 11.6 | 12.2 | 9.6 | 9.7 | 7.9 | 6.4 | 7.5 | 7.2 | 8.5 | 7.9 | 10.7 | 15.2 | 13.9 | 14.4 | 13.7 | 13.8 | 11.7 | 12.5 | 12.3 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 years | 22.5 | 20.3 | 18.9 | 19.6 | 17.2 | 18.0 | 14.5 | 15.3 | 12.8 | 11.5 | 11.2 | 11.6 | 16.1 | 14.2 | 21.5 | 22.6 | 22.1 | 22.1 | 19.1 | 22.8 | 20.5 | 22.2 | 24.5 | +2.3 |
| Complete 4 years | 13.8 | 10.5 | 10.7 | 10.6 | 11.0 | 11.1 | 9.8 | 9.1 | 7.4 | 6.5 | 5.9 | 7.7 | 8.6 | 9.2 | 11.9 | 14.9 | 13.4 | 14.2 | 13.7 | 13.8 | 11.7 | 11.9 | 13.4 | +1.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 25.1 | 20.4 | 24.1 | 20.9 | 21.5 | 17.0 | 13.1 | 14.6 | 10.4 | 10.3 | 8.7 | 12.0 | 12.2 | 12.8 | 21.3 | 24.6 | 22.7 | 17.9 | 19.8 | 23.4 | 20.7 | 20.8 | 19.5 | -1.3 |
| North Central | 21.1 | 15.9 | 12.8 | 16.3 | 11.3 | 12.7 | 10.3 | 13.4 | 10.8 | 8.4 | 8.0 | 9.3 | 11.0 | 13.6 | 14.6 | 16.5 | 16.1 | 14.3 | 13.8 | 18.4 | 16.3 | 15.0 | 17.9 | +2.9 |
| South | 15.7 | 12.7 | 14.0 | 8.9 | 11.3 | 11.9 | 10.9 | 8.1 | 8.7 | 7.4 | 5.9 | 8.3 | 11.8 | 11.2 | 12.7 | 14.9 | 15.6 | 19.1 | 14.7 | 12.7 | 14.6 | 15.5 | 18.6 | +3.1 |
| West | 20.8 | 21.4 | 17.6 | 18.5 | 18.3 | 19.7 | 19.0 | 12.3 | 11.0 | 11.3 | 13.4 | 10.4 | 10.2 | 10.6 | 17.0 | 23.0 | 20.6 | 20.4 | 21.9 | 21.2 | 11.7 | 15.4 | 14.3 | -1.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 23.8 | 20.0 | 19.4 | 18.1 | 17.0 | 16.7 | 14.0 | 10.6 | 8.3 | 7.2 | 8.4 | 8.6 | 10.3 | 13.9 | 15.3 | 18.8 | 18.0 | 16.3 | 18.4 | 19.7 | 15.2 | 14.0 | 17.0 | +3.0 |
| Other MSA | 20.3 | 18.2 | 16.6 | 16.0 | 14.9 | 15.0 | 14.9 | 12.4 | 11.7 | 11.1 | 8.9 | 10.2 | 13.6 | 11.3 | 18.2 | 20.1 | 19.7 | 19.2 | 18.3 | 17.5 | 15.1 | 19.0 | 19.5 | +0.5 |
| Non-MSA | 17.9 | 12.6 | 13.2 | 12.8 | 13.2 | 12.2 | 7.6 | 10.4 | 8.2 | 7.1 | 7.6 | 9.6 | 8.4 | 11.2 | 11.6 | 16.2 | 14.4 | 17.1 | 13.0 | 17.1 | 16.8 | 14.8 | 15.5 | +0.8 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, \mathrm{ss}=.01, \mathrm{sss}=.001$.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Data based on one form. The total $N$ each year for 1982-89 is approximately 3,300 . The total $N$ each year for 1990-98 is approximately 2,600 . Beginning in 1999, the total $N$ each year is approximately 2,200 .

## TABLE 10-8b

$$
\text { Trends in Daily Use of Marijuana Prior to Tenth Grade by Subgroups for Twelfth Graders }{ }^{\text {a }}
$$



NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Data based on one form. The total N each year for 1982-89 is approximately 3,300 . The total N each year for 1990-98 is approximately 2,600 . Beginning in 1999, the total N each year is approximately 2,200 .

FIGURE 10-1
Prevalence and Recency of Use, By Gender Amphetamines and Nonprescription Stimulants

Twelfth Graders, 2004

Twelfth Graders


## Appendix A

## PREVALENCE AND TREND ESTIMATES ADJUSTED FOR ABSENTEES AND DROPOUTS

It is reasonable to ask whether the prevalence and trend estimates derived from 12th graders accurately reflect the reality that pertains to all young people in the same class or age cohort, including those who have dropped out of school by senior year. Because this question was raised in the first decade of the study, in 1985 we published an extensive chapter addressing this question in a volume in the NIDA Research Monograph series. ${ }^{105}$ In the years since, we have continued to estimate the degree to which the results presented in the present monograph series, based on high school seniors only, accurately represent the entire class cohort. In this appendix we summarize the main points relevant to this issue of sample coverage.

First, it should be noted that two segments of the entire class/age cohort are missing from the data collected each year from seniors: (a) those who are still enrolled in school but who are absent the day of data collection (the "absentees") and (b) those who have left school and are not likely to complete high school (the "dropouts"). The absentees constitute virtually all of the nonrespondents shown in the response rate given in Table 3-1, chapter 3, of this volume (since refusal rates are negligible) or about $18 \%$ of all seniors (or $15 \%$ of the class/age cohort). Based on our review of available Census data, dropouts account for approximately $15 \%$ of the class/age cohort.

The methods we used to estimate the prevalence rates for these two missing segments are summarized briefly here. Then, the effects of adding these two segments to the calculation of the overall prevalence rates for two important drug classes are presented, along with the impact on the trend estimates. Two illicit drugs have been chosen for illustrative purposes: marijuana, the most prevalent of the illicit drugs, and cocaine, one of the more dangerous and less prevalent drugs. Estimates for high school seniors are presented for both lifetime and 30-day prevalence of each drug.

## CORRECTIONS FOR LOWER GRADE LEVELS

Before estimates of corrections for seniors are discussed, it should be noted that the 12th grade represents the "worst case" in terms of underestimation. Rates of both dropping out and absenteeism are lower for 8th and 10th grades than for 12th grade. With respect to dropping out, only a very few members of an age cohort have ceased attending school by grade 8 , when most are age 13 or 14 . In fact, Census data suggest that less than $2 \%$ would have dropped out at this stage. Most 10th graders are aged 15 or 16, and Census data indicate that only a small proportion

[^86]of them (less than 5\%) would have dropped out by then. ${ }^{106}$ Thus, any correction for the missing dropouts should be negligible at 8th grade and quite small at 10th grade.

Regarding absentees, Table 3-1, presented earlier, shows that while absentees comprise $18 \%$ of the 12th graders who should be in school, they comprise only $12 \%$ of 10 th graders and $11 \%$ of 8th graders in 2004. Thus, the prevalence estimate adjustments that would result from corrections for this missing segment also would be considerably less for the 8th and 10th graders than for 12th graders.

In sum, the modest corrections in estimates of substance use rates, which we show next to result from the corrections for dropouts and absentees at the 12th-grade level, set outer limits for what would be found at 8th and 10th grade. In fact, it is clear that the corrections would be considerably smaller at 10th grade and far smaller at 8th grade. Since the corrections described for 12th graders turn out to be modest ones, we have not undertaken comparable corrections for 8th and 10th graders.

## THE EFFECTS OF MISSING ABSENTEES

To be able to assess the effects of excluding absentees on the estimates of 12th-grade drug use, we included a question that asks students how many days of school they had missed in the previous four weeks. Using this variable, we can place individuals into different strata as a function of how often they tend to be absent from school. For example, all students who had been absent $50 \%$ of the time could form one stratum. Assuming that absence on the particular day of the administration is a fairly random event, we can use the actual survey participants in this stratum to represent all students in their stratum, including the ones who happen to be absent that particular day. By giving them a double weight, they can be used to represent both themselves and the other $50 \%$ of their stratum who were absent that day. Those who say they were in school only one-third of the time would get a weight of three to represent themselves plus the two-thirds in their stratum who were not there, and so forth. Using this method, we found that absentees as a group have appreciably higher-than-average usage levels for all licit and illicit drugs. However, looking at 1983 data, we found that the omission of absentees did not depress any of the prevalence estimates in any of the drugs by more than 2.7 percentage points, because they represent such a small proportion of the total target sample. Considering that a substantial proportion of those who are absent likely are absent for reasons unrelated to drug use-such as illness and participation in extracurricular activities-it may be surprising to see even these differences. In any case, from the point of view of policy or public perceptions, the small "corrections" would appear to be of little or no significance. (The correction in 1983 across all 13 drugs in lifetime prevalence averaged only 1.4 percentage points.) Further, such corrections should have virtually no effect on cross-time trend estimates unless the rate of

[^87]absenteeism was changing appreciably; and we find no evidence in our data that it has. Put another way, the presence of a slight underestimate that is constant across time should not influence trend results. Should absentee rates start changing substantially, then it might be argued that such corrections should be presented.

## THE EFFECTS OF MISSING DROPOUTS

Unfortunately, we cannot derive corrections from data gathered from seniors to impute directly the prevalence rates for dropouts, as we did for absentees, since we have no completely appropriate stratum from which we have sampled. We believe, based on our own previous research as well as the work of others, that dropouts generally have prevalence rates for all classes of drugs substantially higher than the in-school students. In fact, the dropouts may be fairly similar to the absentees.

We have consistently estimated the proportions who fail to complete high school to be approximately 15\%; Figure A-1 displays the high school completion rate for the years 1972 through 2004 based on Census data. As the figure indicates, completion rates (and the complement, dropout rates) have been quite constant over this interval for persons 20-24 years old. ${ }^{107}$ (Younger age brackets are less appropriate to use because they include some young people who are still enrolled in high school.) Monitoring the Future probably covers some small proportion of the $15 \%$ since the survey of seniors takes place a few months before graduation and not everyone will graduate. On the other hand, perhaps $1 \%$ to $2 \%$ of the age group that the U.S. Census Bureau shows as having a diploma obtain it through a General Equivalency Degree and thus would not be covered by Monitoring the Future. (Elliott and Voss reported this result for less than $2 \%$ of their sample in their follow-up study of 2,617 ninth graders in California who were followed through their high school years. ${ }^{108}$ ) So these two factors probably cancel each other out. Thus, we use $15 \%$ as our estimate of the proportion of a class cohort not covered.

## Extrapolating to Dropouts From Absentees

To estimate the drug usage prevalence rates for this group, we have used two quite different approaches. The first was based on extrapolations from seniors participating in this study. Using this method, we developed estimates under three different assumptions: that the difference between dropouts and the participating seniors in the study was equivalent to (a) the difference between absentees and the participating seniors, (b) 1.5 times that difference, and (c) twice that difference. The last assumption we would consider rather extreme.

The second general method involved using the best national data then available on drug use among dropouts-namely the National Survey on Drug Use and Health (NSDUH, formerly

[^88]named the National Household Surveys on Drug Abuse, or NHSDA). ${ }^{109}$ While these surveys have rather small samples of dropouts in the relevant age range in any given year, they at least should provide unbiased estimates for dropouts still in the household population.

Using the first assumption-that dropouts are just like absentees-we found that no prevalence rate was changed by more than 5 percentage points over the estimate based on 1983 seniors only, even with the simultaneous correction for both absentees and dropouts. (The method for calculating prevalence rates for the absentees is the one described in the previous section.) The largest correction in 1983 involved marijuana, with lifetime prevalence rising from just under $60 \%$ to $64 \%$. Even under the most extreme assumption-which results in exceptionally high prevalence rates for dropouts on all drugs, for example $90 \%$ lifetime prevalence for marijuanathe overall correction in any of the prevalence figures for any drug remained less than 7.5 percentage points. Again, marijuana showed the biggest correction ( $7.5 \%$ in annual prevalence, raising it from $46 \%$ uncorrected to $54 \%$ with corrections for both absentees and dropouts). As we would have expected, the biggest proportional change occurred for heroin, since it represents the most deviant end of the drug-using spectrum and thus usually would be most associated with truancy and dropping out.

## Extrapolating From the Household Surveys

The second method of estimating drug use among dropouts involved comparing the household survey data on dropouts with the data from those remaining in school. We originally conducted secondary analyses of the archived data from the 1977 and 1979 National Household Surveys (NHSDA). (Analyses using more recent NSDUH data are shown in the next section.) Analyses were restricted to the age range 17 to 19 years old, since about $95 \%$ of the Monitoring the Future seniors fall in this range. Of course, the number of cases is small. The 1977 NHSDA survey included only 46 dropouts and 175 enrolled seniors in this age group. In the 1979 survey, 92 dropouts and 266 seniors were included.

For marijuana, the household survey data estimated differences between dropouts and seniors at a level at or below the least extreme assumption made in the previous method (in which dropouts are assumed to have the same drug-use levels as absentees). While reassuring to the authors of the present report, we must admit that we believe these household samples underrepresented the more drug-prone dropouts to some degree. Thus we concluded that estimates closer to those made under the second assumption in the previous method may be closer to reality-that is, that dropouts are likely to deviate from participating seniors by 1.5 times the amount that absentees deviate from them.

We should note that there are a number of reasons for dropping out, many of which bear no relationship to drug use, including economic hardship in the family and certain learning disabilities and health problems. At the national level, the extreme groups such as those in jail or

[^89]without a permanent place of residence are undoubtedly very small as a proportion of the total age groups and probably even as a proportion of all dropouts. Thus, regardless of their prevalence rates, they would be unable to move the overall prevalence estimates by a very large proportion except in the case of the most rare events-in particular, heroin use. We do believe that in the case of heroin use-particularly regular use-we are most likely unable to get a very accurate estimate even with the corrections used in this report. The same may be true for crack cocaine and PCP. For the remaining drugs, we conclude that our estimates based on participating seniors, though somewhat low, are not bad approximations for the age group as a whole.

## Effects of Omitting Dropouts in Trend Estimates

Whether the omission of dropouts affects the estimates of trends in prevalence rates is a separate question, however, from the degree to which it affects absolute estimates at a given point in time. The relevant issues parallel those discussed earlier regarding the possible effects on trends of omitting the absentees. Most important is the question of whether the rate of dropping out has been changing in the country, because a substantial change would mean that seniors studied in different years would represent non-comparable segments of the whole class/age cohort. Fortunately, for the purposes of this study, at least, the official government data provided in Figure A-1 indicate a quite stable rate of dropping out since 1972.

Since no sound evidence appears for an appreciable dropout rate change, the only reason for seniors' trend data to deviate from trends for the entire class cohort (including dropouts) would be if the constant proportion of dropouts showed trends that differed from senior trends; even then, because of their small numbers, dropouts would have to show dramatically different trends to change the whole age group trend. No hypothesis offered for such a differential shift among dropouts has been convincing, at least to these authors.

One hypothesis occasionally voiced was that more teens were being expelled from school, or voluntarily leaving school, because of their drug use; and that this explained the downturn in the use of many drugs being reported by the study in the 1980s. However, it is hard to reconcile this hypothesis with the virtually flat (or, if anything, slightly declining) dropout rates over the period displayed in Figure A-1, unless one posits a perfectly offsetting tendency for more completion among those who are less drug-prone-hardly a very parsimonious explanation. Further, the reported prevalence of some drugs remained remarkably stable throughout those years of the study (e.g., alcohol and opiates other than heroin), and the prevalence of others rose (cocaine until 1987, and amphetamines until 1981). These facts are not very consistent with the hypothesis that there had been an increased rate of departure by the most drug-prone. Certainly, more teens leaving school in the 1980s had drug problems than was true in the 1960s. (So did more of those who stayed in.) However, they still seem likely to be very much the same segment of the population, given the degree of association that exists between drug use and deviance and problem behaviors of various sorts.

## MORE RECENT UPDATE ON CORRECTIONS FOR DROPOUTS

We subsequently looked at additional data regarding the effects of dropout exclusion. One additional source of information is a special report from the 1988 National Household Survey on Drug Abuse (NHSDA). ${ }^{110}$ This report compared selected drug use rates for 16 - to 17 -year-old respondents who were classified as currently enrolled in school or as having dropped out of school. The authors of that report concluded, "The percentage of youth aged 16 and 17 who reported use of any illicit drug, marijuana, cocaine, and alcohol did not differ significantly among dropouts and those currently enrolled in school" (p. 22). Differences in illicit drug use between high school graduates and dropouts were also slight among 21- to 25-year-olds.

The authors noted that their findings appeared somewhat contrary to popular conceptions, as well as to some other research. Moreover, they reported that preliminary data for 20- to 34-year-olds from the 1990 NHSDA showed higher rates of cocaine and marijuana use among dropouts. The authors conjectured that perhaps differences between dropouts and graduates emerge after age 25 , when more young adults have finished college. They also noted that other variables such as race, ethnicity, and socioeconomic status may confound the dropout versus graduate comparison. An additional problem was that, prior to the 1991 survey, the NHSDA did not include individuals who did not live in households; perhaps the more deviant dropouts were overrepresented in the excluded groups.

Subsequently, we have examined data from the 2002 National Survey on Drug Use and Health (NSDUH). Specifically, we obtained estimated prevalence rates for two key illicit drugs, marijuana and cocaine, among dropouts aged 17-18. Table A-1 indicates the lifetime and monthly prevalence rates for Monitoring the Future seniors and for NSDUH seniors and NSDUH dropouts.

As can be seen, the 2002 NSDUH dropouts aged 17-18 had distinctly higher cocaine and marijuana use than the 2002 NSDUH seniors and the 2002 MTF seniors. (This result is contradictory to the results from the earlier report based on 1988 data. The relatively small numbers of dropouts make definitive statements difficult.) As discussed earlier, however, the relatively small proportion of the population who are dropouts reduces the impact that their higher prevalence rates have on overall population estimates.

Table A-2 compares the total population prevalence estimates derived using two quite different methods discussed here. The first method shows the estimates that result when we use the method we previously described (which provided the data shown in Figure A-2), in which the prevalence rate among dropouts is assumed to be higher than seniors present by 1.5 times the difference between seniors present and seniors absent. Column 2 in Table A-2 is calculated by reweighting the data for absenteeism and calculating the estimated prevalence among absentees. The prevalence among dropouts (column 4) is estimated by assuming that they differ from seniors present by a factor 1.5 times greater than the difference between seniors present and seniors absent. The data in columns 1 and 2 are combined in appropriate proportion to derive

[^90]estimated prevalence among seniors present plus absentees (column 3). The data in columns 1, 2, and 4 are then combined in appropriate proportions to derive estimated prevalence rates for the entire class cohort (shown in column 5). (For 2002, the percentage of dropouts is estimated at $15 \%$ and the percentage of seniors absent is estimated at $17 \%$ [based on data in Table 3-1]; these figures result in the following distribution for the total age cohort: seniors present, 70.6\%; seniors absent, $14.5 \%$; and dropouts of the same age as the seniors, $15.0 \%$.)

The second method for estimating prevalence rates for dropouts (column 9) and the entire class cohort (column 10) is based on the estimated prevalence from MTF seniors present and seniors absent. We then adjust for the missing dropout segment by assuming that the difference between NSDUH seniors and NSDUH dropouts (column 8) is the best estimate of the difference between dropouts and stay-ins (column 10).

The data in columns 6 and 7 are prevalence rates reported among the 2002 NSDUH seniors and for dropouts aged 17-18, and column 8 shows the algebraic difference. This absolute "bias" is treated as an estimate of the difference between seniors (present plus absent) versus dropouts. This "bias" is then applied to the estimated prevalence based on MTF data of seniors present plus absent (column 3) to derive an estimate of the prevalence among dropouts (column 9). These estimates are higher than the NSDUH estimates because MTF estimates for non-dropouts are higher than the NSDUH estimates. Finally, the data in columns 3 and 9 are combined in appropriate proportion to derive estimates presented in column 10 for the entire cohort.

Note that the estimated prevalence rates among dropouts based on NSDUH data are not very different from the estimates derived using the "1.5" factor. (Compare columns 9 and 4.) Consequently, the "Total" estimates given in column 10 turn out to be highly similar to the "Total" estimates in column 5. This similarity suggests that the estimates of corrections for dropouts that we have been providing, based on earlier data, are probably quite reasonable. In fact, based on all of the NSDUH data, they may actually be conservatively high.

Finally, an additional piece of information relative to the comparison of drug use rates among students who stay in school versus dropouts comes from Fagan and Pabon (1990), ${ }^{111}$ who report some comparison data between high school students and dropouts from six inner-city neighborhoods. About 1,000 male students and 1,000 female students were compared with 255 male dropouts and 143 female dropouts. Although dropouts were generally more delinquent and more involved with substance use, there was also a great deal of variability by specific class of substances. As would be generally expected, marijuana use was lower among students compared to dropouts. Psychedelic use, on the other hand, was higher among students than among dropouts. Use of tranquilizers and barbiturates was also higher among students. Amphetamine use was lower among male students but higher among female students compared to dropouts of the same gender. Similarly, cocaine use was lower among male students but higher among female students compared to dropouts. Students of both genders reported more heroin use than did dropouts. Inhalant use did not differ significantly between students and dropouts.

[^91]Overall, the data indicate some variation, depending on the class of drug. In fact, heroin use surprisingly was higher among students. The study shows that the usual assumption that dropouts invariably use drugs more than students is not always true.

## SUMMARY AND CONCLUSIONS

In sum, while we believe that the prevalence of drug use for the cohort at large is somewhat underestimated in the Monitoring the Future results, due to the omission of dropouts from the universe of the study, we think that the degree of underestimation is rather limited for all drugs (with the possible exceptions of heroin, crack, and PCP) and, more importantly, that trend estimates have been rather little affected. Short of having good trend data gathered directly from dropouts, we cannot close the case definitively. Nevertheless, we think that the available evidence argues strongly against alternative hypotheses-a conclusion that was also reached by the members of the 1982 NIDA technical review on this subject: ${ }^{112}$

> The analyses provided in this report show that failure to include these two groups (absentees and dropouts) does not substantially affect the estimates of the incidence and prevalence of drug use.

## EXAMPLES OF REVISED ESTIMATES FOR TWO DRUGS

Figure A-2 provides the prevalence and trend estimates of marijuana and cocaine, for both the lifetime and 30-day prevalence periods, showing (a) the original estimates based on participating seniors only; (b) the empirically derived, revised estimates based on all seniors, including the absentees; and (c) estimates for the entire class/age cohort. The last estimate was developed using the assumption judged above to be most reasonable-namely, that the prevalence rate for dropouts differs from the prevalence rate for participating seniors by 1.5 times the amount that the prevalence rate for absentees does. Estimates were calculated separately for each year, thus taking into account any differences from year to year in the participation or absentee rates. The dropout rate was taken as a constant $15 \%$ of the age group across all years, based on Census estimates.

As Figure A-2 illustrates, any difference in the slopes of the trend lines between the original and revised estimates is extremely, almost infinitesimally, small. The prevalence estimates are higher, of course, but not dramatically so, and certainly not enough to have any serious policy implications. As stated earlier, the corrections for 8th- and 10th-grade samples should be considerably less than for 12th grade, and there is certainly no reason to think that absentee or dropout rates at those levels have changed since 1991 in any way that could have changed their trend stories. Therefore, we have confidence that the trend stories that have appeared for the inschool populations represented in this study are very similar to the trend stories that would pertain if the entire age cohorts had been the universes from which we sampled.

[^92]TABLE A-1

## Comparison of 2002 Monitoring the Future Seniors, NSDUH Seniors, and NSDUH Dropouts

|  | MTF Seniors | NSDUH Seniors | NSDUH Dropouts <br> $\mathbf{1 7 - 1 8}$ |
| :--- | ---: | ---: | ---: |
| Marijuana |  |  |  |
| Lifetime | 47.8 | 41.8 | 61.1 |
| 30-Day | 21.5 | 16.9 | 27.7 |
| Cocaine |  |  |  |
| Lifetime | 7.8 | 5.6 | 19.1 |
| 30-Day | 2.3 | 0.6 | 3.0 |

TABLE A-2
Estimated Prevalence Rates for Marijuana and Cocaine, 2002, Based on Data From Monitoring the Future and The National Survey on Drug Use and Health

|  | Monitoring the Future |  |  |  |  | NSDUH |  |  | Combined Approach |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) <br> Seniors <br> Present | (2) <br> Seniors <br> Absent | (3) <br> Seniors <br>  <br> Present | (4) Dropouts | (5) <br> Total | (6) <br> Seniors | $\begin{gathered} \hline(7) \\ \text { Dropouts } \\ \text { (Ages si7- } \\ 18) \end{gathered}$ | (8) <br> Difference | (9) <br> Dropouts | (10) <br> Total |
| Marijuana |  |  |  |  |  |  |  |  |  |  |
| Lifetime | 47.8 | 63.0 | 50.4 | 70.5 | 53.4 | 41.8 | 61.1 | 19.3 | 69.7 | 53.3 |
| 30-Day | 21.5 | 32.6 | 23.4 | 38.2 | 25.6 | 16.9 | 27.7 | 10.8 | 34.2 | 25.0 |
| Cocaine |  |  |  |  |  |  |  |  |  |  |
| Lifetime | 7.8 | 15.5 | 9.1 | 19.4 | 10.6 | 5.6 | 19.1 | 13.5 | 22.6 | 11.1 |
| 30-Day | 2.3 | 4.5 | 2.7 | 5.6 | 3.1 | 0.6 | 3.0 | 2.4 | 5.1 | 3.1 |

NOTES: The entries in columns are as follows:
(1) Estimates based on all MTF seniors who completed questionnaires.
(2) Estimated prevalence rates among seniors who were absent (using data from seniors who were present, as explained in text).
(3) Estimated prevalence rates among seniors present plus seniors who were absent.
(4) Estimated prevalence rates among dropouts, based on assumptions described in text
(5) Estimated prevalence rates among seniors present, seniors who were absent, and same-age dropouts.
(6) Estimates based on all NSDUH respondents who were high school seniors.
(7) Estimates based on all NSDUH respondents, 17-18 years old, who were not attending school, had not graduated, and had not received a GED
(8) Difference between columns 6 and 7 , that is, the difference between all NSDUH seniors and dropouts; this is considered a valid estimate of the population difference between seniors and dropouts.
(9) Sum of columns 3 and 8 , combining MTF estimated use among all seniors (present and absent) plus the estimated population difference between all seniors and dropouts, resulting in an estimated prevalence among dropouts.
(10) Weighted combined estimate of prevalence, using MTF estimates for all seniors (column 3), and estimate of prevalence among dropouts (column 9).

FIGURE A-1
High School Completion by Persons 20-24 Years Old, 1972-2004
U.S. Population


SOURCE: U.S. Bureau of the Census, Current Populations Survey, published and unpublished data; and 1980 Census.

FIGURE A-2
Estimates of Prevalence and Trends for the Entire Age/Class Cohort, Adjusting for Absentees and Dropouts for Twelfth Graders


## Appendix B

## DEFINITION OF BACKGROUND AND DEMOGRAPHIC SUBGROUPS

Throughout this volume, data are presented for the total sample of 8th, 10th, and 12th graders. Data are also presented for many subgroups of students. The following are brief descriptions of the background and demographic subgroups used in this volume. (Note: All case counts provided in the tables are based on weighted $n \mathrm{~s}$.)

Total: The total sample of respondents in a given year of the study.
Gender: Male and female. Respondents with missing data on the question asking the respondent's gender are omitted from the data presented by gender.

College
Plans: Respondents not answering the college plans question are omitted from both groupings. College plans groupings are defined as follows, based on respondent's answer to the question about his or her expectation of graduating from a fouryear college:

None or under 4 years. Respondents who indicate they "definitely won't" or "probably won't" graduate from a four-year college program. (Note that, among those who do not expect to complete a four-year college program, a number still expect to get some postsecondary education.)

Complete 4 years. Respondents who indicate they "definitely will" or "probably will" graduate from a four-year college program.

Region: Region of the country in which the respondent's school is located. There are four mutually exclusive regions of the country based on Census categories, defined as follows:

Northeast. Census classifications of New England and Middle Atlantic states consist of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, and Pennsylvania.

North Central (Midwest). Census classifications of East North Central and West North Central states consist of Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, and Kansas.

South. Census classifications of South Atlantic, East South Central, and West South Central states consist of Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South Carolina, Georgia, Florida,

Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Louisiana, Oklahoma, and Texas.

West. Census classifications of Mountain and Pacific states consist of Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington, Oregon, and California.

## Population

Density:
Population density of the area in which the schools are located. There are three mutually exclusive groups that have been variously defined, as described below. (The 1975-1985 samples were based on the 1970 Census; in 1986 one-half of the sample was based on the 1970 Census, and the other half of the sample was based on the 1980 Census; in 1987 through 1993 the samples were based on the 1980 Census; in 1994 half of the sample was based on the 1980 Census and half on the 1990 Census; and after 1994, all samples were based on the 1990 Census.) The three levels of population density were defined in terms of Standard Metropolitan Statistical Area (SMSAs) designations through 1985 and then changed to the new Census Bureau classifications of Metropolitan Statistical Areas (MSAs), as described here:

Large MSAs. In the 1975-1985 samples these were the 12 largest Standard Metropolitan Statistical Areas (SMSA) as of the 1970 Census: New York, Los Angeles, Chicago, Philadelphia, Detroit, San Francisco, Washington, Boston, Pittsburgh, St. Louis, Baltimore, and Cleveland. From 1986 to 1994, the "large MSA" group consisted of the 16 largest MSAs as of the 1980 Census. These 16 MSAs include all of the MSAs mentioned above (except Cleveland) plus the MSAs of Dallas-Fort Worth, Houston, Nassau-Suffolk, Minneapolis-St. Paul, and Atlanta.

A new sample design was developed, based on the 1990 Census, beginning with the first-year half-sample of schools chosen in 1994. In the 1990s sample only the eight largest MSAs are represented with certainty at all three grade levels; the 16 next largest MSAs containing a single large city are divided into pairs, with half randomly assigned to the 12th- and 8th-grade samples and the other half assigned to the 10th-grade sample. (The purpose of this split was to reduce the study's burden on each MSA.) The eight largest MSAs are New York, Los Angeles, Chicago, Philadelphia PA-NJ, Detroit, Washington DC-MD-VA, Dallas-Ft. Worth, and Boston. The other 16 large MSAs are Houston, Atlanta, SeattleTacoma, Minneapolis MN-WI, St. Louis MO-IL, San Diego, Baltimore, Pittsburgh, Phoenix, Oakland, Cleveland, Miami, Newark, Denver, San Francisco, and Kansas City MO-KS.

Other MSAs. This category consists of all other Metropolitan Statistical Areas, as defined by the Census, except those listed previously. Except in the New England states, an MSA is a county or group of contiguous counties that contain at least one city of 50,000 inhabitants or more, or "twin cities" with a combined
population of at least 50,000. In the New England states MSAs consisted of towns and cities, instead of counties, until 1994, after which New England Consolidated Metropolitan Areas (NECMAs) were used to define MSAs. Each MSA must include at least one central city, and the complete title of an MSA identifies the central city or cities. For the complete description of the criteria used in defining MSAs, see the Office of Management and Budget publication, Metropolitan Statistical Areas, 1990 (NTIS-PB90-214420), Washington, D.C. The population living in MSAs is designated as the metropolitan population.

Non-MSAs. This category consists of all areas not designated as Metropolitan Statistical Areas-in other words, they do not contain a town of at least 50,000 population. The population living outside MSAs constitutes the nonmetropolitan population.

## Parental

Education: This is an average of mother's education and father's education based on the respondent's answers about the highest level of education achieved by each parent, using the following scale: (1) completed grade school or less, (2) some high school, (3) completed high school, (4) some college, (5) completed college, (6) graduate or professional school after college. Missing data was allowed on one of the two variables. The respondent is instructed, "If you were raised mostly by foster parents, stepparents, or others, answer for them. For example, if you have both a stepfather and a natural father, answer for the one that was most important in raising you."

Race/
Ethnicity: A general question asks, "How do you describe yourself?"
White. Consists of those respondents who describe themselves as White or Caucasian.

Black. Consists of those respondents who in 1975-1990 describe themselves as Black or Afro-American or who, after 1990, describe themselves as Black or African American.

Hispanic. Consists of those respondents who in 1975-1990 describe themselves as Mexican American or Chicano, or Puerto Rican or other Latin American. After 1990 this group includes those respondents who describe themselves as Mexican American or Chicano, Cuban American, Puerto Rican American, or other Latin American. After 1994, the term Puerto Rican American was shortened to Puerto Rican.

## Appendix C

## ESTIMATION OF SAMPLING ERRORS

This appendix provides some guidance for those who wish to calculate confidence intervals around the percentage estimates reported in this volume or to assess the statistical significance of differences between percentage estimates.

All percentages reported in this volume are estimates of the response percentage that would have been obtained if, instead of using a sample survey, we had surveyed all 8th-, 10th-, or 12th-grade students throughout the United States. Because we surveyed only a sample, and not the entire population, there are sampling errors associated with each estimate. For any particular percentage resulting from a sample survey, we cannot know exactly how much error has resulted from sampling, but we can make reasonably good estimates of "confidence intervals"-ranges within which the "true" population value is very likely to fall. The word "true" in this context refers to the value that would be found if we had surveyed the total population-that is, all 8th-, 10th-, or 12th-grade students in the United States. This concept of "true" population value does not take account of biases that might occur due to refusals, intentional or unintentional distortion of responses, faulty question wording, and other factors.

## CALCULATING CONFIDENCE INTERVALS

The most straightforward types of samples, from a statistical standpoint at least, are simple random samples. In such samples the confidence limits for a proportion are influenced by the size of the sample, or particular subsample, under consideration and also by the value of the proportion. (Although the estimates in this volume are expressed as percentages, this appendix generally deals with the equivalent proportion, for ease of presentation.)

The standard error ${ }^{113}$ of a proportion $p$ based on a simple random sample of $n$ cases is equal to:

$$
\begin{equation*}
\sqrt{p(1.0-p) / n} \tag{1}
\end{equation*}
$$

With a large number of cases, a symmetrical confidence interval around $p$ would be approximated by:

$$
\begin{equation*}
p \pm z \sqrt{p(1.0-p) / n} \tag{2}
\end{equation*}
$$

where $z$ is the appropriate value from the $z$-distribution. For a $95 \%$ confidence interval, for example, $z=1.96$.

[^93]Many of the proportions presented in this volume represent rare events, with values being close to zero. At those low values, a more appropriate confidence interval would be asymmetric. A more exact calculation for confidence intervals, which will usually produce asymmetric confidence limits, is: ${ }^{114}$

$$
\begin{equation*}
\frac{n}{n+z^{2}}\left[p+\frac{z^{2}}{2 n} \pm z \sqrt{\frac{p(1-p)}{n}+\frac{z^{2}}{4 n^{2}}}\right] \tag{3}
\end{equation*}
$$

## Significance of Difference Between Two Proportions

In addition to estimating the sampling error around a single proportion, we often wish to test the significance of a difference between two proportions, such as the difference between the proportion of marijuana users among male students as compared to among female students. The following formula produces a statistic that can be referred to a standard normal distribution, assuming reasonably large numbers of cases:

$$
\begin{equation*}
z=\frac{p_{1}-p_{2}}{\sqrt{p_{e}\left(1-p_{e}\right) \frac{n_{1}+n_{2}}{n_{1} n_{2}}}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{e}=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}} \tag{5}
\end{equation*}
$$

and $p_{e}$ is the estimated population proportion, $p_{1}$ is the observed proportion (of users) in the first group, $p_{2}$ is the observed proportion in the second group, $n_{1}$ is the number of cases in the first group, and $n_{2}$ is the number of cases in the second group.

## DESIGN EFFECTS IN COMPLEX SAMPLES

Formulas (1) - (5) are appropriate only for simple random samples. ${ }^{115}$ In complex samples such as those used in the Monitoring the Future surveys, it is also necessary to take account of the effect that the sampling design has on the size of standard errors. (A complex sample is any sample that is not a simple random sample.)

The Monitoring the Future sample design incorporates stratification, clustering, and differential weighting to adjust for differential probabilities of selection. These design elements influence

[^94][^95]sampling error. While stratification tends to heighten the precision of a sample compared with a simple random sample of the same size (usually reducing the sampling error), the effects of clustering and weighting reduce precision (usually increasing the sampling error). The net result is that complex sample designs almost always result in increased sampling error (but they usually result in more efficient samples in all other respects). Therefore, it is not appropriate to apply the standard, simple random sampling formulas to such complex samples in order to obtain estimates of sampling errors.

Methods exist to correct for this underestimation. Kish (1965) ${ }^{116}$ defines a correction term called the design effect (DEFF), where

$$
\begin{equation*}
D E F F=\frac{\text { actual sampling variance }}{\text { variance expected from a random sample }} \tag{6}
\end{equation*}
$$

Thus, if the actual sampling variance in a complex sample is four times as large as the expected sampling variance from a simple random sample with the same number of cases, the DEFF is 4.0. Because confidence intervals are proportionate to the square root of variance, the confidence intervals for such a sample would be twice as large (because the square root of 4 is 2 ) as the confidence interval for a simple random sample with the same number of cases. If an estimate of design effect is available, one of the simplest correction procedures to follow is to divide the actual numbers of cases by the design effect (thereby "depreciating" the actual number to its equivalent value in simple random sample terms) and then employ the standard statistical procedures that are available for application to simple random samples. Thus, for example, if the design effect (DEFF) for a sample of 16,000 were 4.0, then one could divide the 16,000 by 4.0 , and the result, 4,000 , could be entered as the value of $n$ in statistical tables and formulas designed for use with simple random samples. In short, the strategy involves dividing the actual number of cases by the appropriate DEFF in order to get a "simple random sampling equivalent $n$ " or, more simply, an "effective $n$ " for use in statistical procedures designed for random samples.

## Estimating Design Effects

In principle, every different statistic resulting from a complex sample can have its own design effect and, in fact, different statistics in the same sample may have quite different design effects. However, it is not feasible to compute every design effect, nor would it be feasible to report every one. Moreover, "Sampling errors computed from survey samples are themselves usually subject to great sampling variability. . . . Sampling theory, and experience with many and repeated computations, teach us not to rely on the precision of individual results, even when these are based on samples with large numbers of elements." ${ }^{117}$ Thus, in practice, design effects are averaged across a number of statistics, and these average values are used to estimate the design effects for other statistics based on the same sample. Sometimes a single design effect is applied to all the estimates in a given study. This is usually an oversimplification. In the present study, a rather extensive exploration of design effects revealed a number of systematic

[^96]differences. These systematic differences have to do with the particular measures being examined, the subgroups involved, and the question of whether a trend over time is being considered. Thus, we provide here a more elaborated set of estimates of design effects that vary along these several dimensions. ${ }^{118}$

## Factors Affecting Design Effects

Design effects are systematically related to two factors: the amount of "clustering" and the average cluster size. (Each school in the Monitoring the Future design can be considered a cluster of cases, or students.) Specifically,

$$
\begin{equation*}
D E F F=1+\rho(\tilde{n}-1) \tag{7}
\end{equation*}
$$

(Kish, 1965, section 5, p. 162; Kalton, 1983, p. $31^{119}$ ) where ñ is the average cluster size and $\rho$ is the intraclass correlation coefficient measuring the degree of cluster homogeneity. Note that the equality is approximate.

An important consequence of this relationship is that subgroups such as male or female that are typically represented within all clusters (that is, all schools) have a lower average cluster size. All (or virtually all) of the schools in the sample have both male and female students. Thus, each of these subgroups is spread more or less evenly across the full number of clusters (schools). Because each of these subgroups includes approximately half of the total sample, the average number of cases per cluster is about half as large as for the total sample, and this leads to a smaller design effect than is found for the total sample. (There is usually not much difference in $\rho$, the measure of cluster homogeneity.) Other subgroups involving college plans or parental education are also distributed across all clusters (although not as evenly as gender) and thus are subject to the same phenomenon of smaller design effects because of the smaller number of cases per cluster. This is in contrast to the situation with subgroups such as region of the country, each of which will normally have the same average cluster size as the total sample from the whole country-but considerably fewer clusters. The former type of subgroup (cross-class) will usually have a lower design effect, while the latter type of subgroup (segregated) will usually have a design effect similar to the overall. In this study, cross-class subgroups include gender, college plans, and parental education. Segregated subgroups include region and population density. Race/ethnicity is a mixed case in that there tends to be substantial clustering of various racial/ethnic groups by school. Consequently, design effects for minority racial/ethnic subgroups tend to be somewhat higher than average, though this tendency is not always evidenced. Because such a high proportion of respondents in most schools are White, the associated design effects for them tend to be similar to the overall design effects.

As an empirical generalization, we have observed that design effects tend to be related to the actual prevalence rates of substance use (or $p$ value). Thus, rarely used substances such as heroin typically have low design effects, while more commonly used substances such as cigarettes, alcohol, and marijuana typically have high design effects. A corollary fact is that the design

[^97]effect associated with the estimate of lifetime prevalence of any given substance is usually greater than (or equal to) the design effect associated with annual prevalence of that substance, which is in turn greater than the design effect for monthly prevalence. This tendency would imply that 8th-grade design effects would typically be lower than those for 10th grade, which would be lower than 12th grade (because prevalence rates are usually greater in the upper grades). However, 8th-grade schools tend to be more homogenous within schools in socioeconomic terms than are high schools, because they tend to draw from smaller geographic areas; this tends to make 8th-grade schools more homogenous with respect to drug use, which would lead to larger design effects. The combination of factors generally leads to slightly lower design effects for the lower grade levels (although not in all cases).

## Design Effects for Differences Between Two Proportions

Trends between two nonadjacent years. A trend over an interval greater than one year (for example, a comparison between 1994 and 1980) is basically a comparison between estimates from two independent samples. Therefore, the design effects for a single estimated proportion is appropriate. The relevant design effects for nonadjacent years are presented in Tables C-2a through C-2g.

Trends between adjacent years. One of the central purposes of the Monitoring the Future project is to monitor trends over time; indeed, the study procedures have been standardized across years insofar as possible in order to provide the opportunity for sensitive measurement of change. One of the factors designed to produce an added degree of consistency from one year to the next is the use of each school for two data collections, which means that for any two successive years, half of the sample of schools is the same. This means that there is a good deal of consistency in the sampling and clustering of the sample from one year to the next. As a result, when one-year comparisons are made between adjacent years, the design effects for the trend estimate are appreciably smaller than if completely independent samples of schools had been drawn each year. In other words, the samples in adjacent years are not independent; on the contrary, there is a considerable degree of covariance between them. This covariance, or partial "matching," reduces the design effect for differences observed between adjacent years, compared to what they would have been with totally independent samples.

In order to estimate the extent of "shrinkage," we calculated about 95 DEFFs for adjacent oneyear trend data where we had prevalence data for the same grade/drug combinations. The relationship between the two sets of DEFFs (prevalence versus one-year trend) was found to be approximately linear, with a product-moment correlation of .88 for DEFFs (and .89 for the square root of DEFF). This seemed sufficiently high to justify simply estimating the linear relation, predicting the trend DEFF from the prevalence DEFF, and using that to estimate the one-year trend DEFF for all measures. The resulting design effects are given in Tables C-1a through C-1g.

Comparisons between subgroups within a single year. We examined a variety of design effects involving comparisons between subgroups based on gender, college plans, and parental education. A considerable simplification was achieved when we noted that generally the average DEFF values for subgroup comparisons were quite similar to the average DEFF values for one-year trends.

With respect to segregated variables like region and population density, the subgroup samples are essentially independent; therefore, the prevalence design effects are appropriate for comparisons among these subgroups. Design effects for subgroup comparisons within a single year are provided in Tables C-3a through C-3g.

Differentiating design effects by drug classes. Our exploration of design effects led us to the conclusion that various groups of drugs tended to have very similar values. Thus, the following groupings of drugs were created for the purpose of simplification:
(a) An index of use of any illicit drug other than marijuana
(b) An index of use of any illicit drug; an index of use of any illicit drug including inhalants; and marijuana
(c) Hallucinogens, LSD, cocaine, and other cocaine (i.e., not crack)
(d) Nitrites, PCP, crack cocaine, heroin (including heroin with and without a needle), methampetamine, ice (crystal methamphetamine), methaqualone, Rohypnol, GHB, ketamine, and steroids
(e) Hallucinogens other than LSD, MDMA (ecstasy), narcotics other than heroin, OxyContin, sedatives (barbiturates), tranquilizers, bidis, Ritalin, androstenedione, creatine, and kreteks
(f) Inhalants, Vicodin, and amphetamines
(g) Alcohol (including use of alcohol and getting drunk), cigarettes, and smokeless tobacco

Design effects were found to be generally similar for all the drugs contained within each grouping but somewhat different across groupings. Therefore, each of the three general tables of design effects (Tables C1, C2, and C3) has seven parts corresponding to each of these seven drug groupings (i.e., parts a through g).

In general, intervals of use (lifetime, annual, 30-day, daily) are distinguished. For some substances, though, the variation by interval was slight enough to ignore.

On both logical and empirical grounds, there seemed little reason to distinguish among the "segregated" groups: total sample, and groups defined by region and by population density. The average cluster size should be about the same, and there should not be much variation in the degree to which drug use clusters by school within these categories. Some variation was evident empirically, but it did not appear to be systematic. Thus, these groups are assigned equal design effects.

Separate design effect values are provided for estimates of use (prevalence) among the three grade levels ( $8,10,12$ ) for subgroups defined by gender (males, females), college plans (planning to complete 4 years, not planning to complete 4 years), parental education (five levels), and race/ethnicity (African American, White, Hispanic). In some cases, particularly for the less prevalent drugs where design effects are very low, the estimated design effects in fact do not vary by group.

Estimates of design effects are provided for one-year trends. For trends across nonadjacent years, the standard design effects for prevalence are appropriate. Estimates of design effects are also provided separately for comparisons of subgroups within a given year.

## DETERMINING EFFECTIVE N'S

Tables C1 through C3 provide estimates of design effects that can be used to "shrink" the weighted numbers of cases given in each table in this volume to an "effective $n$," which is appropriate for use in standard formulas in calculating sampling errors, confidence intervals, and statistical significance of differences in proportions. The tables are in three sets: the first set (C1a through C-1g) is appropriately used for a one-year trend across adjacent years; the second set (C-2a through C-2g) is for a single prevalence or a comparison across nonadjacent years; and the third (C-3a through C-3g) for a comparison between subgroups in a single year. (Adjacent years differ from nonadjacent years in that half of the schools are part of both years' samples.)

To access the appropriate table, the reader should determine whether the design effect is needed for a one-year trend (Table C1), a single prevalence or a comparison of prevalence across nonadjacent years (Table C2), or a subgroup comparison within a year (Table C3); and which substance is involved (a-g).Within the table, the reader needs to determine which subgroup (or total sample), grade level, and interval of use are involved. Then, the appropriate design effect can be referenced and used to deflate the weighted number of cases to arrive at an "effective n." This effective n would be used in formulas (1) to (5), given previously.

As an example, suppose one wished to compare the 30 -day prevalence of marijuana use for the total 8th-grade sample in 1996 with the same measure in 1997. Tables 2-1 through 2-3, provided earlier in this volume, indicate that prevalence was $11.3 \%$ in 1996, based on 17,800 cases; and $10.2 \%$ in 1997, based on 18,600 cases. Table C-1b shows that an appropriate design effect for 8th-grade 30-day marijuana use is 3.2. Each year's $n$ would be divided by 3.2, producing effective $n$ 's of 5,562 and 5,812 . These effective $n$ 's should be used in formula (4), given earlier in this appendix, to test whether the difference in proportions between the two years is statistically significant.

## A Special Note on Racial/Ethnic Subgroups

As noted earlier in this volume, the prevalence estimates for racial/ethnic subgroups are reported only for two-year averages, instead of for single years, because of limited sample sizes and a higher degree of clustering. The design effects for prevalence rates for racial/ethnic subgroups provided in Tables C-2a through C-2g are appropriately applied to the number of cases provided for the two years combined. In calculating a one-year trend between the two most recent prevalence figures, however, one is in effect taking a trend between a prevalence based on data from the most recent single year and a prevalence based on data from a single year two years prior to the most recent year. For example, comparing the estimate based on combined 1994 and 1995 data with the combined 1993 and 1994 data is equivalent to comparing 1993 and 1995 because the 1994 observed value is contained in both data points and therefore cancels itself out. The design effects for trends provided in Tables C-1a through C-1g are therefore appropriately applied to one-half of the number of cases provided in each table for the combined years.

## A NOTE ON INTERPRETATION OF DIFFERENCES AND STATISTICAL SIGNIFICANCE

This appendix provides the reader with procedures to assess the statistical significance of differences over time or between groups. In the text of this report we frequently comment on particular differences over time or between groups in terms of drug use. In general, our conclusions are based to a considerable extent on patterns of cross-time changes rather than on the statistical significance of any single comparison. That is, we assess the overall pattern of evidence, rather than any single finding, to assess the likely validity of the finding.

There are at least five types of patterns that we inspect:

1. Replication across grades. Because the annual samples of 8th-, 10th-, and 12th-grade students are three completely independent samples, one pattern that we look for is the similarity or contrast in changes that occur in the three groups. Although there is no requirement that changes occur similarly in all three groups, to the extent that a change is similar (or at least not inconsistent), we are more confident in its validity.
2. Replication across subgroups. To the extent that a change has occurred across a broad range of subgroups, we are more confident of its validity. For example, if an increase in use occurs among males and females, among noncollege-bound and college-bound, in different regions, etc., we would be more inclined to accept the change as reflecting an underlying reality.
3. Replication across half-samples. Because half of the schools remain the same from one year to the next, any changes across a one-year interval can be examined for the half-sample that has remained constant. In other words, the data are examined for only the schools that provide data for both years. This removes any differences that may have occurred due simply to different schools being included.
4. Consistency across several years. Although each year's report emphasizes the changes in the most recent year, we pay careful attention to trends across longer time intervals. For example, when we observe a third or fourth consecutive year of consistent change in one direction (up or down), then we are more inclined to accept the validity of the general trend, even if none of the changes in any of the one-year intervals was statistically significant.
5. Replication across different variables. Another type of replication or validation involves examining trends in different variables that would be expected to covary. For example, we have observed that perceived risk of harm associated with use of a specific substance tends to covary (negatively) with actual use of the substance. Similarly, we would expect reports of friends' use of specific substances to covary (positively) with reports of the respondents’ own use. To the extent that different variables covary in the expected manner, then we would be more confident in interpreting the results.

Although we do not always discuss all of these various contributions to our confidence, we do generally assess them prior to making interpretations.

## Tables of Design Effects to Use in Calculating "Effective Ns"

Table C-1: One-Year Trends in Prevalence
(a) An index of use of any illicit drug other than marijuana
(b) An index of use of any illicit drug; an index of use of any illicit drug including inhalants; and marijuana
(c) Hallucinogens, LSD, cocaine, and other cocaine (i.e., not crack)
(d) Nitrites, PCP, crack cocaine, heroin (including heroin with and without a needle), methamphetamine, ice, methaqualone, Rohypnol, GHB, ketamine, and steroids
(e) Hallucinogens other than LSD, MDMA, narcotics other than heroin, OxyContin, Ritalin, sedatives (barbiturates), tranquilizers, bidis, kreteks, androstenedione, and creatine
(f) Inhalants, Vicodin, and amphetamines
(g) Alcohol (including use of alcohol and getting drunk), cigarettes, and smokeless tobacco

Table C-2: Prevalence or Change in Prevalence Across Nonadjacent Years
(a) An index of use of any illicit drug other than marijuana
(b) An index of use of any illicit drug; an index of use of any illicit drug including inhalants; and marijuana
(c) Hallucinogens, LSD, cocaine, and other cocaine (i.e., not crack)
(d) Nitrites, PCP, crack cocaine, heroin (including heroin with and without a needle), methamphetamine, ice, methaqualone, Rohypnol, GHB, ketamine, and steroids
(e) Hallucinogens other than LSD, MDMA, narcotics other than heroin, OxyContin, Ritalin, sedatives (barbiturates), tranquilizers, bidis, kreteks, androstenedione, and creatine
(f) Inhalants, Vicodin, and amphetamines
(g) Alcohol (including use of alcohol and getting drunk), cigarettes, and smokeless tobacco

Table C-3: Subgroup Comparisons Within Any Single Year
(a) An index of use of any illicit drug other than marijuana
(b) An index of use of any illicit drug; an index of use of any illicit drug including inhalants; and marijuana
(c) Hallucinogens, LSD, cocaine, and other cocaine (i.e., not crack)
(d) Nitrites, PCP, crack cocaine, heroin (including heroin with and without a needle), methamphetamine, ice, methaqualone, Rohypnol, GHB, ketamine, and steroids
(e) Hallucinogens other than LSD, MDMA, narcotics other than heroin, OxyContin, Ritalin, sedatives (barbiturates), tranquilizers, bidis, kreteks, androstenedione, and creatine
(f) Inhalants, Vicodin, and amphetamines
(g) Alcohol (including use of alcohol and getting drunk), cigarettes, and smokeless tobacco

## TABLE C-1a

Design Effects for 1-Year Trends in Prevalence of Use

|  |  | INDEX OF ANY IШCITDRUG OTHER THAN MARJJ UANA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past <br> 12 Months | $\begin{gathered} \text { Past } \\ 30 \text { Days } \end{gathered}$ | Daily |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| North Central, South, and West); |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade | 3.9 | 3.3 | 2.6 | 1.2 |
|  | 10th Grade | 4.3 | 3.6 | 2.7 | 1.2 |
|  | 12th Grade | 4.9 | 4.4 | 3.3 | 1.7 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.8 | 2.5 | 2.2 | 1.3 |
|  | 10th Grade | 3.1 | 2.7 | 2.4 | 1.2 |
|  | 12th Grade | 3.2 | 2.9 | 2.4 | 1.7 |
| Female | 8th Grade | 3.1 | 2.8 | 2.1 | 1.2 |
|  | 10th Grade | 3.3 | 2.9 | 2.2 | 1.1 |
|  | 12th Grade | 3.5 | 3.3 | 2.8 | 1.6 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.0 | 1.9 | 1.6 | 1.2 |
|  | 10th Grade | 2.2 | 2.1 | 1.8 | 1.4 |
|  | 12th Grade | 2.1 | 1.9 | 1.6 | 1.5 |
| Complete 4 years | 8th Grade | 3.5 | 2.8 | 2.3 | 1.2 |
|  | 10th Grade | 4.1 | 3.3 | 2.5 | 1.1 |
|  | 12th Grade | 4.4 | 3.8 | 3.0 | 1.7 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.1 | 2.0 | 1.6 | 1.1 |
|  | 10th Grade | 2.2 | 2.0 | 1.7 | 1.2 |
|  | 12th Grade | 2.4 | 2.2 | 1.7 | 1.4 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 4.0 | 3.8 | 2.9 | 1.4 |
|  | 10th Grade | 4.9 | 4.3 | 3.0 | 1.5 |
|  | 12th Grade | 4.2 | 4.0 | 2.9 | 2.0 |
| Black | 8th Grade | 2.7 | 2.0 | 1.5 | 1.2 |
|  | 10th Grade | 3.0 | 2.6 | 1.9 | 1.3 |
|  | 12th Grade | 3.7 | 3.3 | 3.0 | 1.6 |
| Hispanic | 8th Grade | 3.8 | 2.7 | 2.0 | 1.5 |
|  | 10th Grade | 4.5 | 2.9 | 1.8 | 1.3 |
|  | 12th Grade | 5.0 | 4.0 | 3.0 | 2.0 |

[^98]
## TABLE C-1b

Design Effects for 1-Year Trends in Prevalence of Use

|  |  | INDEX OF ANY IШCTTDRUG, INDEX OF ANY IШCIT DRUG INCLDING INHALANTS, AND MARJ UANA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past | Past |  |
|  |  | 12 Months | 30 Days | Daily |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| North Central, South, and West); |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade |  | 4.1 | 3.5 | 3.2 | 1.4 |
|  | 10th Grade | 5.0 | 4.3 | 3.4 | 1.5 |
|  | 12th Grade | 6.9 | 6.6 | 5.4 | 2.8 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.4 | 2.4 | 2.4 | 1.5 |
|  | 10th Grade | 3.4 | 3.0 | 3.0 | 1.5 |
|  | 12th Grade | 3.8 | 3.4 | 3.0 | 2.7 |
| Female | 8th Grade | 3.4 | 3.0 | 2.4 | 1.3 |
|  | 10th Grade | 4.0 | 3.4 | 2.7 | 1.1 |
|  | 12th Grade | 4.6 | 4.6 | 4.5 | 2.6 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.3 | 2.3 | 2.0 | 1.3 |
|  | 10th Grade | 2.8 | 2.8 | 2.7 | 2.0 |
|  | 12th Grade | 2.4 | 2.4 | 2.1 | 2.1 |
| Complete 4 years | 8th Grade | 3.3 | 2.4 | 2.4 | 1.5 |
|  | 10th Grade | 5.1 | 4.0 | 3.2 | 1.1 |
|  | 12th Grade | 6.1 | 5.3 | 4.5 | 3.0 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.1 | 2.1 | 1.9 | 1.1 |
|  | 10th Grade | 2.5 | 2.3 | 2.2 | 1.4 |
|  | 12th Grade | 3.0 | 2.8 | 2.3 | 1.9 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 4.5 | 4.4 | 4.1 | 1.9 |
|  | 10th Grade | 7.2 | 5.8 | 4.5 | 2.1 |
|  | 12th Grade | 5.0 | 5.0 | 4.2 | 3.7 |
| Black | 8th Grade | 3.0 | 2.1 | 1.3 | 1.1 |
|  | 10th Grade | 4.0 | 4.0 | 2.6 | 1.5 |
|  | 12th Grade | 6.0 | 6.0 | 6.0 | 2.5 |
| Hispanic | 8th Grade | 2.6 | 2.6 | 2.1 | 2.0 |
|  | 10th Grade | 4.9 | 3.0 | 1.6 | 1.5 |
|  | 12th Grade | 5.0 | 4.8 | 3.5 | 2.5 |

[^99]
## TABLE C-1c <br> Design Effects for 1-Year Trends in Prevalence of Use

## HAUUCINOGENS (UNADJ USTED AND ADJ USTED), <br> LSD, COCAINE, AND OTHER COCAINE

|  | Past | Past |
| :---: | :---: | :---: |
| Lifetime | 12 Months | 30 Days |

## SEGREGATED GROUPS:

Total Sample: Any Region (Northeast, North Central, South, and West);
Any Population Density Stratum (Large MSA, Other MSA, a nd Non-MSA)

| 8th Grade | 4.3 | 3.5 | 2.5 | 1.1 |
| :--- | :--- | :--- | :--- | :--- |
| 10th Grade | 4.3 | 3.5 | 2.5 | 1.1 |
| 12th Grade | 4.3 | 3.5 | 2.5 | 1.1 |

## CROSS-CLASS GROUPS:

Gender:

| Male | 8th Grade | 3.2 | 2.8 | 2.4 | 1.1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10th Grade | 3.2 | 2.8 | 2.4 | 1.1 |
|  | 12th Grade | 3.2 | 2.8 | 2.4 | 1.1 |
| Female | 8th Grade | 3.2 | 2.8 | 2.0 | 1.1 |
|  | 10th Grade | 3.2 | 2.8 | 2.0 | 1.1 |
|  | 12th Grade | 3.2 | 2.8 | 2.0 | 1.1 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
|  | 10th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
|  | 12th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
| Complete 4 years | 8th Grade | 4.2 | 3.2 | 2.4 | 1.1 |
|  | 10th Grade | 4.2 | 3.2 | 2.4 | 1.1 |
|  | 12th Grade | 4.2 | 3.2 | 2.4 | 1.1 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.1 | 1.9 | 1.5 | 1.1 |
|  | 10th Grade | 2.1 | 1.9 | 1.5 | 1.1 |
|  | 12th Grade | 2.1 | 1.9 | 1.5 | 1.1 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 4.2 | 3.8 | 2.8 | 1.2 |
|  | 10th Grade | 4.2 | 3.8 | 2.8 | 1.2 |
|  | 12th Grade | 4.2 | 3.8 | 2.8 | 1.2 |
| Black | 8th Grade | 1.4 | 1.4 | 1.3 | 1.2 |
|  | 10th Grade | 1.4 | 1.4 | 1.3 | 1.2 |
|  | 12th Grade | 1.4 | 1.4 | 1.3 | 1.2 |
| Hispanic | 8th Grade | 6.1 | 3.3 | 2.3 | 1.2 |
|  | 10th Grade | 6.1 | 3.3 | 2.3 | 1.2 |
|  | 12th Grade | 6.1 | 3.3 | 2.3 | 1.2 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE C-1d

Design Effects for 1-Year Trends in Prevalence of Use


## SEGREGATED GROUPS:

Total Sample: Any Region (Northeast, North Central, South, and West);
Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA)

| 8th Grade | 1.9 | 1.3 | 1.3 | 1.1 |
| :--- | :--- | :--- | :--- | :--- |
| 10th Grade | 1.9 | 1.3 | 1.3 | 1.1 |
| 12th Grade | 1.9 | 1.3 | 1.3 | 1.1 |

## CROSS-CLASS GROUPS:

Gender:

| Male | 8th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
|  | 12th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
| Female | 8th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
|  | 10th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
|  | 12th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 1.4 | 1.4 | 1.4 | 1.1 |
|  | 10th Grade | 1.4 | 1.4 | 1.4 | 1.1 |
|  | 12th Grade | 1.4 | 1.4 | 1.4 | 1.1 |
| Complete 4 years | 8th Grade | 1.5 | 1.3 | 1.1 | 1.1 |
|  | 10th Grade | 1.5 | 1.3 | 1.1 | 1.1 |
|  | 12th Grade | 1.5 | 1.3 | 1.1 | 1.1 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
|  | 10th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
|  | 12th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 1.6 | 1.5 | 1.4 | 1.2 |
|  | 10th Grade | 1.6 | 1.5 | 1.4 | 1.2 |
|  | 12th Grade | 1.6 | 1.5 | 1.4 | 1.2 |
| Black | 8th Grade | 1.8 | 1.8 | 1.8 | 1.2 |
|  | 10th Grade | 1.8 | 1.8 | 1.8 | 1.2 |
|  | 12th Grade | 1.8 | 1.8 | 1.8 | 1.2 |
| Hispanic | 8th Grade | 2.0 | 1.6 | 1.5 | 1.2 |
|  | 10th Grade | 2.0 | 1.6 | 1.5 | 1.2 |
|  | 12th Grade | 2.0 | 1.6 | 1.5 | 1.2 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE C-1e

Design Effects for 1-Year Trends in Prevalence of Use

| HAUUCINOGENS OTHER THAN LSD, |  |  |  |
| :---: | :---: | :---: | :---: |
| MDMA (ECSTASY), NARCOTICS OTHER THAN |  |  |  |
| HEROIN, OXYCONTIN, RTAUN, SEDATIVES |  |  |  |
| (BARBTURATES), TRANQUIUZERS, BIDIS, |  |  |  |
| KREIEKS, ANDROSTENEDIONE, AND CREATINE |  |  |  |
| Past Past |  |  |  |
| Lifetime $\quad 12$ Months 30 Days Daily |  |  |  |

## SEGREGATED GROUPS:

Total Sample: Any Region (Northeast, North Central, South, and West);
Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA)

| 8th Grade | 2.4 | 2.2 | 1.5 | 1.1 |
| :--- | :--- | :--- | :--- | :--- |
| 10th Grade | 2.4 | 2.2 | 1.5 | 1.1 |
| 12th Grade | 2.4 | 2.2 | 1.5 | 1.1 |

## CROSS-CLASS GROUPS:

Gender:

| Male | 8th Grade | 2.1 | 2.1 | 1.6 | 1.1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10th Grade | 2.1 | 2.1 | 1.6 | 1.1 |
|  | 12th Grade | 2.1 | 2.1 | 1.6 | 1.1 |
| Female | 8th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 10th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 12th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 10th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 12th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
| Complete 4 years | 8th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 10th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 12th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 10th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 12th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 2.5 | 2.5 | 1.9 | 1.2 |
|  | 10th Grade | 2.5 | 2.5 | 1.9 | 1.2 |
|  | 12th Grade | 2.5 | 2.5 | 1.9 | 1.2 |
| Black | 8th Grade | 1.5 | 1.5 | 1.4 | 1.2 |
|  | 10th Grade | 1.5 | 1.5 | 1.4 | 1.2 |
|  | 12th Grade | 1.5 | 1.5 | 1.4 | 1.2 |
| Hispanic | 8th Grade | 1.6 | 1.4 | 1.3 | 1.2 |
|  | 10th Grade | 1.6 | 1.4 | 1.3 | 1.2 |
|  | 12th Grade | 1.6 | 1.4 | 1.3 | 1.2 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE C-1f

Design Effects for 1-Year Trends in Prevalence of Use

| INHALANTS, VICODIN, AND |  |  |
| :---: | :---: | :---: |
| AMPHEIAMINES (UNADJ USTED AND ADJ USTED) |  |  |
| Past |  |  | Past

## SEGREGATED GROUPS:

Total Sample: Any Region (Northeast, North Central, South, and West);
Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA)

| 8th Grade | 3.5 | 3.0 | 2.1 | 1.1 |
| :--- | :--- | :--- | :--- | :--- |
| 10th Grade | 3.5 | 3.0 | 2.1 | 1.1 |
| 12th Grade | 3.5 | 3.0 | 2.1 | 1.1 |

## CROSS-CLASS GROUPS:

Gender:

| Male | 8th Grade | 2.7 | 2.4 | 1.9 | 1.1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10th Grade | 2.7 | 2.4 | 1.9 | 1.1 |
|  | 12th Grade | 2.7 | 2.4 | 1.9 | 1.1 |
| Female | 8th Grade | 2.7 | 2.7 | 1.9 | 1.1 |
|  | 10th Grade | 2.7 | 2.7 | 1.9 | 1.1 |
|  | 12th Grade | 2.7 | 2.7 | 1.9 | 1.1 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
|  | 10th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
|  | 12th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
| Complete 4 years | 8th Grade | 3.0 | 2.7 | 2.0 | 1.1 |
|  | 10th Grade | 3.0 | 2.7 | 2.0 | 1.1 |
|  | 12th Grade | 3.0 | 2.7 | 2.0 | 1.1 |
| Parental Education: 2.0 |  |  |  |  |  |
| Any stratum | 8th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
|  | 10th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
|  | 12th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 3.3 | 3.2 | 1.8 | 1.2 |
|  | 10th Grade | 3.3 | 3.2 | 1.8 | 1.2 |
|  | 12th Grade | 3.3 | 3.2 | 1.8 | 1.2 |
| Black | 8th Grade | 3.6 | 2.4 | 1.8 | 1.2 |
|  | 10th Grade | 3.6 | 2.4 | 1.8 | 1.2 |
|  | 12th Grade | 3.6 | 2.4 | 1.8 | 1.2 |
| Hispanic | 8th Grade | 2.6 | 2.3 | 1.5 | 1.2 |
|  | 10th Grade | 2.6 | 2.3 | 1.5 | 1.2 |
|  | 12th Grade | 2.6 | 2.3 | 1.5 | 1.2 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE C-1g Design Effects for 1-Year Trends in Prevalence of Use

|  |  | ALCOHOLAND BEEN DRUNK |  | CIGAREIIES AND SMOKELESS TOBACCO |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime, <br> Past 12 Months, Past 30 Days, 5+/2 Weeks | Daily | Lifetime, Past 30 Days, Daily | Half-pack orMore perDay |
| SEGREGATED GROUPS: <br> Total Sample: Any Region (Northeast, North Central, South, and West); Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | 8th Grade | 3.7 | 1.3 | 3.8 | 3.0 |
|  | 10th Grade | 3.7 | 1.3 | 3.8 | 3.0 |
|  | 12th Grade | 3.7 | 1.3 | 3.8 | 3.0 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.4 | 1.3 | 2.3 | 2.0 |
|  | 10th Grade | 2.4 | 1.3 | 2.3 | 2.0 |
|  | 12th Grade | 2.4 | 1.3 | 2.3 | 2.0 |
| Female | 8th Grade | 3.1 | 1.3 | 3.6 | 2.6 |
|  | 10th Grade | 3.1 | 1.3 | 3.6 | 2.6 |
|  | 12th Grade | 3.1 | 1.3 | 3.6 | 2.6 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.1 | 1.3 | 2.0 | 2.0 |
|  | 10th Grade | 2.1 | 1.3 | 2.0 | 2.0 |
|  | 12th Grade | 2.1 | 1.3 | 2.0 | 2.0 |
| Complete 4 years | 8th Grade | 3.2 | 1.3 | 3.2 | 2.3 |
|  | 10th Grade | 3.2 | 1.3 | 3.2 | 2.3 |
|  | 12th Grade | 3.2 | 1.3 | 3.2 | 2.3 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.0 | 1.3 | 2.1 | 1.9 |
|  | 10th Grade | 2.0 | 1.3 | 2.1 | 1.9 |
|  | 12th Grade | 2.0 | 1.3 | 2.1 | 1.9 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 3.6 | 1.4 | 3.7 | 2.6 |
|  | 10th Grade | 3.6 | 1.4 | 3.7 | 2.6 |
|  | 12th Grade | 3.6 | 1.4 | 3.7 | 2.6 |
| Black | 8th Grade | 4.5 | 1.4 | 2.4 | 1.4 |
|  | 10th Grade | 4.5 | 1.4 | 2.4 | 1.4 |
|  | 12th Grade | 4.5 | 1.4 | 2.4 | 1.4 |
| Hispanic | 8th Grade | 3.0 | 1.4 | 2.7 | 1.9 |
|  | 10th Grade | 3.0 | 1.4 | 2.7 | 1.9 |
|  | 12th Grade | 3.0 | 1.4 | 2.7 | 1.9 |

[^100]
# TABLE C-2a Design Effects for (a) Prevalence of Use or (b) a Change in Prevalence of Use Across Nonadjacent Years 

|  |  | INDEX OF ANY IШCITDRUG OTHER THAN MARJJ UANA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Past |  | Past | Daily |
|  |  | Lifetime | 12 Months | 30 Days |  |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| North Central, South, and West); |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade | 5.6 | 4.6 | 3.3 | 1.3 |
|  | 10th Grade | 6.2 | 5.0 | 3.4 | 1.4 |
|  | 12th Grade | 7.2 | 6.4 | 4.6 | 2.0 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 3.6 | 3.2 | 2.6 | 1.4 |
|  | 10th Grade | 4.1 | 3.5 | 3.0 | 1.4 |
|  | 12th Grade | 4.4 | 3.7 | 3.0 | 2.0 |
| Female | 8th Grade | 4.2 | 3.7 | 2.4 | 1.3 |
|  | 10th Grade | 4.5 | 3.9 | 2.6 | 1.2 |
|  | 12th Grade | 4.9 | 4.6 | 3.6 | 1.9 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.3 | 2.2 | 1.8 | 1.3 |
|  | 10th Grade | 2.7 | 2.5 | 2.2 | 1.5 |
|  | 12th Grade | 2.4 | 2.3 | 1.9 | 1.6 |
| Complete 4 years | 8th Grade | 4.8 | 3.6 | 2.8 | 1.4 |
|  | 10th Grade | 5.9 | 4.5 | 3.2 | 1.2 |
|  | 12th Grade | 6.4 | 5.3 | 4.0 | 2.1 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.4 | 2.2 | 1.8 | 1.2 |
|  | 10th Grade | 2.6 | 2.3 | 2.0 | 1.3 |
|  | 12th Grade | 2.9 | 2.6 | 2.0 | 1.5 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 5.0 | 4.8 | 3.6 | 1.8 |
|  | 10th Grade | 6.1 | 5.3 | 3.8 | 1.9 |
|  | 12th Grade | 5.2 | 5.0 | 3.7 | 2.5 |
| Black | 8th Grade | 3.3 | 2.5 | 1.8 | 1.5 |
|  | 10th Grade | 3.8 | 3.3 | 2.4 | 1.6 |
|  | 12th Grade | 4.6 | 4.1 | 3.8 | 2.0 |
| Hispanic | 8th Grade | 4.7 | 3.4 | 2.5 | 1.8 |
|  | 10th Grade | 5.7 | 3.6 | 2.3 | 1.6 |
|  | 12th Grade | 5.0 | 4.0 | 3.0 | 2.0 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

# TABLE C-2b Design Effects for (a) Prevalence of Use or (b) a Change in Prevalence of Use Across Nonadjacent Years 

|  |  | INDEX OF ANY IШСाTDRUG, INDEX OF ANY IШСाT DRUG INCLUDING INHALANTS, AND MARJ UANA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past <br> 12 Months | $\begin{gathered} \text { Past } \\ 30 \text { Days } \end{gathered}$ | Daily |
|  |  |  |  |  |  |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| North Central, South, and West); |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade | 5.8 | 4.8 | 4.3 | 1.6 |
|  | 10th Grade | 7.5 | 6.2 | 4.7 | 1.7 |
|  | 12th Grade | 10.7 | 10.2 | 8.1 | 3.6 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 3.0 | 3.0 | 3.0 | 1.8 |
|  | 10th Grade | 4.6 | 4.0 | 4.0 | 1.7 |
|  | 12th Grade | 5.4 | 4.6 | 4.0 | 3.5 |
| Female | 8th Grade | 4.6 | 4.0 | 2.9 | 1.4 |
|  | 10th Grade | 5.7 | 4.6 | 3.5 | 1.1 |
|  | 12th Grade | 6.8 | 6.7 | 6.5 | 3.3 |
| College Plans: |  |  |  |  |  |
| None orunder 4 years | 8th Grade | 2.7 | 2.7 | 2.2 | 1.5 |
|  | 10th Grade | 3.7 | 3.7 | 3.4 | 2.2 |
|  | 12th Grade | 3.0 | 3.0 | 2.5 | 2.5 |
| Complete 4 years | 8th Grade | 4.5 | 3.0 | 3.0 | 1.7 |
|  | 10th Grade | 7.6 | 5.7 | 4.3 | 1.1 |
|  | 12th Grade | 9.3 | 8.0 | 6.6 | 3.9 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.5 | 2.4 | 2.0 | 1.2 |
|  | 10th Grade | 3.1 | 2.8 | 2.6 | 1.6 |
|  | 12th Grade | 4.0 | 3.6 | 2.8 | 2.0 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 5.6 | 5.5 | 5.1 | 2.4 |
|  | 10th Grade | 9.0 | 7.3 | 5.6 | 2.6 |
|  | 12th Grade | 6.3 | 6.3 | 5.3 | 4.6 |
| Black | 8th Grade | 3.8 | 2.6 | 1.6 | 1.4 |
|  | 10th Grade | 5.0 | 5.0 | 3.3 | 1.9 |
|  | 12th Grade | 7.5 | 7.5 | 7.5 | 3.1 |
| Hispanic | 8th Grade | 3.3 | 3.3 | 2.6 | 2.5 |
|  | 10th Grade | 6.1 | 3.8 | 2.0 | 1.9 |
|  | 12th Grade | 5.0 | 4.8 | 4.0 | 3.0 |

[^101]
# TABLE C-2c <br> Design Effects for (a) Prevalence of Use or (b) a Change in Prevalence of Use Across Nonadjacent Years 

|  |  | HAUUCINOGENS (UNADJ USTED AND ADJ USTED), LSD, COCAINE, AND OTHER COCAINE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past | $30 \text { Days }$ | Daily |
|  |  | 12 Months |  |  |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| North Central, South, and West); |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade |  | 6.2 | 4.9 | 3.2 | 1.2 |
|  | 10th Grade | 6.2 | 4.9 | 3.2 | 1.2 |
|  | 12th Grade | 6.2 | 4.9 | 3.2 | 1.2 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 4.3 | 3.7 | 2.9 | 1.2 |
|  | 10th Grade | 4.3 | 3.7 | 2.9 | 1.2 |
|  | 12th Grade | 4.3 | 3.7 | 2.9 | 1.2 |
| Female | 8th Grade | 4.4 | 3.6 | 2.2 | 1.2 |
|  | 10th Grade | 4.4 | 3.6 | 2.2 | 1.2 |
|  | 12th Grade | 4.4 | 3.6 | 2.2 | 1.2 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.2 | 2.0 | 1.6 | 1.2 |
|  | 10th Grade | 2.2 | 2.0 | 1.6 | 1.2 |
|  | 12th Grade | 2.2 | 2.0 | 1.6 | 1.2 |
| Complete 4 years | 8th Grade | 6.0 | 4.4 | 3.0 | 1.2 |
|  | 10th Grade | 6.0 | 4.4 | 3.0 | 1.2 |
|  | 12th Grade | 6.0 | 4.4 | 3.0 | 1.2 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.4 | 2.1 | 1.7 | 1.2 |
|  | 10th Grade | 2.4 | 2.1 | 1.7 | 1.2 |
|  | 12th Grade | 2.4 | 2.1 | 1.7 | 1.2 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 5.3 | 4.8 | 3.5 | 1.5 |
|  | 10th Grade | 5.3 | 4.8 | 3.5 | 1.5 |
|  | 12th Grade | 5.3 | 4.8 | 3.5 | 1.5 |
| Black | 8th Grade | 1.8 | 1.8 | 1.6 | 1.5 |
|  | 10th Grade | 1.8 | 1.8 | 1.6 | 1.5 |
|  | 12th Grade | 1.8 | 1.8 | 1.6 | 1.5 |
| Hispanic | 8th Grade | 7.6 | 4.1 | 2.9 | 1.5 |
|  | 10th Grade | 7.6 | 4.1 | 2.9 | 1.5 |
|  | 12th Grade | 7.6 | 4.1 | 2.9 | 1.5 |

[^102]
# TABLE C-2d <br> Design Effects for (a) Prevalence of Use or (b) a Change in Prevalence of Use Across Nonadjacent Years 

|  |  | NITRIES, PCP, CRACK COCAINE, HEROIN (INCUDING HEROIN WTH AND MTHOUTA NEEDLE), METHAMPHETAMINE, ICE, MEIHAQUALONE, ROHYPNOL, GHB, KETAMINE, AND STEROIDS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Past | Past |  |
|  |  | Lifetime | 12 Months | 30 Days | Daily |
| SEGREGATED GROUPS: <br> Total Sample: Any Region (Northeast, <br> North Central, South, and West); <br> Any Population Density Stratum (Large <br> MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | 8th Grade | 2.0 | 1.5 | 1.5 | 1.2 |
|  | 10th Grade | 2.0 | 1.5 | 1.5 | 1.2 |
|  | 12th Grade | 2.0 | 1.5 | 1.5 | 1.2 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 1.4 | 1.4 | 1.4 | 1.2 |
|  | 10th Grade | 1.4 | 1.4 | 1.4 | 1.2 |
|  | 12th Grade | 1.4 | 1.4 | 1.4 | 1.2 |
| Female | 8th Grade | 2.1 | 1.7 | 1.5 | 1.2 |
|  | 10th Grade | 2.1 | 1.7 | 1.5 | 1.2 |
|  | 12th Grade | 2.1 | 1.7 | 1.5 | 1.2 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 1.6 | 1.6 | 1.6 | 1.2 |
|  | 10th Grade | 1.6 | 1.6 | 1.6 | 1.2 |
|  | 12th Grade | 1.6 | 1.6 | 1.6 | 1.2 |
| Complete 4 years | 8th Grade | 1.7 | 1.4 | 1.2 | 1.2 |
|  | 10th Grade | 1.7 | 1.4 | 1.2 | 1.2 |
|  | 12th Grade | 1.7 | 1.4 | 1.2 | 1.2 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 1.4 | 1.4 | 1.4 | 1.2 |
|  | 10th Grade | 1.4 | 1.4 | 1.4 | 1.2 |
|  | 12th Grade | 1.4 | 1.4 | 1.4 | 1.2 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 2.0 | 1.9 | 1.8 | 1.5 |
|  | 10th Grade | 2.0 | 1.9 | 1.8 | 1.5 |
|  | 12th Grade | 2.0 | 1.9 | 1.8 | 1.5 |
| Black | 8th Grade | 2.3 | 2.3 | 2.3 | 1.5 |
|  | 10th Grade | 2.3 | 2.3 | 2.3 | 1.5 |
|  | 12th Grade | 2.3 | 2.3 | 2.3 | 1.5 |
| Hispanic | 8th Grade | 2.5 | 2.0 | 1.9 | 1.5 |
|  | 10th Grade | 2.5 | 2.0 | 1.9 | 1.5 |
|  | 12th Grade | 2.5 | 2.0 | 1.9 | 1.5 |

[^103]
## TABLE C-2e <br> Design Effects for (a) Prevalence of Use or (b) a Change in Prevalence of Use Across Nonadjacent Years

|  |  | HAUUCINOGENS OTHER THAN LSD, MDMA (ECSTASY), NARCOTICS OTHER THAN HEROIN, OXYCONTIN, RTIAUN, SEDATIVES <br> (BARBTURATES), TRANQUIUZERS, BIDIS, KREIEKS, ANDROSTENEDIONE, AND CREATINE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past <br> 12 Months | $\begin{gathered} \text { Past } \\ 30 \text { Days } \end{gathered}$ | Daily |
| SEGREGATED GROUPS: <br> Total Sample: Any Region (Northeast, North Central, South, and West); Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  |  |  |  |  |  |
|  | 8th Grade | 2.9 | 2.6 | 1.7 | 1.2 |
|  | 10th Grade | 2.9 | 2.6 | 1.7 | 1.2 |
|  | 12th Grade | 2.9 | 2.6 | 1.7 | 1.2 |
| CROSS-CLASS GROUPS: Gender: |  |  |  |  |  |
|  |  |  |  |  |  |
| Male | 8th Grade | 2.4 | 2.4 | 1.9 | 1.2 |
|  | 10th Grade | 2.4 | 2.4 | 1.9 | 1.2 |
|  | 12th Grade | 2.4 | 2.4 | 1.9 | 1.2 |
| Female | 8th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
|  | 10th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
|  | 12th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
|  | 10th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
|  | 12th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
| Complete 4 years | 8th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
|  | 10th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
|  | 12th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
|  | 10th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
|  | 12th Grade | 2.2 | 1.9 | 1.4 | 1.2 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 3.1 | 3.1 | 2.4 | 1.5 |
|  | 10th Grade | 3.1 | 3.1 | 2.4 | 1.5 |
|  | 12th Grade | 3.1 | 3.1 | 2.4 | 1.5 |
| Black | 8th Grade | 1.9 | 1.9 | 1.8 | 1.5 |
|  | 10th Grade | 1.9 | 1.9 | 1.8 | 1.5 |
|  | 12th Grade | 1.9 | 1.9 | 1.8 | 1.5 |
| Hispanic | 8th Grade | 2.0 | 1.8 | 1.6 | 1.5 |
|  | 10th Grade | 2.0 | 1.8 | 1.6 | 1.5 |
|  | 12th Grade | 2.0 | 1.8 | 1.6 | 1.5 |

[^104]TABLE C-2f
Design Effects for (a) Prevalence of Use or (b) a Change in Prevalence of Use Across Nonadjacent Years

|  |  | INHALANTS, VICODIN, AND <br> AMPHETAMINES (UNADJ USTED AND ADJ USTED) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past | Past |  |
|  |  | 12 Months | 30 Days | Daily |
| SEGREGATED GROUPS: <br> Total Sample: Any Region (Northeast, <br> North Central, South, and West); <br> Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | 8th Grade | 4.8 | 4.0 | 2.4 | 1.2 |
|  | 10th Grade | 4.8 | 4.0 | 2.4 | 1.2 |
|  | 12th Grade | 4.8 | 4.0 | 2.4 | 1.2 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 3.4 | 2.9 | 2.0 | 1.2 |
|  | 10th Grade | 3.4 | 2.9 | 2.0 | 1.2 |
|  | 12th Grade | 3.4 | 2.9 | 2.0 | 1.2 |
| Female | 8th Grade | 3.5 | 3.4 | 2.1 | 1.2 |
|  | 10th Grade | 3.5 | 3.4 | 2.1 | 1.2 |
|  | 12th Grade | 3.5 | 3.4 | 2.1 | 1.2 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.1 | 1.8 | 1.5 | 1.2 |
|  | 10th Grade | 2.1 | 1.8 | 1.5 | 1.2 |
|  | 12th Grade | 2.1 | 1.8 | 1.5 | 1.2 |
| Complete 4 years | 8th Grade | 4.0 | 3.5 | 2.3 | 1.2 |
|  | 10th Grade | 4.0 | 3.5 | 2.3 | 1.2 |
|  | 12th Grade | 4.0 | 3.5 | 2.3 | 1.2 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.3 | 2.1 | 1.6 | 1.2 |
|  | 10th Grade | 2.3 | 2.1 | 1.6 | 1.2 |
|  | 12th Grade | 2.3 | 2.1 | 1.6 | 1.2 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 4.1 | 4.0 | 2.3 | 1.5 |
|  | 10th Grade | 4.1 | 4.0 | 2.3 | 1.5 |
|  | 12th Grade | 4.1 | 4.0 | 2.3 | 1.5 |
| Black | 8th Grade | 4.5 | 3.0 | 2.3 | 1.5 |
|  | 10th Grade | 4.5 | 3.0 | 2.3 | 1.5 |
|  | 12th Grade | 4.5 | 3.0 | 2.3 | 1.5 |
| Hispanic | 8th Grade | 3.3 | 2.9 | 1.9 | 1.5 |
|  | 10th Grade | 3.3 | 2.9 | 1.9 | 1.5 |
|  | 12th Grade | 3.3 | 2.9 | 1.9 | 1.5 |

[^105]
## TABLE C-2g

Design Effects for (a) Prevalence of Use or (b) a Change in Prevalence of Use Across Nonadjacent Years

|  |  | ALCOHOLAND BEEN DRUNK |  | CIGAREIIES AND SMOKELESS TOBACCO |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime, Past 12 Months, Past 30 Days, 5+/2 Weeks | Daily | Lifetime, Past 30 Days, Daily | Half-pack orMore perDay |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, North Central South, and West): |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade | 5.2 | 1.4 | 5.4 | 3.9 |
|  | 10th Grade | 5.2 | 1.4 | 5.4 | 3.9 |
|  | 12th Grade | 5.2 | 1.4 | 5.4 | 3.9 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.9 | 1.4 | 2.8 | 2.2 |
|  | 10th Grade | 2.9 | 1.4 | 2.8 | 2.2 |
|  | 12th Grade | 2.9 | 1.4 | 2.8 | 2.2 |
| Female | 8th Grade | 4.2 | 1.4 | 5.1 | 3.3 |
|  | 10th Grade | 4.2 | 1.4 | 5.1 | 3.3 |
|  | 12th Grade | 4.2 | 1.4 | 5.1 | 3.3 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.5 | 1.4 | 2.3 | 2.2 |
|  | 10th Grade | 2.5 | 1.4 | 2.3 | 2.2 |
|  | 12th Grade | 2.5 | 1.4 | 2.3 | 2.2 |
| Complete 4 years | 8th Grade | 4.3 | 1.4 | 4.3 | 2.7 |
|  | 10th Grade | 4.3 | 1.4 | 4.3 | 2.7 |
|  | 12th Grade | 4.3 | 1.4 | 4.3 | 2.7 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.3 | 1.4 | 2.4 | 2.0 |
|  | 10th Grade | 2.3 | 1.4 | 2.4 | 2.0 |
|  | 12th Grade | 2.3 | 1.4 | 2.4 | 2.0 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 4.5 | 1.8 | 4.6 | 3.3 |
|  | 10th Grade | 4.5 | 1.8 | 4.6 | 3.3 |
|  | 12th Grade | 4.5 | 1.8 | 4.6 | 3.3 |
| Black | 8th Grade | 5.6 | 1.8 | 3.0 | 1.8 |
|  | 10th Grade | 5.6 | 1.8 | 3.0 | 1.8 |
|  | 12th Grade | 5.6 | 1.8 | 3.0 | 1.8 |
| Hispanic | 8th Grade | 3.8 | 1.8 | 3.4 | 2.4 |
|  | 10th Grade | 3.8 | 1.8 | 3.4 | 2.4 |
|  | 12th Grade | 3.8 | 1.8 | 3.4 | 2.4 |

[^106]
## TABLE C-3a <br> Design Effects for Subgroup Comparisons within Any Single Year

|  |  | INDEX OF ANY IШCITDRUG OTHER THAN MARJJ UANA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past | Past |  |
|  |  | 12 Months | 30 Days | Daily |
| SEGREGATED GROUPS: <br> Total Sample: Any Region (Northeast, North Central, South, and West); Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA) |  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | 8th Grade | 5.6 | 4.6 | 3.3 | 1.3 |
|  | 10th Grade | 6.2 | 5.0 | 3.4 | 1.4 |
|  | 12th Grade | 7.2 | 6.4 | 4.6 | 2.0 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.8 | 2.5 | 2.2 | 1.3 |
|  | 10th Grade | 3.1 | 2.7 | 2.4 | 1.2 |
|  | 12th Grade | 3.2 | 2.9 | 2.4 | 1.7 |
| Female | 8th Grade | 3.1 | 2.8 | 2.1 | 1.2 |
|  | 10th Grade | 3.3 | 2.9 | 2.2 | 1.1 |
|  | 12th Grade | 3.5 | 3.3 | 2.8 | 1.6 |
| College Plans: |  |  |  |  |  |
| None orunder 4 years | 8th Grade | 2.0 | 1.9 | 1.6 | 1.2 |
|  | 10th Grade | 2.2 | 2.1 | 1.8 | 1.4 |
|  | 12th Grade | 2.1 | 1.9 | 1.6 | 1.5 |
| Complete 4 years | 8th Grade | 3.5 | 2.8 | 2.3 | 1.2 |
|  | 10th Grade | 4.1 | 3.3 | 2.5 | 1.1 |
|  | 12th Grade | 4.4 | 3.8 | 3.0 | 1.7 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.1 | 2.0 | 1.6 | 1.1 |
|  | 10th Grade | 2.2 | 2.0 | 1.7 | 1.2 |
|  | 12th Grade | 2.4 | 2.2 | 1.7 | 1.4 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 3.6 | 3.4 | 2.8 | 1.8 |
|  | 10th Grade | 4.2 | 3.8 | 2.9 | 1.9 |
|  | 12th Grade | 3.7 | 3.6 | 2.8 | 2.2 |
| Black | 8th Grade | 2.6 | 2.5 | 1.8 | 1.5 |
|  | 10th Grade | 2.9 | 2.6 | 2.4 | 1.6 |
|  | 12th Grade | 3.4 | 3.1 | 2.9 | 2.0 |
| Hispanic | 8th Grade | 3.4 | 2.7 | 2.5 | 1.8 |
|  | 10th Grade | 4.0 | 2.8 | 2.3 | 1.6 |
|  | 12th Grade | 5.7 | 4.9 | 2.9 | 2.4 |

SOURCE: The Monitoring the Future Study, the University of Mic higan.

## TABLE C-3b <br> Design Effects for Subgroup Comparisons within Any Single Year

|  |  | INDEX OF ANY IШСாTDRUG, INDEX OF ANY IШСाT DRUG INCLDIING INHALANIS, AND MARJ UANA |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past | $\begin{gathered} \text { Past } \\ 30 \text { Days } \end{gathered}$ | Daily |
|  |  | 12 Months |  |  |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| North Central, South, and West); |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade |  | 5.8 | 4.8 | 4.3 | 1.6 |
|  | 10th Grade | 7.5 | 6.2 | 4.7 | 1.7 |
|  | 12th Grade | 10.7 | 10.2 | 8.1 | 3.6 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.4 | 2.4 | 2.4 | 1.5 |
|  | 10th Grade | 3.4 | 3.0 | 3.0 | 1.5 |
|  | 12th Grade | 3.8 | 3.4 | 3.0 | 2.7 |
| Female | 8th Grade | 3.4 | 3.0 | 2.4 | 1.3 |
|  | 10th Grade | 4.0 | 3.4 | 2.7 | 1.1 |
|  | 12th Grade | 4.6 | 4.6 | 4.5 | 2.6 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.3 | 2.3 | 2.0 | 1.3 |
|  | 10th Grade | 2.8 | 2.8 | 2.7 | 2.0 |
|  | 12th Grade | 2.4 | 2.4 | 2.1 | 2.1 |
| Complete 4 years | 8th Grade | 3.3 | 2.4 | 2.4 | 1.5 |
|  | 10th Grade | 5.1 | 4.0 | 3.2 | 1.1 |
|  | 12th Grade | 6.1 | 5.3 | 4.5 | 3.0 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.1 | 2.1 | 1.9 | 1.1 |
|  | 10th Grade | 2.5 | 2.3 | 2.2 | 1.4 |
|  | 12th Grade | 3.0 | 2.8 | 2.3 | 1.9 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 4.0 | 3.9 | 3.7 | 2.1 |
|  | 10th Grade | 5.9 | 4.9 | 4.0 | 2.2 |
|  | 12th Grade | 4.3 | 4.3 | 3.7 | 3.4 |
| Black | 8th Grade | 2.9 | 2.2 | 1.6 | 1.4 |
|  | 10th Grade | 3.6 | 3.6 | 2.6 | 1.9 |
|  | 12th Grade | 5.0 | 5.0 | 5.0 | 2.5 |
| Hispanic | 8th Grade | 2.6 | 2.6 | 2.2 | 2.1 |
|  | 10th Grade | 4.2 | 2.9 | 2.0 | 1.9 |
|  | 12th Grade | 9.4 | 9.2 | 4.5 | 3.2 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE C-3c <br> Design Effects for Subgroup Comparisons within Any Single Year

|  |  | HALUCINOGENS (UNADJ USTED AND ADJ USTED), LSD, COCAINE, AND OTHER COCAINE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past <br> 12 Months | $\begin{gathered} \text { Past } \\ 30 \text { Days } \end{gathered}$ | Daily |
|  |  |  |  |  |  |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| North Central, South, and West); |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade | 6.2 | 4.9 | 3.2 | 1.2 |
|  | 10th Grade | 6.2 | 4.9 | 3.2 | 1.2 |
|  | 12th Grade | 6.2 | 4.9 | 3.2 | 1.2 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 3.2 | 2.8 | 2.4 | 1.1 |
|  | 10th Grade | 3.2 | 2.8 | 2.4 | 1.1 |
|  | 12th Grade | 3.2 | 2.8 | 2.4 | 1.1 |
| Female | 8th Grade | 3.2 | 2.8 | 2.0 | 1.1 |
|  | 10th Grade | 3.2 | 2.8 | 2.0 | 1.1 |
|  | 12th Grade | 3.2 | 2.8 | 2.0 | 1.1 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
|  | 10th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
|  | 12th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
| Complete 4 years | 8th Grade | 4.2 | 3.2 | 2.4 | 1.1 |
|  | 10th Grade | 4.2 | 3.2 | 2.4 | 1.1 |
|  | 12th Grade | 4.2 | 3.2 | 2.4 | 1.1 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.1 | 1.9 | 1.5 | 1.1 |
|  | 10th Grade | 2.1 | 1.9 | 1.5 | 1.1 |
|  | 12th Grade | 2.1 | 1.9 | 1.5 | 1.1 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 3.7 | 3.4 | 2.7 | 1.5 |
|  | 10th Grade | 3.7 | 3.4 | 2.7 | 1.5 |
|  | 12th Grade | 3.7 | 3.4 | 2.7 | 1.5 |
| Black | 8th Grade | 1.8 | 1.8 | 1.6 | 1.5 |
|  | 10th Grade | 1.8 | 1.8 | 1.6 | 1.5 |
|  | 12th Grade | 1.8 | 1.8 | 1.6 | 1.5 |
| Hispanic | 8th Grade | 5.1 | 3.1 | 2.4 | 1.5 |
|  | 10th Grade | 5.1 | 3.1 | 2.4 | 1.5 |
|  | 12th Grade | 5.1 | 3.1 | 2.4 | 1.5 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE C-3d <br> Design Effects for Subgroup Comparisons within Any Single Year

|  |  | NITRIES, PCP, CRACK COCAINE, HEROIN (INCLDING HEROIN WITH AND WTHOUTA NEEDLE), METHAMPHETAMINE, ICE, MEIHAQUALONE, ROHYPNOL, GHB, KEIAMINE, AND STEROIDS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\underline{\text { Lifetime }}$ | Past <br> 12 Months | $\begin{gathered} \text { Past } \\ 30 \text { Days } \end{gathered}$ | Daily |
| SEGREGATED GROUPS: <br> Total Sample: Any Region (Northeast, North Central, South, and West); Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | 8th Grade | 2.0 | 1.5 | 1.5 | 1.2 |
|  | 10th Grade | 2.0 | 1.5 | 1.5 | 1.2 |
|  | 12th Grade | 2.0 | 1.5 | 1.5 | 1.2 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
|  | 10th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
|  | 12th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
| Female | 8th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
|  | 10th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
|  | 12th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 1.4 | 1.4 | 1.4 | 1.1 |
|  | 10th Grade | 1.4 | 1.4 | 1.4 | 1.1 |
|  | 12th Grade | 1.4 | 1.4 | 1.4 | 1.1 |
| Complete 4 years | 8th Grade | 1.5 | 1.3 | 1.1 | 1.1 |
|  | 10th Grade | 1.5 | 1.3 | 1.1 | 1.1 |
|  | 12th Grade | 1.5 | 1.3 | 1.1 | 1.1 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
|  | 10th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
|  | 12th Grade | 1.3 | 1.3 | 1.3 | 1.1 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 2.0 | 1.9 | 1.8 | 1.5 |
|  | 10th Grade | 2.0 | 1.9 | 1.8 | 1.5 |
|  | 12th Grade | 2.0 | 1.9 | 1.8 | 1.5 |
| Black | 8th Grade | 2.0 | 2.0 | 2.0 | 1.5 |
|  | 10th Grade | 2.0 | 2.0 | 2.0 | 1.5 |
|  | 12th Grade | 2.0 | 2.0 | 2.0 | 1.5 |
| Hispanic | 8th Grade | 2.1 | 2.0 | 1.9 | 1.5 |
|  | 10th Grade | 2.1 | 2.0 | 1.9 | 1.5 |
|  | 12th Grade | 2.1 | 2.0 | 1.9 | 1.5 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## TABLE C-3e <br> Design Effects for Subgroup Comparisons within Any Single Year

|  |  | HAUUCINOGENS OTHER THAN ISD, MDMA (ECSTASY), NARCOTICS OTHER THAN HEROIN, OXYCONTIN, RTAUN, SEDATIVES (BARBTURATES), TRANQUIUZERS, BIDIS, KREIEKS, ANDROSTENEDIONE, AND CREATINE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past <br> 12 Months | $\begin{gathered} \text { Past } \\ 30 \text { Days } \end{gathered}$ | Daily |
| SEGREGATED GROUPS: <br> Total Sample: Any Region (Northeast, <br> North Central, South, and West); <br> Any Population Density Stratum (Large MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | 8th Grade | 2.9 | 2.6 | 1.7 | 1.2 |
|  | 10th Grade | 2.9 | 2.6 | 1.7 | 1.2 |
|  | 12th Grade | 2.9 | 2.6 | 1.7 | 1.2 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.1 | 2.1 | 1.6 | 1.1 |
|  | 10th Grade | 2.1 | 2.1 | 1.6 | 1.1 |
|  | 12th Grade | 2.1 | 2.1 | 1.6 | 1.1 |
| Female | 8th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 10th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 12th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 10th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 12th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
| Complete 4 years | 8th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 10th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 12th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 10th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
|  | 12th Grade | 2.0 | 1.6 | 1.3 | 1.1 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 2.5 | 2.5 | 2.1 | 1.5 |
|  | 10th Grade | 2.5 | 2.5 | 2.1 | 1.5 |
|  | 12th Grade | 2.5 | 2.5 | 2.1 | 1.5 |
| Black | 8th Grade | 1.9 | 1.9 | 1.8 | 1.5 |
|  | 10th Grade | 1.9 | 1.9 | 1.8 | 1.5 |
|  | 12th Grade | 1.9 | 1.9 | 1.8 | 1.5 |
| Hispanic | 8th Grade | 2.0 | 1.8 | 1.6 | 1.5 |
|  | 10th Grade | 2.0 | 1.8 | 1.6 | 1.5 |
|  | 12th Grade | 1.2 | 1.8 | 1.6 | 1.5 |

[^107]
## TABLE C-3f <br> Design Effects for Subgroup Comparisons within Any Single Year

|  |  | INHALANTS, VICODIN, AND AMPHEIAMINES (UNADJ USTED AND ADJ USTED) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime | Past <br> 12 Months | Past 30 Days | Daily |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade | 4.8 | 4.0 | 2.4 | 1.2 |
|  | 10th Grade | 4.8 | 4.0 | 2.4 | 1.2 |
|  | 12th Grade | 4.8 | 4.0 | 2.4 | 1.2 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.7 | 2.4 | 1.9 | 1.1 |
|  | 10th Grade | 2.7 | 2.4 | 1.9 | 1.1 |
|  | 12th Grade | 2.7 | 2.4 | 1.9 | 1.1 |
| Female | 8th Grade | 2.7 | 2.7 | 1.9 | 1.1 |
|  | 10th Grade | 2.7 | 2.7 | 1.9 | 1.1 |
|  | 12th Grade | 2.7 | 2.7 | 1.9 | 1.1 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
|  | 10th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
|  | 12th Grade | 1.9 | 1.5 | 1.3 | 1.1 |
| Complete 4 years | 8th Grade | 3.0 | 2.7 | 2.0 | 1.1 |
|  | 10th Grade | 3.0 | 2.7 | 2.0 | 1.1 |
|  | 12th Grade | 3.0 | 2.7 | 2.0 | 1.1 |
| Parental Education: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
|  | 10th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
|  | 12th Grade | 2.0 | 1.9 | 1.4 | 1.1 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 3.1 | 3.0 | 2.0 | 1.5 |
|  | 10th Grade | 3.1 | 3.0 | 2.0 | 1.5 |
|  | 12th Grade | 3.1 | 3.0 | 2.0 | 1.5 |
| Black | 8th Grade | 3.3 | 2.4 | 2.0 | 1.5 |
|  | 10th Grade | 3.3 | 2.4 | 2.0 | 1.5 |
|  | 12th Grade | 3.3 | 2.4 | 2.0 | 1.5 |
| Hispanic | 8th Grade | 2.6 | 2.4 | 1.9 | 1.5 |
|  | 10th Grade | 2.6 | 2.4 | 1.9 | 1.5 |
|  | 12th Grade | 2.6 | 2.4 | 1.9 | 1.5 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

# TABLE C-3g <br> Design Effects for Subgroup Comparisons within Any Single Year 

|  |  | ALCOHOLAND BEEN DRUNK |  | CIGAREIIES AND SMOKELESS TOBACCO |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lifetime, <br> Past 12 Months, Past 30 Days, 5+/2 Weeks | Daily | Lifetime, Past 30 Days, Daily | Half-pack orMore perDay |
| SEGREGATED GROUPS: |  |  |  |  |  |
| Total Sample: Any Region (Northeast, |  |  |  |  |  |
| North Central, South, and West); |  |  |  |  |  |
| Any Population Density Stratum (Large |  |  |  |  |  |
| MSA, Other MSA, and Non-MSA) |  |  |  |  |  |
|  | 8th Grade | 5.2 | 1.4 | 5.4 | 3.9 |
|  | 10th Grade | 5.2 | 1.4 | 5.4 | 3.9 |
|  | 12th Grade | 5.2 | 1.4 | 5.4 | 3.9 |
| CROSS-CLASS GROUPS: |  |  |  |  |  |
| Gender: |  |  |  |  |  |
| Male | 8th Grade | 2.4 | 1.3 | 2.3 | 2.0 |
|  | 10th Grade | 2.4 | 1.3 | 2.3 | 2.0 |
|  | 12th Grade | 2.4 | 1.3 | 2.3 | 2.0 |
| Female | 8th Grade | 3.1 | 1.3 | 3.6 | 2.6 |
|  | 10th Grade | 3.1 | 1.3 | 3.6 | 2.6 |
|  | 12th Grade | 3.1 | 1.3 | 3.6 | 2.6 |
| College Plans: |  |  |  |  |  |
| None or under 4 years | 8th Grade | 2.1 | 1.3 | 2.0 | 2.0 |
|  | 10th Grade | 2.1 | 1.3 | 2.0 | 2.0 |
|  | 12th Grade | 2.1 | 1.3 | 2.0 | 2.0 |
| Complete 4 years | 8th Grade | 3.2 | 1.3 | 3.2 | 2.3 |
|  | 10th Grade | 3.2 | 1.3 | 3.2 | 2.3 |
|  | 12th Grade | 3.2 | 1.3 | 3.2 | 2.3 |
| Parental Educ ation: |  |  |  |  |  |
| Any stratum | 8th Grade | 2.0 | 1.3 | 2.1 | 1.9 |
|  | 10th Grade | 2.0 | 1.3 | 2.1 | 1.9 |
|  | 12th Grade | 2.0 | 1.3 | 2.1 | 1.9 |
| Racial/Ethnic Group: |  |  |  |  |  |
| White | 8th Grade | 3.3 | 1.8 | 3.4 | 2.6 |
|  | 10th Grade | 3.3 | 1.8 | 3.4 | 2.6 |
|  | 12th Grade | 3.3 | 1.8 | 3.4 | 2.6 |
| Black | 8th Grade | 4.0 | 1.8 | 2.4 | 1.8 |
|  | 10th Grade | 4.0 | 1.8 | 2.4 | 1.8 |
|  | 12th Grade | 4.0 | 1.8 | 2.4 | 1.8 |
| Hispanic | 8th Grade | 2.9 | 1.8 | 2.7 | 2.1 |
|  | 10th Grade | 2.9 | 1.8 | 2.7 | 2.1 |
|  | 12th Grade | 2.9 | 1.8 | 2.7 | 2.1 |

SOURCE: The Monitoring the Future Study, the University of Michigan.

## Appendix D

## TRENDS BY SUBGROUP: SUPPLEMENTAL TABLES FOR SECONDARY SCHOOL STUDENTS

Trend data for the population subgroups discussed in this volume (defined by gender, college plans, region, community size, level of parental education, and racial/ethnic group) are presented here for all of the major classes of licit and illicit drugs. Due to the sheer quantity of information such trend tables generate for each prevalence measure (e.g., lifetime, annual, 30-day, daily), we have selected the prevalence periods that seem most useful for understanding differences by subgroup. For most drugs, we include only annual prevalence; but other prevalence rates are provided for alcohol, cigarettes, and smokeless tobacco.

The subgroups distinguished in these tables are the standard ones used throughout this volume and are operationally defined in Appendix B. The reader should note that two-year moving averages are given for the three major racial/ethnic groups included here in order to damp down random fluctuations in the trends for the minority groups, particularly among Hispanics. A footnote in each table describes the procedure.

For nearly all drugs there is one table presenting the subgroup trends for 8th graders, a second table for 10th graders, and a third table giving the longer-term trends for 12th graders. However, for two of the drugs-sedatives (barbiturates) and narcotics other than heroin-the 8th- and 10th-grade data have been omitted, as they have been throughout the volume, because we are less certain about the validity of the answers provided by the younger students. Specifically, we believe that they often fail to omit substances that should be omitted (e.g., non-prescription substances). Usage questions for a few other drugs are simply not asked of 8th and 10th graders; thus only 12th-grade tables are presented.

Sample sizes, provided in tables at the end of this appendix, should be taken into account when interpreting the importance of any changes observed, of course. The reader should be aware that the numbers provided in those tables assume that all respondents were asked about their use of the drug. Some of the drugs were not contained in all questionnaire forms, meaning that the subgroup and total Ns must be adjusted accordingly. The "Notes" section at the bottom of each table will indicate if only a fraction of the sample received the question.

Graphic presentations of the trends presented in these tables for the various demographic subgroups may be found in Occasional Paper No. 61, which is on the study's Web site
(www.monitoringthefuture.org) under "Publications" and then under "Occasional Papers." ${ }^{120}$ This graphic presentation, which uses color to help distinguish the various subgroups, is published in electronic form only, due to the high cost of printing a document of this length in color. Because the figures are considerably easier to comprehend than large data tables, the reader interested in these trends is encouraged to make use of the occasional paper.

[^108]List of 2004 Appendix D Tables

| Substance | Table Number |  |  | Time Period |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8th | 10th | 12th | Annual | 30-Day | Daily |
| Any illicit drug | D-1 | D-2 | D-3 | X |  |  |
| Any illicit drug other than marijuana | D-4 | D-5 | D-6 | X |  |  |
| Marijuana | D-7 | D-8 | D-9 | X |  |  |
| Inhalants | D-10 | D-11 | D-12 | X |  |  |
| Hallucinogens | D-13 | D-14 | D-15 | X |  |  |
| LSD | D-16 | D-17 | D-18 | X |  |  |
| Hallucinogens other than LSD | D-19 | D-20 | D-21 | X |  |  |
| MDMA (ecstasy) | D-22 | D-23 | D-24 | X |  |  |
| Cocaine | D-25 | D-26 | D-27 | X |  |  |
| Crack | D-28 | D29 | D-30 | X |  |  |
| Other cocaine | D-31 | D-32 | D-33 | X |  |  |
| Heroin | D-34 | D-35 | D-36 | X |  |  |
| Heroin with a needle | D-37 | D-38 | D-39 | X |  |  |
| Heroin without a needle | D-40 | D-41 | D-42 | X |  |  |
| Other narcotics | - | - | D-43 | X |  |  |
| OxyContin | D-44 | D-44 | D-45 | X |  |  |
| Vicodin | D-46 | D-46 | D-47 | X |  |  |
| Amphetamines | D-48 | D-49 | D-50 | X |  |  |
| Ritalin | D-51 | D-51 | D-52 | X |  |  |
| Methamphetamine | D-53 | D-53 | D-54 | X |  |  |
| Crystal meth. (ice) | - | - | D-55 | X |  |  |
| Sedatives (barbiturates) | - | - | D-56 | X |  |  |
| Tranquilizers | D-57 | D-58 | D-59 | X |  |  |
| Rohypnol | D-60 | D-61 | D-62 | X |  |  |
| Alcohol | D-63 | D-64 | D-65 |  | X |  |
| Been drunk | D-66 | D-67 | D-68 |  | X |  |
| $5+$ drinks in a row | D-69 | D-70 | D-71 |  |  | X |
| Beer | D-72 | D-73 | D-74 |  | X |  |
| 5+ drinks in a row | D-75 | D-76 | D-77 |  |  | X |
| Liquor | - | - | D-78 |  | X |  |
| $5+$ drinks in a row | - | - | D-79 |  |  | X |
| Wine | - | - | D-80 |  | X |  |
| $5+$ drinks in a row | - | - | D-81 |  |  | X |
| Wine coolers | D-82 | D-83 | D-84 |  | X |  |
| $5+$ drinks in a row | - | - | D-85 |  |  | X |
| Flavored alcoholic beverages | D-86 | D-86 | D-86 |  | X |  |
| Cigarettes | D-87 | D-88 | D-89 |  | X |  |
| Daily | D-90 | D-91 | D-92 |  |  | X |
| 1/2 pack+/day | D-93 | D-94 | D-95 |  |  | X |
| Smokeless tobacco | D-96 | D-97 | D-98 |  | X |  |
| Daily | D-99 | D-100 | D-101 |  |  | X |
| Steroids | D-102 | D-103 | D-104 | X |  |  |
| Weighted Ns by subgroups | D-105 | D-106 | D-107 |  |  |  |

## TABLE D-1

Any Illicit Drug: ${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 11.3 | 12.9 | 15.1 | 18.5 | 21.4 | 23.6 | 22.1 | 21.0 | 20.5 | 19.5 | 19.5 | 17.7 | 16.1 | 15.2 | -0.9 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 11.7 | 11.9 | 15.2 | 19.4 | 22.3 | 23.6 | 22.6 | 21.3 | 21.3 | 19.7 | 21.3 | 19.2 | 16.4 | 15.0 | -1.4 |
| Female | 11.0 | 13.6 | 14.9 | 17.6 | 20.2 | 23.3 | 21.3 | 20.4 | 19.7 | 19.0 | 17.5 | 16.3 | 15.5 | 15.2 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 22.8 | 25.6 | 30.7 | 34.6 | 38.4 | 40.3 | 39.6 | 41.3 | 39.9 | 38.9 | 38.5 | 36.8 | 34.7 | 33.6 | -1.2 |
| Complete 4 years | 9.5 | 10.9 | 12.8 | 16.3 | 19.1 | 21.0 | 19.9 | 18.4 | 18.0 | 17.1 | 17.2 | 15.7 | 14.0 | 13.2 | -0.8 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 9.3 | 10.6 | 11.5 | 16.6 | 17.9 | 20.3 | 20.2 | 16.0 | 18.2 | 16.6 | 18.1 | 13.8 | 13.1 | 13.0 | -0.1 |
| North Central | 11.2 | 13.0 | 13.9 | 17.2 | 23.3 | 24.7 | 22.3 | 21.9 | 22.6 | 20.6 | 18.0 | 17.0 | 15.7 | 14.2 | -1.5 |
| South | 11.5 | 12.9 | 15.1 | 17.6 | 20.8 | 22.5 | 21.6 | 22.3 | 21.0 | 19.2 | 21.5 | 20.1 | 18.1 | 16.8 | -1.3 |
| West | 13.3 | 15.0 | 21.1 | 23.7 | 23.3 | 27.1 | 24.4 | 22.0 | 19.2 | 21.0 | 18.9 | 18.4 | 15.6 | 15.5 | -0.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 10.5 | 12.0 | 13.1 | 16.2 | 15.2 | 23.4 | 20.5 | 19.8 | 19.1 | 18.1 | 16.4 | 15.9 | 14.3 | 14.0 | -0.3 |
| Other MSA | 12.1 | 14.4 | 17.3 | 21.5 | 23.7 | 24.9 | 22.6 | 21.4 | 19.5 | 18.8 | 21.5 | 18.3 | 16.2 | 15.9 | -0.3 |
| Non-MSA | 10.8 | 11.2 | 12.9 | 14.0 | 20.3 | 21.4 | 22.9 | 21.6 | 24.3 | 22.7 | 19.1 | 18.9 | 18.1 | 15.3 | -2.7 |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 19.5 | 18.5 | 20.8 | 26.1 | 29.8 | 26.7 | 29.5 | 30.4 | 30.2 | 30.9 | 29.9 | 27.3 | 26.4 | 25.7 | -0.7 |
| 2.5-3.0 | 11.7 | 14.1 | 17.1 | 20.2 | 24.3 | 25.7 | 25.5 | 24.2 | 24.9 | 23.9 | 23.3 | 22.4 | 20.4 | 18.5 | -1.9 |
| 3.5-4.0 | 11.6 | 13.6 | 15.4 | 19.7 | 23.4 | 26.2 | 23.8 | 21.8 | 21.0 | 20.1 | 21.5 | 18.5 | 16.9 | 16.7 | -0.2 |
| 4.5-5.0 | 8.7 | 10.2 | 12.8 | 15.7 | 17.4 | 21.3 | 19.3 | 17.8 | 15.6 | 14.6 | 15.0 | 14.5 | 12.0 | 12.1 | +0.1 |
| 5.5-6.0 (High) | 10.2 | 10.1 | 11.8 | 14.9 | 17.7 | 19.8 | 16.8 | 17.1 | 15.8 | 15.0 | 13.4 | 12.1 | 11.0 | 10.9 | -0.1 |
| Race (2-year average): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 11.8 | 13.6 | 15.7 | 19.2 | 22.4 | 23.0 | 21.5 | 19.9 | 19.1 | 19.0 | 18.3 | 16.5 | 14.9 | -1.6 |
| Black | - | 7.9 | 9.3 | 13.0 | 15.8 | 17.5 | 18.1 | 18.1 | 18.6 | 18.3 | 16.7 | 15.1 | 14.6 | 14.6 | 0.0 |
| Hispanic | - | 18.1 | 20.6 | 24.6 | 26.7 | 26.9 | 26.5 | 26.7 | 27.4 | 25.1 | 24.3 | 24.8 | 22.8 | 20.9 | -1.9 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' -' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Use of "any illic it drug" includes any use of manjuana, LSD, other hallucinogens, crack, other coc aine, or heroin, or any use of amphetamines or tranquilizers not under a doctor's orders. The use of other narcotics and barbiturates has been excluded because 8th and 10th graders appearto overreport their use (perhaps because they include the use of nonprescription drugs in their answers).
${ }^{\mathrm{b}}$ Parental education is an a verage score of mother's education and father'seducation. See Appendix B fordetails.
${ }^{\text {c }}$ To derive percentagesforeach racial subgroup, data forthe specified yearand the previousyear have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-2

Any Illicit Drug: ${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 21.4 | 20.4 | 24.7 | 30.0 | 33.3 | 37.5 | 38.5 | 35.0 | 35.9 | 36.41 | 37.2 | 34.8 | 32.0 | 31.1 | -0.9 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 21.6 | 20.4 | 25.1 | 31.8 | 33.7 | 38.8 | 40.1 | 35.3 | 37.0 | 39.4 | 39.6 | 35.9 | 33.2 | 32.0 | -1.2 |
| Female | 21.1 | 20.1 | 24.0 | 28.0 | 32.5 | 36.3 | 36.8 | 34.7 | 34.6 | 33.5 | 35.0 | 33.7 | 30.8 | 30.2 | -0.6 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 32.7 | 32.0 | 37.7 | 43.2 | 47.3 | 52.4 | 55.2 | 50.5 | 51.8 | 53.5 | 52.7 | 51.5 | 48.6 | 46.9 | -1.7 |
| Complete 4 years | 18.9 | 17.8 | 21.9 | 27.0 | 30.8 | 35.0 | 35.7 | 32.2 | 33.2 | 33.9 | 34.6 | 32.1 | 29.2 | 28.9 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 21.8 | 19.0 | 26.9 | 29.6 | 32.4 | 37.7 | 37.8 | 39.0 | 38.2 | 34.0 | 37.4 | 35.2 | 32.6 | 32.8 | +0.2 |
| North Central | 21.7 | 20.7 | 22.4 | 28.5 | 32.1 | 37.6 | 37.7 | 32.0 | 35.2 | 34.8 | 35.9 | 33.7 | 28.8 | 28.8 | 0.0 |
| South | 19.2 | 17.9 | 23.3 | 29.2 | 33.2 | 37.9 | 38.7 | 35.1 | 34.8 | 36.0 | 36.7 | 33.9 | 34.0 | 32.9 | -1.1 |
| West | 23.7 | 25.5 | 28.9 | 34.4 | 36.1 | 36.8 | 40.2 | 34.5 | 36.0 | 41.6 | 40.7 | 37.7 | 32.3 | 29.8 | -2.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 21.4 | 19.9 | 24.0 | 29.4 | 28.7 | 35.5 | 37.2 | 32.6 | 35.0 | 36.5 | 34.0 | 33.0 | 30.5 | 28.9 | -1.6 |
| Other MSA | 22.0 | 20.8 | 25.1 | 32.7 | 35.5 | 40.0 | 40.0 | 36.9 | 37.3 | 36.6 | 39.0 | 36.9 | 32.4 | 32.0 | -0.4 |
| Non-MSA | 20.4 | 20.1 | 24.4 | 24.7 | 30.7 | 35.1 | 37.2 | 34.5 | 33.9 | 35.8 | 37.4 | 32.8 | 33.5 | 32.3 | -1.1 |
| Parental Educ ation: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 25.5 | 24.8 | 29.2 | 32.6 | 38.2 | 39.5 | 38.3 | 36.6 | 42.2 | 42.4 | 39.0 | 39.4 | 38.8 | 37.7 | -1.1 |
| 2.5-3.0 | 23.0 | 21.3 | 25.4 | 31.1 | 37.1 | 39.1 | 40.8 | 39.1 | 39.4 | 39.2 | 41.6 | 39.4 | 36.4 | 34.0 | -2.4 |
| 3.5-4.0 | 21.2 | 20.6 | 24.9 | 30.5 | 34.7 | 40.1 | 41.6 | 35.6 | 35.4 | 39.5 | 38.2 | 35.5 | 33.3 | 33.6 | +0.3 |
| 4.5-5.0 | 19.4 | 18.7 | 22.5 | 28.1 | 30.9 | 35.5 | 36.3 | 31.9 | 32.8 | 32.6 | 35.1 | 31.9 | 27.8 | 27.7 | -0.1 |
| 5.5-6.0 (High) | 21.1 | 18.5 | 23.6 | 27.2 | 26.6 | 33.6 | 33.7 | 31.5 | 34.6 | 31.3 | 32.7 | 29.1 | 27.5 | 26.2 | -1.3 |
| Race (2-year average): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 22.4 | 23.7 | 27.9 | 32.6 | 36.5 | 39.3 | 38.2 | 36.4 | 36.9 | 37.6 | 37.6 | 35.0 | 32.2 | -2.8 |
| Black | - | 10.8 | 11.9 | 18.5 | 23.6 | 27.3 | 30.2 | 28.9 | 28.4 | 29.7 | 30.5 | 28.5 | 27.3 | 29.3 | +2.1 |
| Hispanic | - | 23.6 | 26.3 | 30.3 | 34.3 | 40.0 | 41.3 | 38.1 | 38.4 | 39.3 | 38.8 | 36.2 | 33.8 | 34.5 | +0.7 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' -' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
a Use of "any illic it drug" includes any use of manijuana, LSD, other hallucinogens, crack, other coc aine, or heroin, or any use of a mpheta mines or tranquilizers not under a doctor's orders. The use of other narcotics and barbiturates has been excluded because 8th and 10th graders appearto overreport their use (perhaps because they include the use of nonprescription drugs in their answers).
${ }^{\text {b }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\text {c }}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-3
Any Illicit Drug: ${ }^{\text {a,b }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders


SOURCE: The Monitoring the Future Study, the University of Mic higan.

## TABLE D-3 (cont'd)

Any Illicit Drug: ${ }^{\text {a,b }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 32.5 | 29.4 | 27.1 | 31.0 | 35.8 | 39.0 | 40.2 | 42.4 | 41.4 | 42.1 | 40.9 | 41.4 | 41.0 | 39.3 | 38.8 | -0.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 34.3 | 32.1 | 29.0 | 33.5 | 38.6 | 41.5 | 43.4 | 44.1 | 45.2 | 45.0 | 43.4 | 43.8 | 43.5 | 41.3 | 41.4 | +0.1 |
| Female | 30.1 | 26.2 | 24.7 | 27.9 | 32.7 | 35.8 | 36.2 | 40.0 | 37.2 | 38.9 | 38.0 | 38.4 | 37.8 | 36.7 | 35.9 | -0.9 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 37.8 | 33.9 | 33.5 | 34.9 | 40.8 | 44.1 | 46.2 | 48.8 | 47.3 | 47.9 | 45.1 | 46.2 | 46.2 | 46.8 | 44.4 | -2.5 |
| Complete 4 years | 29.6 | 27.1 | 24.4 | 29.2 | 33.6 | 36.7 | 37.8 | 40.1 | 39.1 | 40.3 | 38.8 | 39.6 | 39.3 | 36.6 | 36.8 | +0.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 36.4 | 31.9 | 28.7 | 36.1 | 39.4 | 41.7 | 44.6 | 47.7 | 46.2 | 42.5 | 46.2 | 47.4 | 45.7 | 43.7 | 43.9 | +0.3 |
| North Central | 34.0 | 31.3 | 27.8 | 30.8 | 36.5 | 40.9 | 40.9 | 40.6 | 38.1 | 42.1 | 38.9 | 42.0 | 41.6 | 40.0 | 38.2 | -1.8 |
| South | 27.6 | 24.5 | 23.7 | 28.2 | 34.1 | 36.4 | 37.6 | 38.8 | 40.5 | 40.8 | 35.3 | 37.3 | 38.1 | 34.8 | 35.7 | +0.9 |
| West | 34.4 | 32.6 | 31.1 | 31.8 | 34.7 | 38.2 | 39.1 | 45.9 | 43.1 | 44.2 | 47.4 | 41.9 | 40.5 | 41.4 | 39.6 | -1.8 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 32.6 | 28.6 | 26.8 | 32.9 | 36.4 | 41.7 | 41.3 | 42.1 | 42.0 | 42.4 | 41.1 | 43.9 | 41.9 | 35.7 | 36.3 | +0.6 |
| OtherMSA | 33.5 | 33.0 | 27.3 | 31.7 | 37.8 | 39.0 | 42.3 | 44.2 | 42.1 | 43.3 | 42.6 | 41.0 | 42.4 | 42.7 | 42.4 | -0.3 |
| Non-MSA | 30.1 | 23.8 | 27.0 | 28.4 | 31.6 | 35.9 | 35.4 | 39.2 | 39.3 | 39.9 | 37.5 | 39.4 | 37.1 | 37.6 | 34.9 | -2.7 |
| Parental Educ ation: ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 26.6 | 28.7 | 27.7 | 29.5 | 32.9 | 37.7 | 36.6 | 40.3 | 38.9 | 40.9 | 41.3 | 38.8 | 35.3 | 35.8 | 34.7 | -1.1 |
| 2.5-3.0 | 32.7 | 28.7 | 26.4 | 29.2 | 35.4 | 38.3 | 39.9 | 40.8 | 40.5 | 43.7 | 40.5 | 41.9 | 39.3 | 39.0 | 37.7 | -1.3 |
| 3.5-4.0 | 33.8 | 29.6 | 28.1 | 31.6 | 36.4 | 38.8 | 40.4 | 42.0 | 42.9 | 42.9 | 41.6 | 42.7 | 43.2 | 41.3 | 42.1 | +0.8 |
| 4.5-5.0 | 33.1 | 28.7 | 26.2 | 31.5 | 36.5 | 39.0 | 40.5 | 43.6 | 40.9 | 40.0 | 39.6 | 41.3 | 42.0 | 38.9 | 38.2 | -0.8 |
| 5.5-6.0 (High) | 33.3 | 31.9 | 26.8 | 33.4 | 35.7 | 40.7 | 40.6 | 44.0 | 41.8 | 42.3 | 41.1 | 40.1 | 40.6 | 36.5 | 37.4 | +0.9 |
| Race (2-yearaverage): ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 37.5 | 33.9 | 30.5 | 31.4 | 35.5 | 39.0 | 40.8 | 42.8 | 44.0 | 43.3 | 42.8 | 43.1 | 43.6 | 42.8 | 42.0 | -0.7 |
| Black | 17.0 | 14.7 | 14.5 | 16.6 | 23.5 | 29.6 | 32.4 | 33.0 | 32.3 | 32.8 | 32.7 | 31.7 | 30.4 | 28.3 | 27.7 | -0.6 |
| Hispanic | 26.4 | 29.4 | 30.3 | 28.8 | 31.2 | 35.5 | 38.0 | 41.2 | 41.9 | 42.5 | 44.8 | 41.8 | 39.0 | 35.8 | 34.4 | -1.4 |

${ }^{\text {a }}$ Use of "any illic it drug" includes any use of marijuana, LSD, other hallucinogens, crack, other coc aine, or heroin, or any use of other na rcotics, a mpheta mines, barbiturates, methaqualone (excluded since 1990), or tranquilizers not under a doctor's orders.
${ }^{\mathrm{b}}$ Beginning in 1982 the question about a mphetamine use was revised to get respondentsto exclude the inappropriate reporting of nonprescription amphetamines. The prevalence of use rate dropped slightly as a result of this methodologic al change.
${ }^{c}$ Parental education is an average score of mother's education and father's seducation. See Appendix B for details.
${ }^{d}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D－4

## Any Illicit Drug Other Than Marijuana：${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}{ }^{\text {b }}$ | $\underline{2002}{ }^{\text {b }}$ | 2003 | 2004 |  |
| Approx． $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 8.4 | 9.3 | 10.4 | 11.3 | 12.6 | 13.1 | 11.8 | 11.0 | 10.5 | $10.2 \ddagger$ | 10.8 | 8.8 | 8.8 | 7.9 | －0．8 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8.0 | 8.0 | 9.2 | 10.1 | 11.5 | 11.0 | 10.8 | 9.6 | 9.7 | 9．1才 | 10.0 | 8.1 | 7.9 | 7.0 | －1．0 |
| Female | 8.8 | 10.4 | 11.5 | 12.3 | 13.5 | 14.7 | 12.6 | 12.1 | 11.2 | $10.9 \ddagger$ | 11.2 | 9.3 | 9.4 | 8.8 | －0．6 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 16.3 | 18.5 | 21.3 | 21.2 | 25.3 | 23.0 | 22.1 | 23.8 | 23.4 | 22．7\＃ | 21.5 | 19.7 | 20.0 | 18.0 | －1．9 |
| Complete 4 years | 7.2 | 8.0 | 8.9 | 9.9 | 10.9 | 11.6 | 10.6 | 9.4 | 9.0 | 8．7才 | 9.5 | 7.6 | 7.5 | 6.9 | －0．7 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 6.8 | 6.6 | 8.2 | 10.3 | 10.7 | 11.3 | 9.5 | 8.5 | 8.5 | 8．0才 | 9.5 | 5.8 | 7.1 | 5.9 | －1．2 |
| North Central | 8.6 | 10.4 | 9.4 | 10.2 | 14.0 | 14.3 | 12.5 | 10.5 | 11.9 | $11.2 \ddagger$ | 9.9 | 8.7 | 8.7 | 7.7 | －1．0 |
| South | 8.6 | 9.7 | 11.0 | 11.7 | 12.5 | 12.6 | 11.8 | 12.5 | 11.2 | $10.3 \ddagger$ | 12.4 | 10.6 | 10.0 | 9.0 | －1．1 |
| West | 9.3 | 9.8 | 13.4 | 12.7 | 12.7 | 14.0 | 13.0 | 11.1 | 9.3 | 10．5 $\ddagger$ | 10.1 | 8.4 | 7.9 | 8.2 | ＋0．3 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 8.0 | 8.1 | 8.8 | 9.8 | 8.7 | 12.3 | 9.9 | 8.9 | 8.4 | 8．5才 | 9.7 | 7.4 | 7.1 | 6.9 | －0．1 |
| Other MSA | 8.6 | 10.4 | 11.8 | 12.5 | 13.5 | 14.1 | 12.2 | 11.2 | 10.7 | 10．1才 | 11.8 | 9.2 | 8.7 | 8.5 | －0．2 |
| Non－MSA | 8.6 | 8.9 | 9.8 | 9.8 | 13.2 | 12.1 | 13.0 | 12.8 | 12.8 | 12．3 $\ddagger$ | 10.3 | 9.8 | 11.0 | 8.0 | －3．0 s |
| Parental Education：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 12.9 | 12.9 | 14.4 | 15.6 | 18.0 | 15.5 | 14.8 | 17.3 | 16.0 | $15.8 \ddagger$ | 14.3 | 13.0 | 14.1 | 15.2 | ＋1．1 |
| 2．5－3．0 | 8.5 | 10.1 | 11.8 | 12.4 | 14.2 | 13.9 | 12.9 | 12.2 | 12.1 | $12.2 \ddagger$ | 13.2 | 10.9 | 10.9 | 8.8 | －2．1 s |
| 3．5－4．0 | 8.7 | 10.1 | 10.6 | 11.8 | 14.2 | 14.5 | 12.5 | 11.2 | 11.3 | 10．6 $\ddagger$ | 11.7 | 9.0 | 9.0 | 8.4 | －0．6 |
| 4．5－5．0 | 7.1 | 7.5 | 9.1 | 9.5 | 9.7 | 12.0 | 10.6 | 9.4 | 8.5 | 7．7才 | 8.9 | 7.6 | 6.7 | 6.8 | ＋0．2 |
| 5．5－6．0（High） | 7.8 | 8.0 | 8.2 | 9.4 | 10.1 | 11.7 | 10.3 | 9.5 | 8.3 | 8．4\＃ | 8.0 | 6.5 | 6.8 | 5.9 | －0．9 |
| Race（2－yearaverage）${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 9.0 | 10.0 | 10.8 | 12.6 | 13.9 | 13.5 | 12.5 | 11.5 | 11.1 | 10．6 $\ddagger$ | $10.3{ }^{\text {e }}$ | 9.3 | 8.7 | －0．6 |
| Black | － | 4.9 | 5.0 | 5.9 | 5.7 | 5.3 | 4.7 | 4.0 | 4.1 | 3.8 | $3.9 \pm$ | $4.4{ }^{\text {e }}$ | 4.4 | 4.4 | －0．1 |
| Hispanic | － | 12.2 | 13.7 | 15.2 | 15.3 | 14.7 | 13.6 | 13.5 | 14.5 | 13.9 | 12．2才 | $11.9{ }^{\text {e }}$ | 10.8 | 10.4 | －0．4 |

（Table continued on next page）

## TABLE D-4 (cont'd)

## Any Illicit Drug Other Than Marijuana: ${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

[^109]
## TABLE D－5

## Any Illicit Drug Other Than Marijuana：${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}{ }^{\text {b }}$ | $\underline{2002}{ }^{\text {b }}$ | 2003 | 2004 |  |
| Approx． $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 12.2 | 12.3 | 13.9 | 15.2 | 17.5 | 18.4 | 18.2 | 16.6 | 16.7 | 16．7 $\ddagger$ | 17.9 | 15.7 | 13.8 | 13.5 | －0．2 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 11.2 | 11.1 | 13.4 | 14.1 | 15.8 | 17.2 | 17.2 | 15.6 | 15.9 | 16．7\＃ | 18.3 | 15.1 | 13.0 | 12.7 | －0．3 |
| Female | 13.1 | 13.2 | 14.3 | 16.0 | 18.9 | 19.6 | 19.1 | 17.5 | 17.3 | $16.6 \ddagger$ | 17.4 | 16.4 | 14.3 | 14.2 | －0．1 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 19.6 | 20.2 | 23.1 | 24.0 | 27.5 | 29.5 | 29.6 | 27.8 | 27.3 | 27．7 $\ddagger$ | 32.1 | 27.1 | 23.8 | 25.3 | ＋1．5 |
| Complete 4 years | 10.7 | 10.5 | 12.0 | 13.3 | 15.7 | 16.5 | 16.3 | 14.6 | 15.0 | 15．0才 | 15.5 | 14.0 | 12.1 | 11.9 | －0．2 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 10.6 | 9.6 | 12.8 | 13.7 | 14.1 | 17.2 | 16.0 | 17.2 | 18.2 | 14．7 $\ddagger$ | 16.2 | 13.4 | 11.7 | 13.7 | ＋2．1 |
| North Central | 13.2 | 12.9 | 12.8 | 14.8 | 19.0 | 20.0 | 16.2 | 14.4 | 16.1 | 15．8 $\ddagger$ | 16.5 | 15.3 | 13.1 | 12.0 | －1．1 |
| South | 11.9 | 12.2 | 14.7 | 15.3 | 18.4 | 18.6 | 20.8 | 18.3 | 16.8 | 17．5才 | 19.5 | 16.8 | 15.7 | 14.8 | －0．8 |
| West | 12.7 | 14.1 | 15.6 | 17.2 | 17.2 | 17.4 | 18.7 | 15.8 | 15.7 | 18．5 $\ddagger$ | 19.0 | 16.7 | 13.8 | 13.5 | －0．2 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 11.8 | 11.4 | 12.2 | 13.1 | 13.5 | 16.8 | 16.3 | 14.6 | 15.0 | $17.2 \ddagger$ | 15.6 | 14.3 | 10.8 | 10.4 | －0．4 |
| Other MSA | 12.3 | 12.3 | 14.1 | 16.1 | 18.5 | 19.5 | 18.0 | 16.6 | 17.3 | 15．6 $\ddagger$ | 17.4 | 16.5 | 14.2 | 15.1 | ＋0．9 |
| Non－MSA | 12.4 | 13.1 | 15.0 | 14.6 | 17.6 | 18.3 | 20.8 | 18.9 | 17.55 | 18．1 $\ddagger$ | 21.5 | 16.1 | 17.2 | 14.5 | －2．7 |
| Parental Educ ation：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 14.4 | 16.6 | 18.1 | 17.1 | 20.8 | 22.7 | 19.1 | 21.5 | 19.2 | $20.4 \ddagger$ | 19.6 | 21.0 | 19.1 | 16.5 | －2．6 |
| 2．5－3．0 | 13.7 | 12.5 | 14.6 | 16.3 | 19.7 | 19.4 | 19.9 | 19.1 | 19.1 | 19．4 $\ddagger$ | 20.3 | 18.3 | 16.7 | 15.6 | －1．1 |
| 3．5－4．0 | 12.1 | 12.7 | 14.8 | 15.9 | 18.3 | 19.9 | 19.8 | 16.4 | 16.5 | 17．4才 | 19.7 | 16.1 | 14.5 | 14.6 | ＋0．1 |
| 4．5－5．0 | 11.0 | 10.9 | 11.7 | 13.3 | 15.9 | 16.6 | 16.5 | 14.1 | 15.4 | 14．5才 | 15.6 | 13.7 | 11.2 | 11.6 | ＋0．4 |
| 5．5－6．0（High） | 11.6 | 10.7 | 12.2 | 12.8 | 13.4 | 15.4 | 15.4 | 14.4 | 15.6 | 14．5才 | 14.6 | 12.2 | 10.5 | 11.0 | ＋0．5 |
| Race（2－yearaverage）${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 13.7 | 14.4 | 15.4 | 17.7 | 20.0 | 20.5 | 19.7 | 18.7 | 18.6 | 19．2 $\ddagger$ | $18.9{ }^{\text {e }}$ | 17.2 | 15.7 | －1．6 |
| Black | － | 4.3 | 4.6 | 5.4 | 5.4 | 4.5 | 4.8 | 4.7 | 4.5 | 4.2 | 4．7才 | $5.7{ }^{\text {e }}$ | 4.7 | 4.6 | －0．2 |
| Hispanic | － | 11.8 | 13.7 | 16.1 | 16.9 | 18.8 | 19.1 | 17.5 | 17.9 | 17.8 | $15.8 \ddagger$ | $15.7{ }^{\text {e }}$ | 15.2 | 15.1 | －0．1 |

（Table continued on next page）

TABLE D-5 (cont'd)

## Any Illicit Drug Other Than Marijuana: ${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

## NOTES: ' $\ddagger$ ' indicates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes. <br> Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. <br> '-' indicates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. <br> See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.

SOURCE: The Monitoring the Future Study, the University of Michigan.
a Use of "any illic it drug" includes any use of manijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use of amphetamines or tranquilizers not under a doctor'sorders. The use of other narcotics and barbiturates has been excluded because 8th and 10th graders appearto overeport their use (perhapsbecause they include the use of nonprescription drugs in their answers). ${ }^{\text {b }}$ In 2001 the question text waschanged on half of the questionnaire forms. "Other psychedelics" waschanged to "other hallucinogens," and "shrooms" was added to the list of examples. For the tranquilizer list of examples, Miltown was replaced with Xanax. The 2001 data are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "hallucinogens" and "hallucinogensotherthan LSD" are also affected by these changes and have been treated in a parallel manner.
${ }^{\text {c }}$ Parental education is an average score of mother'seducation and father's education. See Appendix B for details.
${ }^{\text {d }}$ To denive percentages for each racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.
${ }^{\text {e }}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

TABLE D-6
Any Illicit Drug Other Than Marijuana: ${ }^{\text {ab }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders


## TABLE D－6（cont＇d）

## Any Illicit Drug Other Than Marijuana：${ }^{\text {a，b }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $2001{ }^{\text {c }}$ | $\underline{2002}^{\text {c }}$ | 2003 | 2004 |  |
| Approx． $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 17.9 | 16.2 | 14.9 | 17.1 | 18.0 | 19.4 | 19.8 | 20.7 | 20.2 | 20.7 | 20．4 $\ddagger$ | 21.6 | 20.9 | 19.8 | 20.5 | ＋0．6 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 19.2 | 17.0 | 15.5 | 17.8 | 18.5 | 20.7 | 21.7 | 21.7 | 21.7 | 22.5 | $21.5 \ddagger$ | 23.3 | 22.0 | 21.1 | 21.5 | ＋0．5 |
| Female | 16.0 | 14.8 | 13.8 | 15.8 | 16.9 | 17.3 | 16.8 | 18.8 | 18.0 | 18.5 | 18．6 $\ddagger$ | 19.0 | 19.0 | 17.9 | 18.7 | ＋0．8 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 23.1 | 20.1 | 19.5 | 19.8 | 22.9 | 23.9 | 24.2 | 25.8 | 26.5 | 24.4 | 24．7 $\ddagger$ | 24.5 | 27.2 | 26.5 | 26.0 | －0．5 |
| Complete 4 years | 15.2 | 14.3 | 13.0 | 15.9 | 16.0 | 17.5 | 17.9 | 18.4 | 17.8 | 19.4 | 18．5† | 19.9 | 19.0 | 17.4 | 18.4 | ＋1．0 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 17.1 | 15.6 | 14.7 | 18.6 | 17.2 | 20.2 | 22.9 | 24.1 | 20.7 | 19.5 | 21．7 $\ddagger$ | 22.4 | 21.5 | 19.3 | 20.4 | ＋1．0 |
| North Central | 18.0 | 17.4 | 15.5 | 16.4 | 20.1 | 19.1 | 19.2 | 18.9 | 19.8 | 20.9 | 18．9† | 24.0 | 19.9 | 18.7 | 19.1 | ＋0．4 |
| South | 16.9 | 14.4 | 14.0 | 16.0 | 17.3 | 19.0 | 18.6 | 19.8 | 20.3 | 21.2 | 19．0才 | 18.6 | 21.3 | 19.4 | 20.8 | ＋1．4 |
| West | 20.4 | 17.9 | 15.8 | 18.5 | 17.3 | 19.9 | 19.2 | 20.9 | 20.0 | 20.8 | $23.2 \ddagger$ | 22.6 | 21.1 | 22.4 | 21.9 | －0．5 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 16.0 | 14.2 | 13.5 | 15.1 | 16.7 | 20.2 | 18.9 | 18.6 | 19.0 | 17.6 | 19．4 $\ddagger$ | 23.6 | 20.6 | 15.9 | 18.0 | ＋2．1 |
| OtherMSA | 18.5 | 17.9 | 14.9 | 18.2 | 19.2 | 19.2 | 20.2 | 21.5 | 20.4 | 21.6 | 20．9† | 21.2 | 21.6 | 22.0 | 22.3 | ＋0．3 |
| Non－MSA | 18.4 | 14.9 | 16.1 | 16.8 | 17.21 | 18.7 | 19.8 | 21.2 | 21.3 | 22.4 | 20．7 $\ddagger$ | 20.3 | 20.2 | 20.9 | 19.7 | －1．2 |
| Parental Educ ation：${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 15.2 | 17.4 | 14.9 | 15.6 | 17.8 | 19.4 | 16.9 | 19.9 | 20.0 | 22.2 | 20．0才 | 17.3 | 17.8 | 19.4 | 18.7 | －0．7 |
| 2．5－3．0 | 17.9 | 16.8 | 15.0 | 16.1 | 18.5 | 19.4 | 19.7 | 19.4 | 20.1 | 21.0 | 19．9\＃ | 20.9 | 20.3 | 19.6 | 20.0 | ＋0．4 |
| 3．5－4．0 | 19.1 | 16.3 | 15.0 | 17.8 | 17.6 | 19.2 | 19.8 | 20.4 | 21.0 | 21.9 | 20．5 $\ddagger$ | 24.5 | 22.0 | 21.7 | 23.0 | ＋1．3 |
| 4．5－5．0 | 17.5 | 14.6 | 14.3 | 17.5 | 18.4 | 19.4 | 19.3 | 21.0 | 19.1 | 19.3 | 20．1才 | 20.1 | 21.2 | 18.5 | 19.7 | ＋1．2 |
| 5．5－6．0（High） | 17.2 | 14.9 | 14.3 | 17.6 | 16.5 | 18.3 | 20.2 | 21.7 | 18.9 | 19.4 | $20.3 \ddagger$ | 18.7 | 19.8 | 17.0 | 17.6 | ＋0．6 |
| Race（2－yearaverage）：${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 21.0 | 18.7 | 17.1 | 17.9 | 19.4 | 20.3 | 21.2 | 22.3 | 23.1 | 22.9 | 22.7 | 23．0才 | $24.1{ }^{\dagger}$ | 23.0 | 22.8 | －0．3 |
| Black | 6.5 | 5.7 | 5.3 | 4.8 | 6.1 | 6.9 | 6.0 | 6.4 | 7.1 | 6.8 | 6.4 | $6.3 \ddagger$ | $6.0{ }^{\text {f }}$ | 6.3 | 6.5 | ＋0．3 |
| Hispanic | 15.6 | 15.8 | 15.1 | 15.6 | 16.5 | 17.9 | 19.7 | 18.9 | 17.5 | 18.5 | 21.2 | 18．2ł | $16.1{ }^{\dagger}$ | 16.0 | 16.2 | ＋0．2 |

（Table continued on next page）

## TABLE D-6 (cont'd) Any Illicit Drug Other Than Marijuana: ${ }^{\text {a,b }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

NOTES: ' $\ddagger$ ' indicates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes. Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.

- -' indic ates data not available.

Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
a Use of "any illic it drug" includes any use of manijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use of other narc otics, a mphetamines, barbiturates, methaqualone (excluded since 1990), or tra nquilizers not under a doctor's orders.
${ }^{\mathrm{b}}$ Beginning in 1982 the question about ampheta mine use was revised to get respondents to exclude the inappropriate reporting of nonprescription amphetamines. The prevalence of use rate dropped slightly as a result of this methodological change.
"In 2001 the question text waschanged on half of the questionnaire forms. "Other psychedelics" waschanged to "other hallucinogens" and "shrooms" was added to the list of examples. For the tranquilizer list of examples, Miltown was replaced with Xanax. The 2001 data are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed.
Beginning in 2002, the data are based on all forms. Data for "hallucinogens" a nd "hallucinogens other than LSD" are also affected by these changes and have been treated in a parallel manner.
${ }^{d}$ Parental education is an average score of mother's education and father'seducation. See Appendix B fordetails.
${ }^{\mathrm{e}}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.
'The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

## TABLE D-7

Marijuana: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 6.2 | 7.2 | 9.2 | 13.0 | 15.8 | 18.3 | 17.7 | 16.9 | 16.5 | 15.6 | 15.4 | 14.6 | 12.8 | 11.8 | -0.9 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 7.3 | 7.4 | 10.5 | 15.1 | 17.7 | 19.6 | 19.2 | 18.0 | 18.1 | 16.7 | 18.1 | 17.0 | 13.9 | 12.3 | -1.5 |
| Female | 5.1 | 6.9 | 8.0 | 10.9 | 13.7 | 16.9 | 16.1 | 15.3 | 14.9 | 14.3 | 12.8 | 12.4 | 11.5 | 11.2 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 15.8 | 17.5 | 22.4 | 27.7 | 30.3 | 34.6 | 34.5 | 35.0 | 34.9 | 33.6 | 34.4 | 33.1 | 31.3 | 29.0 | -2.3 |
| Complete 4 years | 4.6 | 5.5 | 7.3 | 11.0 | 13.8 | 15.8 | 15.5 | 14.5 | 14.0 | 13.4 | 13.2 | 12.7 | 10.7 | 10.0 | -0.8 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 5.0 | 5.8 | 6.2 | 12.1 | 13.0 | 15.3 | 16.2 | 11.7 | 14.4 | 13.2 | 14.5 | 11.3 | 10.0 | 10.2 | +0.2 |
| North Central | 5.9 | 6.0 | 8.0 | 12.0 | 17.5 | 18.6 | 17.0 | 18.1 | 18.5 | 16.6 | 14.1 | 14.3 | 12.3 | 10.9 | -1.4 |
| South | 6.1 | 7.3 | 9.0 | 11.4 | 14.7 | 17.1 | 17.2 | 17.9 | 16.7 | 15.2 | 16.8 | 16.3 | 14.4 | 12.9 | -1.5 |
| West | 7.8 | 10.3 | 14.8 | 18.1 | 18.4 | 22.5 | 20.6 | 18.2 | 15.6 | 16.9 | 15.5 | 15.3 | 12.9 | 12.3 | -0.6 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5.2 | 6.7 | 8.0 | 13.1 | 15.6 | 18.3 | 16.4 | 16.0 | 15.6 | 14.5 | 12.4 | 12.7 | 11.5 | 10.8 | -0.7 |
| Other MSA | 7.2 | 8.3 | 10.9 | 15.7 | 17.2 | 19.5 | 18.2 | 17.4 | 15.4 | 14.8 | 17.4 | 15.2 | 12.9 | 12.4 | -0.5 |
| Non-MSA | 5.3 | 5.7 | 7.2 | 8.0 | 13.7 | 15.8 | 18.0 | 16.9 | 19.7 | 18.5 | 15.3 | 16.1 | 14.1 | 11.9 | -2.2 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 13.2 | 12.7 | 13.6 | 18.7 | 23.0 | 20.2 | 24.8 | 25.0 | 25.8 | 26.2 | 26.0 | 24.2 | 22.5 | 19.7 | -2.8 |
| 2.5-3.0 | 7.0 | 7.7 | 10.7 | 14.5 | 17.9 | 20.6 | 20.3 | 20.0 | 20.8 | 19.4 | 19.5 | 18.7 | 16.5 | 15.4 | -1.1 |
| 3.5-4.0 | 6.2 | 7.0 | 9.7 | 13.2 | 17.2 | 20.2 | 19.5 | 17.7 | 16.3 | 15.9 | 16.7 | 15.4 | 13.7 | 12.8 | -0.9 |
| 4.5-5.0 | 3.7 | 5.4 | 7.4 | 10.9 | 12.7 | 16.2 | 15.7 | 13.7 | 11.7 | 10.8 | 11.1 | 11.4 | 8.9 | 9.0 | +0.1 |
| 5.5-6.0 (High) | 4.6 | 5.2 | 6.4 | 11.0 | 13.0 | 14.7 | 12.1 | 12.7 | 12.4 | 11.5 | 9.4 | 9.7 | 8.0 | 7.7 | -0.3 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 6.4 | 7.8 | 10.0 | 13.5 | 16.7 | 17.8 | 16.7 | 15.4 | 14.9 | 14.7 | 14.5 | 13.0 | 11.5 | -1.6 |
| Black | - | 4.1 | 5.7 | 8.9 | 11.9 | 14.0 | 15.3 | 16.0 | 16.3 | 16.1 | 14.6 | 12.7 | 12.6 | 12.8 | +0.3 |
| Hispanic | - | 11.9 | 13.9 | 18.1 | 20.4 | 20.8 | 21.8 | 22.7 | 22.8 | 20.1 | 19.9 | 21.1 | 19.1 | 16.7 | -2.4 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 16.5 | 15.2 | 19.2 | 25.2 | 28.7 | 33.6 | 34.8 | 31.1 | 32.1 | 32.2 | 32.7 | 30.3 | 28.2 | 27.5 | -0.8 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 17.7 | 16.3 | 21.2 | 28.2 | 30.6 | 36.0 | 37.3 | 32.2 | 34.3 | 36.1 | 36.0 | 32.3 | 30.0 | 29.0 | -1.0 |
| Female | 15.1 | 13.9 | 16.9 | 21.9 | 26.5 | 31.4 | 32.3 | 30.1 | 29.7 | 28.4 | 29.6 | 28.4 | 26.4 | 25.8 | -0.5 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 26.9 | 25.1 | 31.5 | 37.3 | 41.8 | 48.9 | 51.5 | 46.8 | 48.3 | 48.8 | 47.4 | 46.6 | 44.6 | 41.9 | -2.6 |
| Complete 4 years | 14.2 | 13.0 | 16.5 | 22.4 | 26.4 | 31.0 | 32.0 | 28.2 | 29.3 | 29.7 | 30.3 | 27.7 | 25.5 | 25.4 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 17.1 | 14.9 | 22.4 | 25.6 | 28.8 | 34.8 | 34.6 | 35.4 | 34.4 | 30.3 | 34.1 | 31.7 | 29.5 | 29.2 | -0.4 |
| North Central | 15.8 | 14.8 | 17.4 | 23.4 | 26.6 | 33.1 | 34.4 | 28.5 | 31.6 | 31.1 | 31.7 | 29.0 | 25.0 | 25.3 | +0.3 |
| South | 14.5 | 12.5 | 16.4 | 23.8 | 28.4 | 33.9 | 34.4 | 30.7 | 30.9 | 31.4 | 31.2 | 28.9 | 29.6 | 29.0 | -0.6 |
| West | 19.4 | 20.4 | 24.0 | 30.0 | 32.2 | 32.4 | 36.5 | 30.7 | 32.0 | 37.1 | 36.4 | 33.4 | 28.8 | 26.4 | -2.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 16.5 | 15.1 | 19.0 | 26.3 | 27.8 | 31.5 | 34.1 | 28.7 | 31.2 | 32.4 | 30.0 | 29.0 | 27.1 | 25.9 | -1.3 |
| Other MSA | 17.3 | 15.9 | 19.8 | 28.2 | 31.2 | 36.2 | 36.6 | 33.1 | 33.6 | 32.8 | 35.2 | 32.4 | 28.7 | 27.8 | -0.8 |
| Non-MSA | 14.9 | 13.9 | 18.2 | 18.5 | 24.8 | 30.9 | 32.5 | 30.2 | 30.0 | 31.1 | 30.9 | 27.6 | 29.0 | 29.0 | 0.0 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 20.3 | 18.9 | 22.4 | 25.8 | 32.0 | 32.9 | 34.5 | 31.7 | 38.1 | 37.1 | 33.6 | 33.5 | 33.7 | 33.2 | -0.4 |
| 2.5-3.0 | 17.8 | 16.0 | 19.7 | 26.3 | 31.8 | 35.6 | 36.8 | 35.3 | 35.4 | 34.9 | 37.1 | 35.1 | 32.2 | 30.6 | -1.6 |
| 3.5-4.0 | 16.2 | 15.1 | 19.3 | 25.6 | 30.0 | 36.4 | 37.8 | 31.6 | 31.9 | 35.0 | 32.6 | 30.1 | 29.4 | 29.5 | +0.2 |
| 4.5-5.0 | 14.9 | 14.1 | 17.6 | 23.8 | 27.0 | 31.7 | 33.1 | 28.3 | 28.8 | 28.9 | 31.4 | 27.9 | 24.3 | 24.3 | 0.0 |
| 5.5-6.0 (High) | 15.9 | 13.7 | 18.5 | 23.3 | 23.4 | 30.3 | 30.5 | 27.7 | 30.6 | 27.3 | 29.4 | 25.8 | 24.3 | 22.5 | -1.7 |
| Race (2-yearaverage): |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 17.0 | 18.0 | 22.6 | 27.7 | 32.0 | 35.3 | 34.2 | 32.5 | 32.6 | 32.9 | 32.7 | 30.6 | 28.2 | -2.4 |
| Black | - | 7.6 | 8.7 | 15.3 | 20.9 | 25.7 | 28.4 | 26.9 | 26.3 | 27.6 | 28.7 | 26.5 | 25.1 | 27.0 | +2.0 |
| Hispanic | - | 18.9 | 21.3 | 25.1 | 29.2 | 34.6 | 36.8 | 34.4 | 34.0 | 34.8 | 34.9 | 31.6 | 28.8 | 29.8 | +1.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not ava ilable.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B fordefinition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.

${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-9
Marijuana: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders


## TABLE D-9 (cont'd)

Marijuana: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 27.0 | 23.9 | 21.9 | 26.0 | 30.7 | 34.7 | 35.8 | 38.5 | 37.5 | 37.8 | 36.5 | 37.0 | 36.2 | 34.9 | 34.3 | -0.6 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 29.4 | 27.2 | 24.4 | 29.0 | 35.1 | 38.1 | 39.4 | 40.9 | 41.7 | 41.4 | 39.2 | 40.1 | 39.9 | 37.8 | 37.4 | -0.4 |
| Female | 24.2 | 20.1 | 18.9 | 22.4 | 26.4 | 30.6 | 31.6 | 35.5 | 33.0 | 34.1 | 33.4 | 33.6 | 32.4 | 31.6 | 30.8 | -0.9 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 31.1 | 27.6 | 27.5 | 29.1 | 34.4 | 39.0 | 41.7 | 44.6 | 43.0 | 43.2 | 40.3 | 41.5 | 40.9 | 42.1 | 39.0 | -3.1 |
| Complete 4 years | 24.7 | 22.0 | 19.4 | 24.4 | 29.1 | 32.6 | 33.4 | 36.4 | 35.2 | 35.9 | 34.6 | 35.3 | 34.7 | 32.3 | 32.6 | +0.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 32.2 | 28.2 | 23.9 | 31.2 | 36.0 | 37.7 | 40.0 | 43.5 | 43.0 | 39.0 | 42.3 | 43.8 | 41.9 | 40.5 | 40.1 | -0.4 |
| North Central | 28.7 | 26.1 | 22.7 | 26.0 | 30.5 | 36.9 | 36.9 | 36.5 | 33.8 | 38.0 | 34.5 | 36.9 | 37.5 | 36.5 | 34.0 | -2.5 |
| South | 21.4 | 18.1 | 18.1 | 23.2 | 28.7 | 31.8 | 32.8 | 35.0 | 36.5 | 36.0 | 30.7 | 32.4 | 32.6 | 29.4 | 30.1 | +0.7 |
| West | 28.3 | 26.8 | 26.1 | 26.4 | 30.0 | 33.8 | 35.6 | 42.6 | 39.0 | 39.8 | 43.1 | 38.4 | 35.2 | 36.2 | 35.6 | -0.6 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 27.7 | 24.3 | 22.6 | 29.1 | 32.0 | 37.5 | 37.2 | 38.3 | 38.4 | 38.7 | 37.1 | 39.2 | 37.7 | 32.3 | 32.3 | 0.0 |
| OtherMSA | 28.3 | 27.5 | 22.1 | 26.2 | 32.7 | 34.9 | 38.6 | 40.5 | 38.8 | 39.1 | 38.1 | 36.7 | 38.0 | 38.1 | 37.9 | -0.3 |
| Non-MSA | 23.5 | 17.5 | 21.0 | 23.1 | 25.8 | 31.0 | 29.6 | 34.9 | 33.5 | 34.7 | 32.9 | 35.1 | 30.8 | 32.2 | 29.7 | -2.5 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 21.0 | 22.4 | 21.2 | 23.0 | 26.3 | 30.9 | 31.3 | 34.8 | 34.2 | 35.5 | 36.5 | 33.9 | 30.8 | 31.4 | 28.7 | -2.6 |
| 2.5-3.0 | 26.9 | 22.5 | 21.1 | 24.1 | 29.7 | 33.8 | 35.1 | 37.4 | 36.1 | 38.6 | 35.1 | 37.0 | 34.9 | 34.2 | 33.1 | -1.1 |
| 3.5-4.0 | 27.6 | 24.0 | 22.7 | 26.6 | 31.5 | 34.2 | 36.1 | 38.1 | 39.0 | 38.6 | 36.8 | 38.4 | 38.5 | 36.2 | 36.9 | +0.7 |
| 4.5-5.0 | 28.5 | 23.8 | 20.8 | 27.2 | 32.0 | 35.0 | 36.6 | 40.1 | 37.4 | 35.9 | 35.8 | 37.4 | 37.0 | 35.4 | 34.4 | -1.1 |
| 5.5-6.0 (High) | 29.4 | 28.2 | 22.6 | 28.0 | 32.3 | 37.5 | 36.7 | 39.7 | 38.3 | 39.2 | 38.0 | 35.2 | 36.1 | 32.6 | 34.0 | +1.4 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 31.6 | 28.2 | 24.9 | 25.9 | 30.2 | 34.2 | 36.4 | 38.7 | 39.9 | 39.1 | 38.2 | 38.5 | 38.7 | 37.9 | 37.3 | -0.7 |
| Black | 13.7 | 11.4 | 11.5 | 14.2 | 20.7 | 26.8 | 30.2 | 30.4 | 30.0 | 30.4 | 30.0 | 29.0 | 27.3 | 26.3 | 25.5 | -0.7 |
| Hispanic | 21.6 | 23.6 | 24.7 | 23.5 | 25.7 | 29.7 | 32.3 | 36.4 | 37.2 | 37.8 | 40.5 | 37.6 | 34.6 | 31.1 | 29.5 | -1.7 |

${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's seducation. See Appendix B for details.
${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-10

 Inhalants: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}$ | 2002 | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 9.0 | 9.5 | 11.0 | 11.7 | 12.8 | 12.2 | 11.8 | 11.1 | 10.3 | 9.4 | 9.1 | 7.7 | 8.7 | 9.6 | +0.9 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 9.0 | 9.2 | 10.4 | 11.2 | 11.5 | 10.3 | 10.5 | 10.6 | 9.5 | 8.9 | 8.4 | 7.6 | 7.7 | 8.8 | +1.1 |
| Female | 9.0 | 9.8 | 11.9 | 12.2 | 14.0 | 14.1 | 12.9 | 11.6 | 11.1 | 9.9 | 9.9 | 7.8 | 9.6 | 10.5 | +0.9 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 15.0 | 15.6 | 17.7 | 18.3 | 19.6 | 18.2 | 18.1 | 20.9 | 17.9 | 17.2 | 15.1 | 14.5 | 16.5 | 17.9 | +1.5 |
| Complete 4 years | 8.1 | 8.8 | 10.2 | 10.9 | 11.9 | 11.4 | 11.2 | 10.2 | 9.5 | 8.6 | 8.6 | 7.1 | 8.0 | 8.7 | +0.8 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 8.0 | 8.6 | 11.3 | 12.0 | 13.1 | 11.7 | 12.1 | 9.1 | 9.8 | 8.7 | 9.4 | 6.9 | 9.0 | 8.9 | -0.1 |
| North Central | 9.8 | 10.5 | 9.9 | 10.3 | 13.8 | 13.3 | 11.3 | 11.3 | 10.6 | 10.6 | 8.8 | 8.0 | 9.6 | 9.6 | 0.0 |
| South | 8.9 | 9.1 | 10.0 | 11.3 | 12.1 | 11.3 | 11.6 | 11.3 | 9.9 | 8.4 | 9.5 | 8.4 | 7.9 | 9.9 | +2.0 s |
| West | 8.8 | 9.8 | 14.2 | 14.0 | 12.4 | 12.9 | 12.6 | 12.4 | 10.9 | 10.5 | 8.6 | 6.4 | 8.9 | 9.6 | +0.7 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 9.9 | 9.1 | 10.8 | 11.6 | 11.7 | 11.4 | 10.4 | 8.6 | 8.8 | 8.3 | 8.3 | 7.1 | 8.0 | 8.8 | +0.9 |
| Other MSA | 8.5 | 10.3 | 12.3 | 13.1 | 13.7 | 13.4 | 11.5 | 11.1 | 10.1 | 9.4 | 8.9 | 8.0 | 8.5 | 10.3 | +1.8 s |
| Non-MSA | 9.1 | 8.6 | 8.5 | 9.3 | 12.3 | 11.0 | 13.9 | 14.0 | 12.3 | 10.9 | 10.4 | 7.8 | 10.1 | 9.2 | -0.9 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 12.0 | 11.4 | 11.5 | 12.4 | 13.0 | 11.3 | 12.1 | 14.4 | 12.9 | 13.1 | 10.7 | 10.3 | 10.6 | 12.6 | +2.1 |
| 2.5-3.0 | 9.5 | 9.9 | 10.9 | 12.1 | 13.9 | 12.6 | 12.6 | 12.0 | 11.8 | 11.3 | 9.7 | 8.3 | 10.1 | 10.2 | +0.2 |
| 3.5-4.0 | 8.9 | 10.0 | 11.5 | 12.3 | 14.7 | 13.4 | 13.5 | 12.8 | 10.8 | 9.9 | 9.4 | 8.9 | 10.3 | 11.0 | +0.7 |
| 4.5-5.0 | 8.0 | 8.4 | 10.6 | 11.0 | 12.3 | 13.2 | 11.4 | 9.7 | 9.2 | 7.1 | 9.0 | 7.3 | 7.4 | 9.3 | +1.9 s |
| 5.5-6.0 (High) | 8.4 | 10.3 | 12.6 | 12.2 | 11.6 | 11.7 | 10.8 | 10.6 | 9.1 | 9.2 | 7.7 | 6.2 | 6.5 | 6.9 | +0.4 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 10.1 | 11.3 | 12.4 | 13.8 | 14.6 | 14.1 | 13.3 | 12.1 | 10.9 | 10.1 | 9.1 | 8.8 | 9.6 | +0.8 |
| Black | - | 4.4 | 4.6 | 5.3 | 5.0 | 4.2 | 3.8 | 4.2 | 4.2 | 4.3 | 4.8 | 5.0 | 4.9 | 5.4 | +0.5 |
| Hispanic | - | 10.4 | 11.5 | 12.5 | 13.3 | 12.7 | 11.4 | 11.5 | 12.7 | 12.2 | 11.0 | 9.9 | 9.6 | 10.6 | +1.1 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-105 for the number of subgroup cases. See Appendix B fordefinition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a P Parental education is an average score of mother'seducation and father's education. See Appendix B for details. }}$
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

Inhalants: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders
Percentage who used in last twelve months
'03-'04 2004 change Approx. $N=\begin{array}{llllllllllllllllll}14800 & 14800 & 15300 & 15800 & 17000 & 15600 & 15500 & 15000 & 13600 & 14300 & 14000 & 14300 & 15800 & 16400\end{array}$

| Total | 7.1 | 7.5 | 8.4 | 9.1 | 9.6 | 9.5 | 8.7 | 8.0 | 7.2 | 7.3 | 6.6 | 5.8 | 5.4 | 5.9 | +0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 7.4 | 7.6 | 9.1 | 9.7 | 10.3 | 10.1 | 9.1 | 8.4 | 7.6 | 7.7 | 6.7 | 5.4 | 5.2 | 5.8 | +0.6 |
| Female | 6.6 | 7.5 | 7.7 | 8.6 | 8.9 | 8.9 | 8.2 | 7.6 | 6.9 | 7.0 | 6.5 | 6.0 | 5.6 | 6.1 | +0.4 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 12.0 | 12.4 | 14.0 | 15.1 | 14.6 | 14.3 | 14.4 | 13.5 | 11.6 | 11.2 | 11.0 | 9.8 | 9.6 | 11.2 | +1.6 |
| Complete 4 years | 5.9 | 6.4 | 7.3 | 7.8 | 8.7 | 8.7 | 7.7 | 7.0 | 6.5 | 6.7 | 5.9 | 5.2 | 4.8 | 5.2 | +0.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 7.2 | 7.8 | 10.6 | 9.8 | 10.4 | 11.5 | 8.9 | 9.3 | 8.3 | 7.2 | 6.5 | 6.0 | 5.9 | 6.1 | +0.3 |
| North Central | 7.5 | 8.0 | 8.3 | 8.4 | 10.4 | 9.8 | 8.3 | 6.7 | 8.4 | 7.5 | 6.5 | 5.8 | 6.1 | 5.7 | -0.4 |
| South | 7.2 | 6.6 | 7.3 | 9.0 | 9.4 | 9.1 | 8.8 | 8.3 | 6.5 | 7.4 | 6.8 | 5.4 | 4.6 | 5.6 | +1.0 |
| West | 6.2 | 8.0 | 8.4 | 9.9 | 8.1 | 8.0 | 8.5 | 7.8 | 6.1 | 7.2 | 6.7 | 6.2 | 5.5 | 6.6 | +1.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 7.7 | 7.8 | 8.5 | 7.9 | 8.7 | 8.1 | 8.1 | 6.7 | 6.9 | 7.1 | 6.0 | 5.1 | 4.8 | 5.0 | +0.2 |
| OtherMSA | 7.1 | 7.4 | 8.4 | 9.8 | 9.7 | 9.6 | 8.4 | 7.7 | 7.0 | 6.8 | 6.9 | 5.4 | 5.2 | 6.3 | +1.1 |
| Non-MSA | 6.5 | 7.5 | 8.6 | 9.1 | 10.5 | 11.0 | 9.8 | 10.1 | 8.3 | 8.5 | 7.0 | 7.4 | 7.1 | 6.5 | -0.5 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 7.0 | 8.2 | 10.2 | 8.7 | 9.4 | 10.8 | 9.3 | 9.7 | 8.7 | 8.5 | 7.6 | 5.6 | 5.8 | 6.2 | +0.4 |
| 2.5-3.0 | 8.0 | 7.9 | 9.1 | 9.5 | 11.0 | 9.9 | 8.5 | 9.1 | 8.0 | 8.1 | 7.5 | 6.0 | 6.3 | 6.9 | +0.6 |
| 3.5-4.0 | 7.5 | 8.3 | 8.3 | 9.6 | 10.2 | 10.1 | 9.4 | 8.1 | 6.9 | 7.4 | 5.9 | 6.3 | 5.8 | 5.7 | -0.1 |
| 4.5-5.0 | 6.4 | 6.5 | 7.2 | 8.7 | 9.4 | 8.4 | 8.3 | 7.1 | 6.7 | 6.5 | 6.8 | 5.6 | 5.1 | 5.7 | +0.6 |
| 5.5-6.0 (High) | 6.6 | 6.7 | 8.2 | 8.2 | 7.0 | 10.1 | 8.2 | 6.7 | 7.2 | 7.2 | 5.5 | 5.2 | 4.4 | 5.1 | +0.8 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 8.3 | 8.8 | 9.6 | 10.6 | 11.0 | 10.4 | 9.6 | 8.9 | 8.4 | 7.9 | 7.1 | 6.6 | 6.5 | -0.1 |
| Black | - | 3.6 | 3.7 | 3.3 | 2.8 | 2.3 | 2.3 | 2.4 | 2.0 | 2.0 | 2.1 | 2.4 | 2.0 | 2.1 | +0.1 |
| Hispanic | - | 6.4 | 8.3 | 9.0 | 8.5 | 8.2 | 7.9 | 7.6 | 7.3 | 6.3 | 5.9 | 4.8 | 4.8 | 5.7 | +0.9 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-12

 Inhalants: ${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}{ }^{\text {c }}$ | $\underline{2002}{ }^{\text {c }}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 6.9 | 6.6 | 6.2 | 7.0 | 7.7 | 8.0 | 7.6 | 6.7 | 6.2 | 5.6 | 5.9 | 4.5 | 4.5 | 3.9 | 4.2 | +0.2 |
| Adjusted ${ }^{\text {b }}$ | 7.5 | 6.9 | 6.4 | 7.4 | 8.2 | 8.4 | 8.5 | 7.3 | 7.1 | 6.0 | 6.2 | 4.9 | 4.9 | 4.5 | 4.6 | +0.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8.8 | 8.2 | 8.0 | 9.2 | 9.6 | 9.9 | 9.1 | 8.3 | 7.5 | 6.5 | 6.8 | 5.5 | 5.8 | 5.2 | 4.8 | -0.3 |
| Female | 4.9 | 5.0 | 4.5 | 4.8 | 6.0 | 6.2 | 6.1 | 5.2 | 5.1 | 4.9 | 5.1 | 3.5 | 3.3 | 2.9 | 3.4 | +0.5 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 7.8 | 7.7 | 7.7 | 8.0 | 9.0 | 9.7 | 8.2 | 8.0 | 7.9 | 6.5 | 6.7 | 6.6 | 6.3 | 5.1 | 5.6 | +0.5 |
| Complete 4 years | 6.4 | 6.3 | 5.7 | 6.7 | 7.4 | 7.4 | 7.3 | 6.5 | 5.7 | 5.4 | 5.5 | 3.9 | 4.2 | 3.5 | 3.8 | +0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 7.4 | 6.7 | 6.0 | 8.9 | 10.3 | 10.3 | 10.8 | 9.4 | 8.0 | 6.2 | 6.3 | 5.7 | 5.4 | 5.1 | 4.3 | -0.9 |
| North Central | 8.0 | 8.6 | 7.4 | 6.3 | 9.5 | 8.6 | 7.6 | 6.9 | 7.6 | 6.3 | 5.5 | 5.0 | 5.6 | 3.7 | 3.8 | +0.1 |
| South | 6.4 | 5.0 | 4.8 | 6.5 | 6.2 | 7.0 | 6.5 | 5.6 | 5.1 | 5.2 | 5.5 | 3.4 | 4.1 | 3.5 | 4.1 | +0.6 |
| West | 5.7 | 6.8 | 7.5 | 7.0 | 5.7 | 6.7 | 6.0 | 5.4 | 4.7 | 4.9 | 6.7 | 4.8 | 3.2 | 3.6 | 4.6 | +1.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 6.7 | 5.2 | 6.0 | 7.4 | 7.6 | 8.5 | 7.8 | 5.9 | 5.5 | 4.8 | 6.3 | 4.4 | 4.4 | 3.5 | 4.0 | +0.5 |
| Other MSA | 6.8 | 7.8 | 6.6 | 7.3 | 7.7 | 7.8 | 7.9 | 6.5 | 6.1 | 5.3 | 4.9 | 4.3 | 4.4 | 4.4 | 4.1 | -0.2 |
| Non-MSA | 7.4 | 5.8 | 5.6 | 6.0 | 7.6 | 7.8 | 7.0 | 8.1 | 7.4 | 6.9 | 7.2 | 5.2 | 4.8 | 3.7 | 4.3 | +0.7 |
| Parental Education: ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 5.0 | 6.1 | 4.2 | 4.3 | 5.3 | 7.5 | 5.8 | 5.4 | 6.3 | 4.8 | 4.0 | 3.2 | 5.7 | 3.4 | 4.6 | +1.2 |
| 2.5-3.0 | 6.9 | 6.6 | 6.7 | 6.0 | 7.8 | 8.0 | 7.9 | 6.3 | 6.0 | 5.4 | 5.2 | 5.7 | 4.3 | 3.8 | 4.9 | +1.2 |
| 3.5-4.0 | 7.2 | 6.1 | 6.3 | 7.7 | 7.1 | 6.7 | 7.8 | 7.1 | 7.3 | 6.1 | 6.1 | 4.2 | 4.5 | 3.9 | 5.0 | +1.1 |
| 4.5-5.0 | 7.4 | 7.4 | 6.3 | 7.6 | 8.9 | 8.9 | 7.4 | 7.9 | 5.3 | 5.6 | 5.9 | 3.8 | 4.7 | 4.4 | 3.4 | -1.0 |
| 5.5-6.0 (High) | 7.6 | 7.1 | 6.7 | 9.4 | 9.7 | 9.7 | 8.5 | 6.0 | 6.2 | 6.1 | 7.5 | 5.8 | 4.6 | 4.0 | 3.2 | -0.8 |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 7.2 | 7.6 | 7.2 | 7.6 | 8.6 | 9.1 | 9.0 | 8.6 | 7.9 | 7.0 | 6.4 | 5.9 | 5.2 | 4.9 | 4.7 | -0.2 |
| Black | 2.1 | 2.7 | 2.5 | 2.2 | 2.4 | 2.6 | 2.2 | 1.9 | 1.7 | 1.4 | 1.9 | 2.2 | 1.9 | 1.5 | 1.3 | -0.2 |
| Hispanic | 4.8 | 5.4 | 6.0 | 5.7 | 5.5 | 5.8 | 5.9 | 4.7 | 4.5 | 5.5 | 6.3 | 4.5 | 3.4 | 2.7 | 2.9 | +0.2 |
| ${ }^{\text {a }}$ All data are unadjusted for underreporting of amyl and butyl nitrites, except where otherwise noted. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {b }}$ Adjusted for underreporting of amyl and butyl nitrites. See text fordetails. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{d}$ To denive percentages for each racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates. The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE D－13
Hallucinogens：Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $2001^{\text {a }}$ | $\underline{2002}^{\text {a }}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx． $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 1.9 | 2.5 | 2.6 | 2.7 | 3.6 | 4.1 | 3.7 | 3.4 | 2.9 | $2.8 \ddagger$ | 3.4 | 2.6 | 2.6 | 2.2 | －0．3 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 2.2 | 2.6 | 2.8 | 3.0 | 4.0 | 4.3 | 4.0 | 3.7 | 3.3 | $3.2 \ddagger$ | 3.8 | 2.9 | 2.9 | 2.3 | －0．6 |
| Female | 1.6 | 2.3 | 2.3 | 2.4 | 3.3 | 3.7 | 3.2 | 2.9 | 2.4 | $2.5 \ddagger$ | 2.9 | 2.2 | 2.3 | 2.1 | －0．2 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 5.1 | 7.2 | 7.1 | 6.7 | 9.6 | 9.6 | 10.1 | 9.2 | 9.4 | 7．7才 | 9.5 | 7.8 | 8.7 | 7.8 | －1．0 |
| Complete 4 years | 1.4 | 1.8 | 1.9 | 2.2 | 2.9 | 3.2 | 2.9 | 2.7 | 2.1 | $2.3 \ddagger$ | 2.6 | 2.0 | 1.9 | 1.7 | －0．2 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.5 | 1.6 | 1.9 | 2.9 | 3.4 | 3.7 | 2.8 | 2.4 | 2.6 | $2.3 \ddagger$ | 2.9 | 1.5 | 2.5 | 2.0 | －0．5 |
| North Central | 1.6 | 2.4 | 1.7 | 2.2 | 3.8 | 3.9 | 3.8 | 3.5 | 3.4 | 3．5才 | 2.7 | 2.7 | 2.6 | 1.9 | －0．6 |
| South | 1.9 | 2.7 | 2.8 | 2.4 | 3.3 | 3.9 | 3.4 | 3.7 | 2.9 | $2.7 \ddagger$ | 4.0 | 2.9 | 2.6 | 2.4 | －0．2 |
| West | 2.8 | 3.2 | 4.2 | 3.9 | 4.2 | 5.1 | 4.8 | 3.5 | 2.4 | 2．7\＃ | 3.3 | 2.9 | 2.7 | 2.6 | －0．1 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 2.1 | 2.2 | 2.2 | 3.1 | 4.0 | 3.8 | 3.3 | 2.9 | 2.5 | $2.3 \ddagger$ | 2.7 | 2.0 | 2.2 | 1.9 | －0．4 |
| Other MSA | 2.0 | 3.0 | 3.1 | 3.1 | 3.8 | 4.8 | 4.0 | 3.4 | 3.1 | $3.0 \ddagger$ | 3.6 | 2.4 | 2.5 | 2.6 | ＋0．1 |
| Non－MSA | 1.5 | 2.0 | 1.8 | 1.6 | 3.0 | 3.2 | 3.5 | 3.8 | 2.8 | $3.2 \ddagger$ | 3.6 | 3.5 | 3.3 | 2.1 | －1．2 |
| Parental Education：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 3.9 | 3.7 | 3.5 | 3.1 | 5.1 | 4.8 | 5.0 | 5.0 | 4.8 | $5.4 \ddagger$ | 5.9 | 4.4 | 4.3 | 4.8 | $+0.5$ |
| 2．5－3．0 | 2.2 | 2.3 | 2.7 | 2.8 | 3.8 | 4.7 | 3.9 | 3.4 | 3.5 | 3．2\＃ | 3.9 | 3.2 | 3.2 | 2.5 | －0．7 |
| 3．5－4．0 | 1.6 | 2.5 | 2.8 | 2.8 | 4.1 | 4.1 | 3.8 | 3.7 | 2.8 | $2.8 \ddagger$ | 3.7 | 2.6 | 2.6 | 2.1 | －0．5 |
| 4．5－5．0 | 1.6 | 2.0 | 2.3 | 2.8 | 3.2 | 4.0 | 3.4 | 3.0 | 2.1 | 2．1才 | 2.4 | 2.1 | 2.0 | 2.0 | 0.0 |
| 5．5－6．0（High） | 1.4 | 2.4 | 2.0 | 2.5 | 3.2 | 3.5 | 3.5 | 3.1 | 2.5 | 3．1才 | 2.3 | 1.7 | 1.9 | 1.7 | －0．3 |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 2.2 | 2.6 | 2.8 | 3.6 | 4.5 | 4.5 | 3.9 | 3.2 | 3.1 | $2.9 \ddagger$ | $2.7{ }^{\text {d }}$ | 2.8 | 2.5 | －0．3 |
| Black | － | 0.7 | 0.7 | 0.6 | 0.6 | 0.7 | 0.7 | 0.7 | 0.6 | 0.7 | 0．7才 | $0.7{ }^{\text {d }}$ | 0.9 | 1.2 | ＋0．3 |
| Hispanic | － | 3.8 | 4.1 | 4.0 | 4.0 | 4.1 | 4.2 | 4.6 | 4.5 | 4.0 | $3.4 \ddagger$ | $3.6{ }^{\text {d }}$ | 2.9 | 2.9 | ＋0．1 |

（Table continued on next page）

## TABLE D-13 (cont'd)

## Hallucinogens: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

NOTES: ' $\ddagger$ ' indicates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes.
Level of signific ance of difference between the two most recent classes: $\mathrm{s}=.05, \mathrm{ss}=.01,55 s=.001$.
'-' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
a In 2001 the question text waschanged on half of the questionnaire forms. "Other psychedelics" waschanged to "other hallucinogens," and "shrooms" was added to the list of examples. The 2001 data are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "any illicit drug other than manijuana" and "hallucinogens" are also affected by these changes and have been treated in a parallel manner. ${ }^{b}$ Parental education is an average score of mother's education and father's education. See Appendix B fordetails.
${ }^{\text {c }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.
${ }^{\text {d }}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

TABLE D－14
Hallucinogens：Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}{ }^{\text {a }}$ | $\underline{2002}{ }^{\text {a }}$ | 2003 | 2004 |  |
| Approx． $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 4.0 | 4.3 | 4.7 | 5.8 | 7.2 | 7.8 | 7.6 | 6.9 | 6.9 | 6．1才 | 6.2 | 4.7 | 4.1 | 4.1 | 0.0 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 4.4 | 4.7 | 5.7 | 6.6 | 8.1 | 8.5 | 8.7 | 7.4 | 8.1 | $7.2 \ddagger$ | 7.9 | 5.5 | 4.9 | 4.6 | －0．2 |
| Female | 3.6 | 3.8 | 3.6 | 4.8 | 6.1 | 7.0 | 6.4 | 6.3 | 5.7 | $4.9 \ddagger$ | 4.6 | 3.9 | 3.4 | 3.5 | ＋0．1 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 7.5 | 7.5 | 9.1 | 10.4 | 12.5 | 14.5 | 13.6 | 14.2 | 14.3 | 12．3才 | 15.0 | 10.3 | 8.9 | 9.3 | ＋0．4 |
| Complete 4 years | 3.3 | 3.6 | 3.7 | 4.8 | 6.2 | 6.6 | 6.5 | 5.6 | 5.7 | 5．1才 | 4.8 | 3.9 | 3.3 | 3.3 | ＋0．1 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 4.0 | 2.7 | 4.7 | 5.8 | 5.6 | 7.7 | 6.2 | 8.1 | 8.6 | 5．8才 | 6.0 | 4.2 | 4.0 | 4.7 | ＋0．7 |
| North Central | 3.4 | 4.3 | 4.6 | 5.7 | 7.8 | 9.0 | 7.0 | 5.6 | 6.7 | 6．1才 | 6.0 | 5.1 | 3.5 | 3.7 | ＋0．2 |
| South | 3.6 | 3.9 | 3.6 | 5.1 | 7.3 | 7.5 | 8.3 | 7.6 | 6.5 | 5．7\＃ | 5.3 | 4.0 | 3.9 | 3.6 | －0．3 |
| West | 5.2 | 6.5 | 6.7 | 7.1 | 7.6 | 6.6 | 8.5 | 6.1 | 6.1 | 6．9才 | 8.7 | 5.9 | 5.0 | 4.7 | －0．4 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 4.1 | 4.6 | 4.9 | 6.0 | 7.1 | 8.6 | 7.8 | 6.3 | 5.8 | $7.5 \ddagger$ | 5.0 | 4.7 | 3.2 | 2.9 | －0．4 |
| Other MSA | 4.8 | 4.4 | 4.9 | 6.4 | 8.0 | 8.2 | 7.9 | 7.6 | 7.8 | $5.8 \ddagger$ | 6.6 | 4.9 | 4.4 | 5.0 | ＋0．6 |
| Non－MSA | 2.5 | 3.7 | 4.1 | 4.4 | 5.5 | 6.0 | 6.7 | 6.3 | 6.5 | 5．1 $\ddagger$ | 6.8 | 4.4 | 4.6 | 3.9 | －0．7 |
| Parental Education：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 3.7 | 4.9 | 6.0 | 6.1 | 7.7 | 8.0 | 6.5 | 8.3 | 7.0 | $5.2 \ddagger$ | 6.4 | 5.3 | 6.5 | 3.2 | －3．3 ss |
| 2．5－3．0 | 4.3 | 4.2 | 4.5 | 5.5 | 7.6 | 8.5 | 7.3 | 8.2 | 8.1 | $5.8 \ddagger$ | 6.7 | 5.2 | 4.7 | 4.8 | ＋0．1 |
| 3．5－4．0 | 3.7 | 4.6 | 4.8 | 5.9 | 7.6 | 8.6 | 8.2 | 6.6 | 6.6 | $6.7 \ddagger$ | 6.1 | 4.8 | 4.0 | 3.9 | －0．1 |
| 4．5－5．0 | 4.1 | 3.8 | 4.5 | 5.5 | 6.6 | 6.9 | 8.2 | 6.1 | 6.6 | $6.3 \ddagger$ | 6.0 | 4.0 | 3.5 | 3.7 | ＋0．2 |
| 5．5－6．0（High） | 4.6 | 4.2 | 4.6 | 6.2 | 6.5 | 7.2 | 6.8 | 6.0 | 6.5 | $6.2 \ddagger$ | 5.8 | 5.2 | 3.4 | 4.1 | ＋0．7 |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 4.9 | 5.1 | 5.6 | 7.1 | 8.6 | 8.9 | 8.4 | 8.2 | 7.6 | $6.6 \ddagger$ | $5.6{ }^{\text {d }}$ | 5.3 | 4.9 | －0．4 |
| Black | － | 0.2 | 0.6 | 1.1 | 1.2 | 0.9 | 1.0 | 1.1 | 1.0 | 1.0 | $1.3 \ddagger$ | $1.4{ }^{\text {a }}$ | 1.0 | 0.8 | －0．2 |
| Hispanic | － | 3.6 | 4.5 | 5.7 | 6.3 | 6.6 | 7.3 | 7.3 | 6.4 | 5.2 | $4.4 \ddagger$ | $4.5{ }^{\text {a }}$ | 3.9 | 3.8 | －0．1 |

## TABLE D-14 (cont'd)

## Hallucinogens: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

## NOTES: ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording

 changes.Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$
'-' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
See Table D-106 for the number of subgroup cases. See Appendix B for definition of va riables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ In 2001 the question text was changed on half of the questionnaire forms. "Other psychedelics" waschanged to "other
hallucinogens," and "shrooms" was added to the list of examples. The 2001 data are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "any illicit drug otherthan marijuana" and "hallucinogens" are also affected by these changes and have been treated in a parallel manner.
${ }^{\mathrm{b}}$ Parental education is an average score of mother's education and father's sducation. See Appendix B for details.
'To derive percentagesforeach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates
${ }^{\text {a }}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

## TABLE D-15

Hallucinogens: ${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{\text { Cont'd }}{ }\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | $\underline{1976}$ | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | $\underline{1985}$ | 1986 | 1987 | 1988 | $\underline{1989}$ |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 11.2 | 9.4 | 8.8 | 9.6 | 9.9 | 9.3 | 9.0 | 8.1 | 7.3 | 6.5 | 6.3 | 6.0 | 6.4 | 5.5 | 5.6 |  |
| Adjusted ${ }^{\text {c }}$ | - | - | - | - | 11.8 | 10.4 | 10.1 | 9.0 | 8.3 | 7.3 | 7.6 | 7.6 | 6.7 | 5.8 | 6.2 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 13.7 | 11.6 | 10.8 | 11.6 | 11.8 | 11.7 | 10.9 | 9.6 | 8.6 | 7.9 | 8.1 | 7.2 | 7.5 | 7.2 | 7.4 |  |
| Female | 9.0 | 6.9 | 6.5 | 7.3 | 7.6 | 6.7 | 6.8 | 6.1 | 5.5 | 4.7 | 4.4 | 4.7 | 5.2 | 3.7 | 3.6 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 11.2 | 10.6 | 11.0 | 11.3 | 11.2 | 10.7 | 9.5 | 8.9 | 8.3 | 7.7 | 7.4 | 7.9 | 6.4 | 7.1 |  |
| Complete 4 years | - | 6.9 | 6.4 | 7.3 | 7.5 | 7.1 | 7.4 | 6.2 | 5.4 | 4.7 | 5.0 | 4.7 | 5.4 | 4.7 | 4.8 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 13.2 | 10.9 | 10.6 | 13.0 | 12.9 | 12.2 | 12.9 | 11.4 | 8.7 | 11.3 | 9.9 | 7.9 | 7.5 | 5.8 | 5.6 |  |
| North Central | 13.0 | 10.3 | 9.7 | 10.7 | 11.1 | 11.3 | 10.3 | 9.1 | 8.9 | 6.0 | 6.8 | 6.6 | 6.9 | 5.3 | 6.6 |  |
| South | 8.5 | 7.4 | 6.8 | 6.3 | 5.7 | 5.4 | 4.1 | 4.6 | 5.2 | 3.9 | 3.2 | 3.3 | 4.8 | 5.2 | 4.9 |  |
| West | 10.2 | 9.3 | 8.2 | 9.6 | 11.0 | 9.2 | 10.4 | 7.8 | 6.3 | 7.0 | 6.3 | 7.2 | 7.4 | 6.0 | 5.5 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 13.9 | 11.1 | 9.9 | 11.9 | 12.3 | 11.6 | 12.0 | 10.9 | 9.2 | 8.8 | 8.3 | 7.6 | 7.9 | 6.5 | 5.4 |  |
| Other MSA | 12.1 | 9.8 | 9.1 | 9.3 | 10.5 | 9.8 | 9.0 | 7.6 | 7.6 | 6.3 | 6.1 | 5.9 | 6.3 | 6.0 | 5.9 |  |
| Non-MSA | 8.5 | 7.7 | 7.5 | 8.3 | 7.1 | 7.1 | 6.8 | 6.5 | 5.3 | 5.0 | 5.0 | 4.9 | 5.3 | 3.5 | 5.0 |  |
| Parental Education: ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 8.9 | 7.4 | 6.8 | 7.7 | 7.1 | 8.0 | 6.7 | 6.5 | 6.5 | 5.4 | 4.8 | 5.4 | 5.8 | 4.9 | 4.2 |  |
| 2.5-3.0 | 10.2 | 10.0 | 9.1 | 9.6 | 9.6 | 9.5 | 8.9 | 8.0 | 6.8 | 6.7 | 6.4 | 6.0 | 6.2 | 4.2 | 4.9 |  |
| 3.5-4.0 | 10.9 | 9.8 | 9.2 | 9.7 | 9.7 | 9.2 | 9.2 | 8.6 | 7.7 | 6.3 | 7.2 | 6.3 | 6.0 | 4.8 | 5.6 |  |
| 4.5-5.0 | 11.1 | 10.1 | 8.8 | 10.2 | 10.9 | 9.1 | 9.4 | 7.8 | 7.0 | 5.9 | 6.2 | 5.5 | 6.8 | 6.7 | 6.6 |  |
| 5.5-6.0 (High) | 8.9 | 9.4 | 9.5 | 10.2 | 11.7 | 9.9 | 10.6 | 9.0 | 7.0 | 7.6 | 4.3 | 5.9 | 7.2 | 7.2 | 7.0 |  |
| Race (2-year average): ${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 9.8 | 9.9 | 10.5 | 10.3 | 10.0 | 9.3 | 8.3 | 7.5 | 7.0 | 6.7 | 6.8 | 6.8 | 6.4 |  |
| Black | - | - | 2.4 | 2.3 | 2.0 | 1.9 | 1.9 | 1.8 | 2.2 | 1.7 | 1.2 | 1.6 | 1.5 | 1.0 | 0.9 |  |
| Hispanic | - | - | 7.9 | 7.2 | 7.0 | 7.1 | 7.0 | 7.7 | 6.6 | 5.2 | 5.7 | 5.7 | 5.0 | 4.0 | 3.2 |  |

## TABLE D－15（cont＇d）

536

## Hallucinogens：${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}{ }^{\text {b }}$ | $\underline{2002}{ }^{\text {b }}$ | 2003 | 2004 |  |
| Approx． $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 5.9 | 5.8 | 5.9 | 7.4 | 7.6 | 9.3 | 10.1 | 9.8 | 9.0 | 9.4 | 8．1才 | 9.1 | 6.6 | 5.9 | 6.2 | ＋0．2 |
| Adjusted ${ }^{\text {c }}$ | 6.0 | 6.1 | 6.2 | 7.8 | 7.8 | 9.7 | 10.7 | 10.0 | 9.2 | 9.8 | 8．7才 | 9.7 | 7.2 | 6.5 | 6.4 | －0．1 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 7.7 | 7.5 | 7.1 | 8.9 | 9.2 | 11.9 | 12.4 | 12.0 | 11.0 | 11.4 | $9.6 \ddagger$ | 11.1 | 8.4 | 7.8 | 8.4 | ＋0．6 |
| Female | 3.8 | 3.9 | 4.7 | 5.6 | 5.8 | 6.3 | 7.3 | 7.4 | 6.8 | 7.4 | $6.3 \ddagger$ | 6.8 | 4.7 | 3.8 | 3.8 | －0．1 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 6.6 | 7.0 | 7.8 | 8.1 | 8.4 | 11.9 | 12.1 | 11.3 | 12.0 | 10.5 | $10.3 \ddagger$ | 10.4 | 9.8 | 8.2 | 7.7 | －0．5 |
| Complete 4 years | 5.3 | 5.3 | 5.1 | 6.9 | 7.0 | 8.2 | 9.0 | 9.0 | 7.8 | 8.7 | $7.0 \ddagger$ | 8.0 | 5.5 | 5.0 | 5.4 | ＋0．4 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 6.6 | 7.0 | 7.1 | 9.0 | 9.0 | 10.1 | 13.3 | 13.9 | 10.7 | 9.8 | $9.3 \ddagger$ | 9.8 | 9.1 | 7.8 | 7.0 | －0．7 |
| North Central | 5.7 | 6.5 | 5.9 | 6.8 | 8.1 | 9.2 | 8.8 | 7.6 | 8.4 | 9.8 | $7.0 \ddagger$ | 11.4 | 6.4 | 5.4 | 5.3 | －0．1 |
| South | 5.0 | 3.7 | 4.7 | 5.9 | 6.7 | 8.8 | 8.9 | 9.2 | 8.5 | 8.6 | 6．9才 | 5.8 | 5.6 | 4.9 | 5.7 | ＋0．8 |
| West | 6.9 | 7.3 | 7.3 | 9.2 | 7.1 | 9.6 | 10.5 | 9.5 | 9.1 | 10.0 | 10．5 $\ddagger$ | 10.8 | 6.2 | 6.3 | 7.4 | ＋1．0 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5.7 | 5.1 | 6.2 | 7.3 | 8.1 | 11.0 | 10.5 | 8.8 | 8.7 | 8.4 | $8.9 \ddagger$ | 11.5 | 6.8 | 4.4 | 5.6 | ＋1．2 |
| Other MSA | 6.6 | 7.7 | 6.0 | 8.1 | 8.6 | 9.5 | 11.4 | 11.2 | 9.9 | 10.4 | 8．3才 | 8.7 | 7.2 | 7.2 | 7.2 | 0.0 |
| Non－MSA | 4.5 | 3.3 | 5.5 | 6.3 | 5.1 | 7.0 | 7.4 | 8.3 | 7.4 | 8.8 | $7.0 \ddagger$ | 7.3 | 5.2 | 5.5 | 4.8 | －0．7 |
| Parental Educ ation：${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 3.8 | 4.9 | 3.6 | 4.9 | 5.0 | 7.2 | 7.4 | 7.3 | 7.9 | 9.0 | $7.0 \ddagger$ | 6.3 | 5.1 | 5.3 | 4.9 | －0．4 |
| 2．5－3．0 | 4.6 | 4.9 | 5.6 | 5.9 | 7.0 | 8.7 | 8.8 | 8.5 | 8.8 | 8.6 | 7．4才 | 9.1 | 6.6 | 4.9 | 5.6 | ＋0．7 |
| 3．5－4．0 | 6.5 | 6.2 | 6.0 | 7.5 | 8.0 | 9.5 | 10.3 | 9.9 | 9.5 | 10.6 | 8．2才 | 9.4 | 7.1 | 6.4 | 6.6 | ＋0．2 |
| 4．5－5．0 | 6.8 | 6.1 | 6.2 | 8.9 | 7.7 | 9.6 | 10.5 | 10.4 | 8.6 | 9.3 | 7．7才 | 8.6 | 6.7 | 6.5 | 6.4 | －0．1 |
| 5．5－6．0（High） | 8.2 | 7.3 | 7.4 | 8.9 | 9.0 | 9.5 | 11.4 | 11.6 | 9.4 | 8.4 | $9.6 \ddagger$ | 8.8 | 5.9 | 5.3 | 6.1 | ＋0．8 |
| Race（2－yearaverage）：${ }^{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 6.7 | 6.8 | 6.9 | 7.9 | 8.6 | 9.5 | 10.8 | 11.6 | 11.3 | 10.7 | 9.9 | 9．0才 | $8.4{ }^{\top}$ | 7.2 | 7.0 | －0．2 |
| Black | 0.8 | 0.6 | 0.7 | 0.8 | 1.2 | 1.2 | 1.7 | 1.9 | 1.4 | 1.2 | 1.6 | $1.4 \ddagger$ | $1.2{ }^{\text { }}$ | 1.3 | 1.2 | －0．1 |
| Hispanic | 3.3 | 4.4 | 4.6 | 5.3 | 5.8 | 7.1 | 8.3 | 7.3 | 6.8 | 7.9 | 9.6 | 7．8\＃ | $6.0{ }^{\prime}$ | 4.6 | 4.1 | －0．5 |

（Table continued on next page）

## TABLE D-15 (cont'd)

## Hallucinogens: ${ }^{\text {a }}$ Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

NOTES: ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes. Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
'-' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ All data are unadjusted for the undereporting of $P C P$, unless otherwise indic ated.
${ }^{\mathrm{b}}$ In 2001 the question text waschanged on half of the questionnaire forms. "Other psychedelics" was changed to "other hallucinogens" and "shrooms" was added to the list of examples. The 2001 data are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "any illcit drug other than marijuana" and "hallucinogens" are also affected by these changes and have been treated in a parallel manner.
${ }^{\text {c }}$ Adjusted forthe undereporting of PCP. See text for details.
${ }^{\text {d }}$ Parental education is an average score of mother's seducation and father's education. See Appendix B for details.
${ }^{e}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes a nd thus provide more stable estimates.
${ }^{\text {f }}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 1.7 | 2.1 | 2.3 | 2.4 | 3.2 | 3.5 | 3.2 | 2.8 | 2.4 | 2.4 | 2.2 | 1.5 | 1.3 | 1.1 | -0.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 2.0 | 2.1 | 2.5 | 2.6 | 3.4 | 3.7 | 3.5 | 3.2 | 2.7 | 2.6 | 2.3 | 1.7 | 1.4 | 1.1 | -0.3 |
| Female | 1.3 | 2.0 | 2.1 | 2.1 | 2.9 | 3.2 | 2.8 | 2.4 | 2.0 | 2.2 | 2.1 | 1.3 | 1.1 | 1.1 | 0.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 4.5 | 6.4 | 6.4 | 6.2 | 8.5 | 8.2 | 9.3 | 7.8 | 8.2 | 6.7 | 5.8 | 5.7 | 4.3 | 4.7 | +0.4 |
| Complete 4 years | 1.2 | 1.5 | 1.6 | 1.8 | 2.5 | 2.7 | 2.5 | 2.2 | 1.7 | 2.0 | 1.8 | 1.1 | 0.9 | 0.7 | -0.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.3 | 1.4 | 1.8 | 2.6 | 2.9 | 2.9 | 2.3 | 2.1 | 2.2 | 1.9 | 1.9 | 0.9 | 1.4 | 1.0 | -0.4 |
| North Central | 1.4 | 1.8 | 1.4 | 1.7 | 3.5 | 3.4 | 3.3 | 2.5 | 2.7 | 3.0 | 1.7 | 1.8 | 1.2 | 0.9 | -0.3 |
| South | 1.8 | 2.4 | 2.4 | 2.1 | 2.8 | 3.4 | 3.0 | 3.2 | 2.5 | 2.4 | 2.7 | 1.8 | 1.3 | 1.2 | -0.1 |
| West | 2.2 | 2.9 | 3.7 | 3.3 | 3.8 | 4.3 | 4.3 | 3.2 | 1.9 | 2.3 | 2.0 | 1.2 | 1.2 | 1.2 | 0.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.9 | 2.0 | 2.0 | 2.7 | 3.6 | 3.2 | 2.9 | 2.6 | 2.2 | 2.0 | 1.8 | 1.3 | 1.3 | 1.1 | -0.1 |
| Other MSA | 1.7 | 2.5 | 2.8 | 2.8 | 3.3 | 4.1 | 3.6 | 2.9 | 2.7 | 2.6 | 2.3 | 1.5 | 1.2 | 1.3 | +0.1 |
| Non-MSA | 1.3 | 1.6 | 1.4 | 1.3 | 2.4 | 2.6 | 2.8 | 2.9 | 1.9 | 2.8 | 2.4 | 1.9 | 1.4 | 0.7 | -0.7 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 3.5 | 3.1 | 3.1 | 2.8 | 4.6 | 4.4 | 4.7 | 4.4 | 3.7 | 4.9 | 4.1 | 3.4 | 2.3 | 2.8 | $+0.5$ |
| 2.5-3.0 | 1.8 | 2.1 | 2.3 | 2.6 | 3.1 | 4.0 | 3.2 | 2.8 | 2.7 | 2.9 | 2.6 | 2.0 | 1.4 | 1.2 | -0.2 |
| 3.5-4.0 | 1.4 | 2.0 | 2.4 | 2.4 | 3.6 | 3.5 | 3.4 | 3.1 | 2.4 | 2.2 | 2.4 | 1.3 | 1.3 | 1.0 | -0.3 |
| 4.5-5.0 | 1.4 | 1.5 | 2.1 | 2.1 | 2.6 | 3.4 | 2.9 | 2.5 | 1.9 | 1.8 | 1.5 | 1.2 | 1.1 | 1.0 | -0.1 |
| 5.5-6.0 (High) | 1.3 | 2.0 | 2.0 | 2.1 | 2.9 | 3.0 | 2.9 | 2.4 | 1.9 | 2.3 | 1.3 | 0.8 | 0.8 | 0.6 | -0.1 |
| Race (2-yearaverage) ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 1.9 | 2.3 | 2.5 | 3.1 | 3.9 | 3.9 | 3.2 | 2.6 | 2.6 | 2.6 | 2.0 | 1.5 | 1.1 | -0.3 |
| Black | - | 0.5 | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | 0.4 | 0.6 | 0.8 | +0.2 |
| Hispanic | - | 3.3 | 3.7 | 3.6 | 3.3 | 3.5 | 3.9 | 4.2 | 3.9 | 3.5 | 3.2 | 2.4 | 1.7 | 1.8 | +0.2 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.

${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-17

## LSD: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { '03-'04 } \\ \text { change } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | 2002 | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 3.7 | 4.0 | 4.2 | 5.2 | 6.5 | 6.9 | 6.7 | 5.9 | 6.0 | 5.1 | 4.1 | 2.6 | 1.7 | 1.6 | -0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 3.9 | 4.3 | 5.1 | 5.9 | 7.4 | 7.6 | 7.6 | 6.3 | 7.0 | 5.9 | 5.1 | 3.1 | 1.9 | 1.8 | -0.1 |
| Female | 3.4 | 3.6 | 3.2 | 4.3 | 5.5 | 6.2 | 5.8 | 5.4 | 5.1 | 4.3 | 3.1 | 2.0 | 1.6 | 1.4 | -0.2 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 6.8 | 7.0 | 8.4 | 9.4 | 11.1 | 13.1 | 12.8 | 12.4 | 13.1 | 11.1 | 9.9 | 6.0 | 4.4 | 4.5 | 0.0 |
| Complete 4 years | 3.0 | 3.4 | 3.3 | 4.2 | 5.6 | 5.8 | 5.7 | 4.7 | 4.9 | 4.1 | 3.2 | 2.0 | 1.3 | 1.2 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3.6 | 2.6 | 3.8 | 5.1 | 4.7 | 6.4 | 5.2 | 7.1 | 7.5 | 4.1 | 4.0 | 2.2 | 1.8 | 1.7 | -0.1 |
| North Central | 3.2 | 4.1 | 4.4 | 5.2 | 7.3 | 8.3 | 6.0 | 4.5 | 6.0 | 5.4 | 4.3 | 2.8 | 1.7 | 1.5 | -0.2 |
| South | 3.3 | 3.7 | 3.2 | 4.6 | 6.8 | 6.8 | 7.9 | 6.5 | 5.8 | 5.0 | 3.5 | 2.3 | 1.7 | 1.4 | -0.3 |
| West | 4.8 | 5.9 | 6.1 | 6.3 | 6.5 | 5.7 | 7.4 | 5.2 | 5.1 | 5.9 | 5.3 | 3.2 | 1.7 | 1.9 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 3.8 | 4.4 | 4.4 | 5.4 | 6.6 | 7.6 | 7.0 | 5.4 | 4.9 | 6.4 | 3.8 | 2.6 | 1.3 | 1.1 | -0.2 |
| Other MSA | 4.4 | 4.1 | 4.4 | 5.9 | 7.1 | 7.4 | 7.0 | 6.6 | 6.7 | 4.8 | 4.1 | 2.7 | 1.7 | 1.9 | +0.2 |
| Non-MSA | 2.3 | 3.5 | 3.7 | 3.7 | 5.0 | 5.2 | 6.0 | 5.0 | 5.9 | 4.4 | 4.6 | 2.3 | 2.3 | 1.5 | -0.8 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 3.1 | 4.4 | 5.5 | 5.5 | 6.9 | 7.6 | 5.9 | 7.9 | 6.3 | 4.9 | 3.9 | 2.7 | 3.7 | 1.3 | -2.3 ss |
| 2.5-3.0 | 4.0 | 4.2 | 4.2 | 5.1 | 6.9 | 7.6 | 6.6 | 7.0 | 7.3 | 5.1 | 4.8 | 2.9 | 2.0 | 1.7 | -0.2 |
| 3.5-4.0 | 3.4 | 4.1 | 4.2 | 5.3 | 6.9 | 7.9 | 7.4 | 5.6 | 5.8 | 5.6 | 4.3 | 2.8 | 1.7 | 1.4 | -0.3 |
| 4.5-5.0 | 3.8 | 3.6 | 3.9 | 4.8 | 6.0 | 6.0 | 7.0 | 5.0 | 5.7 | 5.0 | 3.8 | 2.0 | 1.2 | 1.4 | +0.3 |
| 5.5-6.0 (High) | 4.2 | 3.9 | 3.9 | 5.4 | 5.9 | 5.8 | 6.0 | 4.6 | 5.3 | 5.0 | 3.5 | 2.4 | 1.2 | 1.6 | +0.4 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 4.6 | 4.6 | 5.0 | 6.4 | 7.7 | 7.9 | 7.3 | 7.0 | 6.5 | 5.2 | 3.8 | 2.4 | 1.9 | -0.5 |
| Black | - | 0.2 | 0.5 | 0.9 | 1.0 | 0.8 | 0.9 | 1.0 | 0.9 | 0.9 | 0.9 | 0.6 | 0.4 | 0.4 | 0.0 |
| Hispanic | - | 3.2 | 4.1 | 5.0 | 5.7 | 6.1 | 6.7 | 6.6 | 5.6 | 4.6 | 3.7 | 2.9 | 2.4 | 1.7 | -0.7 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-106 for the number of subgroup cases. See Appendix B fordefinition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-18
LSD: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders


[^110]
## TABLE D-18 (cont'd)

LSD: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 5.4 | 5.2 | 5.6 | 6.8 | 6.9 | 8.4 | 8.8 | 8.4 | 7.6 | 8.1 | 6.6 | 6.6 | 3.5 | 1.9 | 2.2 | +0.4 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 7.1 | 6.8 | 6.7 | 8.4 | 8.4 | 10.7 | 10.9 | 10.3 | 9.3 | 10.0 | 7.6 | 7.9 | 4.4 | 2.5 | 3.1 | +0.7 |
| Female | 3.6 | 3.4 | 4.4 | 5.1 | 5.3 | 5.8 | 6.5 | 6.2 | 5.7 | 6.1 | 5.3 | 5.0 | 2.3 | 1.2 | 1.2 | +0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 6.2 | 6.4 | 7.6 | 7.5 | 7.7 | 11.2 | 11.4 | 10.3 | 10.9 | 9.4 | 8.7 | 8.2 | 5.7 | 3.0 | 3.2 | +0.2 |
| Complete 4 years | 4.8 | 4.7 | 4.8 | 6.4 | 6.3 | 7.3 | 7.7 | 7.4 | 6.3 | 7.3 | 5.6 | 5.7 | 2.7 | 1.4 | 1.8 | +0.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 5.9 | 6.1 | 6.6 | 8.6 | 8.2 | 8.8 | 11.9 | 11.8 | 8.2 | 7.8 | 7.1 | 6.7 | 5.4 | 2.4 | 2.3 | -0.2 |
| North Central | 5.3 | 5.9 | 5.5 | 6.3 | 7.3 | 8.3 | 7.7 | 7.0 | 7.6 | 9.1 | 5.9 | 8.6 | 3.7 | 1.8 | 1.8 | 0.0 |
| South | 4.7 | 3.4 | 4.4 | 5.5 | 6.3 | 8.1 | 7.9 | 8.1 | 7.4 | 7.7 | 6.0 | 4.7 | 3.1 | 1.9 | 2.6 | +0.7 |
| West | 6.4 | 6.5 | 7.0 | 8.5 | 6.2 | 8.5 | 8.8 | 6.9 | 7.1 | 7.7 | 7.9 | 6.6 | 2.1 | 1.4 | 2.3 | +0.9 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5.2 | 4.3 | 5.7 | 6.7 | 7.3 | 9.7 | 9.0 | 7.7 | 7.2 | 6.8 | 6.7 | 7.7 | 3.3 | 1.5 | 1.9 | +0.4 |
| OtherMSA | 6.1 | 7.0 | 5.8 | 7.6 | 7.9 | 8.7 | 10.0 | 9.3 | 8.4 | 9.2 | 6.9 | 6.4 | 4.0 | 2.2 | 2.6 | +0.4 |
| Non-MSA | 4.2 | 3.0 | 5.1 | 5.6 | 4.6 | 6.5 | 6.5 | 7.3 | 6.1 | 7.4 | 5.9 | 5.6 | 2.7 | 1.7 | 1.9 | +0.2 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 3.4 | 4.3 | 3.3 | 4.6 | 4.4 | 6.6 | 6.7 | 6.8 | 6.8 | 8.6 | 5.6 | 5.4 | 2.4 | 1.5 | 3.2 | +1.7 |
| 2.5-3.0 | 4.4 | 4.4 | 5.2 | 5.6 | 6.5 | 8.1 | 8.2 | 7.3 | 7.8 | 7.6 | 6.4 | 6.7 | 3.4 | 1.9 | 2.4 | +0.5 |
| 3.5-4.0 | 6.0 | 5.5 | 5.7 | 7.0 | 7.4 | 8.6 | 9.3 | 8.5 | 8.2 | 9.0 | 6.7 | 6.3 | 4.0 | 1.7 | 1.8 | 0.0 |
| 4.5-5.0 | 6.2 | 5.3 | 5.8 | 8.3 | 6.9 | 8.6 | 8.7 | 8.6 | 6.5 | 8.0 | 6.0 | 6.7 | 3.1 | 1.7 | 2.0 | +0.3 |
| 5.5-6.0 (High) | 7.4 | 7.1 | 7.0 | 8.2 | 7.9 | 8.3 | 9.2 | 9.5 | 7.3 | 6.4 | 7.0 | 5.6 | 2.8 | 1.7 | 2.2 | +0.4 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 6.1 | 6.3 | 6.4 | 7.4 | 8.0 | 8.6 | 9.7 | 10.1 | 9.5 | 9.1 | 8.3 | 7.5 | 5.8 | 3.0 | 2.2 | -0.8 |
| Black | 0.6 | 0.6 | 0.6 | 0.6 | 0.9 | 1.0 | 1.3 | 1.6 | 1.1 | 0.8 | 1.3 | 1.3 | 0.8 | 0.8 | 0.8 | 0.0 |
| Hispanic | 2.7 | 3.6 | 4.1 | 5.1 | 5.4 | 6.4 | 7.4 | 6.3 | 5.9 | 7.0 | 7.6 | 5.8 | 3.8 | 1.8 | 1.7 | -0.1 |

${ }^{\text {a }}$ Parental education is an average score of mother's seducation and father's education. See Appendix B for details.
${ }^{\text {Th }}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D－19

## Hallucinogens Other Than LSD：Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}{ }^{\text {a }}$ | $\underline{2002}^{\text {a }}$ | 2003 | 2004 |  |
| Approx． $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 0.7 | 1.1 | 1.0 | 1.3 | 1.7 | 2.0 | 1.8 | 1.6 | 1.5 | $1.4 \ddagger$ | 2.4 | 2.1 | 2.1 | 1.9 | －0．2 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 0.8 | 1.1 | 1.2 | 1.6 | 1.9 | 2.1 | 2.1 | 1.8 | 1.8 | $1.5 \ddagger$ | 2.8 | 2.4 | 2.4 | 1.9 | －0．4 |
| Female | 0.6 | 1.0 | 0.9 | 0.9 | 1.4 | 1.7 | 1.4 | 1.4 | 1.1 | $1.3 \ddagger$ | 2.0 | 1.7 | 1.8 | 1.8 | 0.0 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None orunder 4 years | 1.7 | 3.6 | 2.9 | 3.6 | 4.8 | 5.2 | 4.7 | 5.1 | 5.3 | $3.9 \pm$ | 7.4 | 6.5 | 7.5 | 6.5 | －1．0 |
| Complete 4 years | 0.5 | 0.7 | 0.7 | 1.0 | 1.3 | 1.4 | 1.4 | 1.2 | 1.0 | $1.2 \ddagger$ | 1.8 | 1.6 | 1.5 | 1.4 | －0．1 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.4 | 0.6 | 0.7 | 1.4 | 1.8 | 2.1 | 1.7 | 1.2 | 1.4 | $1.3 \ddagger$ | 2.1 | 1.3 | 1.9 | 1.6 | －0．3 |
| North Central | 0.6 | 1.3 | 0.6 | 1.1 | 1.6 | 1.8 | 1.8 | 1.9 | 1.7 | $1.8 \ddagger$ | 1.8 | 2.1 | 2.2 | 1.7 | －0．4 |
| South | 0.7 | 1.0 | 1.0 | 1.0 | 1.5 | 1.7 | 1.4 | 1.8 | 1.6 | $1.3 \ddagger$ | 2.9 | 2.2 | 2.2 | 1.9 | －0．2 |
| West | 1.4 | 1.3 | 1.9 | 1.9 | 1.9 | 2.6 | 2.7 | 1.3 | 1.1 | $1.4 \ddagger$ | 2.4 | 2.6 | 2.3 | 2.2 | －0．1 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.7 | 0.8 | 0.7 | 1.6 | 1.6 | 1.8 | 1.4 | 1.3 | 1.1 | $1.2 \ddagger$ | 1.9 | 1.6 | 1.6 | 1.4 | －0．2 |
| Other MSA | 0.7 | 1.3 | 1.3 | 1.4 | 1.8 | 2.2 | 1.9 | 1.6 | 1.5 | 1．7才 | 2.6 | 1.9 | 2.1 | 2.1 | ＋0．1 |
| Non－MSA | 0.7 | 1.0 | 0.9 | 0.8 | 1.5 | 1.7 | 1.9 | 2.0 | 1.9 | $1.3 \ddagger$ | 2.6 | 3.0 | 3.0 | 2.0 | －1．0 |
| Parental Education：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 1.5 | 1.8 | 1.4 | 1.6 | 2.4 | 2.2 | 2.6 | 2.7 | 2.6 | $2.5 \ddagger$ | 5.0 | 3.4 | 3.5 | 3.9 | ＋0．4 |
| 2．5－3．0 | 0.8 | 0.7 | 1.1 | 1.1 | 1.7 | 2.1 | 2.0 | 1.3 | 1.9 | $1.5 \ddagger$ | 2.3 | 2.6 | 2.8 | 2.0 | －0．8 |
| 3．5－4．0 | 0.4 | 1.2 | 1.2 | 1.2 | 1.8 | 2.0 | 1.6 | 1.8 | 1.3 | $1.3 \ddagger$ | 2.6 | 1.9 | 2.2 | 1.7 | －0．4 |
| 4．5－5．0 | 0.8 | 0.9 | 0.7 | 1.5 | 1.6 | 2.0 | 1.6 | 1.5 | 0.9 | 1．1才 | 1.6 | 1.7 | 1.5 | 1.6 | ＋0．1 |
| 5．5－6．0（High） | 0.8 | 1.3 | 0.9 | 1.5 | 1.7 | 1.4 | 1.9 | 1.9 | 1.5 | $2.0 \ddagger$ | 1.9 | 1.5 | 1.6 | 1.6 | 0.0 |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 0.9 | 1.0 | 1.2 | 1.7 | 2.1 | 2.1 | 1.8 | 1.6 | 1.6 | $1.4 \ddagger$ | $1.5{ }^{\text {d }}$ | 2.3 | 2.2 | －0．1 |
| Black | － | 0.4 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0．3才 | $0.4{ }^{\text {d }}$ | 0.6 | 0.8 | ＋0．2 |
| Hispanic | － | 1.5 | 1.5 | 1.5 | 1.8 | 2.1 | 2.0 | 2.2 | 2.2 | 1.8 | $1.2 \ddagger$ | $1.8{ }^{\text {d }}$ | 2.2 | 2.2 | 0.0 |

## TABLE D-19 (cont'd)

## Hallucinogens Other Than LSD: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

## NOTES: ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes <br> Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. <br> -' indicates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. <br> See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table. <br> SOURCE: The Monitoring the Future Study, the University of Michigan.

In 2001 the question text waschanged on half of the questionnaire forms. "Other psychedelics" waschanged to "other hallucinogens" and "shrooms" was added to the list of examples. The 2001 data are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "any illicit drug other than manjuana" and "hallucinogens" are also affected by these changes and have been treated in a parallel manner
${ }^{\text {b }}$ Parental education is an average score of mother's education and father'seducation. See Appendix B for details.
To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.
${ }^{\text {a }}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

TABLE D－20
Hallucinogens Other Than LSD：Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}^{\text {a }}$ | $\underline{2002}^{\text {a }}$ | 2003 | 2004 |  |
| Approx． $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 1.3 | 1.4 | 1.9 | 2.4 | 2.8 | 3.3 | 3.3 | 3.4 | 3.2 | 3．1才 | 4.4 | 4.0 | 3.6 | 3.7 | $+0.2$ |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.5 | 1.6 | 2.5 | 3.0 | 3.4 | 3.8 | 4.1 | 3.9 | 4.1 | $3.8 \ddagger$ | 5.7 | 4.6 | 4.4 | 4.3 | －0．1 |
| Female | 1.1 | 1.1 | 1.2 | 1.7 | 2.1 | 2.7 | 2.5 | 2.8 | 2.3 | $2.4 \ddagger$ | 3.1 | 3.4 | 2.8 | 3.2 | ＋0．4 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2.5 | 2.7 | 3.7 | 4.8 | 5.3 | 6.2 | 4.8 | 7.3 | 6.7 | 6．1才 | 10.9 | 8.8 | 7.3 | 8.2 | ＋0．9 |
| Complete 4 years | 1.1 | 1.1 | 1.5 | 1.9 | 2.3 | 2.7 | 3.0 | 2.6 | 2.6 | 2．6 $\ddagger$ | 3.3 | 3.3 | 2.9 | 3.1 | ＋0．2 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.4 | 0.7 | 2.3 | 3.2 | 3.0 | 3.9 | 3.2 | 4.7 | 4.5 | $3.4 \ddagger$ | 4.2 | 3.6 | 3.4 | 4.3 | ＋0．9 |
| North Central | 1.0 | 1.2 | 1.7 | 1.9 | 2.2 | 3.2 | 3.4 | 3.2 | 2.8 | $3.3 \pm$ | 4.0 | 4.3 | 2.9 | 3.3 | ＋0．4 |
| South | 1.3 | 1.2 | 1.5 | 2.1 | 2.7 | 3.1 | 3.1 | 3.2 | 2.7 | $2.9 \pm$ | 3.6 | 3.4 | 3.5 | 3.3 | －0．2 |
| West | 1.6 | 2.6 | 2.5 | 3.0 | 3.5 | 3.0 | 3.6 | 2.5 | 3.3 | $3.0 \ddagger$ | 6.7 | 5.1 | 4.5 | 4.2 | －0．3 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.4 | 1.5 | 1.9 | 2.4 | 2.7 | 3.4 | 3.3 | 3.1 | 3.1 | 3．9\＃ | 3.4 | 4.0 | 2.8 | 2.7 | －0．1 |
| Other MSA | 1.4 | 1.4 | 1.9 | 2.5 | 3.0 | 3.5 | 3.2 | 3.4 | 3.5 | $2.9 \ddagger$ | 4.8 | 4.0 | 3.9 | 4.4 | ＋0．5 |
| Non－MSA | 1.0 | 1.2 | 2.0 | 2.3 | 2.5 | 2.7 | 3.5 | 3.5 | 2.7 | $2.8 \ddagger$ | 4.5 | 3.9 | 3.8 | 3.6 | －0．2 |
| Parental Educ ation：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 1.5 | 1.5 | 2.0 | 2.6 | 3.3 | 3.4 | 2.4 | 2.9 | 3.4 | $2.5 \ddagger$ | 4.8 | 4.4 | 5.2 | 2.8 | －2．4 s |
| 2．5－3．0 | 1.2 | 1.0 | 1.4 | 1.8 | 2.7 | 3.4 | 2.7 | 4.2 | 3.0 | $2.6 \ddagger$ | 4.4 | 4.3 | 4.2 | 4.5 | ＋0．3 |
| 3．5－4．0 | 1.3 | 1.7 | 2.3 | 2.3 | 3.0 | 3.2 | 3.6 | 3.0 | 2.8 | 3．2才 | 4.3 | 4.0 | 3.3 | 3.6 | ＋0．3 |
| 4．5－5．0 | 1.2 | 1.5 | 1.9 | 2.6 | 2.5 | 3.3 | 3.7 | 3.0 | 3.7 | 3．7才 | 4.4 | 3.5 | 3.2 | 3.5 | ＋0．3 |
| 5．5－6．0（High） | 1.8 | 1.1 | 2.1 | 2.8 | 2.5 | 3.5 | 3.6 | 3.7 | 3.7 | 3．7\＃ | 3.9 | 4.6 | 3.0 | 3.5 | ＋0．4 |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 1.5 | 1.8 | 2.3 | 2.8 | 3.4 | 3.9 | 4.0 | 4.0 | 3.8 | $3.4 \ddagger$ | $4.0{ }^{\text {d }}$ | 4.7 | 4.4 | －0．2 |
| Black | － | 0.1 | 0.4 | 0.7 | 0.7 | 0.4 | 0.3 | 0.4 | 0.5 | 0.6 | 1．1 $\ddagger$ | $1.3{ }^{\text {d }}$ | 0.9 | 0.7 | －0．2 |
| Hispanic | － | 1.3 | 1.5 | 1.9 | 2.0 | 2.1 | 2.4 | 2.8 | 2.6 | 2.0 | $1.6 \ddagger$ | $2.5{ }^{\text {d }}$ | 2.9 | 3.2 | ＋0．4 |

（Table continued on next page）

## TABLE D-20 (cont'd)

## Hallucinogens Other Than LSD: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

[^111]TABLE D-21
Hallucinogens Other Than LSD: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{\text { Cont'd }}{ }\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 9.4 | 7.0 | 6.9 | 7.3 | 6.8 | 6.2 | 5.6 | 4.7 | 4.1 | 3.8 | 3.6 | 3.0 | 3.2 | 2.1 | 2.2 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 12.1 | 8.8 | 8.9 | 8.8 | 8.0 | 8.0 | 6.9 | 5.7 | 4.9 | 4.8 | 4.6 | 3.4 | 3.7 | 2.7 | 3.1 |  |
| Female | 7.5 | 5.0 | 4.9 | 5.5 | 5.3 | 4.2 | 4.0 | 3.6 | 3.1 | 2.7 | 2.5 | 2.5 | 2.6 | 1.4 | 1.1 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 8.3 | 8.6 | 8.1 | 7.6 | 6.7 | 6.0 | 5.1 | 4.8 | 4.5 | 4.1 | 3.3 | 3.5 | 2.5 | 2.7 |  |
| Complete 4 years | - | 5.2 | 4.9 | 5.7 | 5.3 | 5.1 | 5.0 | 4.1 | 3.1 | 3.0 | 2.9 | 2.5 | 2.8 | 1.8 | 1.9 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 12.0 | 7.8 | 8.2 | 10.3 | 10.2 | 10.0 | 9.0 | 8.1 | 6.1 | 8.4 | 7.1 | 5.1 | 4.8 | 2.6 | 2.5 |  |
| North Central | 11.3 | 7.9 | 7.9 | 7.6 | 6.8 | 6.7 | 5.7 | 4.8 | 4.4 | 2.9 | 3.1 | 2.7 | 3.5 | 1.6 | 2.3 |  |
| South | 7.1 | 5.7 | 5.4 | 4.8 | 4.1 | 3.1 | 2.0 | 1.8 | 2.4 | 1.5 | 1.5 | 1.4 | 1.7 | 2.0 | 1.9 |  |
| West | 7.7 | 6.7 | 6.3 | 7.2 | 6.6 | 5.9 | 6.9 | 4.9 | 4.1 | 4.5 | 3.6 | 3.3 | 3.3 | 2.5 | 2.3 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 11.1 | 7.8 | 7.5 | 9.3 | 8.8 | 8.5 | 8.1 | 7.3 | 6.6 | 6.9 | 6.1 | 5.1 | 4.8 | 3.3 | 2.6 |  |
| Other MSA | 10.7 | 7.3 | 7.2 | 6.9 | 7.2 | 6.5 | 5.0 | 3.7 | 4.0 | 3.1 | 3.0 | 2.4 | 2.5 | 1.7 | 2.0 |  |
| Non-MSA | 6.8 | 6.1 | 6.1 | 6.1 | 4.7 | 4.1 | 4.4 | 4.0 | 2.4 | 2.4 | 2.4 | 2.1 | 2.9 | 1.6 | 2.1 |  |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 7.5 | 5.1 | 5.4 | 5.7 | 4.7 | 5.8 | 3.9 | 3.7 | 3.6 | 2.8 | 2.7 | 2.3 | 3.4 | 2.7 | 2.0 |  |
| 2.5-3.0 | 8.7 | 7.6 | 6.9 | 7.2 | 6.5 | 5.9 | 5.1 | 4.7 | 3.6 | 3.8 | 3.5 | 3.1 | 2.9 | 1.5 | 1.8 |  |
| 3.5-4.0 | 9.1 | 7.5 | 7.4 | 7.3 | 6.6 | 5.8 | 5.8 | 4.8 | 4.5 | 3.6 | 4.1 | 3.2 | 3.0 | 1.8 | 1.8 |  |
| 4.5-5.0 | 9.7 | 8.4 | 7.0 | 7.8 | 7.5 | 6.4 | 6.0 | 4.7 | 3.9 | 3.8 | 3.6 | 2.7 | 3.3 | 2.2 | 2.6 |  |
| 5.5-6.0 (High) | 7.4 | 7.2 | 7.8 | 7.9 | 9.2 | 7.2 | 7.0 | 6.7 | 4.6 | 5.3 | 2.6 | 2.8 | 3.5 | 3.1 | 3.3 |  |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 7.6 | 7.6 | 7.5 | 7.0 | 6.3 | 5.6 | 4.7 | 4.3 | 4.0 | 3.5 | 3.4 | 3.0 | 2.4 |  |
| Black | - | - | 1.6 | 1.6 | 1.3 | 1.4 | 1.3 | 1.2 | 1.6 | 1.3 | 0.8 | 0.9 | 0.9 | 0.6 | 0.5 |  |
| Hispanic | - | - | 5.1 | 5.2 | 4.8 | 4.4 | 4.5 | 4.8 | 4.2 | 3.4 | 3.7 | 3.3 | 2.1 | 1.7 | 1.6 |  |

TABLE D-21 (cont'd)
Hallucinogens Other Than LSD: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}{ }^{\text {a }}$ | $\underline{2002}{ }^{\text {a }}$ | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 2.1 | 2.0 | 1.7 | 2.2 | 3.1 | 3.8 | 4.4 | 4.6 | 4.6 | 4.3 | $4.4 \ddagger$ | 5.9 | 5.4 | 5.4 | 5.6 | $+0.2$ |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 3.0 | 2.7 | 2.3 | 3.0 | 4.3 | 5.3 | 5.7 | 5.9 | 6.0 | 5.4 | $5.8 \ddagger$ | 7.2 | 7.2 | 7.2 | 7.7 | +0.5 |
| Female | 1.1 | 1.3 | 1.2 | 1.3 | 1.9 | 2.1 | 2.8 | 3.2 | 3.0 | 3.1 | $2.9 \ddagger$ | 4.2 | 3.5 | 3.4 | 3.4 | 0.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2.1 | 2.4 | 2.2 | 2.5 | 3.2 | 4.4 | 5.1 | 4.7 | 6.1 | 4.4 | $5.6 \ddagger$ | 7.3 | 7.9 | 7.3 | 6.9 | -0.4 |
| Complete 4 years | 1.9 | 1.9 | 1.5 | 2.0 | 2.9 | 3.4 | 4.0 | 4.4 | 3.9 | 4.0 | $3.8 \ddagger$ | 5.0 | 4.6 | 4.5 | 4.9 | +0.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 2.9 | 3.5 | 2.5 | 2.6 | 5.1 | 5.3 | 6.1 | 6.6 | 6.3 | 5.5 | $5.0 \ddagger$ | 6.9 | 7.5 | 7.3 | 6.7 | -0.6 |
| North Central | 1.7 | 1.9 | 1.8 | 2.0 | 3.1 | 3.2 | 3.5 | 2.8 | 4.1 | 3.7 | $3.6 \ddagger$ | 6.9 | 5.0 | 4.7 | 4.6 | -0.1 |
| South | 1.7 | 1.0 | 1.3 | 1.8 | 1.9 | 3.1 | 3.6 | 4.0 | 3.5 | 3.3 | $3.3 \ddagger$ | 3.1 | 4.5 | 4.3 | 4.9 | +0.7 |
| West | 2.6 | 2.6 | 1.8 | 2.9 | 3.6 | 4.5 | 5.4 | 6.1 | 5.5 | 5.7 | $6.9 \ddagger$ | 8.0 | 5.6 | 6.0 | 6.9 | +0.9 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 2.3 | 1.8 | 2.1 | 2.5 | 3.6 | 4.9 | 5.2 | 4.0 | 4.4 | 4.5 | 5.2才 | 7.6 | 5.9 | 3.9 | 5.2 | +1.3 |
| Other MSA | 2.4 | 2.6 | 1.7 | 2.2 | 3.6 | 3.7 | 4.7 | 5.4 | 5.1 | 4.2 | $4.3 \ddagger$ | 5.4 | 5.8 | 6.5 | 6.6 | 0.0 |
| Non-MSA | 1.5 | 1.2 | 1.4 | 2.0 | 1.8 | 2.7 | 3.1 | 3.6 | 3.7 | 4.2 | $3.8 \ddagger$ | 4.8 | 4.3 | 5.1 | 4.1 | -1.0 |
| Parental Educ ation: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1.5 | 1.9 | 1.3 | 1.7 | 2.2 | 2.7 | 3.5 | 2.7 | 3.7 | 2.2 | $3.8 \ddagger$ | 3.8 | 4.3 | 4.7 | 3.3 | -1.4 |
| 2.5-3.0 | 1.2 | 1.6 | 1.6 | 1.5 | 2.4 | 3.4 | 3.0 | 3.5 | 3.9 | 3.3 | $3.6 \ddagger$ | 5.4 | 5.4 | 4.3 | 4.9 | +0.6 |
| 3.5-4.0 | 2.2 | 2.0 | 1.8 | 2.4 | 2.9 | 3.6 | 4.0 | 4.8 | 4.6 | 5.1 | $4.2 \ddagger$ | 6.1 | 5.6 | 5.9 | 6.0 | +0.1 |
| 4.5-5.0 | 2.8 | 2.4 | 1.7 | 2.7 | 3.7 | 4.2 | 5.2 | 5.3 | 5.0 | 4.4 | $4.6 \ddagger$ | 5.5 | 5.8 | 6.0 | 6.3 | +0.3 |
| 5.5-6.0 (High) | 3.6 | 2.4 | 2.1 | 3.0 | 4.4 | 4.1 | 5.9 | 5.9 | 5.4 | 4.7 | $5.8 \ddagger$ | 6.6 | 5.1 | 4.8 | 5.6 | +0.8 |
| Race (2-year average): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 2.4 | 2.4 | 2.2 | 2.2 | 3.0 | 3.8 | 4.4 | 5.2 | 5.6 | 5.2 | 4.8 | 4.7才 | $5.4{ }^{\text {d }}$ | 6.3 | 6.4 | +0.1 |
| Black | 0.4 | 0.3 | 0.3 | 0.5 | 0.7 | 0.8 | 0.8 | 0.7 | 0.6 | 0.6 | 1.0 | $0.9 \ddagger$ | $0.9{ }^{\text {d }}$ | 0.9 | 0.9 | 0.0 |
| Hispanic | 1.5 | 1.7 | 1.4 | 1.4 | 1.6 | 2.6 | 3.5 | 3.1 | 2.7 | 3.0 | 4.6 | $4.8 \pm$ | $4.1{ }^{\text {d }}$ | 4.1 | 3.7 | -0.4 |

# TABLE D-21 (cont'd) Hallucinogens Other Than LSD: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders 

NOTES: ' $\ddagger$ ' indicates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes. Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$

- -' indicates data not a vailable.

Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ In 2001 the question text was changed on half of the questionnaire forms. "Other psychedelics" waschanged to "other hallucinogens" and "shrooms" wasadded to the list of examples. The 2001 data are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "any illcit drug other than manijuana" and "hallucinogens" are also affected by these changes and have been treated in a parallel manner.
${ }^{\mathrm{b}}$ Parental education is an average score of mother's education and father's seducation. See Appendix B fordetails.
${ }^{\text {C }}$ To denive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes a nd thus provide more stable estimates.
${ }^{\text {d }}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

TABLE D-22
MDMA (Ecstasy): Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approx. $\mathrm{N}=$ | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
|  | - | - | - | - | - | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | - | - | - | - | - | 2.3 | 2.3 | 1.8 | 1.7 | 3.1 | 3.5 | 2.9 | 2.1 | 1.7 | -0.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | - | 2.2 | 2.7 | 2.3 | 1.7 | 3.1 | 3.4 | 3.1 | 1.8 | 1.7 | -0.2 |
| Female | - | - | - | - | - | 2.3 | 2.0 | 1.3 | 1.7 | 3.0 | 3.7 | 2.6 | 2.2 | 1.8 | -0.4 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | - | 4.8 | 6.1 | 4.8 | 5.3 | 6.5 | 9.2 | 9.1 | 6.9 | 5.4 | -1.5 |
| Complete 4 years | - | - | - | - | - | 1.9 | 2.0 | 1.5 | 1.2 | 2.7 | 2.9 | 2.3 | 1.5 | 1.3 | -0.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | - | 2.1 | 1.5 | 1.6 | 1.8 | 2.4 | 3.8 | 2.0 | 1.8 | 1.8 | 0.0 |
| North Central | - | - | - | - | - | 1.7 | 1.7 | 1.7 | 1.4 | 3.5 | 2.9 | 2.3 | 2.1 | 1.4 | -0.7 |
| South | - | - | - | - | - | 2.8 | 2.3 | 2.7 | 1.8 | 3.2 | 3.7 | 3.7 | 2.5 | 1.9 | -0.5 |
| West | - | - | - | - | - | 2.3 | 3.8 | 0.8 | 1.7 | 2.9 | 3.6 | 3.0 | 1.6 | 1.7 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | - | 2.9 | 1.8 | 1.8 | 1.6 | 3.0 | 3.1 | 2.6 | 1.8 | 2.1 | +0.3 |
| Other MSA | - | - | - | - | - | 2.5 | 3.1 | 2.1 | 1.8 | 3.4 | 4.3 | 3.3 | 1.9 | 1.9 | 0.0 |
| Non-MSA | - | - | - | - | - | 1.2 | 1.5 | 1.5 | 1.6 | 2.5 | 2.5 | 2.5 | 2.7 | 1.0 | -1.6 ss |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | - | 2.9 | 2.2 | 2.1 | 2.5 | 4.2 | 5.8 | 6.0 | 3.6 | 3.6 | +0.1 |
| 2.5-3.0 | - | - | - | - | - | 2.2 | 2.4 | 1.4 | 2.0 | 3.9 | 4.3 | 3.6 | 3.1 | 2.2 | -0.9 |
| 3.5-4.0 | - | - | - | - | - | 2.2 | 2.9 | 2.6 | 1.5 | 2.8 | 2.4 | 2.9 | 2.1 | 1.7 | -0.4 |
| 4.5-5.0 | - | - | - | - | - | 2.6 | 2.0 | 1.4 | 1.2 | 3.1 | 3.3 | 2.4 | 1.4 | 1.2 | -0.1 |
| 5.5-6.0 (High) | - | - | - | - | - | 2.4 | 2.7 | 2.5 | 2.3 | 2.0 | 3.0 | 1.2 | 2.0 | 1.7 | -0.3 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | 2.7 | 2.4 | 1.9 | 2.5 | 3.2 | 2.9 | 2.4 | 1.9 | -0.5 |
| Black | - | - | - | - | - | - | 0.3 | 0.4 | 0.5 | 0.6 | 1.1 | 1.1 | 1.0 | 1.6 | +0.6 |
| Hispanic | - | - | - | - | - | - | 2.5 | 1.7 | 1.9 | 3.3 | 5.3 | 5.9 | 4.0 | 2.3 | -1.7 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding emor. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
Data based on one of four forms in 1996-2001; $N$ is one-third of $N$ indic ated in Table $D-105$. Data based on two of four forms beginning in 2002; $N$ is one-half of N indic ated in Table D-105.
SOURCE: The Monitoring the Future Study, the University of Mic higan.

${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-23

## MDMA (Ecstasy): Trends in Annual Prevalence of Use by Subgroups for Tenth Graders



NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' $-{ }^{\prime}$ indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classesis due to rounding error. See Table $D-106$ for the number of subgroup cases. See Appendix $B$ for definition of variables in table.
Data based on one of four forms in 1996-2001; $N$ is one-third of $N$ indicated in Table $D-106$. Data based on two of four forms beginning in 2002; $N$ is one-half of N indic ated in Table D-106.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B fordetails.
${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample
sizes and thus provide more stable estimates.

TABLE D-24
MDMA (Ecstasy): Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1997 | Class of: |  | 2000 | 2001 | 2002 | 2003 | $\underline{2004}$ |  |
|  | 1975-79 1980-89 1990-95 |  |  | 1996 |  | 1998 | 1999 |  |  |  |  |  |  |
| Approx. $\mathrm{N}=$ | - | - | - | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | - | - | 4.6 | 4.0 | 3.6 | 5.6 | 8.2 | 9.2 | 7.4 | 4.5 | 4.0 | -0.6 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | 4.8 | 5.6 | 4.8 | 5.6 | 8.1 | 10.5 | 8.2 | 4.8 | 4.7 | -0.1 |
| Female | - | - | - | 4.2 | 2.5 | 2.7 | 5.6 | 8.2 | 8.0 | 6.4 | 4.0 | 3.2 | -0.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | 6.9 | 3.8 | 4.7 | 4.2 | 8.5 | 9.8 | 8.9 | 6.5 | 5.3 | -1.2 |
| Complete 4 years | - | - | - | 4.0 | 3.9 | 3.3 | 6.2 | 8.0 | 8.7 | 7.1 | 3.9 | 3.6 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | 6.3 | 6.9 | 3.7 | 9.4 | 8.8 | 10.1 | 10.3 | 5.1 | 3.5 | -1.7 |
| North Central | - | - | - | 3.7 | 1.3 | 2.7 | 3.3 | 5.7 | 11.8 | 5.0 | 4.7 | 3.0 | -1.7 |
| South | - | - | - | 4.6 | 4.3 | 4.0 | 5.7 | 5.9 | 5.7 | 7.9 | 4.2 | 5.1 | +0.8 |
| West | - | - | - | 3.9 | 4.1 | 4.0 | 5.0 | 14.4 | 10.3 | 6.8 | 4.2 | 3.8 | -0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | 3.6 | 3.6 | 3.2 | 6.1 | 8.7 | 10.9 | 8.4 | 4.3 | 4.0 | -0.2 |
| Other MSA | - | - | - | 5.1 | 4.6 | 4.3 | 6.1 | 8.4 | 9.7 | 8.1 | 5.0 | 4.5 | -0.5 |
| Non-MSA | - | - | - | 4.5 | 3.4 | 2.7 | 4.2 | 7.4 | 6.4 | 4.6 | 4.0 | 2.8 | -1.2 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | 5.5 | 3.5 | 4.2 | 6.8 | 7.3 | 3.8 | 4.8 | 4.1 | 4.6 | +0.5 |
| 2.5-3.0 | - | - | - | 5.0 | 3.1 | 3.2 | 5.1 | 7.7 | 10.3 | 8.0 | 3.8 | 3.7 | 0.0 |
| 3.5-4.0 | - | - | - | 4.9 | 3.8 | 3.2 | 5.7 | 6.2 | 8.4 | 7.5 | 5.7 | 4.6 | -1.1 |
| 4.5-5.0 | - | - | - | 4.0 | 2.9 | 4.3 | 6.2 | 8.3 | 11.2 | 7.3 | 5.0 | 3.8 | -1.2 |
| 5.5-6.0 (High) | - | - | - | 4.1 | 8.7 | 3.5 | 4.7 | 10.6 | 8.1 | 7.6 | 3.3 | 3.1 | -0.1 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | 5.2 | 4.7 | 5.1 | 7.6 | 9.6 | 8.5 | 6.4 | 4.7 | -1.7 |
| Black | - | - | - | - | 0.4 | 0.4 | 0.5 | 1.3 | 2.4 | 1.7 | 1.4 | 1.6 | +0.2 |
| Hispanic | - | - | - | - | 2.8 | 2.7 | 6.0 | 10.6 | 10.2 | 7.0 | 5.3 | 3.7 | -1.5 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. '-' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
Data based on one of six forms in 1996-2001; $N$ is one-sixth of $N$ indicated in Table D-107. Data based on two of six forms beginning in $2002 ; N$ istwo-sixths of $N$ indicated in Table D-107. SOURCE: The Monitoring the Future Study, the University of Mic higan.
CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.
${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-25

Cocaine: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 1.1 | 1.5 | 1.7 | 2.1 | 2.6 | 3.0 | 2.8 | 3.1 | 2.7 | 2.6 | 2.5 | 2.3 | 2.2 | 2.0 | -0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.4 | 1.5 | 1.9 | 2.1 | 2.5 | 2.7 | 3.1 | 2.9 | 2.8 | 2.6 | 2.4 | 2.2 | 1.9 | 1.7 | -0.2 |
| Female | 0.9 | 1.5 | 1.5 | 2.1 | 2.6 | 3.1 | 2.5 | 3.1 | 2.7 | 2.6 | 2.6 | 2.3 | 2.3 | 2.3 | +0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 3.2 | 4.8 | 5.4 | 6.6 | 7.0 | 7.9 | 7.5 | 9.4 | 8.1 | 7.5 | 7.0 | 7.2 | 7.1 | 6.8 | -0.3 |
| Complete 4 years | 0.8 | 1.0 | 1.1 | 1.5 | 2.0 | 2.2 | 2.2 | 2.3 | 2.0 | 2.0 | 2.0 | 1.8 | 1.6 | 1.5 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.3 | 0.8 | 1.0 | 2.2 | 2.2 | 2.6 | 2.4 | 1.9 | 2.2 | 1.6 | 1.9 | 1.6 | 1.6 | 1.9 | +0.3 |
| North Central | 0.9 | 1.4 | 1.0 | 1.2 | 2.6 | 2.9 | 2.6 | 2.7 | 2.6 | 2.9 | 2.3 | 2.3 | 2.0 | 1.6 | -0.4 |
| South | 1.1 | 1.7 | 2.1 | 2.5 | 2.4 | 2.7 | 2.6 | 3.8 | 3.1 | 2.2 | 3.2 | 2.6 | 2.5 | 2.1 | -0.4 |
| West | 1.5 | 2.0 | 2.7 | 2.3 | 3.3 | 3.7 | 3.7 | 3.3 | 2.7 | 3.7 | 2.4 | 2.4 | 2.3 | 2.4 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.1 | 1.4 | 1.3 | 1.9 | 2.4 | 2.8 | 2.4 | 2.3 | 2.1 | 2.3 | 2.1 | 2.0 | 1.7 | 2.2 | +0.5 |
| Other MSA | 1.1 | 1.7 | 2.2 | 2.5 | 2.8 | 3.2 | 2.9 | 3.3 | 2.8 | 2.5 | 2.8 | 2.3 | 2.2 | 2.1 | -0.1 |
| Non-MSA | 1.2 | 1.3 | 1.2 | 1.4 | 2.4 | 2.7 | 3.0 | 3.4 | 3.2 | 3.1 | 2.5 | 2.6 | 2.7 | 1.7 | -1.0 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 2.4 | 3.2 | 2.9 | 3.5 | 4.9 | 3.9 | 4.7 | 6.3 | 5.6 | 5.3 | 4.4 | 3.7 | 4.1 | 3.3 | -0.7 |
| 2.5-3.0 | 1.4 | 1.6 | 2.0 | 2.3 | 2.4 | 3.3 | 3.0 | 3.3 | 3.1 | 2.9 | 2.8 | 2.8 | 2.4 | 2.5 | +0.1 |
| 3.5-4.0 | 0.7 | 1.2 | 1.8 | 2.1 | 2.8 | 3.3 | 2.8 | 3.1 | 2.8 | 2.5 | 2.4 | 2.2 | 2.2 | 2.0 | -0.3 |
| 4.5-5.0 | 0.7 | 1.0 | 1.0 | 1.6 | 1.9 | 2.7 | 2.6 | 2.2 | 1.7 | 1.8 | 2.1 | 2.0 | 1.5 | 1.8 | +0.3 |
| 5.5-6.0 (High) | 1.2 | 1.5 | 1.1 | 1.9 | 2.5 | 2.5 | 2.3 | 2.5 | 2.5 | 2.2 | 1.6 | 1.5 | 2.0 | 1.2 | -0.8 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 1.2 | 1.3 | 1.6 | 2.3 | 2.8 | 3.0 | 2.8 | 2.6 | 2.5 | 2.5 | 2.4 | 2.2 | 1.9 | -0.3 |
| Black | - | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.5 | 0.7 | 0.8 | 0.8 | 0.8 | 0.8 | 0.9 | 1.0 | +0.2 |
| Hispanic | - | 3.1 | 4.0 | 4.5 | 4.7 | 4.8 | 4.3 | 5.2 | 5.9 | 4.7 | 4.2 | 4.1 | 3.8 | 3.6 | -0.1 |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to roundin error. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Mic higan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE D-26
Cocaine: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}$ | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 2.2 | 1.9 | 2.1 | 2.8 | 3.5 | 4.2 | 4.7 | 4.7 | 4.9 | 4.4 | 3.6 | 4.0 | 3.3 | 3.7 | +0.4 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 2.2 | 2.0 | 2.5 | 3.1 | 3.5 | 4.5 | 4.7 | 4.9 | 5.2 | 4.7 | 3.8 | 4.2 | 3.3 | 3.9 | +0.6 |
| Female | 2.2 | 1.7 | 1.6 | 2.5 | 3.3 | 4.0 | 4.6 | 4.4 | 4.6 | 4.1 | 3.2 | 3.9 | 3.2 | 3.4 | +0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 4.7 | 4.0 | 5.1 | 6.6 | 7.2 | 10.0 | 10.4 | 10.7 | 11.6 | 9.7 | 9.1 | 10.1 | 8.3 | 9.4 | +1.1 |
| Complete 4 years | 1.7 | 1.4 | 1.4 | 2.0 | 2.8 | 3.2 | 3.7 | 3.6 | 3.8 | 3.5 | 2.7 | 3.1 | 2.4 | 2.9 | +0.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.5 | 1.0 | 2.0 | 2.4 | 2.5 | 3.0 | 3.0 | 4.9 | 4.6 | 3.1 | 2.3 | 2.4 | 3.1 | 3.4 | +0.3 |
| North Central | 1.7 | 1.7 | 1.4 | 2.2 | 2.9 | 4.1 | 4.0 | 3.7 | 4.4 | 4.6 | 3.4 | 3.6 | 2.7 | 3.2 | +0.5 |
| South | 2.0 | 1.8 | 1.9 | 2.6 | 3.5 | 4.2 | 5.4 | 4.3 | 5.2 | 4.2 | 3.8 | 3.8 | 3.5 | 3.5 | +0.1 |
| West | 3.6 | 3.2 | 3.7 | 4.7 | 5.3 | 5.9 | 6.4 | 6.4 | 5.3 | 5.7 | 4.9 | 6.5 | 3.7 | 4.8 | +1.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.9 | 1.6 | 1.6 | 2.3 | 3.4 | 3.8 | 4.5 | 4.3 | 4.1 | 4.3 | 3.2 | 3.6 | 2.5 | 3.3 | +0.8 |
| Other MSA | 2.7 | 2.1 | 2.3 | 3.1 | 3.5 | 4.7 | 4.3 | 4.7 | 5.1 | 4.2 | 3.7 | 4.4 | 3.2 | 3.8 | +0.6 |
| Non-MSA | 1.6 | 1.7 | 2.1 | 2.7 | 3.6 | 3.7 | 5.7 | 5.2 | 5.4 | 4.7 | 3.8 | 3.8 | 4.6 | 3.9 | -0.7 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 3.3 | 3.5 | 3.2 | 3.8 | 5.3 | 7.4 | 6.3 | 8.1 | 8.2 | 7.7 | 5.6 | 7.9 | 7.0 | 6.5 | -0.4 |
| 2.5-3.0 | 2.4 | 1.7 | 2.2 | 2.9 | 4.3 | 4.5 | 5.0 | 5.5 | 5.9 | 5.4 | 5.2 | 4.8 | 3.9 | 4.2 | +0.3 |
| 3.5-4.0 | 2.4 | 2.1 | 2.5 | 3.2 | 3.7 | 4.3 | 5.4 | 4.4 | 4.7 | 4.4 | 2.9 | 3.8 | 3.4 | 4.0 | +0.6 |
| 4.5-5.0 | 1.6 | 1.4 | 1.6 | 2.1 | 2.6 | 3.4 | 3.7 | 3.5 | 3.9 | 3.2 | 2.7 | 2.4 | 2.2 | 3.0 | +0.9 |
| 5.5-6.0 (High) | 1.9 | 1.5 | 1.1 | 1.9 | 1.9 | 3.4 | 3.3 | 3.2 | 3.9 | 2.9 | 2.0 | 3.2 | 1.6 | 1.8 | +0.2 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 2.1 | 2.0 | 2.2 | 3.0 | 3.8 | 4.4 | 4.7 | 4.9 | 4.7 | 3.9 | 3.9 | 3.9 | 3.7 | -0.2 |
| Black | - | 0.6 | 0.6 | 1.0 | 0.9 | 0.7 | 0.8 | 1.0 | 0.9 | 0.6 | 0.8 | 1.0 | 0.9 | 0.8 | -0.1 |
| Hispanic | - | 3.7 | 3.7 | 4.9 | 5.5 | 7.0 | 8.5 | 8.3 | 8.2 | 8.0 | 6.6 | 6.0 | 6.1 | 5.8 | -0.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.


TABLE D-27 (cont'd)
Cocaine: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 5.3 | 3.5 | 3.1 | 3.3 | 3.6 | 4.0 | 4.9 | 5.5 | 5.7 | 6.2 | 5.0 | 4.8 | 5.0 | 4.8 | 5.3 | +0.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 6.6 | 4.1 | 3.7 | 4.0 | 4.5 | 4.8 | 6.0 | 6.6 | 6.8 | 7.3 | 5.8 | 5.4 | 5.9 | 5.9 | 6.5 | +0.6 |
| Female | 3.8 | 2.6 | 2.4 | 2.3 | 2.8 | 3.1 | 3.5 | 4.2 | 4.5 | 5.0 | 3.9 | 4.1 | 4.0 | 3.7 | 4.1 | +0.4 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 7.8 | 4.9 | 5.1 | 4.5 | 5.3 | 5.6 | 7.5 | 8.1 | 9.7 | 9.1 | 7.1 | 8.2 | 8.6 | 6.0 | 8.3 | +2.3 s |
| Complete 4 years | 4.1 | 2.8 | 2.4 | 2.8 | 3.0 | 3.4 | 4.0 | 4.4 | 4.5 | 5.4 | 4.2 | 3.7 | 3.9 | 4.2 | 4.3 | +0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 6.5 | 3.8 | 2.8 | 3.1 | 3.1 | 3.8 | 5.5 | 6.6 | 5.9 | 4.3 | 4.1 | 4.8 | 5.0 | 5.2 | 5.0 | -0.2 |
| North Central | 4.1 | 3.2 | 2.5 | 2.4 | 3.7 | 3.4 | 3.8 | 4.7 | 5.8 | 6.2 | 4.8 | 5.7 | 5.2 | 3.9 | 4.2 | +0.3 |
| South | 4.8 | 3.0 | 3.2 | 3.1 | 3.4 | 3.6 | 4.6 | 4.8 | 5.8 | 6.9 | 4.7 | 3.9 | 5.0 | 4.7 | 5.4 | +0.7 |
| West | 6.6 | 4.4 | 4.3 | 4.9 | 4.5 | 5.8 | 6.1 | 6.8 | 5.4 | 6.9 | 6.3 | 5.0 | 4.6 | 5.8 | 7.0 | +1.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5.6 | 4.1 | 3.6 | 2.7 | 3.3 | 4.4 | 4.8 | 4.7 | 5.4 | 5.0 | 4.1 | 4.3 | 4.1 | 3.8 | 4.7 | +0.9 |
| OtherMSA | 5.4 | 3.7 | 3.3 | 3.9 | 4.1 | 3.9 | 4.9 | 5.6 | 5.8 | 6.6 | 4.9 | 5.0 | 5.4 | 5.7 | 5.8 | +0.2 |
| Non-MSA | 4.8 | 2.5 | 2.4 | 2.7 | 3.2 | 3.9 | 4.9 | 6.0 | 6.0 | 6.9 | 6.1 | 5.2 | 5.3 | 4.6 | 5.0 | +0.4 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 4.7 | 3.5 | 3.9 | 3.5 | 4.1 | 4.8 | 5.3 | 6.5 | 6.9 | 9.0 | 6.2 | 5.7 | 6.6 | 4.8 | 7.3 | +2.4 |
| 2.5-3.0 | 5.6 | 3.8 | 3.3 | 3.0 | 4.0 | 3.9 | 5.0 | 5.5 | 6.3 | 6.0 | 4.6 | 6.0 | 5.3 | 4.1 | 5.2 | +1.1 |
| 3.5-4.0 | 5.6 | 3.7 | 3.0 | 3.8 | 3.8 | 4.2 | 5.0 | 5.6 | 6.0 | 6.8 | 5.0 | 4.8 | 5.3 | 5.2 | 5.3 | +0.2 |
| 4.5-5.0 | 4.4 | 3.1 | 2.9 | 3.0 | 3.1 | 3.7 | 4.8 | 5.2 | 5.0 | 5.4 | 5.3 | 4.4 | 4.2 | 4.7 | 5.2 | +0.5 |
| 5.5-6.0 (High) | 5.5 | 2.4 | 2.6 | 2.4 | 3.3 | 3.4 | 4.3 | 4.4 | 4.4 | 5.2 | 3.9 | 2.6 | 4.3 | 4.4 | 4.3 | -0.1 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 6.3 | 4.6 | 3.3 | 3.1 | 3.5 | 4.0 | 4.5 | 5.5 | 6.3 | 6.7 | 6.2 | 5.5 | 5.7 | 5.6 | 5.6 | 0.0 |
| Black | 1.7 | 1.5 | 1.2 | 0.8 | 0.9 | 1.0 | 0.8 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 0.9 | 1.1 | 1.2 | +0.1 |
| Hispanic | 7.4 | 6.1 | 5.2 | 5.8 | 5.4 | 5.5 | 7.3 | 7.6 | 6.7 | 7.5 | 7.6 | 6.1 | 5.5 | 4.9 | 5.5 | +0.6 |

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix $B$ for details.
${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

Percentage who used in last twelve months
'03-'04
$\underline{1991} \underline{1992} \underline{1993} \underline{1994} \underline{1995} \underline{1996} \underline{1997} \underline{1998} \quad \underline{1999} \quad \underline{2000} \quad \underline{2001} \quad \underline{2002} \quad \underline{2003} \quad \underline{2004}$ change Approx. $N=17 \begin{array}{llllllllllllllllll}17500 & 18600 & 18300 & 17300 & 17500 & 17800 & 18600 & 18100 & 16700 & 16700 & 16200 & 15100 & 16500 & 17000\end{array}$

| Total | 0.7 | 0.9 | 1.0 | 1.3 | 1.6 | 1.8 | 1.7 | 2.1 | 1.8 | 1.8 | 1.7 | 1.6 | 1.6 | 1.3 | -0.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 0.8 | 0.9 | 1.1 | 1.3 | 1.5 | 1.7 | 1.8 | 2.1 | 1.8 | 1.7 | 1.6 | 1.6 | 1.3 | 1.1 | -0.2 |
| Female | 0.5 | 0.9 | 0.9 | 1.2 | 1.6 | 1.9 | 1.5 | 2.1 | 1.8 | 1.8 | 1.8 | 1.6 | 1.7 | 1.5 | -0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2.0 | 2.9 | 3.4 | 4.6 | 4.2 | 4.9 | 4.7 | 7.5 | 5.3 | 5.2 | 4.4 | 5.7 | 5.8 | 4.9 | -0.9 |
| Complete 4 years | 0.4 | 0.6 | 0.6 | 0.8 | 1.3 | 1.3 | 1.3 | 1.5 | 1.4 | 1.4 | 1.4 | 1.2 | 1.1 | 1.0 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.5 | 0.4 | 0.4 | 1.4 | 1.4 | 1.7 | 1.6 | 1.2 | 1.5 | 1.2 | 1.2 | 1.2 | 1.3 | 1.2 | -0.1 |
| North Central | 0.6 | 1.0 | 0.8 | 0.9 | 1.4 | 1.9 | 1.6 | 1.9 | 1.9 | 1.9 | 1.7 | 1.5 | 1.3 | 1.2 | -0.2 |
| South | 0.7 | 1.0 | 1.2 | 1.6 | 1.4 | 1.7 | 1.4 | 2.5 | 1.9 | 1.4 | 2.0 | 1.7 | 1.8 | 1.3 | -0.5 |
| West | 0.8 | 1.3 | 1.4 | 1.3 | 2.3 | 2.1 | 2.3 | 2.6 | 1.8 | 2.9 | 1.7 | 2.0 | 1.8 | 1.8 | 0.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.5 | 0.8 | 0.7 | 1.3 | 1.5 | 1.8 | 1.5 | 1.6 | 1.2 | 1.6 | 1.4 | 1.5 | 1.2 | 1.5 | +0.3 |
| Other MSA | 0.7 | 1.1 | 1.2 | 1.5 | 1.7 | 2.0 | 1.8 | 2.2 | 2.0 | 1.8 | 1.8 | 1.6 | 1.7 | 1.3 | -0.4 |
| Non-MSA | 0.8 | 0.8 | 0.9 | 1.0 | 1.4 | 1.7 | 1.7 | 2.6 | 2.1 | 2.0 | 1.8 | 1.8 | 1.7 | 1.2 | -0.5 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1.7 | 2.2 | 1.8 | 2.8 | 3.0 | 2.7 | 3.0 | 5.0 | 3.6 | 3.7 | 3.2 | 3.1 | 3.3 | 2.2 | -1.1 |
| 2.5-3.0 | 0.7 | 0.8 | 1.0 | 1.4 | 1.2 | 2.1 | 2.0 | 2.2 | 2.0 | 2.1 | 1.8 | 2.1 | 1.7 | 1.7 | 0.0 |
| 3.5-4.0 | 0.4 | 0.7 | 1.2 | 0.9 | 1.7 | 2.0 | 1.4 | 2.1 | 2.0 | 1.8 | 1.3 | 1.4 | 1.6 | 1.3 | -0.3 |
| 4.5-5.0 | 0.4 | 0.6 | 0.5 | 1.1 | 1.3 | 1.5 | 1.5 | 1.6 | 1.0 | 1.0 | 1.5 | 1.2 | 1.0 | 1.1 | 0.0 |
| 5.5-6.0 (High) | 0.8 | 1.0 | 0.6 | 1.4 | 1.6 | 1.5 | 1.5 | 1.6 | 1.9 | 1.8 | 1.3 | 1.3 | 1.3 | 1.0 | -0.3 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 0.7 | 0.8 | 1.0 | 1.4 | 1.7 | 1.7 | 1.7 | 1.8 | 1.7 | 1.7 | 1.5 | 1.5 | 1.3 | -0.2 |
| Black | - | 0.4 | 0.4 | 0.5 | 0.5 | 0.4 | 0.4 | 0.5 | 0.5 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | +0.1 |
| Hispanic | - | 1.9 | 2.0 | 2.1 | 2.7 | 3.0 | 2.8 | 3.6 | 3.9 | 2.9 | 2.6 | 2.7 | 2.8 | 2.6 | -0.2 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails,
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-29

Crack: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 0.9 | 0.9 | 1.1 | 1.4 | 1.8 | 2.1 | 2.2 | 2.5 | 2.4 | 2.2 | 1.8 | 2.3 | 1.6 | 1.7 | +0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 0.9 | 0.9 | 1.3 | 1.6 | 1.9 | 2.1 | 2.3 | 2.7 | 2.5 | 2.3 | 1.9 | 2.5 | 1.6 | 1.8 | +0.2 |
| Female | 0.8 | 0.9 | 0.7 | 1.0 | 1.6 | 2.1 | 2.2 | 2.2 | 2.3 | 2.1 | 1.7 | 2.2 | 1.6 | 1.5 | 0.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2.4 | 2.1 | 2.7 | 3.4 | 3.7 | 5.0 | 4.9 | 6.0 | 5.5 | 5.2 | 4.7 | 5.6 | 4.5 | 4.6 | +0.1 |
| Complete 4 years | 0.6 | 0.6 | 0.7 | 0.9 | 1.5 | 1.5 | 1.8 | 1.9 | 1.8 | 1.7 | 1.4 | 1.8 | 1.1 | 1.2 | +0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.5 | 0.4 | 1.1 | 1.4 | 1.1 | 1.4 | 1.5 | 2.6 | 2.5 | 1.7 | 1.0 | 1.4 | 1.3 | 1.4 | 0.0 |
| North Central | 0.9 | 0.9 | 0.8 | 1.0 | 1.5 | 2.2 | 2.1 | 2.1 | 2.1 | 1.8 | 1.8 | 2.2 | 1.4 | 1.5 | +0.1 |
| South | 1.0 | 0.8 | 0.9 | 1.3 | 1.9 | 2.0 | 2.0 | 1.9 | 2.0 | 1.9 | 1.7 | 1.7 | 1.7 | 1.4 | -0.3 |
| West | 1.1 | 1.4 | 1.7 | 1.9 | 2.8 | 2.8 | 3.8 | 3.9 | 3.2 | 3.8 | 3.3 | 4.4 | 2.0 | 2.6 | +0.6 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.9 | 0.8 | 0.7 | 0.9 | 1.9 | 1.7 | 2.3 | 2.2 | 2.2 | 2.4 | 1.9 | 2.2 | 1.2 | 1.5 | +0.3 |
| OtherMSA | 0.9 | 0.9 | 1.1 | 1.5 | 1.6 | 2.4 | 1.7 | 2.4 | 2.3 | 2.0 | 1.8 | 2.5 | 1.7 | 1.8 | +0.1 |
| Non-MSA | 0.9 | 0.9 | 1.2 | 1.6 | 2.3 | 1.9 | 3.3 | 3.1 | 2.8 | 2.5 | 1.8 | 2.2 | 2.1 | 1.7 | -0.4 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1.3 | 1.7 | 1.8 | 1.9 | 3.0 | 3.9 | 3.4 | 4.5 | 3.4 | 4.8 | 3.0 | 3.9 | 2.9 | 3.5 | +0.7 |
| 2.5-3.0 | 1.0 | 0.8 | 1.0 | 1.1 | 2.4 | 2.5 | 2.4 | 3.1 | 2.9 | 2.9 | 2.5 | 2.6 | 1.8 | 1.9 | 0.0 |
| 3.5-4.0 | 0.9 | 1.0 | 1.4 | 1.5 | 1.7 | 1.9 | 2.6 | 2.0 | 2.5 | 2.2 | 1.4 | 2.2 | 1.6 | 1.6 | 0.0 |
| 4.5-5.0 | 0.7 | 0.6 | 0.7 | 1.0 | 1.3 | 1.4 | 1.8 | 2.0 | 1.9 | 1.1 | 1.6 | 1.4 | 1.3 | 1.4 | +0.1 |
| 5.5-6.0 (High) | 0.7 | 0.9 | 0.5 | 1.1 | 1.1 | 1.8 | 1.2 | 1.8 | 1.8 | 1.4 | 1.2 | 2.2 | 0.8 | 0.8 | +0.1 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 0.9 | 0.9 | 1.1 | 1.5 | 1.9 | 2.2 | 2.3 | 2.4 | 2.2 | 1.8 | 2.0 | 2.0 | 1.6 | -0.4 |
| Black | - | 0.3 | 0.4 | 0.8 | 0.6 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.7 | 0.8 | 0.6 | 0.4 | -0.2 |
| Hispanic | - | 1.5 | 1.7 | 1.9 | 2.5 | 3.7 | 3.7 | 4.1 | 4.4 | 4.0 | 3.7 | 3.6 | 3.5 | 3.1 | -0.4 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father'seducation. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-30

## Crack: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975-85 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | $\underline{2003}$ | 2004 | change |
| Approx. $\mathrm{N}=$ | - | 15200 | 16300 | 16300 | 16700 | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | 4.1 | 3.9 | 3.1 | 3.1 | 1.9 | 1.5 | 1.5 | 1.5 | 1.9 | 2.1 | 2.1 | 2.4 | 2.5 | 2.7 | 2.2 | 2.1 | 2.3 | 2.2 | 2.3 | $+0.1$ |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 4.2 | 4.6 | 4.0 | 4.3 | 2.3 | 1.8 | 1.7 | 1.9 | 2.4 | 2.5 | 2.6 | 3.0 | 3.1 | 2.9 | 2.5 | 2.4 | 2.6 | 2.3 | 2.5 | +0.2 |
| Female | - | 3.6 | 3.0 | 2.0 | 1.8 | 1.4 | 1.0 | 1.0 | 1.1 | 1.3 | 1.5 | 1.6 | 1.8 | 2.0 | 2.2 | 1.7 | 1.8 | 1.8 | 1.9 | 1.9 | 0.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 years | - | 5.2 | 5.1 | 4.1 | 3.8 | 3.5 | 2.3 | 2.6 | 2.7 | 3.3 | 3.0 | 4.0 | 4.3 | 4.6 | 5.0 | 3.5 | 4.4 | 4.5 | 2.7 | 3.9 | +1.2 s |
| Complete 4 years | - | 2.8 | 2.7 | 2.3 | 2.7 | 1.2 | 1.1 | 1.0 | 1.2 | 1.4 | 1.7 | 1.6 | 1.7 | 1.9 | 1.9 | 1.7 | 1.5 | 1.7 | 1.8 | 1.7 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 6.0 | 4.0 | 2.3 | 3.3 | 2.0 | 1.3 | 1.3 | 1.2 | 1.5 | 1.6 | 2.1 | 2.6 | 3.0 | 2.4 | 1.8 | 2.0 | 2.0 | 2.0 | 1.7 | -0.3 |
| North Central | - | 3.1 | 3.5 | 2.4 | 2.2 | 1.6 | 1.5 | 1.4 | 1.3 | 2.2 | 2.0 | 2.3 | 2.2 | 2.6 | 2.8 | 2.0 | 2.6 | 2.6 | 1.9 | 2.1 | +0.2 |
| South | - | 1.6 | 2.8 | 2.6 | 3.3 | 1.8 | 1.2 | 1.2 | 1.5 | 1.6 | 1.7 | 1.7 | 1.8 | 2.0 | 2.3 | 1.8 | 1.2 | 1.9 | 2.0 | 2.2 | +0.2 |
| West | - | 7.5 | 6.1 | 5.6 | 3.8 | 2.7 | 1.8 | 2.1 | 2.1 | 2.3 | 3.5 | 2.6 | 3.4 | 3.2 | 3.4 | 3.2 | 3.0 | 2.8 | 3.0 | 3.3 | +0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 5.9 | 4.7 | 3.9 | 3.4 | 1.6 | 1.2 | 1.3 | 1.3 | 1.5 | 2.0 | 2.1 | 2.2 | 2.5 | 2.0 | 1.8 | 1.5 | 1.6 | 1.8 | 2.0 | +0.2 |
| Other MSA | - | 3.5 | 3.5 | 3.2 | 3.3 | 2.0 | 1.7 | 1.6 | 1.8 | 2.1 | 2.1 | 1.9 | 2.3 | 2.4 | 2.5 | 2.1 | 2.2 | 2.4 | 2.3 | 2.2 | -0.2 |
| Non-MSA | - | 3.5 | 3.7 | 2.0 | 2.2 | 2.0 | 1.2 | 1.3 | 1.4 | 1.9 | 2.1 | 2.5 | 2.8 | 2.9 | 3.6 | 2.8 | 2.8 | 2.8 | 2.4 | 2.8 | +0.4 |
| Parental |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 1.2 | 3.6 | 3.3 | 3.1 | 2.2 | 1.6 | 1.9 | 2.6 | 2.7 | 3.4 | 3.4 | 3.6 | 3.9 | 3.2 | 2.8 | 3.8 | 4.8 | 2.5 | 3.3 | +0.9 |
| 2.5-3.0 | - | 5.3 | 4.2 | 2.6 | 3.1 | 2.2 | 1.5 | 1.9 | 1.6 | 2.2 | 2.3 | 2.4 | 2.5 | 2.8 | 2.8 | 2.1 | 2.6 | 2.2 | 1.6 | 2.9 | +1.4 sss |
| 3.5-4.0 | - | 4.0 | 4.0 | 3.4 | 2.8 | 1.8 | 1.7 | 1.3 | 1.5 | 1.8 | 1.7 | 2.2 | 2.0 | 2.4 | 3.0 | 2.2 | 1.8 | 2.3 | 2.3 | 1.9 | -0.4 |
| 4.5-5.0 | - | 2.9 | 3.4 | 3.1 | 2.6 | 1.1 | 0.9 | 1.0 | 1.4 | 1.1 | 1.9 | 1.6 | 2.5 | 2.1 | 2.2 | 1.8 | 1.9 | 1.7 | 2.2 | 1.8 | -0.4 |
| 5.5-6.0 (High) | - | 3.7 | 2.4 | 2.1 | 3.7 | 1.8 | 1.1 | 0.8 | 1.0 | 1.8 | 1.5 | 1.6 | 1.8 | 2.1 | 1.6 | 2.2 | 1.2 | 1.5 | 1.9 | 1.7 | -0.2 |
| Race (2-year average): |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 3.8 | 3.4 | 3.1 | 2.1 | 1.6 | 1.3 | 1.3 | 1.6 | 1.9 | 2.0 | 2.2 | 2.6 | 2.8 | 2.5 | 2.2 | 2.3 | 2.2 | 2.2 | 0.0 |
| Black | - | - | 1.9 | 2.5 | 2.0 | 1.3 | 1.0 | 0.6 | 0.6 | 0.9 | 1.0 | 0.7 | 0.5 | 0.3 | 0.4 | 0.5 | 0.5 | 0.7 | 1.2 | 1.3 | +0.1 |
| Hispanic | - | - | 5.5 | 3.7 | 3.2 | 4.2 | 3.4 | 2.7 | 2.5 | 2.4 | 3.1 | 4.1 | 4.2 | 3.9 | 3.5 | 3.4 | 3.1 | 3.1 | 2.9 | 3.0 | 0.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of five forms in 1986; N is one-fifth of N indicated in Table D -107. Data based on two forms in $1987-89 ; \mathrm{N}$ is two-fifths of N indicated in $1987-88$ and two-sixths of N indic ated in 1989 in Table D-107. Data based on six forms beginnning in 1990.
SOURCE: The Monitoring the Future Study, the University of Mic higan.

${ }^{\mathrm{b}}$ To derive percentages for each racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-31

Other Cocaine: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 1.0 | 1.2 | 1.3 | 1.7 | 2.1 | 2.5 | 2.2 | 2.4 | 2.3 | 1.9 | 1.9 | 1.8 | 1.6 | 1.6 | -0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.1 | 1.2 | 1.5 | 1.7 | 2.0 | 2.2 | 2.5 | 2.3 | 2.3 | 1.9 | 1.8 | 1.7 | 1.5 | 1.3 | -0.2 |
| Female | 0.8 | 1.2 | 1.2 | 1.8 | 2.2 | 2.6 | 1.9 | 2.4 | 2.2 | 1.8 | 2.0 | 1.9 | 1.6 | 1.8 | +0.2 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2.7 | 4.2 | 4.1 | 5.6 | 5.9 | 6.6 | 6.0 | 7.7 | 7.1 | 6.1 | 5.3 | 6.4 | 5.0 | 5.4 | +0.5 |
| Complete 4 years | 0.6 | 0.7 | 0.9 | 1.2 | 1.6 | 1.8 | 1.7 | 1.8 | 1.7 | 1.4 | 1.5 | 1.3 | 1.2 | 1.1 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.2 | 0.7 | 0.9 | 1.9 | 1.8 | 2.1 | 1.6 | 1.4 | 1.7 | 1.1 | 1.6 | 1.2 | 1.0 | 1.6 | +0.6 |
| North Central | 0.6 | 1.0 | 0.7 | 0.9 | 2.0 | 2.4 | 2.0 | 1.9 | 2.2 | 2.3 | 1.6 | 1.8 | 1.7 | 1.1 | -0.7 |
| South | 1.0 | 1.5 | 1.6 | 2.0 | 2.0 | 2.3 | 2.1 | 3.1 | 2.6 | 1.7 | 2.4 | 2.1 | 1.9 | 1.7 | -0.1 |
| West | 1.3 | 1.5 | 2.1 | 2.0 | 2.7 | 3.1 | 2.9 | 2.5 | 2.2 | 2.5 | 1.7 | 1.9 | 1.6 | 1.8 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.9 | 1.1 | 1.0 | 1.6 | 2.0 | 2.5 | 1.7 | 1.8 | 1.8 | 1.6 | 1.6 | 1.4 | 1.2 | 1.7 | +0.5 |
| OtherMSA | 0.9 | 1.4 | 1.8 | 2.1 | 2.1 | 2.6 | 2.2 | 2.5 | 2.3 | 1.8 | 2.2 | 1.8 | 1.6 | 1.6 | 0.0 |
| Non-MSA | 1.1 | 0.9 | 0.7 | 1.2 | 2.2 | 2.2 | 2.5 | 2.8 | 2.8 | 2.5 | 1.6 | 2.3 | 2.2 | 1.3 | -0.9 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 2.1 | 2.7 | 2.2 | 3.1 | 4.3 | 3.2 | 3.5 | 4.7 | 5.1 | 4.2 | 3.7 | 2.8 | 2.9 | 3.1 | +0.2 |
| 2.5-3.0 | 1.2 | 1.1 | 1.5 | 2.0 | 2.0 | 2.6 | 2.4 | 2.5 | 2.8 | 2.1 | 1.9 | 2.3 | 1.8 | 1.9 | +0.1 |
| 3.5-4.0 | 0.6 | 1.0 | 1.5 | 1.9 | 2.2 | 2.8 | 2.1 | 2.4 | 2.3 | 1.9 | 1.8 | 1.9 | 1.6 | 1.5 | -0.1 |
| 4.5-5.0 | 0.6 | 0.8 | 0.8 | 1.1 | 1.6 | 2.4 | 1.9 | 1.8 | 1.3 | 1.4 | 1.6 | 1.6 | 1.1 | 1.3 | +0.2 |
| 5.5-6.0 (High) | 1.0 | 1.2 | 0.8 | 1.2 | 2.0 | 1.9 | 1.7 | 1.8 | 1.8 | 1.3 | 1.1 | 0.8 | 1.5 | 0.9 | -0.6 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 0.9 | 1.0 | 1.2 | 1.8 | 2.4 | 2.5 | 2.2 | 2.1 | 1.9 | 1.8 | 1.8 | 1.8 | 1.5 | -0.3 |
| Black | - | 0.6 | 0.5 | 0.6 | 0.5 | 0.4 | 0.3 | 0.5 | 0.7 | 0.6 | 0.5 | 0.5 | 0.6 | 0.8 | +0.2 |
| Hispanic | - | 2.6 | 3.3 | 4.0 | 4.3 | 4.1 | 3.3 | 4.0 | 4.9 | 3.9 | 3.2 | 3.1 | 2.7 | 2.8 | +0.2 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

Other Cocaine: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

Percentage who used in last twelve months
'03-'04
$1991 \underline{1992} \underline{1993} \underline{1994} \underline{1995} \underline{1996} \underline{1997} \quad \underline{1998} \quad \underline{1999} \quad \underline{2000} \quad \underline{2001} \quad \underline{2002} \quad \underline{2003} \quad \underline{2004}$ change
Approx. $N=1480014800153001580017000156001550015000136001430014000143001580016400$

| Total | 2.1 | 1.7 | 1.8 | 2.4 | 3.0 | 3.5 | 4.1 | 4.0 | 4.4 | 3.8 | 3.0 | 3.4 | 2.8 | 3.3 | +0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 2.0 | 1.9 | 2.2 | 2.7 | 3.1 | 3.7 | 4.1 | 4.1 | 4.6 | 4.2 | 3.3 | 3.6 | 2.9 | 3.6 | +0.7 |
| Female | 2.1 | 1.5 | 1.4 | 2.1 | 2.9 | 3.3 | 4.0 | 3.8 | 4.1 | 3.4 | 2.6 | 3.3 | 2.7 | 3.0 | +0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 4.4 | 3.3 | 4.5 | 5.9 | 6.3 | 8.4 | 9.0 | 9.3 | 10.5 | 8.3 | 8.2 | 8.7 | 7.3 | 8.3 | +1.0 |
| Complete 4 years | 1.6 | 1.3 | 1.3 | 1.7 | 2.5 | 2.7 | 3.2 | 3.0 | 3.4 | 3.0 | 2.1 | 2.6 | 2.1 | 2.6 | +0.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.3 | 1.0 | 1.8 | 2.0 | 2.2 | 2.2 | 2.5 | 4.3 | 4.1 | 2.5 | 2.0 | 1.8 | 2.7 | 3.2 | +0.5 |
| North Central | 1.6 | 1.3 | 1.3 | 1.8 | 2.5 | 3.4 | 3.4 | 3.1 | 3.9 | 4.0 | 3.0 | 3.2 | 2.3 | 3.0 | +0.7 |
| South | 1.9 | 1.6 | 1.7 | 2.2 | 2.9 | 3.5 | 4.8 | 3.7 | 4.7 | 3.9 | 3.2 | 3.3 | 3.1 | 3.2 | +0.1 |
| West | 3.4 | 3.1 | 3.2 | 4.3 | 4.8 | 5.2 | 5.3 | 5.2 | 4.6 | 4.6 | 3.9 | 5.5 | 3.2 | 4.1 | +0.9 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.6 | 1.5 | 1.4 | 1.9 | 2.8 | 3.3 | 3.9 | 3.8 | 3.7 | 3.7 | 2.5 | 3.1 | 2.2 | 2.9 | +0.8 |
| Other MSA | 2.6 | 2.0 | 2.0 | 2.7 | 3.1 | 3.9 | 3.8 | 4.0 | 4.5 | 3.7 | 3.2 | 3.7 | 2.8 | 3.4 | +0.7 |
| Non-MSA | 1.4 | 1.4 | 1.9 | 2.5 | 3.1 | 3.2 | 4.9 | 4.2 | 4.8 | 4.0 | 3.2 | 3.3 | 4.1 | 3.6 | -0.5 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 3.1 | 2.7 | 2.7 | 3.1 | 5.0 | 6.1 | 5.5 | 6.7 | 7.6 | 6.3 | 4.8 | 7.1 | 6.4 | 5.7 | -0.7 |
| 2.5-3.0 | 2.2 | 1.6 | 2.0 | 2.6 | 3.6 | 3.6 | 4.3 | 4.5 | 5.1 | 4.4 | 4.5 | 3.9 | 3.5 | 3.7 | +0.2 |
| 3.5-4.0 | 2.2 | 2.0 | 2.2 | 2.7 | 3.3 | 3.8 | 4.6 | 4.0 | 4.2 | 4.0 | 2.5 | 3.2 | 2.9 | 3.7 | +0.7 |
| 4.5-5.0 | 1.6 | 1.3 | 1.4 | 1.8 | 2.2 | 3.0 | 3.3 | 3.0 | 3.5 | 3.0 | 2.2 | 2.0 | 1.8 | 2.8 | +1.0 s |
| 5.5-6.0 (High) | 1.8 | 1.3 | 0.9 | 1.6 | 1.7 | 2.8 | 2.9 | 2.5 | 3.5 | 2.7 | 1.4 | 2.7 | 1.2 | 1.6 | +0.4 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 1.9 | 1.8 | 1.9 | 2.6 | 3.2 | 3.7 | 4.1 | 4.3 | 4.1 | 3.4 | 3.3 | 3.4 | 3.4 | 0.0 |
| Black | - | 0.5 | 0.5 | 0.9 | 0.8 | 0.6 | 0.6 | 0.9 | 0.8 | 0.5 | 0.5 | 0.7 | 0.7 | 0.7 | 0.0 |
| Hispanic | - | 3.4 | 3.4 | 4.6 | 5.2 | 6.1 | 7.5 | 7.0 | 6.8 | 7.1 | 5.6 | 5.0 | 5.2 | 5.1 | -0.2 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a P Parental education is an average score of mother's education and father's education. See Appendix B for details }, ~}$
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

## TABLE D-33

Other Cocaine: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975-86 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | $\underline{1996}$ | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | 2004 | change |
| Approx. $\mathrm{N}=$ | - | 16300 | 16300 | 16700 | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | 9.8 | 7.4 | 5.2 | 4.6 | 3.2 | 2.6 | 2.9 | 3.0 | 3.4 | 4.2 | 5.0 | 4.9 | 5.8 | 4.5 | 4.4 | 4.4 | 4.2 | 4.7 | $+0.4$ |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 10.1 | 8.0 | 6.5 | 5.8 | 3.7 | 3.1 | 3.7 | 3.7 | 4.0 | 4.9 | 5.7 | 5.6 | 7.1 | 5.5 | 4.9 | 5.0 | 5.4 | 5.8 | +0.4 |
| Female | - | 9.1 | 6.2 | 4.0 | 3.2 | 2.4 | 2.0 | 2.0 | 2.3 | 2.5 | 3.2 | 4.0 | 3.9 | 4.2 | 3.4 | 3.7 | 3.7 | 2.9 | 3.5 | +0.6 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years |  | 9.8 | 6.0 | 7.3 | 6.3 | 4.0 | 4.0 | 3.9 | 4.3 | 4.5 | 5.7 | 7.0 | 8.9 | 7.6 | 6.7 | 7.4 | 7.1 | 4.8 | 6.8 | +2.0 |
| Complete 4 years | - | 8.3 | 6.7 | 4.2 | 3.7 | 2.8 | 2.0 | 2.5 | 2.5 | 2.9 | 3.5 | 4.1 | 3.5 | 5.2 | 3.7 | 3.4 | 3.4 | 3.8 | 3.9 | +0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 12.9 | 7.0 | 4.9 | 5.6 | 3.4 | 2.8 | 2.3 | 2.8 | 4.2 | 5.2 | 5.9 | 4.7 | 4.1 | 3.7 | 4.4 | 4.3 | 5.3 | 4.4 | -0.9 |
| North Central | - | 8.2 | 5.6 | 4.8 | 3.7 | 2.9 | 2.2 | 2.3 | 3.5 | 2.7 | 3.2 | 4.1 | 5.3 | 5.7 | 4.5 | 5.6 | 4.8 | 3.2 | 3.9 | +0.7 |
| South | - | 5.8 | 5.8 | 4.6 | 4.1 | 2.8 | 2.5 | 2.6 | 2.6 | 3.1 | 4.2 | 4.6 | 4.9 | 6.6 | 4.0 | 3.9 | 4.4 | 4.1 | 4.9 | +0.8 |
| West | - | 15.3 | 13.4 | 7.5 | 6.1 | 3.9 | 3.1 | 4.6 | 3.5 | 4.0 | 4.5 | 6.2 | 4.4 | 6.1 | 5.9 | 3.5 | 3.9 | 4.7 | 5.8 | +1.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 13.3 | 9.8 | 5.6 | 5.0 | 3.7 | 3.1 | 2.6 | 2.6 | 3.7 | 3.9 | 4.2 | 4.8 | 4.8 | 3.7 | 4.1 | 3.5 | 3.0 | 3.9 | +1.0 |
| Other MSA | - | 8.9 | 7.8 | 5.4 | 4.7 | 3.3 | 2.5 | 3.6 | 3.5 | 3.3 | 4.4 | 5.2 | 4.9 | 6.0 | 4.5 | 4.3 | 4.7 | 5.3 | 5.4 | +0.1 |
| Non-MSA | - | 8.0 | 4.5 | 4.4 | 4.1 | 2.5 | 2.3 | 2.0 | 2.6 | 3.1 | 4.2 | 5.6 | 4.9 | 6.7 | 5.4 | 5.0 | 4.9 | 3.9 | 4.2 | +0.2 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 5.3 | 4.9 | 3.3 | 3.4 | 3.5 | 3.7 | 3.9 | 2.7 | 2.9 | 5.2 | 6.4 | 5.5 | 7.4 | 5.4 | 3.7 | 5.1 | 4.1 | 6.3 | +2.2 |
| 2.5-3.0 | - | 10.5 | 6.5 | 4.6 | 5.0 | 3.5 | 2.3 | 2.3 | 3.2 | 3.4 | 3.8 | 4.9 | 5.3 | 5.0 | 3.8 | 5.6 | 4.7 | 3.4 | 3.6 | +0.2 |
| 3.5-4.0 | - | 10.5 | 7.2 | 5.1 | 4.7 | 3.2 | 2.6 | 3.3 | 3.4 | 3.6 | 4.6 | 4.9 | 5.3 | 6.9 | 4.7 | 4.7 | 4.9 | 4.6 | 5.1 | +0.5 |
| 4.5-5.0 | - | 9.0 | 7.7 | 6.1 | 4.1 | 2.7 | 2.3 | 2.9 | 2.6 | 3.2 | 3.9 | 4.4 | 4.2 | 5.5 | 4.5 | 3.9 | 3.4 | 4.3 | 5.1 | +0.8 |
| 5.5-6.0 (High) | - | 9.7 | 9.0 | 6.5 | 5.4 | 2.4 | 2.0 | 1.7 | 3.1 | 2.7 | 3.8 | 4.8 | 3.5 | 3.6 | 4.2 | 2.2 | 3.9 | 3.8 | 3.7 | -0.2 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 9.3 | 7.0 | 5.3 | 4.2 | 2.9 | 2.6 | 2.9 | 3.3 | 3.9 | 5.0 | 5.6 | 6.0 | 5.7 | 5.0 | 5.1 | 4.9 | 4.8 | -0.1 |
| Black | - | - | 2.8 | 1.4 | 0.7 | 1.0 | 1.0 | 0.7 | 0.8 | 0.8 | 0.7 | 0.7 | 0.6 | 0.8 | 1.0 | 0.9 | 0.8 | 1.0 | 1.1 | +0.1 |
| Hispanic | - | - | 6.3 | 5.1 | 5.1 | 5.0 | 4.3 | 5.1 | 5.1 | 4.0 | 5.6 | 6.9 | 6.0 | 5.8 | 6.6 | 5.8 | 4.7 | 3.9 | 4.8 | +0.9 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
See Table $\mathrm{D}-107$ for the number of subgroup cases. See Appendix B fordefinition of variables in table. Data based on one form in 1987-89; N is one-fifth of N indicated in $1987-88$ and one-sixth of N indic ated in 1989 in Table D -107. Data based on four of six forms beginnning in 1990; N is four-sixths of N indic ated in Table $\mathrm{D}-107$
SOURCE: The Monitoring the Future Study, the University of Mic higan.

${ }^{\mathrm{b}}$ To derive percentages for each racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-34

## Heroin: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | $1995{ }^{\text {a }}$ | 1996 ${ }^{\text {a }}$ | $1997^{\text {a }}$ | $1998{ }^{\text {a }}$ | $1999^{\text {a }}$ | $\underline{2000}^{\text {a }}$ | $\underline{2001}{ }^{\text {a }}$ | $2002^{\text {a }}$ | $\underline{2003}{ }^{\text {a }}$ | $\underline{2004}{ }^{\text {a }}$ |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 0.7 | 0.7 | 0.7 | 1.2 | 1.4 | 1.6 | 1.3 | 1.3 | 1.4 | 1.1 | 1.0 | 0.9 | 0.9 | 1.0 | 0.0 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 0.9 | 0.8 | 0.8 | 1.3 | 1.6 | 1.5 | 1.4 | 1.5 | 1.4 | 1.0 | 1.0 | 0.8 | 0.8 | 0.9 | 0.0 |
| Female | 0.5 | 0.7 | 0.5 | 0.9 | 1.2 | 1.5 | 1.1 | 1.1 | 1.3 | 1.2 | 1.0 | 1.0 | 0.9 | 1.0 | +0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2.1 | 2.7 | 2.0 | 3.9 | 4.4 | 4.1 | 3.4 | 5.0 | 3.7 | 3.5 | 3.1 | 2.9 | 3.1 | 4.2 | +1.1 |
| Complete 4 years | 0.4 | 0.4 | 0.5 | 0.7 | 1.0 | 1.1 | 1.1 | 0.9 | 1.1 | 0.8 | 0.8 | 0.7 | 0.6 | 0.6 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.5 | 0.6 | 0.7 | 1.3 | 1.4 | 1.8 | 1.1 | 1.1 | 1.3 | 1.1 | 1.1 | 0.8 | 0.7 | 1.1 | +0.3 |
| North Central | 0.4 | 0.8 | 0.5 | 1.1 | 1.4 | 1.6 | 1.4 | 1.3 | 1.6 | 1.4 | 1.0 | 1.0 | 1.0 | 0.8 | -0.2 |
| South | 0.8 | 0.7 | 0.7 | 1.1 | 1.5 | 1.4 | 1.2 | 1.4 | 1.4 | 0.7 | 1.2 | 1.0 | 1.0 | 0.9 | -0.2 |
| West | 1.0 | 0.7 | 1.1 | 1.1 | 1.2 | 1.6 | 1.4 | 1.3 | 1.2 | 1.4 | 0.7 | 1.0 | 0.9 | 1.2 | +0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.5 | 0.7 | 0.7 | 1.2 | 1.2 | 1.4 | 1.0 | 1.0 | 1.3 | 1.0 | 0.9 | 0.7 | 0.8 | 1.2 | +0.4 |
| Other MSA | 0.7 | 0.8 | 0.9 | 1.2 | 1.5 | 1.7 | 1.3 | 1.3 | 1.4 | 1.1 | 1.0 | 1.0 | 0.9 | 1.0 | +0.1 |
| Non-MSA | 0.8 | 0.7 | 0.4 | 1.0 | 1.5 | 1.5 | 1.5 | 1.6 | 1.5 | 1.0 | 1.1 | 1.1 | 1.2 | 0.6 | -0.6 s |
| Parental Educ ation: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1.5 | 1.4 | 0.8 | 2.0 | 2.6 | 2.0 | 2.3 | 3.5 | 2.8 | 1.7 | 2.6 | 1.2 | 2.1 | 1.9 | -0.2 |
| 2.5-3.0 | 0.9 | 0.7 | 0.6 | 1.1 | 1.0 | 1.7 | 1.4 | 1.2 | 1.4 | 1.5 | 1.1 | 1.3 | 1.0 | 1.1 | +0.1 |
| 3.5-4.0 | 0.6 | 0.6 | 0.7 | 1.3 | 1.6 | 1.7 | 1.0 | 1.1 | 1.2 | 0.7 | 1.0 | 0.9 | 0.8 | 1.0 | +0.2 |
| 4.5-5.0 | 0.4 | 0.5 | 0.8 | 0.8 | 1.2 | 1.4 | 1.1 | 1.1 | 1.1 | 0.8 | 0.6 | 0.8 | 0.6 | 0.7 | +0.2 |
| 5.5-6.0 (High) | 0.5 | 0.8 | 0.6 | 1.3 | 1.6 | 1.0 | 1.5 | 1.4 | 1.8 | 1.0 | 0.8 | 0.6 | 0.7 | 0.6 | -0.1 |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 0.6 | 0.6 | 0.8 | 1.2 | 1.6 | 1.6 | 1.3 | 1.2 | 1.2 | 1.0 | 1.0 | 0.9 | 0.9 | 0.0 |
| Black | - | 0.4 | 0.3 | 0.6 | 0.7 | 0.5 | 0.4 | 0.5 | 0.7 | 0.5 | 0.6 | 0.6 | 0.5 | 0.7 | +0.2 |
| Hispanic | - | 1.4 | 1.4 | 1.5 | 1.8 | 2.1 | 1.7 | 1.7 | 2.2 | 2.0 | 1.4 | 1.2 | 1.4 | 1.7 | +0.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ In 1995, the heroin question was changed in half of the forms. Separate questions were asked for use with injection and without injection. In 1996, the remaining form wasalso changed. Data presented here represent the combined data from all forms.
${ }^{\mathrm{b}}$ Parental education is an average score of mother's education and father's education. See Appendix B fordetails.
${ }^{\text {}}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D－35
Heroin：Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { '03-'04 } \\ \text { change } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | $1995{ }^{\text {a }}$ | $1996{ }^{\text {a }}$ | $\underline{1997}^{\text {a }}$ | 1998 ${ }^{\text {a }}$ | 1999 ${ }^{\text {a }}$ | $\underline{2000}{ }^{\text {a }}$ | $\underline{2001}{ }^{\text {a }}$ | $\underline{2002}^{\text {a }}$ | $\underline{2003}{ }^{\text {a }}$ | $2004^{\text {a }}$ |  |
| Approx． $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 0.5 | 0.6 | 0.7 | 0.9 | 1.1 | 1.2 | 1.4 | 1.4 | 1.4 | 1.4 | 0.9 | 1.1 | 0.7 | 0.9 | $+0.2$ |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 0.7 | 0.8 | 0.9 | 1.0 | 1.3 | 1.5 | 1.6 | 1.7 | 1.7 | 1.5 | 1.0 | 1.3 | 0.8 | 1.0 | ＋0．2 |
| Female | 0.4 | 0.4 | 0.4 | 0.8 | 0.8 | 0.9 | 1.3 | 1.1 | 1.2 | 1.2 | 0.8 | 0.8 | 0.7 | 0.7 | ＋0．1 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None orunder 4 years | 1.4 | 1.4 | 1.9 | 2.0 | 2.2 | 2.4 | 2.9 | 2.7 | 3.4 | 3.8 | 2.5 | 2.7 | 2.0 | 2.8 | ＋0．8 |
| Complete 4 years | 0.3 | 0.4 | 0.4 | 0.7 | 0.9 | 1.0 | 1.2 | 1.2 | 1.1 | 1.0 | 0.7 | 0.8 | 0.5 | 0.6 | ＋0．1 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.4 | 0.6 | 0.6 | 0.6 | 0.9 | 0.9 | 1.3 | 1.8 | 1.9 | 1.5 | 1.0 | 0.9 | 0.6 | 1.1 | ＋0．5 |
| North Central | 0.6 | 0.6 | 0.8 | 0.9 | 1.0 | 1.5 | 1.5 | 1.4 | 1.3 | 1.6 | 1.1 | 1.2 | 0.7 | 0.7 | 0.0 |
| South | 0.6 | 0.5 | 0.6 | 1.0 | 1.3 | 1.4 | 1.5 | 1.3 | 1.4 | 1.5 | 0.9 | 0.8 | 0.9 | 1.0 | ＋0．1 |
| West | 0.4 | 0.8 | 0.5 | 1.2 | 1.0 | 1.0 | 1.3 | 1.1 | 1.1 | 0.7 | 0.7 | 1.4 | 0.7 | 0.8 | ＋0．1 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.6 | 0.6 | 0.7 | 0.8 | 1.0 | 1.1 | 1.6 | 1.2 | 1.2 | 1.8 | 0.9 | 0.9 | 0.6 | 0.9 | ＋0．4 |
| Other MSA | 0.5 | 0.6 | 0.6 | 0.9 | 1.0 | 1.3 | 1.3 | 1.5 | 1.4 | 1.2 | 1.0 | 1.0 | 0.8 | 0.9 | ＋0．2 |
| Non－MSA | 0.4 | 0.6 | 0.7 | 1.0 | 1.3 | 1.2 | 1.6 | 1.5 | 1.6 | 1.2 | 0.9 | 1.4 | 0.9 | 0.7 | －0．2 |
| Parental Educ ation：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 0.4 | 0.5 | 1.2 | 1.3 | 1.8 | 1.0 | 1.3 | 1.7 | 2.4 | 1.3 | 1.1 | 2.0 | 1.1 | 1.5 | ＋0．3 |
| 2．5－3．0 | 0.8 | 0.7 | 0.7 | 0.8 | 1.0 | 1.2 | 1.3 | 1.2 | 1.5 | 1.7 | 1.3 | 0.8 | 0.8 | 1.0 | ＋0．2 |
| 3．5－4．0 | 0.5 | 0.6 | 0.8 | 0.9 | 1.2 | 1.3 | 1.6 | 1.6 | 1.2 | 1.5 | 0.6 | 1.1 | 0.7 | 0.8 | ＋0．1 |
| 4．5－5．0 | 0.4 | 0.5 | 0.3 | 0.9 | 0.9 | 1.1 | 1.5 | 1.3 | 1.4 | 1.3 | 0.8 | 0.7 | 0.6 | 0.7 | ＋0．1 |
| 5．5－6．0（High） | 0.4 | 0.5 | 0.8 | 0.9 | 0.9 | 1.5 | 1.1 | 1.3 | 1.2 | 1.1 | 0.9 | 1.6 | 0.3 | 0.5 | ＋0．2 |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 0.6 | 0.7 | 0.8 | 1.0 | 1.2 | 1.4 | 1.4 | 1.5 | 1.5 | 1.2 | 1.0 | 0.9 | 0.8 | －0．1 |
| Black | － | 0.3 | 0.4 | 0.6 | 0.6 | 0.2 | 0.2 | 0.4 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.4 | ＋0．1 |
| Hispanic | － | 0.7 | 0.7 | 0.7 | 1.0 | 1.0 | 1.3 | 1.6 | 1.7 | 1.4 | 1.4 | 1.1 | 1.1 | 1.2 | ＋0．2 |

NOTES：Level of signific ance of difference between the two most recent classes：$s=.05,5 s=.01,5 s s=.001$ ．＇- ＇indic ates data not available．
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding error．See Table $D-106$ for the number of subgroup cases．See Appendix $B$ for definition of variables in table．
SOURCE：The Monitoring the Future Study，the University of Mic higan．
${ }^{\text {a }}$ In 1995，the heroin question waschanged in half of the forms．Separate questions were asked for use with injection and without injection．In 1996，the remaining form wasalso changed．Data presented here represent the combined data from all forms．
${ }^{\text {b }}$ Parental education is an average score of mother＇s education and father＇s education．See Appendix B fordetails．
${ }^{\text {}}$ To derive percentages foreach racial subgroup，data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates．

TABLE D-36
Heroin: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders


[^112]
## TABLE D-36 (cont'd)

Heroin: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | $\underline{1995}^{\text {a }}$ | $\underline{1996}^{\text {a }}$ | $\underline{1997}^{\text {a }}$ | 1998 ${ }^{\text {a }}$ | $\underline{1999}^{\text {a }}$ | $\underline{2000}{ }^{\text {a }}$ | $\underline{2001}{ }^{\text {a }}$ | $\underline{2002}^{\text {a }}$ | $\underline{2003}^{\text {a }}$ | $\underline{2004}{ }^{\text {a }}$ |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 0.5 | 0.4 | 0.6 | 0.5 | 0.6 | 1.1 | 1.0 | 1.2 | 1.0 | 1.1 | 1.5 | 0.9 | 1.0 | 0.8 | 0.9 | $+0.1$ |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 0.6 | 0.6 | 0.8 | 0.7 | 0.8 | 1.4 | 1.3 | 1.5 | 1.4 | 1.4 | 1.7 | 1.3 | 1.1 | 0.8 | 1.2 | +0.4 s |
| Female | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.8 | 0.7 | 0.9 | 0.7 | 0.8 | 1.2 | 0.6 | 0.8 | 0.5 | 0.4 | -0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 0.6 | 0.5 | 0.9 | 1.0 | 1.1 | 1.5 | 1.8 | 1.8 | 1.7 | 1.3 | 2.2 | 1.3 | 2.3 | 0.9 | 1.6 | +0.8 s |
| Complete 4 years | 0.4 | 0.4 | 0.5 | 0.4 | 0.5 | 0.9 | 0.8 | 1.0 | 0.8 | 1.0 | 1.1 | 0.7 | 0.7 | 0.6 | 0.6 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.8 | 0.2 | 0.5 | 0.9 | 0.7 | 1.0 | 1.6 | 1.7 | 1.3 | 1.2 | 1.0 | 1.2 | 1.2 | 0.8 | 0.9 | +0.2 |
| North Central | 0.3 | 0.8 | 0.6 | 0.5 | 0.9 | 0.7 | 0.7 | 0.9 | 1.0 | 0.9 | 1.4 | 1.3 | 1.0 | 0.6 | 0.6 | 0.0 |
| South | 0.5 | 0.4 | 0.6 | 0.4 | 0.6 | 1.4 | 1.0 | 1.1 | 1.1 | 1.3 | 1.6 | 0.6 | 1.2 | 1.0 | 1.0 | 0.0 |
| West | 0.3 | 0.3 | 0.8 | 0.5 | 0.4 | 1.0 | 0.9 | 1.2 | 0.6 | 0.9 | 1.8 | 0.8 | 0.5 | 0.5 | 0.9 | +0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.4 | 0.4 | 0.4 | 0.6 | 0.4 | 1.4 | 1.1 | 1.1 | 0.9 | 0.8 | 1.9 | 1.1 | 1.0 | 0.7 | 0.8 | +0.2 |
| Other MSA | 0.5 | 0.4 | 0.7 | 0.5 | 0.8 | 0.9 | 1.1 | 1.3 | 1.3 | 1.3 | 1.3 | 0.8 | 1.0 | 0.8 | 1.0 | +0.2 |
| Non-MSA | 0.5 | 0.6 | 0.7 | 0.5 | 0.5 | 1.0 | 0.9 | 1.0 | 0.6 | 1.0 | 1.3 | 0.9 | 1.1 | 0.9 | 0.6 | -0.3 |
| Parental Educ ation: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 0.8 | 0.5 | 0.7 | 0.3 | 0.9 | 1.8 | 1.1 | 2.1 | 1.2 | 2.3 | 2.3 | 1.3 | 2.1 | 1.1 | 1.4 | +0.4 |
| 2.5-3.0 | 0.4 | 0.4 | 0.6 | 0.4 | 0.8 | 1.1 | 0.9 | 1.0 | 1.0 | 0.9 | 1.6 | 0.5 | 1.0 | 0.7 | 0.9 | +0.2 |
| 3.5-4.0 | 0.4 | 0.4 | 0.6 | 0.6 | 0.4 | 0.9 | 1.1 | 1.2 | 1.2 | 1.0 | 1.3 | 1.0 | 0.9 | 0.8 | 0.7 | -0.1 |
| 4.5-5.0 | 0.4 | 0.6 | 0.7 | 0.7 | 0.3 | 1.1 | 1.0 | 1.1 | 1.0 | 1.1 | 1.5 | 1.0 | 0.7 | 0.6 | 0.9 | +0.2 |
| 5.5-6.0 (High) | 0.5 | 0.5 | 0.3 | 0.4 | 0.9 | 1.0 | 0.8 | 1.1 | 0.7 | 1.1 | 1.1 | 0.8 | 1.0 | 0.6 | 0.6 | 0.0 |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.8 | 1.0 | 1.2 | 1.2 | 1.1 | 1.3 | 1.3 | 1.0 | 0.8 | 0.7 | -0.1 |
| Black | 0.3 | 0.2 | 0.5 | 0.4 | 0.3 | 0.4 | 0.5 | 0.5 | 0.4 | 0.3 | 0.5 | 0.4 | 0.5 | 0.7 | 0.7 | 0.0 |
| Hispanic | 0.6 | 0.6 | 0.9 | 0.7 | 0.5 | 1.2 | 1.5 | 1.1 | 0.8 | 1.0 | 2.0 | 1.6 | 0.8 | 0.8 | 1.0 | +0.2 |
| ${ }^{\text {a }}$ In 1995 , the heroin question represent the combined data <br> ${ }^{\mathrm{b}}$ Parental education is an ave <br> ${ }^{\text {c }}$ To derive percentages forea provide more stable estimate | wascha <br> a from a <br> erage sc <br> ach raci <br> s. | nged in <br> ll forms. ore of m al subgro | half of th <br> other's <br> up, dat | e forms. <br> ducatio <br> for the | Separat <br> and fa specified | e questio <br> ther'sed <br> yearan | ns were <br> ucation. <br> d the pr | asked fo <br> See Ap <br> evious ye | ruse with <br> pendix B <br> arhave | h injectio <br> fordeta <br> been co | n and <br> is. <br> mbined | ithout inj <br> to increa | ection. <br> se subg | Data pre <br> roup sam | sented <br> ple sizes | are |

TABLE D-37

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | - | - | - | - | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | - | - | - | - | 0.9 | 1.0 | 0.8 | 0.8 | 0.9 | 0.6 | 0.7 | 0.6 | 0.6 | 0.7 | +0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | 1.2 | 1.0 | 0.8 | 1.0 | 1.0 | 0.7 | 0.7 | 0.6 | 0.7 | 0.7 | 0.0 |
| Female | - | - | - | - | 0.5 | 1.0 | 0.7 | 0.7 | 0.8 | 0.6 | 0.7 | 0.6 | 0.5 | 0.7 | +0.2 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | 3.2 | 3.1 | 2.0 | 3.1 | 2.2 | 2.1 | 2.2 | 1.9 | 2.0 | 3.1 | +1.2 |
| Complete 4 years | - | - | - | - | 0.6 | 0.7 | 0.6 | 0.6 | 0.7 | 0.5 | 0.6 | 0.5 | 0.4 | 0.4 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | 0.8 | 1.3 | 0.5 | 0.6 | 1.0 | 0.8 | 0.9 | 0.6 | 0.4 | 0.7 | +0.3 |
| North Central | - | - | - | - | 0.9 | 1.1 | 0.7 | 0.9 | 1.2 | 0.9 | 0.7 | 0.8 | 0.6 | 0.6 | +0.1 |
| South | - | - | - | - | 0.8 | 0.9 | 0.8 | 1.0 | 0.9 | 0.3 | 0.9 | 0.6 | 0.7 | 0.6 | -0.1 |
| West | - | - | - | - | 1.0 | 1.0 | 1.0 | 0.8 | 0.7 | 0.8 | 0.3 | 0.6 | 0.7 | 0.9 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | 0.9 | 0.7 | 0.6 | 0.8 | 0.8 | 0.7 | 0.7 | 0.4 | 0.5 | 1.0 | +0.4 s |
| Other MSA | - | - | - | - | 0.9 | 1.2 | 0.8 | 0.8 | 0.9 | 0.6 | 0.6 | 0.7 | 0.6 | 0.7 | +0.1 |
| Non-MSA | - | - | - | - | 0.9 | 1.1 | 0.9 | 1.1 | 1.1 | 0.7 | 1.0 | 0.8 | 0.9 | 0.5 | -0.4 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | 1.3 | 0.9 | 1.5 | 2.3 | 2.0 | 1.2 | 2.0 | 1.1 | 1.6 | 1.6 | -0.1 |
| 2.5-3.0 | - | - | - | - | 0.5 | 1.2 | 0.8 | 0.8 | 0.9 | 0.5 | 0.7 | 0.9 | 0.6 | 0.8 | +0.2 |
| 3.5-4.0 | - | - | - | - | 0.8 | 1.2 | 0.6 | 0.6 | 0.9 | 0.4 | 0.6 | 0.6 | 0.4 | 0.7 | +0.2 |
| 4.5-5.0 | - | - | - | - | 1.0 | 0.8 | 0.7 | 0.7 | 0.5 | 0.4 | 0.5 | 0.5 | 0.5 | 0.6 | +0.2 |
| 5.5-6.0 (High) | - | - | - | - | 1.0 | 0.6 | 0.9 | 0.9 | 1.2 | 0.9 | 0.7 | 0.4 | 0.5 | 0.5 | -0.1 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | 1.1 | 1.0 | 0.7 | 0.8 | 0.7 | 0.6 | 0.7 | 0.6 | 0.6 | 0.0 |
| Black | - | - | - | - | - | 0.3 | 0.2 | 0.3 | 0.4 | 0.3 | 0.5 | 0.5 | 0.4 | 0.5 | +0.1 |
| Hispanic | - | - | - | - | - | 1.1 | 1.0 | 1.1 | 1.5 | 1.2 | 0.8 | 0.7 | 0.9 | 1.3 | +0.4 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.

> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table $D-105$ for the number of subgroup cases. See Appendix $B$ fordefinition of variables in table.
> Data based on one of two forms in 1995; $N$ is one-half of $N$ indic ated in Table $D-105$.

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {ap }}$ Parental education is an average score of mother's education and father's education. See Appendix $B$ for details
${ }^{\text {To }}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-38

## Heroin with a Needle: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders



NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$. ' - ' indic ates data not available.

> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table $D-106$ for the number of subgroup cases. See Appendix $B$ for definition of variables in table.
> Data based on one of two forms in 1995; $N$ is one-half of $N$ indic ated in Table $D-106$.

SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B fordetails.
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-39
Heroin with a Needle: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975-79 1980-89 1990-94 |  |  | Class of: |  |  |  |  | $\underline{2000}$ | $\underline{2001}$ | 2002 | $\underline{2003}$ | 2004 |  |
|  |  |  |  | 1995 | 1996 | 1997 | 1998 | 1999 |  |  |  |  |  | change |
| Approx. $\mathrm{N}=$ | - | - | - | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | - | - | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.3 | 0.4 | 0.4 | 0.4 | 0.0 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | 0.7 | 0.9 | 0.9 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.6 | 0.6 | 0.0 |
| Female | - | - | - | 0.3 | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 | 0.2 | 0.3 | 0.1 | -0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None orunder 4 years | - | - | - | 0.9 | 1.2 | 0.9 | 0.8 | 0.5 | 1.0 | 0.7 | 0.9 | 0.4 | 1.0 | +0.6 |
| Complete 4 years | - | - | - | 0.4 | 0.4 | 0.4 | 0.3 | 0.4 | 0.2 | 0.2 | 0.3 | 0.4 | 0.2 | -0.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | 0.4 | 0.6 | 0.6 | 0.7 | 0.3 | 0.2 | 0.7 | 0.6 | 0.6 | 0.6 | 0.0 |
| North Central | - | - | - | 0.5 | 0.4 | 0.8 | 0.4 | 0.5 | 0.4 | 0.2 | 0.6 | 0.3 | 0.2 | -0.2 |
| South | - | - | - | 0.4 | 0.6 | 0.3 | 0.5 | 0.4 | 0.8 | 0.1 | 0.3 | 0.6 | 0.4 | -0.2 |
| West | - | - | - | 0.8 | 0.5 | 0.5 | 0.1 | 0.3 | 0.1 | 0.4 | 0.2 | 0.2 | 0.5 | +0.3 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | 0.6 | 0.7 | 0.3 | 0.3 | 0.4 | 0.8 | 0.4 | 0.5 | 0.5 | 0.6 | +0.1 |
| Other MSA | - | - | - | 0.4 | 0.5 | 0.6 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.0 |
| Non-MSA | - | - | - | 0.6 | 0.3 | 0.7 | 0.5 | 0.6 | 0.3 | 0.2 | 0.5 | 0.4 | 0.2 | -0.2 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | 0.7 | 0.9 | 1.8 | 0.8 | 1.5 | 1.2 | 0.7 | 0.8 | 0.5 | 0.2 | -0.3 |
| 2.5-3.0 | - | - | - | 0.6 | 0.5 | 0.4 | 0.5 | 0.1 | 0.4 | 0.3 | 0.4 | 0.7 | 0.6 | -0.1 |
| 3.5-4.0 | - | - | - | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 0.2 | 0.1 | 0.5 | 0.3 | 0.3 | 0.0 |
| 4.5-5.0 | - | - | - | 0.5 | 0.7 | 0.6 | 0.4 | 0.3 | 0.4 | 0.4 | 0.2 | 0.4 | 0.4 | 0.0 |
| 5.5-6.0 (High) | - | - | - | 0.6 | 0.5 | 0.5 | 0.2 | 0.4 | 0.2 | 0.3 | 0.2 | 0.3 | 0.4 | +0.1 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | 0.4 | 0.5 | 0.5 | 0.4 | 0.3 | 0.2 | 0.2 | 0.3 | 0.3 | 0.0 |
| Black | - | - | - | - | 0.2 | 0.5 | 0.4 | 0.2 | 0.5 | 0.4 | 0.2 | 0.4 | 0.5 | +0.1 |
| Hispanic | - | - | - | - | 1.0 | 0.7 | 0.5 | 0.6 | 1.0 | 0.6 | 0.4 | 0.6 | 0.7 | +0.2 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,55 s=.001$. ' - ' indic ates data not available.

> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-107 for the number of subgroup cases. See Appendix $B$ for definition of variables in table.
> Data based on three of six forms; $N$ is one-half of $N$ indicated in Table D-107.

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-40
Heroin without a Needle: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | - | - | - | - | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | - | - | - | - | 0.8 | 1.0 | 0.8 | 0.8 | 0.9 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | -0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | 1.0 | 0.9 | 0.9 | 0.9 | 0.8 | 0.5 | 0.6 | 0.6 | 0.6 | 0.4 | -0.1 |
| Female | - | - | - | - | 0.6 | 0.9 | 0.7 | 0.8 | 0.8 | 0.8 | 0.6 | 0.7 | 0.6 | 0.7 | +0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | 3.2 | 2.1 | 2.2 | 3.4 | 2.7 | 2.4 | 1.9 | 1.7 | 2.3 | 2.5 | +0.2 |
| Complete 4 years | - | - | - | - | 0.5 | 0.7 | 0.7 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | 0.9 | 1.1 | 0.8 | 0.7 | 0.7 | 0.6 | 0.7 | 0.3 | 0.5 | 0.6 | 0.0 |
| North Central | - | - | - | - | 1.0 | 1.0 | 0.9 | 0.9 | 1.0 | 0.8 | 0.6 | 0.7 | 0.8 | 0.4 | -0.4 s |
| South | - | - | - | - | 0.8 | 0.8 | 0.7 | 0.9 | 0.9 | 0.5 | 0.6 | 0.7 | 0.7 | 0.6 | 0.0 |
| West | - | - | - | - | 0.7 | 1.1 | 1.1 | 0.9 | 0.9 | 0.8 | 0.5 | 0.7 | 0.5 | 0.7 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | 0.9 | 1.0 | 0.6 | 0.5 | 0.8 | 0.7 | 0.5 | 0.6 | 0.6 | 0.7 | +0.1 |
| Other MSA | - | - | - | - | 0.8 | 1.0 | 0.9 | 1.0 | 0.8 | 0.8 | 0.8 | 0.5 | 0.6 | 0.6 | 0.0 |
| Non-MSA | - | - | - | - | 0.9 | 0.9 | 1.0 | 1.0 | 1.1 | 0.5 | 0.4 | 0.8 | 0.7 | 0.3 | -0.4 s |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | 1.9 | 1.5 | 1.3 | 2.4 | 1.7 | 1.1 | 1.3 | 0.5 | 1.4 | 1.5 | +0.1 |
| 2.5-3.0 | - | - | - | - | 0.7 | 0.9 | 1.1 | 0.7 | 1.0 | 1.3 | 0.6 | 0.8 | 0.6 | 0.6 | -0.1 |
| 3.5-4.0 | - | - | - | - | 0.5 | 1.2 | 0.5 | 0.8 | 0.6 | 0.5 | 0.6 | 0.6 | 0.7 | 0.6 | 0.0 |
| 4.5-5.0 | - | - | - | - | 0.8 | 0.8 | 0.8 | 0.6 | 0.8 | 0.5 | 0.5 | 0.6 | 0.4 | 0.4 | +0.1 |
| 5.5-6.0 (High) | - | - | - | - | 0.7 | 0.8 | 1.0 | 1.1 | 1.1 | 0.3 | 0.4 | 0.4 | 0.5 | 0.3 | -0.2 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.7 | 0.6 | 0.6 | 0.5 | -0.1 |
| Black | - | - | - | - | - | 0.2 | 0.2 | 0.4 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.5 | +0.1 |
| Hispanic | - | - | - | - | - | 1.5 | 1.2 | 1.1 | 1.4 | 1.1 | 0.8 | 1.0 | 1.0 | 1.0 | 0.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available.

> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table $D-105$ for the number of subgroup cases. See Appendix B fordefinition of variables in table.
> Data based on one of two forms in 1995; $N$ is one-half of $N$ indic ated in Table $D-105$.

SOURCE: The Monitoring the Future Study, the University of Mic higan.
Parental educ ation is an average score of mother's education and father's education. See Appendix B fordetails
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-41

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | - | - | - | - | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | - | - | - | - | 0.8 | 0.9 | 1.1 | 1.0 | 1.1 | 1.1 | 0.7 | 0.8 | 0.5 | 0.7 | $+0.1$ |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | 0.9 | 1.1 | 1.2 | 1.2 | 1.3 | 1.1 | 0.8 | 0.9 | 0.6 | 0.8 | +0.2 |
| Female | - | - | - | - | 0.7 | 0.7 | 1.0 | 0.8 | 1.0 | 1.0 | 0.6 | 0.6 | 0.4 | 0.5 | +0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | 1.7 | 1.8 | 2.1 | 1.8 | 2.5 | 2.7 | 1.7 | 2.2 | 1.4 | 2.2 | +0.8 |
| Complete 4 years | - | - | - | - | 0.6 | 0.7 | 1.0 | 0.9 | 0.8 | 0.8 | 0.5 | 0.6 | 0.4 | 0.5 | +0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | 0.5 | 0.7 | 1.0 | 1.4 | 1.6 | 1.2 | 0.8 | 0.7 | 0.4 | 0.9 | +0.4 s |
| North Central | - | - | - | - | 0.5 | 0.8 | 1.2 | 0.7 | 1.0 | 1.2 | 0.8 | 0.9 | 0.5 | 0.5 | 0.0 |
| South | - | - | - | - | 1.1 | 1.1 | 1.2 | 1.0 | 1.0 | 1.3 | 0.7 | 0.5 | 0.7 | 0.7 | +0.1 |
| West | - | - | - | - | 0.9 | 0.9 | 1.0 | 0.8 | 0.8 | 0.5 | 0.5 | 1.2 | 0.4 | 0.5 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | 0.9 | 0.9 | 1.3 | 0.8 | 0.9 | 1.5 | 0.8 | 0.6 | 0.4 | 0.6 | +0.2 |
| Other MSA | - | - | - | - | 0.7 | 1.0 | 1.0 | 1.1 | 1.2 | 1.0 | 0.7 | 0.8 | 0.6 | 0.8 | +0.2 |
| Non-MSA | - | - | - | - | 0.9 | 0.7 | 1.1 | 1.0 | 1.2 | 0.9 | 0.7 | 1.0 | 0.6 | 0.5 | -0.1 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | 1.7 | 0.8 | 0.9 | 1.2 | 1.8 | 1.1 | 0.9 | 1.5 | 0.9 | 1.0 | +0.1 |
| 2.5-3.0 | - | - | - | - | 0.6 | 0.7 | 1.0 | 1.0 | 1.1 | 1.1 | 0.9 | 0.7 | 0.7 | 0.7 | 0.0 |
| 3.5-4.0 | - | - | - | - | 0.9 | 1.0 | 1.3 | 1.2 | 0.9 | 1.3 | 0.5 | 0.8 | 0.4 | 0.7 | +0.3 |
| 4.5-5.0 | - | - | - | - | 0.5 | 0.8 | 1.1 | 1.0 | 1.0 | 1.0 | 0.6 | 0.5 | 0.5 | 0.5 | 0.0 |
| 5.5-6.0 (High) | - | - | - | - | 0.9 | 1.1 | 1.0 | 0.7 | 1.1 | 1.1 | 0.6 | 1.1 | 0.1 | 0.4 | +0.3 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | 0.9 | 1.0 | 1.1 | 1.1 | 1.2 | 1.0 | 0.8 | 0.7 | 0.6 | -0.1 |
| Black | - | - | - | - | - | 0.1 | 0.1 | 0.2 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | +0.1 |
| Hispanic | - | - | - | - | - | 0.8 | 1.1 | 1.4 | 1.3 | 0.9 | 0.8 | 0.8 | 0.8 | 0.9 | +0.1 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available.

> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table $D-106$ for the number of subgroup cases. See Appendix $B$ for definition of variables in table.
> Data based on one of two forms in 1995; $N$ is one-half of $N$ indic ated in Table $D-106$.

SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B fordetails.
${ }^{\text {T }}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-42
Heroin without a Needle: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  | '03-04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975-7 | 980-8 | 990-94 | 1995 | $\underline{1996}$ | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | - | - | - | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | - | - | 1.0 | 1.0 | 1.2 | 0.8 | 1.0 | 1.6 | 0.8 | 0.8 | 0.8 | 0.7 | -0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | 1.4 | 1.3 | 1.4 | 1.0 | 1.3 | 1.8 | 1.3 | 0.9 | 0.9 | 0.9 | 0.0 |
| Female | - | - | - | 0.7 | 0.7 | 0.9 | 0.7 | 0.8 | 1.5 | 0.4 | 0.7 | 0.7 | 0.4 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | 1.4 | 1.7 | 1.6 | 1.3 | 1.5 | 2.7 | 1.3 | 2.2 | 0.8 | 1.5 | +0.7 |
| Complete 4 years | - | - | - | 0.9 | 0.8 | 1.0 | 0.6 | 1.0 | 1.3 | 0.7 | 0.4 | 0.7 | 0.4 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | 0.9 | 1.9 | 1.9 | 1.1 | 1.3 | 0.9 | 1.3 | 1.1 | 0.6 | 1.1 | +0.5 |
| North Central | - | - | - | 0.7 | 0.5 | 1.0 | 0.6 | 0.7 | 1.6 | 1.1 | 0.9 | 0.7 | 0.4 | -0.3 |
| South | - | - | - | 1.4 | 0.9 | 1.1 | 1.1 | 1.2 | 1.8 | 0.3 | 0.9 | 1.2 | 0.5 | -0.7 s |
| West | - | - | - | 0.8 | 0.7 | 0.6 | 0.3 | 1.0 | 2.0 | 0.9 | 0.4 | 0.3 | 1.0 | +0.7 s |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | 1.3 | 1.1 | 1.2 | 0.9 | 0.9 | 2.5 | 1.0 | 0.6 | 0.8 | 0.8 | 0.0 |
| Other MSA | - | - | - | 0.8 | 1.2 | 1.1 | 0.9 | 1.2 | 1.2 | 0.8 | 1.1 | 0.7 | 0.9 | +0.2 |
| Non-MSA | - | - | - | 1.0 | 0.4 | 1.2 | 0.4 | 0.8 | 1.4 | 0.7 | 0.6 | 1.0 | 0.2 | -0.7 s |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | 1.0 | 0.8 | 1.7 | 0.5 | 2.0 | 2.7 | 1.5 | 1.8 | 1.0 | 1.1 | +0.1 |
| 2.5-3.0 | - | - | - | 1.1 | 0.6 | 0.8 | 1.1 | 1.1 | 1.8 | 0.5 | 0.9 | 0.9 | 0.8 | -0.1 |
| 3.5-4.0 | - | - | - | 0.9 | 1.1 | 1.3 | 0.9 | 0.8 | 1.7 | 0.8 | 1.0 | 0.7 | 0.6 | -0.1 |
| 4.5-5.0 | - | - | - | 1.2 | 1.2 | 1.2 | 0.8 | 1.1 | 1.6 | 1.1 | 0.2 | 0.8 | 0.7 | 0.0 |
| 5.5-6.0 (High) | - | - | - | 0.6 | 1.0 | 1.0 | 0.5 | 1.0 | 0.6 | 0.8 | 0.8 | 0.7 | 0.3 | -0.4 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | 1.1 | 1.3 | 1.2 | 1.1 | 1.4 | 1.3 | 1.0 | 0.8 | 0.7 | -0.2 |
| Black | - | - | - | - | 0.2 | 0.3 | 0.3 | 0.1 | 0.4 | 0.4 | 0.4 | 0.6 | 0.7 | 0.0 |
| Hispanic | - | - | - | - | 0.9 | 0.6 | 0.4 | 0.6 | 1.8 | 1.3 | 0.5 | 0.7 | 0.7 | 0.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' -' indic ates data not available.

> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-107 for the number of subgroup cases. See Appendix $B$ for definition of variables in table.
> Data based on three of six forms; $N$ is one-half of $N$ indicated in Table D-107.
${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentagesfor each racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-43
Other Narcotics: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 5.7 | 5.7 | 6.4 | 6.0 | 6.2 | 6.3 | 5.9 | 5.3 | 5.1 | 5.2 | 5.9 | 5.2 | 5.3 | 4.6 | 4.4 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 6.6 | 6.8 | 7.3 | 6.9 | 7.3 | 7.1 | 6.5 | 6.0 | 6.0 | 6.2 | 6.8 | 5.9 | 5.6 | 5.1 | 4.9 |  |
| Female | 4.8 | 4.7 | 5.4 | 5.1 | 5.1 | 5.4 | 5.3 | 4.6 | 4.2 | 4.2 | 5.1 | 4.6 | 4.9 | 4.1 | 3.8 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 6.8 | 8.0 | 6.8 | 7.3 | 7.4 | 7.2 | 6.1 | 6.1 | 6.1 | 6.6 | 6.7 | 6.1 | 4.8 | 5.3 |  |
| Complete 4 years | - | 4.6 | 4.7 | 4.9 | 5.0 | 5.1 | 4.8 | 4.6 | 4.3 | 4.3 | 5.4 | 4.3 | 4.8 | 4.6 | 3.9 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 6.1 | 6.5 | 6.6 | 6.8 | 7.0 | 5.7 | 7.2 | 5.6 | 5.6 | 6.7 | 7.3 | 5.7 | 6.0 | 3.7 | 4.7 |  |
| North Central | 6.2 | 6.2 | 7.5 | 6.7 | 6.1 | 7.6 | 6.2 | 5.5 | 5.3 | 4.8 | 6.3 | 5.8 | 5.2 | 4.4 | 5.7 |  |
| South | 4.9 | 5.0 | 5.2 | 4.5 | 5.2 | 5.0 | 4.1 | 4.5 | 4.4 | 4.5 | 3.8 | 4.2 | 4.3 | 4.7 | 3.2 |  |
| West | 5.4 | 5.0 | 6.0 | 6.7 | 7.1 | 6.8 | 7.2 | 6.2 | 5.2 | 5.3 | 7.1 | 5.4 | 6.1 | 5.7 | 4.9 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 7.3 | 6.7 | 6.7 | 6.9 | 7.3 | 6.9 | 6.9 | 5.2 | 6.0 | 5.2 | 6.0 | 4.8 | 5.2 | 4.0 | 4.1 |  |
| Other MSA | 5.5 | 6.1 | 6.3 | 5.9 | 6.3 | 7.0 | 6.3 | 5.7 | 5.3 | 5.1 | 6.4 | 5.6 | 5.3 | 5.2 | 4.9 |  |
| Non-MSA | 4.8 | 4.6 | 6.2 | 5.4 | 5.3 | 4.8 | 4.8 | 4.9 | 4.1 | 5.2 | 5.2 | 5.0 | 5.2 | 4.4 | 3.8 |  |
| Parental Educ ation: ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 5.4 | 5.0 | 5.1 | 5.0 | 5.2 | 5.2 | 4.8 | 4.8 | 4.8 | 4.7 | 4.5 | 4.7 | 4.1 | 3.9 | 3.6 |  |
| 2.5-3.0 | 5.1 | 5.9 | 6.4 | 6.2 | 5.9 | 5.8 | 5.6 | 4.9 | 5.0 | 5.2 | 5.5 | 5.0 | 4.4 | 4.3 | 4.0 |  |
| 3.5-4.0 | 4.2 | 6.3 | 6.7 | 6.0 | 6.3 | 6.9 | 6.6 | 5.2 | 4.5 | 5.1 | 6.5 | 6.0 | 5.6 | 4.3 | 4.6 |  |
| 4.5-5.0 | 6.4 | 6.3 | 6.6 | 6.4 | 6.7 | 7.0 | 6.3 | 6.4 | 6.0 | 5.6 | 6.4 | 4.8 | 5.4 | 5.4 | 4.2 |  |
| 5.5-6.0 (High) | 6.5 | 6.5 | 7.9 | 6.1 | 7.8 | 6.8 | 6.8 | 7.1 | 5.3 | 4.9 | 6.8 | 5.4 | 7.8 | 5.6 | 6.4 |  |
| Race (2-yearaverage): ${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 6.6 | 6.7 | 6.6 | 6.8 | 6.7 | 6.2 | 5.8 | 5.7 | 6.3 | 6.3 | 6.0 | 5.8 | 5.3 |  |
| Black | - | - | 2.2 | 2.0 | 1.8 | 1.7 | 1.9 | 1.8 | 1.7 | 1.6 | 1.6 | 1.7 | 1.6 | 1.5 | 1.5 |  |
| Hispanic | - | - | 3.8 | 3.5 | 3.5 | 3.7 | 4.3 | 4.1 | 4.0 | 4.2 | 3.6 | 3.0 | 2.4 | 2.2 | 2.5 |  |
| NOTES: ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes. Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$. '-' indic ates data not available. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE D－43（cont＇d）
Other Narcotics：Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Classof： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}{ }^{\text {b }}$ | 2003 | $\underline{2004}$ | change |
| Approx． $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 4.5 | 3.5 | 3.3 | 3.6 | 3.8 | 4.7 | 5.4 | 6.2 | 6.3 | 6.7 | 7.0 | 6．7\＃ | 9.4 | 9.3 | 9.5 | $+0.3$ |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 5.0 | 3.9 | 3.3 | 3.6 | 4.3 | 5.6 | 6.4 | 7.1 | 7.4 | 8.2 | 8.0 | $8.0 \ddagger$ | 11.6 | 10.7 | 10.9 | ＋0．2 |
| Female | 3.9 | 3.1 | 3.3 | 3.3 | 3.4 | 3.8 | 4.4 | 5.4 | 5.1 | 5.2 | 5.9 | $5.6 \ddagger$ | 7.4 | 7.8 | 8.1 | ＋0．4 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 5.7 | 3.8 | 4.3 | 4.2 | 4.9 | 5.6 | 7.0 | 8.2 | 8.4 | 7.0 | 7.8 | $7.5 \ddagger$ | 12.4 | 12.3 | 12.4 | ＋0．1 |
| Complete 4 years | 4.0 | 3.5 | 3.0 | 3.3 | 3.5 | 4.4 | 4.9 | 5.7 | 5.5 | 6.6 | 6.6 | 6．4\＃ | 8.8 | 8.4 | 8.7 | ＋0．2 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 4.1 | 3.2 | 3.7 | 4.6 | 3.5 | 4.3 | 6.1 | 7.8 | 6.5 | 6.2 | 6.7 | $7.2 \ddagger$ | 10.6 | 9.3 | 9.9 | ＋0．6 |
| North Central | 4.6 | 4.2 | 3.6 | 3.2 | 4.7 | 5.2 | 6.0 | 6.1 | 6.5 | 7.5 | 7.2 | $7.8 \ddagger$ | 8.8 | 9.1 | 8.7 | －0．4 |
| South | 4.1 | 2.7 | 2.7 | 3.2 | 3.8 | 4.5 | 5.1 | 6.1 | 6.5 | 7.5 | 6.6 | 5．7£ | 9.3 | 8.0 | 9.1 | ＋1．1 |
| West | 5.3 | 4.4 | 3.5 | 4.0 | 3.1 | 4.7 | 4.1 | 4.7 | 5.2 | 4.7 | 7.5 | $6.5 \ddagger$ | 9.5 | 11.4 | 11.1 | －0．3 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 3.8 | 3.3 | 3.5 | 3.1 | 4.1 | 4.8 | 4.6 | 4.6 | 5.2 | 5.4 | 7.0 | 8．4\＃ | 8.9 | 7.4 | 8.1 | ＋0．8 |
| Other MSA | 4.6 | 3.9 | 3.1 | 3.7 | 3.7 | 4.7 | 5.4 | 7.2 | 6.8 | 7.4 | 7.2 | 5．6 $\ddagger$ | 10.3 | 10.3 | 10.7 | ＋0．4 |
| Non－MSA | 4.8 | 3.1 | 3.6 | 3.7 | 3.6 | 4.7 | 6.0 | 6.0 | 6.5 | 6.8 | 6.6 | $6.9 \ddagger$ | 8.5 | 9.7 | 8.9 | －0．8 |
| Parental Educ ation：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 3.8 | 3.8 | 3.5 | 3.8 | 3.0 | 4.0 | 4.5 | 4.7 | 4.7 | 4.6 | 4.6 | 5．1 $\ddagger$ | 6.2 | 7.9 | 6.8 | －1．1 |
| 2．5－3．0 | 4.1 | 3.2 | 3.5 | 2.9 | 3.8 | 4.2 | 5.6 | 5.3 | 5.9 | 5.9 | 6.4 | $6.4 \ddagger$ | 8.9 | 9.3 | 8.8 | －0．5 |
| 3．5－4．0 | 4.6 | 3.7 | 3.2 | 3.7 | 3.4 | 4.4 | 5.5 | 6.5 | 6.8 | 7.2 | 7.3 | 7．1才 | 10.4 | 9.8 | 10.8 | ＋1．0 |
| 4．5－5．0 | 4.7 | 3.6 | 3.4 | 3.7 | 4.3 | 5.5 | 5.4 | 6.8 | 6.2 | 7.4 | 7.9 | $7.0 \ddagger$ | 10.3 | 9.5 | 10.5 | ＋1．0 |
| 5．5－6．0（High） | 5.7 | 4.1 | 3.2 | 4.5 | 4.8 | 5.5 | 5.6 | 7.6 | 6.6 | 7.4 | 7.5 | 7．0才 | 8.7 | 8.8 | 8.8 | －0．1 |
| Race（2－yearaverage）${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 5.2 | 4.7 | 4.1 | 4.1 | 4.3 | 5.0 | 5.9 | 7.1 | 7.6 | 7.7 | 8.3 | 8.5 | $10.3 \ddagger$ | $10.2{ }^{\text {d }}$ | 11.2 | ＋1．0 |
| Black | 1.4 | 1.1 | 0.9 | 1.0 | 1.5 | 1.4 | 1.2 | 1.8 | 2.4 | 2.0 | 1.7 | 1.8 | $1.9 \ddagger$ | $2.1{ }^{\text {d }}$ | 2.7 | ＋0．6 |
| Hispanic | 2.4 | 2.3 | 2.1 | 2.3 | 2.2 | 2.5 | 3.7 | 3.1 | 2.8 | 3.6 | 4.6 | 4.5 | 4．3才 | $5.2^{\text {d }}$ | 5.5 | ＋0．3 |

${ }^{2}$ Only drug use not undera doctor＇s orders is included here．
${ }^{\mathrm{b}}$ In 2002 the question text waschanged in half of the questionnaire forms．In the list of examples of narcoticsotherthan heroin，Talwin，laudanum，and paregoric were replaced with Vicodin，OxyContin，and Percocet．The 2002 data presented here are based on the changed forms only； N is one－half of N indicated．In 2002 the remaining forms were changed to the new wording．Beginning in 2003，the data are based on all forms．

${ }^{d}$ To derive percentages foreach racial subgroup，data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates．The 2003 data comprise half of the 2002 sample data double－weighted and all of the 2003 sample data．

## TABLE D-44

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8th Graders |  |  |  |  |  | 10th Graders |  |  |  |  |  |
|  | 1991-99 2000-01 |  | $\underline{2002}$ | $\frac{2003}{16500}$ | $\frac{2004}{17000}$ | '03-'04 <br> change | 1991-99 2000-01 |  | 2002 | $\underline{2003}$ | $\underline{2004}$ | '03-'04 <br> change |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Approx. $\mathrm{N}=$ | - | - | 15100 |  |  |  | - | - | 14300 | 15800 | 16400 |  |
| Total | - | - | 1.3 | 1.7 | 1.7 | 0.0 | - | - | 3.0 | 3.6 | 3.5 | -0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | 1.9 | 1.6 | 1.8 | +0.2 | - | - | 3.6 | 4.3 | 3.8 | -0.5 |
| Female | - | - | 0.9 | 1.7 | 1.6 | -0.1 | - | - | 2.4 | 2.9 | 3.1 | +0.2 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | 4.3 | 7.5 | 6.9 | -0.6 | - | - | 6.5 | 10.8 | 7.2 | -3.5 |
| Complete 4 years | - | - | 1.0 | 1.1 | 1.2 | 0.0 | - | - | 2.5 | 2.5 | 3.0 | +0.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | 1.0 | 1.2 | 1.1 | -0.1 | - | - | 3.6 | 3.7 | 4.6 | +0.9 |
| North Central | - | - | 1.7 | 1.7 | 1.3 | -0.4 | - | - | 2.1 | 2.9 | 2.5 | -0.3 |
| South | - | - | 1.5 | 2.1 | 2.2 | +0.1 | - | - | 3.7 | 4.2 | 4.8 | +0.7 |
| West | - | - | 0.9 | 1.3 | 1.8 | +0.5 | - | - | 2.6 | 3.5 | 1.9 | -1.6 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | 1.2 | 1.1 | 0.9 | -0.2 | - | - | 2.0 | 2.3 | 2.1 | -0.2 |
| Other MSA | - | - | 1.4 | 1.7 | 2.6 | +0.9 | - | - | 3.3 | 3.6 | 3.7 | +0.2 |
| Non-MSA | - | - | 1.5 | 2.5 | 1.1 | -1.3 | - | - | 3.7 | 5.7 | 5.1 | -0.6 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | 2.9 | 4.0 | 3.5 | -0.4 | - | - | 6.5 | 5.9 | 3.7 | -2.2 |
| 2.5-3.0 | - | - | 2.0 | 2.3 | 2.1 | -0.2 | - | - | 3.8 | 3.9 | 4.0 | 0.0 |
| 3.5-4.0 | - | - | 1.0 | 1.9 | 2.2 | +0.2 | - | - | 2.0 | 4.1 | 4.1 | 0.0 |
| 4.5-5.0 | - | - | 0.9 | 0.7 | 1.3 | +0.6 | - | - | 1.7 | 2.9 | 2.6 | -0.3 |
| 5.5-6.0 (High) | - | - | 1.3 | 1.6 | 0.7 | -0.8 | - | - | 4.4 | 2.8 | 2.8 | 0.0 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | 1.6 | 1.7 | +0.1 | - | - | - | 3.6 | 4.1 | +0.5 |
| Black | - | - | - | 0.9 | 0.6 | -0.3 | - | - | - | 2.3 | 2.0 | -0.3 |
| Hispanic | - | - | - | 1.3 | 2.8 | +1.5 | - | - | - | 2.5 | 2.9 | +0.3 |

NOTES:
Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $55 s=.001$. ' - ' indic ates data not available. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Tables D-105 and D-106 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of four forms; $N$ is one-third of $N$ indic ated in Tables D-105 and D-106.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.


${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thusprovide more stable estimates.

## TABLE D-45

OxyContin: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |
|  | 1975-79 1980-89 1990-99 2000-01 |  |  |  | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | - | - | - | - | 12900 | 14600 | 14600 |  |
| Total | - | - | - | - | 4.0 | 4.5 | 5.0 | +0.5 |
| Gender: |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | 5.6 | 6.2 | 6.1 | -0.1 |
| Female | - | - | - | - | 2.6 | 2.8 | 3.4 | +0.7 |
| College Plans: |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | 7.0 | 8.8 | 8.2 | -0.6 |
| Complete 4 years | - | - | - | - | 3.2 | 3.1 | 3.8 | +0.7 |
| Region: |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | 5.0 | 5.5 | 4.6 | -0.9 |
| North Central | - | - | - | - | 5.0 | 4.5 | 4.2 | -0.3 |
| South | - | - | - | - | 3.6 | 4.0 | 5.9 | +1.9 |
| West | - | - | - | - | 2.6 | 4.4 | 4.7 | +0.3 |
| Population Density: |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | 3.7 | 2.8 | 4.6 | +1.8 |
| Other MSA | - | - | - | - | 3.8 | 5.3 | 5.2 | -0.1 |
| Non-MSA | - | - | - | - | 4.7 | 5.2 | 4.9 | -0.3 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | 6.3 | 6.9 | 3.7 | -3.2 |
| 2.5-3.0 | - | - | - | - | 5.3 | 6.8 | 4.8 | -1.9 |
| 3.5-4.0 | - | - | - | - | 3.9 | 3.4 | 6.5 | +3.1 ss |
| 4.5-5.0 | - | - | - | - | 2.2 | 3.6 | 3.1 | -0.5 |
| 5.5-6.0 (High) | - | - | - | - | 4.0 | 2.5 | 4.3 | +1.8 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | 4.7 | 5.1 | +0.4 |
| Black | - | - | - | - | - | 2.5 | 2.4 | -0.1 |
| Hispanic | - | - | - | - | - | 2.5 | 2.2 | -0.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,55 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding error.
See Table $\mathrm{D}-107$ for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on two of six forms; N is two-sixths of N indicated in Table D - 107 . SOURCE: The Monitoring the Future Study, the University of Mic higan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.


${ }^{\mathrm{b}}$ To derive percentages for each racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-46

## Vicodin: Trends in Annual Prevalence of Use by Subgroups for Eighth and Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8th Graders |  |  |  |  |  | 10th Graders |  |  |  |  |  |
|  | 1991-99 2000-01 |  | 2002 | $\underline{2003}$ | $\underline{2004}$ | '03-’04 change | 1991-99 2000-01 |  | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| Approx. $\mathrm{N}=$ | - | - | 15100 | 16500 | 17000 |  | - | - | 14300 | 15800 | 16400 |  |
| Total | - | - | 2.5 | 2.8 | 2.5 | -0.3 | - | - | 6.9 | 7.2 | 6.2 | -1.0 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | 2.7 | 2.8 | 2.4 | -0.3 | - | - | 7.4 | 8.4 | 6.2 | -2.2 |
| Female | - | - | 2.4 | 2.8 | 2.6 | -0.2 | - | - | 6.1 | 6.1 | 6.0 | 0.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | 5.9 | 6.3 | 7.1 | +0.8 | - | - | 13.4 | 15.8 | 11.6 | -4.2 |
| Complete 4 years | - | - | 2.1 | 2.4 | 2.0 | -0.4 | - | - | 5.7 | 5.8 | 5.4 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | 1.5 | 1.1 | 1.0 | -0.1 | - | - | 6.2 | 5.6 | 6.4 | +0.8 |
| North Central | - | - | 3.3 | 3.9 | 3.2 | -0.7 | - | - | 7.2 | 9.4 | 6.4 | -3.0 |
| South | - | - | 2.5 | 2.1 | 2.1 | 0.0 | - | - | 5.3 | 5.0 | 5.0 | 0.0 |
| West | - | - | 2.6 | 4.2 | 3.6 | -0.6 | - | - | 10.0 | 9.1 | 7.1 | -2.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | 2.6 | 2.4 | 1.8 | -0.6 | - | - | 5.7 | 7.1 | 4.8 | -2.3 |
| Other MSA | - | - | 3.0 | 3.1 | 3.0 | -0.1 | - | - | 7.9 | 6.4 | 6.9 | +0.5 |
| Non-MSA | - | - | 1.6 | 2.5 | 2.4 | -0.2 | - | - | 6.2 | 9.2 | 6.4 | -2.9 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | 3.3 | 3.3 | 4.9 | +1.6 | - | - | 6.1 | 6.4 | 6.4 | 0.0 |
| 2.5-3.0 | - | - | 3.9 | 3.4 | 4.1 | +0.7 | - | - | 8.0 | 8.3 | 8.2 | -0.1 |
| 3.5-4.0 | - | - | 3.4 | 2.9 | 3.2 | +0.4 | - | - | 7.5 | 8.5 | 6.2 | -2.3 |
| 4.5-5.0 | - | - | 1.4 | 2.1 | 1.1 | -1.0 | - | - | 5.7 | 6.3 | 5.1 | -1.2 |
| 5.5-6.0 (High) | - | - | 1.3 | 2.1 | 0.9 | -1.2 | - | - | 6.6 | 5.6 | 5.0 | -0.6 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | 3.0 | 2.7 | -0.3 | - | - | - | 8.0 | 7.6 | -0.4 |
| Black | - | - | - | 1.4 | 1.4 | 0.0 | - | - | - | 3.1 | 3.0 | -0.1 |
| Hispanic | - | - | - | 2.1 | 3.3 | +1.2 | - | - | - | 6.5 | 6.0 | -0.5 |

NOTES:
Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available. Any apparent inconsistency between the $c h a n g e$ estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Tables D-105 and D-106 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of four forms; N is one-third of N indicated in Tables $\mathrm{D}-105$ and $\mathrm{D}-106$.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUTION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thusprovide more stable estimates.

## TABLE D-47

## Vicodin: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |
|  | 1975-7 | 980-89 | 990-9 | 00-01 | 2002 | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | - | - | - | - | 12900 | 14600 | 14600 |  |
| Total | - | - | - | - | 9.6 | 10.5 | 9.3 | -1.2 |
| Gender: |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | 12.0 | 13.0 | 10.7 | -2.3 |
| Female | - | - | - | - | 7.5 | 8.1 | 7.6 | -0.5 |
| College Plans: |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | 13.0 | 14.7 | 11.6 | -3.1 |
| Complete 4 years | - | - | - | - | 8.4 | 9.1 | 8.3 | -0.8 |
| Region: |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | 8.1 | 9.4 | 9.1 | -0.3 |
| North Central | - | - | - | - | 11.6 | 13.2 | 8.4 | -4.7 s |
| South | - | - | - | - | 8.1 | 6.1 | 7.0 | +0.9 |
| West | - | - | - | - | 10.9 | 16.3 | 15.4 | -0.9 |
| Population Density: |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | 9.7 | 7.3 | 8.3 | +1.1 |
| Other MSA | - | - | - | - | 10.6 | 12.2 | 10.9 | -1.3 |
| Non-MSA | - | - | - | - | 7.8 | 11.4 | 7.2 | -4.2 s |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | 12.1 | 9.4 | 7.8 | -1.6 |
| 2.5-3.0 | - | - | - | - | 9.6 | 10.8 | 8.8 | -2.0 |
| 3.5-4.0 | - | - | - | - | 9.5 | 12.0 | 10.1 | -1.9 |
| 4.5-5.0 | - | - | - | - | 9.9 | 9.7 | 8.4 | -1.3 |
| 5.5-6.0 (High) | - | - | - | - | 8.6 | 8.8 | 10.1 | +1.3 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | 11.7 | 11.2 | -0.4 |
| Black | - | - | - | - | - | 3.3 | 3.1 | -0.2 |
| Hispanic | - | - | - | - | - | 7.1 | 7.2 | +0.1 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on two of six forms; N is two-sixths of N indicated in Table D - 107 SOURCE: The Monitoring the Future Study, the University of Mic higan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends

${ }^{\text {a }}$ Parental education is an average score of mother's education and father'seducation. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-48

## Amphetamines: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

Percentage who used in last twelve months ${ }^{\text {a }}$

$$
\begin{array}{lllllllllllll}
1991 & \underline{1992} & \underline{1993} & \underline{1994} & \underline{1995} & \underline{1996} & \underline{1997} & \underline{1998} & \underline{1999} & \underline{2000} & \underline{2001} & \underline{2002} \quad \underline{2003} & \underline{2004}
\end{array} \underline{c}
$$



| Total | 6.2 | 6.5 | 7.2 | 7.9 | 8.7 | 9.1 | 8.1 | 7.2 | 6.9 | 6.5 | 6.7 | 5.5 | 5.5 | 4.9 | -0.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 5.5 | 5.2 | 5.6 | 6.5 | 7.0 | 6.7 | 6.6 | 5.6 | 5.6 | 5.1 | 5.7 | 4.8 | 4.4 | 3.7 | -0.7 |
| Female | 6.9 | 7.9 | 8.8 | 9.3 | 10.3 | 11.3 | 9.6 | 8.7 | 8.2 | 7.7 | 7.5 | 6.2 | 6.5 | 6.1 | -0.4 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 11.6 | 12.9 | 14.6 | 14.5 | 17.1 | 15.5 | 14.1 | 15.4 | 14.0 | 14.2 | 12.0 | 12.2 | 12.4 | 8.9 | -3.5 s |
| Complete 4 years | 5.4 | 5.7 | 6.3 | 7.0 | 7.6 | 8.3 | 7.5 | 6.3 | 6.2 | 5.7 | 6.1 | 4.8 | 4.8 | 4.5 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 5.1 | 4.3 | 5.9 | 6.9 | 7.3 | 7.6 | 6.5 | 5.5 | 5.6 | 5.0 | 5.5 | 3.4 | 4.1 | 2.8 | -1.2 |
| North Central | 7.1 | 8.0 | 7.3 | 7.8 | 10.6 | 10.8 | 9.3 | 7.2 | 8.3 | 7.8 | 7.1 | 5.9 | 5.9 | 5.1 | -0.7 |
| South | 6.1 | 6.6 | 7.3 | 8.3 | 8.6 | 8.7 | 8.1 | 8.4 | 7.5 | 7.0 | 8.1 | 6.7 | 6.4 | 5.7 | -0.7 |
| West | 6.0 | 6.6 | 8.6 | 8.4 | 7.9 | 9.1 | 8.3 | 6.7 | 5.4 | 5.4 | 4.6 | 4.7 | 4.6 | 4.9 | +0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5.8 | 4.8 | 5.6 | 6.6 | 7.2 | 7.9 | 6.4 | 5.4 | 5.2 | 5.2 | 5.0 | 4.2 | 3.9 | 4.0 | +0.1 |
| Other MSA | 6.2 | 7.5 | 8.2 | 8.8 | 8.9 | 10.0 | 8.1 | 7.4 | 6.8 | 6.4 | 7.6 | 5.9 | 5.5 | 5.4 | -0.1 |
| Non-MSA | 6.7 | 7.0 | 7.5 | 7.5 | 10.1 | 8.9 | 9.9 | 8.8 | 9.3 | 8.5 | 6.9 | 6.3 | 7.5 | 5.0 | -2.4 ss |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 8.3 | 8.4 | 10.2 | 11.2 | 11.8 | 10.1 | 9.6 | 11.2 | 8.9 | 9.7 | 7.4 | 6.3 | 8.4 | 9.7 | +1.3 |
| 2.5-3.0 | 6.6 | 7.3 | 8.2 | 9.0 | 10.6 | 9.9 | 9.2 | 8.1 | 7.8 | 8.1 | 8.2 | 7.3 | 7.4 | 5.2 | -2.2 ss |
| 3.5-4.0 | 6.7 | 7.4 | 7.8 | 8.5 | 10.1 | 10.3 | 8.9 | 7.7 | 8.2 | 6.8 | 7.8 | 5.7 | 5.9 | 5.6 | -0.3 |
| 4.5-5.0 | 5.3 | 5.5 | 6.4 | 6.6 | 6.8 | 8.6 | 7.5 | 6.2 | 5.6 | 5.2 | 5.9 | 4.9 | 4.3 | 4.2 | -0.1 |
| 5.5-6.0 (High) | 5.7 | 5.4 | 5.3 | 5.7 | 6.4 | 8.7 | 7.3 | 6.4 | 5.8 | 5.2 | 4.5 | 4.3 | 3.9 | 3.5 | -0.4 |
| Race (2-year average): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 6.8 | 7.4 | 8.1 | 9.3 | 10.2 | 9.9 | 9.0 | 8.4 | 8.0 | 7.8 | 7.2 | 6.4 | 5.9 | -0.5 |
| Black | - | 3.3 | 3.4 | 3.9 | 3.9 | 3.4 | 3.0 | 2.8 | 2.7 | 2.4 | 2.3 | 2.7 | 2.5 | 2.1 | -0.4 |
| Hispanic | - | 7.2 | 7.7 | 8.6 | 8.7 | 8.6 | 8.1 | 7.2 | 7.0 | 6.8 | 6.6 | 5.9 | 5.0 | 5.4 | +0.4 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01$, $55 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding emor. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Only drug use not undera doctor's orders is included here.
${ }^{\mathrm{b}}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\text {c }}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-49
Amphetamines: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 8.2 | 8.2 | 9.6 | 10.2 | 11.9 | 12.4 | 12.1 | 10.7 | 10.4 | 11.1 | 11.7 | 10.7 | 9.0 | 8.5 | -0.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 7.0 | 7.0 | 8.2 | 8.6 | 9.6 | 10.5 | 10.3 | 9.0 | 9.2 | 10.3 | 10.6 | 9.6 | 7.8 | 7.3 | -0.5 |
| Female | 9.3 | 9.3 | 10.9 | 11.7 | 14.1 | 14.2 | 13.9 | 12.3 | 11.5 | 11.8 | 12.7 | 11.8 | 10.1 | 9.6 | -0.5 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 13.4 | 14.4 | 15.5 | 16.6 | 19.9 | 20.3 | 19.3 | 17.9 | 16.3 | 18.2 | 20.4 | 17.5 | 15.7 | 14.8 | -0.9 |
| Complete 4 years | 7.1 | 6.9 | 8.4 | 8.9 | 10.6 | 11.1 | 10.9 | 9.5 | 9.5 | 10.0 | 10.3 | 9.7 | 7.9 | 7.6 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 6.1 | 5.4 | 7.8 | 8.7 | 9.8 | 11.5 | 10.7 | 11.0 | 12.1 | 9.8 | 10.5 | 9.3 | 7.4 | 8.5 | +1.0 |
| North Central | 10.3 | 9.4 | 9.5 | 10.5 | 13.3 | 14.0 | 11.0 | 9.8 | 10.3 | 11.1 | 10.7 | 10.4 | 9.7 | 8.2 | -1.5 |
| South | 8.1 | 8.7 | 10.9 | 11.2 | 12.8 | 12.6 | 14.2 | 12.6 | 10.8 | 12.0 | 14.0 | 12.2 | 10.2 | 9.6 | -0.6 |
| West | 7.7 | 8.4 | 9.5 | 9.4 | 10.6 | 10.6 | 11.1 | 8.5 | 8.2 | 10.9 | 9.9 | 9.6 | 8.1 | 7.3 | -0.8 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 7.5 | 6.7 | 7.6 | 8.0 | 9.2 | 10.5 | 9.9 | 8.9 | 9.3 | 10.7 | 9.8 | 9.8 | 6.2 | 6.2 | 0.0 |
| Other MSA | 7.9 | 8.0 | 9.5 | 10.8 | 12.8 | 12.8 | 11.5 | 10.3 | 10.6 | 9.9 | 11.1 | 11.0 | 9.5 | 9.6 | +0.1 |
| Non-MSA | 9.3 | 10.0 | 11.6 | 11.2 | 13.3 | 13.7 | 15.5 | 13.8 | 11.5 | 13.6 | 15.1 | 11.2 | 12.2 | 9.2 | -3.0 s |
| Parental Educ ation: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 10.0 | 11.9 | 12.3 | 10.8 | 14.3 | 15.1 | 12.2 | 12.6 | 10.7 | 13.3 | 12.3 | 13.1 | 10.9 | 9.2 | -1.7 |
| 2.5-3.0 | 9.7 | 8.9 | 10.5 | 11.6 | 14.2 | 13.0 | 14.1 | 12.8 | 11.3 | 12.9 | 13.6 | 12.8 | 11.2 | 9.9 | -1.3 |
| 3.5-4.0 | 7.9 | 8.4 | 10.5 | 11.1 | 12.4 | 14.1 | 13.5 | 11.1 | 11.2 | 12.2 | 12.6 | 11.1 | 9.9 | 10.1 | +0.3 |
| 4.5-5.0 | 7.4 | 6.6 | 7.5 | 8.9 | 10.7 | 10.7 | 10.6 | 9.0 | 9.8 | 9.7 | 10.5 | 9.5 | 7.6 | 7.2 | -0.4 |
| 5.5-6.0 (High) | 6.9 | 6.9 | 8.3 | 7.3 | 8.8 | 10.1 | 9.2 | 9.4 | 9.8 | 8.8 | 9.2 | 8.1 | 6.4 | 6.3 | -0.1 |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 9.4 | 10.1 | 11.0 | 12.4 | 13.9 | 14.2 | 13.6 | 12.6 | 12.7 | 13.4 | 13.4 | 12.2 | 10.6 | -1.6 s |
| Black | - | 2.8 | 3.0 | 4.0 | 4.0 | 3.4 | 3.1 | 2.9 | 2.8 | 2.5 | 2.9 | 3.5 | 2.8 | 2.7 | -0.1 |
| Hispanic | - | 6.2 | 7.0 | 7.7 | 8.9 | 10.3 | 9.8 | 8.9 | 8.8 | 9.1 | 8.3 | 7.9 | 7.7 | 7.3 | -0.4 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror. See Table D-106 for the number of subgroup cases. See Appendix B fordefinition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {a }}$ Only drug use not undera doctor's orders is included here.
${ }^{\text {b }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\text {c }}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-50
Amphetamines: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders


## TABLE D-50 (cont'd)

## Amphetamines: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | 2004 | change |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 9.1 | 8.2 | 7.1 | 8.4 | 9.4 | 9.3 | 9.5 | 10.2 | 10.1 | 10.2 | 10.5 | 10.9 | 11.1 | 9.9 | 10.0 | +0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 9.4 | 8.3 | 7.2 | 8.2 | 9.2 | 9.5 | 9.6 | 10.1 | 10.3 | 10.6 | 10.4 | 10.9 | 11.3 | 9.8 | 9.9 | 0.0 |
| Female | 8.6 | 7.9 | 6.9 | 8.5 | 9.4 | 8.9 | 8.8 | 10.2 | 9.8 | 9.6 | 10.5 | 10.6 | 10.7 | 9.5 | 9.9 | +0.4 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None orunder 4 years | 12.6 | 11.0 | 9.7 | 11.0 | 13.4 | 12.3 | 12.8 | 14.1 | 13.6 | 12.7 | 13.9 | 14.4 | 14.8 | 14.4 | 13.3 | -1.1 |
| Complete 4 years | 7.4 | 7.0 | 6.1 | 7.6 | 8.0 | 8.3 | 8.4 | 8.9 | 9.0 | 9.5 | 9.6 | 9.8 | 10.1 | 8.4 | 8.9 | +0.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 6.3 | 6.5 | 6.2 | 8.1 | 7.4 | 9.6 | 10.4 | 11.1 | 9.0 | 9.9 | 10.6 | 12.0 | 11.5 | 9.7 | 9.5 | -0.1 |
| North Central | 10.7 | 10.1 | 8.4 | 8.9 | 12.0 | 9.5 | 10.0 | 10.8 | 11.0 | 10.5 | 10.4 | 12.7 | 11.3 | 10.3 | 10.2 | -0.1 |
| South | 8.9 | 7.9 | 6.7 | 8.3 | 9.0 | 9.2 | 9.1 | 9.8 | 10.4 | 10.8 | 10.2 | 9.5 | 11.7 | 9.7 | 10.3 | +0.6 |
| West | 10.2 | 7.8 | 6.9 | 8.3 | 8.4 | 8.9 | 8.3 | 9.1 | 9.6 | 8.8 | 10.9 | 9.7 | 9.6 | 9.7 | 9.5 | -0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 6.5 | 6.2 | 6.0 | 6.5 | 7.8 | 9.1 | 7.9 | 8.9 | 9.0 | 7.0 | 8.3 | 10.6 | 10.7 | 7.5 | 8.0 | +0.5 |
| Other MSA | 9.6 | 8.4 | 6.7 | 8.5 | 9.4 | 8.5 | 8.9 | 9.5 | 9.9 | 10.8 | 10.9 | 10.8 | 11.0 | 10.5 | 10.6 | 0.0 |
| Non-MSA | 10.6 | 9.5 | 9.0 | 9.8 | 10.9 | 10.8 | 11.9 | 13.0 | 12.2 | 12.4 | 12.4 | 11.4 | 12.1 | 11.7 | 11.1 | -0.6 |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 7.6 | 9.5 | 7.0 | 9.0 | 10.4 | 9.9 | 8.1 | 9.8 | 9.7 | 9.9 | 11.0 | 8.9 | 8.1 | 10.6 | 7.5 | -3.1 |
| 2.5-3.0 | 9.7 | 9.1 | 7.7 | 8.6 | 10.3 | 9.9 | 10.5 | 10.3 | 10.6 | 11.3 | 11.0 | 12.2 | 11.4 | 9.9 | 11.0 | +1.1 |
| 3.5-4.0 | 10.6 | 8.9 | 7.7 | 9.1 | 9.4 | 9.1 | 9.3 | 10.8 | 11.4 | 10.8 | 10.6 | 11.6 | 12.3 | 10.7 | 12.3 | +1.6 |
| 4.5-5.0 | 8.1 | 6.5 | 6.3 | 8.0 | 9.5 | 9.2 | 8.9 | 9.4 | 9.4 | 9.7 | 10.3 | 10.7 | 11.1 | 9.4 | 8.2 | -1.3 |
| 5.5-6.0 (High) | 7.3 | 5.7 | 5.8 | 7.6 | 7.1 | 8.1 | 9.1 | 10.2 | 8.7 | 8.4 | 10.2 | 8.7 | 10.2 | 7.7 | 8.4 | +0.7 |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 11.4 | 9.8 | 8.8 | 9.0 | 10.4 | 10.7 | 10.5 | 11.4 | 12.1 | 11.9 | 11.9 | 12.6 | 13.2 | 12.4 | 11.6 | -0.7 |
| Black | 3.1 | 2.7 | 2.2 | 2.3 | 3.4 | 3.4 | 2.9 | 2.8 | 2.8 | 2.5 | 2.6 | 3.0 | 2.9 | 2.8 | 2.4 | -0.3 |
| Hispanic | 7.0 | 6.1 | 6.0 | 6.2 | 6.4 | 7.1 | 7.8 | 7.3 | 7.0 | 7.6 | 9.2 | 9.2 | 7.9 | 6.8 | 7.0 | +0.2 |

[^113]
## TABLE D-51

## Ritalin: Trends in Annual Prevalence of Use by Subgroups for Eighth and Tenth Graders



Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Tables D-105 and D-106 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of four forms; N is one-third of N indic ated in Tables $\mathrm{D}-105$ and $\mathrm{D}-106$. SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\text {b }}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-52

Ritalin: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |
|  | 1975-7 | 1980-89 | 1990-99 | $\underline{2000}$ | 2001 | 2002 | 2003 | 2004 | change |
| Approx. $\mathrm{N}=$ | - | - | - | - | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | - | - | - | 5.1 | 4.0 | 4.0 | 5.1 | +1.1 |
| Gender: |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | 6.0 | 5.1 | 5.5 | 6.0 | +0.5 |
| Female | - | - | - | - | 4.1 | 2.8 | 2.6 | 4.0 | +1.5 s |
| College Plans: |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | 6.4 | 7.7 | 4.4 | 6.8 | +2.4 |
| Complete 4 years | - | - | - | - | 4.7 | 3.0 | 3.7 | 4.4 | +0.7 |
| Region: |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | 4.7 | 4.5 | 4.6 | 4.1 | -0.5 |
| North Central | - | - | - | - | 7.4 | 5.4 | 3.8 | 6.0 | +2.2 |
| South | - | - | - | - | 4.1 | 3.4 | 3.5 | 4.7 | +1.2 |
| West | - | - | - | - | 3.8 | 2.6 | 4.4 | 5.5 | +1.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | 7.2 | 3.9 | 3.2 | 4.2 | +1.0 |
| Other MSA | - | - | - | - | 3.7 | 4.0 | 5.1 | 5.6 | +0.5 |
| Non-MSA | - | - | - | - | 5.4 | 4.0 | 2.9 | 4.9 | +2.0 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | 5.6 | 5.3 | 3.1 | 5.2 | +2.1 |
| 2.5-3.0 | - | - | - | - | 4.5 | 4.2 | 3.7 | 4.2 | +0.5 |
| 3.5-4.0 | - | - | - | - | 5.0 | 3.9 | 4.8 | 6.3 | +1.5 |
| 4.5-5.0 | - | - | - | - | 4.7 | 3.5 | 3.5 | 4.6 | +1.1 |
| 5.5-6.0 (High) | - | - | - | - | 6.6 | 3.9 | 4.0 | 4.5 | +0.5 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | 5.4 | 4.6 | 5.2 | +0.5 |
| Black | - | - | - | - | - | 0.8 | 1.2 | 1.2 | 0.0 |
| Hispanic | - | - | - | - | - | 3.1 | 3.3 | 3.6 | +0.4 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01, s 5 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on two of six forms; $N$ istwo-sixths of $N$ indic ated in Table D-107. SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B for details.
${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

Methamphetamine: Trends in Annual Prevalence of Use by Subgroups for Eighth and Tenth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8th Graders |  |  |  |  |  |  |  | 10th Graders |  |  |  |  |  |  |  |
|  | 1991-98 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | '03-'04 change | 1991-98 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | '03-'04 change |
| Approx. $\mathrm{N}=$ | - | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  | - | 14000 | 13600 | 14000 | 14300 | 15800 | 16400 |  |
| Total | - | 3.2 | 2.5 | 2.8 | 2.2 | 2.5 | 1.5 | -1.0 ss | - | 4.6 | 4.0 | 3.7 | 3.9 | 3.3 | 3.0 | -0.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 3.1 | 2.2 | 2.5 | 2.0 | 2.0 | 1.1 | -0.9 s | - | 4.5 | 4.5 | 3.8 | 3.9 | 3.0 | 2.7 | -0.3 |
| Female | - | 3.2 | 2.8 | 3.0 | 2.4 | 3.0 | 1.7 | -1.3 s | - | 4.7 | 3.6 | 3.5 | 3.6 | 3.7 | 3.3 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 7.4 | 6.8 | 6.6 | 6.6 | 7.9 | 6.6 | -1.3 | - | 9.1 | 8.8 | 7.0 | 9.1 | 9.4 | 6.0 | -3.5 s |
| Complete 4 years | - | 2.7 | 2.0 | 2.3 | 1.7 | 2.0 | 1.0 | -1.1 sss | - | 3.9 | 3.3 | 3.1 | 3.0 | 2.3 | 2.6 | +0.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 1.6 | 2.0 | 1.2 | 0.8 | 1.7 | 1.0 | -0.7 | - | 5.1 | 4.1 | 2.3 | 1.5 | 2.1 | 2.5 | +0.5 |
| North Central | - | 4.4 | 3.0 | 3.2 | 2.5 | 3.5 | 2.1 | -1.4 s | - | 4.6 | 4.0 | 3.8 | 3.0 | 3.4 | 2.2 | -1.2 |
| South | - | 3.4 | 2.4 | 3.4 | 2.8 | 2.4 | 1.4 | -1.0 s | - | 4.0 | 3.8 | 4.0 | 4.6 | 3.8 | 2.9 | -0.8 |
| West | - | 2.8 | 2.5 | 2.4 | 2.0 | 2.4 | 1.6 | -0.8 | - | 5.1 | 4.4 | 4.6 | 5.8 | 3.8 | 4.7 | +0.9 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 2.2 | 2.1 | 1.6 | 1.3 | 2.0 | 1.5 | -0.5 | - | 3.8 | 4.4 | 4.0 | 3.1 | 2.3 | 2.7 | +0.4 |
| OtherMSA | - | 3.6 | 2.6 | 3.4 | 2.5 | 2.4 | 1.7 | -0.7 | - | 4.8 | 3.4 | 3.6 | 4.4 | 3.8 | 3.4 | -0.4 |
| Non-MSA | - | 3.5 | 3.0 | 2.8 | 2.7 | 3.4 | 1.2 | -2.3 sss | - | 5.2 | 4.8 | 3.6 | 3.7 | 3.7 | 2.5 | -1.2 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 6.3 | 5.0 | 4.4 | 4.3 | 4.2 | 4.4 | +0.2 | - | 7.2 | 7.0 | 5.6 | 6.2 | 7.3 | 4.5 | -2.9 |
| 2.5-3.0 | - | 4.3 | 3.1 | 4.0 | 3.0 | 3.4 | 1.3 | -2.0 ss | - | 4.2 | 4.3 | 4.6 | 4.9 | 4.1 | 3.7 | -0.5 |
| 3.5-4.0 | - | 3.3 | 2.4 | 3.0 | 2.0 | 2.5 | 1.8 | -0.6 | - | 4.8 | 4.3 | 3.2 | 3.7 | 3.2 | 3.3 | +0.1 |
| 4.5-5.0 | - | 1.9 | 1.3 | 1.6 | 1.9 | 1.6 | 1.0 | -0.7 | - | 4.8 | 3.5 | 3.6 | 2.4 | 2.2 | 2.3 | 0.0 |
| 5.5-6.0 (High) | - | 3.2 | 2.2 | 1.2 | 1.1 | 2.3 | 0.9 | -1.5 s | - | 3.3 | 3.5 | 2.5 | 4.0 | 2.1 | 1.7 | -0.4 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 3.2 | 3.1 | 2.8 | 2.7 | 2.2 | -0.4 | - | - | 4.7 | 4.1 | 4.1 | 4.2 | 3.4 | -0.7 |
| Black | - | - | 1.1 | 0.8 | 0.6 | 0.8 | 0.6 | -0.2 | - | - | 0.4 | 1.0 | 1.1 | 0.6 | 0.8 | +0.2 |
| Hispanic | - | - | 4.0 | 3.3 | 3.2 | 3.2 | 3.0 | -0.1 | - | - | 3.9 | 3.0 | 4.4 | 4.6 | 4.6 | 0.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s 5 s=.001$. ' - ' indic ates data not available. Any apparent inconsistency between the $c$ hange estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. See Tables D-105 and D-106 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of four forms; N is one-third of N indic ated in Tables D-105 and D-106.
SOURCE: The Monitoring the Future Study, the University of Mic higan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-54

Methamphetamine: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975-79 1980-89 1990-98 |  |  | Class of: |  |  | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
|  |  |  |  | $\underline{1999}$ | 2000 | 2001 |  |  |  |  |
| Approx. $\mathrm{N}=$ | - | - | - | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | - | - | 4.7 | 4.3 | 3.9 | 3.6 | 3.2 | 3.4 | +0.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | 5.0 | 4.4 | 4.3 | 4.3 | 3.6 | 3.7 | +0.1 |
| Female | - | - | - | 4.5 | 4.2 | 3.4 | 3.0 | 2.9 | 3.1 | +0.2 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | 6.8 | 6.2 | 6.9 | 6.5 | 5.8 | 6.7 | +1.0 |
| Complete 4 years | - | - | - | 4.0 | 3.8 | 3.2 | 2.7 | 2.4 | 2.4 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | 3.1 | 4.5 | 3.4 | 1.6 | 1.8 | 1.3 | -0.4 |
| North Central | - | - | - | 5.1 | 4.1 | 4.7 | 4.5 | 4.2 | 3.3 | -1.0 |
| South | - | - | - | 3.9 | 3.7 | 3.4 | 3.0 | 2.8 | 4.0 | +1.2 |
| West | - | - | - | 7.1 | 5.4 | 4.4 | 5.4 | 4.0 | 4.9 | +0.8 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | 4.2 | 3.6 | 2.7 | 2.1 | 1.8 | 2.8 | +1.1 |
| Other MSA | - | - | - | 4.0 | 4.9 | 4.0 | 4.4 | 3.0 | 2.6 | -0.4 |
| Non-MSA | - | - | - | 6.4 | 4.3 | 5.3 | 4.1 | 5.3 | 5.5 | +0.2 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | 6.0 | 7.7 | 5.0 | 3.5 | 4.3 | 5.5 | +1.2 |
| 2.5-3.0 | - | - | - | 4.8 | 3.5 | 4.8 | 4.9 | 3.6 | 4.1 | +0.6 |
| 3.5-4.0 | - | - | - | 5.2 | 3.9 | 3.8 | 3.8 | 3.6 | 3.1 | -0.4 |
| 4.5-5.0 | - | - | - | 3.7 | 4.2 | 3.1 | 2.9 | 2.9 | 2.8 | -0.1 |
| 5.5-6.0 (High) | - | - | - | 4.2 | 5.5 | 3.2 | 3.1 | 1.0 | 3.0 | +2.0 s |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | 4.9 | 4.6 | 4.2 | 3.5 | 3.5 | -0.1 |
| Black | - | - | - | - | 1.1 | 1.0 | 0.5 | 1.4 | 1.8 | +0.4 |
| Hispanic | - | - | - | - | 4.9 | 4.6 | 3.9 | 3.4 | 3.4 | 0.0 |

Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on two of six forms; N istwo-sixths of N indic ated in Table $\mathrm{D}-107$. SOURCE: The Monitoring the Future Study, the University of Mic higan.

## CAUION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

${ }^{\text {ap }}$ Parental educ ation is an average score of mother's sducation and father's education. See Appendix B fordetails.
${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## Ice (Crystal Methamphetamine): Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975-7 | 980-89 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ | change |
| Approx. $\mathrm{N}=$ | - | - | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | - | 1.3 | 1.4 | 1.3 | 1.7 | 1.8 | 2.4 | 2.8 | 2.3 | 3.0 | 1.9 | 2.2 | 2.5 | 3.1 | 2.0 | 2.1 | +0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | 1.5 | 1.9 | 1.5 | 1.9 | 2.2 | 2.6 | 3.9 | 2.6 | 3.9 | 2.2 | 2.5 | 2.7 | 3.5 | 2.5 | 2.6 | +0.1 |
| Female | - | - | 1.0 | 0.9 | 1.0 | 1.2 | 1.3 | 2.1 | 1.7 | 2.1 | 2.1 | 1.6 | 1.9 | 2.1 | 2.5 | 1.5 | 1.6 | 0.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | 1.4 | 1.9 | 2.2 | 2.6 | 2.4 | 4.3 | 5.1 | 3.8 | 5.0 | 2.3 | 3.8 | 4.2 | 4.8 | 2.6 | 4.4 | +1.8 |
| Complete 4 years | - | - | 1.2 | 1.2 | 1.0 | 1.4 | 1.5 | 1.8 | 2.1 | 1.9 | 2.4 | 1.8 | 1.7 | 2.0 | 2.6 | 1.9 | 1.5 | -0.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | 1.6 | 1.1 | 0.9 | 1.1 | 0.9 | 1.4 | 3.2 | 2.8 | 2.6 | 1.0 | 1.0 | 1.9 | 2.6 | 1.3 | 0.9 | -0.4 |
| North Central | - | - | 1.1 | 1.4 | 1.1 | 1.5 | 2.3 | 2.2 | 2.1 | 1.9 | 2.7 | 1.7 | 2.8 | 2.1 | 2.0 | 1.0 | 1.8 | +0.7 |
| South | - | - | 0.5 | 1.0 | 1.0 | 1.2 | 1.2 | 1.8 | 2.0 | 1.6 | 3.1 | 2.3 | 2.0 | 1.7 | 3.5 | 2.3 | 2.3 | +0.1 |
| West | - | - | 2.5 | 2.2 | 2.6 | 3.2 | 2.8 | 4.7 | 4.9 | 3.7 | 3.4 | 2.5 | 2.9 | 4.7 | 4.0 | 3.4 | 3.5 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | 1.2 | 1.3 | 1.5 | 2.2 | 2.0 | 3.0 | 4.6 | 2.9 | 2.5 | 1.6 | 2.3 | 2.7 | 2.2 | 1.9 | 2.3 | +0.4 |
| Other MSA | - | - | 1.3 | 1.7 | 1.3 | 1.7 | 1.8 | 2.0 | 2.0 | 2.0 | 3.3 | 2.1 | 1.7 | 2.3 | 3.6 | 2.0 | 1.4 | -0.6 |
| Non-MSA | - | - | 1.2 | 0.8 | 1.2 | 1.2 | 1.6 | 2.3 | 2.6 | 2.1 | 2.8 | 2.0 | 3.0 | 2.5 | 3.2 | 2.1 | 3.2 | +1.1 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | 1.1 | 1.0 | 0.9 | 1.6 | 1.0 | 3.2 | 3.4 | 2.2 | 2.8 | 3.6 | 3.2 | 5.9 | 3.7 | 3.7 | 4.0 | +0.3 |
| 2.5-3.0 | - | - | 1.4 | 1.1 | 1.1 | 1.2 | 3.0 | 2.6 | 3.0 | 2.5 | 3.2 | 1.3 | 1.7 | 2.4 | 3.6 | 1.7 | 2.7 | +1.0 |
| 3.5-4.0 | - | - | 1.4 | 1.2 | 1.5 | 2.3 | 1.6 | 1.9 | 2.6 | 2.2 | 3.6 | 2.5 | 1.9 | 2.8 | 2.4 | 2.2 | 2.4 | +0.2 |
| 4.5-5.0 | - | - | 1.2 | 1.8 | 1.4 | 1.8 | 1.3 | 2.5 | 2.9 | 2.9 | 2.6 | 1.3 | 2.8 | 1.5 | 2.8 | 1.5 | 1.0 | -0.5 |
| 5.5-6.0 (High) | - | - | 1.1 | 1.0 | 1.4 | 1.3 | 1.0 | 2.2 | 2.5 | 1.4 | 1.9 | 2.1 | 1.3 | 2.0 | 2.8 | 1.8 | 0.9 | -0.9 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | 1.3 | 1.3 | 1.5 | 1.7 | 2.0 | 2.5 | 2.6 | 2.9 | 2.8 | 2.3 | 2.4 | 2.6 | 2.3 | 2.0 | -0.3 |
| Black | - | - | - | 0.8 | 1.0 | 0.8 | 0.5 | 0.5 | 0.3 | 0.5 | 1.0 | 0.7 | 0.7 | 1.1 | 1.6 | 1.4 | 0.7 | -0.7 |
| Hispanic | - | - | - | 1.3 | 1.8 | 2.3 | 2.1 | 2.7 | 4.0 | 2.8 | 1.7 | 1.7 | 2.4 | 3.4 | 3.6 | 2.5 | 2.6 | +0.1 |

NOTES: Level of signific ance of difference between the two most recent classes: $\mathrm{s}=.05, \mathrm{ss}=.01,55 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on two of six forms; N is two-sixths of N indic ated in Table D - 107 .
SOURCE: The Monitoring the Future Study, the University of Michigan

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sizes and thus provide more stable estimates.

TABLE D-56
Sedatives (Barbiturates): Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | $\underline{1986}$ | 1987 | 1988 | 1989 | Cont'd |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 10.7 | 9.6 | 9.3 | 8.1 | 7.5 | 6.8 | 6.6 | 5.5 | 5.2 | 4.9 | 4.6 | 4.2 | 3.6 | 3.2 | 3.3 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 12.3 | 9.9 | 10.2 | 8.4 | 7.6 | 7.3 | 7.2 | 5.9 | 5.9 | 5.5 | 5.2 | 4.7 | 4.0 | 3.4 | 3.5 |  |
| Female | 9.9 | 9.2 | 8.4 | 7.7 | 7.0 | 6.0 | 5.8 | 5.0 | 4.2 | 4.0 | 3.9 | 3.8 | 3.2 | 3.0 | 3.0 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 11.6 | 11.4 | 9.1 | 9.3 | 9.0 | 8.1 | 7.4 | 6.7 | 6.2 | 6.2 | 6.1 | 4.7 | 4.1 | 4.8 |  |
| Complete 4 years | - | 7.3 | 6.8 | 6.8 | 5.2 | 4.8 | 5.1 | 3.8 | 3.8 | 3.7 | 3.6 | 3.0 | 3.0 | 2.7 | 2.5 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 11.5 | 10.4 | 9.2 | 9.6 | 9.6 | 6.9 | 6.8 | 5.6 | 4.7 | 5.1 | 5.3 | 5.2 | 4.2 | 2.5 | 3.2 |  |
| North Central | 12.8 | 10.4 | 10.7 | 7.9 | 6.9 | 7.3 | 7.5 | 5.4 | 6.1 | 4.9 | 4.9 | 4.2 | 3.3 | 2.5 | 3.2 |  |
| South | 9.9 | 9.7 | 9.3 | 7.8 | 7.3 | 7.0 | 5.5 | 6.3 | 5.2 | 5.2 | 4.2 | 4.1 | 3.7 | 4.1 | 3.7 |  |
| West | 10.0 | 6.7 | 6.6 | 6.6 | 5.7 | 5.2 | 6.5 | 3.9 | 4.0 | 4.2 | 4.1 | 3.3 | 3.2 | 3.2 | 2.7 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 11.1 | 10.2 | 8.1 | 8.1 | 8.3 | 6.6 | 6.9 | 5.3 | 5.2 | 4.4 | 4.4 | 3.7 | 3.3 | 2.8 | 2.6 |  |
| OtherMSA | 11.3 | 9.8 | 9.9 | 8.2 | 7.3 | 6.5 | 6.4 | 5.7 | 5.3 | 4.9 | 4.2 | 4.4 | 3.6 | 3.4 | 3.1 |  |
| Non-MSA | 9.8 | 9.0 | 9.5 | 8.1 | 7.0 | 7.2 | 6.6 | 5.5 | 5.0 | 5.5 | 5.4 | 4.5 | 3.9 | 3.2 | 4.4 |  |
| Parental Educ ation: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 10.3 | 9.1 | 8.0 | 7.5 | 7.8 | 8.0 | 6.5 | 5.8 | 6.1 | 4.7 | 5.0 | 4.8 | 3.8 | 4.3 | 4.1 |  |
| 2.5-3.0 | 10.3 | 10.2 | 10.3 | 8.2 | 7.3 | 7.2 | 6.5 | 5.7 | 5.7 | 5.2 | 5.3 | 4.6 | 3.6 | 3.1 | 3.4 |  |
| 3.5-4.0 | 9.5 | 9.6 | 9.0 | 8.3 | 7.4 | 6.3 | 6.5 | 5.1 | 4.6 | 5.0 | 4.4 | 4.4 | 3.2 | 2.9 | 3.2 |  |
| 4.5-5.0 | 10.7 | 10.1 | 9.1 | 7.8 | 6.6 | 5.9 | 6.4 | 5.0 | 4.4 | 4.3 | 4.1 | 3.3 | 3.9 | 3.3 | 2.8 |  |
| 5.5-6.0 (High) | 9.0 | 10.3 | 8.3 | 8.0 | 7.2 | 5.4 | 6.8 | 5.8 | 3.7 | 4.0 | 3.1 | 3.4 | 3.6 | 3.1 | 3.4 |  |
| Race (2-year average): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 10.2 | 9.3 | 8.2 | 7.5 | 7.2 | 6.5 | 5.8 | 5.5 | 5.1 | 4.7 | 4.2 | 3.7 | 3.5 |  |
| Black | - | - | 3.3 | 3.2 | 2.6 | 2.5 | 2.4 | 2.0 | 1.7 | 1.6 | 1.6 | 1.6 | 1.7 | 1.5 | 1.1 |  |
| Hispanic | 一 | - | 7.4 | 5.8 | 5.8 | 5.8 | 5.7 | 5.1 | 4.1 | 4.4 | 4.6 | 3.6 | 2.8 | 2.8 | 3.2 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $\mathrm{s}=.05, \mathrm{ss}=.01,5 s s=.001$. ' - ' indicates data not available.Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to roundingerror.See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

SOURCE: The Monitoring the Future Study, the University of Michigan.

TABLE D-56 (cont'd)
Sedatives (Barbiturates): Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders


[^114]
## TABLE D－57

Tranquilizers：Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $2001^{\text {b }}$ | $\underline{2002}{ }^{\text {b }}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx． $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 1.8 | 2.0 | 2.1 | 2.4 | 2.7 | 3.3 | 2.9 | 2.6 | 2.5 | $2.6 \ddagger$ | 2.8 | 2.6 | 2.7 | 2.5 | －0．1 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.5 | 1.6 | 1.8 | 1.9 | 2.0 | 2.3 | 2.6 | 2.3 | 2.1 | 2．1才 | 2.5 | 2.2 | 2.2 | 1.9 | －0．3 |
| Female | 2.1 | 2.3 | 2.4 | 2.8 | 3.3 | 4.0 | 3.2 | 3.0 | 2.9 | 3．1才 | 2.9 | 2.8 | 3.0 | 3.2 | ＋0．2 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 3.9 | 4.9 | 3.6 | 5.1 | 5.9 | 6.4 | 5.8 | 6.4 | 5.8 | $6.8 \ddagger$ | 5.8 | 6.5 | 6.3 | 6.2 | 0.0 |
| Complete 4 years | 1.5 | 1.5 | 1.9 | 2.0 | 2.3 | 2.8 | 2.6 | 2.2 | 2.0 | $2.2 \ddagger$ | 2.5 | 2.1 | 2.3 | 2.1 | －0．1 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.0 | 1.6 | 1.7 | 2.5 | 2.3 | 2.7 | 2.5 | 2.0 | 2.3 | $2.2 \ddagger$ | 2.0 | 1.8 | 1.9 | 1.7 | －0．1 |
| North Central | 1.4 | 1.9 | 1.3 | 1.7 | 2.6 | 3.5 | 2.4 | 2.6 | 2.6 | $2.2 \ddagger$ | 2.2 | 2.4 | 2.2 | 2.1 | －0．1 |
| South | 2.6 | 2.5 | 2.4 | 2.6 | 3.0 | 3.7 | 3.3 | 3.2 | 2.8 | 3．2才 | 3.4 | 3.4 | 3.5 | 3.4 | 0.0 |
| West | 1.8 | 1.6 | 3.0 | 2.7 | 2.4 | 2.9 | 3.0 | 2.3 | 1.9 | $2.5 \ddagger$ | 3.2 | 1.9 | 2.6 | 2.2 | －0．5 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.8 | 2.1 | 1.7 | 2.5 | 1.8 | 3.2 | 2.1 | 1.9 | 1.8 | $2.5 \ddagger$ | 2.8 | 2.0 | 1.8 | 1.8 | 0.0 |
| Other MSA | 1.7 | 1.8 | 2.5 | 2.6 | 3.2 | 3.4 | 3.2 | 2.6 | 2.4 | 2．7才 | 3.1 | 2.7 | 2.9 | 3.1 | ＋0．3 |
| Non－MSA | 2.2 | 2.2 | 1.6 | 1.9 | 2.6 | 3.1 | 3.2 | 3.6 | 3.4 | 2．7\＃ | 2.3 | 2.9 | 3.4 | 2.4 | －1．1 |
| Parental Education：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 3.6 | 3.8 | 2.5 | 3.2 | 3.9 | 4.9 | 4.3 | 5.5 | 5.0 | $5.6 \ddagger$ | 3.7 | 5.0 | 3.9 | 4.7 | ＋0．8 |
| 2．5－3．0 | 1.6 | 2.1 | 2.5 | 2.6 | 2.7 | 3.5 | 3.1 | 2.8 | 3.3 | $3.6 \ddagger$ | 3.7 | 3.6 | 3.5 | 2.8 | －0．6 |
| 3．5－4．0 | 2.0 | 2.2 | 2.1 | 2.6 | 3.2 | 3.9 | 3.2 | 2.7 | 2.1 | $2.6 \ddagger$ | 2.7 | 2.2 | 2.8 | 3.0 | ＋0．2 |
| 4．5－5．0 | 1.4 | 0.9 | 1.8 | 2.0 | 2.2 | 2.8 | 2.4 | 2.4 | 1.7 | $1.4 \ddagger$ | 2.7 | 2.0 | 2.1 | 2.0 | －0．1 |
| 5．5－6．0（High） | 1.8 | 1.9 | 1.7 | 2.1 | 1.6 | 2.7 | 2.7 | 2.1 | 1.9 | $2.2 \ddagger$ | 2.1 | 1.6 | 1.6 | 1.7 | ＋0．1 |
| Race（2－year average）${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 2.0 | 2.0 | 2.2 | 2.7 | 3.2 | 3.4 | 3.1 | 2.9 | 3.0 | $3.0 \ddagger$ | $3.0^{\text {e }}$ | 2.8 | 2.8 | 0.0 |
| Black | － | 0.9 | 1.1 | 1.2 | 1.2 | 1.3 | 1.2 | 0.9 | 0.7 | 0.5 | 0．5才 | $0.6{ }^{\text {e }}$ | 1.0 | 1.2 | ＋0．2 |
| Hispanic | － | 2.7 | 3.1 | 3.4 | 3.3 | 3.5 | 3.5 | 3.4 | 3.5 | 3.5 | $3.6 \ddagger$ | $3.8{ }^{\text {e }}$ | 3.4 | 3.4 | 0.0 |

（Table continued on next page）

TABLE D-57 (cont'd)
Tranquilizers: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

NOTES: ' $\ddagger$ ' indicates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes.
Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$
-' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Only drug use not under a doctor's orders is included here.
${ }^{\mathrm{b}}$ In 2001, for the tranquilizer list of examples, Miltown was replaced with Xanax. The 2001 data are based on the changed forms only; N is one-half of N indicated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "any illicit drug other than marijuana" and "hallucinogens" are also affected by these changesand have been treated in a parallel manner.
${ }^{\text {c Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails. }}$
${ }^{\text {To }}$ derive percentagesforeach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates
${ }^{\mathrm{e}}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

TABLE D－58
Tranquilizers：Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $2001^{\text {b }}$ | 2002 ${ }^{\text {b }}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx． $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 3.2 | 3.5 | 3.3 | 3.3 | 4.0 | 4.6 | 4.9 | 5.1 | 5.4 | 5．6才 | 7.3 | 6.3 | 5.3 | 5.1 | －0．2 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 2.5 | 2.7 | 3.2 | 3.0 | 4.0 | 4.3 | 4.7 | 4.7 | 5.2 | 5．8\＃ | 7.9 | 5.7 | 4.7 | 4.7 | －0．1 |
| Female | 3.8 | 4.3 | 3.2 | 3.6 | 4.0 | 4.9 | 5.2 | 5.4 | 5.4 | $5.5 \ddagger$ | 6.8 | 6.9 | 5.8 | 5.5 | －0．3 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 5.0 | 6.0 | 5.8 | 6.0 | 7.4 | 9.4 | 8.6 | 8.3 | 8.6 | 10．0才 | 13.5 | 11.6 | 9.2 | 9.6 | ＋0．4 |
| Complete 4 years | 2.8 | 3.1 | 2.7 | 2.8 | 3.4 | 3.8 | 4.3 | 4.5 | 4.8 | $4.9 \ddagger$ | 6.4 | 5.5 | 4.7 | 4.5 | －0．2 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 2.7 | 2.8 | 3.4 | 2.8 | 2.6 | 3.9 | 3.6 | 5.7 | 5.5 | $3.9 \pm$ | 6.2 | 4.6 | 4.3 | 5.0 | ＋0．7 |
| North Central | 2.4 | 3.0 | 2.5 | 2.6 | 3.2 | 4.4 | 3.7 | 3.4 | 4.6 | 5．4才 | 5.6 | 5.5 | 4.5 | 3.5 | －1．1 |
| South | 4.2 | 4.5 | 3.9 | 4.2 | 5.1 | 5.7 | 7.3 | 6.6 | 6.0 | $6.9 \pm$ | 9.6 | 8.1 | 7.5 | 7.3 | －0．1 |
| West | 2.9 | 3.2 | 3.2 | 3.6 | 4.3 | 3.6 | 3.7 | 4.1 | 4.9 | 5．4才 | 6.7 | 5.8 | 4.1 | 4.1 | 0.0 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 3.2 | 3.3 | 2.7 | 2.6 | 3.2 | 4.2 | 3.9 | 4.1 | 5.0 | $5.5 \ddagger$ | 5.8 | 5.1 | 3.9 | 3.2 | －0．7 |
| Other MSA | 3.0 | 3.8 | 3.3 | 3.9 | 4.1 | 4.6 | 4.4 | 5.2 | 5.5 | 5．4才 | 7.0 | 6.8 | 5.8 | 5.7 | 0.0 |
| Non－MSA | 3.5 | 3.3 | 3.6 | 3.0 | 4.7 | 5.2 | 7.0 | 6.0 | 5.6 | 6．1才 | 9.9 | 6.7 | 6.4 | 6.4 | －0．1 |
| Parental Educ ation：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 3.3 | 5.3 | 4.8 | 4.2 | 5.0 | 5.9 | 4.7 | 6.5 | 5.0 | $8.2 \ddagger$ | 7.6 | 7.1 | 7.5 | 5.8 | －1．6 |
| 2．5－3．0 | 3.6 | 3.5 | 3.1 | 3.3 | 4.5 | 5.2 | 5.3 | 6.3 | 5.9 | $6.2 \ddagger$ | 7.9 | 7.5 | 7.3 | 5.6 | －1．7 s |
| 3．5－4．0 | 3.2 | 3.4 | 3.5 | 3.4 | 4.3 | 5.0 | 5.5 | 4.9 | 5.2 | 5．6 $\ddagger$ | 8.1 | 6.7 | 5.7 | 5.7 | 0.0 |
| 4．5－5．0 | 2.5 | 3.9 | 2.9 | 2.9 | 3.5 | 4.1 | 4.2 | 4.5 | 5.7 | 5．2才 | 6.7 | 5.8 | 4.1 | 4.6 | ＋0．5 |
| 5．5－6．0（High） | 3.5 | 2.3 | 3.1 | 3.4 | 3.2 | 3.6 | 4.4 | 4.0 | 5.3 | 4．7才 | 6.9 | 4.6 | 3.4 | 4.1 | ＋0．7 |
| Race（2－yearaverage）${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 4.0 | 3.8 | 3.6 | 4.1 | 4.9 | 5.6 | 6.0 | 6.1 | 6.4 | $7.0 \ddagger$ | $7.6^{\text {e }}$ | 7.4 | 6.5 | －0．9 |
| Black | － | 0.9 | 0.9 | 0.9 | 0.8 | 0.7 | 0.9 | 1.0 | 1.2 | 1.1 | $1.5 \ddagger$ | $1.5{ }^{\text {e }}$ | 1.3 | 1.3 | 0.0 |
| Hispanic | － | 2.9 | 3.3 | 3.1 | 3.1 | 3.4 | 3.5 | 3.5 | 3.7 | 4.0 | $4.0 \ddagger$ | $4.3{ }^{\text {e }}$ | 4.4 | 4.5 | ＋0．1 |

（Table continued on next page）

## TABLE D-58 (cont'd)

## Tranquilizers: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

[^115]
## TABLE D-59

## Tranquilizers: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 10.6 | 10.3 | 10.8 | 9.9 | 9.6 | 8.7 | 8.0 | 7.0 | 6.9 | 6.1 | 6.1 | 5.8 | 5.5 | 4.8 | 3.8 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 10.0 | 9.4 | 10.2 | 9.7 | 9.9 | 9.0 | 8.0 | 6.9 | 7.0 | 6.3 | 6.4 | 5.9 | 5.2 | 4.7 | 4.0 |  |
| Female | 11.1 | 11.0 | 11.4 | 10.1 | 9.3 | 8.5 | 7.7 | 7.1 | 6.7 | 5.8 | 5.7 | 5.8 | 5.8 | 4.8 | 3.5 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 11.5 | 12.3 | 11.1 | 11.0 | 10.7 | 9.4 | 8.0 | 8.0 | 7.4 | 6.8 | 7.2 | 6.7 | 5.1 | 4.8 |  |
| Complete 4 years | - | 8.9 | 9.0 | 8.6 | 8.1 | 7.2 | 6.9 | 6.3 | 5.8 | 5.2 | 5.5 | 5.1 | 4.9 | 4.6 | 3.3 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 9.2 | 9.7 | 10.4 | 10.9 | 11.5 | 8.6 | 8.3 | 7.8 | 6.8 | 6.8 | 7.1 | 6.4 | 6.9 | 4.5 | 3.7 |  |
| North Central | 10.6 | 10.1 | 11.0 | 8.8 | 7.5 | 8.2 | 7.8 | 6.2 | 6.8 | 5.6 | 6.0 | 5.5 | 4.5 | 3.7 | 3.1 |  |
| South | 11.3 | 11.7 | 11.4 | 10.5 | 10.4 | 9.5 | 7.8 | 7.4 | 7.4 | 6.9 | 5.9 | 6.3 | 5.7 | 6.0 | 4.4 |  |
| West | 11.7 | 8.5 | 9.6 | 8.9 | 9.4 | 8.6 | 8.0 | 6.4 | 6.2 | 4.9 | 5.3 | 4.8 | 5.2 | 4.4 | 3.4 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 11.2 | 9.6 | 9.6 | 10.3 | 9.9 | 8.7 | 8.3 | 7.0 | 7.0 | 5.4 | 5.8 | 5.3 | 5.8 | 4.7 | 3.1 |  |
| OtherMSA | 11.0 | 11.3 | 11.4 | 10.1 | 10.2 | 9.3 | 8.1 | 7.2 | 7.2 | 6.1 | 6.0 | 5.7 | 5.6 | 5.0 | 3.5 |  |
| Non-MSA | 9.9 | 9.5 | 11.0 | 9.2 | 8.7 | 8.0 | 7.5 | 6.8 | 6.5 | 6.8 | 6.5 | 6.4 | 5.2 | 4.5 | 4.9 |  |
| Parental Educ ation: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 11.2 | 10.1 | 9.4 | 9.4 | 9.1 | 7.8 | 7.1 | 6.1 | 6.0 | 6.5 | 5.3 | 6.7 | 5.7 | 3.9 |  |
| 2.5-3.0 | - | 9.8 | 10.3 | 11.5 | 10.1 | 8.8 | 9.1 | 8.0 | 7.3 | 7.2 | 6.5 | 6.2 | 5.8 | 5.4 | 4.6 |  |
| 3.5-4.0 | - | 9.8 | 11.2 | 11.1 | 9.5 | 10.4 | 8.9 | 8.3 | 6.7 | 6.9 | 5.8 | 6.4 | 6.5 | 5.3 | 4.5 |  |
| 4.5-5.0 | - | 11.3 | 11.7 | 11.4 | 10.5 | 10.0 | 8.1 | 7.4 | 7.6 | 6.6 | 5.8 | 6.3 | 4.7 | 5.9 | 5.5 |  |
| 5.5-6.0 (High) | - | 9.3 | 12.0 | 10.1 | 11.0 | 11.4 | 10.3 | 9.1 | 7.6 | 7.1 | 6.3 | 5.5 | 5.4 | 5.4 | 5.6 |  |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 11.4 | 11.1 | 10.5 | 9.9 | 9.1 | 8.3 | 7.8 | 7.3 | 6.8 | 6.6 | 6.3 | 5.9 | 5.0 |  |
| Black | - | - | 4.3 | 4.2 | 3.6 | 3.1 | 3.0 | 2.5 | 2.3 | 2.1 | 1.7 | 1.7 | 2.0 | 2.0 | 1.2 |  |
| Hispanic | - | - | 8.4 | 8.2 | 7.4 | 6.4 | 5.7 | 5.8 | 5.1 | 5.3 | 5.0 | 4.4 | 3.7 | 2.5 | 1.6 |  |
| NOTES: ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes. Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. '-' indic ates data not a vailable. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. <br> See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Mic higan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

TABLE D－59（cont＇d）
Tranquilizers：Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $2001{ }^{\text {b }}$ | 2002 ${ }^{\text {b }}$ | $\underline{2003}$ | $\underline{2004}$ | change |
| Approx． $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 3.5 | 3.6 | 2.8 | 3.5 | 3.7 | 4.4 | 4.6 | 4.7 | 5.5 | 5.8 | 5．7才 | 6.9 | 7.7 | 6.7 | 7.3 | ＋0．6 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 3.5 | 3.5 | 2.7 | 3.5 | 4.0 | 4.7 | 5.0 | 5.4 | 6.3 | 6.9 | $6.4 \ddagger$ | 7.9 | 8.4 | 6.9 | 8.0 | ＋1．0 |
| Female | 3.5 | 3.6 | 3.0 | 3.3 | 3.5 | 4.1 | 4.0 | 3.9 | 4.7 | 4.8 | $4.9 \pm$ | 5.8 | 6.9 | 6.3 | 6.5 | ＋0．2 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 4.3 | 4.2 | 3.9 | 3.9 | 4.5 | 5.6 | 5.6 | 6.2 | 6.8 | 6.4 | 6．7\＃ | 7.6 | 9.9 | 9.6 | 9.1 | －0．5 |
| Complete 4 years | 3.2 | 3.4 | 2.5 | 3.3 | 3.5 | 4.1 | 4.2 | 4.0 | 5.1 | 5.6 | $5.2 \ddagger$ | 6.7 | 7.1 | 6.0 | 6.8 | ＋0．9 s |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 2.9 | 3.0 | 3.0 | 3.7 | 3.5 | 3.9 | 4.8 | 5.3 | 4.9 | 5.6 | $5.2 \ddagger$ | 5.7 | 6.8 | 5.4 | 6.5 | ＋1．1 |
| North Central | 2.9 | 3.0 | 2.3 | 2.8 | 3.1 | 4.0 | 4.4 | 3.5 | 3.7 | 5.1 | 4．7才 | 8.1 | 6.5 | 5.5 | 6.2 | ＋0．6 |
| South | 4.3 | 4.0 | 3.5 | 4.2 | 4.8 | 5.0 | 5.3 | 5.4 | 7.5 | 7.6 | 6．7\＃ | 7.4 | 10.4 | 8.5 | 9.0 | ＋0．5 |
| West | 3.9 | 4.4 | 2.3 | 3.0 | 2.8 | 4.3 | 3.0 | 4.3 | 4.4 | 3.9 | 5．6 $\ddagger$ | 5.5 | 5.8 | 6.6 | 7.0 | ＋0．4 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 3.6 | 2.5 | 2.9 | 2.9 | 3.9 | 4.0 | 3.7 | 4.2 | 4.8 | 4.0 | 4．7\＃ | 7.9 | 7.8 | 4.7 | 5.5 | ＋0．8 |
| Other MSA | 3.7 | 4.1 | 2.7 | 3.6 | 3.7 | 4.5 | 4.9 | 4.8 | 5.7 | 6.6 | $6.2 \ddagger$ | 6.4 | 8.2 | 7.8 | 8.5 | ＋0．7 |
| Non－MSA | 3.3 | 3.7 | 3.1 | 3.7 | 3.5 | 4.8 | 4.7 | 5.1 | 5.9 | 6.5 | 6．0才 | 6.7 | 6.8 | 7.4 | 7.3 | －0．2 |
| Parental Educ ation：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 3.6 | 4.0 | 3.9 | 3.3 | 4.2 | 3.9 | 4.2 | 3.9 | 6.4 | 5.2 | $6.4 \ddagger$ | 5.4 | 5.2 | 7.1 | 5.0 | －2．1 |
| 2．5－3．0 | 3.9 | 3.6 | 2.8 | 3.3 | 3.5 | 4.7 | 4.0 | 4.3 | 5.2 | 6.2 | 5．3\＃ | 6.7 | 7.9 | 6.5 | 7.9 | ＋1．5 |
| 3．5－4．0 | 3.4 | 3.1 | 2.7 | 3.5 | 3.6 | 4.3 | 4.7 | 4.6 | 6.0 | 6.4 | 5．6\＃ | 7.7 | 8.4 | 7.6 | 9.0 | ＋1．4 |
| 4．5－5．0 | 3.8 | 3.9 | 3.0 | 3.4 | 3.7 | 4.5 | 4.6 | 5.4 | 4.9 | 5.4 | $5.9 \ddagger$ | 7.4 | 7.9 | 5.9 | 7.1 | ＋1．2 |
| 5．5－6．0（High） | 4.9 | 4.0 | 2.2 | 4.2 | 4.2 | 4.1 | 5.3 | 5.1 | 5.5 | 5.6 | 5．8\＃ | 6.0 | 7.9 | 6.2 | 5.4 | －0．7 |
| Race（2－yearaverage）：${ }^{\text {d }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 4.2 | 4.1 | 3.7 | 3.7 | 4.2 | 4.6 | 5.1 | 5.5 | 6.2 | 6.8 | 6.9 | 7．7才 | $9.2{ }^{\text {e }}$ | 8.7 | 8.4 | －0．2 |
| Black | 0.7 | 0.9 | 1.3 | 1.0 | 1.1 | 1.2 | 0.9 | 0.8 | 1.0 | 1.0 | 0.7 | $0.6 \ddagger$ | $1.1{ }^{\text {e }}$ | 1.3 | 1.7 | ＋0．4 |
| Hispanic | 1.9 | 2.7 | 2.4 | 2.0 | 2.4 | 3.5 | 4.3 | 3.8 | 3.3 | 3.5 | 4.3 | $3.9 \pm$ | $4.1{ }^{\text {e }}$ | 4.5 | 4.5 | 0.0 |

${ }^{\text {a }}$ Only drug use not under a doctor＇s orders is included here．
${ }^{\mathrm{b}}$ In 2001，for the tranquilizer list of examples，Miltown was replaced with Xanax．The 2001 data are based on the changed forms only； N is one－half of N indic ated．In 2002 the remaining forms were changed．Beginning in 2002，the data are based on all forms．Data for＂any illicit drug other than marijuana＂and＂hallucinogens＂are also affected by these changes and have been treated in a parallel manner．
${ }^{c}$ Parental education is an average score of mother＇seducation and father＇s seducation．See Appendix B fordetails．
${ }^{d}$ To derive percentages foreach racial subgroup，data for the specified year and the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates．
${ }^{\mathrm{e}}$ The 2002 data comprise half of the 2001 sample data double－weighted and all of the 2002 sample data

## TABLE D-60

Rohypnol: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

| Approx. $\mathrm{N}=$ | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | $\underline{1992}$ | $\underline{1993}$ | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
|  | - | - | - | - | - | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
|  | - | - | - | - | - | 1.0 | 0.8 | 0.8 | 0.5 | 0.5 | 0.7 | 0.3 | 0.5 | 0.6 | +0.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | - | - | 1.1 | 0.7 | 0.8 | 0.6 | 0.5 | 0.6 | 0.2 | 0.4 | 0.5 | +0.2 |
| Female | - | - | - | - | - | 1.0 | 0.9 | 0.9 | 0.2 | 0.6 | 0.7 | 0.2 | 0.4 | 0.7 | +0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | - | - | 2.5 | 1.5 | 3.0 | 0.9 | 2.2 | 2.0 | 1.0 | 1.3 | 2.4 | +1.1 |
| Complete 4 years | - | - | - | - | - | 0.8 | 0.7 | 0.6 | 0.4 | 0.4 | 0.5 | 0.2 | 0.4 | 0.4 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | - | - | 0.9 | 0.3 | 0.9 | 0.3 | 0.6 | 0.9 | 0.2 | 0.2 | 0.3 | +0.1 |
| North Central | - | - | - | - | - | 0.9 | 0.8 | 0.8 | 0.3 | 0.4 | 1.0 | 0.4 | 0.2 | 0.8 | +0.6 |
| South | - | - | - | - | - | 1.3 | 1.1 | 0.9 | 0.7 | 0.9 | 0.6 | 0.4 | 0.6 | 0.5 | -0.1 |
| West | - | - | - | - | - | 1.0 | 0.7 | 0.8 | 0.5 | * | 0.4 | 0.1 | 0.7 | 0.7 | -0.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | - | - | 1.2 | 0.8 | 0.7 | 0.4 | 0.9 | 1.2 | 0.1 | 0.1 | 0.5 | +0.4 |
| Other MSA | - | - | - | - | - | 1.1 | 0.9 | 1.0 | 0.6 | 0.5 | 0.5 | 0.3 | 0.4 | 0.8 | +0.4 |
| Non-MSA | - | - | - | - | - | 0.8 | 0.7 | 0.8 | 0.3 | 0.2 | 0.4 | 0.5 | 1.0 | 0.3 | -0.6 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | - | - | 2.0 | 2.1 | 2.2 | 0.2 | 0.9 | 1.3 | 0.9 | 1.8 | 2.4 | +0.6 |
| 2.5-3.0 | - | - | - | - | - | 1.1 | 1.1 | 0.8 | 0.3 | 0.8 | 0.3 | 0.0 | 0.9 | 0.1 | -0.8 |
| 3.5-4.0 | - | - | - | - | - | 1.2 | 0.7 | 0.9 | 0.6 | 0.2 | 1.2 | 0.2 | 0.1 | 0.2 | +0.1 |
| 4.5-5.0 | - | - | - | - | - | 0.8 | 0.6 | 0.6 | 0.5 | 0.4 | 0.7 | 0.6 | 0.4 | 0.6 | +0.3 |
| 5.5-6.0 (High) | - | - | - | - | - | 0.8 | 0.5 | 0.9 | 0.7 | 0.9 | 0.2 | 0.2 | 0.0 | 0.1 | +0.1 |
| Race (2-yearaverage) ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | 0.9 | 0.8 | 0.7 | 0.5 | 0.6 | 0.5 | 0.4 | 0.4 | 0.0 |
| Black | - | - | - | - | - | - | 0.4 | 0.4 | 0.4 | 0.3 | 0.4 | 0.4 | 0.3 | 0.9 | +0.6 |
| Hispanic | - | - | - | - | - | - | 1.4 | 1.5 | 1.5 | 0.6 | 0.9 | 0.8 | 0.4 | 1.0 | +0.7 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available. '*' indic ates less than .05 percent but greater than 0 percent. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emr See Table $\mathrm{D}-105$ for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of two forms in $1996 ; \mathrm{N}$ is one-half of N indicated in Table D-105. Data based on three of four forms in 1997-98; N is two-thirds of N indicated in Table D -105. Data based on two of four forms in 1999-2001; N is one-third of N indicated in Table D-105. Data based on one of four forms beginning in 2002; N is one-sixth of N indicated in Table $\mathrm{D}-105$.

## SOURCE: The Monitoring the Future Study, the University of Mic higan.

## CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.


${ }^{\text {b }}$ To derive percentagesforeach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-61

## Rohypnol: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders



## SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D－62

Rohypnol：Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of： |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975－7 | 980－8 | 90－95 | $\underline{1996}$ | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}{ }^{\text {a }}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx． $\mathrm{N}=$ | － | － | － | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | － | － | － | 1.1 | 1.2 | 1.4 | 1.0 | 0.8 | $0.9 \ddagger$ | 1.6 | 1.3 | 1.6 | $+0.3$ |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | － | － | － | 1.8 | 1.2 | 1.7 | 1.0 | 0.8 | 1．1才 | 2.3 | 2.0 | 2.3 | ＋0．3 |
| Female | － | － | － | 0.3 | 1.1 | 1.1 | 1.0 | 0.7 | $0.6 \ddagger$ | 1.0 | 0.5 | 0.7 | ＋0．2 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | － | － | － | 1.4 | 0.5 | 1.8 | 1.0 | 0.1 | $1.2 \ddagger$ | 2.5 | 2.1 | 3.0 | ＋0．8 |
| Complete 4 years | － | － | － | 0.8 | 1.3 | 1.3 | 1.0 | 0.9 | 0．8\＃ | 1.4 | 0.9 | 1.0 | ＋0．1 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | － | － | － | 0.9 | 0.6 | 1.2 | 0.8 | 0.3 | 1．7才 | 1.2 | 1.4 | 0.8 | －0．6 |
| North Central | － | － | － | 1.0 | 0.5 | 1.0 | 0.8 | 0.9 | 0．5才 | 1.8 | 1.2 | 1.3 | 0.0 |
| South | － | － | － | 1.8 | 2.2 | 2.6 | 1.6 | 1.3 | $1.0 \ddagger$ | 1.5 | 1.4 | 2.1 | ＋0．7 |
| West | － | － | － | 0.1 | 0.8 | 0.0 | 0.2 | 0.1 | 0．8\＃ | 2.0 | 1.1 | 1.8 | ＋0．7 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | － | － | － | 1.3 | 0.9 | 0.8 | 0.3 | 0.3 | $1.0 \ddagger$ | 1.6 | 1.1 | 1.8 | ＋0．7 |
| Other MSA | － | － | － | 1.3 | 1.5 | 2.2 | 1.4 | 1.1 | $1.2 \ddagger$ | 2.0 | 1.7 | 1.6 | －0．1 |
| Non－MSA | － | － | － | 0.7 | 0.7 | 0.6 | 0.9 | 0.7 | 0．3才 | 1.1 | 0.9 | 1.2 | ＋0．3 |
| Parental Education：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | － | － | － | 1.6 | 0.4 | 0.6 | 4.7 | 0.0 | $4.2 \ddagger$ | 3.7 | 2.8 | 3.4 | ＋0．7 |
| 2．5－3．0 | － | － | － | 0.5 | 0.6 | 1.0 | 0.3 | 0.4 | 0．4\＃ | 2.9 | 1.8 | 1.8 | 0.0 |
| 3．5－4．0 | － | － | － | 0.8 | 1.4 | 1.1 | 1.1 | 1.5 | $0.8 \ddagger$ | 0.8 | 1.2 | 1.5 | ＋0．3 |
| 4．5－5．0 | － | － | － | 0.9 | 1.7 | 2.7 | 0.3 | 0.6 | $0.8 \ddagger$ | 1.6 | 0.9 | 0.6 | －0．3 |
| 5．5－6．0（High） | － | － | － | 1.8 | 1.7 | 1.4 | 0.7 | 0.0 | 0．2才 | 0.8 | 0.2 | 1.5 | ＋1．3 s |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | － | － | － | 1.2 | 1.6 | 1.5 | 0.9 | $0.8 \ddagger$ | － | 1.5 | 1.3 | －0．2 |
| Black | － | － | － | － | 0.1 | 0.0 | 0.2 | 0.4 | 0．2才 | － | 0.8 | 1.2 | ＋0．4 |
| Hispanic | － | － | － | － | 2.0 | 1.3 | 1.0 | 0.6 | $1.3 \ddagger$ | － | 1.6 | 1.7 | ＋0．1 |

（Table continued on next page）

## TABLE D-62 (cont'd)

 Rohypnol: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders[^116]
## TABLE D－63

Alcohol：Trends in Thirty－Day Prevalence of Use by Subgroups for Eighth Graders

| $\text { Approx. } \mathrm{N}=$ | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | ＇03－＇04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | $\underline{1993}{ }^{\text {a }}$ | $1994^{\text {a }}$ | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | 2002 | $\underline{2003}$ | 2004 |  |
|  | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| $\begin{array}{llllllllll}\text { Total } & 25.1 & 26.1 \ddagger & 24.3 & 25.5 & 24.6 & 26.2 & 24.5 & 23.0 & 24.0 \\ \text { Gender：} & & & & & & & & \end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 26.3 | $26.3 \ddagger$ | 25.3 | 26.5 | 25.0 | 26.6 | 25.2 | 24.0 | 24.8 | 22.5 | 22.3 | 19.1 | 19.4 | 17.9 | －1．5 |
| Female | 23.8 | 25．9才 | 23.7 | 24.7 | 24.0 | 25.8 | 23.9 | 21.9 | 23.3 | 22.0 | 20.6 | 20.0 | 19.8 | 19.0 | －0．8 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 37.2 | 39．6 $\ddagger$ | 41.1 | 41.4 | 40.0 | 41.7 | 40.2 | 41.2 | 41.6 | 38.3 | 37.0 | 35.3 | 35.3 | 32.6 | －2．7 |
| Complete 4 years | 23.1 | $24.2 \ddagger$ | 22.2 | 23.6 | 22.6 | 24.0 | 22.8 | 21.0 | 22.0 | 20.4 | 19.7 | 18.2 | 18.1 | 17.2 | －0．9 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 24.3 | 23．8才 | 21.0 | 25.4 | 24.1 | 26.9 | 24.8 | 21.2 | 25.7 | 25.6 | 23.3 | 19.3 | 18.4 | 18.0 | －0．4 |
| North Central | 26.6 | 28．3才 | 24.7 | 24.2 | 24.7 | 26.9 | 22.8 | 23.9 | 25.7 | 24.1 | 21.2 | 19.1 | 21.9 | 19.3 | －2．6 |
| South | 25.1 | 26．8 $\ddagger$ | 25.4 | 25.6 | 25.5 | 26.3 | 26.4 | 23.8 | 24.4 | 20.9 | 22.8 | 21.6 | 20.8 | 18.8 | －2．0 |
| West | 23.1 | 23．5才 | 25.6 | 27.2 | 23.1 | 24.8 | 22.7 | 22.2 | 19.8 | 20.2 | 18.1 | 17.0 | 16.0 | 17.9 | ＋1．9 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 25.4 | 27．4才 | 21.2 | 23.8 | 22.3 | 24.9 | 23.1 | 21.4 | 21.7 | 21.2 | 19.4 | 17.4 | 18.2 | 18.1 | －0．1 |
| Other MSA | 24.3 | 26．1才 | 26.0 | 27.4 | 25.3 | 27.4 | 24.9 | 22.4 | 23.4 | 21.3 | 21.5 | 20.1 | 19.4 | 19.1 | －0．3 |
| Non－MSA | 26.2 | $24.2 \ddagger$ | 24.9 | 23.8 | 26.0 | 25.7 | 25.4 | 26.0 | 28.1 | 26.1 | 24.1 | 21.4 | 22.3 | 18.1 | －4．2 s |
| Parental Education：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 30.7 | 32．8才 | 28.0 | 33.5 | 30.8 | 28.1 | 29.7 | 28.9 | 30.7 | 30.2 | 28.5 | 27.6 | 25.5 | 24.2 | －1．3 |
| 2．5－3．0 | 27.0 | $27.2 \ddagger$ | 28.0 | 27.4 | 27.8 | 30.1 | 26.2 | 26.5 | 27.9 | 26.3 | 27.0 | 23.2 | 24.0 | 22.1 | －1．9 |
| 3．5－4．0 | 25.1 | 26．3才 | 25.9 | 26.7 | 26.8 | 27.6 | 27.8 | 24.5 | 25.2 | 23.0 | 23.3 | 21.2 | 22.0 | 20.0 | －2．0 |
| 4．5－5．0 | 22.8 | 24．6 $\ddagger$ | 20.6 | 22.6 | 21.0 | 25.0 | 22.6 | 20.2 | 20.4 | 18.4 | 17.2 | 17.0 | 16.0 | 16.3 | ＋0．3 |
| 5．5－6．0（High） | 24.0 | 25．2 $\ddagger$ | 22.3 | 23.6 | 20.5 | 21.5 | 20.5 | 21.3 | 22.1 | 19.0 | 16.4 | 15.1 | 15.7 | 15.8 | ＋0．1 |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 26.6 | 27．1才 | 25.3 | 25.4 | 26.6 | 26.7 | 24.8 | 24.7 | 24.7 | 23.2 | 21.5 | 20.1 | 19.2 | －0．9 |
| Black | － | 18.6 | 19．7才 | 19.4 | 18.7 | 18.1 | 17.9 | 16.1 | 16.1 | 16.0 | 15.0 | 14.8 | 15.5 | 16.2 | ＋0．7 |
| Hispanic | － | 31.0 | $32.3 \ddagger$ | 33.5 | 32.4 | 29.7 | 29.8 | 29.5 | 29.0 | 26.7 | 25.7 | 26.5 | 25.3 | 23.5 | －1．8 |

NOTES：＇$\ddagger$＇indic ates some change in the question．See relevant footnote．See relevant figure to assess the impact of the wording changes．Level of signific ance of difference between the two most recent classes：$s=.05, s s=.01, s s s=.001$ ．＇- ＇indic ates data not available．Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error．See Table D－105 for the number of subgroup cases．See Appendix B for definition of variables in table，
SOURCE：The Monitoring the Future Study，the University of Mic higan．
${ }^{\text {a }}$ In 1993 ，the question text waschanged slightly in one form to indic ate that a＂drink＂meant＂more than a few sips．＂The 1993 data are based on the changed forms only； N is one－half of N indicated．In 1994 the question text waschanged in the remaining form．Beginning in 1994，the data are based on all forms．In 2004，the question text waschanged slightly in half of the forms．An examination of the data did not show any effect from the wording change．
${ }^{\text {b }}$ Parental education is an average score of mother＇s education and father＇s education．See Appendix B for details．
${ }^{\text {c }}$ To derive percentages for each racial subgroup，data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates．

## TABLE D－64

## Alcohol：Trends in Thirty－Day Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | $1993^{\text {a }}$ | $1994^{\text {a }}$ | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}$ | $\underline{2002}$ | 2003 | $\underline{2004}$ |  |
| Approx． $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 42.8 | 39．9† | 38.2 | 39.2 | 38.8 | 40.4 | 40.1 | 38.8 | 40.0 | 41.0 | 39.0 | 35.4 | 35.4 | 35.2 | －0．2 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 45.5 | $41.6 \ddagger$ | 40.6 | 43.5 | 39.7 | 42.6 | 42.5 | 40.0 | 42.3 | 43.3 | 41.1 | 35.3 | 35.3 | 36.3 | ＋1．0 |
| Female | 40.2 | 38．3 $\ddagger$ | 35.6 | 34.8 | 37.8 | 38.3 | 37.9 | 37.7 | 38.1 | 38.6 | 36.8 | 35.7 | 35.3 | 34.0 | －1．3 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 53.6 | 49．5才 | 48.6 | 52.0 | 52.2 | 53.3 | 51.6 | 52.4 | 53.7 | 53.9 | 52.2 | 47.1 | 46.6 | 47.5 | ＋0．9 |
| Complete 4 years | 40.6 | 37．9† | 36.1 | 36.4 | 36.4 | 38.3 | 38.1 | 36.5 | 37.9 | 39.1 | 36.8 | 33.5 | 33.6 | 33.6 | 0.0 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 48.0 | 42．3 $\ddagger$ | 42.4 | 37.4 | 38.3 | 41.4 | 41.1 | 41.6 | 44.8 | 42.0 | 37.8 | 36.3 | 38.7 | 40.4 | ＋1．7 |
| North Central | 43.5 | 40．3才 | 37.4 | 39.6 | 38.9 | 39.1 | 38.6 | 37.6 | 40.9 | 42.5 | 41.0 | 35.7 | 34.4 | 30.9 | －3．4 |
| South | 41.7 | 38．2 $\ddagger$ | 38.0 | 40.5 | 39.4 | 41.7 | 40.8 | 39.9 | 38.8 | 39.1 | 38.3 | 33.7 | 34.8 | 36.4 | ＋1．6 |
| West | 39.6 | $39.8 \ddagger$ | 35.6 | 38.2 | 38.0 | 38.9 | 39.9 | 35.5 | 36.1 | 41.1 | 38.2 | 37.2 | 34.1 | 33.7 | －0．4 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 43.6 | $40.4 \ddagger$ | 39.0 | 36.3 | 34.6 | 37.9 | 37.8 | 34.2 | 39.7 | 42.4 | 37.6 | 32.0 | 33.1 | 32.0 | －1．1 |
| Other MSA | 41.4 | 38．67 | 36.2 | 40.1 | 39.9 | 41.0 | 40.2 | 39.0 | 39.7 | 39.3 | 38.3 | 35.2 | 35.6 | 37.0 | ＋1．3 |
| Non－MSA | 44.8 | 41．9† | 41.3 | 40.6 | 41.3 | 42.1 | 42.6 | 43.7 | 41.0 | 42.4 | 41.8 | 40.4 | 38.3 | 35.8 | －2．6 |
| Parental Educ ation：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 42.1 | 40．4 $\ddagger$ | 37.5 | 38.6 | 43.5 | 43.2 | 39.2 | 39.9 | 40.6 | 41.1 | 38.6 | 38.2 | 38.4 | 38.6 | ＋0．1 |
| 2．5－3．0 | 43.9 | 40．9† | 40.6 | 41.5 | 42.3 | 42.6 | 41.1 | 41.2 | 42.3 | 42.8 | 41.4 | 38.0 | 37.4 | 38.5 | ＋1．1 |
| 3．5－4．0 | 44.2 | 40．0才 | 38.0 | 40.6 | 38.8 | 42.2 | 41.6 | 40.1 | 40.2 | 42.8 | 41.0 | 36.4 | 36.6 | 37.5 | ＋0．9 |
| 4．5－5．0 | 40.7 | 39．4 $\ddagger$ | 36.2 | 37.7 | 37.9 | 37.8 | 39.3 | 36.9 | 38.7 | 40.2 | 37.0 | 33.7 | 32.7 | 32.6 | 0.0 |
| 5．5－6．0（High） | 44.9 | 41．7 $\ddagger$ | 39.3 | 35.4 | 34.3 | 39.6 | 38.9 | 37.0 | 40.9 | 39.0 | 37.1 | 32.0 | 34.1 | 32.4 | －1．7 |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | － | 44.1 | 43．1才 | 40.4 | 41.0 | 42.2 | 43.0 | 42.7 | 43.0 | 43.9 | 42.7 | 40.0 | 38.7 | 37.8 | －0．9 |
| Black | － | 30.2 | 29．37 | 29.7 | 28.0 | 23.9 | 24.6 | 25.1 | 24.4 | 24.7 | 25.3 | 24.3 | 23.7 | 24.6 | ＋1．0 |
| Hispanic | － | 41.0 | 39．9† | 37.7 | 40.5 | 44.0 | 42.8 | 39.4 | 39.6 | 40.5 | 40.2 | 37.9 | 37.1 | 39.5 | ＋2．4 |

NOTES：＇$\ddagger$＇indic ates some change in the question．See relevant footnote．See relevant figure to assess the impact of the wording changes．Level of signific ance of difference between the two most recent classes：$s=.05, s s=.01$ ，$s s s=.001$ ．＇－＇indic ates data not available．Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror．See Table D－106 for the number of subgroup cases．See Appendix B for definition of va riables in table．
SOURCE：The Monitoring the Future Study，the University of Michigan．
${ }^{\text {a }}$ In 1993，the question text waschanged slightly in one form to indicate that a＂drink＂meant＂more than a few sips．＂The 1993 data are based on the changed forms only； N is one－half of N indic ated．In 1994 the question text waschanged in the remaining form．Beginning in 1994，the data are based on all forms．In 2004，the question text waschanged slightly in half of the forms．An examination of the data did not show any effect from the wording change．
${ }^{\mathrm{b}}$ Parental education is an a verage score of mother＇s education and father＇s education．See Appendix B for details．
${ }^{\text {c }}$ To derive percentagesforeach racial subgroup，data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates．

## TABLE D-65

## Alcohol: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 68.2 | 68.3 | 71.2 | 72.1 | 71.8 | 72.0 | 70.7 | 69.7 | 69.4 | 67.2 | 65.9 | 65.3 | 66.4 | 63.9 | 60.0 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 75.0 | 74.5 | 77.8 | 77.5 | 76.7 | 77.4 | 75.7 | 74.1 | 74.4 | 71.4 | 69.8 | 69.0 | 69.9 | 68.0 | 65.1 |  |
| Female | 62.2 | 61.8 | 65.0 | 67.1 | 67.0 | 66.8 | 65.7 | 65.4 | 64.3 | 62.8 | 62.1 | 61.9 | 63.1 | 59.9 | 54.9 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 69.9 | 72.8 | 72.7 | 72.2 | 73.5 | 72.1 | 71.6 | 70.5 | 69.0 | 67.9 | 66.6 | 68.6 | 65.0 | 61.6 |  |
| Complete 4 years | - | 66.5 | 69.4 | 71.6 | 71.4 | 70.8 | 70.0 | 68.6 | 68.1 | 65.7 | 64.6 | 64.8 | 65.7 | 63.6 | 59.1 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 76.9 | 75.7 | 76.6 | 78.0 | 81.1 | 79.4 | 80.4 | 76.7 | 74.4 | 73.6 | 72.3 | 67.6 | 69.1 | 66.7 | 61.7 |  |
| North Central | 71.1 | 73.2 | 76.4 | 77.2 | 73.9 | 75.1 | 73.6 | 75.0 | 74.4 | 70.6 | 66.8 | 71.3 | 70.7 | 67.9 | 65.9 |  |
| South | 62.8 | 60.2 | 64.7 | 67.0 | 65.7 | 65.5 | 62.9 | 61.3 | 64.3 | 62.1 | 60.0 | 58.2 | 60.7 | 58.6 | 55.1 |  |
| West | 60.0 | 62.2 | 64.4 | 63.1 | 65.5 | 67.6 | 65.3 | 63.8 | 62.9 | 63.6 | 66.2 | 64.5 | 66.7 | 65.0 | 59.3 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 75.3 | 72.6 | 74.0 | 75.5 | 77.3 | 78.0 | 75.5 | 72.9 | 69.2 | 66.6 | 67.4 | 66.2 | 66.3 | 63.8 | 56.9 |  |
| Other MSA | 68.5 | 67.0 | 72.0 | 72.7 | 72.0 | 70.8 | 69.1 | 69.3 | 69.8 | 66.2 | 65.1 | 64.8 | 66.9 | 64.1 | 60.7 |  |
| Non-MSA | 63.2 | 66.5 | 67.8 | 68.4 | 67.3 | 69.0 | 68.9 | 67.6 | 69.0 | 69.0 | 65.9 | 65.2 | 65.5 | 63.8 | 61.7 |  |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 58.7 | 62.5 | 62.0 | 62.7 | 64.6 | 65.9 | 62.1 | 61.3 | 61.2 | 58.1 | 58.7 | 56.1 | 56.3 | 54.5 | 47.8 |  |
| 2.5-3.0 | 70.0 | 71.4 | 72.5 | 71.9 | 71.1 | 72.0 | 70.7 | 69.4 | 69.2 | 67.4 | 65.9 | 65.3 | 67.0 | 64.6 | 59.7 |  |
| 3.5-4.0 | 69.2 | 67.9 | 73.5 | 75.0 | 74.6 | 73.3 | 71.5 | 72.7 | 70.4 | 69.6 | 66.9 | 66.7 | 67.2 | 64.3 | 62.9 |  |
| 4.5-5.0 | 69.6 | 71.3 | 74.5 | 77.0 | 76.0 | 74.4 | 73.1 | 74.5 | 73.1 | 69.3 | 68.9 | 68.0 | 68.8 | 66.0 | 62.1 |  |
| 5.5-6.0 (High) | 67.3 | 72.5 | 77.1 | 79.2 | 75.9 | 77.2 | 77.4 | 74.1 | 75.0 | 70.3 | 67.9 | 69.9 | 70.5 | 67.3 | 62.2 |  |
| Race (2-year average): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 72.8 | 75.0 | 75.3 | 75.4 | 75.4 | 74.6 | 73.9 | 72.8 | 71.2 | 70.2 | 71.0 | 70.6 | 67.3 |  |
| Black | - | - | 49.5 | 48.7 | 47.2 | 47.6 | 46.7 | 46.0 | 47.7 | 45.5 | 42.8 | 42.1 | 39.4 | 39.8 | 39.5 |  |
| Hispanic | - | - | 63.0 | 64.5 | 63.8 | 63.6 | 62.0 | 60.3 | 59.1 | 59.7 | 58.1 | 56.3 | 57.2 | 57.8 | 52.9 |  |
| NOTES: ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes. Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s 5 s=.001$. ' - ' indic ates data not available. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. <br> See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE D－65（cont＇d）

Alcohol：Trends in Thirty－Day Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | $1993{ }^{\text {a }}$ | $1994{ }^{\text {a }}$ | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | 2003 | $\underline{2004}$ |  |
| Approx． $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 57.1 | 54.0 | $51.3 \ddagger$ | 48.6 | 50.1 | 51.3 | 50.8 | 52.7 | 52.0 | 51.0 | 50.0 | 49.8 | 48.6 | 47.5 | 48.0 | ＋0．5 |
| Gender： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 61.3 | 58.4 | 55．8 $\ddagger$ | 54.2 | 55.5 | 55.7 | 54.8 | 56.2 | 57.3 | 55.3 | 54.0 | 54.7 | 52.3 | 51.7 | 51.1 | －0．6 |
| Female | 52.3 | 49.0 | 46．8 $\ddagger$ | 43.4 | 45.2 | 47.0 | 46.9 | 48.9 | 46.9 | 46.8 | 46.1 | 45.1 | 45.1 | 43.8 | 45.1 | ＋1．3 |
| College Plans： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 58.7 | 57.1 | 54．9\＃ | 52.4 | 53.6 | 55.9 | 54.8 | 56.1 | 56.0 | 55.2 | 54.3 | 55.5 | 53.0 | 55.4 | 52.1 | －3．2 |
| Complete 4 years | 56.4 | 52.7 | 50．0才 | 47.4 | 48.9 | 49.6 | 49.3 | 51.4 | 50.9 | 49.8 | 48.3 | 47.9 | 47.4 | 45.2 | 47.0 | ＋1．8 |
| Region： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 65.3 | 59.6 | 51．5 $\ddagger$ | 56.1 | 53.1 | 55.0 | 56.5 | 56.7 | 56.2 | 57.2 | 58.0 | 54.3 | 50.9 | 51.6 | 53.9 | ＋2．3 |
| North Central | 61.5 | 59.7 | 58．0才 | 51.6 | 53.8 | 55.3 | 51.5 | 51.5 | 51.9 | 51.1 | 52.3 | 54.5 | 52.1 | 50.8 | 49.5 | －1．2 |
| South | 51.0 | 49.1 | 48．1才 | 47.7 | 49.2 | 50.6 | 51.1 | 51.1 | 51.4 | 49.5 | 44.9 | 45.9 | 46.8 | 43.0 | 43.5 | ＋0．5 |
| West | 51.6 | 49.7 | 46．7 $\ddagger$ | 39.8 | 44.2 | 43.2 | 42.1 | 52.7 | 49.2 | 47.8 | 48.3 | 44.9 | 45.0 | 47.0 | 47.3 | ＋0．4 |
| Population Density： |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 59.2 | 52.9 | 49．0才 | 50.6 | 49.5 | 50.6 | 51.6 | 51.1 | 49.1 | 48.9 | 51.2 | 49.7 | 50.3 | 43.0 | 44.1 | ＋1．1 |
| OtherMSA | 57.4 | 55.7 | 50．8 $\ddagger$ | 47.1 | 49.2 | 50.6 | 50.1 | 53.4 | 53.9 | 52.8 | 48.8 | 49.6 | 48.8 | 49.6 | 51.7 | ＋2．1 |
| Non－MSA | 54.4 | 52.0 | 54．1才 | 49.8 | 52.5 | 53.4 | 51.4 | 52.9 | 51.6 | 50.1 | 50.8 | 50.0 | 45.9 | 49.6 | 45.5 | －4．1 |
| Parental Educ ation：${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1．0－2．0（Low） | 47.2 | 49.9 | 45．6 $\ddagger$ | 36.6 | 43.5 | 45.9 | 41.2 | 43.8 | 43.8 | 46.8 | 43.4 | 42.9 | 42.2 | 43.6 | 42.1 | －1．5 |
| 2．5－3．0 | 57.2 | 53.3 | $52.3 \ddagger$ | 49.0 | 49.9 | 52.0 | 48.2 | 51.0 | 50.1 | 50.5 | 50.0 | 49.0 | 47.9 | 47.8 | 46.8 | －1．0 |
| 3．5－4．0 | 57.7 | 54.3 | 51．2 $\ddagger$ | 51.2 | 50.1 | 50.6 | 51.4 | 52.1 | 55.6 | 51.1 | 51.3 | 51.4 | 50.9 | 47.9 | 52.4 | ＋4．6 ss |
| 4．5－5．0 | 60.8 | 54.8 | 51．0才 | 49.8 | 52.6 | 51.8 | 53.6 | 55.3 | 52.4 | 50.2 | 48.1 | 51.5 | 48.9 | 47.5 | 47.7 | ＋0．3 |
| 5．5－6．0（High） | 60.8 | 58.0 | 55．7 $\ddagger$ | 53.2 | 52.2 | 55.1 | 54.2 | 57.4 | 54.7 | 56.0 | 54.0 | 49.5 | 51.1 | 49.3 | 47.4 | －1．9 |
| Race（2－yearaverage）：${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 63.8 | 60.0 | 56.8 | $55.6 \ddagger$ | 54.0 | 54.5 | 54.8 | 56.4 | 57.7 | 56.3 | 55.1 | 55.3 | 54.0 | 52.3 | 52.2 | －0．1 |
| Black | 35.8 | 33.7 | 31.7 | $32.4 \ddagger$ | 33.8 | 35.2 | 36.5 | 34.3 | 33.3 | 32.2 | 30.0 | 29.4 | 30.1 | 29.9 | 29.2 | －0．7 |
| Hispanic | 49.1 | 51.5 | 53.8 | 50．5 $\ddagger$ | 45.9 | 48.7 | 47.5 | 48.2 | 49.8 | 50.2 | 51.2 | 48.9 | 47.5 | 46.4 | 45.4 | －1．0 |
| ${ }^{\text {a }}$ In 1993，the question text waschanged slightly in three of six forms to indicate that a＂drink＂meant＂more than a few sips．＂The 1993 data are based on the changed forms only； N is one－half of N indicated．In 1994 the question text waschanged in the remaining forms．Beginning in 1994，the data are based on all six forms．In 2004 the question text was changed slightly in half of the forms．An examination of the data did not show any effect from the wording change． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\mathrm{b}}$ Parental education is an average score of mother＇s education and father＇s education．See Appendix B for details． ${ }^{\mathrm{c}}$ To derive percentagesforeach racial subgroup，data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE D-66

 Been Drunk: Trends in Thirty-Day Prevalence by Subgroups for Eighth Graders| $\text { Approx. } N=$ | Percentage who had been drunk in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | $\underline{2004}$ |  |
|  | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 7.6 | 7.5 | 7.8 | 8.7 | 8.3 | 9.6 | 8.2 | 8.4 | 9.4 | 8.3 | 7.7 | 6.7 | 6.7 | 6.2 | -0.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8.4 | 7.4 | 7.8 | 9.0 | 8.2 | 9.7 | 8.4 | 8.5 | 10.2 | 8.2 | 7.8 | 7.1 | 6.6 | 5.8 | -0.8 |
| Female | 7.0 | 7.6 | 7.8 | 8.3 | 8.2 | 9.5 | 7.9 | 8.2 | 8.6 | 8.1 | 7.4 | 6.3 | 6.8 | 6.6 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 15.8 | 17.2 | 18.4 | 20.0 | 17.2 | 19.3 | 18.7 | 21.4 | 22.4 | 18.9 | 18.9 | 15.5 | 17.0 | 16.1 | -0.9 |
| Complete 4 years | 6.4 | 6.1 | 6.4 | 7.3 | 7.3 | 8.2 | 7.1 | 6.9 | 8.0 | 7.0 | 6.5 | 5.9 | 5.7 | 5.2 | -0.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 5.7 | 6.4 | 6.2 | 8.2 | 8.2 | 9.7 | 7.9 | 6.9 | 9.4 | 8.3 | 8.0 | 5.3 | 4.9 | 4.8 | -0.1 |
| North Central | 7.7 | 7.6 | 7.3 | 8.3 | 8.3 | 10.2 | 8.2 | 10.4 | 11.6 | 9.7 | 8.2 | 7.0 | 8.1 | 6.8 | -1.3 |
| South | 8.8 | 8.2 | 8.3 | 8.8 | 8.4 | 9.1 | 8.3 | 7.8 | 9.5 | 7.4 | 8.1 | 7.6 | 7.2 | 6.4 | -0.7 |
| West | 7.3 | 6.9 | 9.4 | 9.6 | 8.2 | 9.8 | 8.3 | 8.3 | 6.6 | 8.1 | 6.0 | 5.9 | 6.0 | 6.4 | +0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 7.4 | 7.0 | 6.0 | 7.6 | 7.2 | 8.9 | 6.7 | 6.9 | 7.8 | 7.1 | 6.3 | 5.2 | 5.6 | 5.4 | -0.2 |
| OtherMSA | 7.3 | 7.4 | 8.4 | 9.7 | 8.9 | 9.9 | 8.6 | 7.5 | 8.4 | 7.2 | 7.9 | 7.3 | 6.8 | 6.5 | -0.3 |
| Non-MSA | 8.4 | 8.2 | 8.8 | 7.9 | 8.6 | 10.0 | 9.2 | 11.7 | 13.3 | 12.0 | 8.9 | 7.3 | 8.1 | 6.5 | -1.5 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 13.4 | 11.0 | 10.4 | 12.5 | 13.1 | 11.1 | 11.5 | 13.1 | 14.5 | 14.0 | 12.1 | 10.5 | 13.4 | 10.0 | -3.4 |
| 2.5-3.0 | 9.2 | 8.8 | 9.2 | 9.3 | 9.6 | 11.9 | 9.3 | 9.5 | 11.7 | 10.5 | 9.7 | 8.5 | 9.4 | 7.4 | -2.0 s |
| 3.5-4.0 | 6.9 | 7.6 | 8.5 | 9.3 | 9.4 | 10.4 | 10.2 | 9.1 | 9.9 | 8.0 | 8.7 | 6.7 | 7.1 | 6.8 | -0.3 |
| 4.5-5.0 | 6.1 | 6.5 | 5.9 | 7.5 | 6.4 | 8.7 | 6.7 | 7.0 | 6.9 | 5.6 | 5.7 | 5.5 | 4.5 | 5.0 | +0.5 |
| 5.5-6.0 (High) | 6.8 | 4.9 | 6.7 | 7.6 | 6.0 | 7.1 | 5.8 | 6.9 | 8.7 | 7.1 | 4.6 | 4.8 | 4.2 | 4.4 | +0.2 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 7.7 | 7.8 | 8.4 | 8.9 | 9.7 | 9.7 | 9.1 | 9.8 | 10.0 | 9.0 | 8.0 | 7.2 | 6.8 | -0.4 |
| Black | - | 5.4 | 5.1 | 5.6 | 5.6 | 5.5 | 4.6 | 3.9 | 4.9 | 4.7 | 4.0 | 4.0 | 4.2 | 4.1 | -0.1 |
| Hispanic | - | 9.9 | 9.9 | 10.8 | 10.8 | 10.8 | 10.4 | 9.8 | 9.9 | 8.5 | 7.8 | 8.4 | 8.5 | 8.1 | -0.4 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding emor. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a P Parental education is an average score of mother'seducation and father's education. See Appendix B for details. }}$
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the spec ified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

|  | Percentage who had been drunk in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}$ | $\underline{2002}$ | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 20.5 | 18.1 | 19.8 | 20.3 | 20.8 | 21.3 | 22.4 | 21.1 | 22.5 | 23.5 | 21.9 | 18.3 | 18.2 | 18.5 | +0.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 22.3 | 18.6 | 21.4 | 23.2 | 21.9 | 23.0 | 24.6 | 22.3 | 25.4 | 26.2 | 24.2 | 19.3 | 18.8 | 20.2 | +1.4 |
| Female | 18.7 | 17.5 | 18.1 | 17.2 | 19.6 | 19.8 | 20.2 | 19.9 | 19.8 | 20.9 | 19.7 | 17.4 | 17.7 | 17.0 | -0.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 29.5 | 26.3 | 29.0 | 31.1 | 31.4 | 32.0 | 35.5 | 33.5 | 34.6 | 35.1 | 34.8 | 27.4 | 27.4 | 27.5 | +0.1 |
| Complete 4 years | 18.6 | 16.4 | 17.9 | 18.0 | 19.0 | 19.7 | 20.3 | 19.1 | 20.7 | 21.8 | 19.8 | 16.8 | 16.9 | 17.4 | +0.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 23.9 | 18.8 | 20.0 | 19.0 | 19.5 | 22.4 | 21.9 | 23.1 | 25.8 | 22.8 | 19.9 | 18.1 | 20.3 | 22.4 | +2.1 |
| North Central | 21.8 | 18.9 | 20.1 | 21.0 | 22.6 | 22.0 | 23.3 | 21.8 | 26.0 | 27.6 | 24.0 | 18.7 | 18.8 | 16.6 | -2.1 |
| South | 19.2 | 16.8 | 19.8 | 20.9 | 20.9 | 21.4 | 22.0 | 21.9 | 20.3 | 21.4 | 21.5 | 17.5 | 17.6 | 18.7 | +1.1 |
| West | 18.2 | 18.3 | 19.0 | 19.5 | 19.5 | 19.3 | 22.6 | 17.0 | 19.0 | 22.4 | 21.2 | 19.5 | 16.5 | 16.7 | +0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 20.6 | 17.6 | 17.6 | 16.1 | 18.2 | 19.6 | 20.7 | 17.2 | 21.6 | 23.4 | 19.5 | 16.5 | 15.7 | 15.1 | -0.5 |
| OtherMSA | 20.1 | 17.3 | 18.2 | 21.7 | 21.8 | 21.9 | 21.8 | 21.2 | 22.7 | 22.5 | 21.6 | 18.0 | 18.6 | 20.5 | +1.9 |
| Non-MSA | 21.1 | 19.9 | 24.7 | 21.8 | 21.8 | 22.4 | 25.5 | 25.4 | 23.4 | 25.4 | 25.3 | 21.4 | 21.4 | 19.0 | -2.4 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 20.9 | 18.2 | 22.2 | 20.0 | 23.4 | 22.1 | 19.7 | 20.1 | 21.8 | 21.3 | 22.0 | 17.3 | 19.0 | 17.7 | -1.3 |
| 2.5-3.0 | 22.5 | 18.5 | 21.4 | 21.2 | 22.9 | 23.4 | 22.5 | 23.3 | 23.4 | 24.5 | 22.6 | 19.9 | 18.9 | 21.0 | +2.2 |
| 3.5-4.0 | 20.4 | 19.4 | 19.4 | 22.1 | 21.4 | 22.1 | 24.1 | 21.3 | 23.3 | 24.5 | 22.8 | 19.5 | 19.3 | 18.9 | -0.4 |
| 4.5-5.0 | 19.7 | 17.1 | 18.2 | 18.7 | 19.7 | 19.5 | 22.3 | 20.2 | 21.7 | 24.1 | 21.4 | 17.4 | 17.5 | 17.3 | -0.2 |
| 5.5-6.0 (High) | 20.6 | 18.5 | 18.6 | 17.9 | 17.9 | 22.3 | 22.4 | 20.4 | 24.0 | 23.1 | 21.5 | 16.8 | 17.7 | 19.3 | +1.6 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 21.6 | 20.8 | 22.0 | 22.7 | 23.7 | 25.0 | 25.5 | 25.7 | 26.7 | 25.8 | 23.2 | 21.9 | 21.7 | -0.2 |
| Black | - | 9.4 | 10.3 | 10.1 | 9.8 | 8.5 | 8.6 | 8.8 | 7.6 | 8.6 | 9.5 | 8.6 | 8.0 | 8.3 | +0.3 |
| Hispanic | - | 16.2 | 15.9 | 17.0 | 18.6 | 20.1 | 19.5 | 18.0 | 17.8 | 18.0 | 18.7 | 17.4 | 15.7 | 17.0 | +1.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
To derive percentages foreach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-68

Been Drunk: Trends in Thirty-Day Prevalence by Subgroups for Twelfth Graders

|  | Percentage who had been drunk in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975-79 1980-89 |  | $\underline{1990}$ | $\underline{1991}$ | $\frac{1992}{15800}$ | $\frac{1993}{16300}$ | $\frac{1994}{15400}$ | Class of: |  |  | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ |  |
|  |  |  | 1995 |  |  |  |  | 1996 | 1997 | change |  |  |  |  |  |  |  |  |
| Approx. $\mathrm{N}=$ | - | - |  | - |  |  |  | 15000 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | - | - | 31.6 | 29.9 | 28.9 | 30.8 | 33.2 | 31.3 | 34.2 | 32.9 | 32.9 | 32.3 | 32.7 | 30.3 | 30.9 | 32.5 | +1.6 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | - | 37.1 | 35.2 | 34.5 | 34.5 | 37.8 | 35.4 | 39.2 | 39.0 | 37.9 | 38.4 | 37.0 | 34.3 | 34.9 | 36.0 | +1.0 |
| Female | - | - | - | 25.4 | 24.5 | 23.5 | 26.8 | 28.8 | 27.3 | 29.1 | 26.6 | 27.7 | 26.7 | 28.4 | 26.9 | 26.9 | 29.0 | +2.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | - | 32.2 | 31.4 | 32.6 | 32.2 | 37.6 | 31.4 | 38.1 | 33.7 | 36.1 | 35.0 | 36.3 | 31.7 | 37.6 | 34.7 | -3.0 |
| Complete 4 years | - | - | - | 30.9 | 29.2 | 27.4 | 29.4 | 31.4 | 31.0 | 32.3 | 32.0 | 31.7 | 30.6 | 31.3 | 29.3 | 28.7 | 31.2 | +2.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | - | 36.4 | 30.0 | 35.0 | 35.2 | 35.5 | 37.2 | 35.9 | 35.6 | 37.5 | 39.3 | 33.9 | 33.6 | 35.4 | 38.1 | +2.7 |
| North Central | - | - | - | 37.2 | 38.2 | 32.5 | 34.1 | 38.2 | 31.5 | 33.7 | 34.8 | 33.4 | 34.8 | 39.2 | 35.0 | 34.9 | 34.2 | -0.7 |
| South | - | - | - | 26.5 | 25.2 | 26.4 | 29.1 | 31.2 | 31.0 | 34.5 | 30.1 | 30.8 | 26.5 | 28.8 | 28.4 | 25.9 | 29.3 | +3.4 |
| West | - | - | - | 28.5 | 26.6 | 23.2 | 25.4 | 27.1 | 24.7 | 32.7 | 33.5 | 32.2 | 32.8 | 28.8 | 25.0 | 30.1 | 29.5 | -0.6 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | - | 30.4 | 26.1 | 29.4 | 28.7 | 32.0 | 31.5 | 31.5 | 32.2 | 29.2 | 30.5 | 30.6 | 32.9 | 25.4 | 27.4 | +2.0 |
| Other MSA | - | - | - | 33.5 | 29.8 | 26.9 | 29.9 | 31.7 | 33.0 | 33.7 | 34.0 | 35.4 | 34.5 | 31.7 | 29.1 | 33.5 | 37.3 | +3.8 |
| Non-MSA | - | - | - | 29.4 | 33.7 | 32.0 | 34.4 | 36.9 | 28.2 | 38.2 | 31.4 | 32.5 | 30.5 | 36.7 | 29.2 | 33.2 | 29.1 | -4.1 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | - | 20.4 | 20.5 | 23.6 | 25.7 | 25.4 | 18.8 | 23.7 | 24.6 | 20.8 | 28.4 | 22.2 | 20.0 | 25.6 | 25.5 | -0.1 |
| 2.5-3.0 | - | - | - | 30.2 | 30.0 | 26.4 | 30.3 | 30.0 | 27.4 | 31.5 | 28.0 | 30.5 | 33.1 | 32.2 | 27.0 | 28.7 | 32.3 | +3.6 |
| 3.5-4.0 | - | - | - | 31.0 | 31.3 | 29.2 | 29.9 | 34.4 | 31.1 | 32.7 | 34.1 | 34.0 | 31.2 | 32.0 | 32.4 | 30.6 | 35.1 | +4.5 |
| 4.5-5.0 | - | - | - | 34.4 | 29.4 | 32.8 | 33.5 | 36.5 | 35.8 | 37.7 | 36.0 | 32.8 | 31.9 | 36.1 | 31.0 | 33.3 | 33.7 | +0.4 |
| 5.5-6.0 (High) | - | - | - | 40.5 | 34.3 | 30.4 | 30.7 | 34.9 | 34.6 | 39.8 | 39.9 | 40.6 | 35.5 | 33.6 | 34.5 | 33.4 | 32.6 | -0.8 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | 34.7 | 33.6 | 34.0 | 36.4 | 36.6 | 37.7 | 39.3 | 37.8 | 37.0 | 37.7 | 36.6 | 35.6 | 36.4 | +0.8 |
| Black | - | - | - | - | 11.0 | 12.5 | 14.1 | 13.2 | 13.0 | 13.8 | 13.8 | 14.9 | 14.9 | 12.0 | 12.1 | 11.7 | 14.3 | +2.6 |
| Hispanic | - | - | - | - | 27.2 | 24.8 | 23.0 | 24.2 | 26.2 | 26.9 | 25.9 | 27.5 | 29.8 | 25.5 | 23.5 | 23.9 | 24.1 | +0.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $\mathrm{s}=.05, \mathrm{ss}=.01,55 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on two of six forms; N is two-sixths of N indic ated in Table D - 107 .
SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sizes and thus provide more stable estimates.

## Alcohol: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Eighth Graders

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}$ | 2002 | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 12.9 | 13.4 | 13.5 | 14.5 | 14.5 | 15.6 | 14.5 | 13.7 | 15.2 | 14.1 | 13.2 | 12.4 | 11.9 | 11.4 | -0.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 14.3 | 13.9 | 14.8 | 16.0 | 15.1 | 16.5 | 15.3 | 14.4 | 16.4 | 14.4 | 13.7 | 12.5 | 12.2 | 10.8 | -1.4 |
| Female | 11.4 | 12.8 | 12.3 | 13.0 | 13.9 | 14.5 | 13.5 | 12.7 | 13.9 | 13.6 | 12.4 | 12.1 | 11.6 | 11.8 | +0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 24.4 | 26.4 | 29.3 | 29.3 | 29.2 | 29.9 | 30.3 | 30.5 | 33.9 | 29.3 | 29.6 | 28.1 | 27.7 | 25.1 | -2.5 |
| Complete 4 years | 11.1 | 11.5 | 11.3 | 12.5 | 12.7 | 13.3 | 12.5 | 11.6 | 13.0 | 12.3 | 11.2 | 10.9 | 10.2 | 10.0 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 10.3 | 10.7 | 10.0 | 12.6 | 12.6 | 15.1 | 13.0 | 11.3 | 14.5 | 13.8 | 12.6 | 10.0 | 9.4 | 9.8 | +0.4 |
| North Central | 13.4 | 14.2 | 12.8 | 13.7 | 14.2 | 16.0 | 14.2 | 14.4 | 17.4 | 15.6 | 12.5 | 12.1 | 12.9 | 12.5 | -0.4 |
| South | 14.1 | 14.8 | 15.5 | 14.9 | 15.7 | 15.8 | 15.3 | 14.2 | 15.7 | 13.7 | 15.3 | 14.0 | 13.0 | 11.6 | -1.4 |
| West | 12.3 | 12.8 | 15.0 | 16.5 | 14.4 | 15.3 | 14.6 | 13.9 | 12.2 | 13.3 | 11.0 | 12.1 | 11.0 | 11.5 | +0.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 12.4 | 12.5 | 10.6 | 12.3 | 12.3 | 14.5 | 13.7 | 12.2 | 13.1 | 12.8 | 11.1 | 10.8 | 11.2 | 10.6 | -0.6 |
| OtherMSA | 12.4 | 14.0 | 14.5 | 15.7 | 14.2 | 15.7 | 14.0 | 13.0 | 14.2 | 12.8 | 13.2 | 12.6 | 10.8 | 11.3 | +0.5 |
| Non-MSA | 14.4 | 13.5 | 15.5 | 14.4 | 17.8 | 16.9 | 16.4 | 16.6 | 19.7 | 18.5 | 15.9 | 13.9 | 15.1 | 12.8 | -2.2 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 21.8 | 21.8 | 19.7 | 20.4 | 23.2 | 20.1 | 22.5 | 20.0 | 23.7 | 22.5 | 21.0 | 19.5 | 20.1 | 19.2 | -0.9 |
| 2.5-3.0 | 15.1 | 16.0 | 15.6 | 17.1 | 17.8 | 18.4 | 16.2 | 16.4 | 19.6 | 18.7 | 16.6 | 15.2 | 15.7 | 14.9 | -0.8 |
| 3.5-4.0 | 12.8 | 13.0 | 13.9 | 14.8 | 15.0 | 15.9 | 15.8 | 14.5 | 16.1 | 13.2 | 13.9 | 13.2 | 12.9 | 11.6 | -1.2 |
| 4.5-5.0 | 10.2 | 10.3 | 10.3 | 11.8 | 11.0 | 13.1 | 11.7 | 10.9 | 11.0 | 10.0 | 9.8 | 9.8 | 8.4 | 9.5 | +1.1 |
| 5.5-6.0 (High) | 9.8 | 9.5 | 10.1 | 11.2 | 10.5 | 12.1 | 10.6 | 10.7 | 11.21 | 11.0 | 8.1 | 8.8 | 8.3 | 7.2 | -1.1 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 12.7 | 12.6 | 12.9 | 13.9 | 15.1 | 15.1 | 14.1 | 14.3 | 14.9 | 13.8 | 12.7 | 11.8 | 11.3 | -0.5 |
| Black | - | 9.6 | 10.7 | 11.8 | 10.8 | 10.4 | 9.8 | 9.0 | 9.9 | 10.0 | 9.0 | 9.4 | 10.4 | 9.8 | -0.6 |
| Hispanic | - | 20.4 | 21.4 | 22.3 | 22.0 | 21.0 | 20.7 | 20.4 | 20.9 | 19.1 | 17.6 | 17.8 | 16.6 | 16.1 | -0.5 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a P Parental education is an average score of mother's education and father's education. See Appendix B for details }, ~}$
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

## TABLE D-70

Alcohol: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Tenth Graders

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 22.9 | 21.1 | 23.0 | 23.6 | 24.0 | 24.8 | 25.1 | 24.3 | 25.6 | 26.2 | 24.9 | 22.4 | 22.2 | 22.0 | -0.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 26.4 | 23.7 | 26.5 | 28.5 | 26.3 | 27.2 | 28.6 | 26.7 | 29.7 | 29.8 | 28.6 | 23.8 | 23.2 | 23.8 | +0.6 |
| Female | 19.5 | 18.6 | 19.3 | 18.7 | 21.5 | 22.3 | 21.7 | 22.2 | 21.8 | 22.5 | 21.4 | 21.0 | 21.2 | 20.2 | -1.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 33.0 | 31.8 | 35.1 | 36.4 | 37.5 | 38.2 | 39.4 | 38.2 | 39.3 | 39.3 | 40.2 | 34.3 | 34.2 | 32.9 | -1.3 |
| Complete 4 years | 20.8 | 18.9 | 20.5 | 20.8 | 21.5 | 22.5 | 22.7 | 22.0 | 23.4 | 24.2 | 22.4 | 20.4 | 20.3 | 20.4 | +0.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 25.1 | 19.9 | 23.2 | 21.3 | 22.1 | 23.8 | 23.4 | 25.6 | 28.1 | 25.4 | 22.7 | 21.4 | 23.3 | 25.5 | +2.2 |
| North Central | 23.7 | 21.3 | 23.5 | 24.8 | 25.3 | 25.3 | 24.0 | 24.2 | 27.1 | 28.3 | 26.7 | 22.1 | 22.0 | 18.3 | -3.7 s |
| South | 22.7 | 21.5 | 22.6 | 24.6 | 24.5 | 25.6 | 25.6 | 25.2 | 24.2 | 24.9 | 24.2 | 21.8 | 21.5 | 22.4 | +0.9 |
| West | 20.7 | 21.7 | 22.5 | 22.5 | 23.1 | 23.6 | 27.9 | 21.8 | 23.8 | 26.5 | 25.7 | 24.9 | 22.2 | 22.6 | +0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 21.6 | 19.3 | 20.9 | 19.0 | 20.2 | 22.2 | 22.5 | 20.0 | 24.3 | 25.7 | 22.6 | 19.4 | 19.7 | 19.6 | -0.1 |
| OtherMSA | 22.1 | 20.0 | 21.2 | 24.4 | 24.1 | 24.9 | 24.8 | 24.0 | 24.6 | 25.4 | 23.9 | 22.7 | 22.1 | 23.4 | +1.3 |
| Non-MSA | 25.5 | 25.2 | 28.1 | 26.8 | 28.1 | 27.6 | 28.9 | 30.1 | 29.3 | 28.2 | 29.5 | 26.2 | 26.2 | 22.2 | -4.0 s |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 25.7 | 25.6 | 26.8 | 25.5 | 30.5 | 27.2 | 25.5 | 26.5 | 28.4 | 27.5 | 26.3 | 26.7 | 27.2 | 27.1 | -0.1 |
| 2.5-3.0 | 26.0 | 22.4 | 25.7 | 25.7 | 26.7 | 27.8 | 26.1 | 27.9 | 28.7 | 29.4 | 27.4 | 25.1 | 24.3 | 24.4 | +0.1 |
| 3.5-4.0 | 21.7 | 21.3 | 22.8 | 24.7 | 24.6 | 25.4 | 26.5 | 24.8 | 25.6 | 26.1 | 25.6 | 22.7 | 22.6 | 22.6 | +0.1 |
| 4.5-5.0 | 20.8 | 19.7 | 19.9 | 21.7 | 21.6 | 22.0 | 23.1 | 21.5 | 23.3 | 25.0 | 23.4 | 19.1 | 19.6 | 19.7 | +0.1 |
| 5.5-6.0 (High) | 22.4 | 19.5 | 20.4 | 19.3 | 19.0 | 24.0 | 24.0 | 21.5 | 24.9 | 24.6 | 23.1 | 20.6 | 19.9 | 20.4 | +0.5 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 23.2 | 23.0 | 24.5 | 25.4 | 26.2 | 26.9 | 27.0 | 27.2 | 28.1 | 27.4 | 25.5 | 24.5 | 24.0 | -0.4 |
| Black | - | 15.0 | 14.8 | 14.0 | 13.3 | 12.2 | 12.7 | 12.8 | 12.7 | 12.9 | 12.6 | 12.4 | 12.1 | 11.6 | -0.4 |
| Hispanic | - | 22.9 | 23.8 | 24.2 | 26.8 | 29.6 | 27.5 | 26.3 | 27.5 | 28.3 | 27.7 | 26.5 | 26.1 | 26.9 | +0.8 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. '-' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails,
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

## TABLE D-71

Alcohol: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders


## TABLE D-71 (cont'd)

Alcohol: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { '03-'04 } \\ \text { change } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}$ | $\underline{2002}$ | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 32.2 | 29.8 | 27.9 | 27.5 | 28.2 | 29.8 | 30.2 | 31.3 | 31.5 | 30.8 | 30.0 | 29.7 | 28.6 | 27.9 | 29.2 | +1.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 39.1 | 37.8 | 35.6 | 34.6 | 37.0 | 36.9 | 37.0 | 37.9 | 39.2 | 38.1 | 36.7 | 36.0 | 34.2 | 34.2 | 34.3 | 0.0 |
| Female | 24.4 | 21.2 | 20.3 | 20.7 | 20.2 | 23.0 | 23.5 | 24.4 | 24.0 | 23.6 | 23.5 | 23.7 | 23.0 | 22.1 | 24.2 | +2.2 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 35.8 | 34.4 | 32.8 | 32.7 | 34.0 | 35.2 | 33.9 | 36.2 | 36.3 | 35.4 | 35.7 | 35.9 | 34.0 | 34.5 | 34.6 | +0.2 |
| Complete 4 years | 30.3 | 27.9 | 26.0 | 25.8 | 26.3 | 27.8 | 28.8 | 29.5 | 30.0 | 29.5 | 27.6 | 27.8 | 27.2 | 25.9 | 27.6 | +1.7 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 37.2 | 33.4 | 25.8 | 30.3 | 29.2 | 31.2 | 33.7 | 33.5 | 33.5 | 33.7 | 35.1 | 31.8 | 30.7 | 30.9 | 33.2 | +2.3 |
| North Central | 37.9 | 34.6 | 34.6 | 30.1 | 31.9 | 34.3 | 31.5 | 31.6 | 32.6 | 31.6 | 33.9 | 34.5 | 33.4 | 32.5 | 30.2 | -2.3 |
| South | 27.2 | 26.3 | 24.7 | 27.1 | 26.9 | 28.6 | 30.2 | 30.6 | 30.7 | 30.0 | 24.9 | 26.6 | 26.8 | 23.7 | 26.1 | +2.5 |
| West | 26.3 | 26.3 | 26.0 | 22.0 | 24.5 | 24.2 | 24.0 | 29.6 | 29.5 | 28.6 | 29.3 | 26.0 | 23.9 | 26.5 | 28.6 | +2.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 34.5 | 28.6 | 25.5 | 27.6 | 26.8 | 28.3 | 29.8 | 29.9 | 27.9 | 27.1 | 29.7 | 29.0 | 29.9 | 23.3 | 25.5 | +2.2 |
| OtherMSA | 31.8 | 30.1 | 27.0 | 26.5 | 27.1 | 28.4 | 30.3 | 31.1 | 33.1 | 32.2 | 29.3 | 29.0 | 28.0 | 29.8 | 31.9 | +2.1 |
| Non-MSA | 30.6 | 30.4 | 31.9 | 29.2 | 31.5 | 34.0 | 30.5 | 33.2 | 32.4 | 32.4 | 31.7 | 31.9 | 28.2 | 30.5 | 28.2 | -2.4 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 25.3 | 26.8 | 23.4 | 21.9 | 24.0 | 26.6 | 24.8 | 22.6 | 26.3 | 27.4 | 25.1 | 24.8 | 22.2 | 23.5 | 22.9 | -0.6 |
| 2.5-3.0 | 32.7 | 29.9 | 28.1 | 27.6 | 28.5 | 31.2 | 28.6 | 30.4 | 30.3 | 30.8 | 29.2 | 30.2 | 28.5 | 27.6 | 28.8 | +1.2 |
| 3.5-4.0 | 32.0 | 30.4 | 27.9 | 28.4 | 28.4 | 29.5 | 29.8 | 31.0 | 33.2 | 30.5 | 30.5 | 30.3 | 28.6 | 28.4 | 30.9 | +2.5 |
| 4.5-5.0 | 34.5 | 29.9 | 28.1 | 28.4 | 29.3 | 29.9 | 32.4 | 32.4 | 32.3 | 30.6 | 29.9 | 30.9 | 30.9 | 28.6 | 30.5 | +1.9 |
| 5.5-6.0 (High) | 34.1 | 30.6 | 30.4 | 29.0 | 29.0 | 30.7 | 33.1 | 34.9 | 32.4 | 34.2 | 32.7 | 28.6 | 30.6 | 28.7 | 27.8 | -0.9 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 36.6 | 34.6 | 32.1 | 31.3 | 31.5 | 32.3 | 33.4 | 35.1 | 36.4 | 35.7 | 34.6 | 34.5 | 33.7 | 32.4 | 32.5 | +0.2 |
| Black | 14.4 | 11.7 | 11.3 | 12.6 | 14.4 | 14.9 | 15.3 | 13.4 | 12.3 | 12.3 | 11.5 | 11.8 | 11.5 | 10.8 | 11.4 | +0.6 |
| Hispanic | 25.6 | 27.9 | 31.1 | 27.2 | 24.3 | 26.6 | 27.1 | 27.6 | 28.1 | 29.3 | 31.0 | 28.4 | 26.4 | 25.9 | 26.0 | +0.1 |

[^117]
## TABLE D-72

## Beer: Trends in Thirty-Day Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 16.2 | 16.9 | 17.4 | 18.3 | 18.8 | 18.4 | 16.7 | 16.2 | 16.6 | 15.2 | 15.0 | 12.3 | 12.0 | 14.4 | +2.4 s |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 19.1 | 18.6 | 19.1 | 21.2 | 20.4 | 19.9 | 18.6 | 17.7 | 19.4 | 16.8 | 16.5 | 12.2 | 12.4 | 14.0 | +1.5 |
| Female | 13.5 | 15.3 | 16.1 | 16.0 | 17.0 | 17.1 | 14.6 | 14.7 | 14.1 | 13.5 | 13.6 | 12.2 | 11.4 | 14.6 | +3.3 s |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 26.4 | 27.7 | 32.2 | 32.8 | 36.0 | 33.0 | 33.9 | 32.6 | 35.5 | 29.6 | 32.9 | 27.4 | 28.7 | 26.4 | -2.3 |
| Complete 4 years | 14.6 | 15.4 | 15.6 | 16.6 | 16.8 | 16.3 | 14.6 | 14.4 | 14.3 | 13.8 | 12.9 | 11.1 | 10.2 | 13.1 | +2.9 ss |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 14.0 | 14.0 | 14.9 | 18.6 | 19.3 | 21.7 | 18.4 | 14.7 | 18.5 | 14.2 | 18.7 | 10.8 | 12.3 | 15.1 | +2.8 |
| North Central | 16.4 | 18.0 | 16.7 | 18.0 | 17.4 | 19.3 | 16.8 | 18.4 | 17.5 | 17.0 | 13.2 | 10.2 | 14.0 | 15.9 | +1.9 |
| South | 17.8 | 18.5 | 19.1 | 18.2 | 20.1 | 16.6 | 15.5 | 16.1 | 17.2 | 14.2 | 14.3 | 14.0 | 11.4 | 14.4 | +3.0 |
| West | 14.9 | 15.1 | 18.0 | 18.8 | 17.6 | 17.8 | 17.2 | 15.1 | 12.6 | 15.7 | 15.3 | 13.9 | 10.3 | 12.2 | +1.8 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 15.0 | 18.7 | 15.1 | 15.2 | 12.0 | 16.2 | 15.0 | 13.8 | 14.3 | 14.0 | 12.0 | 11.5 | 11.0 | 14.2 | +3.2 |
| Other MSA | 16.1 | 16.8 | 17.6 | 19.4 | 19.1 | 19.6 | 15.9 | 14.3 | 16.5 | 14.1 | 15.5 | 12.4 | 11.9 | 13.9 | +2.0 |
| Non-MSA | 17.8 | 15.4 | 19.8 | 18.3 | 21.8 | 18.8 | 19.6 | 22.7 | 19.4 | 18.8 | 17.2 | 13.2 | 13.5 | 15.6 | +2.1 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 22.0 | 22.5 | 21.5 | 24.4 | 23.9 | 19.7 | 21.6 | 21.9 | 25.4 | 23.2 | 21.3 | 24.1 | 17.1 | 23.7 | +6.6 |
| 2.5-3.0 | 18.2 | 18.4 | 19.5 | 19.7 | 22.8 | 21.3 | 21.2 | 17.4 | 19.7 | 20.7 | 18.4 | 14.8 | 15.1 | 17.8 | +2.7 |
| 3.5-4.0 | 15.7 | 18.0 | 19.4 | 19.7 | 19.6 | 20.2 | 18.5 | 17.9 | 16.9 | 13.5 | 18.1 | 13.5 | 14.3 | 15.0 | +0.7 |
| 4.5-5.0 | 14.4 | 13.4 | 14.9 | 15.3 | 15.6 | 17.8 | 12.7 | 12.6 | 12.3 | 12.0 | 10.0 | 8.4 | 7.4 | 11.9 | +4.5 sss |
| 5.5-6.0 (High) | 13.5 | 14.6 | 14.4 | 17.2 | 14.2 | 13.2 | 14.1 | 17.0 | 16.0 | 11.4 | 9.7 | 10.3 | 10.2 | 13.3 | +3.1 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 16.7 | 17.6 | 17.9 | 19.0 | 19.7 | 18.8 | 17.4 | 17.4 | 16.8 | 15.5 | 13.5 | 12.0 | 13.5 | +1.5 |
| Black | - | 12.6 | 13.0 | 15.8 | 14.5 | 11.1 | 9.7 | 8.1 | 9.7 | 9.7 | 7.9 | 7.2 | 7.5 | 8.1 | +0.6 |
| Hispanic | - | 23.9 | 24.2 | 22.2 | 23.3 | 23.7 | 21.8 | 19.9 | 19.5 | 19.8 | 20.7 | 21.8 | 19.6 | 18.4 | -1.3 |

NOTES:
Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$. ' - ' indic ates data not available. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-105 forthe number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of two forms in 1991-96; $N$ is one-half of $N$ indic ated in Table D-105. Data based on one of four forms beginning in 1997; N is one-third of N indicated in Table $\mathrm{D}-105$.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data forthe specified yearand the previousyearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-73

## Beer: Trends in Thirty-Day Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 31.1 | 28.9 | 28.7 | 30.2 | 29.9 | 30.5 | 30.4 | 28.3 | 29.5 | 30.6 | 28.0 | 24.6 | 23.2 | 26.5 | +3.3 s |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 37.6 | 33.1 | 33.3 | 37.3 | 33.5 | 34.7 | 34.1 | 32.5 | 35.4 | 35.4 | 33.7 | 28.7 | 27.9 | 30.7 | +2.9 |
| Female | 25.2 | 25.1 | 24.2 | 23.3 | 26.2 | 26.7 | 27.1 | 24.3 | 23.8 | 25.6 | 22.9 | 20.9 | 19.3 | 22.3 | +3.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 39.4 | 37.5 | 37.4 | 41.4 | 41.9 | 44.8 | 43.8 | 40.5 | 43.7 | 42.7 | 42.3 | 37.2 | 30.3 | 36.4 | +6.1 s |
| Complete 4 years | 29.4 | 27.2 | 26.9 | 28.0 | 27.8 | 28.1 | 28.2 | 26.1 | 27.0 | 28.6 | 25.9 | 22.7 | 22.2 | 25.1 | +2.9 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 37.1 | 29.4 | 32.0 | 31.9 | 31.7 | 33.1 | 33.2 | 31.0 | 34.7 | 31.7 | 27.0 | 23.8 | 25.6 | 30.4 | +4.7 |
| North Central | 31.7 | 29.4 | 29.1 | 31.6 | 31.1 | 30.4 | 30.1 | 27.8 | 29.8 | 33.1 | 29.0 | 25.6 | 23.3 | 22.1 | -1.2 |
| South | 29.4 | 28.4 | 26.6 | 29.5 | 29.4 | 30.6 | 28.5 | 27.2 | 27.8 | 27.1 | 26.6 | 22.6 | 21.9 | 27.2 | +5.3 s |
| West | 28.4 | 28.8 | 28.7 | 27.5 | 27.3 | 28.1 | 31.1 | 28.1 | 26.6 | 32.6 | 30.6 | 27.6 | 22.6 | 27.0 | +4.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 31.0 | 30.1 | 28.8 | 28.9 | 23.9 | 28.9 | 28.8 | 24.3 | 29.3 | 30.1 | 25.5 | 22.5 | 21.6 | 23.4 | +1.8 |
| Other MSA | 28.9 | 27.4 | 26.4 | 30.8 | 30.3 | 30.1 | 31.2 | 28.9 | 29.4 | 29.8 | 26.2 | 24.7 | 22.9 | 27.0 | +4.1 s |
| Non-MSA | 35.2 | 30.8 | 32.8 | 30.0 | 32.2 | 33.0 | 30.5 | 31.4 | 30.0 | 32.7 | 34.4 | 27.1 | 26.1 | 29.3 | +3.2 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 33.5 | 27.7 | 33.3 | 30.0 | 34.0 | 28.9 | 28.6 | 29.3 | 26.5 | 26.7 | 26.7 | 22.4 | 26.3 | 28.7 | +2.4 |
| 2.5-3.0 | 32.0 | 30.3 | 28.4 | 31.1 | 33.0 | 31.1 | 30.3 | 30.9 | 32.3 | 30.8 | 27.2 | 28.6 | 24.1 | 30.3 | +6.2 ss |
| 3.5-4.0 | 31.4 | 29.9 | 29.0 | 31.3 | 30.1 | 30.9 | 31.3 | 30.0 | 29.5 | 32.3 | 29.0 | 25.1 | 24.3 | 26.2 | +1.9 |
| 4.5-5.0 | 29.9 | 27.7 | 28.0 | 30.3 | 28.5 | 29.0 | 31.4 | 25.0 | 27.4 | 32.4 | 27.7 | 22.7 | 21.9 | 26.4 | +4.5 |
| 5.5-6.0 (High) | 30.7 | 27.4 | 28.1 | 27.1 | 26.5 | 33.7 | 30.7 | 26.5 | 31.1 | 28.7 | 30.4 | 21.9 | 21.0 | 24.2 | +3.2 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 31.7 | 30.2 | 31.1 | 32.1 | 32.5 | 32.4 | 31.9 | 32.2 | 33.1 | 31.7 | 28.7 | 27.0 | 27.5 | +0.5 |
| Black | - | 20.9 | 20.3 | 19.0 | 18.8 | 15.9 | 15.6 | 13.1 | 10.0 | 13.5 | 14.8 | 11.6 | 10.2 | 11.3 | +1.1 |
| Hispanic | - | 32.2 | 29.6 | 29.3 | 31.2 | 31.9 | 31.3 | 29.8 | 28.3 | 28.9 | 30.7 | 28.6 | 25.1 | 27.8 | +2.8 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. '-' indic ates data not available. Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 forthe number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of two forms in 1991-96; N is one-half of N indic ated in Table $\mathrm{D}-106$. Data based on one of four forms beginning in 1997; N is one-third of N indic ated in Table $\mathrm{D}-106$
SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | - | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | - | 59.8 | 62.1 | 62.3 | 63.7 | 62.9 | 62.7 | 60.3 | 61.7 | 59.5 | 56.7 | 55.5 | 56.2 | 53.3 | 51.4 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 68.6 | 73.1 | 73.0 | 74.0 | 74.3 | 71.4 | 68.3 | 69.7 | 67.4 | 64.5 | 64.3 | 64.9 | 61.8 | 59.7 |  |
| Female | - | 51.3 | 52.8 | 52.7 | 54.5 | 52.4 | 53.9 | 52.7 | 54.0 | 51.8 | 49.4 | 47.9 | 48.1 | 46.3 | 43.4 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 62.1 | 64.6 | 65.2 | 65.7 | 68.3 | 65.0 | 64.6 | 62.4 | 62.7 | 59.8 | 54.2 | 58.2 | 57.3 | 55.5 |  |
| Complete 4 years | - | 57.6 | 60.3 | 59.5 | 61.6 | 58.4 | 61.0 | 57.4 | 61.1 | 57.4 | 55.1 | 55.7 | 55.1 | 51.8 | 49.4 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 64.9 | 65.9 | 64.7 | 71.9 | 67.6 | 67.1 | 65.7 | 68.3 | 62.6 | 64.4 | 51.5 | 56.8 | 54.8 | 54.2 |  |
| North Central | - | 65.4 | 66.9 | 68.3 | 66.1 | 64.9 | 67.5 | 66.1 | 66.6 | 66.8 | 57.4 | 66.3 | 61.4 | 59.8 | 58.5 |  |
| South | - | 53.2 | 55.3 | 58.4 | 59.2 | 60.3 | 57.5 | 53.0 | 56.5 | 53.7 | 51.0 | 48.6 | 52.1 | 47.6 | 46.1 |  |
| West | - | 52.8 | 59.4 | 54.2 | 56.1 | 57.7 | 56.9 | 52.8 | 53.8 | 55.3 | 56.4 | 54.4 | 54.8 | 52.7 | 48.5 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 62.5 | 64.2 | 62.8 | 65.3 | 67.7 | 63.8 | 63.3 | 63.1 | 58.8 | 56.0 | 55.1 | 56.9 | 52.6 | 50.1 |  |
| Other MSA | - | 58.6 | 62.0 | 62.4 | 62.3 | 62.1 | 61.9 | 58.6 | 59.4 | 56.6 | 56.8 | 55.1 | 56.4 | 53.0 | 51.6 |  |
| Non-MSA | - | 59.3 | 60.7 | 61.7 | 64.4 | 60.5 | 63.0 | 60.0 | 63.6 | 63.7 | 57.3 | 56.3 | 55.4 | 54.3 | 52.1 |  |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 58.5 | 48.3 | 54.6 | 52.9 | 55.9 | 54.7 | 56.8 | 58.8 | 51.1 | 52.2 | 46.8 | 55.8 | 47.1 | 45.3 |  |
| 2.5-3.0 | - | 62.7 | 64.8 | 63.6 | 64.5 | 66.1 | 65.4 | 58.5 | 59.8 | 62.4 | 56.8 | 54.6 | 53.6 | 51.9 | 52.4 |  |
| 3.5-4.0 | - | 58.4 | 66.0 | 62.7 | 67.1 | 64.4 | 64.0 | 63.9 | 62.3 | 61.2 | 57.9 | 56.0 | 56.0 | 51.5 | 52.2 |  |
| 4.5-5.0 | - | 62.6 | 64.4 | 64.7 | 68.4 | 58.4 | 60.1 | 60.0 | 66.2 | 61.9 | 60.5 | 57.6 | 59.9 | 58.2 | 51.4 |  |
| 5.5-6.0 (High) | - | 64.1 | 69.3 | 68.3 | 63.6 | 69.3 | 68.9 | 68.3 | 65.9 | 54.2 | 55.4 | 62.5 | 57.7 | 57.4 | 53.2 |  |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 63.8 | 65.2 | 65.9 | 66.3 | 66.3 | 65.4 | 64.6 | 64.6 | 62.2 | 59.9 | 59.6 | 59.1 | 57.0 |  |
| Black | - | - | 38.7 | 36.4 | 37.4 | 38.7 | 38.8 | 37.2 | 39.2 | 36.9 | 33.1 | 32.7 | 28.6 | 30.3 | 32.6 |  |
| Hispanic | - | - | 52.7 | 54.3 | 52.3 | 52.5 | 47.7 | 47.5 | 43.4 | 40.7 | 46.5 | 50.9 | 55.4 | 49.2 | 40.4 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available. |  |  |  |  |  |  |  | . $05,5 \mathrm{ss}=.01$ | , $1,555=$ | 01. '-' | indic ate | sdata no | ot availa | le. |  |  |
| Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. <br> See Table D-107 for the number of subgroup cases. See Appendix $B$ for definition of variables in table. Data based on one of five forms in 1976-88; N is one-fifth of N indicated in Table $\mathrm{D}-107$. Data based on one of six forms beginning in 1989; N is one-sixth of N indic ated in Table $\mathrm{D}-107$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the | Future | Study, the | Univers | ty of Mic | higan. |  |  |  |  |  |  |  |  |  |  |  |

CAUTION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

TABLE D-74 (cont'd)
Beer: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 47.2 | 47.2 | 42.0 | 43.4 | 42.6 | 44.9 | 46.9 | 44.4 | 45.6 | 42.7 | 42.7 | 41.5 | 39.7 | 37.8 | 38.3 | +0.5 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 55.7 | 55.3 | 50.1 | 50.0 | 51.2 | 53.0 | 53.5 | 49.7 | 55.0 | 48.2 | 51.7 | 50.9 | 44.3 | 44.5 | 44.1 | -0.4 |
| Female | 38.0 | 39.3 | 34.6 | 37.2 | 35.6 | 37.4 | 40.2 | 39.9 | 37.0 | 36.9 | 33.9 | 32.1 | 34.4 | 31.7 | 32.1 | +0.4 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 46.5 | 52.4 | 48.8 | 48.2 | 47.1 | 50.1 | 46.2 | 44.6 | 49.6 | 47.5 | 42.4 | 54.1 | 45.7 | 39.4 | 44.0 | +4.6 |
| Complete 4 years | 47.5 | 45.2 | 39.9 | 41.5 | 41.6 | 42.8 | 47.0 | 44.4 | 44.4 | 41.7 | 42.4 | 38.4 | 37.9 | 37.2 | 36.6 | -0.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 52.7 | 49.5 | 40.8 | 47.0 | 43.3 | 47.0 | 56.9 | 47.5 | 52.6 | 54.3 | 48.9 | 47.2 | 43.4 | 41.9 | 42.6 | +0.7 |
| North Central | 50.3 | 53.5 | 49.1 | 46.3 | 48.0 | 49.7 | 48.1 | 43.3 | 44.6 | 45.4 | 47.6 | 48.1 | 42.9 | 43.1 | 41.4 | -1.7 |
| South | 42.0 | 41.1 | 39.5 | 43.0 | 40.4 | 43.8 | 44.4 | 43.3 | 43.2 | 36.6 | 35.1 | 33.6 | 35.1 | 32.0 | 34.2 | +2.2 |
| West | 45.4 | 46.0 | 36.7 | 37.0 | 38.2 | 37.8 | 38.8 | 44.5 | 45.5 | 40.2 | 43.5 | 39.9 | 39.8 | 36.9 | 36.1 | -0.7 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 52.3 | 44.4 | 42.3 | 44.0 | 42.8 | 45.9 | 49.1 | 45.5 | 42.1 | 39.9 | 45.2 | 38.0 | 40.5 | 36.3 | 34.2 | -2.1 |
| OtherMSA | 47.3 | 47.6 | 40.3 | 42.0 | 39.4 | 43.7 | 46.9 | 45.0 | 47.6 | 42.8 | 40.7 | 42.6 | 38.8 | 38.9 | 38.9 | -0.1 |
| Non-MSA | 42.4 | 48.8 | 45.1 | 45.3 | 47.6 | 46.0 | 45.3 | 41.9 | 45.6 | 45.4 | 43.2 | 43.3 | 40.5 | 37.5 | 41.4 | +3.9 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 42.2 | 48.1 | 36.6 | 41.1 | 37.0 | 43.1 | 31.2 | 30.4 | 37.0 | 35.4 | 37.2 | 39.1 | 41.6 | 30.9 | 34.1 | +3.2 |
| 2.5-3.0 | 47.5 | 46.7 | 41.4 | 43.7 | 44.4 | 44.0 | 42.4 | 41.5 | 42.8 | 43.0 | 37.4 | 48.0 | 36.6 | 36.2 | 38.0 | +1.8 |
| 3.5-4.0 | 45.8 | 48.4 | 40.7 | 44.4 | 42.2 | 42.8 | 48.2 | 46.3 | 48.9 | 42.5 | 45.1 | 35.8 | 40.9 | 39.9 | 43.0 | +3.1 |
| 4.5-5.0 | 49.3 | 46.4 | 43.8 | 41.9 | 41.1 | 47.1 | 47.1 | 47.7 | 48.9 | 40.0 | 43.9 | 43.6 | 39.9 | 38.4 | 36.1 | -2.3 |
| 5.5-6.0 (High) | 53.4 | 46.1 | 47.0 | 47.7 | 46.6 | 49.6 | 58.0 | 49.9 | 44.5 | 51.8 | 52.0 | 42.3 | 45.2 | 41.4 | 38.7 | -2.7 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 54.1 | 51.6 | 48.3 | 46.0 | 46.5 | 47.8 | 50.1 | 50.7 | 49.9 | 47.7 | 45.8 | 46.7 | 45.4 | 43.1 | 42.1 | -1.0 |
| Black | 28.4 | 25.3 | 24.2 | 28.0 | 29.9 | 25.6 | 28.4 | 25.5 | 22.8 | 22.3 | 21.7 | 20.6 | 16.9 | 14.0 | 15.7 | +1.6 |
| Hispanic | 36.6 | 40.3 | 44.7 | 39.8 | 40.5 | 41.7 | 41.3 | 39.8 | 39.0 | 43.6 | 45.3 | 42.6 | 40.8 | 37.2 | 36.7 | -0.4 |

${ }^{\text {a }}$ Parental educ ation is an average score of mother's seducation and father's education. See Appendix B for details.
${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-75

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 7.2 | 7.3 | 8.2 | 8.5 | 8.5 | 9.2 | 7.6 | 8.0 | 8.3 | 7.5 | 8.1 | 6.1 | 5.5 | 6.8 | +1.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 9.2 | 8.9 | 9.4 | 10.6 | 9.8 | 10.1 | 9.2 | 10.0 | 10.5 | 8.8 | 9.4 | 6.5 | 5.8 | 6.4 | +0.5 |
| Female | 5.2 | 5.9 | 7.1 | 6.7 | 7.4 | 8.2 | 6.0 | 6.3 | 6.2 | 6.3 | 7.0 | 5.5 | 5.1 | 6.9 | +1.8 s |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 15.4 | 18.2 | 18.4 | 20.7 | 17.5 | 19.7 | 22.0 | 21.6 | 24.8 | 21.9 | 25.4 | 19.0 | 17.5 | 19.0 | +1.4 |
| Complete 4 years | 5.9 | 5.8 | 6.9 | 7.1 | 7.5 | 7.6 | 6.0 | 6.6 | 6.2 | 6.1 | 6.3 | 5.0 | 4.2 | 5.5 | +1.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 4.8 | 5.5 | 5.8 | 8.1 | 9.3 | 10.7 | 7.6 | 6.6 | 9.1 | 5.7 | 9.4 | 3.5 | 5.6 | 6.5 | +0.9 |
| North Central | 6.9 | 7.0 | 7.6 | 8.8 | 8.0 | 9.2 | 8.4 | 10.0 | 9.3 | 8.9 | 7.8 | 5.6 | 7.0 | 8.3 | +1.4 |
| South | 8.9 | 9.0 | 9.4 | 8.1 | 8.8 | 8.4 | 6.9 | 8.0 | 8.9 | 7.1 | 7.9 | 6.7 | 5.1 | 6.4 | +1.3 |
| West | 7.0 | 6.7 | 9.2 | 9.1 | 8.1 | 9.2 | 7.9 | 7.1 | 5.3 | 8.0 | 7.9 | 8.4 | 4.2 | 6.0 | +1.8 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 6.6 | 7.4 | 6.1 | 6.9 | 5.3 | 8.5 | 5.6 | 6.7 | 6.2 | 6.0 | 5.4 | 5.0 | 4.2 | 5.6 | +1.4 |
| Other MSA | 7.0 | 7.6 | 8.2 | 9.1 | 8.8 | 9.3 | 7.4 | 6.6 | 8.6 | 6.4 | 8.4 | 6.0 | 5.3 | 6.4 | +1.0 |
| Non-MSA | 8.4 | 6.8 | 10.7 | 8.4 | 9.8 | 9.8 | 9.6 | 12.3 | 10.2 | 11.5 | 10.5 | 7.7 | 7.3 | 8.9 | +1.6 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 12.6 | 12.5 | 11.0 | 11.6 | 12.5 | 12.8 | 9.8 | 12.6 | 17.9 | 14.8 | 11.5 | 11.2 | 9.4 | 11.9 | +2.5 |
| 2.5-3.0 | 7.7 | 8.9 | 9.9 | 9.3 | 10.2 | 10.7 | 10.1 | 8.0 | 9.8 | 10.9 | 10.0 | 8.1 | 7.2 | 8.8 | +1.6 |
| 3.5-4.0 | 7.8 | 7.0 | 7.9 | 9.0 | 9.8 | 10.1 | 8.3 | 9.0 | 10.4 | 6.6 | 9.1 | 6.8 | 6.0 | 7.9 | +1.9 |
| 4.5-5.0 | 5.0 | 4.5 | 7.3 | 6.8 | 6.1 | 7.5 | 5.3 | 5.9 | 3.9 | 5.0 | 5.1 | 3.7 | 3.5 | 5.3 | +1.8 s |
| 5.5-6.0 (High) | 6.2 | 6.0 | 6.2 | 8.4 | 5.9 | 6.7 | 5.7 | 8.7 | 6.1 | 4.3 | 5.3 | 4.8 | 4.1 | 4.7 | +0.6 |
| Race (2-yearaverage) ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 7.0 | 7.6 | 8.0 | 8.7 | 9.2 | 8.6 | 7.9 | 8.3 | 8.3 | 7.7 | 6.7 | 5.7 | 6.1 | +0.4 |
| Black | - | 5.2 | 5.1 | 7.2 | 6.4 | 4.9 | 4.4 | 3.6 | 4.7 | 4.9 | 4.0 | 3.2 | 3.0 | 3.6 | +0.7 |
| Hispanic | - | 12.7 | 13.2 | 12.1 | 11.6 | 12.7 | 12.3 | 10.5 | 10.2 | 9.8 | 12.3 | 13.2 | 10.3 | 9.1 | -1.2 |

NOTES:
signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001 .-$ indicates data not avaliable
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of two forms in 1991-96; N is one-half of N indicated in Table D-105. Data based on one of four forms beginning in 1997; N is one-third of N indicated in Table D-105.

SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

Parental education is an average score of mother's education and father's seducation. See Appendix B for details,
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-76
Beer: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Tenth Graders

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 16.4 | 15.1 | 16.1 | 17.0 | 17.1 | 17.9 | 17.6 | 16.0 | 18.1 | 17.5 | 16.3 | 14.1 | 13.8 | 13.6 | -0.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 21.7 | 18.9 | 20.4 | 23.0 | 21.1 | 22.5 | 21.2 | 20.7 | 24.0 | 22.5 | 22.2 | 16.7 | 18.3 | 17.1 | -1.2 |
| Female | 11.7 | 11.7 | 11.8 | 11.1 | 13.1 | 13.7 | 14.4 | 11.8 | 12.5 | 12.7 | 11.2 | 11.7 | 9.9 | 10.4 | +0.5 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 25.4 | 22.8 | 25.4 | 26.6 | 28.2 | 30.7 | 31.6 | 26.1 | 29.9 | 26.8 | 31.2 | 26.2 | 22.7 | 20.5 | -2.2 |
| Complete 4 years | 14.5 | 13.5 | 14.2 | 15.0 | 15.3 | 15.8 | 15.4 | 14.2 | 16.2 | 15.9 | 14.1 | 12.2 | 12.6 | 12.7 | +0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 19.0 | 14.6 | 17.1 | 18.4 | 17.4 | 19.9 | 17.5 | 18.8 | 21.5 | 16.4 | 15.2 | 12.6 | 16.4 | 16.9 | +0.5 |
| North Central | 16.5 | 16.7 | 17.3 | 18.2 | 18.3 | 18.8 | 18.4 | 16.3 | 18.3 | 20.9 | 16.4 | 14.9 | 13.5 | 10.9 | -2.6 |
| South | 15.4 | 13.9 | 14.9 | 16.9 | 16.9 | 17.7 | 16.6 | 15.4 | 17.5 | 15.7 | 15.9 | 13.2 | 12.4 | 12.8 | +0.5 |
| West | 15.9 | 15.5 | 15.2 | 13.5 | 15.5 | 15.1 | 18.3 | 14.0 | 15.5 | 16.9 | 18.3 | 16.0 | 14.0 | 15.0 | +1.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 16.0 | 14.8 | 15.2 | 14.5 | 12.7 | 16.4 | 15.9 | 12.8 | 18.0 | 16.9 | 13.0 | 12.0 | 13.0 | 11.5 | -1.5 |
| Other MSA | 15.8 | 13.9 | 13.9 | 17.0 | 17.2 | 17.6 | 17.6 | 15.9 | 17.3 | 16.3 | 15.7 | 13.5 | 13.1 | 14.4 | +1.3 |
| Non-MSA | 17.9 | 17.7 | 20.9 | 18.7 | 19.6 | 20.1 | 19.1 | 19.6 | 20.1 | 20.1 | 21.2 | 18.1 | 17.0 | 14.7 | -2.3 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 21.3 | 15.6 | 18.9 | 19.2 | 20.3 | 20.5 | 18.1 | 12.8 | 14.2 | 16.7 | 17.9 | 13.8 | 19.0 | 14.1 | -4.9 |
| 2.5-3.0 | 18.5 | 16.6 | 15.3 | 18.5 | 19.7 | 18.8 | 18.0 | 19.0 | 20.5 | 16.5 | 15.9 | 15.8 | 14.8 | 17.1 | +2.3 |
| 3.5-4.0 | 15.0 | 15.6 | 16.5 | 16.7 | 17.4 | 18.5 | 18.9 | 15.8 | 17.6 | 17.9 | 17.8 | 14.4 | 13.7 | 13.9 | +0.2 |
| 4.5-5.0 | 15.1 | 14.0 | 16.3 | 16.8 | 16.0 | 15.9 | 16.5 | 14.9 | 17.3 | 19.0 | 14.3 | 12.5 | 13.1 | 12.0 | -1.1 |
| 5.5-6.0 (High) | 15.4 | 13.1 | 15.3 | 14.5 | 13.8 | 18.3 | 16.1 | 16.2 | 19.3 | 16.8 | 17.5 | 13.1 | 11.8 | 13.7 | +1.9 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 16.7 | 16.4 | 17.4 | 18.1 | 19.0 | 19.3 | 18.6 | 19.7 | 19.9 | 18.1 | 16.5 | 16.1 | 15.5 | -0.6 |
| Black | - | 9.8 | 10.1 | 9.3 | 8.7 | 6.5 | 6.6 | 5.5 | 4.0 | 6.2 | 6.8 | 6.1 | 4.7 | 4.1 | -0.6 |
| Hispanic | - | 17.2 | 16.1 | 16.8 | 18.6 | 19.7 | 19.5 | 16.9 | 14.8 | 17.5 | 20.3 | 17.5 | 16.2 | 17.5 | +1.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of two forms in $1991-96 ; N$ is one-half of $N$ indic ated in Table D-106. Data based on one of four forms beginning in 1997; N is one-third of N indic ated in Table D-106.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-77

Beer: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | - | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | - | 33.0 | 35.1 | 35.4 | 36.4 | 36.6 | 38.0 | 37.6 | 38.1 | 36.2 | 32.0 | 33.1 | 33.8 | 31.0 | 31.3 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 45.6 | 49.0 | 49.8 | 50.6 | 51.1 | 49.4 | 48.5 | 49.8 | 47.7 | 42.6 | 45.4 | 45.4 | 41.5 | 39.5 |  |
| Female | - | 21.4 | 23.5 | 22.6 | 24.2 | 23.9 | 26.5 | 27.3 | 27.4 | 25.0 | 22.4 | 22.4 | 23.1 | 22.2 | 23.8 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 37.7 | 39.2 | 41.6 | 39.5 | 43.5 | 42.8 | 42.1 | 43.1 | 41.2 | 35.5 | 36.1 | 37.8 | 36.9 | 37.7 |  |
| Complete 4 years | - | 27.8 | 31.0 | 29.4 | 33.3 | 30.9 | 34.2 | 34.2 | 34.3 | 33.6 | 29.8 | 30.8 | 31.7 | 28.4 | 28.5 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 39.0 | 35.3 | 36.5 | 41.9 | 41.4 | 42.1 | 40.0 | 37.9 | 39.8 | 35.5 | 32.6 | 32.1 | 32.7 | 32.1 |  |
| North Central | - | 35.8 | 37.6 | 39.9 | 39.0 | 42.3 | 43.6 | 45.3 | 45.1 | 43.7 | 34.2 | 40.8 | 41.3 | 38.5 | 38.2 |  |
| South | - | 26.6 | 33.9 | 31.8 | 34.0 | 30.5 | 33.9 | 31.7 | 35.1 | 31.5 | 26.6 | 29.4 | 30.7 | 25.7 | 27.5 |  |
| West | - | 31.0 | 31.6 | 32.0 | 28.3 | 31.1 | 28.5 | 28.1 | 31.3 | 29.4 | 33.8 | 27.5 | 29.8 | 28.5 | 27.4 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 32.8 | 34.4 | 34.4 | 35.0 | 40.9 | 38.9 | 36.2 | 37.4 | 34.5 | 31.2 | 33.9 | 32.3 | 29.6 | 27.3 |  |
| Other MSA | - | 33.9 | 35.4 | 35.7 | 36.3 | 33.9 | 37.7 | 36.6 | 36.6 | 33.2 | 30.2 | 31.5 | 34.5 | 30.9 | 32.3 |  |
| Non-MSA | - | 32.1 | 35.2 | 35.7 | 37.6 | 37.0 | 37.6 | 39.8 | 40.6 | 41.4 | 35.1 | 35.0 | 33.9 | 32.6 | 32.9 |  |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 30.7 | 31.9 | 33.6 | 32.8 | 31.1 | 32.3 | 35.0 | 38.4 | 26.8 | 27.4 | 28.5 | 32.9 | 31.3 | 26.9 |  |
| 2.5-3.0 | - | 37.5 | 36.4 | 37.8 | 38.0 | 38.8 | 42.9 | 37.5 | 37.4 | 39.2 | 33.6 | 34.2 | 34.3 | 31.0 | 32.2 |  |
| 3.5-4.0 | - | 32.9 | 34.8 | 34.4 | 36.5 | 37.6 | 39.2 | 41.6 | 39.1 | 37.1 | 32.1 | 32.9 | 34.9 | 29.4 | 32.8 |  |
| 4.5-5.0 | - | 33.9 | 34.1 | 36.2 | 38.2 | 36.0 | 31.7 | 35.3 | 39.1 | 39.9 | 35.9 | 34.4 | 34.7 | 32.8 | 31.2 |  |
| 5.5-6.0 (High) | - | 27.2 | 38.0 | 28.7 | 35.5 | 37.6 | 38.5 | 38.9 | 36.5 | 30.2 | 27.4 | 33.8 | 29.7 | 31.4 | 26.5 |  |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 35.5 | 36.8 | 37.6 | 38.5 | 40.1 | 40.9 | 40.8 | 40.0 | 37.1 | 35.3 | 35.8 | 35.2 | 34.4 |  |
| Black | - | - | 18.8 | 19.5 | 19.4 | 17.7 | 16.4 | 16.9 | 18.1 | 18.9 | 15.5 | 13.2 | 13.6 | 16.1 | 18.5 |  |
| Hispanic | - | - | 34.4 | 33.5 | 31.5 | 32.7 | 30.8 | 27.6 | 27.9 | 27.4 | 24.6 | 29.4 | 32.8 | 27.5 | 22.0 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$. ' - ' indic ates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. <br> See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of five forms in 1976-88; N is one-fifth of N indicated in Table $\mathrm{D}-107$. Data based on one of six forms beginning in 1989; N is one-sixth of N indic ated in Table $\mathrm{D}-107$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the | Future | udy, the | Universi | ty of Mic | higan. |  |  |  |  |  |  |  |  |  |  |  |

CAUION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

## TABLE D-77 (cont'd)

Beer: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | $\underline{2002}$ | 2003 | 2004 | change |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 27.0 | 28.5 | 25.4 | 25.5 | 24.6 | 27.6 | 29.2 | 26.7 | 28.5 | 25.6 | 27.5 | 26.7 | 26.1 | 21.4 | 23.7 | +2.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 37.1 | 37.0 | 34.0 | 34.2 | 35.7 | 36.5 | 38.7 | 32.9 | 39.3 | 34.7 | 38.2 | 35.9 | 33.7 | 31.1 | 32.1 | +1.0 |
| Female | 16.5 | 20.1 | 17.6 | 18.1 | 15.5 | 19.5 | 19.2 | 21.2 | 19.5 | 17.0 | 17.6 | 18.0 | 18.2 | 12.9 | 15.6 | +2.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 29.0 | 35.1 | 32.8 | 30.2 | 29.6 | 32.7 | 29.4 | 29.0 | 39.7 | 29.5 | 31.0 | 40.5 | 37.0 | 24.9 | 32.0 | +7.1 s |
| Complete 4 years | 26.0 | 26.0 | 23.3 | 23.8 | 23.4 | 25.4 | 28.8 | 26.2 | 25.1 | 24.7 | 26.0 | 23.3 | 22.9 | 20.3 | 21.5 | +1.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 27.4 | 27.8 | 25.7 | 28.5 | 23.4 | 30.5 | 35.4 | 32.0 | 34.2 | 33.0 | 32.7 | 26.5 | 28.6 | 27.1 | 26.1 | -1.0 |
| North Central | 31.4 | 34.7 | 32.5 | 27.6 | 28.3 | 30.2 | 29.9 | 25.7 | 31.4 | 28.9 | 32.4 | 33.9 | 28.9 | 24.8 | 26.2 | +1.4 |
| South | 23.8 | 24.2 | 22.9 | 25.2 | 24.8 | 27.2 | 27.5 | 24.1 | 25.5 | 21.3 | 20.0 | 19.7 | 22.4 | 16.8 | 21.8 | +5.0 |
| West | 25.1 | 27.3 | 18.4 | 20.8 | 19.7 | 21.8 | 24.6 | 27.6 | 25.6 | 22.8 | 29.4 | 27.9 | 26.3 | 19.2 | 20.9 | +1.7 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 32.0 | 24.7 | 26.0 | 23.8 | 23.6 | 26.9 | 32.4 | 26.2 | 24.4 | 21.3 | 29.8 | 23.4 | 25.7 | 18.9 | 20.9 | +2.1 |
| OtherMSA | 26.9 | 28.8 | 24.2 | 24.8 | 22.6 | 26.7 | 29.3 | 27.9 | 30.3 | 26.8 | 26.1 | 26.7 | 25.2 | 22.9 | 22.9 | 0.0 |
| Non-MSA | 22.6 | 31.0 | 27.2 | 28.1 | 28.7 | 30.0 | 26.6 | 25.0 | 29.5 | 28.1 | 27.4 | 30.2 | 28.1 | 21.7 | 28.2 | +6.5 s |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 28.1 | 34.9 | 23.4 | 27.3 | 23.7 | 28.9 | 23.8 | 18.7 | 23.5 | 22.1 | 16.8 | 28.2 | 32.0 | 20.1 | 18.5 | -1.5 |
| 2.5-3.0 | 26.7 | 29.2 | 26.6 | 26.1 | 25.3 | 27.6 | 25.0 | 26.0 | 26.5 | 27.7 | 24.3 | 31.9 | 24.5 | 22.9 | 27.0 | +4.0 |
| 3.5-4.0 | 24.9 | 29.4 | 25.2 | 26.6 | 24.2 | 25.6 | 29.3 | 28.3 | 31.9 | 26.5 | 29.1 | 21.4 | 27.4 | 20.5 | 26.3 | +5.9 s |
| 4.5-5.0 | 27.7 | 26.2 | 23.9 | 24.1 | 24.1 | 27.6 | 28.1 | 29.1 | 29.3 | 24.2 | 28.7 | 28.7 | 24.4 | 23.3 | 20.9 | -2.4 |
| 5.5-6.0 (High) | 32.3 | 25.7 | 26.9 | 26.1 | 26.0 | 32.2 | 41.0 | 28.3 | 27.6 | 24.3 | 35.1 | 28.0 | 27.3 | 19.0 | 20.2 | +1.2 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 32.5 | 30.6 | 29.6 | 27.6 | 27.3 | 29.0 | 31.3 | 31.4 | 31.3 | 30.0 | 28.8 | 31.0 | 30.2 | 26.4 | 25.3 | -1.1 |
| Black | 13.5 | 10.2 | 13.1 | 15.5 | 15.4 | 12.6 | 14.6 | 13.3 | 11.7 | 10.6 | 9.9 | 9.1 | 7.6 | 6.1 | 9.3 | 3.1 |
| Hispanic | 20.6 | 23.8 | 27.2 | 24.8 | 24.9 | 23.8 | 26.1 | 26.0 | 24.4 | 27.5 | 29.0 | 27.1 | 24.7 | 21.6 | 20.0 | -1.5 |

${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B for details.
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-78

Liquor: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders


CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

## TABLE D-78 (cont'd)

Liquor: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | $\underline{2001}$ | 2002 | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 30.8 | 31.3 | 28.6 | 31.4 | 28.0 | 34.3 | 34.7 | 34.6 | 37.3 | 34.3 | 36.0 | 35.1 | 36.0 | 34.3 | 35.6 | +1.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 36.9 | 34.9 | 32.0 | 36.4 | 32.8 | 38.2 | 36.4 | 36.3 | 41.2 | 38.0 | 41.7 | 35.6 | 37.9 | 36.1 | 39.3 | +3.3 |
| Female | 24.6 | 28.0 | 25.9 | 27.3 | 23.2 | 30.9 | 32.6 | 33.4 | 33.3 | 30.0 | 30.7 | 33.7 | 33.8 | 32.9 | 32.2 | -0.7 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 30.6 | 37.0 | 31.9 | 37.3 | 28.3 | 36.8 | 35.8 | 34.2 | 38.3 | 35.0 | 38.1 | 40.4 | 42.5 | 36.9 | 40.3 | +3.4 |
| Complete 4 years | 30.4 | 29.0 | 27.4 | 29.9 | 28.1 | 33.4 | 34.1 | 34.9 | 36.6 | 33.9 | 35.0 | 33.6 | 34.2 | 33.6 | 34.3 | +0.7 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 34.5 | 36.6 | 25.8 | 32.4 | 25.9 | 37.7 | 40.9 | 36.6 | 46.3 | 39.8 | 40.9 | 40.8 | 41.4 | 35.8 | 41.1 | +5.4 |
| North Central | 31.0 | 33.5 | 33.5 | 32.1 | 29.0 | 35.4 | 36.2 | 35.2 | 36.6 | 33.7 | 40.5 | 37.4 | 39.6 | 37.4 | 35.4 | -1.9 |
| South | 29.6 | 28.1 | 27.1 | 34.7 | 28.1 | 34.9 | 33.6 | 32.9 | 33.9 | 32.1 | 28.3 | 31.7 | 32.9 | 30.7 | 33.3 | +2.6 |
| West | 28.5 | 29.0 | 26.3 | 24.0 | 28.2 | 28.7 | 27.8 | 35.1 | 37.2 | 34.5 | 38.5 | 33.3 | 31.8 | 35.4 | 33.8 | -1.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 33.8 | 30.4 | 29.8 | 32.2 | 30.3 | 33.3 | 30.6 | 36.0 | 37.2 | 34.5 | 41.1 | 36.0 | 37.5 | 32.4 | 30.1 | -2.4 |
| OtherMSA | 31.1 | 33.1 | 27.4 | 30.4 | 26.5 | 34.9 | 38.0 | 34.6 | 38.9 | 34.9 | 33.8 | 35.4 | 37.0 | 35.6 | 37.7 | +2.1 |
| Non-MSA | 27.7 | 29.1 | 30.0 | 32.7 | 28.1 | 34.3 | 32.4 | 33.4 | 33.9 | 33.3 | 34.0 | 33.9 | 32.3 | 34.3 | 37.4 | +3.1 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 25.7 | 29.7 | 25.4 | 29.1 | 23.6 | 26.8 | 24.7 | 27.7 | 33.5 | 35.3 | 30.8 | 28.2 | 29.4 | 27.6 | 29.5 | +1.9 |
| 2.5-3.0 | 29.5 | 32.6 | 29.9 | 29.4 | 28.2 | 34.8 | 37.5 | 31.8 | 33.5 | 33.7 | 28.7 | 36.3 | 33.5 | 35.2 | 34.0 | -1.2 |
| 3.5-4.0 | 31.6 | 33.6 | 29.0 | 34.1 | 25.8 | 32.4 | 34.7 | 36.4 | 40.6 | 32.7 | 40.0 | 35.4 | 37.3 | 35.7 | 38.2 | +2.5 |
| 4.5-5.0 | 34.2 | 27.4 | 25.9 | 32.2 | 29.3 | 35.7 | 30.1 | 35.8 | 38.2 | 33.4 | 35.2 | 38.3 | 38.2 | 36.5 | 36.4 | -0.1 |
| 5.5-6.0 (High) | 33.8 | 33.5 | 33.1 | 29.9 | 32.0 | 41.1 | 42.1 | 40.4 | 38.3 | 40.8 | 47.8 | 34.5 | 38.8 | 33.0 | 36.6 | +3.7 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 37.7 | 35.0 | 32.9 | 32.5 | 32.6 | 34.1 | 37.2 | 38.5 | 39.5 | 37.6 | 37.2 | 38.8 | 38.9 | 37.8 | 37.8 | 0.0 |
| Black | 14.4 | 14.1 | 15.1 | 17.5 | 17.1 | 17.9 | 24.9 | 20.4 | 17.6 | 21.5 | 22.2 | 22.1 | 22.0 | 23.0 | 23.7 | +0.7 |
| Hispanic | 21.0 | 23.2 | 29.2 | 28.9 | 26.3 | 27.4 | 29.4 | 28.1 | 31.7 | 36.6 | 36.3 | 36.0 | 36.3 | 33.3 | 29.6 | -3.7 |

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

Liquor: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders

|  | Percentage reporting 5+drinks in a row on one or more occasions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| Approx. $\mathrm{N}=$ | - | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |
| Total | - | 19.8 | 19.9 | 22.0 | 22.8 | 23.0 | 21.3 | 23.8 | 22.0 | 21.3 | 19.6 | 21.4 | 20.5 | 18.2 | 20.0 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 23.3 | 21.1 | 24.4 | 26.3 | 26.1 | 23.0 | 25.8 | 26.4 | 24.6 | 20.9 | 24.7 | 25.0 | 20.3 | 24.5 |
| Female | - | 16.1 | 18.5 | 19.6 | 19.8 | 20.2 | 19.7 | 21.9 | 17.8 | 18.2 | 18.2 | 18.6 | 16.2 | 16.6 | 15.7 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 23.8 | 23.4 | 26.7 | 24.2 | 26.5 | 26.4 | 26.9 | 25.7 | 24.7 | 22.0 | 24.0 | 24.5 | 20.7 | 23.7 |
| Complete 4 years | - | 15.8 | 16.8 | 17.9 | 21.5 | 19.7 | 18.0 | 21.8 | 19.2 | 19.2 | 18.4 | 19.9 | 18.6 | 17.2 | 18.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 24.9 | 20.2 | 21.8 | 28.8 | 27.2 | 25.0 | 26.1 | 24.7 | 24.9 | 23.8 | 20.1 | 22.3 | 17.4 | 23.7 |
| North Central | - | 22.1 | 23.3 | 24.0 | 23.0 | 23.7 | 22.9 | 27.5 | 24.0 | 24.1 | 19.3 | 25.9 | 21.9 | 23.1 | 21.4 |
| South | - | 16.0 | 16.4 | 22.5 | 20.6 | 22.1 | 18.0 | 19.6 | 20.7 | 20.2 | 17.0 | 19.1 | 18.7 | 15.2 | 18.6 |
| West | - | 14.8 | 19.2 | 16.2 | 18.5 | 18.2 | 19.2 | 20.1 | 17.0 | 15.3 | 19.8 | 19.6 | 19.6 | 17.2 | 17.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 20.3 | 18.3 | 20.5 | 22.6 | 22.8 | 22.6 | 26.1 | 24.3 | 21.1 | 18.7 | 21.7 | 20.3 | 16.8 | 18.4 |
| Other MSA | - | 19.9 | 21.8 | 21.4 | 23.4 | 23.9 | 20.7 | 22.2 | 21.8 | 20.1 | 19.6 | 19.7 | 20.8 | 19.8 | 19.1 |
| Non-MSA | - | 19.4 | 18.8 | 23.8 | 22.3 | 22.1 | 21.2 | 24.1 | 20.5 | 23.0 | 20.2 | 23.9 | 20.2 | 16.6 | 23.7 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 22.0 | 18.1 | 20.9 | 19.1 | 22.0 | 24.3 | 21.0 | 21.5 | 21.0 | 19.6 | 19.0 | 20.6 | 19.9 | 17.6 |
| 2.5-3.0 | - | 22.8 | 20.4 | 23.7 | 23.6 | 23.9 | 21.3 | 24.7 | 23.6 | 25.5 | 20.4 | 24.2 | 21.2 | 21.6 | 18.1 |
| 3.5-4.0 | - | 17.4 | 21.5 | 22.0 | 22.9 | 20.5 | 24.9 | 25.2 | 19.9 | 19.7 | 18.1 | 20.1 | 18.1 | 15.7 | 23.2 |
| 4.5-5.0 | - | 18.0 | 16.7 | 18.6 | 24.7 | 24.8 | 14.7 | 21.3 | 22.6 | 20.0 | 20.2 | 20.4 | 21.8 | 16.7 | 20.9 |
| 5.5-6.0 (High) | - | 14.0 | 24.9 | 22.5 | 23.2 | 23.6 | 19.5 | 28.1 | 20.4 | 17.5 | 20.6 | 22.0 | 22.2 | 16.4 | 16.3 |
| Race (2-yearaverage) ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 20.5 | 22.1 | 23.6 | 24.1 | 23.3 | 24.2 | 24.5 | 23.0 | 22.0 | 22.0 | 22.6 | 21.3 | 21.0 |
| Black | - | - | 10.5 | 7.7 | 8.4 | 11.1 | 10.6 | 8.6 | 10.9 | 11.2 | 8.0 | 7.5 | 6.2 | 7.2 | 10.4 |
| Hispanic | - | - | 25.5 | 26.8 | 25.9 | 22.9 | 25.3 | 26.7 | 24.5 | 21.4 | 20.9 | 20.8 | 21.9 | 19.0 | 14.6 |

See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of five forms in 1976-88; N is one-fifth of N indic ated in Table $\mathrm{D}-107$. Data based on one of six forms beginning in 1989; N is one-sixth of N indicated in Table $\mathrm{D}-107$.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

## TABLE D-79 (cont'd)

Liquor: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 16.8 | 17.4 | 16.0 | 18.2 | 17.1 | 20.2 | 21.6 | 21.1 | 23.6 | 22.3 | 23.8 | 22.7 | 25.6 | 21.1 | 23.8 | +2.6 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 20.7 | 20.5 | 20.0 | 24.6 | 22.4 | 24.7 | 24.6 | 23.9 | 27.3 | 27.6 | 30.8 | 26.4 | 27.2 | 24.1 | 29.2 | +5.1 s |
| Female | 12.8 | 14.4 | 12.6 | 13.2 | 12.6 | 16.2 | 17.7 | 18.7 | 20.0 | 16.1 | 17.4 | 18.8 | 23.6 | 18.9 | 18.2 | -0.7 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 17.3 | 21.7 | 21.4 | 24.6 | 19.1 | 22.5 | 21.1 | 23.4 | 31.2 | 23.2 | 26.4 | 29.2 | 31.9 | 23.0 | 29.2 | +6.2 |
| Complete 4 years | 16.4 | 15.8 | 14.1 | 16.5 | 16.6 | 19.2 | 21.4 | 20.6 | 21.7 | 21.9 | 22.9 | 20.7 | 23.7 | 20.5 | 22.1 | +1.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 18.0 | 21.3 | 14.8 | 15.1 | 14.2 | 19.2 | 25.4 | 24.6 | 29.8 | 25.5 | 24.7 | 27.9 | 27.8 | 23.5 | 28.2 | +4.8 |
| North Central | 17.7 | 19.0 | 19.0 | 18.9 | 17.7 | 21.5 | 22.0 | 20.6 | 23.6 | 19.9 | 29.7 | 21.5 | 28.1 | 24.8 | 23.4 | -1.4 |
| South | 15.4 | 15.3 | 15.5 | 21.7 | 17.6 | 21.8 | 21.9 | 20.0 | 21.7 | 21.7 | 17.4 | 20.4 | 24.3 | 17.4 | 21.6 | +4.1 |
| West | 16.5 | 15.2 | 13.7 | 13.6 | 18.0 | 16.4 | 16.3 | 20.5 | 22.3 | 23.6 | 26.1 | 24.3 | 22.7 | 20.7 | 23.4 | +2.7 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 17.9 | 16.4 | 15.6 | 16.8 | 16.1 | 19.3 | 19.5 | 23.0 | 23.9 | 21.4 | 26.6 | 23.6 | 25.8 | 20.0 | 20.7 | +0.8 |
| OtherMSA | 16.4 | 17.5 | 15.2 | 17.3 | 16.3 | 20.3 | 24.9 | 21.3 | 25.1 | 22.8 | 21.7 | 22.2 | 26.3 | 21.9 | 24.6 | +2.7 |
| Non-MSA | 16.8 | 18.1 | 17.9 | 20.7 | 19.5 | 21.1 | 17.7 | 18.7 | 20.3 | 22.2 | 24.1 | 22.6 | 24.0 | 21.2 | 25.5 | +4.3 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 18.0 | 19.9 | 15.9 | 20.7 | 14.4 | 15.2 | 14.7 | 16.7 | 23.9 | 25.5 | 24.4 | 15.2 | 18.4 | 17.9 | 17.8 | -0.1 |
| 2.5-3.0 | 16.4 | 18.1 | 17.9 | 18.3 | 18.5 | 19.7 | 22.1 | 18.3 | 21.3 | 20.7 | 17.8 | 25.4 | 24.2 | 24.2 | 25.9 | +1.7 |
| 3.5-4.0 | 15.0 | 18.6 | 15.9 | 19.7 | 16.2 | 20.7 | 20.4 | 23.3 | 25.4 | 23.6 | 25.8 | 21.8 | 24.4 | 21.1 | 26.2 | +5.1 |
| 4.5-5.0 | 18.5 | 16.4 | 13.5 | 17.4 | 17.7 | 21.6 | 18.0 | 22.2 | 24.3 | 20.6 | 24.5 | 24.9 | 29.0 | 21.0 | 22.2 | +1.2 |
| 5.5-6.0 (High) | 19.4 | 13.3 | 16.5 | 16.0 | 18.8 | 22.0 | 31.3 | 23.5 | 23.0 | 22.8 | 30.4 | 22.4 | 31.0 | 21.0 | 20.3 | -0.7 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 20.7 | 19.0 | 18.0 | 18.7 | 19.4 | 20.4 | 22.3 | 23.4 | 24.7 | 24.4 | 24.3 | 25.3 | 26.3 | 25.4 | 24.6 | -0.8 |
| Black | 9.6 | 6.8 | 7.1 | 8.9 | 9.5 | 11.3 | 15.4 | 12.5 | 9.9 | 10.4 | 10.2 | 12.8 | 14.6 | 14.9 | 15.8 | +0.9 |
| Hispanic | 11.9 | 13.4 | 19.4 | 18.1 | 16.8 | 18.1 | 18.9 | 20.0 | 22.2 | 24.3 | 25.2 | 24.0 | 24.0 | 21.1 | 18.9 | -2.3 |

${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father'seducation. See Appendix B for details.
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-80

Wine: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders


CAUIION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

TABLE D-80 (cont'd) Wine: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 | change |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 14.7 | 16.1 | 16.9 | 14.9 | 14.2 | 14.3 | 18.3 | 17.0 | 16.0 | 15.8 | 16.2 | 14.1 | 13.4 | 13.4 | 13.9 | $+0.5$ |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 16.1 | 16.9 | 17.2 | 15.9 | 13.8 | 13.2 | 18.1 | 16.7 | 17.4 | 17.6 | 17.7 | 12.8 | 13.2 | 13.9 | 13.8 | -0.1 |
| Female | 13.5 | 15.5 | 16.6 | 13.9 | 14.3 | 15.3 | 18.2 | 17.3 | 15.0 | 14.4 | 15.0 | 15.5 | 13.2 | 13.5 | 14.1 | +0.6 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 11.9 | 16.1 | 12.6 | 16.5 | 11.7 | 10.6 | 14.5 | 14.2 | 19.0 | 11.9 | 12.0 | 15.9 | 11.7 | 13.8 | 12.7 | -1.1 |
| Complete 4 years | 16.0 | 16.4 | 18.4 | 14.4 | 14.8 | 15.3 | 19.3 | 18.0 | 15.3 | 16.8 | 17.1 | 13.3 | 13.7 | 13.5 | 14.5 | +0.9 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 15.0 | 22.1 | 18.5 | 15.2 | 15.9 | 14.2 | 23.4 | 19.4 | 18.7 | 23.5 | 20.8 | 19.2 | 17.3 | 12.5 | 18.2 | +5.8 s |
| North Central | 13.4 | 17.3 | 21.9 | 14.0 | 14.3 | 14.3 | 13.1 | 14.2 | 17.7 | 16.2 | 11.9 | 13.5 | 14.9 | 13.5 | 13.0 | -0.5 |
| South | 14.5 | 11.8 | 11.0 | 16.7 | 13.0 | 15.9 | 20.0 | 17.7 | 13.8 | 14.6 | 17.2 | 13.9 | 12.7 | 14.0 | 12.6 | -1.3 |
| West | 16.9 | 16.2 | 18.3 | 13.0 | 15.0 | 11.6 | 16.8 | 17.1 | 15.9 | 11.2 | 15.9 | 11.3 | 9.8 | 13.5 | 12.8 | -0.7 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 15.3 | 13.9 | 17.0 | 20.0 | 16.8 | 14.8 | 19.5 | 18.2 | 19.5 | 17.4 | 20.4 | 16.7 | 17.2 | 11.1 | 12.5 | +1.3 |
| Other MSA | 16.8 | 17.8 | 19.0 | 15.0 | 14.4 | 15.1 | 18.6 | 18.2 | 15.9 | 16.5 | 14.6 | 11.5 | 11.8 | 15.0 | 15.4 | +0.4 |
| Non-MSA | 9.9 | 15.1 | 12.6 | 11.3 | 11.3 | 12.4 | 16.6 | 13.6 | 12.3 | 13.3 | 14.2 | 15.6 | 11.9 | 13.5 | 12.8 | -0.7 |
| Parental Educ ation: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 9.5 | 10.8 | 11.7 | 14.3 | 9.8 | 13.5 | 9.7 | 13.1 | 14.6 | 16.7 | 19.7 | 12.3 | 14.8 | 9.4 | 12.8 | +3.4 |
| 2.5-3.0 | 12.4 | 16.0 | 13.9 | 12.1 | 13.6 | 10.2 | 15.2 | 13.8 | 10.2 | 10.5 | 10.4 | 13.6 | 8.6 | 13.1 | 10.9 | -2.2 |
| 3.5-4.0 | 14.2 | 16.4 | 15.4 | 14.3 | 11.7 | 10.5 | 17.9 | 15.7 | 15.1 | 11.5 | 14.6 | 10.2 | 13.1 | 13.1 | 15.6 | +2.6 |
| 4.5-5.0 | 18.9 | 17.5 | 19.2 | 17.7 | 14.6 | 18.1 | 18.0 | 18.0 | 20.8 | 19.6 | 16.2 | 19.1 | 15.4 | 15.5 | 14.1 | -1.4 |
| 5.5-6.0 (High) | 19.3 | 19.4 | 27.1 | 16.5 | 23.8 | 24.9 | 27.2 | 29.1 | 20.0 | 29.8 | 29.1 | 16.7 | 19.0 | 15.8 | 18.3 | +2.5 |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 18.6 | 16.6 | 17.4 | 16.2 | 14.4 | 14.4 | 16.8 | 19.3 | 18.1 | 16.6 | 16.4 | 15.9 | 15.2 | 14.5 | 14.7 | +0.2 |
| Black | 11.2 | 10.2 | 11.7 | 14.5 | 17.6 | 13.6 | 12.8 | 11.1 | 9.9 | 9.3 | 9.5 | 10.9 | 8.5 | 8.0 | 7.9 | -0.1 |
| Hispanic | 14.2 | 10.9 | 14.9 | 14.3 | 14.2 | 15.0 | 13.8 | 13.5 | 13.4 | 16.4 | 17.9 | 12.9 | 9.4 | 12.2 | 13.5 | +1.3 |
| ${ }^{\mathrm{a}}$ In the 1988 questionnaires, a question on the use of wine coolers was added. This change may account for the discontinuity between the 1987 and 1988 use rates for wine. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {b }}$ Parental education is an average score of mother'seducation and father's education. See Appendix B for details. <br> ${ }^{c}$ To derive percentages for each racial subgroup, data for the specified year and the previous year have been combined to inc rease subgroup sample sizes and thus provide more stable estimates. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Wine: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders

|  | Percentage reporting 5+drinks in a row on one ormore occasions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | $1988{ }^{\text {a }}$ | 1989 |  |
| Approx. $\mathrm{N}=$ | - | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | - | 12.5 | 13.1 | 13.5 | 12.9 | 13.2 | 13.0 | 14.9 | 14.3 | 13.0 | 12.8 | 13.8 | 12.7 | 7.8 | 6.8 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 14.5 | 13.9 | 14.3 | 13.9 | 13.3 | 12.2 | 12.6 | 14.4 | 12.6 | 12.9 | 12.4 | 12.3 | 7.8 | 6.1 |  |
| Female | - | 10.4 | 12.1 | 12.8 | 12.0 | 12.8 | 13.5 | 16.8 | 13.9 | 13.1 | 12.5 | 14.6 | 12.8 | 7.7 | 7.3 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 14.1 | 14.6 | 14.6 | 14.8 | 15.3 | 13.2 | 16.1 | 15.7 | 14.4 | 13.9 | 14.6 | 13.7 | 9.5 | 9.0 |  |
| Complete 4 years | - | 10.4 | 11.6 | 12.7 | 11.4 | 11.3 | 12.6 | 13.9 | 13.2 | 11.9 | 11.9 | 13.3 | 12.0 | 7.1 | 6.0 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 14.8 | 14.8 | 15.0 | 16.4 | 18.2 | 17.9 | 18.3 | 19.1 | 16.9 | 15.7 | 11.5 | 10.7 | 8.1 | 7.4 |  |
| North Central | - | 13.8 | 12.9 | 15.4 | 12.6 | 12.2 | 13.9 | 16.0 | 13.6 | 14.1 | 12.3 | 17.2 | 13.5 | 7.8 | 6.9 |  |
| South | - | 10.1 | 11.8 | 11.7 | 11.8 | 11.6 | 10.0 | 12.4 | 12.5 | 11.0 | 10.9 | 12.9 | 13.1 | 6.8 | 6.7 |  |
| West | - | 10.8 | 13.4 | 10.9 | 10.4 | 11.6 | 9.8 | 12.0 | 13.1 | 10.9 | 13.3 | 12.2 | 13.2 | 9.5 | 6.3 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 17.0 | 14.9 | 14.7 | 14.3 | 14.9 | 16.8 | 17.9 | 17.1 | 14.1 | 14.0 | 13.5 | 11.0 | 9.7 | 6.1 |  |
| Other MSA | - | 11.4 | 13.0 | 12.5 | 11.8 | 13.2 | 11.6 | 13.3 | 12.6 | 12.4 | 13.7 | 13.8 | 13.6 | 7.8 | 8.0 |  |
| Non-MSA | - | 10.7 | 11.8 | 14.0 | 13.1 | 12.0 | 11.8 | 14.7 | 14.4 | 13.0 | 10.6 | 13.9 | 12.9 | 6.0 | 4.8 |  |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 14.0 | 16.4 | 14.9 | 12.7 | 10.2 | 13.7 | 15.7 | 12.1 | 12.8 | 11.9 | 14.7 | 12.2 | 8.2 | 8.3 |  |
| 2.5-3.0 | - | 13.4 | 12.0 | 13.7 | 12.4 | 15.4 | 13.1 | 12.1 | 16.8 | 14.6 | 12.1 | 13.6 | 13.0 | 7.2 | 6.2 |  |
| 3.5-4.0 | - | 11.7 | 14.0 | 12.2 | 10.3 | 13.0 | 13.4 | 16.7 | 12.4 | 15.0 | 13.1 | 14.9 | 12.1 | 7.5 | 6.3 |  |
| 4.5-5.0 | - | 12.4 | 9.4 | 12.9 | 16.5 | 12.7 | 11.2 | 14.9 | 14.4 | 10.2 | 13.4 | 12.2 | 13.3 | 7.7 | 8.0 |  |
| 5.5-6.0 (High) | - | 14.4 | 15.4 | 15.0 | 16.5 | 12.0 | 14.2 | 21.2 | 12.5 | 7.7 | 14.5 | 12.9 | 12.3 | 9.5 | 5.0 |  |
| Race (2-year average): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 12.0 | 13.1 | 13.4 | 13.1 | 13.4 | 14.4 | 14.8 | 13.8 | 13.3 | 13.6 | 13.4 | 10.4 | 7.5 |  |
| Black | - | - | 16.7 | 12.6 | 10.8 | 10.4 | 9.0 | 10.0 | 11.4 | 10.1 | 8.3 | 8.3 | 7.6 | 8.3 | 7.8 |  |
| Hispa nic | - | - | 19.3 | 14.7 | 9.7 | 9.5 | 15.3 | 15.1 | 15.8 | 14.3 | 13.4 | 16.1 | 14.7 | 8.4 | 5.1 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s 5 s=.001$. ' -' indic ates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. <br> See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of five forms in 1976-88; N is one-fifth of N indicated in Table $\mathrm{D}-107$. Data based on one of six forms beginning in 1989; N is one-sixth of N indic ated in Table $\mathrm{D}-107$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the | Future | Study, the | Universty | sity of Mic | higan. |  |  |  |  |  |  |  |  |  |  |  |

CAUION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

## TABLE D-81 (cont'd)

Wine: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders


[^118]
## TABLE D-82

## Wine Coolers: Trends in Thirty-Day Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 14.8 | 15.1 | 16.1 | 15.9 | 15.3 | 17.5 | 15.9 | 15.6 | 16.5 | 14.8 | 15.3 | 12.9 | 12.4 | - | - |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 14.7 | 13.8 | 16.2 | 15.8 | 14.6 | 16.1 | 14.5 | 15.4 | 16.7 | 13.4 | 14.2 | 11.9 | 10.2 | - | - |
| Female | 14.6 | 16.2 | 16.0 | 16.2 | 15.6 | 18.7 | 16.9 | 15.8 | 16.3 | 15.9 | 15.9 | 13.3 | 14.3 | - | - |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 21.2 | 23.9 | 30.6 | 28.1 | 25.3 | 28.7 | 32.1 | 27.3 | 31.9 | 28.5 | 31.6 | 21.1 | 24.2 | - | - |
| Complete 4 years | 13.7 | 14.0 | 14.3 | 14.5 | 14.1 | 15.7 | 14.0 | 14.3 | 14.7 | 13.3 | 13.4 | 12.2 | 11.1 | - | - |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 9.8 | 11.5 | 12.7 | 15.8 | 15.0 | 17.7 | 14.5 | 15.7 | 15.4 | 13.5 | 17.7 | 11.8 | 10.9 | - | - |
| North Central | 14.5 | 14.6 | 15.7 | 15.0 | 13.9 | 18.5 | 16.1 | 16.2 | 17.6 | 17.0 | 14.8 | 12.1 | 15.5 | - | - |
| South | 17.4 | 18.1 | 17.8 | 16.7 | 17.0 | 17.5 | 16.6 | 16.2 | 18.6 | 14.6 | 16.8 | 15.0 | 12.7 | - | - |
| West | 14.8 | 14.2 | 17.3 | 15.9 | 13.9 | 16.0 | 15.3 | 14.0 | 12.7 | 13.3 | 11.4 | 11.3 | 8.9 | - | - |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 14.1 | 16.4 | 12.7 | 14.4 | 11.1 | 16.5 | 14.1 | 14.0 | 14.0 | 12.9 | 12.3 | 12.1 | 10.4 | - | - |
| Other MSA | 14.6 | 15.4 | 17.4 | 17.8 | 16.1 | 18.2 | 15.7 | 15.4 | 16.8 | 14.5 | 15.4 | 12.7 | 12.3 | - | - |
| Non-MSA | 15.8 | 13.4 | 17.3 | 13.2 | 15.8 | 17.3 | 17.9 | 17.6 | 18.9 | 17.5 | 18.3 | 14.4 | 14.7 | - | - |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 19.3 | 18.7 | 18.5 | 21.1 | 20.4 | 21.7 | 22.2 | 20.7 | 30.2 | 22.1 | 25.1 | 22.8 | 18.2 | - | - |
| 2.5-3.0 | 16.9 | 16.6 | 19.9 | 17.7 | 17.6 | 20.2 | 19.2 | 17.8 | 19.7 | 18.1 | 19.7 | 14.3 | 15.4 | - | - |
| 3.5-4.0 | 12.9 | 16.8 | 17.2 | 18.4 | 15.7 | 18.4 | 16.8 | 16.6 | 17.5 | 14.3 | 19.6 | 15.7 | 15.8 | - | - |
| 4.5-5.0 | 13.9 | 11.8 | 13.5 | 12.0 | 12.5 | 15.4 | 11.9 | 13.6 | 13.1 | 11.8 | 9.0 | 9.8 | 8.1 | - | - |
| 5.5-6.0 (High) | 13.5 | 12.5 | 11.9 | 14.7 | 13.2 | 13.8 | 13.5 | 14.2 | 11.4 | 12.1 | 8.2 | 9.0 | 8.7 | - | - |
| Race (2-year average) ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 14.4 | 15.1 | 15.1 | 14.9 | 16.4 | 16.5 | 15.4 | 16.0 | 15.9 | 15.0 | 14.0 | 12.6 | - | - |
| Black | - | 13.7 | 13.3 | 14.4 | 12.7 | 12.2 | 14.7 | 12.8 | 12.8 | 13.1 | 12.0 | 9.8 | 9.6 | - | - |
| Hispanic | - | 21.9 | 23.2 | 23.4 | 24.4 | 22.9 | 21.3 | 21.2 | 22.4 | 21.1 | 18.5 | 18.9 | 18.8 | - | - |

NOTES:
信
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of two forms in 1991-96; N is one-half of N indic ated in Table D-105. Data based on one of four forms beginning in 1997; $N$ is one-third of $N$ indicated in Table D-105.

SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data forthe specified year and the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-83

Wine Coolers: Trends in Thirty-Day Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 24.0 | 21.5 | 22.5 | 21.8 | 20.8 | 22.8 | 22.1 | 20.9 | 22.1 | 21.2 | 20.8 | 18.9 | 17.2 | - | - |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 23.9 | 19.8 | 20.5 | 21.9 | 19.4 | 21.8 | 20.6 | 19.0 | 20.5 | 19.6 | 19.8 | 16.0 | 14.8 | - | - |
| Female | 24.1 | 22.9 | 24.3 | 21.6 | 21.9 | 23.6 | 23.4 | 22.0 | 23.4 | 22.6 | 21.7 | 21.6 | 19.5 | - | - |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 31.1 | 26.7 | 27.6 | 28.4 | 28.9 | 33.0 | 28.4 | 29.3 | 33.4 | 32.6 | 31.6 | 30.2 | 23.8 | - | - |
| Complete 4 years | 22.5 | 20.5 | 21.4 | 20.4 | 19.4 | 21.0 | 21.1 | 19.3 | 20.3 | 19.5 | 19.1 | 17.2 | 16.2 | - | - |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 23.2 | 19.0 | 24.1 | 21.6 | 18.5 | 20.3 | 21.0 | 19.1 | 21.7 | 18.8 | 21.5 | 18.1 | 18.7 | - | - |
| North Central | 23.0 | 20.2 | 20.4 | 21.6 | 20.6 | 21.9 | 20.9 | 19.1 | 21.1 | 20.6 | 20.2 | 19.2 | 15.3 | - | - |
| South | 26.0 | 23.3 | 23.6 | 23.0 | 22.9 | 25.0 | 23.4 | 22.5 | 24.0 | 23.3 | 21.4 | 17.7 | 16.9 | - | - |
| West | 23.0 | 22.7 | 23.0 | 20.2 | 19.2 | 22.3 | 22.4 | 22.0 | 20.3 | 20.7 | 19.6 | 21.5 | 18.2 | - | - |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 23.1 | 21.6 | 21.5 | 21.2 | 16.4 | 19.3 | 20.2 | 16.9 | 23.1 | 19.8 | 19.9 | 17.4 | 17.0 | - | - |
| Other MSA | 23.8 | 22.3 | 22.4 | 22.6 | 20.7 | 23.7 | 22.2 | 21.9 | 21.3 | 19.7 | 19.7 | 18.7 | 16.4 | - | - |
| Non-MSA | 25.1 | 20.0 | 23.6 | 20.4 | 23.7 | 24.6 | 23.8 | 23.2 | 22.6 | 25.6 | 23.7 | 21.2 | 19.5 | - | - |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 25.9 | 24.4 | 27.4 | 24.4 | 27.7 | 25.4 | 21.1 | 22.6 | 26.3 | 23.8 | 22.2 | 20.3 | 23.4 | - | - |
| 2.5-3.0 | 26.8 | 21.3 | 22.3 | 22.4 | 23.8 | 25.5 | 24.3 | 25.4 | 25.1 | 24.2 | 22.7 | 22.5 | 19.8 | - | - |
| 3.5-4.0 | 24.8 | 22.5 | 22.5 | 22.3 | 22.1 | 23.7 | 23.6 | 22.0 | 22.3 | 23.6 | 22.2 | 19.1 | 17.5 | - | - |
| 4.5-5.0 | 21.8 | 20.6 | 21.9 | 21.4 | 19.1 | 19.9 | 21.2 | 15.6 | 17.5 | 19.4 | 17.7 | 18.2 | 15.4 | - | - |
| 5.5-6.0 (High) | 20.7 | 20.5 | 20.2 | 17.8 | 14.5 | 21.3 | 18.5 | 18.5 | 21.2 | 14.2 | 20.3 | 13.7 | 13.3 | - | - |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 23.0 | 21.9 | 22.1 | 21.2 | 21.7 | 22.6 | 21.7 | 21.6 | 21.9 | 21.2 | 20.3 | 18.1 | - | - |
| Black | - | 19.9 | 19.3 | 20.6 | 20.0 | 16.6 | 16.1 | 17.6 | 17.0 | 18.1 | 18.3 | 15.3 | 15.2 | - | - |
| Hispanic | - | 26.3 | 26.2 | 24.7 | 24.9 | 28.1 | 28.0 | 24.1 | 24.5 | 25.2 | 24.5 | 22.3 | 21.7 | - | - |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error
See Table D -106 for the number of subgroup cases. See Appendix B fordefinition of variables in table. Data based on one of two forms in 1991-96; N is one-half of N indic ated in Table $D-106$. Data based on one of four forms beginning in 1997; N is one-third of N indicated in Table $\mathrm{D}-106$.
SOURCE: The Monitoring the Future Study, the University of Michigan.

## CAUION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-84

Wine Coolers: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975-87 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ | change |
| Approx. $\mathrm{N}=$ | - | 16300 | 16700 | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | 36.6 | 29.4 | 26.2 | 24.3 | 21.9 | 19.4 | 22.2 | 20.6 | 20.7 | 20.7 | 20.1 | 18.4 | 17.6 | 19.0 | 19.3 | 14.6 | 14.4 | -0.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 30.8 | 25.5 | 22.7 | 22.1 | 19.1 | 15.1 | 16.9 | 15.5 | 17.7 | 15.9 | 15.0 | 15.6 | 15.6 | 14.1 | 12.0 | 9.4 | 11.2 | +1.8 |
| Female | - | 41.5 | 33.6 | 29.8 | 26.3 | 24.3 | 22.8 | 26.4 | 25.1 | 23.6 | 24.4 | 23.5 | 20.6 | 19.5 | 22.2 | 24.2 | 18.9 | 17.2 | -1.7 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None orunder 4 years | - | 38.2 | 30.9 | 29.2 | 29.3 | 21.9 | 20.5 | 22.8 | 22.7 | 20.0 | 17.8 | 21.8 | 22.8 | 21.2 | 23.1 | 21.8 | 17.2 | 16.7 | -0.5 |
| Complete 4 years | - | 35.9 | 28.6 | 24.9 | 22.8 | 22.0 | 19.2 | 22.3 | 19.8 | 20.9 | 21.6 | 19.6 | 17.3 | 16.1 | 17.7 | 18.8 | 14.0 | 13.7 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 33.8 | 29.6 | 29.2 | 21.0 | 19.6 | 18.9 | 15.4 | 14.6 | 21.1 | 17.2 | 20.8 | 22.1 | 19.1 | 18.4 | 17.8 | 15.9 | 14.7 | -1.2 |
| North Central | - | 37.9 | 33.0 | 28.6 | 26.1 | 23.7 | 19.4 | 26.0 | 19.8 | 20.9 | 21.5 | 18.6 | 19.2 | 18.3 | 19.5 | 20.9 | 15.5 | 11.0 | -4.5 |
| South | - | 33.6 | 25.7 | 22.9 | 23.1 | 21.3 | 20.6 | 23.4 | 24.1 | 23.2 | 22.9 | 20.6 | 18.7 | 16.8 | 19.7 | 20.6 | 13.9 | 16.7 | +2.8 |
| West | - | 42.7 | 31.3 | 24.7 | 26.3 | 22.2 | 17.8 | 19.8 | 20.4 | 14.9 | 18.9 | 20.4 | 13.7 | 16.7 | 17.5 | 16.6 | 13.1 | 14.6 | +1.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 37.7 | 28.6 | 25.9 | 20.9 | 21.2 | 20.4 | 21.2 | 20.7 | 22.7 | 23.9 | 22.5 | 14.7 | 19.8 | 18.1 | 20.5 | 12.8 | 14.2 | +1.4 |
| Other MSA | - | 37.1 | 31.1 | 28.7 | 28.1 | 21.0 | 19.0 | 23.3 | 19.8 | 19.3 | 19.1 | 19.4 | 17.5 | 15.0 | 18.5 | 18.4 | 13.7 | 13.8 | +0.1 |
| Non-MSA | - | 34.6 | 26.4 | 21.1 | 20.6 | 24.1 | 19.4 | 21.3 | 21.8 | 21.6 | 20.1 | 18.7 | 23.4 | 19.4 | 20.6 | 19.4 | 18.0 | 15.6 | -2.5 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 28.8 | 27.7 | 22.9 | 24.0 | 25.7 | 20.8 | 23.5 | 21.1 | 18.2 | 13.2 | 19.8 | 19.0 | 24.8 | 19.3 | 18.4 | 13.7 | 21.3 | +7.6 |
| 2.5-3.0 | - | 37.8 | 31.9 | 28.1 | 25.4 | 21.2 | 17.1 | 26.4 | 20.4 | 26.8 | 20.0 | 21.4 | 23.2 | 16.3 | 22.8 | 19.6 | 18.1 | 17.2 | -0.9 |
| 3.5-4.0 | - | 38.5 | 31.2 | 27.1 | 27.2 | 22.9 | 24.4 | 20.9 | 22.0 | 19.5 | 23.0 | 23.3 | 17.3 | 21.8 | 18.5 | 17.8 | 14.7 | 16.4 | +1.7 |
| 4.5-5.0 | - | 35.6 | 27.6 | 27.6 | 22.1 | 18.0 | 17.2 | 22.8 | 21.0 | 17.0 | 21.4 | 17.9 | 14.3 | 13.6 | 19.0 | 19.4 | 12.4 | 9.1 | -3.3 |
| 5.5-6.0 (High) | - | 36.9 | 23.5 | 21.5 | 18.0 | 24.5 | 16.4 | 14.6 | 16.7 | 20.8 | 21.0 | 16.6 | 19.9 | 16.8 | 14.6 | 23.5 | 10.1 | 13.3 | +3.2 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 35.4 | 29.6 | 26.7 | 23.7 | 21.3 | 21.5 | 21.9 | 20.8 | 21.2 | 21.0 | 19.6 | 18.0 | 18.2 | 19.7 | 16.8 | 13.1 | -3.7 s |
| Black | - | - | 25.3 | 21.7 | 20.9 | 18.2 | 17.6 | 18.3 | 17.6 | 22.1 | 21.1 | 18.4 | 15.5 | 12.4 | 17.0 | 17.0 | 15.8 | 19.4 | +3.6 |
| Hispanic | - | - | 30.2 | 23.3 | 22.3 | 26.7 | 22.9 | 22.9 | 26.0 | 22.0 | 19.8 | 18.2 | 17.4 | 20.7 | 20.0 | 16.7 | 16.0 | 19.7 | +3.7 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01$, $55 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
Data based on one of five forms in 1988; N is one-fifth of N indic ated in Table D -107. Data based on one of six forms beginning in 1989; N is one-sixth of N indic ated in Table D -107.
SOURCE: The Monitoring the Future Study, the University of Mic higan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sizes and thus provide more stable estimates.

## TABLE D-85

Wine Coolers: Trends in Two-Week Prevalence of Five or More Drinks in a Row by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975-87 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | - | 16300 | 16700 | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | 13.9 | 12.4 | 10.5 | 10.2 | 10.4 | 8.5 | 8.9 | 9.0 | 8.4 | 9.4 | 9.5 | 7.7 | 8.8 | 9.7 | 10.0 | 7.1 | 7.5 | +0.4 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 12.1 | 11.3 | 9.9 | 10.0 | 10.2 | 7.3 | 7.4 | 6.7 | 6.9 | 6.7 | 7.0 | 7.0 | 9.4 | 6.2 | 7.2 | 5.4 | 7.5 | +2.1 |
| Female | - | 15.1 | 13.5 | 11.3 | 10.2 | 10.3 | 9.5 | 10.0 | 10.8 | 9.7 | 11.3 | 11.0 | 7.8 | 8.4 | 11.4 | 11.4 | 8.2 | 8.0 | -0.2 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 17.7 | 16.2 | 14.2 | 13.5 | 11.1 | 10.8 | 10.9 | 12.1 | 8.8 | 10.1 | 9.9 | 10.2 | 12.1 | 14.8 | 13.7 | 8.9 | 10.8 | +1.9 |
| Complete 4 years | - | 12.5 | 10.7 | 9.0 | 9.2 | 10.1 | 8.0 | 8.6 | 8.0 | 8.3 | 9.2 | 9.5 | 7.0 | 7.4 | 8.2 | 9.2 | 6.7 | 6.8 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 14.7 | 14.3 | 10.0 | 7.6 | 8.8 | 6.5 | 5.5 | 5.5 | 9.8 | 8.2 | 9.6 | 8.9 | 10.1 | 10.2 | 9.8 | 8.0 | 7.5 | -0.5 |
| North Central | - | 14.2 | 13.1 | 12.0 | 10.9 | 12.0 | 8.0 | 9.9 | 7.0 | 9.2 | 9.7 | 7.3 | 7.0 | 10.8 | 8.9 | 12.0 | 8.8 | 6.4 | -2.4 |
| South | - | 11.2 | 11.2 | 9.3 | 8.8 | 10.3 | 11.1 | 9.3 | 11.5 | 8.7 | 9.7 | 10.5 | 8.8 | 5.9 | 10.9 | 9.6 | 6.7 | 8.6 | +2.0 |
| West | - | 17.4 | 12.0 | 11.0 | 13.2 | 9.7 | 6.2 | 10.0 | 10.4 | 4.8 | 9.7 | 10.2 | 5.6 | 10.1 | 8.4 | 8.4 | 5.0 | 7.1 | +2.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 14.2 | 11.7 | 10.0 | 7.9 | 11.8 | 7.9 | 8.5 | 11.1 | 8.8 | 10.8 | 12.1 | 7.5 | 11.1 | 10.6 | 9.6 | 6.8 | 7.2 | +0.4 |
| Other MSA | - | 15.6 | 12.4 | 11.0 | 12.4 | 9.2 | 8.7 | 8.8 | 7.5 | 8.3 | 9.5 | 8.7 | 6.5 | 8.1 | 8.2 | 9.9 | 6.3 | 7.0 | +0.7 |
| Non-MSA | - | 10.7 | 13.3 | 9.9 | 8.2 | 11.7 | 8.6 | 9.6 | 9.1 | 8.2 | 7.8 | 7.9 | 9.7 | 7.4 | 11.3 | 10.7 | 8.9 | 8.9 | 0.0 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 13.9 | 9.2 | 10.7 | 12.5 | 13.1 | 12.2 | 11.4 | 11.7 | 9.6 | 6.8 | 13.2 | 8.3 | 16.8 | 14.1 | 14.6 | 9.3 | 11.9 | +2.6 |
| 2.5-3.0 | - | 16.6 | 13.8 | 13.3 | 10.9 | 9.5 | 6.9 | 10.4 | 9.5 | 11.4 | 9.8 | 11.0 | 9.2 | 8.8 | 12.6 | 9.9 | 9.4 | 9.5 | +0.1 |
| 3.5-4.0 | - | 13.6 | 14.9 | 9.3 | 12.0 | 11.1 | 11.1 | 8.8 | 8.5 | 6.8 | 10.6 | 9.9 | 7.7 | 8.8 | 7.3 | 9.9 | 6.1 | 9.1 | +3.0 |
| 4.5-5.0 | - | 11.7 | 10.5 | 11.3 | 9.2 | 8.8 | 7.4 | 9.2 | 9.2 | 7.2 | 8.6 | 7.7 | 7.2 | 8.6 | 10.7 | 10.7 | 5.9 | 4.2 | -1.6 |
| 5.5-6.0 (High) | - | 11.4 | 7.4 | 6.3 | 3.7 | 10.6 | 5.6 | 4.8 | 7.5 | 7.7 | 9.5 | 7.9 | 5.8 | 7.0 | 6.1 | 8.0 | 5.9 | 5.5 | -0.4 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 13.6 | 12.3 | 10.7 | 10.3 | 9.5 | 8.6 | 8.6 | 8.1 | 8.7 | 8.8 | 7.6 | 7.6 | 8.9 | 10.2 | 8.4 | 6.4 | -2.0 |
| Black | - | - | 13.0 | 9.9 | 9.2 | 8.7 | 8.6 | 8.6 | 7.5 | 10.4 | 10.0 | 9.2 | 6.9 | 4.2 | 9.6 | 10.0 | 7.8 | 11.7 | +3.9 |
| Hispanic | - | - | 11.5 | 6.0 | 9.8 | 14.5 | 13.5 | 13.1 | 13.9 | 11.1 | 9.8 | 12.0 | 12.6 | 13.2 | 11.5 | 9.1 | 9.3 | 10.6 | +1.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01, s 5 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
Data based on one of five forms in 1988; N is one-fifth of N indicated in Table $\mathrm{D}-107$. Data based on one of six forms beginning in 1989; N is one-sixth of N indicated in Table D -107.
SOURCE: The Monitoring the Future Study, the University of Mic higan.

## CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sizes and thus provide more stable estimates.

TABLE D-86

## Flavored Alcoholic Beverages: Trends in Thirty-Day Prevalence of Use by Subgroups

 for Eighth, Tenth, and Twelfth Graders|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8th Graders |  |  |  | 10th Graders |  |  |  | 12th Graders |  |  |  |
|  | 1991-99 2000-03 |  | '03-'04 <br> 2004 change |  | 1991-99 2000-03 |  | 2004 | '03-'04 change | 1975-99 | 2000-03 | 2004 | '03-'04 <br> change |
| Approx. $\mathrm{N}=$ | - | - | 17000 |  | - | - | 16400 |  | - | - | 14600 |  |
| Total | - | - | 14.6 | - | - | - | 25.1 | - | - | - | 31.1 | - |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | 12.7 | - | - | - | 24.5 | - | - | - | 28.9 | - |
| Female | - | - | 16.3 | - | - | - | 25.6 | - | - | - | 33.2 | - |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | 28.1 | - | - | - | 32.5 | - | - | - | 34.7 | - |
| Complete 4 years | - | - | 13.3 | - | - | - | 24.2 | - | - | - | 30.3 | - |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | 14.9 | - | - | - | 26.6 | - | - | - | 33.5 | - |
| North Central | - | - | 16.2 | - | - | - | 22.5 | - | - | - | 35.3 | - |
| South | - | - | 15.1 | - | - | - | 25.6 | - | - | - | 25.9 | - |
| West | - | - | 11.7 | - | - | - | 26.5 | - | - | - | 32.1 | - |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | 14.4 | - | - | - | 22.4 | - | - | - | 27.0 | - |
| Other MSA | - | - | 14.2 | - | - | - | 26.1 | - | - | - | 33.4 | - |
| Non-MSA | - | - | 15.6 | - | - | - | 26.5 | - | - | - | 30.9 | - |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | 19.5 | - | - | - | 27.3 | - | - | - | 28.5 | - |
| 2.5-3.0 | - | - | 17.5 | - | - | - | 30.5 | - | - | - | 31.0 | - |
| 3.5-4.0 | - | - | 17.8 | - | - | - | 25.0 | - | - | - | 33.6 | - |
| 4.5-5.0 | - | - | 11.8 | - | - | - | 24.9 | - | - | - | 29.4 | - |
| 5.5-6.0 (High) | - | - | 11.5 | - | - | - | 20.8 | - | - | - | 29.8 | - |
| Race (2-yearaverage) ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | - | - | - | - | - | - | - | - | - |
| Black | - | - | - | - | - | - | - | - | - | - | - | - |
| Hispanic | - | - | - | - | - | - | - | - | - | - | - | - |

NOTES: ' - indicates data not available. See Tables D-105 to D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data for 8th and 10 th graders based on one of four forms; N is one-third of N indicated in Tables $\mathrm{D}-105$ and $\mathrm{D}-106$. Data for 12th graders based on one of six forms; N is one-sixth of N indic ated in Table D -107.
SOURCE: The Monitoring the Future Study, the University of Michigan.
CAUIION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.
${ }^{\text {a }}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesfor each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-87

Cigarettes: Trends in Thirty-Day Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 14.3 | 15.5 | 16.7 | 18.6 | 19.1 | 21.0 | 19.4 | 19.1 | 17.5 | 14.6 | 12.2 | 10.7 | 10.2 | 9.2 | -1.0 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 15.5 | 14.9 | 17.2 | 19.3 | 18.8 | 20.6 | 19.1 | 18.0 | 16.7 | 14.3 | 12.2 | 11.0 | 9.6 | 8.3 | -1.3 |
| Female | 13.1 | 15.9 | 16.3 | 17.9 | 19.0 | 21.1 | 19.5 | 19.8 | 17.7 | 14.7 | 12.0 | 10.4 | 10.6 | 9.9 | -0.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 29.2 | 31.9 | 34.1 | 36.6 | 36.5 | 39.2 | 40.0 | 40.1 | 40.3 | 34.7 | 30.0 | 29.3 | 27.8 | 25.6 | -2.3 |
| Complete 4 years | 11.8 | 13.1 | 14.3 | 16.1 | 16.8 | 18.2 | 16.9 | 16.5 | 14.5 | 12.2 | 10.0 | 8.9 | 8.3 | 7.4 | -0.9 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 13.7 | 14.4 | 15.0 | 17.8 | 18.6 | 22.1 | 18.0 | 15.6 | 15.7 | 13.7 | 11.4 | 9.1 | 7.7 | 7.2 | -0.5 |
| North Central | 15.5 | 16.5 | 16.3 | 18.5 | 20.9 | 23.2 | 20.0 | 22.3 | 21.3 | 17.1 | 12.0 | 11.0 | 12.2 | 10.8 | -1.4 |
| South | 15.7 | 17.0 | 18.2 | 19.5 | 19.4 | 21.1 | 21.0 | 21.1 | 18.7 | 14.7 | 14.3 | 13.0 | 11.7 | 10.3 | -1.5 |
| West | 10.0 | 12.2 | 16.4 | 18.0 | 16.5 | 17.1 | 17.1 | 15.1 | 12.1 | 12.2 | 9.3 | 7.5 | 7.0 | 7.4 | +0.3 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 12.8 | 15.0 | 14.1 | 15.5 | 16.5 | 19.4 | 15.8 | 16.4 | 12.7 | 12.1 | 9.3 | 7.5 | 7.7 | 7.7 | 0.0 |
| OtherMSA | 14.9 | 15.3 | 17.8 | 20.7 | 19.4 | 21.4 | 19.7 | 17.7 | 16.0 | 13.1 | 11.6 | 10.6 | 9.8 | 8.9 | -0.9 |
| Non-MSA | 14.8 | 16.4 | 17.9 | 17.8 | 21.5 | 22.1 | 22.8 | 24.8 | 26.1 | 21.1 | 16.9 | 14.9 | 14.4 | 11.6 | -2.7 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 26.2 | 24.1 | 23.3 | 26.1 | 25.3 | 26.5 | 26.9 | 26.7 | 26.6 | 22.0 | 20.3 | 20.3 | 17.5 | 15.8 | -1.7 |
| 2.5-3.0 | 16.4 | 16.9 | 19.8 | 20.6 | 22.7 | 24.4 | 22.4 | 23.9 | 23.5 | 19.6 | 16.4 | 14.5 | 14.8 | 12.2 | -2.7 s |
| 3.5-4.0 | 13.9 | 14.9 | 17.4 | 20.1 | 20.8 | 21.4 | 20.9 | 21.4 | 17.0 | 14.7 | 12.6 | 10.5 | 9.6 | 9.6 | -0.1 |
| 4.5-5.0 | 10.1 | 13.3 | 12.5 | 14.9 | 14.9 | 18.4 | 16.2 | 14.2 | 12.3 | 10.2 | 8.3 | 7.8 | 6.7 | 6.7 | 0.0 |
| 5.5-6.0 (High) | 11.3 | 11.5 | 13.3 | 15.1 | 14.5 | 17.3 | 15.3 | 13.8 | 12.2 | 9.8 | 6.9 | 5.8 | 6.0 | 5.2 | -0.8 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 16.2 | 17.8 | 18.9 | 20.7 | 22.7 | 22.8 | 21.5 | 20.1 | 17.7 | 14.7 | 12.0 | 10.9 | 10.0 | -0.9 |
| Black | - | 5.3 | 6.6 | 8.7 | 8.9 | 9.6 | 10.9 | 10.6 | 10.7 | 9.6 | 8.2 | 7.7 | 6.9 | 6.9 | 0.0 |
| Hispanic | - | 16.7 | 18.3 | 21.3 | 21.6 | 19.6 | 19.1 | 20.1 | 20.5 | 16.6 | 13.0 | 12.8 | 11.9 | 10.1 | -1.8 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

Cigarettes: Trends in Thirty-Day Prevalence of Use by Subgroups for Tenth Graders

Percentage who used in last thirty days

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 20.8 | 21.5 | 24.7 | 25.4 | 27.9 | 30.4 | 29.8 | 27.6 | 25.7 | 23.9 | 21.3 | 17.7 | 16.7 | 16.0 | -0.7 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 20.8 | 20.6 | 24.6 | 26.6 | 27.7 | 30.1 | 28.2 | 26.2 | 25.2 | 23.8 | 20.9 | 16.7 | 16.2 | 16.2 | 0.0 |
| Female | 20.7 | 22.2 | 24.5 | 23.9 | 27.9 | 30.8 | 31.1 | 29.1 | 25.8 | 23.6 | 21.5 | 18.6 | 17.0 | 15.7 | -1.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 36.5 | 35.0 | 41.9 | 42.2 | 46.3 | 46.2 | 47.2 | 45.2 | 44.0 | 38.6 | 38.1 | 33.3 | 33.0 | 33.1 | +0.1 |
| Complete 4 years | 17.3 | 18.6 | 21.0 | 21.7 | 24.7 | 27.8 | 26.8 | 24.5 | 22.7 | 21.5 | 18.5 | 15.1 | 14.0 | 13.6 | -0.4 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 22.4 | 21.9 | 27.1 | 24.5 | 27.8 | 31.7 | 29.3 | 30.1 | 28.0 | 23.9 | 18.1 | 15.9 | 16.6 | 16.6 | 0.0 |
| North Central | 22.9 | 24.3 | 26.0 | 28.8 | 30.1 | 32.5 | 31.7 | 29.5 | 30.2 | 27.1 | 24.2 | 19.2 | 18.4 | 14.6 | -3.7 s |
| South | 21.2 | 19.8 | 24.0 | 25.7 | 30.8 | 33.4 | 32.2 | 29.8 | 26.3 | 25.5 | 23.5 | 19.6 | 18.2 | 20.4 | +2.1 |
| West | 16.7 | 20.2 | 21.2 | 20.1 | 19.6 | 20.8 | 23.2 | 19.6 | 17.5 | 16.8 | 15.0 | 14.1 | 12.5 | 10.9 | -1.6 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 19.7 | 21.6 | 22.5 | 22.3 | 23.3 | 26.2 | 26.6 | 22.5 | 22.9 | 23.1 | 17.3 | 14.2 | 13.1 | 12.0 | -1.1 |
| Other MSA | 20.3 | 20.3 | 23.8 | 26.3 | 28.9 | 31.1 | 28.9 | 26.6 | 25.0 | 21.3 | 20.5 | 17.6 | 16.6 | 16.6 | 0.0 |
| Non-MSA | 22.7 | 23.7 | 28.2 | 26.7 | 31.3 | 33.9 | 34.9 | 35.7 | 30.4 | 29.4 | 27.6 | 22.6 | 22.4 | 20.4 | -2.0 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 23.5 | 28.4 | 29.5 | 26.4 | 30.9 | 28.7 | 28.2 | 28.0 | 30.5 | 29.3 | 22.5 | 21.4 | 23.4 | 19.3 | -4.1 |
| 2.5-3.0 | 24.1 | 23.3 | 28.0 | 29.1 | 33.2 | 33.8 | 33.2 | 33.0 | 29.6 | 26.8 | 25.7 | 22.4 | 21.2 | 19.9 | -1.3 |
| 3.5-4.0 | 20.4 | 20.6 | 24.8 | 26.0 | 27.8 | 31.6 | 30.9 | 27.3 | 26.0 | 25.3 | 21.1 | 17.4 | 16.2 | 17.8 | +1.6 |
| 4.5-5.0 | 18.5 | 19.5 | 20.1 | 22.6 | 25.9 | 28.7 | 28.5 | 25.7 | 22.4 | 21.2 | 18.9 | 15.1 | 13.4 | 12.6 | -0.8 |
| 5.5-6.0 (High) | 18.5 | 18.9 | 21.4 | 20.7 | 21.8 | 27.8 | 24.6 | 22.5 | 21.4 | 19.1 | 17.1 | 12.7 | 11.6 | 10.8 | -0.8 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 24.1 | 26.0 | 27.8 | 29.7 | 32.9 | 34.4 | 33.2 | 30.8 | 28.2 | 25.7 | 22.4 | 20.0 | 18.7 | -1.3 |
| Black | - | 6.6 | 7.5 | 9.8 | 11.5 | 12.2 | 12.8 | 13.7 | 12.5 | 11.1 | 11.1 | 9.8 | 8.9 | 9.2 | +0.2 |
| Hispanic | - | 18.3 | 20.5 | 19.4 | 21.4 | 23.7 | 23.0 | 21.3 | 21.1 | 19.6 | 16.8 | 14.3 | 13.2 | 13.9 | +0.8 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding emror. See Table D-106 for the number of subgroup cases. See Appendix B fordefinition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

TABLE D-89
Cigarettes: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | $\sqrt{ }$ |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 36.7 | 38.8 | 38.4 | 36.7 | 34.4 | 30.5 | 29.4 | 30.0 | 30.3 | 29.3 | 30.1 | 29.6 | 29.4 | 28.7 | 28.6 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 37.2 | 37.7 | 36.6 | 34.5 | 31.2 | 26.8 | 26.5 | 26.8 | 28.0 | 25.9 | 28.2 | 27.9 | 27.0 | 28.0 | 27.7 |  |
| Female | 35.9 | 39.1 | 39.6 | 38.1 | 37.1 | 33.4 | 31.6 | 32.6 | 31.6 | 31.9 | 31.4 | 30.6 | 31.4 | 28.9 | 29.0 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 46.3 | 46.2 | 44.6 | 43.0 | 39.6 | 38.1 | 38.7 | 38.0 | 37.9 | 40.5 | 38.5 | 39.7 | 37.5 | 38.0 |  |
| Complete 4 years | - | 29.8 | 29.4 | 27.4 | 26.0 | 22.3 | 22.3 | 22.1 | 23.3 | 22.7 | 22.8 | 24.0 | 24.3 | 24.4 | 24.1 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 40.1 | 41.8 | 43.0 | 40.6 | 37.0 | 34.1 | 31.5 | 32.1 | 34.6 | 33.5 | 34.2 | 35.2 | 34.1 | 31.2 | 29.4 |  |
| North Central | 39.5 | 41.3 | 40.5 | 39.0 | 36.6 | 31.5 | 32.4 | 33.5 | 33.2 | 31.4 | 34.1 | 32.5 | 31.7 | 31.1 | 34.9 |  |
| South | 36.2 | 39.1 | 37.6 | 35.7 | 35.4 | 31.8 | 28.9 | 29.4 | 28.7 | 28.6 | 25.6 | 26.1 | 26.0 | 28.0 | 26.4 |  |
| West | 26.3 | 28.3 | 27.7 | 27.3 | 24.8 | 21.2 | 21.8 | 20.4 | 21.8 | 22.9 | 26.3 | 23.3 | 26.6 | 23.9 | 22.7 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 39.7 | 40.4 | 40.9 | 37.5 | 33.4 | 31.2 | 30.6 | 32.1 | 30.8 | 31.3 | 31.9 | 30.8 | 29.3 | 26.9 | 25.9 |  |
| OtherMSA | 35.1 | 35.9 | 36.1 | 34.3 | 33.5 | 29.7 | 27.4 | 27.8 | 29.1 | 28.2 | 28.5 | 28.0 | 28.2 | 28.3 | 28.2 |  |
| Non-MSA | 36.7 | 40.9 | 39.2 | 39.4 | 36.4 | 30.9 | 30.9 | 31.2 | 31.5 | 29.3 | 30.8 | 31.0 | 31.8 | 31.4 | 32.2 |  |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 37.2 | 43.2 | 39.6 | 38.1 | 38.1 | 32.7 | 32.5 | 32.6 | 32.7 | 33.6 | 32.3 | 28.6 | 28.8 | 28.1 | 25.4 |  |
| 2.5-3.0 | 37.0 | 41.2 | 40.8 | 39.3 | 35.9 | 34.2 | 31.7 | 32.0 | 32.2 | 31.8 | 32.3 | 32.3 | 31.4 | 29.9 | 30.8 |  |
| 3.5-4.0 | 31.9 | 35.3 | 37.3 | 34.0 | 33.3 | 28.0 | 28.2 | 29.0 | 28.0 | 28.1 | 29.7 | 29.7 | 28.8 | 27.8 | 29.4 |  |
| 4.5-5.0 | 32.3 | 35.0 | 33.0 | 32.6 | 30.1 | 25.7 | 26.0 | 25.5 | 27.8 | 25.2 | 27.7 | 26.4 | 27.6 | 28.6 | 27.0 |  |
| 5.5-6.0 (High) | 26.8 | 30.8 | 32.8 | 31.9 | 29.6 | 24.0 | 22.5 | 25.1 | 25.5 | 23.7 | 22.6 | 26.7 | 29.3 | 27.8 | 26.3 |  |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 38.3 | 37.6 | 36.0 | 33.0 | 30.5 | 30.7 | 31.3 | 31.2 | 31.3 | 31.9 | 32.1 | 32.2 | 32.2 |  |
| Black | - | - | 36.7 | 32.7 | 30.2 | 26.8 | 23.7 | 21.8 | 21.2 | 19.3 | 18.1 | 16.9 | 14.2 | 13.3 | 12.6 |  |
| Hispanic | - | - | 35.7 | 32.8 | 26.8 | 22.6 | 23.2 | 24.7 | 24.7 | 25.3 | 25.5 | 23.7 | 22.7 | 21.9 | 20.6 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. <br> See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the | uture | dy, th | niver | of M | an. |  |  |  |  |  |  |  |  |  |  |  |

## TABLE D-89 (cont'd)

Cigarettes: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders


[^119]
## TABLE D-90

Cigarettes: Trends in Thirty-Day Prevalence of Daily Use by Subgroups for Eighth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 7.2 | 7.0 | 8.3 | 8.8 | 9.3 | 10.4 | 9.0 | 8.8 | 8.1 | 7.4 | 5.5 | 5.1 | 4.5 | 4.4 | -0.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8.1 | 6.9 | 8.8 | 9.5 | 9.2 | 10.5 | 9.0 | 8.1 | 7.4 | 7.0 | 5.9 | 5.4 | 4.4 | 4.3 | -0.1 |
| Female | 6.2 | 7.2 | 7.8 | 8.0 | 9.2 | 10.1 | 8.7 | 9.0 | 8.4 | 7.5 | 4.9 | 4.9 | 4.5 | 4.3 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 18.5 | 20.1 | 21.5 | 22.6 | 22.5 | 26.0 | 25.4 | 25.2 | 25.2 | 21.7 | 17.7 | 17.1 | 16.1 | 15.4 | -0.7 |
| Complete 4 years | 5.3 | 5.1 | 6.4 | 6.8 | 7.5 | 8.0 | 6.9 | 6.6 | 5.9 | 5.6 | 3.9 | 3.9 | 3.2 | 3.1 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 7.2 | 7.1 | 7.1 | 8.6 | 9.2 | 11.0 | 8.8 | 6.1 | 7.2 | 6.9 | 6.1 | 3.7 | 2.9 | 3.3 | +0.4 |
| North Central | 7.8 | 7.6 | 8.5 | 9.4 | 11.0 | 12.4 | 10.3 | 11.2 | 11.5 | 9.0 | 6.4 | 5.7 | 5.5 | 5.7 | +0.2 |
| South | 7.9 | 7.8 | 9.3 | 9.4 | 9.4 | 10.4 | 9.5 | 10.2 | 8.5 | 7.8 | 6.1 | 6.6 | 5.7 | 4.7 | -1.0 |
| West | 4.6 | 4.8 | 7.4 | 7.4 | 7.0 | 7.5 | 6.8 | 5.8 | 3.8 | 4.9 | 2.6 | 2.9 | 2.4 | 3.3 | +0.9 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 6.3 | 6.3 | 5.7 | 6.6 | 7.6 | 9.5 | 7.0 | 6.7 | 5.4 | 5.6 | 4.1 | 3.2 | 3.0 | 3.5 | +0.5 |
| Other MSA | 7.7 | 7.2 | 9.1 | 9.5 | 9.3 | 10.2 | 8.7 | 7.9 | 7.4 | 6.3 | 5.4 | 5.1 | 4.3 | 4.1 | -0.1 |
| Non-MSA | 7.3 | 7.8 | 10.1 | 9.6 | 11.1 | 11.8 | 11.7 | 12.7 | 12.7 | 11.8 | 7.2 | 7.6 | 7.0 | 5.9 | -1.0 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 15.9 | 11.9 | 12.7 | 13.0 | 15.8 | 13.6 | 14.3 | 13.0 | 14.7 | 13.1 | 11.1 | 10.6 | 9.1 | 10.1 | +1.0 |
| 2.5-3.0 | 8.6 | 8.4 | 9.7 | 11.3 | 11.3 | 14.0 | 11.7 | 12.0 | 11.4 | 11.3 | 7.5 | 7.1 | 6.6 | 5.6 | -0.9 |
| 3.5-4.0 | 6.5 | 6.9 | 8.5 | 8.9 | 9.4 | 10.1 | 9.2 | 9.7 | 8.1 | 6.7 | 5.1 | 5.4 | 4.4 | 4.2 | -0.2 |
| 4.5-5.0 | 4.0 | 5.2 | 5.9 | 6.1 | 7.2 | 7.6 | 6.8 | 5.7 | 4.6 | 3.9 | 3.0 | 3.3 | 2.6 | 2.8 | +0.2 |
| 5.5-6.0 (High) | 4.9 | 4.2 | 6.3 | 5.8 | 5.7 | 7.4 | 5.5 | 5.2 | 5.1 | 4.1 | 3.1 | 2.1 | 2.1 | 1.9 | -0.2 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 7.7 | 8.8 | 9.7 | 10.5 | 11.7 | 11.4 | 10.4 | 9.7 | 9.0 | 7.5 | 6.0 | 5.3 | 4.7 | -0.6 |
| Black | - | 1.4 | 1.8 | 2.6 | 2.8 | 3.2 | 3.7 | 3.8 | 3.8 | 3.2 | 2.8 | 2.8 | 2.9 | 2.7 | -0.2 |
| Hispanic | - | 7.3 | 7.2 | 9.0 | 9.2 | 8.0 | 8.1 | 8.4 | 8.5 | 7.1 | 5.0 | 4.4 | 3.7 | 3.5 | -0.2 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.

SOURCE: The Monitoring the Future Study, the University of Michigan.
Parental education is an a verage score of mother's education and father's education. See Appendix B for details
${ }^{\mathrm{b}}$ To derive percentages for each racial subgroup, data forthe specified yearand the previous yearhave been combined to increase subgroup sample izes and thus provide more stable estimates.

## TABLE D-91

Cigarettes: Trends in Thirty-Day Prevalence of Daily Use by Subgroups for Tenth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 12.6 | 12.3 | 14.2 | 14.6 | 16.3 | 18.3 | 18.0 | 15.8 | 15.9 | 14.0 | 12.2 | 10.1 | 8.9 | 8.3 | -0.6 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 12.4 | 12.1 | 13.8 | 15.2 | 16.3 | 18.1 | 17.2 | 14.7 | 15.6 | 13.7 | 12.4 | 9.4 | 8.6 | 8.2 | -0.4 |
| Female | 12.5 | 12.4 | 14.3 | 13.7 | 16.1 | 18.6 | 18.5 | 16.8 | 15.9 | 14.1 | 11.9 | 10.8 | 9.0 | 8.2 | -0.8 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 25.7 | 25.5 | 28.9 | 28.9 | 32.7 | 34.3 | 35.4 | 31.7 | 32.1 | 28.8 | 27.3 | 22.9 | 22.1 | 21.4 | -0.7 |
| Complete 4 years | 9.6 | 9.5 | 11.0 | 11.5 | 13.3 | 15.5 | 15.0 | 12.9 | 13.2 | 11.6 | 9.6 | 7.9 | 6.7 | 6.4 | -0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 14.3 | 13.1 | 16.3 | 14.1 | 15.8 | 18.8 | 18.0 | 18.7 | 17.7 | 14.1 | 11.0 | 8.3 | 8.6 | 8.5 | 0.0 |
| North Central | 14.3 | 14.3 | 15.1 | 16.9 | 17.6 | 20.6 | 19.5 | 17.3 | 19.6 | 16.3 | 13.2 | 11.5 | 10.2 | 7.4 | -2.8 s |
| South | 12.8 | 11.4 | 13.9 | 15.5 | 19.3 | 20.5 | 20.5 | 17.1 | 16.3 | 15.7 | 14.3 | 11.3 | 10.1 | 11.0 | +0.9 |
| West | 9.1 | 10.7 | 10.9 | 9.7 | 9.4 | 10.7 | 11.1 | 8.8 | 9.1 | 7.8 | 7.0 | 7.8 | 6.0 | 5.2 | -0.9 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 12.3 | 11.7 | 12.3 | 12.0 | 12.6 | 15.3 | 15.7 | 12.2 | 13.2 | 13.8 | 9.6 | 7.4 | 6.1 | 5.6 | -0.5 |
| OtherMSA | 11.7 | 11.6 | 13.6 | 15.5 | 17.5 | 18.8 | 16.9 | 15.1 | 15.5 | 12.1 | 11.6 | 10.4 | 8.7 | 8.1 | -0.6 |
| Non-MSA | 14.3 | 14.5 | 16.9 | 15.5 | 18.4 | 20.8 | 22.5 | 21.1 | 19.7 | 17.5 | 16.3 | 13.1 | 13.7 | 12.3 | -1.4 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 16.0 | 17.8 | 19.3 | 15.5 | 20.0 | 19.3 | 17.7 | 17.4 | 20.1 | 18.9 | 12.9 | 14.1 | 15.3 | 11.4 | -3.9 |
| 2.5-3.0 | 15.5 | 13.9 | 16.9 | 17.6 | 21.6 | 23.1 | 22.1 | 21.3 | 19.1 | 17.6 | 16.2 | 14.7 | 12.7 | 11.5 | -1.3 |
| 3.5-4.0 | 12.0 | 11.8 | 13.6 | 15.9 | 17.0 | 19.4 | 18.9 | 14.9 | 16.6 | 14.2 | 12.2 | 10.0 | 8.8 | 9.3 | +0.5 |
| 4.5-5.0 | 10.6 | 10.5 | 10.7 | 11.5 | 12.6 | 14.8 | 15.6 | 12.9 | 13.0 | 11.5 | 9.7 | 6.8 | 5.8 | 5.4 | -0.4 |
| 5.5-6.0 (High) | 9.6 | 9.0 | 10.5 | 9.6 | 10.3 | 13.6 | 12.0 | 11.1 | 11.2 | 9.8 | 8.3 | 6.4 | 4.5 | 4.2 | -0.3 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 14.5 | 15.3 | 16.5 | 17.6 | 20.0 | 21.4 | 20.3 | 19.1 | 17.7 | 15.5 | 13.3 | 11.4 | 10.0 | -1.4 |
| Black | - | 2.8 | 3.1 | 3.8 | 4.7 | 5.1 | 5.6 | 5.8 | 5.3 | 5.2 | 5.2 | 5.0 | 4.3 | 4.4 | +0.1 |
| Hispanic | - | 8.4 | 8.9 | 8.1 | 9.9 | 11.6 | 10.8 | 9.4 | 9.1 | 8.8 | 7.4 | 6.4 | 6.0 | 6.0 | 0.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

TABLE D-92
Cigarettes: Trends in Thirty-Day Prevalence of Daily Use by Subgroups for Twelfth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ont'd ${ }^{\text {d }}$ |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | $\underline{1986}$ | 1987 | 1988 | $\underline{1989}$ |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 26.9 | 28.8 | 28.8 | 27.5 | 25.4 | 21.3 | 20.3 | 21.1 | 21.2 | 18.7 | 19.5 | 18.7 | 18.7 | 18.1 | 18.9 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 26.9 | 28.0 | 27.1 | 26.0 | 22.3 | 18.5 | 18.1 | 18.2 | 19.2 | 16.0 | 17.8 | 16.9 | 16.4 | 17.4 | 17.9 |  |
| Female | 26.4 | 28.8 | 30.0 | 28.3 | 27.8 | 23.5 | 21.7 | 23.2 | 22.2 | 20.5 | 20.6 | 19.8 | 20.6 | 18.1 | 19.4 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 36.5 | 37.2 | 35.2 | 33.8 | 29.7 | 29.3 | 29.5 | 29.3 | 27.2 | 29.6 | 28.2 | 29.0 | 27.4 | 27.9 |  |
| Complete 4 years | - | 19.8 | 19.3 | 18.3 | 17.0 | 13.8 | 12.9 | 13.2 | 13.8 | 11.9 | 12.4 | 12.8 | 13.3 | 13.4 | 14.6 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 31.4 | 32.3 | 33.8 | 32.5 | 28.6 | 24.1 | 23.3 | 23.4 | 26.1 | 23.6 | 24.9 | 24.9 | 24.8 | 21.4 | 21.3 |  |
| North Central | 28.6 | 30.2 | 29.4 | 28.6 | 27.0 | 22.0 | 23.0 | 24.0 | 23.4 | 20.4 | 22.4 | 19.9 | 20.3 | 19.0 | 23.0 |  |
| South | 26.2 | 29.1 | 28.7 | 26.4 | 25.8 | 22.6 | 19.1 | 20.2 | 19.4 | 17.7 | 16.0 | 15.8 | 15.7 | 17.7 | 17.1 |  |
| West | 17.3 | 19.4 | 19.2 | 19.1 | 17.0 | 14.0 | 13.1 | 12.7 | 13.0 | 12.4 | 14.2 | 13.4 | 14.9 | 14.0 | 13.8 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 30.8 | 30.4 | 30.9 | 29.2 | 24.5 | 21.6 | 21.9 | 23.5 | 22.1 | 21.5 | 21.9 | 20.6 | 20.3 | 18.0 | 16.7 |  |
| Other MSA | 25.6 | 27.1 | 27.2 | 25.7 | 25.0 | 21.3 | 19.0 | 19.3 | 20.2 | 17.4 | 17.7 | 17.0 | 17.6 | 17.7 | 19.0 |  |
| Non-MSA | 25.8 | 29.5 | 29.1 | 28.7 | 26.5 | 21.2 | 20.7 | 21.3 | 21.7 | 18.2 | 19.9 | 19.8 | 19.3 | 18.8 | 20.9 |  |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 27.2 | 32.7 | 29.6 | 28.6 | 29.1 | 23.7 | 24.1 | 24.6 | 24.0 | 23.2 | 22.7 | 20.4 | 19.7 | 19.2 | 17.1 |  |
| 2.5-3.0 | 27.2 | 31.3 | 31.5 | 30.3 | 26.5 | 24.7 | 22.5 | 23.1 | 23.2 | 21.5 | 21.8 | 21.4 | 21.1 | 19.6 | 21.5 |  |
| 3.5-4.0 | 22.1 | 25.8 | 28.1 | 24.8 | 24.5 | 19.4 | 19.0 | 19.7 | 18.8 | 16.4 | 19.3 | 19.4 | 17.8 | 17.5 | 19.0 |  |
| 4.5-5.0 | 22.9 | 24.5 | 23.7 | 23.2 | 21.2 | 16.6 | 16.1 | 16.8 | 17.5 | 14.1 | 16.0 | 13.9 | 16.5 | 16.5 | 17.2 |  |
| 5.5-6.0 (High) | 17.4 | 22.8 | 21.7 | 22.8 | 20.6 | 15.0 | 13.9 | 14.5 | 17.2 | 14.1 | 11.2 | 13.6 | 16.6 | 15.1 | 15.8 |  |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 28.9 | 28.3 | 26.9 | 23.9 | 21.4 | 21.6 | 22.1 | 21.0 | 20.4 | 20.6 | 20.5 | 20.6 | 21.1 |  |
| Black | - | - | 24.9 | 22.7 | 20.9 | 17.4 | 14.6 | 13.1 | 12.5 | 10.7 | 9.9 | 9.4 | 7.9 | 7.3 | 6.4 |  |
| Hispanic | - | - | 22.6 | 20.4 | 15.8 | 12.8 | 13.6 | 14.3 | 14.9 | 13.9 | 11.8 | 11.3 | 11.0 | 10.9 | 10.8 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| See Table D-107 for the number of subgroup cases. See Appendix B fordefinition of variables in table. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring th | uture | $y$, | Ive | f M | an. |  |  |  |  |  |  |  |  |  |  |  |

TABLE D-92 (cont'd)
Cigarettes: Trends in Thirty-Day Prevalence of Daily Use by Subgroups for Twelfth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ | change |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 19.1 | 18.5 | 17.2 | 19.0 | 19.4 | 21.6 | 22.2 | 24.6 | 22.4 | 23.1 | 20.6 | 19.0 | 16.9 | 15.8 | 15.6 | -0.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 18.6 | 18.8 | 17.2 | 19.4 | 20.4 | 21.7 | 22.2 | 24.8 | 22.7 | 23.6 | 20.9 | 18.4 | 17.2 | 17.0 | 15.4 | -1.5 |
| Female | 19.3 | 17.9 | 16.7 | 18.2 | 18.1 | 20.8 | 21.8 | 23.6 | 21.5 | 22.2 | 19.7 | 18.9 | 16.1 | 14.0 | 15.0 | +1.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 28.3 | 28.4 | 28.1 | 27.8 | 29.8 | 33.7 | 33.2 | 35.6 | 34.6 | 34.2 | 31.7 | 30.1 | 27.6 | 27.9 | 26.9 | -1.0 |
| Complete 4 years | 14.7 | 14.1 | 12.9 | 15.9 | 15.7 | 17.4 | 18.9 | 20.6 | 18.4 | 19.5 | 16.6 | 15.5 | 13.8 | 12.1 | 12.2 | +0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 22.8 | 20.9 | 19.4 | 23.5 | 21.3 | 22.5 | 27.0 | 29.4 | 23.4 | 23.2 | 22.8 | 21.9 | 18.4 | 16.4 | 16.2 | -0.3 |
| North Central | 22.2 | 23.0 | 19.0 | 21.3 | 23.8 | 25.7 | 26.1 | 28.0 | 27.8 | 25.9 | 23.6 | 25.2 | 22.5 | 18.2 | 18.5 | +0.4 |
| South | 16.5 | 16.4 | 16.7 | 18.5 | 19.3 | 21.7 | 20.5 | 22.6 | 21.8 | 24.2 | 19.4 | 15.5 | 16.6 | 16.3 | 15.8 | -0.4 |
| West | 14.8 | 13.9 | 13.3 | 13.0 | 12.4 | 14.5 | 13.8 | 17.5 | 15.5 | 17.3 | 16.9 | 13.4 | 9.5 | 11.8 | 10.1 | -1.6 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 19.0 | 16.7 | 16.6 | 17.3 | 17.7 | 21.3 | 20.7 | 23.7 | 20.6 | 18.6 | 16.7 | 17.4 | 15.0 | 11.5 | 12.6 | +1.0 |
| Other MSA | 19.0 | 19.0 | 15.9 | 19.7 | 19.2 | 19.9 | 21.9 | 23.9 | 21.2 | 22.8 | 21.1 | 17.5 | 16.7 | 15.9 | 16.1 | +0.2 |
| Non-MSA | 19.5 | 19.0 | 20.3 | 19.2 | 21.6 | 24.8 | 24.1 | 26.8 | 27.2 | 28.5 | 24.5 | 23.9 | 19.8 | 21.4 | 18.0 | -3.4 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 16.7 | 21.2 | 16.5 | 17.6 | 16.9 | 21.3 | 21.1 | 21.9 | 21.7 | 23.8 | 22.8 | 16.4 | 12.4 | 15.1 | 14.2 | -0.9 |
| 2.5-3.0 | 21.0 | 19.8 | 20.4 | 20.2 | 22.4 | 24.6 | 24.4 | 26.0 | 24.7 | 26.9 | 22.9 | 21.9 | 19.8 | 18.3 | 19.4 | +1.1 |
| 3.5-4.0 | 19.3 | 18.5 | 16.9 | 18.9 | 18.9 | 21.6 | 21.2 | 23.8 | 23.8 | 23.6 | 21.2 | 19.9 | 19.1 | 16.5 | 16.3 | -0.2 |
| 4.5-5.0 | 18.3 | 16.2 | 15.0 | 18.9 | 18.7 | 19.7 | 22.4 | 24.9 | 20.6 | 20.6 | 18.6 | 17.9 | 14.1 | 13.0 | 13.7 | +0.7 |
| 5.5-6.0 (High) | 16.5 | 16.1 | 12.8 | 16.6 | 17.3 | 18.5 | 20.0 | 22.9 | 17.4 | 19.0 | 15.2 | 13.4 | 14.3 | 11.3 | 10.3 | -1.0 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 21.8 | 21.5 | 20.5 | 21.4 | 22.9 | 23.9 | 25.4 | 27.8 | 28.3 | 26.9 | 25.7 | 23.8 | 21.8 | 19.5 | 18.3 | -1.2 |
| Black | 5.8 | 5.1 | 4.2 | 4.1 | 4.9 | 6.1 | 7.0 | 7.2 | 7.4 | 7.7 | 8.0 | 7.5 | 6.4 | 5.4 | 5.2 | -0.2 |
| Hispanic | 10.9 | 11.5 | 12.5 | 11.8 | 10.6 | 11.6 | 12.9 | 14.0 | 13.6 | 14.0 | 15.7 | 12.0 | 9.2 | 8.0 | 8.2 | +0.2 |

[^120]TABLE D-93

## Cigarettes: Trends in Thirty-Day Prevalence of Use of Half-pack a Day or More by Subgroups for Eighth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 3.1 | 2.9 | 3.5 | 3.6 | 3.4 | 4.3 | 3.5 | 3.6 | 3.3 | 2.8 | 2.3 | 2.1 | 1.8 | 1.7 | -0.1 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 3.7 | 3.1 | 4.3 | 4.2 | 3.7 | 4.7 | 3.7 | 3.5 | 3.1 | 2.8 | 2.6 | 2.4 | 1.8 | 1.7 | -0.1 |
| Female | 2.4 | 2.7 | 2.7 | 2.9 | 3.2 | 3.7 | 3.1 | 3.3 | 3.3 | 2.6 | 2.0 | 1.9 | 1.7 | 1.7 | 0.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 10.1 | 10.8 | 11.9 | 11.7 | 11.4 | 13.5 | 11.6 | 13.8 | 13.4 | 10.3 | 9.8 | 8.4 | 7.5 | 7.4 | -0.1 |
| Complete 4 years | 1.9 | 1.7 | 2.2 | 2.4 | 2.3 | 2.8 | 2.4 | 2.2 | 2.0 | 1.8 | 1.4 | 1.5 | 1.2 | 1.1 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3.3 | 2.8 | 2.7 | 3.7 | 3.7 | 4.1 | 3.7 | 2.1 | 3.1 | 3.3 | 2.6 | 1.7 | 1.0 | 1.4 | +0.4 |
| North Central | 3.3 | 3.2 | 3.5 | 3.9 | 4.4 | 5.3 | 4.1 | 4.6 | 5.7 | 3.4 | 3.1 | 2.7 | 2.1 | 2.3 | +0.3 |
| South | 3.4 | 3.3 | 4.6 | 3.9 | 3.6 | 4.5 | 3.7 | 4.8 | 2.9 | 2.8 | 2.7 | 2.5 | 2.6 | 1.8 | -0.7 |
| West | 1.9 | 2.0 | 2.2 | 2.6 | 1.8 | 2.7 | 2.2 | 1.6 | 1.2 | 1.3 | 0.7 | 0.9 | 0.8 | 1.2 | +0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 2.4 | 2.3 | 2.1 | 3.0 | 2.5 | 3.7 | 2.7 | 2.3 | 1.8 | 2.1 | 1.5 | 1.3 | 1.0 | 1.3 | +0.4 |
| Other MSA | 3.3 | 3.2 | 3.7 | 3.9 | 3.6 | 3.8 | 3.2 | 3.2 | 2.8 | 2.2 | 2.1 | 2.2 | 1.7 | 1.6 | -0.1 |
| Non-MSA | 3.4 | 3.3 | 5.0 | 3.7 | 4.3 | 5.8 | 4.8 | 5.6 | 5.9 | 4.6 | 3.9 | 3.1 | 3.1 | 2.4 | -0.6 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 7.9 | 6.5 | 6.4 | 5.1 | 8.2 | 6.5 | 6.4 | 6.2 | 6.2 | 7.1 | 5.2 | 4.6 | 3.7 | 5.6 | +1.9 |
| 2.5-3.0 | 3.7 | 3.4 | 3.9 | 4.9 | 4.1 | 6.4 | 4.8 | 5.2 | 4.8 | 3.8 | 3.6 | 2.8 | 2.9 | 2.1 | -0.8 |
| 3.5-4.0 | 2.5 | 2.6 | 3.6 | 3.4 | 3.6 | 3.2 | 3.5 | 3.7 | 3.4 | 2.3 | 2.0 | 2.2 | 1.8 | 1.5 | -0.3 |
| 4.5-5.0 | 1.6 | 1.8 | 2.3 | 2.6 | 2.0 | 2.8 | 2.2 | 2.0 | 1.5 | 1.4 | 0.9 | 1.2 | 0.7 | 0.8 | +0.1 |
| 5.5-6.0 (High) | 1.8 | 1.5 | 2.2 | 2.2 | 1.5 | 2.7 | 1.8 | 2.1 | 1.8 | 1.5 | 1.4 | 1.1 | 0.9 | 0.6 | -0.3 |
| Race (2-yearaverage) ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 3.3 | 3.8 | 4.2 | 4.2 | 4.6 | 4.6 | 4.2 | 4.0 | 3.6 | 3.2 | 2.8 | 2.3 | 1.9 | -0.4 |
| Black | - | 0.4 | 0.7 | 1.0 | 0.9 | 1.3 | 1.4 | 1.2 | 1.3 | 1.0 | 1.1 | 1.1 | 1.2 | 1.1 | 0.0 |
| Hispanic | - | 2.7 | 2.5 | 3.1 | 3.3 | 2.7 | 2.4 | 2.8 | 3.0 | 2.3 | 1.4 | 1.3 | 1.5 | 1.4 | 0.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, S S=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding error. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.

SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

TABLE D-94

## Cigarettes: Trends in Thirty-Day Prevalence of Use of Half-pack a Day or More by Subgroups for Tenth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | 2004 |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 6.5 | 6.0 | 7.0 | 7.6 | 8.3 | 9.4 | 8.6 | 7.9 | 7.6 | 6.2 | 5.5 | 4.4 | 4.1 | 3.3 | -0.9 s |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 6.9 | 6.5 | 7.8 | 8.2 | 8.7 | 9.9 | 8.9 | 8.1 | 7.8 | 6.7 | 6.0 | 4.1 | 4.3 | 3.5 | -0.8 |
| Female | 6.0 | 5.1 | 6.2 | 6.7 | 7.7 | 9.0 | 8.2 | 7.8 | 7.3 | 5.6 | 5.1 | 4.6 | 3.8 | 2.9 | -0.9 s |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 15.9 | 15.3 | 18.5 | 18.5 | 20.9 | 22.4 | 22.0 | 20.6 | 18.9 | 16.0 | 16.0 | 11.5 | 12.3 | 10.8 | -1.5 |
| Complete 4 years | 4.4 | 4.0 | 4.6 | 5.2 | 6.1 | 7.1 | 6.3 | 5.6 | 5.7 | 4.5 | 3.8 | 3.1 | 2.8 | 2.2 | -0.6 s |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 7.8 | 5.9 | 8.5 | 7.8 | 7.7 | 9.1 | 8.8 | 10.0 | 9.1 | 6.0 | 5.0 | 3.7 | 4.6 | 3.6 | -0.9 |
| North Central | 7.1 | 7.3 | 7.7 | 8.3 | 9.5 | 10.9 | 9.3 | 9.1 | 9.9 | 8.1 | 6.0 | 4.8 | 5.0 | 3.0 | -2.0 ss |
| South | 7.2 | 5.5 | 7.1 | 8.7 | 10.3 | 11.0 | 10.2 | 8.9 | 7.8 | 7.1 | 6.5 | 5.5 | 4.5 | 4.3 | -0.2 |
| West | 4.0 | 5.0 | 4.3 | 4.2 | 3.4 | 5.0 | 4.4 | 3.0 | 3.0 | 2.2 | 3.3 | 2.5 | 2.3 | 1.8 | -0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 6.9 | 5.2 | 5.9 | 5.8 | 6.0 | 7.6 | 6.6 | 5.8 | 6.0 | 5.7 | 4.8 | 3.0 | 2.3 | 1.9 | -0.3 |
| Other MSA | 5.8 | 5.8 | 6.7 | 8.5 | 9.2 | 9.5 | 8.0 | 7.7 | 7.6 | 5.6 | 5.0 | 4.7 | 4.0 | 3.3 | -0.8 |
| Non-MSA | 7.6 | 6.9 | 8.7 | 7.8 | 9.2 | 11.5 | 12.0 | 11.0 | 9.4 | 7.8 | 7.5 | 5.7 | 7.3 | 5.2 | -2.1 s |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 9.9 | 10.7 | 10.8 | 8.1 | 12.0 | 12.1 | 10.8 | 9.0 | 11.3 | 10.7 | 7.6 | 7.4 | 8.6 | 6.6 | -2.0 |
| 2.5-3.0 | 8.9 | 6.9 | 8.5 | 10.1 | 12.2 | 13.1 | 11.4 | 11.6 | 10.4 | 8.5 | 8.3 | 7.0 | 6.3 | 5.3 | -1.0 |
| 3.5-4.0 | 5.8 | 5.4 | 7.3 | 8.0 | 8.6 | 10.2 | 8.8 | 7.4 | 7.4 | 5.9 | 5.3 | 4.0 | 4.2 | 3.8 | -0.4 |
| 4.5-5.0 | 4.7 | 4.7 | 4.3 | 5.4 | 5.0 | 6.2 | 6.5 | 5.9 | 5.5 | 4.3 | 3.9 | 2.4 | 2.2 | 1.4 | -0.8 |
| 5.5-6.0 (High) | 4.5 | 3.7 | 3.9 | 4.0 | 4.0 | 5.7 | 4.8 | 5.4 | 4.5 | 3.6 | 2.6 | 2.0 | 1.4 | 1.0 | -0.5 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 7.4 | 7.7 | 8.6 | 9.3 | 10.5 | 11.0 | 10.4 | 9.9 | 8.5 | 7.1 | 6.2 | 5.5 | 4.7 | -0.8 |
| Black | - | 0.8 | 0.6 | 1.2 | 1.8 | 1.6 | 1.7 | 1.8 | 1.5 | 1.9 | 1.7 | 1.2 | 1.0 | 1.0 | 0.0 |
| Hispanic | - | 3.0 | 3.0 | 2.6 | 3.4 | 4.3 | 3.3 | 3.0 | 3.1 | 2.9 | 2.7 | 2.2 | 1.8 | 1.5 | -0.3 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, S s=.01, s 5 s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.

SOURCE: The Monitoring the Future Study, the University of Michigan.
Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails
${ }^{b}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

## TABLE D-95

Cigarettes: Trends in Thirty-Day Prevalence of Use of Half-pack a Day or More by Subgroups for Twelfth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | $\underline{1985}$ | 1986 | 1987 | 1988 | 1989 |  |
| Approx. $\mathrm{N}=$ | 9400 | 15400 | 17100 | 17800 | 15500 | 15900 | 17500 | 17700 | 16300 | 15900 | 16000 | 15200 | 16300 | 16300 | 16700 |  |
| Total | 17.9 | 19.2 | 19.4 | 18.8 | 16.5 | 14.3 | 13.5 | 14.2 | 13.8 | 12.3 | 12.5 | 11.4 | 11.4 | 10.6 | 11.2 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 19.6 | 19.9 | 19.7 | 18.9 | 15.4 | 13.5 | 12.8 | 13.1 | 13.1 | 11.0 | 12.3 | 10.7 | 10.1 | 11.1 | 11.2 |  |
| Female | 16.1 | 18.0 | 18.9 | 18.0 | 17.1 | 14.7 | 13.8 | 14.7 | 13.6 | 12.8 | 12.0 | 11.6 | 12.5 | 9.7 | 10.7 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 25.5 | 26.9 | 25.5 | 23.3 | 21.2 | 20.8 | 21.0 | 20.9 | 19.6 | 20.7 | 19.2 | 19.5 | 18.4 | 18.6 |  |
| Complete 4 years | - | 11.9 | 11.2 | 11.1 | 9.8 | 8.2 | 7.5 | 7.8 | 7.6 | 6.5 | 6.5 | 6.4 | 7.2 | 6.8 | 7.5 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 22.0 | 22.5 | 24.2 | 23.6 | 19.8 | 17.0 | 16.6 | 15.6 | 16.6 | 17.4 | 17.0 | 15.6 | 16.5 | 13.1 | 13.6 |  |
| North Central | 18.8 | 20.3 | 20.3 | 19.8 | 17.4 | 15.4 | 16.0 | 17.3 | 17.1 | 13.0 | 14.9 | 12.3 | 12.3 | 11.5 | 14.2 |  |
| South | 16.8 | 19.0 | 18.5 | 17.0 | 16.1 | 14.5 | 12.0 | 13.3 | 12.4 | 11.3 | 9.7 | 10.0 | 9.4 | 10.1 | 9.7 |  |
| West | 11.3 | 12.4 | 11.5 | 12.2 | 10.8 | 8.3 | 7.3 | 7.1 | 6.4 | 7.4 | 7.6 | 6.5 | 8.1 | 7.7 | 6.9 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 21.7 | 20.1 | 20.4 | 19.7 | 16.2 | 14.8 | 15.4 | 15.9 | 14.1 | 14.8 | 14.4 | 12.2 | 13.1 | 10.8 | 10.1 |  |
| Other MSA | 17.4 | 18.9 | 18.8 | 17.9 | 16.5 | 13.8 | 12.4 | 12.9 | 13.5 | 11.4 | 11.0 | 9.6 | 10.0 | 10.4 | 11.2 |  |
| Non-MSA | 15.9 | 19.0 | 19.5 | 19.3 | 16.7 | 14.7 | 13.6 | 14.2 | 14.0 | 11.5 | 12.9 | 13.3 | 12.5 | 10.7 | 12.1 |  |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 18.6 | 21.3 | 20.0 | 19.2 | 19.5 | 16.3 | 16.0 | 17.1 | 17.1 | 16.4 | 16.1 | 15.6 | 13.8 | 11.2 | 11.5 |  |
| 2.5-3.0 | 17.7 | 21.4 | 22.2 | 21.0 | 17.6 | 16.8 | 15.6 | 15.9 | 15.2 | 14.8 | 14.2 | 13.3 | 13.9 | 12.4 | 13.5 |  |
| 3.5-4.0 | 13.9 | 17.4 | 18.3 | 16.9 | 15.2 | 12.8 | 12.5 | 13.3 | 11.9 | 10.5 | 12.0 | 11.0 | 10.5 | 10.3 | 10.7 |  |
| 4.5-5.0 | 15.9 | 15.9 | 14.8 | 15.4 | 12.6 | 10.3 | 10.1 | 10.1 | 10.5 | 8.0 | 9.5 | 6.8 | 8.9 | 8.6 | 9.2 |  |
| 5.5-6.0 (High) | 9.1 | 15.9 | 14.6 | 14.5 | 13.6 | 9.8 | 8.8 | 9.3 | 9.3 | 7.9 | 5.4 | 7.4 | 8.4 | 8.3 | 8.4 |  |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 20.3 | 20.2 | 18.6 | 16.4 | 15.0 | 15.1 | 15.2 | 14.2 | 13.6 | 13.1 | 12.9 | 12.9 | 12.9 |  |
| Black | - | - | 10.7 | 9.7 | 9.1 | 7.1 | 5.8 | 5.4 | 4.9 | 4.1 | 3.9 | 3.6 | 2.9 | 2.3 | 1.9 |  |
| Hispanic | - | - | 11.3 | 9.0 | 6.4 | 5.6 | 6.1 | 5.6 | 5.9 | 6.1 | 5.3 | 5.0 | 4.1 | 3.5 | 4.2 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monito ring the Future Study, the University of Mic higan.

TABLE D-95 (cont'd)
Cigarettes: Trends in Thirty-Day Prevalence of Use of Half-pack a Day or More by Subgroups for Twelfth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 15200 | 15000 | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | 11.3 | 10.7 | 10.0 | 10.9 | 11.2 | 12.4 | 13.0 | 14.3 | 12.6 | 13.2 | 11.3 | 10.3 | 9.1 | 8.4 | 8.0 | -0.3 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 11.6 | 11.6 | 10.4 | 11.6 | 12.7 | 13.2 | 13.6 | 15.5 | 13.5 | 14.5 | 11.4 | 10.2 | 10.0 | 9.5 | 8.0 | -1.5 s |
| Female | 10.8 | 9.5 | 9.2 | 9.9 | 9.5 | 11.1 | 12.0 | 12.6 | 11.1 | 11.5 | 10.8 | 10.2 | 7.9 | 6.6 | 7.5 | +1.0 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None orunder 4 years | 19.2 | 18.7 | 19.1 | 18.7 | 19.6 | 22.6 | 23.1 | 23.5 | 23.7 | 23.2 | 20.3 | 19.3 | 17.5 | 17.2 | 16.0 | -1.2 |
| Complete 4 years | 7.5 | 7.1 | 6.5 | 8.1 | 8.2 | 8.9 | 10.0 | 11.0 | 8.9 | 10.1 | 8.1 | 7.6 | 6.7 | 5.5 | 5.6 | +0.2 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 13.8 | 12.9 | 11.1 | 14.7 | 12.2 | 13.4 | 17.0 | 19.4 | 13.6 | 13.4 | 13.6 | 12.3 | 10.9 | 8.7 | 9.0 | +0.3 |
| North Central | 13.7 | 14.1 | 11.0 | 12.5 | 15.3 | 14.2 | 15.1 | 16.9 | 16.8 | 15.0 | 13.7 | 14.8 | 13.6 | 10.1 | 8.8 | -1.3 |
| South | 9.4 | 8.9 | 10.2 | 10.4 | 10.8 | 12.6 | 12.0 | 12.3 | 11.8 | 13.9 | 10.6 | 7.6 | 8.6 | 8.9 | 8.9 | 0.0 |
| West | 8.3 | 7.2 | 6.8 | 6.0 | 5.9 | 8.4 | 6.5 | 8.2 | 7.5 | 9.0 | 7.5 | 6.6 | 3.1 | 5.0 | 4.1 | -0.8 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 11.2 | 10.2 | 9.9 | 9.1 | 10.2 | 12.3 | 11.6 | 12.8 | 11.0 | 9.6 | 8.2 | 9.4 | 7.6 | 5.4 | 6.0 | +0.6 |
| Other MSA | 11.0 | 10.7 | 8.4 | 11.2 | 10.5 | 11.1 | 12.8 | 14.3 | 11.7 | 12.6 | 11.6 | 9.4 | 8.7 | 8.4 | 8.2 | -0.2 |
| Non-MSA | 12.1 | 11.1 | 13.1 | 11.7 | 13.7 | 14.7 | 14.4 | 16.0 | 16.5 | 18.0 | 14.5 | 13.3 | 11.9 | 12.2 | 10.0 | -2.2 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 10.2 | 12.5 | 11.0 | 10.7 | 9.5 | 13.5 | 13.6 | 11.9 | 12.5 | 15.0 | 16.1 | 10.8 | 7.4 | 8.7 | 8.6 | -0.1 |
| 2.5-3.0 | 13.4 | 12.4 | 12.7 | 12.5 | 13.7 | 15.1 | 14.8 | 16.4 | 14.9 | 16.6 | 13.8 | 12.5 | 12.0 | 10.5 | 10.9 | +0.4 |
| 3.5-4.0 | 11.6 | 10.7 | 9.6 | 10.4 | 11.0 | 12.7 | 12.3 | 13.9 | 13.8 | 13.1 | 10.7 | 10.6 | 10.3 | 8.7 | 8.2 | -0.5 |
| 4.5-5.0 | 10.2 | 7.9 | 8.1 | 10.0 | 10.4 | 9.8 | 12.6 | 14.5 | 10.3 | 10.7 | 9.3 | 9.2 | 6.8 | 5.7 | 6.1 | +0.4 |
| 5.5-6.0 (High) | 7.9 | 9.0 | 5.7 | 8.3 | 8.8 | 9.1 | 10.8 | 11.2 | 7.4 | 9.5 | 7.1 | 6.2 | 5.4 | 4.9 | 4.7 | -0.1 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 13.3 | 13.1 | 12.3 | 12.8 | 13.7 | 14.2 | 15.2 | 16.9 | 16.9 | 15.9 | 15.1 | 13.6 | 12.4 | 10.9 | 10.0 | -0.9 |
| Black | 1.8 | 1.8 | 1.8 | 1.5 | 1.7 | 2.2 | 2.5 | 2.8 | 2.5 | 2.4 | 2.6 | 2.4 | 2.1 | 1.7 | 1.6 | -0.1 |
| Hispanic | 4.2 | 4.0 | 4.6 | 4.5 | 4.0 | 4.1 | 5.3 | 5.8 | 5.2 | 5.8 | 7.0 | 5.3 | 3.8 | 3.0 | 2.9 | -0.1 |

${ }^{\text {a P Parental educ ation is an average score of mother's education and father's education. See Appendix } B \text { fordetails. }}{ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to inc rease subgroup sample sizes and thus provide more stable estimates.

TABLE D-96
Smokeless Tobacco: Trends in Thirty-Day Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 6.9 | 7.0 | 6.6 | 7.7 | 7.1 | 7.1 | 5.5 | 4.8 | 4.5 | 4.2 | 4.0 | 3.3 | 4.1 | 4.1 | 0.0 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 12.7 | 12.5 | 10.9 | 12.8 | 11.8 | 11.4 | 9.9 | 8.1 | 6.9 | 6.7 | 6.9 | 5.4 | 6.7 | 6.4 | -0.3 |
| Female | 1.4 | 2.0 | 2.7 | 2.4 | 2.9 | 2.9 | 1.5 | 1.5 | 2.1 | 1.8 | 1.4 | 1.3 | 1.8 | 1.7 | -0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 12.7 | 17.1 | 15.5 | 16.7 | 15.4 | 16.4 | 12.6 | 13.9 | 13.2 | 11.4 | 14.6 | 10.2 | 12.8 | 12.3 | -0.6 |
| Complete 4 years | 6.1 | 5.5 | 5.3 | 6.5 | 6.0 | 5.6 | 4.6 | 3.8 | 3.5 | 3.4 | 2.9 | 2.6 | 3.3 | 3.2 | 0.0 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 5.0 | 4.9 | 3.4 | 6.1 | 5.4 | 4.9 | 3.2 | 2.7 | 2.5 | 2.7 | 3.7 | 2.7 | 3.1 | 3.4 | +0.3 |
| North Central | 7.1 | 7.5 | 7.2 | 7.1 | 7.6 | 8.3 | 6.8 | 4.3 | 5.3 | 4.8 | 4.0 | 3.9 | 3.5 | 4.2 | +0.8 |
| South | 9.5 | 9.3 | 8.0 | 9.9 | 8.7 | 8.1 | 6.7 | 6.9 | 5.9 | 5.8 | 5.4 | 4.1 | 5.9 | 5.5 | -0.4 |
| West | 3.5 | 4.4 | 6.3 | 6.0 | 5.0 | 5.9 | 4.1 | 3.9 | 2.9 | 1.9 | 2.1 | 1.5 | 2.5 | 2.0 | -0.6 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 4.8 | 4.2 | 3.3 | 4.6 | 4.1 | 4.2 | 3.6 | 2.9 | 1.8 | 2.4 | 2.4 | 1.5 | 2.6 | 1.9 | -0.7 |
| Other MSA | 6.2 | 6.9 | 6.8 | 6.4 | 6.7 | 7.1 | 4.7 | 4.1 | 3.9 | 3.9 | 3.5 | 2.9 | 3.7 | 3.6 | -0.1 |
| Non-MSA | 10.4 | 10.3 | 9.9 | 13.0 | 11.2 | 10.6 | 9.0 | 8.5 | 8.9 | 7.0 | 7.0 | 6.2 | 6.9 | 7.7 | +0.8 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 11.4 | 7.8 | 9.4 | 8.9 | 10.6 | 6.3 | 8.3 | 5.4 | 6.6 | 7.4 | 5.0 | 4.5 | 6.8 | 6.9 | 0.0 |
| 2.5-3.0 | 8.4 | 8.5 | 7.5 | 8.4 | 9.9 | 8.8 | 6.0 | 5.1 | 5.7 | 5.2 | 5.4 | 5.1 | 5.1 | 6.0 | +1.0 |
| 3.5-4.0 | 6.7 | 7.0 | 7.5 | 8.7 | 7.0 | 7.2 | 6.5 | 5.9 | 4.5 | 4.5 | 3.7 | 3.2 | 4.1 | 3.5 | -0.6 |
| 4.5-5.0 | 4.8 | 7.0 | 5.2 | 6.1 | 5.0 | 6.8 | 4.8 | 4.4 | 3.3 | 2.9 | 2.5 | 2.4 | 3.1 | 3.2 | +0.1 |
| 5.5-6.0 (High) | 6.1 | 4.6 | 4.9 | 6.8 | 5.8 | 5.9 | 3.7 | 3.9 | 3.1 | 3.0 | 4.2 | 2.5 | 2.7 | 2.9 | +0.3 |
| Race (2-yearaverage) ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 8.3 | 8.0 | 8.1 | 8.9 | 8.8 | 7.6 | 6.1 | 5.4 | 5.2 | 4.8 | 4.1 | 3.9 | 4.4 | +0.5 |
| Black | - | 1.8 | 2.7 | 3.2 | 2.6 | 2.2 | 2.6 | 2.3 | 2.3 | 2.7 | 2.2 | 1.6 | 2.7 | 3.0 | +0.3 |
| Hispanic | - | 4.2 | 4.0 | 5.0 | 5.7 | 5.2 | 4.6 | 4.5 | 4.6 | 3.7 | 3.3 | 4.0 | 4.7 | 4.0 | -0.7 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
Data based on one of two forms in 1991-96 and on two of four forms beginning in 1997; N is one-half of N indic ated in Table D -105.
SOURCE: The Monitoring the Future Study, the University of Mic higan.

${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-97
Smokeless Tobacco: Trends in Thirty-Day Prevalence of Use by Subgroups for Tenth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { '03-'04 } \\ & \text { change } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 14800 | 14800 | 15300 | 15800 | 17000 | 15600 | 15500 | 15000 | 13600 | 14300 | 14000 | 14300 | 15800 | 16400 |  |
| Total | 10.0 | 9.6 | 10.4 | 10.5 | 9.7 | 8.6 | 8.9 | 7.5 | 6.5 | 6.1 | 6.9 | 6.1 | 5.3 | 4.9 | -0.4 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 18.7 | 18.1 | 19.3 | 19.2 | 17.2 | 15.0 | 14.9 | 13.8 | 12.2 | 11.4 | 12.7 | 9.9 | 9.6 | 9.0 | -0.5 |
| Female | 1.3 | 1.8 | 2.0 | 2.1 | 2.1 | 2.3 | 2.7 | 1.7 | 1.3 | 1.3 | 1.6 | 2.1 | 1.3 | 1.0 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None orunder 4 years | 16.9 | 17.5 | 20.2 | 19.9 | 20.3 | 16.3 | 18.5 | 17.8 | 13.2 | 13.9 | 16.0 | 13.6 | 13.0 | 12.2 | -0.8 |
| Complete 4 years | 8.4 | 8.0 | 8.4 | 8.5 | 7.8 | 7.2 | 7.2 | 5.7 | 5.4 | 4.8 | 5.4 | 4.8 | 4.1 | 3.9 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 8.6 | 5.3 | 8.0 | 9.0 | 7.6 | 6.8 | 9.3 | 6.5 | 5.2 | 4.6 | 4.9 | 4.7 | 4.5 | 5.1 | +0.6 |
| North Central | 11.0 | 9.6 | 10.0 | 10.0 | 11.0 | 9.5 | 7.1 | 7.9 | 8.1 | 6.2 | 7.0 | 4.8 | 4.9 | 3.7 | -1.1 |
| South | 11.6 | 11.4 | 11.8 | 11.7 | 10.9 | 10.2 | 10.2 | 9.5 | 7.9 | 7.7 | 9.6 | 8.3 | 7.5 | 7.3 | -0.2 |
| West | 7.8 | 10.9 | 11.1 | 10.9 | 7.7 | 6.0 | 8.2 | 4.6 | 4.0 | 4.5 | 3.0 | 5.1 | 3.5 | 3.0 | -0.4 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 5.9 | 6.4 | 6.5 | 6.2 | 5.9 | 5.5 | 4.2 | 3.7 | 4.6 | 5.6 | 4.1 | 4.5 | 3.7 | 3.0 | -0.7 |
| Other MSA | 9.2 | 9.3 | 10.1 | 10.9 | 9.2 | 8.4 | 8.3 | 5.7 | 5.3 | 4.3 | 5.7 | 6.1 | 4.8 | 4.3 | -0.5 |
| Non-MSA | 14.7 | 13.3 | 14.1 | 13.9 | 15.0 | 12.2 | 14.7 | 15.1 | 11.3 | 9.8 | 12.5 | 8.2 | 9.2 | 9.0 | -0.2 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 6.6 | 10.1 | 10.9 | 9.4 | 9.6 | 8.1 | 9.0 | 6.8 | 7.2 | 7.4 | 6.9 | 6.7 | 7.4 | 3.7 | -3.7 |
| 2.5-3.0 | 12.1 | 11.0 | 12.2 | 12.5 | 10.4 | 9.7 | 9.4 | 8.2 | 7.0 | 6.4 | 8.9 | 8.1 | 5.0 | 5.8 | +0.7 |
| 3.5-4.0 | 10.6 | 10.5 | 10.9 | 10.2 | 10.9 | 8.3 | 10.3 | 8.6 | 7.3 | 6.3 | 7.1 | 5.5 | 4.9 | 5.2 | +0.3 |
| 4.5-5.0 | 9.3 | 7.6 | 9.9 | 9.8 | 9.8 | 8.5 | 7.2 | 6.9 | 6.1 | 6.2 | 5.7 | 5.4 | 5.7 | 4.4 | -1.3 |
| 5.5-6.0 (High) | 8.6 | 8.1 | 7.0 | 8.9 | 6.0 | 7.7 | 8.3 | 5.2 | 4.8 | 4.0 | 4.8 | 5.2 | 4.3 | 4.4 | +0.2 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 11.4 | 12.0 | 12.5 | 12.0 | 11.0 | 10.4 | 10.0 | 8.7 | 7.5 | 7.5 | 7.8 | 6.9 | 6.1 | -0.7 |
| Black | - | 2.9 | 2.3 | 2.3 | 2.5 | 2.5 | 2.8 | 2.3 | 1.6 | 2.0 | 3.2 | 2.6 | 2.5 | 2.7 | +0.3 |
| Hispanic | - | 6.2 | 6.1 | 4.3 | 3.6 | 4.0 | 4.6 | 4.8 | 4.8 | 4.5 | 4.0 | 4.0 | 4.1 | 3.3 | -0.8 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B fordefinition of variables in table.
Data based on one of two forms in 1991-96 and on two of four forms beginning in 1997; N is one-half of N indic ated in Table D -106.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {an }}$ Parental educ ation is an average score of mother's education and father's education. See Appendix B for details,
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-98

## Smokeless Tobacco: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975-85 | 1986 | 1987 | 1988 | 1989 | 1990-91 ${ }^{\text {a }}$ | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | $\underline{2003}$ | $\underline{2004}$ | change |
| Approx. $\mathrm{N}=$ | - | 15200 | 16300 | 16300 | 16700 | - | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | 11.5 | 11.3 | 10.3 | 8.4 | - | 11.4 | 10.7 | 11.1 | 12.2 | 9.8 | 9.7 | 8.8 | 8.4 | 7.6 | 7.8 | 6.5 | 6.7 | 6.7 | 0.0 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 22.3 | 22.8 | 19.9 | 15.9 | - | 20.8 | 19.7 | 20.3 | 23.6 | 19.5 | 18.7 | 15.6 | 15.5 | 14.4 | 14.2 | 12.2 | 12.5 | 12.2 | -0.3 |
| Female | - | 1.6 | 0.7 | 1.7 | 1.2 | - | 2.0 | 2.3 | 2.6 | 1.8 | 1.1 | 1.2 | 1.5 | 1.3 | 1.3 | 1.6 | 1.2 | 1.0 | 1.6 | +0.5 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 14.5 | 15.5 | 13.1 | 9.6 | - | 18.0 | 14.9 | 15.8 | 18.7 | 17.6 | 16.9 | 14.3 | 10.5 | 15.8 | 13.0 | 10.8 | 12.8 | 11.9 | -0.9 |
| Complete 4 years | - | 9.8 | 9.0 | 8.8 | 7.7 | - | 9.4 | 9.4 | 9.3 | 9.9 | 7.6 | 7.4 | 7.1 | 7.6 | 5.4 | 6.1 | 4.8 | 4.8 | 4.9 | +0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 9.5 | 7.3 | 5.9 | 5.0 | - | 8.2 | 9.6 | 12.0 | 9.6 | 8.4 | 6.9 | 2.6 | 4.3 | 5.3 | 5.4 | 5.3 | 6.3 | 5.1 | -1.2 |
| North Central | - | 13.5 | 11.3 | 10.8 | 8.3 | - | 12.3 | 13.6 | 14.7 | 16.7 | 12.6 | 13.4 | 11.8 | 8.9 | 11.1 | 9.9 | 7.8 | 5.7 | 7.4 | +1.7 |
| South | - | 12.2 | 13.7 | 12.1 | 9.8 | - | 12.5 | 11.1 | 9.7 | 11.9 | 9.2 | 9.0 | 10.5 | 10.7 | 7.3 | 8.5 | 7.9 | 7.9 | 8.4 | +0.5 |
| West | - | 9.3 | 11.7 | 10.9 | 9.1 | - | 11.1 | 7.0 | 8.5 | 8.6 | 8.5 | 9.1 | 7.3 | 7.0 | 6.3 | 6.2 | 3.9 | 6.0 | 4.3 | -1.7 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 9.0 | 6.4 | 7.7 | 6.8 | - | 5.9 | 7.1 | 7.5 | 12.5 | 8.6 | 6.5 | 4.7 | 4.9 | 4.2 | 4.4 | 3.4 | 3.4 | 3.8 | +0.4 |
| Other MSA | - | 8.9 | 10.5 | 8.5 | 7.6 | - | 11.1 | 9.9 | 11.3 | 9.5 | 7.4 | 7.4 | 7.7 | 8.5 | 7.9 | 8.0 | 5.7 | 6.9 | 5.6 | -1.3 |
| Non-MSA | - | 17.1 | 17.5 | 16.1 | 11.7 | - | 16.9 | 15.0 | 14.7 | 16.7 | 15.3 | 17.9 | 16.1 | 11.7 | 11.4 | 11.5 | 11.9 | 10.4 | 12.1 | +1.7 |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 8.6 | 11.7 | 10.7 | 5.3 | - | 14.9 | 7.0 | 12.3 | 9.8 | 6.3 | 5.8 | 6.1 | 5.4 | 4.3 | 6.3 | 4.1 | 9.3 | 6.1 | -3.1 |
| 2.5-3.0 | - | 14.4 | 11.5 | 10.7 | 7.0 | - | 12.4 | 11.6 | 12.9 | 11.5 | 10.4 | 10.7 | 9.0 | 9.1 | 9.9 | 7.5 | 5.6 | 5.9 | 8.8 | +2.9 |
| 3.5-4.0 | - | 11.5 | 12.1 | 10.6 | 9.0 | - | 12.4 | 10.8 | 9.8 | 12.8 | 9.1 | 10.4 | 9.8 | 8.8 | 8.9 | 8.6 | 7.4 | 6.5 | 4.6 | -1.9 |
| 4.5-5.0 | - | 10.4 | 11.7 | 11.8 | 10.2 | - | 8.0 | 13.3 | 11.1 | 12.8 | 11.4 | 9.1 | 9.6 | 8.5 | 6.2 | 6.2 | 7.3 | 7.6 | 7.9 | +0.3 |
| 5.5-6.0 (High) | - | 7.7 | 8.1 | 7.2 | 8.4 | - | 10.6 | 7.8 | 10.2 | 11.6 | 8.1 | 9.9 | 7.4 | 7.9 | 5.7 | 10.3 | 4.6 | 6.2 | 5.4 | -0.8 |
| Race (2-year average): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 12.9 | 12.0 | 10.6 | - | - | 13.8 | 13.8 | 13.8 | 13.0 | 12.2 | 11.8 | 11.0 | 10.5 | 10.3 | 9.7 | 8.5 | 8.2 | -0.3 |
| Black | - | - | 2.1 | 4.5 | 4.5 | - | - | 2.0 | 1.9 | 2.1 | 2.7 | 2.2 | 1.4 | 1.5 | 1.5 | 1.2 | 1.0 | 1.0 | 0.6 | -0.4 |
| Hispanic | - | - | 4.4 | 5.2 | 5.1 | - | - | 6.0 | 5.4 | 7.6 | 8.1 | 5.3 | 4.3 | 3.9 | 3.8 | 3.2 | 2.6 | 3.1 | 3.9 | +0.8 |

[^121]
## TABLE D-98 (cont'd)

## Smokeless Tobacco: Trends in Thirty-Day Prevalence of Use by Subgroups for Twelfth Graders

```
NOTES: Level of signific ance of difference between the two most recent classes: \(s=.05, s s=.01, s s s=.001\)
-' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emror.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
Data based on one of six forms; N is one-sixth of N indicated in Table D-107.
SOURCE: The Monitoring the Future Study, the University of Michigan.
CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.
```

${ }^{\text {a }}$ Prevalence of smokeless tobacco use was not asked of 12th graders in 1990 and 1991. Priorto 1990 the prevalence of use question on smokeless tobacco was located near the end of one 12th-grade questionnaire form, whereasafter 1991 the question wasplaced earlier and in a different form. This shift could explain the discontinuities between the corresponding data.
${ }^{\mathrm{b}}$ Parental education is an average score of mother's seducation and father's education. See Appendix B for details.
${ }^{\text {c }}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sizes and thus provide more stable estimates.

TABLE D-99
Smokeless Tobacco: Trends in Thirty-Day Prevalence of Daily Use by Subgroups for Eighth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 1.6 | 1.8 | 1.5 | 1.9 | 1.2 | 1.5 | 1.0 | 1.0 | 0.9 | 0.9 | 1.2 | 0.8 | 0.8 | 1.0 | +0.2 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 3.1 | 3.4 | 2.9 | 3.2 | 2.2 | 2.9 | 1.7 | 1.8 | 1.6 | 1.5 | 2.5 | 1.5 | 1.4 | 1.7 | +0.2 |
| Female | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.3 | 0.1 | 0.2 | 0.2 | 0.3 | +0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 4.1 | 5.6 | 4.4 | 5.4 | 3.5 | 5.1 | 3.6 | 6.1 | 3.8 | 2.7 | 4.5 | 4.5 | 4.0 | 3.8 | -0.2 |
| Complete 4 years | 1.2 | 1.2 | 1.1 | 1.4 | 0.9 | 1.0 | 0.6 | 0.5 | 0.5 | 0.7 | 0.9 | 0.5 | 0.5 | 0.7 | +0.3 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.2 | 0.9 | 0.6 | 0.8 | 0.6 | 0.8 | 0.6 | 0.4 | 0.1 | 0.4 | 0.7 | 0.6 | 0.8 | 1.0 | +0.1 |
| North Central | 1.5 | 1.6 | 1.6 | 1.4 | 1.1 | 2.0 | 1.2 | 1.3 | 0.9 | 1.3 | 1.1 | 1.1 | 0.6 | 0.6 | +0.1 |
| South | 2.4 | 3.0 | 2.2 | 3.3 | 1.8 | 2.0 | 1.5 | 1.3 | 1.6 | 1.3 | 2.1 | 1.0 | 1.3 | 1.7 | +0.4 |
| West | 0.6 | 0.8 | 1.0 | 0.9 | 0.8 | 0.8 | 0.2 | 0.7 | 0.3 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | +0.1 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.5 | 0.6 | 0.7 | 0.7 | 0.4 | 0.4 | 0.5 | 0.4 | 0.3 | 0.2 | 0.3 | 0.4 | 0.7 | 0.4 | -0.3 |
| Other MSA | 1.2 | 1.9 | 1.5 | 1.0 | 0.9 | 1.2 | 0.8 | 0.6 | 0.8 | 0.8 | 0.8 | 0.6 | 0.6 | 0.6 | 0.0 |
| Non-MSA | 3.3 | 2.8 | 2.5 | 4.6 | 2.6 | 3.4 | 1.6 | 2.6 | 1.8 | 2.0 | 2.9 | 1.8 | 1.5 | 2.6 | +1.2 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 2.8 | 3.5 | 2.0 | 3.0 | 2.2 | 1.5 | 3.2 | 2.6 | 0.9 | 1.4 | 1.8 | 2.2 | 1.8 | 2.8 | +1.0 |
| 2.5-3.0 | 2.2 | 2.6 | 1.9 | 2.7 | 1.7 | 3.1 | 1.1 | 1.5 | 1.6 | 1.4 | 2.1 | 1.0 | 1.0 | 1.1 | +0.1 |
| 3.5-4.0 | 1.4 | 1.2 | 1.8 | 1.9 | 1.2 | 1.7 | 0.9 | 1.3 | 0.8 | 1.3 | 0.3 | 1.0 | 0.8 | 0.8 | -0.1 |
| 4.5-5.0 | 0.8 | 1.3 | 1.1 | 1.1 | 0.9 | 0.3 | 0.8 | 0.5 | 0.5 | 0.4 | 0.5 | 0.3 | 0.2 | 0.7 | +0.5 |
| 5.5-6.0 (High) | 1.0 | 0.9 | 0.6 | 0.7 | 0.8 | 0.8 | 0.4 | 0.5 | 0.4 | 0.4 | 1.7 | 0.9 | 1.1 | 0.8 | -0.3 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 2.0 | 2.0 | 2.0 | 1.9 | 1.7 | 1.5 | 1.2 | 1.1 | 1.1 | 1.2 | 1.0 | 0.7 | 0.9 | +0.3 |
| Black | - | 0.3 | 0.4 | 0.7 | 0.6 | 0.4 | 0.5 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | 0.5 | -0.1 |
| Hispanic | - | 0.8 | 0.9 | 0.9 | 0.7 | 1.1 | 0.9 | 0.8 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9 | 0.9 | 0.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-105 for the number of subgroup cases. See Appendix B fordefinition of variables in table.
Data based on one of two forms in 1991-96 and on two of four forms beginning in 1997; N is one-half of N indicated in Table D-105.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ Parental education is an a verage score of mother's education and father's education. See Appendix B for details.
${ }^{\mathrm{b}}$ To derive percentagesforeach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

TABLE D-100
Smokeless Tobacco: Trends in Thirty-Day Prevalence of Daily Use by Subgroups for Tenth Graders


NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table $D-106$ for the number of subgroup cases. See Appendix $B$ for definition of variables in table
Data based on one of two forms in 1991-96 and on two of four forms beginning in 1997; N is one-half of N indicated in Table $\mathrm{D}-106$.
SOURCE: The Monitoring the Future Study, the University of Mic higan.
${ }^{\text {an }}$ Parental educ ation is an average score of mother's education and father's education. See Appendix B for details,
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-101

## Smokeless Tobacco: Trends in Thirty-Day Prevalence of Daily Use by Subgroups for Twelfth Graders

|  | Percentage who used daily in last thirty days |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1975-85 | 1986 | 1987 | 1988 | 1989 | 1990-91 ${ }^{\text {a }}$ | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | 2003 | $\underline{2004}$ | change |
| Approx. $\mathrm{N}=$ | - | 15200 | 16300 | 16300 | 16700 | - | 15800 | 16300 | 15400 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | 4.7 | 5.1 | 4.3 | 3.3 | - | 4.3 | 3.3 | 3.9 | 3.6 | 3.3 | 4.4 | 3.2 | 2.9 | 3.2 | 2.8 | 2.0 | 2.2 | 2.8 | $+0.6$ |
| Gender. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | 10.0 | 10.7 | 8.6 | 6.8 | - | 7.8 | 6.4 | 7.2 | 7.2 | 7.1 | 8.6 | 6.0 | 5.7 | 6.5 | 5.6 | 4.3 | 4.6 | 5.6 | +1.0 |
| Female | - | 0.1 | 0.1 | 0.5 | 0.0 | - | 0.5 | 0.4 | 0.3 | 0.1 | 0.1 | 0.2 | 0.0 | 0.0 | 0.4 | 0.3 | 0.0 | 0.0 | 0.2 | $+0.2$ |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 7.1 | 7.8 | 5.8 | 4.2 | - | 7.4 | 4.3 | 6.6 | 6.5 | 6.8 | 9.1 | 6.5 | 3.4 | 7.9 | 4.7 | 2.4 | 5.3 | 5.0 | -0.2 |
| Complete 4 years | - | 3.3 | 3.7 | 3.5 | 2.7 | - | 3.3 | 3.1 | 2.8 | 2.7 | 2.6 | 2.7 | 2.3 | 2.6 | 2.0 | 2.1 | 1.4 | 1.4 | 2.0 | +0.6 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | 4.6 | 2.1 | 2.3 | 1.3 | - | 1.8 | 1.9 | 4.5 | 2.2 | 3.2 | 3.5 | 0.5 | 1.0 | 1.3 | 1.5 | 1.6 | 2.7 | 1.9 | -0.7 |
| North Central | - | 4.5 | 4.5 | 3.5 | 2.2 | - | 4.0 | 4.4 | 4.7 | 4.9 | 4.1 | 7.0 | 4.0 | 3.4 | 5.0 | 2.8 | 2.2 | 1.1 | 3.0 | +1.8 |
| South | - | 6.1 | 7.4 | 6.3 | 4.2 | - | 5.4 | 4.0 | 3.5 | 4.2 | 3.1 | 3.6 | 4.6 | 4.0 | 4.0 | 3.8 | 2.4 | 2.6 | 3.7 | +1.1 |
| West | - | 2.9 | 5.5 | 4.0 | 4.9 | - | 5.1 | 1.7 | 3.2 | 1.6 | 2.9 | 3.0 | 1.8 | 1.9 | 1.6 | 2.6 | 1.3 | 2.2 | 1.7 | -0.5 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | 3.4 | 3.3 | 3.0 | 3.0 | - | 2.0 | 1.7 | 2.0 | 2.1 | 2.6 | 3.3 | 0.9 | 0.5 | 0.9 | 1.4 | 0.4 | 0.5 | 0.8 | +0.4 |
| Other MSA | - | 3.3 | 4.3 | 2.5 | 2.8 | - | 4.2 | 3.0 | 3.6 | 3.2 | 1.9 | 3.3 | 2.4 | 3.1 | 3.7 | 2.6 | 2.0 | 2.2 | 2.2 | 0.0 |
| Non-MSA | - | 7.8 | 8.5 | 8.9 | 4.6 | - | 6.5 | 5.2 | 6.7 | 5.8 | 6.7 | 7.7 | 7.6 | 4.9 | 5.3 | 5.0 | 3.8 | 4.2 | 6.2 | +1.9 |
| Parental Education: ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | 1.9 | 5.6 | 5.3 | 1.8 | - | 6.7 | 3.9 | 6.6 | 2.7 | 2.2 | 1.3 | 2.2 | 2.1 | 2.9 | 4.0 | 2.2 | 4.9 | 3.0 | -1.9 |
| 2.5-3.0 | - | 7.6 | 6.9 | 3.2 | 3.9 | - | 4.8 | 3.5 | 3.8 | 4.7 | 3.6 | 5.8 | 5.2 | 3.7 | 4.2 | 3.2 | 1.7 | 1.4 | 4.2 | +2.8 s |
| 3.5-4.0 | - | 3.5 | 4.7 | 5.4 | 3.1 | - | 5.2 | 3.3 | 3.3 | 2.9 | 3.6 | 3.7 | 2.6 | 3.5 | 3.9 | 2.8 | 2.1 | 2.0 | 2.0 | 0.0 |
| 4.5-5.0 | - | 3.9 | 5.0 | 4.7 | 4.6 | - | 2.4 | 3.7 | 3.9 | 3.5 | 4.6 | 3.9 | 3.0 | 1.9 | 2.1 | 2.7 | 2.4 | 2.8 | 2.6 | -0.2 |
| 5.5-6.0 (High) | - | 3.3 | 2.1 | 3.5 | 1.2 | - | 2.6 | 1.8 | 2.7 | 2.7 | 1.1 | 5.0 | 2.5 | 2.1 | 2.5 | 2.5 | 0.2 | 1.8 | 1.9 | +0.2 |
| Race (2-yearaverage): ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 5.8 | 5.4 | 4.5 | - | - | 4.8 | 4.7 | 4.6 | 4.1 | 5.0 | 5.2 | 4.3 | 4.3 | 4.4 | 3.5 | 2.9 | 3.2 | +0.3 |
| Black | - | - | 0.6 | 1.0 | 0.5 | - | - | 0.3 | 0.7 | 0.6 | 0.3 | 0.2 | 0.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 |
| Hispanic | - | - | 0.8 | 2.1 | 2.1 | - | - | 1.6 | 0.7 | 1.2 | 2.2 | 1.9 | 0.8 | 0.4 | 0.9 | 0.6 | 0.3 | 0.7 | 1.1 | +0.4 |

(Table continued on next page)

## TABLE D-101 (cont'd)

## Smokeless Tobacco: Trends in Thirty-Day Prevalence of Daily Use by Subgroups for Twelfth Graders

NOTES: Level of signific ance of difference between the two most recent classes: $\mathrm{s}=.05, \mathrm{ss}=.01, s s s=.001$.
'-' indicates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to round ing emor.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of va riables in table.
Data based on one of six forms; N is one-sixth of N indicated in Table D-107.
SOURCE: The Monitoring the Future Study, the University of Michigan.
CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.
${ }^{\text {a }}$ Prevalence of smokeless tobacco use was not asked of 12th graders in 1990 and 1991. Priorto 1990 the prevalence of use question on smokeless tobacco waslocated near the end of one 12th-grade questionnaire form, whereas after 1991 the question was placed earlier and in a different form. This shift could explain the discontinuities between the corresponding data.
${ }^{\text {b }}$ Parental education is an average score of mother's seducation and father's education. See Appendix B for details.
${ }^{\text {c }}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sizes and thusprovide more stable estimates.

TABLE D-102
Steroids: Trends in Annual Prevalence of Use by Subgroups for Eighth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{r} \text { '03-'04 } \\ \text { change } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | 2002 | 2003 | $\underline{2004}$ |  |
| Approx. $\mathrm{N}=$ | 17500 | 18600 | 18300 | 17300 | 17500 | 17800 | 18600 | 18100 | 16700 | 16700 | 16200 | 15100 | 16500 | 17000 |  |
| Total | 1.0 | 1.1 | 0.9 | 1.2 | 1.0 | 0.9 | 1.0 | 1.2 | 1.7 | 1.7 | 1.6 | 1.5 | 1.4 | 1.1 | -0.3 s |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.8 | 1.7 | 1.4 | 1.8 | 1.3 | 1.1 | 1.3 | 1.6 | 2.5 | 2.2 | 2.3 | 1.8 | 1.8 | 1.3 | -0.5 s |
| Female | 0.3 | 0.5 | 0.3 | 0.6 | 0.8 | 0.7 | 0.7 | 0.7 | 0.9 | 1.0 | 1.0 | 1.2 | 1.1 | 1.0 | -0.1 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2.2 | 2.4 | 2.2 | 2.5 | 2.2 | 1.5 | 2.4 | 2.8 | 4.0 | 3.6 | 3.1 | 3.6 | 2.7 | 3.2 | +0.5 |
| Complete 4 years | 0.8 | 0.9 | 0.7 | 1.0 | 0.9 | 0.8 | 0.8 | 1.0 | 1.4 | 1.5 | 1.5 | 1.3 | 1.3 | 0.9 | -0.4 ss |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 0.7 | 1.1 | 0.6 | 1.0 | 1.0 | 1.1 | 1.0 | 1.1 | 1.6 | 1.7 | 1.8 | 1.2 | 1.1 | 0.8 | -0.2 |
| North Central | 1.1 | 1.2 | 1.0 | 1.0 | 1.1 | 0.8 | 1.0 | 1.2 | 1.6 | 1.8 | 1.7 | 1.6 | 1.7 | 1.2 | -0.5 |
| South | 1.2 | 1.1 | 1.0 | 1.6 | 1.1 | 0.9 | 0.9 | 1.4 | 1.9 | 1.8 | 1.9 | 1.9 | 1.6 | 1.3 | -0.3 |
| West | 0.7 | 0.9 | 0.7 | 1.0 | 1.0 | 0.8 | 1.1 | 0.9 | 1.4 | 1.3 | 0.9 | 1.2 | 1.2 | 1.0 | -0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 0.8 | 1.0 | 0.8 | 0.9 | 0.9 | 0.8 | 0.9 | 1.0 | 1.3 | 1.6 | 1.6 | 1.1 | 1.0 | 1.0 | 0.0 |
| Other MSA | 1.2 | 1.2 | 0.9 | 1.2 | 1.2 | 0.9 | 0.9 | 1.2 | 1.9 | 1.5 | 1.7 | 1.6 | 1.5 | 1.1 | -0.4 s |
| Non-MSA | 1.0 | 0.9 | 0.9 | 1.5 | 0.9 | 0.9 | 1.2 | 1.4 | 1.7 | 2.0 | 1.6 | 2.1 | 1.8 | 1.3 | -0.5 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1.8 | 1.2 | 1.2 | 1.6 | 1.3 | 0.9 | 1.4 | 1.7 | 2.2 | 2.5 | 2.0 | 1.8 | 1.3 | 1.5 | +0.2 |
| 2.5-3.0 | 1.1 | 1.2 | 0.8 | 1.6 | 1.3 | 0.7 | 0.9 | 1.1 | 1.9 | 2.1 | 1.6 | 1.7 | 1.9 | 1.4 | -0.4 |
| 3.5-4.0 | 1.0 | 1.0 | 1.1 | 1.3 | 0.8 | 0.9 | 1.2 | 1.4 | 1.6 | 1.3 | 1.9 | 1.9 | 1.6 | 1.0 | -0.6 s |
| 4.5-5.0 | 0.7 | 0.9 | 0.8 | 0.8 | 0.8 | 1.2 | 0.9 | 1.1 | 1.4 | 1.6 | 1.5 | 1.0 | 1.3 | 1.2 | -0.1 |
| 5.5-6.0 (High) | 1.0 | 1.3 | 0.6 | 0.9 | 1.5 | 0.9 | 1.2 | 1.1 | 2.0 | 1.6 | 1.7 | 1.6 | 1.0 | 0.7 | -0.2 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 1.1 | 1.0 | 1.0 | 1.1 | 0.9 | 0.9 | 1.1 | 1.5 | 1.9 | 1.8 | 1.7 | 1.6 | 1.3 | -0.3 |
| Black | - | 0.7 | 0.6 | 0.8 | 0.9 | 0.7 | 0.6 | 0.7 | 0.8 | 0.7 | 0.8 | 1.2 | 1.2 | 0.9 | -0.3 |
| Hispanic | - | 1.2 | 1.1 | 1.1 | 1.3 | 1.5 | 1.4 | 1.4 | 1.8 | 1.8 | 1.5 | 1.5 | 1.7 | 1.7 | 0.0 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, $s s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor. See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a P Parental education is an average score of mother'seducation and father's education. See Appendix B for details. }}$
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the spec ified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

TABLE D-103
Steroids: Trends in Annual Prevalence of Use by Subgroups for Tenth Graders

Percentage who used in last twelve months
'03-'04
$19921993 \quad 1994 \quad 1995 \quad 1996 \quad 1997 \quad 1998 \quad 1999 \quad 2000 \quad 2001 \quad 2002 \quad 2003 \quad 2004$ change Approx. $N=\begin{array}{lllllllllllllllllllll}14800 & 14800 & 15300 & 15800 & 17000 & 15600 & 15500 & 15000 & 13600 & 14300 & 14000 & 14300 & 15800 & 16400\end{array}$

| Total | 1.1 | 1.1 | 1.0 | 1.1 | 1.2 | 1.2 | 1.2 | 1.2 | 1.7 | 2.2 | 2.1 | 2.2 | 1.7 | 1.5 | -0.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 1.9 | 1.9 | 1.7 | 1.9 | 2.0 | 1.7 | 1.8 | 1.9 | 2.8 | 3.6 | 3.3 | 3.2 | 2.3 | 2.3 | 0.0 |
| Female | 0.3 | 0.3 | 0.3 | 0.4 | 0.5 | 0.6 | 0.6 | 0.6 | 0.7 | 0.8 | 1.0 | 1.2 | 1.1 | 0.9 | -0.3 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 1.7 | 1.3 | 1.9 | 2.1 | 2.1 | 2.1 | 2.4 | 1.9 | 2.6 | 3.6 | 3.2 | 3.0 | 2.7 | 2.9 | +0.2 |
| Complete 4 years | 0.9 | 1.0 | 0.8 | 0.9 | 1.1 | 1.0 | 1.0 | 1.1 | 1.6 | 1.9 | 1.9 | 2.1 | 1.5 | 1.4 | -0.1 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 1.2 | 0.9 | 1.0 | 1.0 | 1.1 | 1.0 | 0.9 | 1.4 | 2.0 | 1.8 | 1.9 | 2.0 | 1.9 | 1.4 | -0.5 |
| North Central | 1.0 | 1.1 | 1.2 | 1.1 | 1.2 | 1.4 | 1.2 | 1.1 | 1.8 | 2.1 | 1.5 | 1.8 | 1.9 | 1.4 | -0.6 |
| South | 1.0 | 1.2 | 1.0 | 1.3 | 1.3 | 1.4 | 1.4 | 1.4 | 1.7 | 2.5 | 2.5 | 2.5 | 1.5 | 1.9 | +0.4 |
| West | 1.0 | 1.2 | 0.8 | 1.1 | 1.3 | 0.6 | 1.3 | 0.9 | 1.4 | 2.1 | 2.3 | 2.4 | 1.4 | 1.4 | 0.0 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 1.5 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 1.0 | 0.8 | 1.2 | 2.3 | 1.9 | 2.1 | 1.4 | 1.2 | -0.2 |
| Other MSA | 1.0 | 1.0 | 0.9 | 1.1 | 1.4 | 1.2 | 1.2 | 1.3 | 1.9 | 2.0 | 2.0 | 2.3 | 1.5 | 1.5 | 0.0 |
| Non-MSA | 0.8 | 1.4 | 1.4 | 1.5 | 1.4 | 1.5 | 1.5 | 1.5 | 2.0 | 2.5 | 2.4 | 2.1 | 2.6 | 2.1 | -0.4 |
| Parental Educ ation: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 0.7 | 0.9 | 1.5 | 1.8 | 1.2 | 1.7 | 1.7 | 1.3 | 1.2 | 2.3 | 1.6 | 1.6 | 1.9 | 1.5 | -0.4 |
| 2.5-3.0 | 1.3 | 1.1 | 1.0 | 0.9 | 1.1 | 0.7 | 1.1 | 1.1 | 1.7 | 2.2 | 2.1 | 2.0 | 1.9 | 1.8 | -0.1 |
| 3.5-4.0 | 1.0 | 1.2 | 1.1 | 0.8 | 1.6 | 1.2 | 1.4 | 1.7 | 2.0 | 2.0 | 2.3 | 2.8 | 1.9 | 1.7 | -0.2 |
| 4.5-5.0 | 0.9 | 1.0 | 0.8 | 1.4 | 1.1 | 1.2 | 1.0 | 0.9 | 1.5 | 2.4 | 2.0 | 2.0 | 1.6 | 1.5 | -0.2 |
| 5.5-6.0 (High) | 1.2 | 1.4 | 1.1 | 1.1 | 1.0 | 1.1 | 1.1 | 1.1 | 2.4 | 2.2 | 2.1 | 3.0 | 1.3 | 1.2 | -0.1 |
| Race (2-year average): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 1.0 | 1.0 | 1.0 | 1.2 | 1.3 | 1.3 | 1.3 | 1.5 | 2.1 | 2.3 | 2.4 | 2.3 | 1.8 | -0.4 |
| Black | - | 0.7 | 0.8 | 0.8 | 0.7 | 0.7 | 0.5 | 0.5 | 0.7 | 1.2 | 1.6 | 1.2 | 0.8 | 0.7 | 0.0 |
| Hispanic | - | 1.2 | 1.4 | 1.3 | 0.9 | 1.1 | 1.2 | 1.2 | 1.5 | 1.8 | 2.1 | 2.1 | 1.8 | 1.6 | -0.1 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss =.001. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
Parental education is an a verage score of mother's education and father's education. See Appendix B fordetails
${ }^{\mathrm{b}}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes a nd thus provide more stable estimates.

## TABLE D-104

## Steroids: Trends in Annual Prevalence of Use by Subgroups for Twelfth Graders

|  | Percentage who used in last twelve months |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975-79 1980-88 |  | 1989 |  |  | $\frac{1992}{15800}$ | $\frac{1993}{16300}$ | $\frac{1994}{15400}$ | Class of: |  |  | 1998 | $\underline{1999}$ | 2000 | $\underline{2001}$ | 2002 | $\underline{2003}$ | $\underline{2004}$ |  |
|  |  |  | 1995 |  |  |  |  |  | 1996 | 1997 | change |  |  |  |  |  |  |  |  |
| Approx. $\mathrm{N}=$ | - | - |  | 16700 | 15200 |  |  |  | 15000 | 15400 | 14300 | 15400 | 15200 | 13600 | 12800 | 12800 | 12900 | 14600 | 14600 |  |
| Total | - | - | 1.9 | 1.7 | 1.4 | 1.1 | 1.2 | 1.3 | 1.5 | 1.4 | 1.4 | 1.7 | 1.8 | 1.7 | 2.4 | 2.5 | 2.1 | 2.5 | $+0.4$ |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | - | - | 2.8 | 2.6 | 2.4 | 2.1 | 2.5 | 2.1 | 2.4 | 2.2 | 2.5 | 2.8 | 3.1 | 2.5 | 3.8 | 3.8 | 3.2 | 3.3 | +0.1 |
| Female | - | - | 0.9 | 0.3 | 0.2 | 0.1 | 0.1 | 0.5 | 0.6 | 0.4 | 0.5 | 0.3 | 0.6 | 0.9 | 1.1 | 1.3 | 1.1 | 1.7 | +0.6 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | - | 2.3 | 2.2 | 2.1 | 2.1 | 2.0 | 1.9 | 2.0 | 2.3 | 2.3 | 2.1 | 3.6 | 2.0 | 4.6 | 4.1 | 2.6 | 2.8 | +0.3 |
| Complete 4 years | - | - | 1.6 | 1.3 | 1.2 | 0.8 | 0.9 | 1.1 | 1.2 | 1.1 | 1.2 | 1.4 | 1.3 | 1.6 | 1.8 | 2.0 | 2.0 | 2.4 | +0.5 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | - | - | 2.0 | 1.3 | 1.2 | 0.6 | 1.5 | 1.5 | 1.6 | 1.3 | 2.1 | 0.9 | 1.3 | 1.9 | 4.5 | 2.1 | 3.0 | 3.8 | +0.8 |
| North Central | - | - | 1.5 | 1.3 | 1.4 | 1.4 | 0.8 | 2.2 | 1.5 | 2.1 | 2.1 | 2.3 | 1.6 | 2.3 | 1.7 | 2.8 | 1.8 | 2.4 | +0.6 |
| South | - | - | 2.1 | 2.2 | 1.7 | 0.6 | 1.6 | 1.0 | 1.7 | 1.3 | 0.5 | 1.6 | 2.6 | 1.5 | 2.1 | 2.5 | 1.8 | 2.2 | +0.4 |
| West | - | - | 1.9 | 1.7 | 1.0 | 2.3 | 1.1 | 0.8 | 1.0 | 0.3 | 1.6 | 1.7 | 1.2 | 1.1 | 2.1 | 2.4 | 2.2 | 2.0 | -0.2 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | - | - | 1.6 | 1.3 | 1.1 | 1.0 | 0.7 | 1.1 | 1.4 | 1.3 | 0.8 | 2.1 | 1.3 | 1.7 | 1.9 | 2.0 | 2.1 | 2.6 | +0.5 |
| Other MSA | - | - | 2.3 | 1.5 | 1.4 | 1.4 | 0.9 | 1.5 | 1.3 | 1.3 | 1.7 | 1.5 | 2.0 | 2.0 | 2.9 | 3.0 | 2.1 | 2.9 | +0.8 |
| Non-MSA | - | - | 1.1 | 2.4 | 1.6 | 0.8 | 2.2 | 1.3 | 2.1 | 1.5 | 1.6 | 1.6 | 1.9 | 1.2 | 2.0 | 2.1 | 2.3 | 1.8 | -0.4 |
| Parental Education: ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | - | - | 0.6 | 1.1 | 2.0 | 2.1 | 1.1 | 2.8 | 1.1 | 1.5 | 3.4 | 3.0 | 1.5 | 1.3 | 2.1 | 3.6 | 2.9 | 4.9 | +1.9 |
| 2.5-3.0 | - | - | 2.1 | 2.0 | 0.6 | 0.9 | 1.3 | 1.7 | 1.3 | 1.9 | 1.4 | 1.4 | 0.8 | 1.6 | 3.2 | 3.0 | 1.3 | 2.9 | +1.5 s |
| 3.5-4.0 | - | - | 2.6 | 2.3 | 1.6 | 1.3 | 1.5 | 1.1 | 1.1 | 1.3 | 1.1 | 1.1 | 2.5 | 1.9 | 1.9 | 2.8 | 2.7 | 2.5 | -0.1 |
| 4.5-5.0 | - | - | 1.3 | 1.1 | 1.6 | 0.9 | 1.3 | 0.6 | 2.0 | 1.1 | 1.2 | 1.9 | 2.2 | 1.4 | 1.9 | 2.3 | 2.3 | 1.8 | -0.6 |
| 5.5-6.0 (High) | - | - | 2.1 | 1.0 | 0.5 | 0.8 | 0.8 | 1.2 | 1.4 | 1.1 | 1.3 | 1.5 | 1.1 | 2.4 | 2.2 | 1.0 | 1.4 | 2.4 | +1.0 |
| Race (2-yearaverage): ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | - | 1.6 | 1.3 | 1.3 | 1.2 | 1.1 | 1.4 | 1.3 | 1.2 | 1.5 | 1.7 | 1.8 | 2.1 | 2.5 | 2.4 | 2.4 | 0.0 |
| Black | - | - | - | 1.8 | 1.2 | 0.5 | 1.1 | 1.8 | 1.2 | 1.4 | 1.5 | 0.9 | 0.7 | 1.0 | 1.2 | 1.0 | 1.1 | 1.3 | +0.3 |
| Hispanic | - | - | - | 2.3 | 3.3 | 1.8 | 0.9 | 1.7 | 1.3 | 0.6 | 1.6 | 2.4 | 2.9 | 2.4 | 2.1 | 2.2 | 1.8 | 2.4 | +0.6 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05,5 s=.01,5 s s=.001$. ' - ' indic ates data not available.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table.
Data based on one of six forms in 1989-90; N is one-sixth of N indic ated in Table D -107. Data based on two of six forms beginning in 1991; N istwo-sixths of N indic ated in Table $\mathrm{D}-107$
SOURCE: The Monito ring the Future Study, the University of Michigan.

## CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

${ }^{\text {a }}$ Parental educ ation is an average score of mother's education and father's education. See Appendix B for details.
${ }^{\text {b }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sizes and thus provide more stable estimates.

## TABLE D-105

## Approximate Weighted Ns by Subgroups for Eighth Graders

|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total | 17,500 | 18,600 | 18,300 | 17,300 | 17,500 | 17,800 | 18,600 | 18,100 | 16,700 | 16,700 | 16,200 | 15,100 | 16,500 | 17,000 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 8,600 | 8,800 | 8,600 | 8,300 | 8,100 | 8,400 | 8,600 | 8,600 | 7,800 | 7,900 | 7,500 | 7,000 | 7,600 | 8,100 |
| Female | 8,600 | 9,300 | 9,200 | 8,600 | 8,700 | 8,800 | 9,300 | 8,900 | 8,400 | 8,300 | 8,300 | 7,600 | 8,400 | 8,500 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2,300 | 2,400 | 2,100 | 2,000 | 1,900 | 2,200 | 1,900 | 1,800 | 1,700 | 1,600 | 1,600 | 1,300 | 1,600 | 1,600 |
| Complete 4 years | 14,600 | 15,400 | 15,400 | 14,700 | 14,800 | 14,800 | 15,800 | 15,600 | 14,500 | 14,500 | 14,100 | 13,400 | 14,50 | 15,000 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3,000 | 3,700 | 3,900 | 3,400 | 3,100 | 3,200 | 3,400 | 3,300 | 3,000 | 2,800 | 2,900 | 2,800 | 3,200 | 3,200 |
| North Central | 5,300 | 5,300 | 4,700 | 4,200 | 4,300 | 4,600 | 4,100 | 4,300 | 4,200 | 4,300 | 4,000 | 4,000 | 4,100 | 4,000 |
| South | 6,300 | 6,200 | 6,400 | 6,300 | 6,600 | 6,300 | 7,200 | 6,600 | 6,100 | 6,300 | 5,900 | 5,400 | 6,300 | 6,300 |
| West | 2,900 | 3,400 | 3,300 | 3,400 | 3,500 | 3,700 | 3,900 | 3,900 | 3,400 | 3,300 | 3,400 | 2,900 | 2,900 | 3,500 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 4,500 | 5,700 | 5,500 | 4,400 | 5,200 | 5,200 | 5,000 | 4,800 | 4,800 | 4,900 | 4,700 | 4,500 | 4,900 | 5,000 |
| Other MSA | 8,400 | 8,300 | 8,800 | 8,300 | 7,800 | 8,400 | 9,000 | 8,800 | 7,900 | 7,900 | 7,500 | 6,900 | 7,700 | 7,900 |
| Non-MSA | 4,600 | 4,600 | 4,000 | 4,600 | 4,500 | 4,200 | 4,600 | 4,500 | 4,000 | 3,900 | 4,000 | 3,700 | 3,900 | 4,100 |
| Parental Education: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,400 | 1,700 | 1,700 | 1,600 | 1,500 | 1,500 | 1,500 | 1,300 | 1,300 | 1,300 | 1,300 | 1,100 | 1,100 | 1,200 |
| 2.5-3.0 | 4,400 | 4,600 | 4,500 | 4,100 | 3,900 | 4,300 | 4,000 | 3,900 | 3,800 | 3,700 | 3,400 | 3,200 | 3,400 | 3,400 |
| 3.5-4.0 | 4,100 | 4,300 | 4,300 | 4,200 | 4,000 | 4,100 | 4,300 | 4,100 | 3,800 | 3,900 | 4,000 | 3,500 | 3,700 | 4,000 |
| 4.5-5.0 | 4,100 | 4,100 | 4,100 | 3,900 | 3,900 | 3,900 | 4,500 | 4,500 | 4,000 | 3,900 | 3,900 | 3,800 | 4,200 | 4,300 |
| 5.5-6.0 (High) | 2,200 | 2,300 | 2,300 | 2,200 | 2,300 | 2,200 | 2,600 | 2,700 | 2,200 | 2,200 | 2,100 | 2,100 | 2,400 | 2,500 |
| Race (2-year average): ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 21,900 | 22,000 | 20,900 | 19,800 | 20,200 | 21,400 | 21,300 | 19,800 | 18,900 | 18,600 | 17,600 | 18,400 | 20,400 |
| Black | - | 4,200 | 4,800 | 5,500 | 5,600 | 5,300 | 4,700 | 4,900 | 5,000 | 4,800 | 4,500 | 4,500 | 4,400 | 3,900 |
| Hispanic | - | 3,400 | 3,600 | 4,000 | 4,000 | 4,000 | 4,200 | 4,100 | 4,100 | 4,000 | 4,100 | 3,900 | 3,400 | 3,200 |
| NOTES: ' - indicates data not available. See Appendix B fordefinition of variables in table |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CAUIION: The Ns in this table are based on the entire sample at each grade level. Some drug-use questions are asked only in some of the questionnaire foms rather than in all, in which case these Ns need to be adjusted appropriately. Look under "Notes" in each table to see if only a fraction of the sample was asked about that drug. If there is no such indication, that means the entire sample received the question. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ Nsforeach racial subgroup represent the combination of the specified yearand the previous year. Data have been combined to increase subgroup sample sizes and thus provide more stable estimates. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE D-106

## Approximate Weighted Ns by Subgroups for Tenth Graders

| Total | 14,800 | 14,800 | 15,300 | 15,800 | 17,000 | 15,600 | 15,500 | 15,000 | 13,600 | 14,300 | 14,000 | 14,300 | 15,800 | 16,400 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 7,200 | 7,000 | 7,300 | 7,700 | 8,300 | 7,500 | 7,400 | 7,100 | 6,300 | 6,800 | 6,600 | 6,900 | 7,500 | 7,900 |
| Female | 7,400 | 7,400 | 7,800 | 7,900 | 8,400 | 7,800 | 7,800 | 7,700 | 7,000 | 7,200 | 7,100 | 7,100 | 8,000 | 8,300 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 2,600 | 2,400 | 2,500 | 2,700 | 2,500 | 2,300 | 2,200 | 2,200 | 1,900 | 1,900 | 1,900 | 2,000 | 2,100 | 1,900 |
| Complete 4 years | 11,900 | 12,000 | 12,400 | 12,800 | 14,200 | 13,000 | 13,000 | 12,500 | 11,500 | 12,100 | 11,900 | 12,100 | 13,400 | 4,300 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 2,700 | 3,000 | 2,900 | 3,100 | 3,300 | 3,100 | 3,300 | 3,100 | 3,000 | 2,800 | 2,700 | 2,600 | 3,400 | 3,600 |
| North Central | 3,700 | 3,800 | 4,800 | 4,700 | 4,400 | 3,900 | 3,900 | 3,600 | 3,100 | 3,700 | 4,100 | 3,700 | 4,000 | 4,600 |
| South | 4,900 | 5,000 | 4,900 | 5,200 | 6,100 | 5,600 | 5,500 | 5,200 | 4,700 | 5,000 | 5,000 | 5,100 | 4,900 | 4,900 |
| West | 3,500 | 3,000 | 2,700 | 2,800 | 3,200 | 3,000 | 2,800 | 3,100 | 2,800 | 2,800 | 2,200 | 2,900 | 3,500 | 3,300 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 3,400 | 3,700 | 3,500 | 4,100 | 4,700 | 4,300 | 4,300 | 4,300 | 3,700 | 4,000 | 3,900 | 4,300 | 4,900 | 5,000 |
| Other MSA | 7,400 | 7,300 | 7,600 | 7,500 | 8,200 | 7,500 | 7,300 | 7,000 | 6,700 | 6,700 | 6,700 | 6,800 | 7,800 | 7,800 |
| Non-MSA | 4,000 | 3,800 | 4,200 | 4,200 | 4,100 | 3,800 | 3,900 | 3,700 | 3,200 | 3,600 | 3,400 | 3,200 | 3,100 | 3,600 |
| Parental Education: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,300 | 1,300 | 1,300 | 1,300 | 1,200 | 1,100 | 1,300 | 1,300 | 1,100 | 1,200 | 1,200 | 1,300 | 1,200 | 1,300 |
| 2.5-3.0 | 3,900 | 3,900 | 4,100 | 4,100 | 4,100 | 3,600 | 3,700 | 3,700 | 3,200 | 3,200 | 3,200 | 3,300 | 3,500 | 3,400 |
| 3.5-4.0 | 3,900 | 3,900 | 4,100 | 4,300 | 4,600 | 4,300 | 4,100 | 4,000 | 3,600 | 3,700 | 3,700 | 3,700 | 4,200 | 4,200 |
| 4.5-5.0 | 3,500 | 3,400 | 3,500 | 3,700 | 4,000 | 3,900 | 3,700 | 3,500 | 3,300 | 3,500 | 3,400 | 3,500 | 3,900 | 4,300 |
| 5.5-6.0 (High) | 1,800 | 1,700 | 1,700 | 1,800 | 2,300 | 1,900 | 1,900 | 1,800 | 1,700 | 1,900 | 1,800 | 1,700 | 2,100 | 2,400 |
| Race (2-yearaverage): ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | 19,600 | 20,700 | 22,000 | 22,900 | 22,400 | 20,900 | 19,800 | 18,400 | 18,200 | 18,600 | 18,000 | 18,500 | 19,900 |
| Black | - | 3,900 | 3,600 | 3,300 | 3,300 | 3,100 | 3,200 | 3,600 | 3,600 | 3,100 | 2,800 | 3,400 | 4,600 | 4,600 |
| Hispanic | - | 2,600 | 2,700 | 2,800 | 2,900 | 3,000 | 3,200 | 3,500 | 3,200 | 3,100 | 3,400 | 3,600 | 3,600 | 3,500 |

NOTES: '—' indic ates data not available. See Appendix B for definition of variables in table.
SOURCE: The Monitoring the Future Study, the University of Michigan.
CAUIION: The Ns in this table are based on the entire sample at each grade level. Some drug-use questions are asked only in some of the questionnaire forms rather than in all, in which case these Ns need to be adjusted appropriately. Look under "Notes" in each table to see if only a fraction of the sample was asked about that drug. If there is no such indication, that means the entire sample received the question.
${ }^{\text {a }}$ Nsforeach racial subgroup represent the combination of the specified yearand the previousyear. Data have been combined to increase subgroup sample sizes and thus provide more stable estimates.

## TABLE D-107

## Approximate Weighted Ns by Subgroups for Twelfth Graders

|  |  |  |  |  |  |  |  | Class of: |  |  |  |  |  |  |  | Cont'd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |  |
| Total | 9,400 | 15,400 | 17,100 | 17,800 | 15,500 | 15,900 | 17,500 | 17,700 | 16,300 | 15,900 | 16,000 | 15,200 | 16,300 | 16,300 | 16,700 |  |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 4,300 | 6,900 | 7,100 | 8,500 | 7,500 | 7,500 | 8,400 | 8,500 | 7,800 | 7,600 | 7,600 | 7,100 | 7,700 | 7,700 | 8,000 |  |
| Female | 5,200 | 7,000 | 7,600 | 9,000 | 8,000 | 7,800 | 8,600 | 8,600 | 8,000 | 7,800 | 8,000 | 7,700 | 8,200 | 8,200 | 8,300 |  |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | - | 6,500 | 6,700 | 8,100 | 6,800 | 6,300 | 6,700 | 7,200 | 6,300 | 5,900 | 5,600 | 5,100 | 5,000 | 4,700 | 4,800 |  |
| Complete 4 years | - | 6,800 | 7,200 | 8,600 | 8,000 | 8,500 | 9,700 | 9,200 | 8,800 | 8,900 | 9,300 | 9,100 | 10,300 | 10,600 | 11,000 |  |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 2,200 | 3,400 | 3,700 | 4,400 | 3,800 | 3,600 | 4,100 | 4,600 | 3,900 | 3,200 | 3,700 | 3,600 | 3,500 | 3,200 | 3,200 |  |
| North Central | 2,900 | 4,500 | 4,600 | 5,200 | 4,800 | 4,700 | 5,300 | 5,200 | 4,600 | 4,500 | 4,400 | 4,300 | 4,400 | 4,300 | 4,500 |  |
| South | 3,000 | 4,300 | 4,600 | 6,000 | 4,800 | 4,800 | 5,300 | 5,300 | 5,200 | 5,300 | 4,900 | 4,700 | 5,200 | 5,600 | 6,100 |  |
| West | 1,400 | 2,200 | 2,200 | 2,500 | 2,600 | 2,700 | 2,800 | 2,600 | 2,600 | 2,900 | 3,000 | 2,600 | 3,200 | 3,200 | 2,900 |  |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 2,100 | 3,700 | 4,000 | 4,600 | 4,000 | 3,900 | 4,500 | 4,800 | 4,200 | 4,100 | 4,200 | 3,700 | 4,200 | 4,400 | 4,000 |  |
| Other MSA | 4,000 | 5,700 | 6,200 | 8,000 | 6,800 | 6,700 | 7,100 | 7,300 | 6,800 | 6,900 | 6,900 | 7,000 | 8,000 | 7,700 | 8,800 |  |
| Non-MSA | 3,400 | 5,000 | 4,900 | 5,500 | 5,200 | 5,200 | 5,900 | 5,600 | 5,300 | 4,900 | 4,900 | 4,500 | 4,100 | 4,200 | 3,900 |  |
| Parental Education: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,700 | 2,200 | 2,600 | 3,100 | 2,500 | 2,300 | 2,400 | 2,700 | 2,200 | 1,900 | 1,800 | 1,800 | 1,700 | 1,600 | 1,700 |  |
| 2.5-3.0 | 3,000 | 4,300 | 5,400 | 6,200 | 5,600 | 5,300 | 5,800 | 5,900 | 5,500 | 5,100 | 5,100 | 4,600 | 4,500 | 4,500 | 4,600 |  |
| 3.5-4.0 | 1,600 | 2,500 | 3,200 | 4,000 | 3,600 | 3,600 | 4,200 | 4,200 | 3,900 | 4,000 | 4,000 | 3,800 | 4,300 | 4,400 | 4,500 |  |
| 4.5-5.0 | 1,100 | 1,600 | 2,200 | 2,800 | 2,600 | 2,700 | 3,100 | 2,900 | 2,800 | 2,900 | 3,000 | 2,900 | 3,400 | 3,500 | 3,500 |  |
| 5.5-6.0 (High) | 440 | 710 | 1,100 | 1,200 | 1,200 | 1,300 | 1,500 | 1,300 | 1,200 | 1,400 | 1,500 | 1,500 | 1,800 | 1,900 | 1,700 |  |
| Race (2-yearaverage): ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | - | - | 23,400 | 26,500 | 27,500 | 25,600 | 26,300 | 27,300 | 26,200 | 24,700 | 24,200 | 23,600 | 23,800 | 24,200 | 24,000 |  |
| Black | - | - | 3,300 | 3,700 | 3,500 | 3,500 | 4,000 | 4,000 | 3,900 | 4,000 | 4,000 | 3,500 | 3,200 | 3,600 | 3,900 |  |
| Hispanic | - | - | 890 | 1,000 | 940 | 740 | 930 | 1,300 | 1,300 | 1,200 | 1,200 | 1,500 | 1,900 | 2,100 | 2,400 |  |
| NOTES: '-' indic ates data not available. See Appendix B for definition of variables in table. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CAUION: The $N s$ in this table are based on the entire sample at each grade level. Some drug-use questions are asked only in some of the questionnaire forms rather than in all, in which case these Ns need to be adjusted appropriately. Look under "Notes" in each table to see if only a fraction of the sample was asked about that drug. If there is no such indication, that means the entire sample received the question. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ Ns foreach racial subgroup represent the combination of the specified yearand the previous year. Data have been combined to increase subgroup sample sizes and thus provide more stable estimates. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE D-107 (cont'd)

## Approximate Weighted Ns by Subgroups for Twelfth Graders

|  |  |  |  |  |  |  |  | Class of: |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | 2001 | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |
| Total | 15,200 | 15,000 | 15,800 | 16,300 | 15,400 | 15,400 | 14,300 | 15,400 | 15,200 | 13,600 | 12,800 | 12,800 | 12,900 | 14,600 | 14,600 |
| Gender: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Male | 7,700 | 7,400 | 7,400 | 7,500 | 6,900 | 7,200 | 6,700 | 7,100 | 7,100 | 6,300 | 5,800 | 5,800 | 5,800 | 6,600 | 6,800 |
| Female | 7,100 | 7,200 | 7,900 | 8,200 | 8,000 | 7,800 | 7,100 | 7,700 | 7,500 | 6,700 | 6,400 | 6,500 | 6,600 | 7,400 | 7,200 |
| College Plans: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| None or under 4 years | 4,200 | 4,000 | 3,700 | 3,700 | 3,400 | 3,300 | 2,600 | 3,200 | 3,100 | 2,800 | 2,600 | 2,500 | 2,400 | 2,800 | 2,800 |
| Complete 4 years | 10,100 | 10,300 | 11,200 | 11,600 | 11,100 | 11,200 | 10,800 | 11,000 | 11,100 | 10,200 | 9,300 | 9,600 | 9,700 | 11,100 | 11,000 |
| Region: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast | 3,300 | 2,800 | 2,800 | 2,700 | 2,700 | 2,800 | 3,000 | 3,300 | 2,800 | 2,500 | 2,500 | 2,400 | 2,500 | 3,100 | 3,100 |
| North Central | 4,200 | 4,000 | 4,400 | 4,600 | 4,000 | 4,300 | 3,800 | 4,100 | 3,800 | 3,600 | 3,100 | 3,700 | 3,300 | 3,600 | 3,800 |
| South | 5,000 | 5,100 | 5,600 | 5,800 | 5,700 | 5,400 | 5,100 | 5,300 | 5,700 | 4,900 | 4,500 | 4,100 | 4,300 | 4,900 | 5,000 |
| West | 2,700 | 3,100 | 3,000 | 3,200 | 3,000 | 2,900 | 2,400 | 2,700 | 2,900 | 2,600 | 2,700 | 2,600 | 2,800 | 3,000 | 2,700 |
| Population Density: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Large MSA | 3,800 | 3,600 | 3,600 | 3,700 | 4,300 | 4,400 | 3,400 | 4,100 | 4,300 | 3,800 | 3,800 | 3,800 | 4,000 | 4,600 | 4,200 |
| Other MSA | 7,700 | 7,200 | 8,200 | 7,800 | 7,100 | 7,000 | 7,000 | 7,500 | 7,500 | 6,200 | 5,800 | 5,800 | 5,900 | 6,500 | 6,800 |
| Non-MSA | 3,700 | 4,200 | 4,000 | 4,800 | 4,000 | 4,000 | 3,900 | 3,800 | 3,400 | 3,600 | 3,200 | 3,200 | 3,000 | 3,500 | 3,600 |
| Parental Education: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.0-2.0 (Low) | 1,600 | 1,500 | 1,400 | 1,600 | 1,400 | 1,200 | 1,100 | 1,300 | 1,200 | 960 | 860 | 1,000 | 980 | 1,200 | 1,000 |
| 2.5-3.0 | 4,300 | 4,100 | 4,100 | 4,300 | 3,700 | 3,700 | 3,300 | 3,600 | 3,700 | 3,200 | 3,000 | 2,900 | 2,800 | 3,400 | 3,400 |
| 3.5-4.0 | 4,100 | 4,200 | 4,600 | 4,500 | 4,300 | 4,400 | 3,800 | 4,100 | 4,300 | 3,900 | 3,600 | 3,600 | 3,800 | 4,200 | 4,000 |
| 4.5-5.0 | 3,100 | 3,100 | 3,400 | 3,600 | 3,500 | 3,700 | 3,500 | 3,500 | 3,300 | 3,200 | 3,100 | 3,200 | 3,100 | 3,400 | 3,600 |
| 5.5-6.0 (High) | 1,600 | 1,500 | 1,700 | 1,700 | 1,800 | 1,800 | 2,100 | 2,100 | 2,000 | 1,800 | 1,600 | 1,600 | 1,500 | 1,800 | 2,000 |
| Race (2-year average): ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| White | 23,400 | 21,900 | 21,500 | 22,000 | 21,800 | 21,600 | 20,700 | 19,800 | 20,200 | 19,500 | 17,700 | 16,200 | 16,300 | 17,800 | 19,600 |
| Black | 3,500 | 3,200 | 3,900 | 4,200 | 3,600 | 3,300 | 3,200 | 3,600 | 3,700 | 3,400 | 3,300 | 3,100 | 2,900 | 3,000 | 3,200 |
| Hispanic | 2,500 | 2,400 | 2,600 | 2,900 | 3,100 | 2,700 | 2,600 | 2,800 | 3,000 | 2,500 | 2,200 | 2,600 | 3,100 | 3,100 | 2,800 |
| NOTES: '-' indicates data not available. See Appendix B fordefinition of variables in table |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CAUION: The Ns in this table are based on the entire sample at each grade level. Some drug-use questions are asked only in some of the questionnaire forms rather than in all, in which case these Ns need to be adjusted appropriately. Look under "Notes" in each table to see if only a fraction of the sample was asked about that drug. If there is no such indication, that means the entire sample received the question. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\mathrm{a}} \mathrm{Ns}$ foreach racial subgroup represent the combination of the specified yearand the previousyear. Data have been combined to increase subgroup sample sizes and thus provide more stable estimates. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Appendix E

## TRENDS IN SPECIFIC SUBCLASSES OF HALLUCINOGENS, AMPHETAMINES, TRANQUILIZERS, AND NARCOTIC DRUGS OTHER THAN HEROIN

In one of the six questionnaire forms administered to 12th graders, respondents who answer that they used amphetamines in the prior 12 months are then asked a small set of additional questions about that use. One question asks, "What amphetamines have you taken during the last year without a doctor's orders? (Mark all that apply.)" A pre-specified list of amphetamines (e.g., Benzedrine, Dexadrine, Methedrine, Ritalin) is provided, along with an additional category labeled "Other" and one labeled "Don't know the name of some amphetamines I have used." ${ }^{121}$ Parallel questions-asking those who reported any use of a class of drugs in the prior 12 months to check the specific drugs that they used-are included in the same 12th-grade questionnaire form for three other classes of drugs: hallucinogens other than LSD, tranquilizers, and narcotics other than heroin.

The answers to these four question sets are provided here, covering the 29-year interval from 1976 to 2004. Because these questions are contained in only one of the six 12th-grade questionnaire forms (one of five in earlier years), the number of cases on which the estimates are based is lower than most of the prevalence estimates contained elsewhere in this volume. The relevant numbers of cases are provided in the bottom row of each table.

We provide one other caution to the reader in interpreting these results. For some of these drug classes, the absolute prevalence rates may be underestimates of the true rates. This occurs because some users of a particular subclass may not realize that the substance (e.g., peyote) actually is a subclass of the more general class (in this case, "hallucinogens other than LSD"), even though the substance (peyote) is listed (as one of the "other hallucinogenic" drugs) in the introduction to the question set. Such respondents, therefore, may not indicate use on the general question (about hallucinogens other than LSD), which means they would never get to the question about using the subclass drug (peyote). Thus, they would not be counted among the users.

In the relevant 12th-grade questionnaire form, we go to some length to state both the full list of common street names, as well as the proper names, for the drugs in the general class before asking about use of the general class of drugs. However, because several of the drugs in the subclass lists (PCP, methamphetamine, crystal methamphetamine, Ritalin, OxyContin, and Vicodin) also have been included on a different questionnaire form in recent years as a general class (without branching), we have been able to determine that they show higher prevalence rates when not treated as a subclass. For example, the 2003 annual prevalence rate for PCP generated

[^122]by a general question about PCP use asked of all seniors was $1.3 \%$, whereas the rate generated when the drug was treated as a subcategory of hallucinogens other than LSD was only $0.9 \%$. (In earlier years the difference has been larger.) This may be an atypical case, however, because proper classification of PCP is quite ambiguous-it actually is an animal tranquilizer with hallucinogenic effects. (In fact, we suspected that students were not categorizing PCP as a "hallucinogen other than LSD," even though it was given in the list of examples for that question. That suspicion led us to ask separate questions about its use.)

Despite the fact that the questions about subclasses of drugs may underestimate the prevalence of use to some degree, we think they still are helpful for discerning long-term trends. To stay with the PCP example, both the general questions about PCP use and the question that treats PCP as a subcategory of hallucinogens other than LSD have shown very similar trends since 1979, when both were first available for comparison. Both measures showed a substantial decline in PCP use from 1979 through the mid-1980s, followed by a period of stability in use at low levels, then followed by a modest increase in use in the 1990s until 1996, when use leveled. (In 2001 both measures showed some decline.) Thus if we had only the results from the subcategory question available, we would have obtained quite an accurate picture of the trend story, even though we would have been underestimating the absolute prevalence rate to some degree.

We conclude that the data for the other specific drug classes also should provide a fair approximation of the trend stories. The majority of such prevalence data probably underestimates the true rates, however.

Note on hallucinogens: In 2001 we changed the question wording in the general question about use of hallucinogens other than LSD, replacing the older term psychedelics with the now more current term hallucinogens; and, perhaps more important, the term shrooms was added to the list of examples. (Shrooms is the street name that has come into favor in recent years for hallucinogenic mushrooms.) We believe that this methodological change had the effect of increasing prevalence rates in both the general category and in some of the specific drugs within it. ${ }^{122}$ Therefore, the change between 2000 and 2001 in Table E-1 for the various classes of hallucinogens other than LSD should not be mistaken for a real change in use.

Ritalin has been one of the specific drugs listed under the general class of amphetamines. It is a medically indicated treatment for Attention Deficit Hyperactivity Disorder (ADHD), and the issue of its diversion for other uses has received increasing attention in recent years. For that reason, we added a separate "tripwire" question about its use in the 2001 survey. ${ }^{123}$ As with PCP, we find that the prevalence reported in response to a stand-alone question tends to be higher than that reported under a branching question. Annual prevalence in 2004 among 12th graders was $5.1 \%$ with the new question, compared to $3.9 \%$ with the branching question.

[^123]Based on the new question, nearly half of the users ( $2.1 \%$ of all seniors) reported using Ritalin only once or twice in the prior year, while $1.2 \%$ reported using it 10 or more times during the year. We believe that the trend results based on the branching question tell a reasonably accurate story about the pattern of change for Ritalin use, despite the difference in the absolute prevalence rate.

Note on other narcotics: Because there had been considerable public comment on the diversion of these drugs, in 2002 we added tripwire questions for OxyContin and Vicodin in questionnaire forms different from the one containing the detailed questions on other narcotics. Once again, the absolute prevalence levels obtained for these drugs turned out to be higher on these free-standing questions, asked of everyone, than those obtained from the branching questions. In 2004 the annual prevalence of OxyContin was estimated to be $5.0 \%$ in the tripwire question but only $2.8 \%$ in the branching question, while that of Vicodin was estimated to be $9.3 \%$ with the tripwire question versus only $5.2 \%$ in the branching question. Note also that in 2003 we saw a significant increase in another category of narcotic drugs, Percocet, bringing its annual prevalence rate, based on the branching question, above OxyContin but below Vicodin and codeine. In 2004, Vicodin and codeine both increased some and have higher rates than Percocet, which leveled in 2004, and OxyContin, which increased slightly.

## TABLE E-1

Specific Hallucinogens Other Than LSD: Trends in Annual Prevalence of Use for All Seniors ${ }^{\text {a }}$

| What psyc hedelics/ ha llucinogens ${ }^{\text {b }}$ other than LSD have you taken during the last year? | Percentage of ALL SENIORS using drug indic ated in past year |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| Mescaline | 5.1 | 5.0 | 5.0 | 4.1 | 4.8 | 3.7 | 3.5 | 2.7 | 3.0 | 2.3 | 2.1 | 1.6 | 0.8 | 0.9 | 0.6 |
| Peyote | 1.8 | 1.4 | 1.5 | 1.1 | 1.1 | 0.9 | 0.6 | 0.6 | 0.6 | 0.5 | 0.4 | 0.5 | 0.3 | 0.4 | 0.9 |
| Psilocybin ("shrooms") ${ }^{\text {b }}$ | 1.7 | 1.0 | 1.3 | 1.0 | 1.5 | 1.6 | 0.9 | 0.7 | 0.7 | 0.6 | 0.9 | 0.6 | 0.9 | 0.3 | 0.7 |
| PCP | 2.9 | 3.3 | 4.5 | 4.2 | 3.5 | 2.2 | 1.4 | 1.5 | 1.2 | 0.9 | 0.8 | 1.0 | 0.6 | 0.4 | 0.8 |
| Concentrated THC | 5.6 | 5.7 | 5.3 | 4.6 | 2.6 | 2.1 | 1.5 | 1.4 | 0.9 | 1.1 | 0.8 | 1.0 | 0.7 | 0.4 | 0.4 |
| Other | 3.3 | 3.7 | 3.4 | 3.9 | 2.9 | 2.7 | 1.9 | 1.5 | 1.5 | 1.3 | 0.9 | 0.9 | 0.7 | 0.9 | 0.9 |
| Don't know the names of some I have used | 1.2 | 1.3 | 1.5 | 1.6 | 1.2 | 1.2 | 1.1 | 1.2 | 0.9 | 1.0 | 0.7 | 0.7 | 0.5 | 0.3 | 0.5 |
| Approx. Wtd. $\mathrm{N}=$ | 2800 | 3000 | 3500 | 3100 | 3100 | 3400 | 3500 | 3200 | 3100 | 3100 | 3000 | 3200 | 3200 | 2700 | 2500 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
' $\ddagger$ ' indic ates some change in the question. See relevant footnote.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These are the estimated prevalence of use rates for the entire population of seniors, not just those who answered that they had used the more general class of drugs.
${ }^{\mathrm{b}}$ In 2001, the question asking about the prevalence of use of specific hallucinogens other than LSD waschanged in several ways: (1) the wording of the screening question was changed from "psychedelicsother than LSD" to "ha llucinogensother than LSD," (2) in the list of examples given in the screening question, "psilocybin" was expanded to "shrooms or psilocybin," and (3) the specific question about "psilocybin" wasexpanded to "shrooms or psilocybin." The inclusion of the term "shrooms" elicited a higher reported level of use in response to both the general category and the specific drug psilocybin. This question change likely explains some of the discontinuity in the 2000-01 results.

## TABLE E-1 (cont'd)

 Specific Hallucinogens Other Than LSD: Trends in Annual Prevalence of Use for All Seniors ${ }^{\text {a }}$| What psychedelics/hallucinogens ${ }^{\text {b }}$ other than LSD have you taken during the last year? | Percentage of AL SENIORS using drug indicated in past year |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | 2004 |  |
| Mescaline | 0.6 | 0.6 | 0.8 | 0.5 | 1.1 | 1.2 | 0.8 | 1.3 | 0.9 | 1.3 | 0.9 | 0.8 | 0.5 | 0.6 | +0.1 |
| Peyote | 0.1 | 0.5 | 0.6 | 0.6 | 0.7 | 0.9 | 0.8 | 0.2 | 0.8 | 0.2 | 0.9 | 0.6 | 0.6 | 0.7 | +0.1 |
| Psilocybin ("shrooms") ${ }^{\text {b }}$ | 0.3 | 0.2 | 0.5 | 0.5 | 0.9 | 1.4 | 1.1 | 1.4 | 1.2 | $1.4 \ddagger$ | 4.9 | 4.0 | 4.6 | 5.7 | +1.0 |
| PCP | 0.5 | 0.6 | 0.7 | 0.9 | 1.2 | 1.1 | 0.9 | 0.8 | 1.1 | 1.2 | 0.9 | 1.0 | 0.9 | 1.0 | +0.1 |
| Concentrated THC | 0.4 | 0.2 | 0.5 | 0.4 | 0.9 | 1.5 | 1.2 | 1.1 | 1.3 | 0.9 | 1.3 | 0.8 | 0.9 | 1.3 | +0.4 |
| Other | 0.6 | 1.0 | 0.8 | 0.7 | 1.3 | 1.8 | 1.9 | 2.2 | 1.9 | 2.4 | 1.6 | 1.2 | 1.6 | 1.4 | -0.2 |
| Don't know the names of some I have used | 0.4 | 0.3 | 0.4 | 0.6 | 0.8 | 0.8 | 1.2 | 1.2 | 1.0 | 0.8 | 0.9 | 0.4 | 0.4 | 0.7 | +0.2 |
| Approx. Wtd. $\mathrm{N}=$ | 2500 | 2600 | 2600 | 2500 | 2500 | 2300 | 2500 | 2500 | 2200 | 2100 | 2100 | 2100 | 2400 | 2400 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$.
' $\ddagger$ ' indic ates some change in the question. See relevant footnote.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These are the estimated prevalence of use rates for the entire population of seniors, not just those who answered that they had used the more general class of drugs. ${ }^{\text {b }}$ In 2001, the question asking about the prevalence of use of specific hallucinogens other than LSD waschanged in several ways: (1) the wording of the screening question was changed from "psychedelicsother than LSD" to "hallucinogensother than LSD," (2) in the list of examples given in the screening question, "psilocybin" was expanded to "shrooms or psilocybin," and (3) the specific question about "psilocybin" was expanded to "shrooms or psilocybin." The inclusion of the term "shrooms" elicited a higher reported level of use in response to both the general category and the specific drug psilocybin. This question change likely explains some of the discontinuity in the 2000-01 results.

TABLE E-2
Specific Amphetamines: Trends in Annual Prevalence of Use for All Seniors ${ }^{\text {a }}$

| What amphetamines have you taken during the last year without a doctor'sorders? | Percentage of ALL SENIORS using drug indic ated in past year |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| Benzedrine | 3.5 | 4.1 | 3.7 | 3.1 | 3.2 | 3.6 | 2.9 | 1.6 | 1.7 | 1.9 | 1.4 | 1.1 | 0.5 | 0.7 | 0.6 |
| Dexedrine | 2.9 | 3.5 | 3.7 | 4.0 | 4.0 | 5.1 | 2.8 | 1.4 | 1.6 | 1.2 | 0.9 | 0.6 | 0.4 | 0.6 | 0.5 |
| Methedrine | 3.4 | 4.2 | 3.9 | 4.7 | 4.4 | 5.6 | 4.7 | 3.2 | 3.0 | 2.9 | 2.0 | 1.5 | 1.2 | 0.7 | 0.5 |
| Rita lin | 0.5 | 0.7 | 0.6 | 0.4 | 0.6 | 0.7 | 0.5 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.4 | 0.5 |
| Preludin | 0.6 | 1.0 | 1.1 | 1.3 | 1.1 | 1.7 | 0.8 | 0.6 | 0.5 | 0.4 | 0.3 | 0.1 | 0.2 | 0.3 | 0.1 |
| Dexamyl | 1.3 | 1.5 | 1.1 | 1.3 | 1.3 | 1.1 | 1.2 | 0.6 | 0.9 | 0.6 | 0.8 | 0.5 | 0.4 | 0.3 | 0.2 |
| Methamphetamine | 1.9 | 2.3 | 2.3 | 2.4 | 2.7 | 3.7 | 2.8 | 1.8 | 2.1 | 2.0 | 1.5 | 1.3 | 1.2 | 0.6 | 0.6 |
| Crystal methamphetamine (ice) | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.2 | 0.8 |
| Other | 4.6 | 5.9 | 6.5 | 6.4 | 6.4 | 7.6 | 4.6 | 4.2 | 4.3 | 3.3 | 3.7 | 2.6 | 1.5 | 2.1 | 1.6 |
| Don't know the names of some I have used | 6.8 | 7.2 | 6.8 | 7.5 | 8.7 | 11.1 | 9.2 | 8.4 | 8.1 | 7.0 | 5.3 | 4.4 | 3.3 | 2.9 | 2.9 |
| Approx. Wtd. $\mathrm{N}=$ | 2700 | 2900 | 3400 | 3100 | 3000 | 3400 | 3400 | 3200 | 3100 | 3100 | 3000 | 3200 | 3200 | 2700 | 2500 |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$.
'-' indicates data not available.
'*' indic ates less than .05 percent but greater than 0 percent.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These are the estimated prevalence of use rates for the entire population of seniors, not just those who answered that they had used the more general class of drugs.

TABLE E-2 (cont'd)
Specific Amphetamines: Trends in Annual Prevalence of Use for All Seniors ${ }^{\text {a }}$

| What amphetamines have you taken during the last year without a doctor's orders? | Percentage of ALL SENIORS using drug indic ated in past year |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 <br> change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | $\underline{2004}$ |  |
| Benzedrine | 0.1 | 0.2 | 0.3 | 0.6 | 0.2 | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 | 0.3 | 0.6 | 0.2 | 0.8 | +0.6 ss |
| Dexedrine | 0.3 | 0.2 | 0.2 | 0.5 | 0.4 | 0.3 | 0.9 | 0.6 | 0.6 | 0.6 | 0.8 | 1.0 | 0.7 | 1.3 | +0.6 |
| Methedrine | 0.3 | 0.4 | 0.4 | 0.5 | 0.3 | 0.3 | 0.5 | 0.3 | 0.3 | 0.3 | 0.5 | 0.2 | 0.2 | 0.4 | +0.3 |
| Rita lin | 0.1 | 0.1 | 0.4 | 1.0 | 0.8 | 1.2 | 2.8 | 2.8 | 2.4 | 2.2 | 2.4 | 2.6 | 2.3 | 3.9 | +1.6 ss |
| Preludin | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | 0.5 | 0.2 | 0.3 | 0.2 | * | 0.2 | 0.1 | 0.1 | 0.2 | +0.2 |
| Dexamyl | 0.1 | 0.2 | 0.3 | 0.5 | 0.2 | 0.4 | 0.3 | 0.4 | 0.2 | 0.2 | 0.5 | 0.2 | 0.1 | 0.5 | +0.4 s |
| Methampheta mine | 0.8 | 0.4 | 0.6 | 0.6 | 0.7 | 0.7 | 1.1 | 1.3 | 0.9 | 0.9 | 1.5 | 1.3 | 1.9 | 1.5 | -0.4 |
| Crystal metha mpheta mine (ice) | 1.2 | 1.1 | 1.1 | 1.4 | 1.6 | 1.5 | 1.8 | 2.5 | 1.8 | 1.9 | 2.1 | 2.1 | 1.7 | 2.0 | +0.3 |
| Other | 1.2 | 1.5 | 2.0 | 2.3 | 2.0 | 2.3 | 2.5 | 3.1 | 2.6 | 2.9 | 2.7 | 3.2 | 3.2 | 3.4 | +0.2 |
| Don't know the names of some I have used | 2.3 | 1.9 | 2.2 | 2.1 | 2.6 | 2.3 | 2.8 | 3.1 | 2.5 | 2.1 | 2.2 | 2.3 | 2.3 | 2.9 | +0.6 |
| Approx. Wtd. $\mathrm{N}=$ | 2500 | 2600 | 2600 | 2500 | 2500 | 2300 | 2500 | 2500 | 2200 | 2100 | 2000 | 2100 | 2400 | 2400 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, \mathrm{ss}=.01, \mathrm{sss}=.001$.
'-' indicates data not available.
'*' indic ates less than .05 percent but greater than 0 percent.
Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These are the estimated prevalence of use rates for the entire population of seniors, not just those who answered that they had used the more general class of drugs.

## TABLE E-3

Specific Tranquilizers: Trends in Annual Prevalence of Use for All Seniors ${ }^{\text {a }}$

| What tra nquilizers have you taken during the last year without a doctor'sorders? | Percentage of ALL SENIORS using drug indicated in past year |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Cont'd |
|  | $\underline{1976}$ | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |  |
| Librium | 2.6 | 2.9 | 2.4 | 2.1 | 1.8 | 2.0 | 0.9 | 1.2 | 0.5 | 0.8 | 0.7 | 0.7 | 0.3 | 0.2 | 0.2 |  |
| Valium | 5.3 | 6.9 | 6.0 | 5.9 | 5.3 | 5.5 | 3.5 | 3.2 | 2.9 | 3.5 | 2.8 | 2.9 | 2.2 | 1.7 | 1.6 |  |
| Miltown ${ }^{\text {b }}$ | 0.2 | 0.3 | 0.1 | 0.3 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 |  |
| Xanax | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Equanil | 0.4 | 0.4 | 0.7 | 0.4 | 0.4 | 0.2 | 0.1 | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 |  |
| Meprobamate | 0.6 | 0.2 | 0.4 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | * | 0.1 | 0.2 |  |
| Serax | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | * | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.0 | 0.1 | 0.2 |  |
| Atarax | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | * | * | 0.1 |  |
| Tranxene | 0.2 | 0.3 | 0.3 | 0.5 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 |  |
| Vistaril | 0.1 | 0.2 | 0.4 | 0.3 | 0.3 | 0.3 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 | 0.0 | * | 0.3 |  |
| Other | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Don't know the names of some I have used | 3.0 | 2.7 | 2.7 | 1.9 | 2.3 | 1.6 | 1.3 | 1.7 | 1.4 | 1.7 | 2.0 | 1.3 | 0.9 | 1.0 | 1.5 |  |
| Approx. Wtd. $\mathrm{N}=$ | 2700 | 2900 | 3400 | 3100 | 3000 | 3300 | 3400 | 3200 | 3100 | 3100 | 3000 | 3100 | 3200 | 2700 | 2500 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $\mathrm{s}=.05, \mathrm{ss}=.01, \mathrm{sss}=.001$. <br> '-' indic ates data not a vailable. <br> '*' indic ates less than .05 percent but greater than 0 percent. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Michigan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ These are the estimated prevalence of use rates for the entire population of seniors, not just those who answered that they had used the more general class of drugs. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## TABLE E-3 (cont'd) <br> Specific Tranquilizers: Trends in Annual Prevalence of Use for All Seniors ${ }^{\text {a }}$

| What tranquilizers have you taken during the last year without a doctor'sorders? | Percentage of ALL SENIORS using drug indicated in past year |  |  |  |  |  |  |  |  |  |  |  |  |  | '03-'04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Classof: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1991 | 1992 | 1993 | 1994 | $\underline{1995}$ | $\underline{1996}$ | 1997 | 1998 | $\underline{1999}$ | $\underline{2000}$ | $\underline{2001}$ | $\underline{2002}$ | $\underline{2003}$ | 2004 | change |
| Librium | 0.2 | 0.1 | 0.1 | * | 0.3 | 0.3 | 0.2 | 0.3 | 0.4 | 0.2 | 0.4 | 0.3 | 0.2 | 0.3 | +0.1 |
| Valium | 1.2 | 1.6 | 1.6 | 1.6 | 1.3 | 1.5 | 2.0 | 2.0 | 2.7 | 2.6 | 2.8 | 2.8 | 2.8 | 3.1 | +0.3 |
| Miltown ${ }^{\text {b }}$ | 0.0 | * | 0.0 | 0.0 | 0.0 | 0.1 | * | * | 0.2 | 0.1 | - | - | - | - | - |
| Xanax | - | - | - | - | - | - | - | - | - | - | 1.9 | 2.6 | 2.7 | 2.7 | 0.0 |
| Equanil | 0.1 | * | 0.1 | * | * | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.4 | * | 0.1 | +0.1 |
| Meprobamate | * | 0.1 | 0.0 | 0.1 | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | * | 0.1 | 0.1 | 0.1 | 0.2 | +0.1 |
| Serax | 0.0 | 0.2 | * | * | * | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | +0.1 |
| Atarax | 0.1 | 0.1 | 0.1 | 0.0 | * | * | 0.1 | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | -0.1 |
| Tranxene | 0.1 | 0.2 | * | * | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 | * | 0.1 | 0.0 |
| Vistaril | 0.0 | * | * | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 | 0.2 | 0.1 | -0.1 |
| Other | - | - | - | - | - | - | - | - | - | - | - | 1.9 | 1.4 | 2.4 | +1.0 s |
| Don't know the names of some I have used | 1.1 | 0.7 | 1.3 | 0.9 | 1.1 | 1.3 | 1.5 | 1.5 | 1.4 | 1.4 | 1.9 | 1.2 | 1.0 | 1.0 | -0.1 |
| Approx. Wtd. $\mathrm{N}=$ | 2400 | 2600 | 2600 | 2500 | 2500 | 2300 | 2500 | 2500 | 2200 | 2000 | 2000 | 2100 | 2400 | 2400 |  |

NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$.
'-' indic ates data not a vailable.
'*' indic ates less than .05 percent but greater than 0 percent.
Any apparent inconsistency between the change estimate and the prevalence of use estimatesfor the two most recent classes is due to rounding emor.
SOURCE: The Monitoring the Future Study, the University of Michigan.
${ }^{\text {a }}$ These are the estimated prevalence of use rates for the entire population of seniors, not just those who answered that they had used the more general class of drugs.
${ }^{\mathrm{b}}$ In 2001 for the list of tranquilizers, Miltown was replaced with Xanax.

## TABLE E-4

Specific Narcotics Other Than Heroin: Trends in Annual Prevalence of Use for All Seniors ${ }^{\text {a }}$

| What narcotic sother than heroin have you taken during the last year without a doctor's orders? | Percentage of ALL SENIORS using drug indicated in past year |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Class of: |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ont'd |
|  | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |  |
| Methadone | 0.6 | 0.4 | 0.9 | 0.9 | 0.8 | 0.7 | 0.4 | 0.6 | 0.5 | 0.5 | 0.5 | 0.3 | 0.1 | * | 0.5 |  |
| Opium | 2.7 | 2.4 | 2.6 | 3.0 | 2.8 | 2.4 | 1.6 | 1.2 | 1.5 | 1.4 | 1.5 | 1.3 | 0.9 | 0.9 | 0.7 |  |
| Morphine | 0.6 | 0.8 | 0.7 | 0.8 | 1.0 | 1.1 | 0.7 | 0.8 | 0.8 | 0.9 | 0.7 | 0.4 | 0.6 | 0.2 | 0.7 |  |
| Codeine | 2.5 | 2.3 | 3.0 | 3.4 | 3.8 | 4.2 | 2.6 | 2.5 | 3.3 | 3.3 | 3.0 | 2.5 | 2.2 | 1.7 | 2.2 |  |
| Demerol | 0.7 | 0.6 | 1.1 | 0.9 | 1.2 | 1.4 | 0.9 | 0.9 | 0.7 | 0.9 | 1.0 | 0.8 | 0.7 | 0.4 | 0.7 |  |
| Paregoric ${ }^{\text {b }}$ | 0.4 | 0.3 | 0.3 | 0.2 | 0.4 | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | * | 0.1 | 0.1 |  |
| Talwin ${ }^{\text {b }}$ | 0.1 | 0.1 | 0.1 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1 | * | * | 0.1 |  |
| Laudanum ${ }^{\text {b }}$ | 0.1 | 0.0 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | * | * | 0.1 |  |
| OxyContin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Vicodin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Percocet | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Percodan | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Dilaudid | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Other | 0.5 | 0.5 | 1.4 | 0.8 | 0.7 | 0.6 | 0.5 | 0.6 | 0.4 | 0.6 | 0.5 | 0.4 | 0.4 | 0.5 | 0.5 |  |
| Don't know the names of some I have used | 1.1 | 1.0 | 0.6 | 0.9 | 0.8 | 0.6 | 0.7 | 0.3 | 0.6 | 0.6 | 0.4 | 0.3 | 0.5 | 0.2 | 0.5 |  |
| Approx. Wtd. $\mathrm{N}=$ | 2700 | 2800 | 3400 | 3000 | 3000 | 3300 | 3400 | 3100 | 3000 | 3100 | 2900 | 3100 | 3100 | 2600 | 2500 |  |
| NOTES: Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01$, sss $=.001$. <br> ' - ' indic ates data not available. <br> '*' indic ates less than .05 percent but greater than 0 percent. <br> Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| SOURCE: The Monitoring the Future Study, the University of Mic higan. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ These are the estimated prevalence of use rates for the entire population of seniors, not just those who answered that they had used the more general class of drugs. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {b }}$ In 2002 for the list of narcotic s other than heroin, par | regor | , Talw | nd la | danu | were | place | with V | odin, | xyCon | Perc | cet, | coda | nd D | did. |  |  |

## TABLE E-4 (cont'd)

 Specific Narcotics Other Than Heroin: Trends in Annual Prevalence of Use for All Seniors ${ }^{\text {a }}$

## INDEX ${ }^{124}$

## A

age of first use
alcohol, 261, 262, 268, tables 6-1-6-4, fig. 6-20
drunk, getting, 261, 262, 268, 269, tables 6-1-6-4, fig. 6-21
amphetamines, 260, 262, 264, 267, tables 6-1-6-4, fig. 6-16
any illicit drug, 263, 264, table 6-3, fig. 6-1
any illicit drug other than marijuana, 262, 264, table 6-3, figs. 6-2-6-3
cigarettes, 29, 261, 262, 269, tables 6-1-6-4, fig. 6-22
daily use, 261, 262, 269, 270, tables 6-1-6-4, fig. 6-23
cocaine, 260, 263, 266, tables 6-1-6-4, fig. 6-11
cocaine powder, 260, 262, 263, 266, tables 6-1-6-4, fig. 6-13
crack cocaine, 260, 262, 263, 266, tables 6-1-6-4, fig. 6-12
hallucinogens, 260, 262, 265, tables 6-1-6-4, fig. 6-7
hallucinogens other than LSD, 260, 262, 265, tables 6-1-6-4, fig. 6-9
heroin, 260, 262, 266, tables 6-1-6-4, fig. 6-14
inhalants, 261, 262, 265, tables 6-1-6-4, fig. 6-5
LSD, 260, 262, 265, tables 6-1-6-4, fig. 6-8
marijuana, 261, 262, 264, 435, tables 6-1-6-4, fig. 6-4
daily use, 435
methaqualone, 262, 268, tables 6-1-6-4, fig. 6-18
narcotics other than heroin, 262, 267, table 6-3, fig. 6-15
nitrites, 262, 265, table 6-3, fig. 6-6
PCP, 263, 266, table 6-3, fig. 6-10
sedatives (barbiturates), 262, 267, table 6-3, fig. 6-17
smokeless tobacco, 261, 262, 270, tables 6-1-6-4, fig. 6-24
steroids, 260, 263, 271, tables 6-1-6-4, fig. 6-25
tranquilizers, 260, 262, 268, tables 6-1-6-4, fig. 6-19
alcohol
age of first use, 261, 262, 268, tables 6-1-6-4, fig. 6-20
availability, perceived, 396, 402
beer, 152, 167
daily use
college plans, 26
disapproval, 389, tables 8-4-8-6, fig. 9-2
friends' attitudes, perceived, 389, table 9-1, fig. 9-2
gender, 166, fig. 5-5
harmfulness, perceived, 337, 338, tables 8-1-8-3
parents' attitudes, perceived, fig. 9-2
prevalence, 34, 91, 92, fig. 4-2
trends, $25,27,88$, 166, fig. 5-5
degree and duration of highs, 302, 306, table 7-8, figs. 7-1-7-2
disapproval, 342, 343, 345, 346, 347, 389, tables 8-4-8-6, fig. 8-10b, fig. 9-2
drunk, getting, 33, 85, fig. 4-3, fig. 5-4i
age of first use, 261, 262, 268, 269, tables 6-1-6-4, fig. 6-21
friends' use, 390, 391, 393, 395, tables 9-3-9-5, fig. 9-4
gender, 166, 167
harmfulness, perceived, 329
legality, 349
noncontinuation, tables 5-7a-5-7b, fig. 4-3
race/ethnicity, 32, 97, 98
region, 175
socioeconomic status, 95
trends, 151, 160
exposure to use, table 9-2 (see also friends' use)
flavored alcoholic beverages, 151, 152, 167
friends' attitudes, perceived, 386, table 9-1
friends' use, 390, 391, 395, tables 9-3-9-5, fig. 9-4
harmfulness, perceived, 328, 329, 337, 340, tables 8-1-8-3, fig. 8-10a
heavy drinking, 26,34 , 85 , fig. $5-4$ j
college plans, 26, 92, 171
disapproval, 342, 343, 346, 347, tables 8-4-$8-6$, fig. 8-10b, fig. 9-2
friends' attitudes, perceived, 386, 389, table 9-1, fig. 9-2
friends' use, 393, 394
gender, 27, 91, 166, 167, fig. 5-6a
harmfulness, perceived, 329, 337, 340, tables 8-1-8-3, fig. 8-10a
parents' attitudes, perceived, fig. 9-2
population density (urbanicity), 94, 178

[^124]alcohol, heavy drinking (continued)
prevalence, 25, 26, 27, 37
race/ethnicity, $31,32,97,98,186,187$, fig. 5-13b
region, 175
socioeconomic status, 181, fig. 5-12e
trends, 25, 26, 27, 151, 152, 159
legality, 349
liquor, hard, 152, 167
prevalence, $25,26,33,34,84,88$, 160, fig. 4-1, fig. 4-2
college plans, 92
gender, 91
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 97, 98
region, 94
socioeconomic status, 95
trends, 25, 26, 33, 150, 151, 152, 153, 159, fig. 5-4i
college plans, 170, 171
gender, 166, 167
noncontinuation, 162
population density (urbanicity), 176, 178, fig. 5-11b
race/ethnicity, 31, 32, 186, 187
region, 175
socioeconomic status, 181
wine, 152, 153, 167
wine coolers, 153, 167
amphetamines
age of first use, 260, 262, 264, 267, tables 6-1-6-4, fig. 6-16
availability, perceived, 396, 397, 398, 401, 402, 403, tables 9-6-9-8, fig. 9-5a
degree and duration of highs, $302,303,305,306$, table 7-6, figs. 7-1-7-2
disapproval, 16, 344, 388, table 8-6, fig. 8-7b, fig. 9-1b
exposure to use, table 9-2 (see also friends' use) friends' attitudes, perceived, 385, 388, table 9-1, fig. 9-1b
friends' use, 390, 392, table 9-5, fig. 9-4
harmfulness, perceived, $16,328,334,335,403$, tables 8-1-8-3, fig. 8-7a
legality, 348
parents' attitudes, perceived, fig. 9-1b
prevalence, 21, 22, 23, 33, 82, 88, 156, 430, fig.
$4-1$, fig. 4-2, fig. 10-1
gender, 25, 90
noncontinuation, 89, fig. 4-3
population density (urbanicity), 94
race/ethnicity, 32, 96, 97
socioeconomic status, 95
trends, $15,24,144,156,430,431,659$, table E-2, fig. 5-4a
college plans, 169
gender, 165
noncontinuation, 162, tables 5-7a-5-7b
population density (urbanicity), 178
race/ethnicity, 31, 32, 185, 187
region, 172
socioeconomic status, 180, fig. 5-12d
amyl nitrites, 16, 81, fig. 5-4b
anabolic steroids
prevalence, 86
gender, 86, 90
trends, 150
race/ethnicity, 187
androstenedione
prevalence, 22, 86, 87, 433
trends, 22, 150, 159, 434
any illicit drug
age of first use, 263, 264, table 6-3, fig. 6-1
exposure to use, table 9-2 (see also friends' use)
friends' use, 390, 391, table 9-5
legality, 350
prevalence, 10, 23, 36, 80
race/ethnicity, 96
region, 93
trends, 11, 141, fig. 2-1, figs. 5-1-5-3
college plans, fig. 5-8
gender, 164, fig. 5-7
population density (urbanicity), 176, fig. 5-11a
race/ethnicity, 187
region, 172, fig. 5-10a
any illicit drug other than marijuana
age of first use, 262, 264, table 6-3, figs. 6-2-6-3
exposure to use, table 9-2 (see also friends' use)
friends' use, 391, table 9-5
prevalence, 10, 23, 33, 36, 80
college plans, 92
gender, 25, 90
region, 93
trends, 11, 13, 24, 35, 141, 150, 264
college plans, fig. 5-8
gender, 164, fig. 5-7
population density (urbanicity), 176, fig. 5-11a
race/ethnicity, 187
region, fig. 5-10a
Atarax, table E-3
availability, perceived
alcohol, 396, 402, tables 9-6-9-8
amphetamines, 396, 397, 398, 401, 402, 403, tables 9-6-9-8, fig. 9-5a
cigarettes, 29, 396, 402, tables 9-6-9-7
cocaine, 18, 397, 398, 402, 403, tables 9-6-9-8, fig. 8-5, fig. 9-5a
cocaine powder, $18,396,397$, 401, tables 9-6-9-8
crack cocaine, 396, 397, 399, 401, tables 9-6-9-8, fig. 9-5a
crystal methamphetamine (ice), 396, 397, 402, tables 9-6-9-8, fig. 9-5a
hallucinogens other than LSD, 397, 399, table 9-8, fig. 9-5c
heroin, 396, 397, 400, 401, 402, 403, tables 9-6-9-8, fig. 9-5b
inhalants, 396
LSD, 396, 397, 399, 401, 403, tables 9-6-9-8, fig. 9-5c
marijuana, 396, 397, 398, 401, 402, 403, tables 9-6-9-8, fig. 8-4, fig. 9-5a
MDMA (ecstasy), 15, 396, 397, 399, 400, 401, 402, tables 9-6-9-8, fig. 8-6, fig. 9-5a
narcotics other than heroin, 396, 397, 400, 401, table 9-8, fig. 9-5b
nitrites, 397, table 9-8
PCP, 396, 397, 400, tables 9-6-9-8
sedatives (barbiturates), 396, 397, 398, 401, tables 9-6-9-8, fig. 9-5b
steroids, 396, 397, tables 9-6-9-8, fig. 9-5a
tranquilizers, 396, 397, 399, 401, tables 9-6-9-8, fig. 9-5b

## B

barbiturates. See sedatives
Benzedrine, 144, table E-2
bidis, 85, 91
binge drinking. See alcohol
butyl nitrites, 16, 81, fig. 5-4b

## C

## cigarettes

age of first use, 29, 261, 262, 269, tables 6-1-6-4, fig. 6-22
availability, perceived, 29, 396, 402, tables 9-6-9-7
daily use
age of first use, 261, 262, 269, 270, tables 6-1-6-4, fig. 6-23
disapproval, 342, 343, 345, 348, tables 8-4-8-6, fig. 9-2
friends’ attitudes, perceived, table 9-1, fig. 9-2
gender, 91, fig. 5-5
harmfulness, perceived, 329, 340, 341, tables 8-1-8-3
parents' attitudes, perceived, fig. 9-2
population density (urbanicity), 94
prevalence, 37, 87, 88, 91, fig. 4-2
race/ethnicity, 97, fig. 5-13b
region, 94
socioeconomic status, fig. 5-12f
trends, 28 , 153, fig. 5-4k, fig. 5-5
disapproval, 28, 342, 343, 345, 348, tables 8-4-8-6, fig. 8-11b
friends' attitudes, perceived, 385, 388, 389
friends' use, 391, 393, 395, tables 9-3-9-5, fig. 9-4
harmfulness, perceived, 28, 29, 33, 328, 329, 337, 338, 340, 341, tables 8-1-8-3, fig. 8-11a
legality, 348, 349
prevalence, 33 , 37 , 85 , fig. 4-1, fig. 4-2
college plans, 30,92
gender, 91
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 97
region, 94
socioeconomic status, 95
trends, 11, 12, 27, 28, 35, 153, 160, 270, fig. 5-4k
college plans, 171, fig. 5-9
gender, 30, 31, 167
noncontinuation, table 5-7a
population density (urbanicity), 178, 179, fig. 5-11c
race/ethnicity, 32, 186, 187
region, 175, fig. 5-10c
socioeconomic status, 181, 182
club drugs. See GHB; ketamine; Rohypnol
cocaine
age of first use, 260, 263, 266, tables 6-1-6-4, fig. 6-11
availability, perceived, 18, 397, 398, 402, 403, tables 9-6-9-8, fig. 8-5, fig. 9-5a
degree and duration of highs, 302, 303, 304, table 7-4, figs. 7-1-7-2
disapproval, 18,344 , 388 , table 8-6, fig. 8-2b, fig. 9-1b
exposure to use, table 9-2 (see also friends' use)
friends' attitudes, perceived, 385, 388, table 9-1, fig. 9-1b
friends' use, 18, 391, 392, table 9-5, fig. 9-4
harmfulness, perceived, $17,18,328,333,334$, 335 , 402, table 8-3, fig. 8-2a, fig. 8-5
parents' attitudes, perceived, fig. 9-1b
prevalence, 21, 22, 23, 37, 82, 156, fig. 4-1, fig. 4-2, fig. 8-5
gender, 25, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 96, 97
region, 93
socioeconomic status, 95
trends, $17,18,24$, 35 , 142 , fig. $5-4$ e, fig. $8-5$, fig. A-2
college plans, 169
gender, 165
noncontinuation, 161, 163, tables 5-7a-5-7b

## Monitoring the Future

cocaine, trends (continued)
population density (urbanicity), 176, 177, fig. 5-11b
race/ethnicity, 32, 183, fig. 5-13a
region, 173, fig. 5-10b
socioeconomic status, 179, 180, fig. 5-12b
See also cocaine powder; crack
cocaine, other. See cocaine powder
cocaine powder
age of first use, 260, 262, 263, 266, tables 6-1-6-4, fig. 6-13
availability, perceived, 18, 396, 397, 401, tables 9-6-9-8
disapproval, 18, 342, 344, 346, 347, tables 8-4-8-6
friends' attitudes, perceived, 385, table 9-1
friends' use, 394, tables 9-3-9-5, fig. 9-4
harmfulness, perceived, 18, 328, 329, 333, 334, 338, tables 8-1-8-3
prevalence, 33
gender, 90
noncontinuation, 89, fig. 4-3
parental education, 95
race/ethnicity, 96, 97
socioeconomic status, 95
trends, 35, 156, fig. 5-4e, fig. 6-13
noncontinuation, tables 5-7a-5-7b
race/ethnicity, 31, 183, 187
socioeconomic status, 180
See also cocaine; crack
codeine, 20, 661, table E-4
concentrated THC, 149, table E-1
crack cocaine
age of first use, 260, 262, 263, 266, tables 6-1-6-4, fig. 6-12
availability, perceived, 396, 397, 399, 401, tables 9-6-9-8, fig. 9-5a
disapproval, 17, 342, 344, 346, 347, tables 8-4-8-6, fig. 8-3b
friends' attitudes, perceived, 385, 386, table 9-1
friends' use, 394, tables 9-3-9-5, fig. 9-4
harmfulness, perceived, $16,17,18,328,329$, 333, 334, 338, tables 8-1-8-3, fig. 8-3a
parents' attitudes, perceived, 386
prevalence, 23, 33, 34, 37, 83, fig. 4-1, fig. 4-2
gender, 25, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 97
socioeconomic status, 95
trends, 16, 17, 35, 142, 156, fig. 5-4e
college plans, 169
gender, 165
noncontinuation, 161, 163, tables 5-7a-5-7b
population density (urbanicity), 177
race/ethnicity, 32, 183, 187
region, 173
socioeconomic status, 179, 180
creatine
prevalence, 23, 87, 433, 434
trends, 159, 434
crystal methamphetamine (ice)
availability, perceived, 396, 397, 402, tables 9-6-9-8, fig. 9-5a
friends' use, table 9-5, fig. 9-4
harmfulness, perceived, 328, 336, table 8-3
prevalence, 23, 82, fig. 4-1
gender, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 96, 97
region, 93
socioeconomic status, 95
trends, 16,145 , table E-2, fig. $5-4 g$
gender, 166
noncontinuation, tables 5-7a-5-7b
population density (urbanicity), 178
race/ethnicity, 185, 187
region, 173
socioeconomic status, 180

## D

degree of highs attained
alcohol, 302, 306, table 7-8, figs. 7-1-7-2
amphetamines, 302, 303, 305, 306, table 7-6, figs. 7-1-7-2
cocaine, 302, 303, 304, table 7-4, figs. 7-1-7-2
hallucinogens, 301, 302
hallucinogens other than LSD, 301, 302, 304, table 7-3, figs. 7-1-7-2
heroin, 301
LSD, 301, 302, 304, table 7-2, figs. 7-1-7-2
marijuana, 302, 303, 304, table 7-1, figs. 7-1-7-3
narcotics other than heroin, $302,304,305$, table $7-5$, figs. 7-1-7-2
nitrites, 306
tranquilizers, 302, 303, 306, table 7-7, figs. 7-1-7-2
Demerol, table E-4
Dexamyl, table E-2
Dexedrine, 144, table E-2
diet pills, 23, 429, 430, 431, 432, fig. 10-1
Dilaudid, 147, table E-4
disapproval of use
alcohol, 342, 343, 345, 346, 347, 389, tables 8-4-8-6, fig. 8-10b, fig. 9-2
daily use, 389, tables 8-4-8-6, fig. 9-2
heavy drinking, 342, 343, 346, 347, tables 8-4-8-6, fig. 8-10b, fig. 9-2
amphetamines, 16,344 , 388 , table $8-6$, fig. $8-7 \mathrm{~b}$, fig. 9-1b
cigarettes, 28, 342, 343, 345, 348, tables 8-4-8-6, fig. 8-11b
daily use, $342,343,345,348$, tables 8-4-8-6, fig. 9-2
cocaine, 18, 344, 388, table 8-6, fig. 8-2b, fig. 9-1b
cocaine powder, $18,342,344,346,347$, tables 8-4-8-6
crack cocaine, $17,342,344,346,347$, tables 8-4-8-6, fig. 8-3b
heroin, 342, tables 8-4-8-6, fig. 8-9b
inhalants, 342, 347, tables 8-4-8-5
LSD, 14, 342, 346, 347, tables 8-4-8-6, fig. 8-8b, fig. 9-1b
marijuana, 13, 341, 342, 343, 344, 346, 347, 386, 387, tables 8-4-8-6, fig. 8-1b, fig. 9-1a
MDMA (ecstasy), 342, 345, tables 8-4-8-6
sedatives (barbiturates), 342, 344, table 8-6, fig. 8-7b, fig. 9-1b
smokeless tobacco, tables 8-4-8-5, fig. 8-12b
steroids, tables 8-4-8-6
duration of highs attained
alcohol, 302, 306, table 7-8, figs. 7-1-7-2
amphetamines, 302, 303, 305, 306, table 7-6, figs. 7-1-7-2
cocaine, 302, 303, 304, table 7-4, figs. 7-1-7-2
hallucinogens, 301, 302
hallucinogens other than LSD, 301, 302, 304, table 7-3, figs. 7-1-7-2
heroin, 301
LSD, 301, 302, 304, table 7-2, figs. 7-1-7-2
marijuana, 302, 303, 304, table 7-1, figs. 7-1-7-3
narcotics other than heroin, 302, 304, 305, table $7-5$, figs. 7-1-7-2
nitrites, 306
tranquilizers, 302, 303, 306, table 7-7, figs. 7-1-7-2

## E

ecstasy. See MDMA
Equanil, table E-3
exposure to drug use, table 9-2. See also friends' use

## F

friends’ attitudes, perceived
alcohol, 386, table 9-1
daily use, 389, table 9-1, fig. 9-2
heavy drinking, 386, 389, table 9-1, fig. 9-2
amphetamines, 385, 388, table 9-1, fig. 9-1b
cigarettes, 385, 388, 389
daily use, table 9-1, fig. 9-2
cocaine, 385, 388, table 9-1, fig. 9-1b
cocaine powder, 385, table 9-1
crack cocaine, 385, 386, table 9-1
heroin, 385
LSD, 385, 388, table 9-1, fig. 9-1b
marijuana, 385, 386, 387, 388, table 9-1, fig. 9-1a
PCP, 385
sedatives (barbiturates), 388, fig. 9-1b
friends' use
alcohol, 390, 391, 395, tables 9-3-9-5, fig. 9-4
drunk, getting, 390, 391, 393, 395, tables
9-3-9-5, fig. 9-4
heavy drinking, 393, 394
amphetamines, 390, 392, table 9-5, fig. 9-4
any illicit drug, 391, table 9-5
any illicit drug other than marijuana, 391, table 9-5
cigarettes, 391, 393, 395, tables 9-3-9-5, fig. 9-4
cocaine, 18, 391, 392, table 9-5, fig. 9-4
cocaine powder, 394, tables 9-3-9-5, fig. 9-4
crack cocaine, 394, tables 9-3-9-5, fig. 9-4
crystal methamphetamine (ice), table 9-5, fig. 9-4
hallucinogens other than LSD, 390, 393, table 9-5, fig. 9-4
heroin, 391, 394, tables 9-3-9-5, fig. 9-4
inhalants, 391, 393, 394, 395, tables 9-3-9-5, fig. 9-4
LSD, 393, table 9-5, fig. 9-4
marijuana, 390, 391, 392, 394, tables 9-3-9-5, fig. 9-3, fig. 9-4
MDMA (ecstasy), 392, 393, table 9-5, fig. 9-4
methaqualone, 393, table 9-5, fig. 9-4
narcotics other than heroin, table 9-5, fig. 9-4
nitrites, 393, table 9-5, fig. 9-4
PCP, 393, table 9-5, fig. 9-4
sedatives (barbiturates), 393, table 9-5, fig. 9-4
smokeless tobacco, 391, tables 9-3-9-4, fig. 9-4
steroids, table 9-5, fig. 9-4
tranquilizers, 393, table 9-5, fig. 9-4

## G

GHB
prevalence, 22, 23, 84
gender, 25,90
socioeconomic status, 95
trends, 22, 38, 158
grade of first use. See age of first use

## H

hallucinogens
age of first use, $260,262,265$, tables 6-1-6-4, fig. 6-7
degree and duration of highs, 301, 302
prevalence, 23, 82, 84
gender, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 96
socioeconomic status, 95
trends, 82, 148, 149, 155, 660, fig. 5-4d

## Monitoring the Future

hallucinogens, trends (continued)
noncontinuation, tables 5-7a-5-7b
race/ethnicity, 32, 184, 187
region, 173
hallucinogens other than LSD
age of first use, 260, 262, 265, tables 6-1-6-4, fig. 6-9
availability, perceived, 397, 399, table 9-8, fig. 9-5c
degree and duration of highs, $301,302,304$, table 7-3, figs. 7-1-7-2
exposure to use, table 9-2 (see also friends' use)
friends' use, 390, 393, table 9-5, fig. 9-4
prevalence, 33, 82, figs. 4-1-4-2
gender, 90
noncontinuation, 89
race/ethnicity, 32, 97
socioeconomic status, 95
trends, 35, 659, 660, table E-1
college plans, 169
noncontinuation, tables 5-7a-5-7b
race/ethnicity, 31, 32, 187
harmfulness, perceived
alcohol, 328, 329, 337, 340, tables 8-1-8-3, fig. 8-10a
daily use, 337, 338, tables 8-1-8-3
drunk, getting, 329
heavy drinking, 329, 337, 340, tables 8-1-8-3, fig. 8-10a
amphetamines, 16, 328, 334, 335, 403, tables 8-1-8-3, fig. 8-7a
cigarettes, 28, 29, 33, 328, 329, 337, 338, 340, 341, tables 8-1-8-3, fig. 8-11a
daily use, 329, 340, 341, tables 8-1-8-3
cocaine, $17,18,328,333,334,335,402$, table 8-3, fig. 8-2a, fig. 8-5
cocaine powder, $18,328,329,333,334,338$, tables 8-1-8-3
crack cocaine, $16,17,18,328,329,333,334$, 338, tables 8-1-8-3, fig. 8-3a
crystal methamphetamine (ice), 328,336 , table 8-3
heroin, 19, 20, 328, 329, 334, 335, tables 8-1-8-3, fig. 8-9a
inhalants, 329, 330, 339, tables 8-1-8-2
LSD, 14, 328, 329, 335, 336, 338, 339, tables 8-1-8-3, fig. 8-8a
marijuana, $12,13,328,329,330,331,332,335$, 338, 402, 403, tables 8-1-8-3, fig. 8-1a, fig. 8-4
MDMA (ecstasy), 15, 328, 329, 330, 335, 336, 402, tables 8-1-8-3, fig. 8-6
PCP, 328, 336, 337, table 8-3
sedatives (barbiturates), 328, 334, 335, table 8-3, fig. 8-7a
smokeless tobacco, 329, 338, 341, tables 8-1-8-3, fig. 8-12a
steroids, 328, 339, 340, tables 8-1-8-3
hashish. See marijuana
heroin (including with and without a needle)
age of first use, 260, 262, 266, tables 6-1-6-4, fig. 6-14
availability, perceived, 396, 397, 400, 401, 402, 403, tables 9-6-9-8, fig. 9-5b
degree and duration of highs, 301
disapproval, 342, tables 8-4-8-6, fig. 8-9b
exposure to use, table 9-2 (see also friends' use)
friends' attitudes, perceived, 385
friends' use, 391, 394, tables 9-3-9-5, fig. 9-4
harmfulness, perceived, 19, 20, 328, 329, 334, 335, tables 8-1-8-3, fig. 8-9a
legality, 348
prevalence, 23, 33, 83, 158, fig. 4-1
gender, 25, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 97
trends, 19, 37, 146, 147, 157, fig. 5-4f
college plans, 169, 170
gender, 166
noncontinuation, tables 5-7a-5-7b
population density (urbanicity), 177
race/ethnicity, 184, 185, 187
region, 174
socioeconomic status, 180

## I

ice. See crystal methamphetamine incidence of first use. See age of first use inhalants
age of first use, 261, 262, 265, tables 6-1-6-4, fig. 6-5
availability, perceived, 396
disapproval, 342, 347, tables 8-4-8-5
friends' use, 391, 393, 394, 395, tables 9-3-9-5, fig. 9-4
harmfulness, perceived, 329, 330, 339, tables 8-1-8-2
prevalence, 21, 22, 23, 33 , 81 , 82 , 84 , fig. 4-1
gender, 25, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 96, 97
socioeconomic status, 95
trends, 16, 35, 143, 156, 157, fig. 5-4b
gender, 165
noncontinuation, 163, tables 5-7a-5-7b
race/ethnicity, 31, 32, 184, 187, fig. 5-13c
region, 174
socioeconomic status, 180

```
K
ketamine (Special K)
    prevalence, 22, 23, 84
        gender, }9
        socioeconomic status, }9
    trends, 22, 38, 158
kreteks, }8
```

```
L
laudanum, table E-4
Librium, table E-3
look-alike drugs, 23, 429, 430, 431, 432, fig. 10-1
LSD
    age of first use, 260, 262, 265, tables 6-1-6-4,
                fig. 6-8
    availability, perceived, 396, 397, 399, 401, 403,
                tables 9-6-9-8, fig. 9-5c
    degree and duration of highs, 301, 302, 304,
        table 7-2, figs. 7-1-7-2
    disapproval, 14, 342, 346, 347, tables 8-4-8-6,
                fig. 8-8b, fig. 9-1b
    exposure to use, table 9-2 (see also friends' use)
    friends' attitudes, perceived, 385, 388, table 9-1, fig. 9-1b
friends' use, 393, table 9-5, fig. 9-4
harmfulness, perceived, \(14,328,329,335,336\), 338, 339, tables 8-1-8-3, fig. 8-8a
legality, 348
parents' attitudes, perceived, fig. 9-1b
prevalence, 21, 22, 23, 33, 82, figs. 4-1-4-2
gender, 25, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 96, 97
socioeconomic status, 95
trends, 13, 14, 22, 35, 37, 148, 155, fig. 5-4d
college plans, 169, 170
noncontinuation, 162, tables 5-7a-5-7b
race/ethnicity, 31, 32, 184, 187, fig. 5-13c
region, 174
socioeconomic status, 180, fig. 5-12c
```


## M

```
marijuana (hashish)
age of first use, 261, 262, 264, 435, tables 6-1-6-4, fig. 6-4
availability, perceived, 396, 397, 398, 401, 402, 403, tables 9-6-9-8, fig. 8-4, fig. 9-5a
daily use, 435, 436
age of first use, 435
college plans, 92, 436
gender, 24 , 436, 437, fig. 5-5
month or more, 37, 436
population density (urbanicity), 437
prevalence, 37, 81, 88, 437, fig. 4-2
region, 436, 437
```

trends, $12,140,155,434,435,437$, fig. 5-4m, fig. 5-5
degree and duration of highs, 302, 303, 304, table 7-1, figs. 7-1-7-3
disapproval, 13, 341, 342, 343, 344, 346, 347, 386, 387, tables 8-4-8-6, fig. 8-1b, fig. $9-1$ a
exposure to use, table 9-2 (see also friends' use)
friends' attitudes, perceived, 385, 386, 387, 388, table 9-1, fig. 9-1a
friends' use, 390, 391, 392, 394, tables 9-3-9-5, figs. 9-3-9-4
harmfulness, perceived, 12, 13, 328, 329, 330, 331, 332, 335, 338, 402, 403, tables 8-1-8-3, fig. 8-1a, fig. 8-4
legality, 348, 349, 350, 351
parents' attitudes, perceived, 386, 387, fig. 9-1a
prevalence, 21, 22, 23, 33, 80, 81, 82, 88, 155, figs. 4-1-4-2, fig. 8-4
college plans, 92, 436
gender, $24,25,90,436$
noncontinuation, 89, fig. 4-3
population density (urbanicity), 94, 436
race/ethnicity, 32, 96, 97
region, 93, 436
socioeconomic status, 95
trends, $11,12,24,35,139,154,264,434,435$, 437, fig. 5-4a, fig. 8-4, fig. 9-3, fig. A-2
college plans, 169, 437
gender, 164, 437
noncontinuation, 161, 163, tables 5-7a-5-7b
population density (urbanicity), 176, 177, 437, fig. 5-11b
race/ethnicity, 32, 182, 183, 187, fig. 5-13a
region, 172, 437
socioeconomic status, 179, fig. 5-12a
MDMA (ecstasy)
availability, perceived, 15, 396, 397, 399, 400, 401, 402, tables 9-6-9-8, fig. 8-6, fig. 9-5a
disapproval, 342, 345, tables 8-4-8-6
friends' use, 392, 393, table 9-5, fig. 9-4
harmfulness, perceived, 15, 328, 329, 330, 335, 336, 402, tables 8-1-8-3, fig. 8-6
prevalence, 14, 22, 23, 33, 82, figs. 4-1-4-2, fig. 8-6
gender, 25, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 96, 97
region, 93
socioeconomic status, 95
trends, 14, 15, 22, 38, 149, 150, 158, fig. 5-4h, fig. 8-6
college plans, 170
noncontinuation, tables 5-7a-5-7b
population density (urbanicity), fig. 5-11c

## Monitoring the Future

MDMA (ecstasy), trends (continued) race/ethnicity, 31, 32, 184, 187 region, 174
meprobamate, table E-3
mescaline, 149, table E-1
methadone, table E-4
methamphetamine
prevalence, 16, 23, 33, 82, figs. 4-1-4-2
gender, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 97
trends, 16, 145, table E-2, fig. 5-4g
college plans, 170
gender, 166
noncontinuation, tables 5-7a-5-7b
population density (urbanicity), 178
race/ethnicity, 185, 187
region, 173
socioeconomic status, 180
methaqualone
age of first use, 262, 268, tables 6-1-6-4, fig. 6-18
friends' use, 393, table 9-5, fig. 9-4
prevalence, 84
gender, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 90
trends, 21, 145, 146, 268, fig. 5-4c
college plans, 169
noncontinuation, 162, tables 5-7a-5-7b
Methedrine, 144, table E-2
Miltown, table E-3
morphine, table E-4

N
narcotics other than heroin
age of first use, 262, 267, table 6-3, fig. 6-15
availability, perceived, 396, 397, 400, 401, table 9-8, fig. 9-5b
degree and duration of highs, 302, 304, 305, table 7-5, figs. 7-1-7-2
exposure to use, table 9-2 (see also friends' use)
friends' use, table 9-5, fig. 9-4
prevalence, 22, 23, 83, 88, figs. 4-1-4-2
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 97
socioeconomic status, 95
trends, 20, 21, 22, 24, 147, 267, 659, 661, table
E-4, fig. 5-4g
college plans, 169
gender, 166
noncontinuation, tables 5-7a-5-7b
population density (urbanicity), 177
race/ethnicity, 32, 185, 187
region, 174
socioeconomic status, 181
nitrites
age of first use, 262, 265, table 6-3, fig. 6-6
availability, perceived, 397, table 9-8
degree and duration of highs, 306
friends' use, 393, table 9-5, fig. 9-4
prevalence, 16, 81
gender, 90
noncontinuation, 89, fig. 4-3
trends, 16, 143, fig. 5-4b
college plans, 169
noncontinuation, tables 5-7a-5-7b
noncontinuation rates
alcohol, 89, 162, tables 5-7a-5-7b, fig. 4-3
drunk, getting, tables 5-7a-5-7b, fig. 4-3
amphetamines, 89, 162, tables 5-7a-5-7b, fig. 43
cigarettes, 89, table 5-7a, fig. 4-3
cocaine, 89, 161, 163, tables 5-7a-5-7b, fig. 4-3
cocaine powder, 89, tables 5-7a-5-7b, fig. 4-3
crack cocaine, 89, 161, 163, tables 5-7a-5-7b, fig. 4-3
crystal methamphetamine (ice), 89, tables 5-7a-5-7b, fig. 4-3
hallucinogens, 89, tables 5-7a-5-7b, fig. 4-3
hallucinogens other than LSD, 89, tables 5-7a-5-7b
heroin, 89, tables 5-7a-5-7b, fig. 4-3
inhalants, 89, 163, tables 5-7a-5-7b, fig. 4-3
LSD, 89, 162, tables 5-7a-5-7b, fig. 4-3
marijuana, 89, 161, 163, tables 5-7a-5-7b, fig. 4-3
MDMA (ecstasy), 89, tables 5-7a-5-7b, fig. 4-3
methamphetamine, 89, tables 5-7a-5-7b, fig. 4-3
methaqualone, 89, 162, tables 5-7a-5-7b, fig. 4-3
narcotics other than heroin, 89, tables 5-7a-5-7b, fig. 4-3
nitrites, 89, tables 5-7a-5-7b, fig. 4-3
PCP, 89, tables 5-7a-5-7b, fig. 4-3
Rohypnol, tables 5-7a-5-7b
sedatives (barbiturates), 89, 162, tables 5-7a-5-7b, fig. 4-3
smokeless tobacco, 89, table 5-7a, fig. 4-3
steroids, 89, 162, tables 5-7a-5-7b, fig. 4-3
tranquilizers, 89, 162, tables 5-7a-5-7b, fig. 4-3

## 0

opium, table E-4
OxyContin
prevalence, 20, 22, 23, 83
gender, 90
socioeconomic status, 95
trends, 20, 38, 147, 661, table E-4
population density (urbanicity), 178
race/ethnicity, 185

## P

paregoric, table E-4
PCP
age of first use, 263, 266, table 6-3, fig. 6-10
availability, perceived, 396, 397, 400, tables 9-6-9-8
friends' attitudes, perceived, 385
friends' use, 393, table 9-5, fig. 9-4
harmfulness, perceived, 328, 336, 337, table 8-3
prevalence, 82
gender, 90
noncontinuation, 89, fig. 4-3
trends, 18,148 , table E-1, fig. 5-4d
noncontinuation, tables 5-7a-5-7b
region, 174
perceived harmfulness. See harmfulness, perceived
perceived risk. See harmfulness, perceived
Percocet, 20, 147, 661, table E-4
Percodan, 147, table E-4
peyote, table E-1
powder cocaine. See cocaine powder
Preludin, table E-2
psilocybin (shrooms), 149, 660, table E-1
psychedelics. See hallucinogens

## R

risk, perceived. See harmfulness, perceived
Ritalin
prevalence, 23
gender, 25, 90
socioeconomic status, 95
trends, 16, 145, 660, 661, table E-2
college plans, 170
gender, 166
Rohypnol
prevalence, 22, 23, 33, fig. 4-1
gender, 25, 90
region, 93
socioeconomic status, 95
trends, 38, 150, 158, fig. 5-4h
noncontinuation, tables 5-7a-5-7b
race/ethnicity, 187

## S

sedatives (barbiturates)
age of first use, 262, 267, table 6-3, fig. 6-17
availability, perceived, 396, 397, 398, 401, tables 9-6-9-8, fig. 9-5b
disapproval, 342, 344, table 8-6, fig. 8-7b, fig. 9-1b
exposure to use, table 9-2 (see also friends' use)
friends' attitudes, perceived, 388, fig. 9-1b
friends' use, 393, table 9-5, fig. 9-4
harmfulness, perceived, 328, 334, 335, table 8-3, fig. 8-7a
legality, 348
parents' attitudes, perceived, fig. 9-1b
prevalence, 23, 84, figs. 4-1-4-2
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 96, 97
region, 93
socioeconomic status, 95
trends, 21, 24, 145, fig. 5-4c
college plans, 169, 170
gender, 166
noncontinuation, 162, tables 5-7a-5-7b
population density (urbanicity), 178
race/ethnicity, 32, 185, 187
socioeconomic status, 181
Serax, table E-3
shrooms. See psilocybin
smokeless tobacco
age of first use, 261, 262, 270, tables 6-1-6-4, fig. 6-24
daily use, fig. 4-2, fig. 5-4l
disapproval, tables 8-4-8-5, fig. 8-12b
friends' use, 391, tables 9-3-9-4, fig. 9-4
harmfulness, perceived, 329, 338, 341, tables 8-1-8-3, fig. 8-12a
prevalence, 33, 86, 88, figs. 4-1-4-2
gender, 33, 91
noncontinuation, 89, fig. 4-3
population density (urbanicity), 94
race/ethnicity, 32, 97
region, 94
trends, 154, 161, fig. 5-4l
college plans, 171
gender, 168
noncontinuation, table 5-7a
population density (urbanicity), 179, fig. 5-11c
race/ethnicity, 32, 187
region, 175
stay-awake pills, 23, 429, 430, 431, 432, fig. 10-1
steroids
age of first use, 260, 263, 271, tables 6-1-6-4, fig. 6-25
availability, perceived, 396, 397, tables 9-6-9-8, fig. 9-5a
disapproval, tables 8-4-8-6
friends' use, table 9-5, fig. 9-4
harmfulness, perceived, 328, 339, 340, tables 8-1-8-3
prevalence, 33,86 , 433, 434, fig. 4-2
college plans, 92
gender, 22, 87, 90
noncontinuation, 89, fig. 4-3
socioeconomic status, 95
trends, 22, 23, 150, 159, fig. 5-4n
college plans, 172
gender, 159, 168, fig. 5-6b
noncontinuation, 162, tables 5-7a-5-7b

## Monitoring the Future

steroids, trends (continued)
population density (urbanicity), 179
race/ethnicity, 186, 187
region, 175
stimulants, nonprescription. See also diet pills; lookalike drugs; stay-awake pills
prevalence, 430, 431, fig. 10-1
trends, 23, 429, 431, 432

## T

Talwin, table E-4
tobacco. See cigarettes; smokeless tobacco
tranquilizers
age of first use, 260, 262, 268, tables 6-1-6-4, fig. 6-19
availability, perceived, 396, 397, 399, 401, tables 9-6-9-8, fig. 9-5b
degree and duration of highs, 302, 303, 306, table 7-7, figs. 7-1-7-2
exposure to use, table 9-2 (see also friends' use)
friends' use, 393, table 9-5, fig. 9-4
prevalence, 22, 23, 33, 34, 84, figs. 4-1-4-2 gender, 25, 90
noncontinuation, 89, fig. 4-3
race/ethnicity, 32, 96, 97
region, 93
socioeconomic status, 95
trends, 20, 21, 24, 146, 157, 659, table E-4, fig. 5-4b
college plans, 169, 170
gender, 165
noncontinuation, 162, tables 5-7a-5-7b
race/ethnicity, 31, 32, 185, 187
socioeconomic status, 181
Tranxene, table E-3

## V

Valium, 21, table E-3
Vicodin
prevalence, 20, 22, 23, 83
gender, 90
socioeconomic status, 95
trends, 20, 147, 661, table E-4
population density (urbanicity), 178
race/ethnicity, 185
Vistaril, table E-3

## X

Xanax, table E-3

Study Web site address:
http://www.monitoringthefuture.org

## N NATIONAL InSTITUTE ON DRUG ABUSE

NIH Publication No. 05-5727
Printed August 2005


[^0]:    ${ }^{1}$ Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Schulenberg, J. E. (2005). Monitoring the Future national results on adolescent drug use: Overview of key findings, 2004 (NIH Publication No. 05-5726). Bethesda, MD: National Institute on Drug Abuse, 66 pp.

[^1]:    ${ }^{2}$ Johnston, L. D., O’Malley, P. M., \& Bachman, J. G. (1987). Psychotherapeutic, licit, and illicit use of drugs among adolescents: An epidemiological perspective. Journal of Adolescent Health Care, 8, 36-51.

[^2]:    ${ }^{3}$ Graphic presentations of these trends among the various demographic subgroups are available on the study's Web site (www.monitoringthefuture.org) under Occasional Paper No. 61, which is listed under "Publications" and then under "Occasional Papers." Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Schulenberg, J. E. (2005). Demographic subgroup trends for various licit and illicit drugs, 1975-2004. (Monitoring the Future Occasional Paper No. 61) [On-line]. Ann Arbor, MI: Institute for Social Research. c. 411 pp.

[^3]:    ${ }^{4}$ See Johnston, L. D. (1991). Toward a theory of drug epidemics. In R. L. Donohew, H. Sypher, \& W. Bukoski (Eds.), Persuasive communication and drug abuse prevention (pp. 93-132). Hillsdale, NJ: Lawrence Erlbaum.
    ${ }^{5}$ For an elaboration and discussion of the full range of Monitoring the Future research objectives in the domain of substance abuse, see Johnston, L. D., O’Malley, P. M., Schulenberg, J. E., \& Bachman, J. G. (2001). The aims and objectives of the Monitoring the Future study and progress toward fulfilling them as of 2001. (Monitoring the Future Occasional Paper No. 52). Ann Arbor, MI: Institute for Social Research.

[^4]:    ${ }^{6}$ Johnston, L. D., O’Malley P. M., Bachman, J. G., \& Schulenberg J. E. (2005). Monitoring the Future national results on adolescent drug use: Overview of key findings, 2004. (NIH Publication No. 05-5726). Bethesda, MD: National Institute on Drug Abuse. (Also available on the Web at http://monitoringthefuture.org.)

[^5]:    ${ }^{7}$ As is discussed in Appendix E of Volume I, the absolute prevalence rates for Ritalin probably were higher than these statistics indicate, but the trend story likely is quite accurate. See Table 2-2 for more accurate estimates of the absolute prevalence rates in recent years; these estimates are based on a new question that does not require the respondent to first indicate some amphetamine use before asking about his or her Ritalin use.

[^6]:    ${ }^{8}$ Unless otherwise specified, all references to "cocaine" refer to the use of cocaine in any form, including crack.

[^7]:    ${ }^{9}$ Bachman, J. G., Wadsworth, K. N., O’Malley, P. M., Johnston, L. D., \& Schulenberg, J. E. (1997). Smoking , drinking, and drug use in young adulthood: The impacts of new freedoms and new responsibilities. Mahwah, NJ: Lawrence Erlbaum Associates. See also Bachman, J. G., O’Malley, P. M., Schulenberg, J. E., Johnston, L. D., Bryant, A. L., \& Merline, A. C. (2002). The decline of substance use in young adulthood: Changes in social activities, roles, and beliefs. Mahwah, NJ: Lawrence Erlbaum Associates.

[^8]:    ${ }^{10}$ See Bachman, J. G., Wadsworth, K. N., O’Malley, P. M., Johnston, L. D., \& Schulenberg, J. (1997). Smoking, drinking, and drug use in young adulthood: The impacts of new freedoms and new responsibilities. Mahwah, NJ: Lawrence Erlbaum Associates. See also Bachman, J. G., O’Malley, P. M., Schulenberg, J. E., Johnston, L. D., Bryant, A. L., \& Merline, A. C. (2002). The decline of substance use in young adulthood: Changes in social activities, roles, and beliefs. Mahwah, NJ: Lawrence Erlbaum Associates.
    ${ }^{11}$ McCabe, S. E., Schulenberg, J. E., Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Kloska, D. D. (2005). Selection and socialization effects of fraternities and sororities on U.S. college student substance use: A multi-cohort national longitudinal study. Addiction, 100, 512-524.

[^9]:    ${ }^{12}$ For high school seniors, during a much earlier period (from 1977 to 1981), there had been a substantial decline in daily smoking, a leveling for nearly a decade (through 1990), and a slight decline in 1991 and 1992.

[^10]:    ${ }^{13}$ Johnston, L. D., Terry-McElrath, Y. M., O’Malley, P. M., \& Wakefield, M. (2005). Trends in recall and appraisal of anti-smoking advertising among American youth: National survey results, 1997-2001. Prevention Science, 6, 1-19.

[^11]:    ${ }^{15}$ Periodically we publish comparisons that contain a number of the smaller racial/ethnic groups in the population, based on data combined for a number of contiguous years in order to attain adequate sample sizes. The first was Bachman, J. G., Wallace, J. M. Jr., O’Malley, P. M., Johnston, L. D., Kurth, C. L., \& Neighbors, H. W. (1991). Racial/ethnic differences in smoking, drinking, and illicit drug use among American high school seniors, 1976-1989. American Journal of Public Health, 81, 372-377. More recent articles are: Wallace, J. M., Jr., Bachman J. G., O’Malley, P. M., Johnston, L. D., Schulenberg, J. E., \& Cooper, S. M. (2002). Tobacco, alcohol and illicit drug use: Racial and ethnic differences among U.S. high school seniors, 1976-2000. Public Health Reports, 117(Supplement 1), S67-S75; Wallace, J. M., Jr., Bachman J. G., O’Malley, P. M., Schulenberg, J. E., Cooper, S. M., \& Johnston, L. D. (2003). Gender and ethnic differences in smoking, drinking, and illicit drug use among American 8th, 10th, and 12th grade students, 1976-2000. Addictions, 98, 225-234; and Delva, J., Wallace, J. M., Jr., O’Malley, P. M., Bachman, J. G., Johnston, L. D., \& Schulenberg, J. E. (2005). The epidemiology of alcohol, marijuana, and cocaine use among Mexican American, Puerto Rican, Cuban American, and other Latin American 8th-grade students in the United States: 1991-2002. American Journal of Public Health, 95, 696-702.
    ${ }^{16}$ Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Schulenberg, J. E. (2005). Demographic subgroup trends for various licit and illicit drugs, 1975-2004. (Monitoring the Future Occasional Paper No. 61) [On-line]. Ann Arbor, MI: Institute for Social Research. c. 411 pp. Available: www.monitoringthefuture.org.

[^12]:    ${ }^{17}$ A published report from an international collaborative study, modeled largely after Monitoring the Future, provides comparative data from national school surveys of 15- to 16-year-olds that was completed in 2003 in 35 European countries. It also includes MTF data from 10th graders in the United States. See Hibell, B., Andersson, B., Bjarnasson, T., Ahlström, S., Balakireva, O., Kokkevi, A., \& Morgan, M. (Eds.). (2004). The ESPAD report 2003 (The European School Survey Project on Alcohol and Other Drugs): Alcohol and other drug use among students in 35 European countries. Stockholm: The Swedish Council for Information on Alcohol and Other Drugs, and the Council of Europe.

[^13]:    ${ }^{18}$ For a more detailed description of the study design, see Bachman, J. G., Johnston, L. D., \& O’Malley, P. M. (2001). The Monitoring the Future project after twenty-seven years: Design and procedures. (Monitoring the Future Occasional Paper No. 54.) Ann Arbor, MI: Institute for Social Research.
    ${ }^{19}$ For a more detailed description of the full range of research objectives of Monitoring the Future, see Johnston, L. D., O’Malley, P. M., Schulenberg, J. E., \& Bachman, J. G. (2001). The aims and objectives of the Monitoring the Future study and progress toward fulfilling them as of 2001. (Monitoring the Future Occasional Paper No. 52.) Ann Arbor, MI: Institute for Social Research.

[^14]:    ${ }^{20}$ The research design originally called for follow-up surveys of sub-samples of the 8th and 10th graders participating in the study, carried out at two-year intervals, similar to the 12th-grade follow-up samples. From 1991 to 1994, this plan influenced the design of the cross-sectional studies of 8th and 10th graders in an important way. In order to "recapture" many of the 8th-grade participants two years later in the normal 10th-grade cross-sectional study for that year, we selected the 8th-grade schools by drawing a sample of high schools and then selecting a sample of their "feeder schools" that contained 8th graders. This extra stage in the sampling process meant that many of the 8th-grade participants in, say, the 1991 cross-sectional survey were also participants in the 1993 cross-sectional survey of 10th graders. Thus, a fair amount of panel data was generated at no additional cost. However, having followed this design from 1991 through 1993, we concluded that the saving in follow-up costs did not justify the complexities in sampling, administration, and interpretation. Therefore, since 1994, we have used a simplified design in which 8th-grade schools are drawn independently of the 10th-grade school sample. Further follow-ups (at two-year intervals) have been conducted only on panels of students drawn from the first three cohorts of students surveyed in the 8th and 10th grades-that is, those surveyed in school in 1991, 1992, and 1993. A book reporting results from these panels is now well underway.

[^15]:    ${ }^{21}$ O’Malley, P. M., Johnston, L. D., Bachman, J. G., \& Schulenberg, J. (2000). A comparison of confidential versus anonymous survey procedures: Effects on reporting of drug use and related attitudes and beliefs in a national study of students. Journal of Drug Issues, 30, 35-54.
    ${ }^{22}$ Earlier, from 1991 through 1996, two questionnaire forms were used in the surveys of 8th-and 10th-grade students, with a random half-sample of students in each grade receiving one form and the remainder receiving the other form. (By having only two forms distributed randomly at each grade, we could by chance emerge with half of the students being surveyed both times with the same form, making panel analysis possible.) With the constraint of "recapturing" students removed, we could consider having a larger number of forms.

[^16]:    ${ }^{23}$ For the class of 1991 and all prior classes, the follow-up checks were for $\$ 5$. The rate was raised to $\$ 10$, beginning with the class of 1992 , to compensate for the effects of inflation over the life of the study. An experiment was first conducted that suggested that the increased payment was justified based on the increased panel retention it achieved. Payment increased to $\$ 20$ in 2004 for much the same reason.

[^17]:    ${ }^{24}$ Among the schools that actually participated in the study, there is very little difference in substance use rates between the schools that were original selections, taken as a set, and the schools that were replacement schools. Averaged over the years 1991 through 2000, for grades 8 , 10, and 12 combined, the difference between original schools and replacement schools averaged $0.03 \%$ in the observed prevalence rates averaged across a number of drug use measures: two indexes of annual illicit drug use, the annual prevalence of each of the major illicit drug classes, and several measures of alcohol and cigarette use. For the individual drugs and drug indexes, the differences between the original and replacement schools, averaged across grades and years, fell within $\pm 0.9 \%$.

[^18]:    ${ }^{25}$ Johnston, L. D., O’Malley, P. M., \& Bachman, J. G. (1984). Drugs and American high school students: 1975-1983. DHHS (ADM) 85-1374. Washington, DC: U.S. Government Printing Office.
    ${ }^{26}$ McGuigan, K. A., Ellickson, P. L., Hays, R. D., \& Bell, R. M. (1997). Adjusting for attrition in school-based samples: Bias, precision, and cost trade-off of three methods. Evaluation Review, 21, 554-567.
    ${ }^{27}$ Groves, R. M., Dillman, D. A., Eltinge, J. L., \& Little, R. J. A. (Eds.). (2002). Survey nonresponse. New York: Wiley.

[^19]:    ${ }^{28}$ Wechsler, H., Lee, J. E., Kuo, M., \& Lee, H. (2000). College binge drinking in the 1990s: A continuing problem. Results of the Harvard School of Public Health 1999 College Alcohol Study. Journal of American College Health, 48, 195-198.

[^20]:    ${ }^{29}$ Cordray, S., \& Polk, K. (1983). The implication of respondent loss in panel studies of deviant behavior. Journal of Research in Crime and Delinquency, 20, 214-242.
    ${ }^{30}$ Bryant, A. L., Schulenberg, J., Bachman, J. G., O’Malley, P. M., \& Johnston, L. D. (2000). Understanding the links among school misbehavior, academic achievement, and cigarette use: A national panel study of adolescents. Prevention Science, 1(2), 71-87; Schulenberg, J., Bachman, J. G., O’Malley, P. M., \& Johnston, L. D. (1994). High school educational success and subsequent substance use: A panel analysis following adolescents into young adulthood. Journal of Health and Social Behavior, 35, 45-62.
    ${ }^{31}$ Bachman, J. G., O’Malley, P. M., \& Johnston, J. (1978). Youth in Transition: Vol. 6. Adolescence to adulthood: A study of change and stability in the lives of young men. Ann Arbor, MI: Institute for Social Research; Schulenberg, J. E., Bryant, A. L., \& O’Malley, P. M. (2004). Taking hold of some kind of life: How developmental tasks relate to trajectories of well-being during the transition to adulthood. Development and Psychopathology, 16, 1119-1140.
    ${ }^{32}$ Johnston, L. D., \& O’Malley, P. M. (1985). Issues of validity and population coverage in student surveys of drug use. In B. A. Rouse, N. J. Kozel, \& L. G. Richards (Eds.), Self-report methods of estimating drug use: Meeting current challenges to validity (NIDA Research Monograph No. 57 (ADM) 85-1402). Washington, DC: U.S. Government Printing Office; Johnston, L. D., O’Malley, P. M., \& Bachman, J. G. (1984). Drugs and American high school students: 1975-1983. DHHS (ADM) 85-1374. Washington, DC: U.S. Government Printing Office; Wallace, J. M., Jr., \& Bachman, J. G. (1993). Validity of self-reports in student-based studies on minority populations: Issues and concerns. In M. de LaRosa (Ed.), Drug abuse among minority youth: Advances in research and methodology. NIDA Research Monograph. Rockville, MD: National Institute on Drug Abuse.
    ${ }^{33}$ O’Malley, P. M., Bachman, J. G., \& Johnston, L. D. (1983). Reliability and consistency in self-reports of drug use. International Journal of the Addictions, 18, 805-824.

[^21]:    ${ }^{34}$ Johnston, L. D. \& O’Malley, P. M. (1997). The recanting of earlier reported drug use by young adults. In Harrison, L. (Ed.), The validity of selfreported drug use: Improving the accuracy of survey estimates (pp. 59-80). (NIDA Research Monograph 167, pp 59-79). Rockville, MD: National Institute on Drug Abuse.
    ${ }^{35}$ For a discussion of reliability and validity of student self-report measures of drug use like those used in Monitoring the Future across varied cultural settings, see also Johnston, L. D., Driessen, F. M. H. M., \& Kokkevi, A. (1994). Surveying student drug misuse: A six-country pilot study. Strasbourg, France: Council of Europe.

[^22]:    ${ }^{36}$ For 12th graders, use of "other illicit drugs" includes any use of LSD, other hallucinogens, crack, other cocaine, or heroin and/or any use of other narcotics, amphetamines, sedatives (barbiturates), methaqualone (excluded since 1990), or tranquilizers that is not under a doctor's orders. For 8th and 10th graders the list of drugs is the same except that the use of other narcotics and sedatives (barbiturates) has been excluded both from the illicit drug indexes and from separate presentation in this volume. Questions on these drugs were included in the questionnaires given to 8th and 10th graders, but the results led us to believe that some respondents were including nonprescription drugs in their answers, resulting in exaggerated prevalence-of-use rates.

[^23]:    ${ }^{37}$ Because the data to adjust inhalant and hallucinogen use for seniors are available from only a single questionnaire form in a given year, the original uncorrected variables will be used in most relational analyses. We believe relational analyses will be least affected by these underestimates and that the most serious impact is on prevalence estimates, which have been adjusted appropriately. Today, the levels of use for nitrites and PCP-the two drugs that were used to adjust the estimates for inhalants and hallucinogens, respectively-are so low that these adjustments are hardly relevant any longer. Therefore, questions about their use were not even included in the 8th- and 10th-grade questionnaires.
    ${ }^{38}$ For findings on the specific amphetamine drugs, including Ritalin, see Appendix E.

[^24]:    ${ }^{39}$ Barbiturates were the dominant form of sedatives in use when these questions were first introduced. In the intervening years, a number of nonbarbiturate sedatives have entered the market and largely displaced barbiturate sedatives. Because our question did not change, we believe that a number of users of non-barbiturate sedatives have been reporting them in answer to the barbiturate question, which also defines them in terms of the conditions for which they are prescribed. In 2004, half of the questionnaires used the original question about barbiturates, while the other half had a question asking about "sedatives, which include barbiturates . . . ." These two versions yielded 12th-grade prevalence rates that were almost identical, suggesting that in the past the users of non-barbiturate sedatives had indeed been including them in their answers about barbiturate use.

[^25]:    ${ }^{40}$ In 1993 the text of the alcohol prevalence-of-use question was changed slightly in half of the questionnaire forms used at each grade such that the respondent was told explicitly to exclude those occasions when the respondent had "just a few sips" of an alcoholic beverage. In 1994 this change was made to the remaining forms. The 2004 data presented here are all based on the revised question. In figures in this volume, the 1993 data are presented for both the original question and the revised question. As would be expected, the prevalence-of-use rates dropped slightly as a result of this methodological change, with the largest shifts observed in the lifetime prevalence-of-use measures and among the 8th-grade respondents.
    ${ }^{41}$ We have noted previously that the prevalence of heavy drinking (five or more drinks in a row at least once in the past two weeks) seems inconsistent with 8th-grade students' reported prevalence of getting drunk. In 2004, 11\% of 8th graders said they had had five or more drinks in a row at least once in the past two weeks. However, only $6 \%$ said they had been drunk or very high from drinking in the past 30 days. It seems unlikely that about one-half of 8th graders who reported having five or more drinks in a row would not have become intoxicated from such an amount. We suspect that they may be overreporting their occasions of heavy drinking, perhaps forgetting what a drink means, even though the questionnaire explicitly tells them that a drink means a bottle of beer, a glass of wine, a wine cooler, a shot of liquor, or a mixed drink. We believe that of the two measures, the reports of getting drunk or very high are likely to be the more accurate for 8th graders, at least.

[^26]:    ${ }^{42}$ Viewed the opposite way, the proportion of those reporting any androstenedione use in the prior 12 months who also reported any steroid use in the same interval is $22 \%, 48 \%$, and $65 \%$ for 8 th, 10 th, and 12 th graders, respectively. In other words, from a quarter to a half of androstenedione users are also reporting steroid use, which sets outer limits on the degree to which these two questions are double-counting the same behaviors.

[^27]:    ${ }^{43}$ This operationalization of noncontinuation has an inherent problem in that users of a given drug who initiated use during the past year by definition cannot be noncontinuers. Thus, the definition tends to understate the noncontinuation rate, particularly for drug use that tends to be initiated late in high school rather than in earlier years.

[^28]:    ${ }^{44}$ Because females tend to weigh less than males and may metabolize alcohol somewhat differently, a given quantity of ingested alcohol would, on average, lead to higher blood alcohol concentrations for females compared to males. Therefore, the difference in terms of a fixed number of drinks, such as five or more drinks, may not reflect the difference in intoxication rates. The difference in self-reported 30-day prevalence of drunkenness among seniors is 7 percentage points ( $36 \%$ for males versus $29 \%$ for females), which is more than two-thirds of the 10-percentagepoint gender difference in having five or more drinks in a row ( $34 \%$ versus $24 \%$ ).

[^29]:    ${ }^{45}$ We recognize that the Hispanic category is a broad one, encompassing people with various Latin American, Caribbean, and European origins, but for the purposes of this monograph the sample sizes unfortunately are too small to differentiate among them. For a more complete treatment of racial/ethnic differences, in which additional subgroups are distinguished and males and females are examined separately within each racial/ethnic category, see Bachman, J. G., Wallace, J. M., Jr., O’Malley, P. M., Johnston, L. D., Kurth, C. L., \& Neighbors, H. W. (1991). Racial/ethnic differences in smoking, drinking, and illicit drug use among American high school seniors, 1976-1989. American Journal of Public Health, 81, 372-377; Wallace, J. M., Jr., Bachman J. G., O’Malley, P. M., Johnston, L. D., Schulenberg, J. E., \& Cooper, S. M. (2002). Tobacco, alcohol, and illicit drug use: Racial and ethnic differences among U.S. high school seniors, 1976-2000. Public Health Reports, 117 (Supplement 1), S67-S75; Delva, J., Wallace, J. M. Jr., O’Malley, P. M., Bachman, J. G., Johnston, L. D., \& Schulenberg, J. E. (2005). The epidemiology of alcohol, marijuana, and cocaine use among Mexican American, Puerto Rican, Cuban American, and other Latin American eighth-grade students in the United States: 1991-2002. American Journal of Public Health, 95, 696-702.

[^30]:    ${ }^{46}$ Wallace, J. M., Jr., Bachman, J. G., O’Malley, P. M., \& Johnston, L. D. (1995). Racial/ethnic differences in adolescent drug use: Exploring possible explanations. In G. Botvin, S. Schinke, \& M. Orlandi (Eds.), Drug abuse prevention with multi-ethnic youth (pp. 59-80). Thousand Oaks, CA: Sage.

[^31]:    See Table 4-1d for relevant footnotes.

[^32]:    NOTE: '-' indic ates data not a vailable.

[^33]:    ${ }^{47}$ The definitions of these behaviors remain the same as in the previous chapter. "Lifetime prevalence" refers to use on one or more occasions ever. "Annual prevalence" refers to use on one or more occasions in the 12 months preceding the survey. "Monthly prevalence" (sometimes referred to as "current use" or "past 30-day use") refers to use on one or more occasions in the 30-day period preceding the survey. Most drugs also have questions on "daily use," which refers to use on 20 or more occasions during the prior 30 days. (Daily use is defined differently for cigarettes and smokeless tobacco. See text.)
    ${ }^{48}$ National Commission on Marihuana and Drug Abuse. (1973). Drug use in America: Problem in perspective. Washington DC: U.S. Government Printing Office.

[^34]:    ${ }^{49}$ Lifetime use declines more gradually than annual use or 30-day use because it reflects changes in initiation rates only, whereas annual and 30 day statistics reflect changes in both initiation rates and noncontinuation rates.

[^35]:    ${ }^{50}$ Included under the definition of "any illicit drug other than marijuana" is any use of LSD, other hallucinogens, crack, other cocaine, heroin, and/or any use that is not under a doctor's orders of other narcotics, amphetamines, sedatives (barbiturates), methaqualone (excluded since 1990), or tranquilizers. Not included are the following: alcohol, tobacco, and inhalants. Nitrites, PCP, and ice are covered only to the extent that the respondents included their use in the more general questions asking about inhalants, hallucinogens, or amphetamines, respectively. This definition has been held constant by intention, despite the arrival of new drugs onto the scene over the years. While the addition of other drugs, like ecstasy, for example, might change the estimates slightly (particularly in some years when their use is highest), the changes would be very limited because the great majority of the users of those other drugs also are users of one or more of the drugs that are included in this set.

[^36]:    ${ }^{51}$ We think the unadjusted estimates for the earliest years of the survey were probably little affected by the improper inclusion of nonprescription amphetamines, since sales of the latter did not burgeon until after the 1979 data collection.

[^37]:    ${ }^{52}$ As is described in the previous chapter, the replacement of barbiturates by other non-barbiturate sedatives in recent years probably makes "barbiturates" a somewhat inappropriate label for the class of drugs being reported. Therefore, we have modified the title to "sedatives (barbiturates)."

[^38]:    ${ }^{53}$ In 2001 the question text for "other hallucinogens" was changed in half the questionnaire forms, with the term "other hallucinogens" replacing the older term "other psychedelics" and the word "shrooms" being added to the list of examples. This had the effect of increasing reported use of this class of drugs. All forms incurred these changes beginning in 2002. The data for "other hallucinogens" and the derivative measures of "hallucinogens" and "any illicit drug other than marijuana" were all based on the new question in the 2001 estimates and all subsequent estimates.

[^39]:    ${ }^{54}$ A slight revision was introduced in the question wording in three of the six forms in 1993 and in the three remaining forms beginning in 1994. It added the qualifier of "more than just a few sips" to the definition of a drink of an alcoholic beverage. Figures 5-4i and 5-5 show the extent of the correction that resulted for annual and daily use. For 12th graders, it was a relatively small correction.

[^40]:    ${ }^{55}$ See Johnston, L. D. (1991). Toward a theory of drug epidemics. In R. L. Donohew, H. Sypher, \& W. Bukoski (Eds.), Persuasive communication and drug abuse prevention (pp. 93-132). Hillsdale, NJ: Lawrence Erlbaum.

[^41]:    ${ }^{56}$ Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Schulenberg, J. E. (2005). Demographic subgroup trends for various licit and illicit drugs, 1975-2003. (Monitoring the Future Occasional Paper No. 61) [On-line]. Ann Arbor, MI: Institute for Social Research. c. 411 pp. Available: www.monitoringthefuture.org.

[^42]:    ${ }^{57}$ It is worth noting that the same number of drinks produces a substantially greater impact on the blood alcohol level of the average female than of the average male because of gender differences in the metabolism of alcohol and in body weight. Thus, gender differences in the frequency of actually getting drunk may not be as great as the heavy drinking statistics would indicate, since they are based on a fixed number of drinks.

[^43]:    ${ }^{58}$ For a description of changes in the demographic makeup of the MTF samples and a discussion of their implications for substance use, see Johnston, L. D. (2001). Changing demographic patterns of adolescent smoking over the past 23 years: National trends from the Monitoring the Future Study. In National Cancer Institute, Changing adolescent smoking prevalence: Where it is and why (pp. 9-33). Smoking and Tobacco Control Monograph No. 14. Bethesda, MD: U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute. (NIH Pub. No. 02-5086).

[^44]:    ${ }^{59}$ Because of excessive missing data in 1975 on the variable measuring college plans, group comparisons are not presented for that year.

[^45]:    ${ }^{60}$ Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Schulenberg, J. E. (1999). Cigarette brand preferences among adolescents. (Monitoring the Future Occasional Paper No. 45.) Ann Arbor, MI: Institute for Social Research.
    ${ }^{61}$ Articles we have published examining a larger set of ethnic groups used groupings of respondents from adjacent five-year intervals to obtain more reliable estimates of trends. See Bachman, J. G., Wallace, J. M. Jr., O’Malley, P. M., Johnston, L. D., Kurth, C. L., \& Neighbors, H. W. (1991). Racial/ethnic differences in smoking, drinking, and illicit drug use among American high school seniors, 1976-1989. American Journal of Public Health, 81, 372-377. See also Wallace, J. M., Jr., Bachman J. G., O’Malley, P. M., Johnston, L. D., Schulenberg, J. E., \& Cooper, S. M. (2002). Tobacco, alcohol and illicit drug use: Racial and ethnic differences among U.S. high school seniors, 1976-2000. Public Health Reports, 117 (Supplement 1), S67-S75; and Delva, J., Wallace, J. M. Jr., O’Malley, P. M., Bachman, J. G., Johnston, L. D., \& Schulenberg, J. E. (2005). The epidemiology of alcohol, marijuana, and cocaine use among Mexican American, Puerto Rican, Cuban American, and other Latin American eighth-grade students in the United States: 1991-2002. American Journal of Public Health, 95, 696-702.

[^46]:    *Each point plotted here is the mean of the specified year and the previous year.

[^47]:    ${ }^{63}$ See Bachman, J. G., \& O’Malley, P. M. (1981). When four months equal a year: Inconsistencies in students' reports of drug use. Public Opinion Quarterly, 45, 536-548; Jabine, T. B., Straf, M. L., Tanur, J. M., \& Tourangeau, R. (Eds.). (1984). Cognitive aspects of survey methodology: Building a bridge between disciplines. Washington DC: National Academy Press.
    ${ }^{64}$ We have found that young adult follow-up surveys of high school seniors yield higher recanting rates for the psychotherapeutic drugs, in contrast to the illegal drugs. We interpret this discrepancy as reflecting, in part, a better understanding of the distinctions between prescription and non-prescription drugs in young adulthood. See Johnston, L. D., \& O’Malley, P. M. (1997). The recanting of earlier reported drug use by young adults. In L. Harrison \& A. Hughes (Eds.), The validity of self-reported drug use: Improving the accuracy of survey estimates (pp. 59-80). (NIDA Research Monograph 167). Rockville, MD: National Institute on Drug Abuse.

[^48]:    ${ }^{65}$ Note that such an ordering can be influenced by secular trends in use. Also, confidence intervals can be relatively large because the data are based only on those who had tried each drug by end of 12th grade.
    ${ }^{66}$ The fact that a large proportion of reported heroin use was initiated early may reflect the recent downward secular trend in heroin use.

[^49]:    ${ }^{67}$ Because of the predominance of cohort effects in the trends in cigarette use, we discuss the findings here mostly in terms of graduating classes instead of calendar years.

[^50]:    ${ }^{68}$ This interpretation has been documented through multivariate analyses designed to separate and quantify secular trends, age effects, and cohort effects. See O’Malley, P. M., Bachman, J. G., \& Johnston, L. D. (1988). Period, age, and cohort effects on substance use among young Americans: A decade of change, 1976-1986. American Journal of Public Health, 78, 1315-1321.

[^51]:    ${ }^{69}$ Note that the scale in Figure 6-25 has been enlarged considerably because the rates are so low. This has the effect of making small variations look larger.

[^52]:    ${ }^{70}$ In 1982, the questionnaire form containing the questions on degree and duration of highs clarified the amphetamine usage questions in order to eliminate the inappropriate inclusion of nonprescription amphetamines. One might have expected this change to have increased the degree and duration of highs reported, given that real amphetamines would be expected to have greater psychological impact on average; but the trends still continued downward that year.
    ${ }^{71}$ Johnston, L. D. \& O'Malley, P. M. (1986). Why do the nation's students use drugs and alcohol? Self-reported reasons from nine national surveys. Journal of Drug Issues, 16, 29-66.

[^53]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^54]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^55]:    SOUR. The Monitoring the Future Study, the University of Michigan.

[^56]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^57]:    SOURCE: The Monitoring the Future Study, the University of Mic higan.

[^58]:    ${ }^{73}$ For example, see Johnston, L. D. (2002, June 19). Written and oral testimony presented at hearings on the National Youth Anti-Drug Media Campaign, held by the Treasury and General Government Subcommittee on Appropriations of the U.S. Senate Appropriations Committee. Published in The Congressional Record.
    ${ }^{74}$ We have addressed elsewhere an alternate hypothesis-that a general shift toward a more conservative lifestyle might have accounted for the shifts in both attitudes and behaviors. The empirical evidence tended to contradict that hypothesis. See Bachman, J. G., Johnston, L. D., O’Malley, P. M., \& Humphrey, R. H. (1988). Explaining the recent decline in marijuana use: Differentiating the effects of perceived risks, disapproval, and general lifestyle factors. Journal of Health and Social Behavior, 29, 92-112. Johnston also showed that an increasing proportion of the quitters of and abstainers from marijuana use reported concern over the physical and psychological consequences of use as reasons for their nonuse. See Johnston, L. D. (1982). A review and analysis of recent changes in marijuana use by American young people, in Marijuana: The national impact on education (pp. 8-13). New York: American Council on Marijuana. The role of perceived risk in the period of more recent increase in marijuana use in the 1990s is addressed in Bachman, J. G., Johnston, L. D., \& O’Malley, P. M. (1998). Explaining the recent increases in students' marijuana use: The impacts of perceived risks and disapproval from 1976 through 1996. American Journal of Public Health, 88, 887892.

[^59]:    ${ }^{75}$ See also Bachman, J. G., Johnston, L. D., \& O’Malley, P. M. (1990). Explaining the recent decline in cocaine use among young adults: Further evidence that perceived risks and disapproval lead to reduced drug use. Journal of Health and Social Behavior, 31, 173-184. For a discussion of perceived risk in the larger set of factors influencing trends, and for a consideration of the forces likely to influence perceived risk, see Johnston, L. D. (1991). Toward a theory of drug epidemics. In R. L. Donohew, H. Sypher, \& W. Bukoski (Eds.), Persuasive communication and drug abuse prevention (pp. 93-131). Hillsdale, NJ: Lawrence Erlbaum.
    ${ }^{76}$ Our belief in the importance of perceived risk of experimental and occasional cocaine use led us to include in 1986 for the first time the question about the dangers of occasional cocaine use. The very next year proved to have a sharp rise on this measure.

[^60]:    ${ }^{77}$ O’Malley, P. M., \& Johnston, L. D. (1999). Drinking and driving among American high school seniors: 1984-1997. American Journal of Public Health, 89, 678-684.

[^61]:    ${ }^{78}$ The July 8, 1991, issue of Sports Illustrated magazine had an article by Lyle Alzado entitled "I Lied." For a discussion of the importance of vicarious learning from unfortunate role models, see Johnston, L. D. (1991). Toward a theory of drug epidemics. In R. L. Donohew, H. Sypher, \& W. Bukoski (Eds.), Persuasive communication and drug abuse prevention (pp. 93-131). Hillsdale, NJ: Lawrence Erlbaum.

[^62]:    ${ }^{79}$ Johnston, L. D. (1991). Contributions of drug epidemiology to the field of drug abuse prevention. In C. Leukefeld, \& W. Bukoski (Eds.), Drug abuse prevention research: Methodological issues (pp. 57-80). (NIDA Research Monograph 107). Washington, DC: National Institute on Drug Abuse.

[^63]:    ${ }^{80}$ O’Malley, P. M., \& Wagenaar, A. C. (1991). Effects of minimum drinking age laws on alcohol use, related behaviors, and traffic crash involvement among American youth: 1976-1987. Journal of Studies on Alcohol, 52, 478-491.
    ${ }^{81}$ O’Malley, P. M., \& Johnston, L. D. (1999). Drinking and driving among U.S. high school seniors, 1984-1997. American Journal of Public Health, 89, 678-684.

[^64]:    ${ }^{82}$ See Johnston, L. D., O’Malley, P. M., \& Bachman, J. G. (1981). Marijuana decriminalization: The impact on youth, 1975-1980 (Monitoring the Future Occasional Paper No. 13). Ann Arbor, MI: Institute for Social Research.
    ${ }^{83}$ Chaloupka, F. J., Pacula, R. L., Farrelly, M. C., Johnston, L. D., O’Malley, P. M., \& Bray, J. W. (February 1999). Do higher cigarette prices encourage youth to use marijuana? NBER Working Paper No. 6939.

[^65]:    ${ }^{\text {a }}$ Answer altematives were: (1) No risk, (2) Slight risk, (3) Moderate risk, (4) Great risk, and (5) Can't say, drug unfa miliar.
    ${ }^{\text {b }}$ In 2004 the question text waschanged from "barbiturates" to "sedatives/barbiturates" and the list of examples waschanged from "downers, goofballs, reds, yellows, etc." to just "downers." These changes likely explain the discontinuity in the 2004 results

[^66]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^67]:    ${ }^{84}$ The correction evolved as follows: we assumed that a more accurate estimate of the true change between 1979 and 1980 could be obtained by taking an average of the changes observed in the year prior and the year subsequent, rather than by taking the observed change (which we knew to contain the effect of a change in question context). We thus calculated an adjusted 1979-1980 change score by taking an average of one-half the 1977-1979 change score (our best estimate of the 1978-1979 change) plus the 1980-1981 change score. This estimated change score was then subtracted from the observed change score for 1979-1980, the difference being our estimate of the amount by which peer disapproval of the behavior in question was being understated because of the context in which the questions occurred prior to 1980. The 1975, 1977, and 1979 observations were then adjusted upward by the amount of that correction factor.

[^68]:    ${ }^{85}$ Johnston, L. D. (1991).Toward a theory of drug epidemics. In R. L. Donohew, H. Sypher, \& W. Bukoski (Eds.), Persuasive communication and drug abuse prevention (pp. 93-132). Hillsdale, NJ: Lawrence Erlbaum.

[^69]:    ${ }^{86}$ This finding was important because it indicated that a substantial part of the increase observed in self-reported amphetamine use was due to influences other than simply an increase in the use of over-the-counter diet pills or stay-awake pills, which presumably are not used to get high. Obviously, more young people were using stimulants for recreational purposes. Of course, the question still remains of whether the active ingredients in those stimulants really were amphetamines.

[^70]:    ${ }^{87}$ Those minor instances of noncorrespondence may well result from the larger sampling errors in our estimates of these environmental variables, which are measured on a sample size one-fifth or one-sixth the size of the self-reported usage measures. They may also result, of course, from a lag between a change in the reality and students' realization of that change.

[^71]:    ${ }^{88}$ In the questionnaires used for 8th and 10th graders, an additional answer category of "can't say, drug unfamiliar" is offered; respondents who chose this answer are included in the calculation of percentages. Generally, fewer than $20 \%$ of the respondents selected this answer.

[^72]:    ${ }^{89}$ Figure $9-5$ b shows a sharp increase in the availability of sedatives (barbiturates) in 2004, but this shift occurred in the year that there was a change in question wording.

[^73]:    ${ }^{90}$ Caulkins, J. P. (1994). Developing price series for cocaine. Santa Monica, CA: RAND.

[^74]:    ${ }^{91}$ Pacula, R. L., Grossman, M., Chaloupka, F. J., O’Malley, P. M., Johnston, L. D., \& Farrelly, M. C. (2001). Marijuana and youth. In J. Gruber (Ed.) Risky behavior among youths: An economic analysis (pp. 271-326).The University of Chicago Press. Also appears as Working Paper 7703, National Bureau of Economic Research, Inc. (2000).
    ${ }^{92}$ Tauras, J. A., O’Malley, P. M., \& Johnston, L. D. (2001). Effects of price and access laws on teenage smoking initiation: A national longitudinal analysis. (ImpacTeen/Youth, Education, and Society Research Paper No. 2.) Chicago, IL: University of Illinois at Chicago and Ann Arbor, MI: The University of Michigan, Institute for Social Research.

[^75]:    NOTE: The 1975, 1977, and 1979 points indicating the percentage of high school seniors who said their friends would disapprove have been

[^76]:    ${ }^{93}$ Johnston, L. D. (2003). Alcohol and illicit drugs: The role of risk perceptions. In Dan Romer (Ed.), Reducing adolescent risk: Toward an integrated approach (pp. 56-74). Thousand Oaks, CA: Sage.

[^77]:    ${ }^{94}$ We expressed our concern some years ago about the fact that such a large proportion of the adolescent female population was taking this drug, about which so little was known.

[^78]:    ${ }^{95}$ For the original reports see the following, which are available from the author: Johnston, L. D. (1981). Frequent marijuana use: Correlates, possible effects, and reasons for using and quitting. In R. DeSilva, R. Dupont, \& G. Russell (Eds.), Treating the marijuana dependent person (pp. 8-14). New York: The American Council on Marijuana. Also see Johnston, L. D. (1982). A review and analysis of recent changes in marijuana use by American young people. In Marijuana: The national impact on education (pp. 8-13). New York: The American Council on Marijuana.

[^79]:    ${ }^{96}$ McCabe, S. E., Schulenberg, J. E., Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Kloska, D. D. (2005). Selection and socialization effects of fraternities and sororities on U.S. college student substance use: A multi-cohort national longitudinal study. Addiction, 100, 512-524.
    ${ }^{97}$ Schulenberg, J. E., Bryant, A. L., \& O’Malley, P. M. (2004). Taking hold of some kind of life: How developmental tasks relate to trajectories of well-being during the transition to adulthood. Development and Psychopathology, 16, 1119-1140.

[^80]:    ${ }^{98}$ Johnston, L. D., Terry-McElrath, Y. M., O’Malley, P. M., \& Wakefield, M. (2005). Trends in recall and appraisal of anti-smoking advertising among American youth: National survey results, 1997-2001. Prevention Science, 6, 1-19.
    ${ }^{99}$ Johnston, L. D., O’Malley, P. M., \& Terry-McElrath, Y. M. (2004). Methods, locations, and ease of cigarette access for American youth, 19972002. American Journal of Preventive Medicine, 27, 267-276.

[^81]:    ${ }^{100}$ Delva, J., Wallace, J. M. Jr., O’Malley, P. M., Bachman, J. G., Johnston, L. D., \& Schulenberg, J. E. (2005). The epidemiology of alcohol, marijuana, and cocaine use among Mexican American, Puerto Rican, Cuban American, and other Latin American eighth-grade students in the United States: 1991-2002. American Journal of Public Health, 95, 696-702.
    ${ }^{101}$ Johnston, L. D., O’Malley, P. M., Schulenberg, J. E., \& Bachman, J. G. (2001). The aims and objectives of the Monitoring the Future study and progress toward fulfilling them as of 2001. (Monitoring the Future Occasional Paper No. 52). Ann Arbor, MI: Institute for Social Research.

[^82]:    ${ }^{102}$ Bachman, J. G., Johnston, L. D., \& O’Malley, P. M. (2001). The Monitoring the Future project after twenty-seven years: Design and procedures. (Monitoring the Future Occasional Paper No. 54). Ann Arbor, MI: Institute for Social Research.
    ${ }^{103}$ This series is available from the Monitoring the Future study, Institute for Social Research, The University of Michigan, Ann Arbor, Michigan 48106-1248
    ${ }^{104}$ Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Schulenberg, J. E. (2005). Demographic subgroup trends for various licit and illicit drugs, 1975-2004. (Monitoring the Future Occasional Paper No. 61) [On-line]. Ann Arbor, MI: Institute for Social Research. c. 411 pp. Available: www.monitoringthefuture.org.

[^83]:    CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

[^84]:    CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

[^85]:    CAUION: Limited sample sizes (see "Notes" above). Use caution in interpreting subgroup trends.

[^86]:    ${ }^{105}$ Johnston, L. D., \& O’Malley, P. M. (1985). Issues of validity and population coverage in student surveys of drug use. In B. A. Rouse, N. J. Casual, \& L. G. Richards (Eds.), Self-report methods of estimating drug use: Meeting current challenges to validity (NIDA Research Monograph No. 57 (ADM) 85-1402). Washington, DC: U.S. Government Printing Office.

[^87]:    ${ }^{106}$ According to the Statistical Abstract of the United States 2003 (p. 150), in 2001 the proportion of the civilian non-institutionalized population of the United States enrolled in school is $98.3 \%$ among $7-13$-year-olds and $98.1 \%$ among $14-15$-year-olds. It drops to $93.4 \%$ for $16-17$-year-olds combined, but there is probably a considerable difference between age 16 and age 17 because state laws often require attendance through age 16 . Eighth graders in the spring of the school year are mostly (and about equally) 13 and 14 years old; while 10th graders are mostly (and about equally) 15 and 16 years old. Thus, extrapolating from these data, we estimate that less than $2 \%$ of 8 th graders and less than $4 \%$ of 10 th graders are dropouts. (U.S. Department of Commerce [2004]. Statistical Abstract of the United States 2003: The National Data Book. Washington, DC: Bureau of the Census.)

[^88]:    ${ }^{107}$ U.S. Bureau of the Census (various years). Current population reports, Series P-20, various numbers. Washington, DC: U.S. Government Printing Office.
    ${ }^{108}$ Elliott, D., \& Voss, H. L. (1974). Delinquency and dropout. Lexington, MA: D.C. Heath-Lexington Books.

[^89]:    ${ }^{109}$ Fishburne, P. M., Abelson, H. I., \& Cisin, I. (1980). National survey on drug abuse: Main findings, 1979 (NIDA (ADM) 80-976). Washington, DC: U.S. Government Printing Office; Miller, J. D., et al. (1983). National survey on drug abuse: Main findings, 1982 (NIDA (ADM) 83-1263). Washington, DC: U.S. Government Printing Office. See also Substance Abuse and Mental Health Services Administration. (1995). National Household Survey on Drug Abuse: Main Findings 1992 (DHHS Publication No. (SMA) 94-3012). Rockville, MD: Substance Abuse and Mental Health Services Administration. See also Office of Applied Studies, Substance Abuse and Mental Health Services Administration. (2003). Results from the 2002 National Survey on Drug Use and Health: National Findings (DHHS Publication No. SMA 03-3836, NHSDA Series H22). Rockville, MD: Substance Abuse and Mental Health Services Administration, Office of Applied Studies.

[^90]:    ${ }^{110}$ National Institute on Drug Abuse. (1991). Drug use among youth: Findings from the 1988 National Household Survey on Drug Abuse. (DHHS Publication No. (ADM) 91-1765). Rockville, MD: National Institute on Drug Abuse.

[^91]:    ${ }^{111}$ Fagan, J., \& Pabon, E. (1990). Contributions of delinquency and substance use to school dropout among inner-city youths. Youth \& Society, 21, 306-354.

[^92]:    ${ }^{112}$ Clayton, R. R., \& Voss, H. L. (1982). Technical review on drug abuse and dropouts. Rockville, MD: National Institute on Drug Abuse.

[^93]:    ${ }^{113}$ The standard error of an estimate is a measure of sampling error; it is defined as the standard deviation of the sampling distribution of the statistic. It is used to construct the confidence interval around an estimate.

[^94]:    ${ }^{114}$ Formula 6.11.1, page 240, in Hays, W. L. (1988). Statistics (4th ed.). Holt, Rinehart, \& Winston.

[^95]:    ${ }^{115} \mathrm{~A}$ simple random sample is one in which each element is selected independently of, and with the same probability as, all other elements in the universe of elements from which the sample is drawn.

[^96]:    ${ }^{116}$ Kish, L. (1965). Survey sampling. New York: John Wiley, p. 258.
    ${ }^{117}$ Kish, L., Groves, R. M., \& Krotki, K. P. (1976). Sampling errors for fertility surveys (Occasional Paper Series No. 17). Voorburg, The Netherlands: International Statistical Institute, p. 19.

[^97]:    ${ }^{118}$ All design effects were estimated using the Taylor series expansion method.
    ${ }^{119}$ Kalton, G. (1983). Introduction to survey sampling. Beverly Hills: Sage Publications.

[^98]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^99]:    SOURCE: The Monitoring the Future Study, the University of Mic higan.

[^100]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^101]:    SOURCE: The Monitoring the Future Study, the University of Mic higan.

[^102]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^103]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^104]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^105]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^106]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^107]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^108]:    ${ }^{120}$ Johnston, L. D., O’Malley, P. M., Bachman, J. G., \& Schulenberg, J. E. (2005). Demographic subgroup trends for various licit and illicit drugs, 1975-2004. (Monitoring the Future Occasional Paper No. 61) [On-line]. Ann Arbor, MI: Institute for Social Research. c. 411 pp.

[^109]:    NOTES: ' $\ddagger$ ' indicates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes.

    Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01,5 s s=.001$
    '-' indicates data not available.
    Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
    See Table D-105 for the number of subgroup cases. See Appendix B for definition of variables in table.
    SOURCE: The Monitoring the Future Study, the University of Michigan.
    ${ }^{\text {a }}$ Use of "any illicit drug" includes any use of manijuana, LSD, other hallucinogens, crack, other cocaine, or heroin, or any use of amphetamines or tranquilizers not under a doctor'sorders. The use of other narcotics and barbiturates has been excluded because 8th and 10th graders appearto overeport their use (perhaps because they include the use of nonprescription drugs in their answers). ${ }^{\text {b }}$ In 2001 the question text was changed on half of the questionnaire forms. "Other psychedelics" waschanged to "other hallucinogens," and "shrooms" was added to the list of examples. For the tranquilizer list of examples, Miltown was replaced with Xanax. The 2001 data are based on the changed forms only; $N$ is one-half of $N$ indicated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "hallucinogens" and "hallucinogensotherthan LSD" are also affected by these changes and have been treated in a parallel manner.
    ${ }^{\text {'Parental education is an average score of mother's education and father's education. See Appendix B for details. }}$
    ${ }^{\text {d }}$ To derive percentages foreach racial subgroup, data forthe specified year and the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.
    ${ }^{\text {e }}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

[^110]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^111]:    NOTES: ' $\ddagger$ ' indicates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes.
    Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$

    - -' indicates data not available.

    Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding error.
    See Table D-106 for the number of subgroup cases. See Appendix B for definition of variables in table.
    SOURCE: The Monitoring the Future Study, the University of Michigan.

    In 2001 the question text waschanged on half of the questionnaire forms. "Other psychedelics" waschanged to "other hallucinogens" and "shrooms" was added to the list of examples. The 2001 data are based on the changed forms only; $N$ is one-half of N indic ated. In 2002 the remaining forms were changed. Beginning in 2002, the data are based on all forms. Data for "any illicit drug other than manjuana" and "hallucinogens" are also affected by these changes and have been treated in a parallel manner.
    ${ }^{b}$ Parental education is an average score of mother's education and father's education. See Appendix B fordetails.
    ${ }^{c}$ To derive percentagesfor each racial subgroup, data for the specified yearand the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates
    ${ }^{\text {d }}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

[^112]:    SOURCE: The Monitoring the Future Study, the University of Michigan.

[^113]:    ${ }^{\text {a }}$ Beginning in 1982 the question about a mphetamine use was revised to get respondents to exclude the inappropriate reporting of nonprescription amphetamines.
    The prevalence of use rate dropped slightly as a result of this methodologic al change. (In 1982 and 1983, these data were based on three of the five questionnaire forms.) Only drug use not under a doctor'sorders is included here
    ${ }^{\mathrm{b}}$ Parental educ ation is an average score of mother's education and father's education. See Appendix B for details.
    ${ }^{c}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

[^114]:    a Only drug use not under a doctor's orders is included here.
    ${ }^{\mathrm{b}}$ Parental education is an average score of mother's education and father's education. See Appendix B fordetails.
    ${ }^{c}$ To derive percentagesforeach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

[^115]:    NOTES: ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes.
    Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$
    '_-' indic ates data not available.
    Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
    See Table D-106 for the number of subgroup cases. See Appendix B for definition of va riables in table.
    SOURCE: The Monitoring the Future Study, the University of Michigan.
    ${ }^{\text {a }}$ Only drug use not under a doctor's orders is included here.
    ${ }^{\mathrm{b}}$ In 2001, for the tranquilizer list of examples, Miltown was replaced with Xanax. The 2001 data are based on the changed forms only; $N$ is one-half of $N$ indicated. In 2002 the remaining formswere changed. Beginning in 2002, the data are based on all forms. Data for "any illic it drug other than manijuana" and "hallucinogens" are also affected by these changes and have been treated in a parallel manner.
    ${ }^{c}$ Parental education is an average score of mother's education and father's education. See Appendix B for details.
    ${ }^{d}$ To denive percentagesfor each racial subgroup, data for the specified year and the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.
    ${ }^{\mathrm{e}}$ The 2002 data comprise half of the 2001 sample data double-weighted and all of the 2002 sample data.

[^116]:    NOTES: ' $\ddagger$ ' indic ates some change in the question. See relevant footnote. See relevant figure to assess the impact of the wording changes.
    Level of signific ance of difference between the two most recent classes: $s=.05, s s=.01, s s s=.001$
    '-' indicates data not available.
    Any apparent inconsistency between the change estimate and the prevalence of use estimates for the two most recent classes is due to rounding emor.
    See Table D-107 for the number of subgroup cases. See Appendix B for definition of variables in table. Data based on one of six forms in 1996-2001; $N$ is one-sixth of $N$ indic ated in Table D-107. Data based on two of six forms beginning in 2002; N is two-sixths of N indic ated in Table D-107.
    SOURCE: The Monitoring the Future Study, the University of Mic higan.
    CAUION: Limited sample sizes (see "Notes" above). Use caution in intepreting subgroup trends.
    ${ }^{\text {a }}$ The 2001 and 2002 data are not comparable due to changes in the questionnaire forms.
    ${ }^{\mathrm{b}}$ Parental education is an average score of mother's education and father's seducation. See Appendix B for details.
    ${ }^{\text {c }}$ To derive percentages foreach racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

[^117]:    ${ }^{\text {a }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B for details.
    ${ }^{5}$ To derive percentages foreach racial subgroup, data forthe specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

[^118]:    In the 1988 questionnaires, a question on the use of wine coolers was added. This change may account for the discontinuity between the 1987 and 1988 use rates for wine.
    ${ }^{\text {b }}$ Parental education is an average score of mother's education and father's seducation. See Appendix B for details.
    ${ }^{\text {c }}$ To derive percentages for each racial subgroup, data for the specified yearand the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

[^119]:    'Parental education is an average score of mother's education and father's seducation. See Appendix B for details.
    ${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified year and the previous yearhave been combined to increase subgroup sample sizes and thus provide more stable estimates.

[^120]:    ${ }^{\text {a }}$ Parental educ ation is an average score of mother's seducation and father's education. See Appendix B for details.
    ${ }^{\text {b }}$ To derive percentages foreach racial subgroup, data for the specified year and the previous year have been combined to increase subgroup sample sizes and thus provide more stable estimates.

[^121]:    (Table continued on next page)

[^122]:    ${ }^{121}$ It should be noted that in this questionnaire form (Form 1), the original question lists all of the subclasses in advance as being included in the definition of the general class. For example, the question regarding amphetamine use reads, "They include the following drugs: Benzedrine, Dexedrine, Methedrine, Ritalin . . ." A list of common street names is also given to help define the drug class for the respondent. So, in theory, respondents know that they should be answering positively about having taken the general class of drug if they used any of the subclasses, even if they did not know in advance that the subclass belonged to the more general class.

[^123]:    ${ }^{122}$ "Shrooms" is a street name for the drug psilocybin, which is derived from a certain species of mushroom-thus the term "shrooms." Clearly, many more students at present recognize this drug by the street name because the annual prevalence rate jumped from $1.4 \%$ in 2000 for "psilocybin" to $4.9 \%$ in 2001 for "shrooms or psilocybin." The fact that the prevalence rate for this subclass of hallucinogen had changed little before the change in wording and actually declined some in the year following the change suggests that virtually all of the increase was due to the rewording.
    ${ }^{123} \mathrm{~A}$ tripwire question is one that, for reasons of questionnaire space economy, asks only about frequency of use in the prior 12 months.

[^124]:    ${ }^{124}$ This index comprises drugs and their variables mentioned in the text, figures, and selected tables.

