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We first provide Lemma 1 showing that the urban security problem presented in
(Jain et al. 2011) (see the Related Work section of the main paper) is a special case
of the botnet defense problem with uni-exfiltration under some specific conditions.
Based on Lemma 1, we then prove the NP-hardness of the attacker and defender oracle
problems.

1 Appendix A

Lemma 1. The urban security problem presented in (Jain et al. 2011) is reducible
to the botnet defense problem with respect to data uni-exfiltration conditioned on: (i)
the attacker only exfiltrates data from one single mission-critical node; (ii) there is
no resource limit for the attacker; and (iii) the defender does not deploy detectors on
mission-critical nodes.

Proof. Let’s consider an arbitrary instance of the urban network security problem.
There is an urban road network which is represented as a graph G* = (V" E").
The attacker starts at one of the source nodes s € S C V" and travels along a path to
attack one of the targets t € T" C V". The attacker’s pure strategies are all possible
paths in the graph, each starts from a source s € S" and ends at a target t € T". On
the other hand, the defender attempts to protect the targets by placing limited security
resources on edges of the graph. The defender’s pure strategies are thus all possible
allocations of these resources to the edges.

We now construct the corresponding instance G = (V, E) of the botnet defense
problem as follows. Essentially, the computer network graph G = (V,E) is an in-
tersection graph of the edge set E". In particular, for each edge e € E" of the urban
graph, we create a new node v¢ € V in the computer graph. Furthermore, for each
pair of nodes v°, v¢ € Vin the computer graph, if the corresponding edges e, ¢’ € E
share a same vertex, we create a new edge (v°, ve/) € E in the computer graph.

For each target t € T", we add a new mission-critical node h; to the vertex set V.
The data value associated with this mission-critical node is equal to the value of target
t in the urban graph. For each target ¢ € T" and for each edge e € E" that contains ¢,
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Figure 1: In the instance of urban security, {¢1,t2} are the two targets while {s1, s2}
are the source nodes. In addition, there are other four intermediate nodes and 11 edges
denoted by {e1, ea,...,e11} in the urban graph. In the corresponding instance of bot-
net defense, there are 11 nodes with respect to to the 11 edges in the urban graph. The
connectivity of the nodes in the computer graph is determined based on the connectiv-
ity of the edges in urban graph. For example, there is an edge between nodes 1 and
2 since the edges e; and es connect via ¢;. The two mission-critical nodes hy and ho
correspond to the two targets ¢; and . In addition, the mission-critical node £ con-
nects to the nodes {1, 2,3} since target ¢; belongs to edges {e1, €2, e3}. The attacker
path (eg, e2) from the source s; to the target ¢; in the urban graph is equivalent to the
exfiltration path (hq,2,9,.5%) in the computer graph. Conversely, the exfiltration path
(ha,4,8,11,5%) leads to the path (e4, e, e11).

we create a corresponding new edge that connect the mission-critical node h; to node
v® € V. In total, there are |T"| corresponding mission-critical nodes in V°. Finally,
we create a remote server of the attacker 5. For each source s € S" and for each edge
e € E" that contains s, we create a new edge which connects S with v¢ € V. An
example of our computer graph construction is in Figure 1.

We are going to show that finding an SSE of the urban security game is equivalent
to finding an SSE in the corresponding instance of the botnet defense game. According
to the graph conversion, an edge in the urban graph is a vertex in the computer graph.
Therefore, an allocation of the defender’s resources on edges in the urban graph is
equivalent to an allocation of the defender’s resources on nodes in the computer graph.
In other words, each pure strategy of the defender in the urban graph is equivalent to a



Figure 2: The 3-SAT instance: (x1 V Zo V x3) A (T1 V T3V T4) A (T2 V T3 V 24)
with three clauses and four variables (x1, 22, x3,x4). In the corresponding computer
network, there is a mission-critical node h. An attack path for the attacker can start
from the mission-critical node h going through edges on the graph to the server S¢,
with the maximum number of compromised nodes is 4 + 3 + 1 = 8. The defender has
eight pure strategies; each includes all nodes corresponding to a literal (e.g., protecting
two nodes w.r.t. 1 or three nodes w.r.t. Z3) and is played with probability %.

pure strategy of the defender in the computer graph.

In the instance of the botnet defense game, since the attacker aims at exfiltrating
data from one single mission-critical node only without resource-limited constraint,
each pure strategy of the attacker can be represented as a path from a mission-critical
node to the attacker server S to exfiltrate data. We are going to show that each ex-
filtration path in the computer graph corresponds to an attack path in the urban graph
and vice versa. First, any path from a source s to a target ¢ of the attacker in the urban
graph is an ordered set of edges {ej,ea,...,ex} Where s € e; and t € ek such that
each pair of consecutive edges {ey, e;+1} shares a vertex. Thus, this path corresponds
to an exfiltration path from the mission-critical node h} to the attacker’s server, which
is a set of ordered vertices {h}, v¢% ... v®2 v S%}. Conversely, considering an ex-
filtration path from a mission-critical node h; to S, which consists of ordered vertices
{hs, 0%, ..., 0% 0%, S} we obtain a set of edges {e1, e, . .., ex } where there are
asource s € e and atargett € ey in the urban graph. Since these edges are connected
(each pair of consecutive edges shares a vertex), there exists a path from the source s
to the target ¢ over these edges, which is a pure strategy of the attacker in the urban
security game.

Therefore, the payoff matrix of these two security games is equivalent. Or, finding
an SSE of the urban security game is equivalent to finding an SSE in the corresponding
instance of the botnet defense game. U

2 Appendix B: Proposition 1

Proposition 1. The attacker oracle problem corresponding to data uni-exfiltration is
NP-hard.

Proof. Based on Lemma 1, we adapt the NP-hardness proof in (Jain et al. 2011) for



proving the NP-hardness of the attacker oracle problem with data uni-exfiltration. In
particular, we show that any instance of the 3-SAT problem can be reducible to an
instance of the attacker oracle problem. Let’s consider an arbitrary instance of the 3-
SAT problem having n variables {x;} fori = 1,...,n and k clauses. Each clause is a
disjunction of three literals in which each literal is either a variable or the negation of
that variable.

(Jain et al. 2011) construct a corresponding instance of the attacker oracle in the
urban security problem for each particular instance of the 3-SAT problem. Based on
Lemma 1, we can also construct a corresponding instance of the attacker oracle prob-
lem in the botnet defense problem in a similar way. In particular, we construct a com-
puter network as follows: there are n + k layers in the network. The first k layers
correspond to k clauses of the 3-SAT problem; each layer has three nodes — each
node refers to a literal of the corresponding layer. The next n layers correspond to n
variables of the 3-SAT problem; each layer has two nodes referring to a variable and
its negation. For the connectivity between consecutive layers, all the nodes in the con-
secutive layers will connect with each others. In addition to the n + k layers, there is
a mission-critical node which contains sensitive data. This mission-critical node con-
nects with all the nodes in the first layer. Finally, there is an edge from all the nodes
of the last layers to the attacker’s server S®. An example of the constructed computer
network is in Figure 2.

The defender’s mixed strategy (D, x*) is defined as follows: there are 2n pure
strategies in D; each pure strategy corresponds to a literal and the nodes that cor-
responding to that literal in the network, i.e., these nodes are monitored by the de-
fender’s pure strategy. In addition, each pure strategy is played with equal probability
of z; = 2% In addition, the attacker can compromised n + k + 1 nodes at most. We
can show that there is an assignment of values to variables in the 3-SAT instance so
that the formula is true iff there is an exfiltration path from the mission-critical node to
S® in the corresponding attacker oracle instance which is blocked with probability at
most %, which is similar to (Jain et al. 2011). O

3 Appendix C: Proposition 2

Proposition 2. The defender oracle problem corresponding to data uni-exfiltration is
NP-hard.

Proof. Similar to (Jain et al. 2011), we also show that any instance of the set-cover
problem can be reducible to an instance of the defender oracle problem. In particular,
in the Set-Cover problem, there is a set U, a collection S of subsets of U, i.e., S C U
such that S includes all singleton subsets of U, and an integer k. The question is
whether there exists a sub-family C C S of size & such that [ J. o c = U.

We construct the corresponding computer network instance G = (V,E) as fol-
lows: there are |U| mission-critical nodes h1, ho, ..., hjy) which contain sensitive
data. These |U| mission-critical nodes correspond to elements in U. In addition, there
are other [U] nodes (uf,u3, ..., u[y;) corresponding to elements in U that directly

connect to the attacker’s server S® through |U| edges. For each non-singleton subset
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Figure 3: The set U = {1,2,3,4} and the collection of subsets
S = {{1},{2},{3},{4},{1,2},{1,4},{2,4}}. The corresponding com-
puter network is constructed with four mission critical nodes (hq,hs, h3, ha).
There are three nodes corresponding to the three non-singleton subsets
{1,2},{1,4},{2,4}. 1In addition, four pure strategies of the attacker include
(h1 = {1,2} = {1,4} - u{ — S%), (he = {1,2} = {2,4} = u) — S%),
(hs = uf — S*), and (hy — {1,4} — {2,4} - uf — S*). It is clearly that
one of the minimum set covering for U is {{1},{3},{2,4}}. Equivalently, the
defender can also put 3 detectors on nodes {h;}, {hs}, and {2,4} to block the
attacker’s exfiltration.



in S, there is a corresponding node in the network. There are edges from nodes of
non-singleton subsets of S to nodes in (uy,uj, ..., ujy) if these subsets contain those
nodes. Furthermore, there are also edges from each mission-critical node h; to nodes
of non-singleton subsets in S containing this mission-critical node ’s corresponding
element in U. In addition, there are edges between subsets in S of which intersec-
tion is not an empty set. Finally, there is an edge between h; and v if there is no
non-singleton subset in S containing the corresponding element in C of these nodes.
Figure 3 show an example of the computer network.

The current strategy of the attacker (A, a*) is defined as follows: there are totally
|U| pure strategies of the attacker in A. Each pure strategy consists of an exfiltration
path of the attacker and a set of compromised nodes which are the nodes on the exfil-
tration path. In particular, each exfiltration path starts from each mission-critical node
h;, going through all nodes of non-singleton subsets in S containing the corresponding
element of U, and then ending at S®. These pure strategies of the attacker are played
with equal probability of ﬁ We show that U is covered by k subsets in S if and
only if the defender can block all the attacker’s exfiltration paths with k resources in
the corresponding instance of the defender oracle problem, which is similar to (Jain et
al. 2011). O

4 Appendix D: Proposition 3

Proposition 3. The attacker oracle problem corresponding to data broad-exfiltration
is NP-hard.

Proof. We extend the proof of Proposition 1 to prove the NP-hardness of the attacker
oracle problem with broad-exfiltration as follows. In the computer network graph con-
structed in Proposition 1, we add a new dummy node w and edges connecting w to
all other nodes in the network. The network controller uses the following routing al-
gorithm to route data within the network: for any pair of nodes (u,v), if these two
nodes do not have a direct connection (i.e., there is no edge connecting them), the
routing path from u to v is P(u,v) = u — w — v. Otherwise, the routing path is
P(u,v) = u — v. In addition, in the instance of attacker oracle problem with broad-
exfiltration, the number of attacker resources is equal to the number of layers in the
computer network plus one, i.e., K* = n + k + 1. The defender’s mixed strategy
(D, x*) is defined similarly as in Proposition 1 but with an addition detector on the
dummy node w in each pure strategy of the defender.

Since the attacker can only compromise n + k£ + 1 nodes at most, the attacker
has to compromise exactly one node at each layer of the network in addition to the
mission-critical node h. Otherwise, all exfiltration paths of the attacker will always go
through the dummy node w, which means that the attacker always gets a utility of zero.
Thus, even though the attacker can broadcast the stolen data, the only exfiltration path
that matters consist of all the compromised nodes ordered according to the layers these
nodes belong to. As a result, we obtain an instance of the attacker oracle problem with
broad-exfiltration which is equivalent to the instance with uni-exfiltration in Proposi-
tion 1. Therefore, the attacker oracle problem with broad-exfiltration is NP-hard. [
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Figure 4: The set U = {1,2,3,4} and the collection of subsets S =
{{1},{2},{3},{4},{1,2},{1,4},{2,4}}. The corresponding computer network is
constructed with four mission critical nodes (h1, ho, h3, hy). There are three nodes cor-
responding to the three non-singleton subsets {1,2}, {1,4},{2,4}. The lexicographi-
cal order of these three nodes is {1, 2} < {1,4} < {2,4}. In addition, four pure strate-
gies of the attacker are the four sets of compromised nodes: (hq, {1, 2}, {1,4},u}, S%),
(h2,{1,2},{2,4},uf, S%), (hs,uy,S), and (h4,{1,4},{2,4}, v}, S%). For each
pure strategy, for example (hq,{1,2},{1,4},u7,S%), although there are multiple
exfiltration paths corresponding to that strategy, the only exfiltration path that mat-
ters is ({1} — {1,2} — {1,4} — u{ — S®) since all other exfiltration paths such as
(hi = {1,2} - w — uf — S%) need to go through the dummy monitored node w.
It is clearly that one of the minimum set covering for U is {{1}, {3}, {2,4}}. Equiva-
lently, the defender can also put 3 detectors on nodes {h1}, {hs}, and {2,4} to block
the attacker’s exfiltration.

5 Appendix E: Proposition 4

Proposition 4. The defender oracle problem corresponding to data broad-exfiltration
is NP-hard.

Proof. We extend the proof of Proposition 2 to prove the NP-hardness of the defender
oracle problem with broad-exfiltration. In particular, in constructing a correspond-
ing computer network graph instance G = (V, E) for an instance of the Set-Cover
problem, the set of nodes in G is created as the same as in Proposition 2. Nevertheless,
unlike Proposition 2, we create a set of edges E such that for each mission-critical node
h;, there is only a single simple path starting from h;, going through all non-singleton
nodes containing the corresponding element of h; in U, passing «; and ending at S®.



In order to do so, we put all the non-singleton nodes in the lexicographical order. We
iterate over mission-critical nodes {h;}. For each h;, we create an edge from h; to the
first non-singleton node in the lexicographical order which contains the corresponding
element of h;. We also create an edge from the last non-singleton node in the lexico-
graphical order which contains the corresponding element of ' to «//. Furthermore,
we create edges connecting consecutive non-singleton nodes in the lexicographical or-
der which has the element of U corresponding to (h;,u;). Finally, there is an edge
between h; and u! if no non-singleton subset in S contains the corresponding element
of these nodes.

We add a new dummy node w and edges connecting w with all other nodes in the
network. The routing algorithm is determined the same as in Proposition 3. Figure 4
shows an example of the constructed computer network.

The current strategy of the attacker (A, a*) is defined as follows: there are totally
|U| pure strategies of the attacker in |A|, each corresponds to an element in U. Each
pure strategy consists of all the nodes in the graph corresponding to an element of
U and the non-singleton subset of S containing that element. Now even though the
attacker can broadcast the stolen data, the only exfiltration path in each pure strategy
corresponding to the element 7 € U which matters is to start from the mission-critical
node h;, going through all nodes in the lexicographical order which correspond to non-
singleton subsets in S containing i, passing «; and ending at S®.

As a result, we obtain an instance of the defender oracle problem with broad-
exfiltration which is equivalent to the defender oracle instance with uni-exfiltration
in Proposition 2. Therefore, the defender oracle problem with broad-exfiltration is
NP-hard. O



