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We examine responses from a national sample of high school mathematics teachers to a 
questionnaire, which had been developed to study teachers’ recognition of a system of 
hypothesized norms that stipulate that geometry proof problems are to be posed using a 
diagrammatic register. We report on the psychometric properties of the questionnaire, as well as 
the relationship between these mathematics teachers’ mathematical knowledge for teaching 
geometry (MKT-G) and their stances on breaching those norms. Although Herbst et al. (2013) 
hypothesized that the system consisted of five distinguishable sub-norms, the factor structure of 
the questionnaire suggested that two of those norms might not truly be distinguishable. We also 
found a positive and significant relationship between teachers’ MKT-G and their stances on 
breaching two of the determined components of the system of norms. 
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Behavior in social situations involves participants negotiating their way around norms-- ways 
of behaving in a given social situation that are routine and tacitly expected by those familiar with 
that situation. Norms are unremarkable when complied with, but elicit comment when breached 
(Garfinkel, 1963). Our group has been working on bringing these ideas to scale by using visual 
representations of instructional situations in the context of online questionnaires. This paper 
reports on a piece of such work, following earlier investigations of the diagrammatic register in 
geometry proofs (Herbst, Kosko, & Dimmel, 2013). 

The present study tests the psychometric properties of Herbst et al.’s (2013) DRN (a.k.a., N3) 
instrument. We conjectured that teachers with higher MKT-Geometry scores (see Herbst & 
Kosko, 2014) might be more likely to strategically breach a norm of the diagrammatic 
register.  We examined covariation between the DRN data and data collected with the MKT-G 
instrument. This work is significant as any efforts to improve mathematical practices in 
classrooms must come to terms with the norms that undergird ordinary practice (Cobb, Zhao, & 
Dean, 2009) and because the results suggest that increasing mathematical knowledge for 
teaching geometry might provide resources for teachers to depart from the norms of ordinary 
practice. 

Theoretical Framework 
Our work builds theory to describe the work of teaching. We assume that describing the work 

of teaching mathematics requires attention to the specificity of the subject matter transactions 
between students and teacher. To operationalize such specificity we model the transactions 
between particular items of subject matter knowledge and the tasks in which students can lay 
claim to them.  Instructional situations (e.g., doing proofs, solving equations; Herbst, 2006) are 
modeled by articulating sets of norms that describe what teacher and students are expected to do 
in those tasks and what knowledge and skills the accomplishment of the task counts toward.  The 
diagrammatic register norm states that proof problems are presented in a diagrammatic register. 
Herbst et al. (2013) decomposed it into five sub-norms: (SN1) Properties: The statement of the 



problem does not make explicit properties of betweenness, intersection, separation, collinearity, 
or concurrency, which are left for the diagram to communicate; (SN2) Diagram: The teacher 
provides a diagram for students to use while doing the proof; (SN3) Labels:  The teacher assigns 
a proof problem with an accompanying diagram where all the points needed in the proof are 
labeled (but not necessarily all points); (SN4) Statement: The proof problem is stated using 
symbols and labels for elements of a diagram; (SN5) Accuracy: When a teacher provides a 
diagram accompanying a proof problem, the diagram is accurate.  

These norms describe the defaults for setting up problems in the situation of doing proofs, 
they do not necessarily describe what would be optimal for student learning. Arguably, it would 
enrich the mathematical experience of students if they could be expected to do themselves what 
ordinarily would be done by the teacher. Various questions can be asked that contribute to this 
theory: To what extent do teachers consider adherence to the various aspects of this norm to be 
appropriate (in comparison with alternatives that might also be compelling)? And: To what 
extent is mathematical knowledge for teaching geometry related to a teacher’s disposition to 
deviate from these norms? 

Methods 

Data 
As described by Herbst et al. (2013), the DRN instrument (a.k.a., the N3 instrument) contains 

30 items that target the 5 sub-constructs of the diagrammatic register norm. Each item asks 
participants to compare the appropriateness (using a 6-point Likert-like closed response format) 
of two possible ways of setting up a proof problem: one that we conjecture to be normative and 
another one that breaches one of the sub-norms (but is otherwise normative). Eight items were 
designed to measure SN1, five to measure SN2, five to measure SN3, five to measure SN4, and 
seven to measure SN5. The MKT-G instrument has been described at length by Herbst and 
Kosko (2014). 

The DRN and MKT instruments, as well as a background survey that included a question 
about participants’ years of experience teaching geometry, were administered as part of a larger 
study to a nationally-distributed sample of high school mathematics teachers, using the 
LessonSketch online platform. Participants were randomly sampled from more than 10,000 
public secondary schools in the United States, identified using the NCES 2012-2013 School 
Universe data set. The effective sample of those who completed the background survey, the 
DRN, and the MKT-G instruments was 300 high school mathematics teachers. The minimum 
number of years of experience teaching high school geometry that any teacher in the sample had 
was 1, the maximum was 35, the mean was 6.75, and the standard deviation was 5.96. 

Measures 
Diagrammatic register norm endorsement. To determine whether the items that are in the 

DRN instrument measured five distinguishable sub-norms, we conducted an exploratory factor 
analysis (EFA), after recoding certain items so that high values in the scale of each item 
indicated departures from the norm.  We split the sample into two random sub-samples, then 
conducted an EFA using the first and a CFA using the second (for more information on this 
approach, see Duffy, et al., 2012). Once we had determined the factor structure of the items, we 
created factor scores by taking the mean of each participant’s rating of the items that loaded onto 
each factor. We also created a DRN total score by taking the mean of a participant’s ratings of all 



30 items. Finally, we calculated alpha scores and average inter-item correlations (IIC) to 
determine the internal consistency of the set of items in each factor.  

Mathematical knowledge for teaching geometry (MKT-G) scores. We used a two-
parameter Item Response Theory (IRT) model to create MKT-G scores, after removing four 
items that the Item Characteristic Curves (ICC) suggested would not discriminate well between 
individuals. The minimum MKT IRT score was -2.20, the maximum was 2.17, the mean was -
0.0000043, and the standard deviation was 0.902. 

Analysis 
An Ordinary Least Squares (OLS) regression model was then created, in which the DRN 

total score was regressed on the MKT IRT score and participants’ years of experience teaching 
geometry. After finding that the relationship between the MKT-G score and DRN total score was 
statistically significant, even when controlling for years of experience teaching geometry, we 
decided to create four other similar stepwise OLS regression models, each of which used one of 
the DRN factor scores, rather than DRN total score, as the outcome variable. This was done in 
order to understand whether participants’ stance on breaching the DRN was dependent on which 
of the sub-norms was breached. 

Results 
In terms of the EFA, we considered both the criterion of retaining factors with eigenvalues 

larger than 1 (Kaiser, 1960) and the criterion of retaining components above the point of 
inflection on a scree plot (Cattell, 1966), as well as factor loadings and fit statistics. Together, 
these suggested that four factors undergird the DRN instrument. The CFA confirmed that 
structure to the extent that no standardized item loading was less than 0.3 in the CFA and the fit 
statistics were reasonable - RMSEA: 0.066, CFI=0.853, TLI=0.841, SRMR=0.091, just short of 
the typical cut-points of RMSEA<=0.05, CFI>=0.95, TLI>=0.95 and SRMR<=0.6 (Hu and 
Bentler, 1999). According to that model, the items that were designed to target SN1, SN3, and 
SN5 loaded onto three factors, in the way that they were expected to. However, the items 
designed to target SN2 and SN4 loaded onto the same factor. We will hereafter refer to those 
factors as S1:PRO, S3:LAB, S5:ACC, and S2S4:DNS, respectively.  

The means of the DRN total score, SI:PRO, S2S2:DNS, S3: LAB, and S5:ACC scores 
(described earlier) were 2.86, 3.32, 2.56, 3.38, and 2.42, respectively. The standard deviations of 
those scores, in the same order, were 0.54, 0.94, 0.89, 0.56, and 0.78. Cronbach’s alpha for the 
DRN total score and each of the factor scores ranged from 0.6909 and 0.8522, and their average 
inter-item correlations (IIC) ranged from 0.1723 to 0.4344, both of which suggest that the entire 
set of items as well as the set of items that loaded onto each factor had good internal consistency 
(Clark & Watson, 1995).   

The main take-away from the regression models is that there is a significant, positive 
association between teachers’ comfort with breaches of the DRN and their MKT-G, which 
seemed to be due to the also significant and positive association between their MKT-G and 
comfort with breaches of the S2S4:DNS and S3:LAB components of that norm, independent of 
their years of experience teaching geometry. When the DRN total score was regressed on MKT 
and years of experience teaching geometry, the MKT regression coefficient and associated 
standard error were 0.14 and 0.04. When the S2S4:DNS score was used instead they were 0.36 
and 0.06. When S3:LAB score was used, they were 0.08 and 0.04. 



Discussion 
A main finding of this study is the discovery of the somewhat unexpected, but nonetheless 

comprehensible, factor structure of the DRN instrument. Another is the discovery of relationship 
between teachers’ endorsement of the diagrammatic register norm (as well as two of its 
subnorms) and their level of MKT. Upon reflection, we imagine that SN2 and SN4 items loaded 
onto the same factor because all of our proof problems that complied with SN4 (the expectation 
that the proof problem will be stated using symbols and labels for elements of a diagram) 
included a diagram and, therefore, complied with SN2 (the expectation that the teacher will 
provide a diagram for students to use while doing the proof).  

In terms of MKT being a significant predictor of S2S4:DNS and S3:LAB, but not S1:PRO or 
S5:ACC, we would argue that understanding this result also requires careful consideration of 
each of the 5 subnorms. For example, we would expect that the Accuracy subnorm (SN5) was 
fairly easy to recognize, regardless of one's MKT, as there is a sense among teachers that even 
accurate diagrams can be misleading, and so providing inaccurate diagrams could make 
something that is to be regarded with suspicion even more problematic. SN1 (properties) deals 
with subtle issues of positioning. On the other hand, SN2 and SN4 are arguably more directly 
related to the kind of mathematical knowledge teachers readily have. 
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