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Abstract 

Despite the established volume of literature on human–robot interaction, the ways in which 

humans and robots work together as a team have been relatively understudied. Current 

approaches to human–robot teamwork do not fully address issues associated with team 

phenomena that involve multiple humans and robots in the team. In this paper we propose a 

working framework for human–robot teams, based on an IMOI (inputs-mediators-outputs-inputs) 

framework for teamwork in human teams. The proposed framework describes the developmental 

process of human–robot teams in which different characteristics of humans and robots produce 

team outcomes through various mediators within organizational contexts. The framework 

provides a theoretical guide to better understand how teams working with robots operate and 

how to improve various team outcomes. 

 

Keywords: Framework, human–robot teamwork, robots in groups, teams working with robots, 

collaboration, teams 
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Introduction 

Robots are increasingly becoming a central part of teamwork [31]. For instance, search-

and-rescue teams employ remote-control robots to help respond to emergencies [3]. Teams of 

construction workers use remote-control robots to tear down concrete walls [36]. The use of 

robots in the context of teamwork has the potential to transform teamwork by introducing new 

dynamics between humans and robots [10,39]. 

The importance of this topic suggests the need to develop a theoretical framework 

directed at better understanding teamwork with robots. A theoretical framework can help identify 

factors that enable or hinder the effectiveness of human–robot teams. The identification of such 

factors is crucial for two reasons: (1) to achieve theoretical progress in the field of teamwork 

with robots and (2) to gain a practical understanding of promoting outcomes in such teams. 

There have been some efforts to develop a research framework for human–robot 

interaction [9,33]. Goodrich and Schultz [9] provided a survey on potential issues pertaining to 

human–robot interaction. In their survey, they identified that robots are deployed to teams and 

emphasized that the level of robot autonomy determines the interaction in teams working with 

robots. They also acknowledged that a unifying framework of human–robot collaboration is 

required for advancing the subject, but they did not propose a unifying framework and left it for 

future work. Scholtz [33] also proposed a framework for the evaluation of interaction by 

suggesting different roles of a human in working with mobile autonomous robots (e.g., 

supervisor, operator, mechanic, peer, and bystander).  

The current approaches to theorizing teamwork with robots seem to have several 

shortcomings. First, there is no unifying framework that views teams as an organizational 

structure of multiple humans and multiple robots. Most efforts to theorize human–robot 
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teamwork are focused on interactions with an operator or a human counterpart and a robot 

[7,33]. Existing models and metrics for human–robot interaction have failed to identify that 

teams working with robots can have more a complex composition by having more robots and 

humans and thus cause various social and psychological phenomena. Second, to our best 

knowledge, there has been no effort to theorize human–robot teamwork by viewing that teams 

are dynamic and adaptive throughout their life cycle. Models and frameworks are focused on 

specific aspects of human–robot collaboration, such as situational awareness [11,15] and 

workload [26,27]. The existing literature cannot inform us of the team processes regarding how 

various characteristics of humans and robots are put together to yield team outcomes and what 

social, emotional, cognitive, and psychological phenomena occur during these team processes. 

To address this issue, we propose a theoretical framework that describes how teams 

working with robots operate and promote their outcomes during developmental life cycles. In 

this paper we propose a research framework that integrates the literature on teamwork and 

human–robot interaction (Figure 1). This framework attempts to capture the dynamic, adaptive, 

and developmental nature of human–robot teams. In doing so, this framework incorporates the 

inputs, mediators, and outputs of human–robot teams with an iterative process of feedback loops. 

We believe this framework is an initial step to motivate further theoretical development and 

empirical validation. 
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Working Framework 

Our framework is based on previous frameworks of teamwork where inputs, mediators, and 

outputs are identified as key elements in team’s life cycle (see [12,20] for a review). Constructs in 

the inputs influence emergent states of teamwork with robots (i.e. mediators), eventually 

producing outputs. Our model is based on the IMOI (inputs-mediators-outputs-inputs) 

framework by Ilgen et al. [12] to represent the cyclic nature of human–robot teams with feedback 

loops from outputs to subsequent inputs and mediators during the team life cycle. 

Inputs 

The inputs represent resources and properties available to teams [16]. These include those 

from the individual level, including characteristics of individual team members and robots, and 

the team level, including team composition and job characteristics. The team-level inputs are 

influenced by the individual-level inputs and are shown by the solid arrow from the individual 

level to the team level on the left side of Figure 1. 

Our framework includes the combination of both robot and human characteristics that can 

manifest unique team compositions and structures in human–robot teamwork. Robots in teams 

can be perceived to possess humanlike attributes such as gender, ethnicity, knowledge, ability, 

and personality [1,17,32]. This is because people often ascribe agency to robots and treat them as 

social entities [10]. For instance, a human–robot team can be considered homogeneous when a 

robot is perceived to have the same attributes as other team members [19]. Similarly, a human–

robot team should be viewed as diverse when a robot is perceived to have different attributes 

from other team members. We would expect diversity between humans and robots to have the 

same impact it has on teamwork in all-human teams. These effects include decreases in social 

integration and increases in conflict [23,29,38]. Therefore, our framework puts the same emphasis 
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on robot characteristics as it does human characteristics when it comes to the makeup of team-

level characteristics. 

It is possible that robots’ perceived gender influences the formation of a subgroup within 

teams working with robots. For instance, female team members may feel close to robots that are 

perceived to be female, while they may not feel the same positive perception toward male-type 

robots. In this case, a team can be divided into two subgroups based on the gender of the humans 

and robots. 

 

Proposition 1: Individual-level characteristics of robots and humans can influence team-

level characteristics of human–robot teams. 

 

Our framework depicts inputs influencing subsequent mediators and eventually outputs. 

This relationship can occur at both the team and the individual levels. For example, at the team 

level, task interdependence is critical to communication and coordination between humans and 

robots during teamwork [14]. Task interdependence between humans and robots has been proved 

to help achieve better mental models on task and team performance [24]. Also, at the individual 

level, research suggests that individuals positively evaluate robots that are perceived to have a 

similar personality and social identity such as ethnicity [1,6]. 

Inputs at the team level can influence mediators and outcomes at the individual level. For 

instance, the composition of a human–robot team may determine the level of individual 

motivation and satisfaction of its team members. In teams that involve multiple human team 

members, individual effectiveness may be a function of both team-level inputs and individual-

level inputs [12,34,40]. 
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As an example, the perception toward robotic teammates can differ by the various 

attributes of human team members and characteristics of the task. When the task structure of 

teamwork with robots is competitive, male team members may perceive their robotic teammates 

as less friendly and this might cause anxiety about the task [22]. In this case, the gender of a 

robot can be as important as that of human team members under certain circumstances. 

 

Proposition 2: Inputs influence mediators and subsequent outputs in human–robot teams. 

Proposition 3: The influence of team-level inputs can occur at the individual and team 

levels. 

 

Mediators 

Mediators are emergent processes or states through which the effects of inputs are 

manifested. For individuals, mediators are often attitudes and beliefs. For teams and groups, they 

are typically processes that result from the interactions necessary for combining different inputs 

[21]. Mediators can also be viewed as an output of the team’s input. 

Mediators of human–robot teams can be present between humans, and between humans 

and robots. For example, shared mental models are important cognitive mediators. Accurate 

mental models usually promote team performance and reduce cognitive load [28]. Shared mental 

models can exist between humans and robots [24], and between humans [28]. In first-responder 

teams, team members are often scattered across locations [3,14]. Communication among humans 

and robots is required to maintain accurate shared mental models of the situation [3].  

Emotional attachment is a mediator, defined as an affective reaction toward robots or 

other humans [4]. When team members are emotionally attached to their robots, they are likely 
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to be more motivated to perform tasks with the robots and perceive the work with the robots to 

be more rewarding [4,32]. However, emotional attachment can also deter teams from deploying 

robots to risky situations [4]. A study of military bomb disposal teams showed that team 

members were reluctant to send their robot to too dangerous missions and such behavior could 

influence the success and performance of the mission operations [4]. 

As behavioral mediators, it has been shown that effective communication and 

coordination are important to improve team outcomes with [2,18] and without robots [16]. 

Communication and coordination with robots are areas that have rich empirical evidence. For 

instance, behavioral coordination through cross-training is shown to be effective in achieving the 

accurate shared mental models in teams working with robots [24]. Research also shows that 

robots that speak the natural language are perceived to be more intelligent and friendly [37]. 

 

Proposition 4: Cognitive, affective, and behavioral mediators influence outputs. 

 

Team-level mediators can also influence individual-level outputs. Team trust can affect 

the relationship between individual trust and individual performance [13]. It is also possible that 

mediators such as team cohesion and communication can influence whether team members want 

to remain on the team. 

A shared mental model is an example of the impact of team-level mediators. The shared 

mental model can be formed only among human team members. This case can be found mostly 

in teams working with robots that are remotely controlled by human operators. Research shows 

that accurate shared mental models among the operators are crucial to the success of the 

teamwork [25]. In addition, mental models between humans and robots should influence team 
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performance [24]. When robots are autonomously navigating an area, it is important that the 

robots have an accurate scheme of the area and humans have the knowledge of the robot’s 

capability and the boundary of the robot’s navigation. In this case, the human–robot shared 

mental model can influence human teammates’ workload and effectiveness of robot behaviors. 

 

Proposition 5: The influence of team-level mediators can occur at the individual and 

team levels. 

 

Outputs 

Outputs have three categories: taskwork, teamwork, and perceptual outcomes. In human–

robot teams, taskwork can include the task time, solution quality, and error rate, while teamwork 

can include communication efficiency and effectiveness, awareness, and coordination. 

Perceptual outcomes are attitudinal and emotional reactions, such as satisfaction. 

Our framework attempts to capture the role of time. The original IPO (input-process-

output) model has been criticized for focusing on a linear path from inputs through outcomes 

[21]. However, most teams undergo developmental processes and feedback loops as they mature 

[20]. This means that mediators and outputs can influence subsequent inputs and mediators 

through feedback loops (shown by solid arrows on the right side of Figure 1). In other words, as 

past research on appropriation has shown, time matters [5,8,41]. Therefore, we should expect past 

interactions to play a fundamental role in the future interactions of human–robot teams.  

As an example, time matters in the role of task knowledge and skill. For instance, a 

human–robot team could have little task knowledge (inputs), which could influence its shared 

mental models (mediators) and ultimately its initial performance (outputs). When a human–robot 
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team repeats the task, the team becomes better, which influences mediators and the outputs of 

future tasks. However, the impact of previous outputs can be more influential than feedback from 

previous mediators. Mediators are often subject to change based on a team’s previous 

performances and experiences. Inputs, including specifications of robots and individual traits, 

tend to be static and less dynamic. 

 

Proposition 6: There are feedback loops in which mediators and outputs influence 

subsequent mediators and inputs in a cyclic manner. 

 

Last, the organizational context influences inputs, mediators, and outputs associated with 

human–robot teams. Teams are often embedded in a larger organizational context. Organizations 

help determine both the operation and management of human–robot teams. Organizations 

provide the resources to facilitate teamwork. For instance, organizations can provide training and 

support to human–robot teams [16]. Consistent training and support from the organization can be 

critical, particularly for human–robot teams [40]. Team members are likely to build strong social 

relationships with their robots through prolonged interactions throughout the team life cycle. 

 

Proposition 7: Organizational contexts of human–robot teams can influence their inputs, 

mediators, and outputs by providing positive conditions. 

Discussion 

Contributions of the Framework 

There are three advantages of this framework. First, it acknowledges different 

compositions of human–robot teams beyond one robot and one human. Given that many human–
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robot teams consist of multiple robots and their operators, both human–human and human–robot 

collaboration should be examined to better understand how these teams achieve their goals in 

synergistic ways. Our framework not only incorporates the different individual and robot 

characteristics but also various compositions among the characteristics of robots and humans. 

This includes collaboration, as a joint action between and among humans and robots, to jointly 

accomplish a shared goal [2].  

Second, the framework suggests individual, team-level, and multilevel relationships. 

Most research focuses on the individual level — often ignoring the team context. Our framework 

describes how team characteristics influence individual mediators and outputs. A multilevel 

approach is essential to investigate impacts of the team level on the individual level [30,35]. 

Third, our framework considers the role of time by including feedback loops. It is 

possible to investigate how different team compositions convert to outputs through mediators. 

Many researchers have treated such variables as attraction and attachment toward a robot as an 

end-point of human–robot interaction, mainly for predicting the individual adoption of social 

robots. However, human–robot teams often repeat similar tasks and interact with robots assigned 

to them during the team life cycle. In this case, previous performance can alter a team’s 

perception toward its robots and the ways mediators influence interactions. 

 

Future Work 

The current theoretical framework includes a broad range of constructs that can take 

place in teams working with robots. Despite its broad scope, the framework is subject to updates 

based on empirical evidence. Scholars in the relevant fields, including information systems, 

robotics, and human–robot interaction, should put forth a collective effort to test the relationships 
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and phenomena through empirical studies to enhance the model. That would involve an iterative 

process, where findings from empirical studies would be reflected to the model and the new 

model would supply research questions for future research. Validating and enhancing the model 

could be done both in teams working with robots in practice and in experimental settings. For 

instance, investigating the impacts of organizational contexts should involve real teams working 

with robots, while experiments should allow scholars to test impacts of different compositions of 

humans and robots on team outcomes. We believe this framework is one of the first steps to 

enhancing the literature on human–robot teamwork and better understanding the phenomena. 

In addition, when empirical data are accumulated, the framework can help in developing 

better machine-learning algorithms for robots deployed to work alongside human team members. 

For instance, robot engineers could be better informed on designing robot behaviors in teams 

with particular compositions of humans and robots. Robots could be designed to adapt to human 

team members’ personalities and manifest their own personality similar to or different from 

humans on the team. Machine-learning algorithms could also include categories of outcomes in 

teams working with robots, such as taskwork, teamwork, and subjective outcomes, which are 

identified in the model. In this sense, the framework is expected to be helpful in developing an 

algorithm for robots deployed to teams. 

 

Conclusion 

 Despite the increasing use of robots in teams, research on teams working with robots still 

lacks a theoretical guide to better understand how such teams operate and enhance their 

performance. Although current literature on human–robot collaboration addresses some issues of 

teamwork between a single human and a robot, it fails to acknowledge a wide range of team 
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phenomena that involve multiple humans and robots in the team. To address this issue, we 

propose in this paper a theoretical framework for human–robot teamwork. The framework 

consists of inputs, mediators, and outputs in the life cycle of teams working with robots. The 

framework describes how team processes can emerge from various resources and environments 

of teams working with robots and turn into team outcomes in multiple dimensions. The proposed 

framework considers teams working with robots as a developmental organizational structure in 

which teams can evolve and learn from the interactions among the team members and robots and 

improve their outcomes over time. The framework is one of the first steps to establishing a better 

understanding of teamwork with robots so it requires an iterative process of validation by adding 

findings from empirical studies. 
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