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Summary. This paper investigates a change-point estimation problem in the con-
text of high-dimensional Markov random field models. Change-points represent a
key feature in many dynamically evolving network structures. The change-point esti-
mate is obtained by maximizing a profile penalized pseudo-likelihood function under
a sparsity assumption. We also derive a tight bound for the estimate, up to a loga-
rithmic factor, even in settings where the number of possible edges in the network far
exceeds the sample size. The performance of the proposed estimator is evaluated
on synthetic data sets and is also used to explore voting patterns in the US Senate
inthe 1979-2012 period.
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1. Introduction

Networks are capable of capturing dependence relationships and have been exten-
sively. employed in diverse scientific fields including biology, economics and the so-
cial sciences. A rich literature has been developed for static networks leveraging
advances in estimating sparse graphical models. However, increasing availability
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2 Roy, Atchadé, Michailidis

of data sets that evolve over time has accentuated the need for developing models
for time varying networks. Examples of such data sets include time course gene
expression data, voting records of legislative bodies, etc.

In"this work, we consider modeling the underlying network through a Markov
random field (MRF) that exhibits a change in its structure at some point in time.
Specifically, suppose we have T" observations {X M 1<t< T} over p-variables with
X = (Xft), ... ,X]gt)) and X](t) € X, for some finite set X. Further, we assume
that there exists a time point 7. = [ T] € {1,...,T — 1}, with o, € (0,1),
such/that {X M1<t< T*} is an independent and identically distributed sequence
fremma=distribution 909)(') parametrized by a real symmetric matrix 9,((1), while
the remaining observations {X (t), T +1<t< T} forms also an independent and
identically distributed sequence from a distribution Go (-) parametrized by another
real symmetric matrix 0\”. We assume that the two distributions Gy (1)s o (+)

belengyto a parametric family of Markov random field distributions given by

P
go(z) = Zt@) exp ZﬁjjBo(xj) + Z 0;xB(zj,xr) |, ©€XP, (1)
Jj=1 1<k<j<p
for a non-zero function By : X — R, and a non-zero symmetric function B :
X x X — R which encodes the interactions between the nodes. The term Z ()
issthescorresponding normalizing constant. Thus, the observations over time come
frem a'MRF that exhibits a change in its structure at time 7, and the matrices
99) and 0&2) encode the conditional independence structure between the p random
variables respectively before and after the change-point.

Theobjective is to estimate the change-point 74, as well as the sparse network
structures 0&1) and 9&2). Although the problem of identifying a change point has a
long history in statistics (see Bai (2010), Carlstein (1988), Hinkley (1970), Loader
(1996)y"Lan, Banerjee and Michailidis (2009), Muller (1992), Raimondo (1998)
andreferences therein), its use in a high-dimensional network problem is novel and
motivated by the US Senate voting record application discussed in Section 6. Note
that in a low-dimensional setting, the results obtained for the change-point depend
on the regime considered; specifically, if there is a fixed shift, then the asymptotic
distribution of the change-point is given by the minimizer of a compound Poisson
process (see Kosorok (2008)), while if the shift decreases to 0 as a function of the

sample size, the distribution corresponds to that of Brownian motion with triangular
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Change-Point Estimation in High-Dimensional Markov Random Field Models 3
drift (see Bhattacharya (1987), Muller (1992)).

Note that the methodology developed in this paper is useful in other areas,
where similar problems occur. Examples include biological settings, where a gene
regulatory network may exhibit a significant change at a particular dose of a drug
treatment, or in finance where major economic announcements may disrupt financial
networks.

Estimation of time invariant networks from independent and identically dis-
tributed data based on the MRF model has been a very active research area (see
e.gt Banerjee et al. (2008); Hofling and Tibshirani (2009); Ravikumar et al. (2010);
Xuevet al. (2012); Guo et al. (2010) and references therein). Sparsity (an often
realistic assumption in many applications in molecular biology, chemoinformatics,
climrate modeling, finance, etc.) plays an important role in this literature, and allows
thesreeovery of the underlying network with relatively few observations (Ravikumar
et"al™(2010); Guo et al. (2010)). In case the sparsity assumption does not hold ex-
aetlyfor the specific sample size and number of variables under consideration in a
real"application, the various sparse estimation procedures available in the literature
will_névertheless estimate the strongest statistical relationships supported by the
data.

On the other hand, there is significant less work on time varying networks (see
Zhouset al. (2010), Kolar et al. (2010), Kolar and Xing (2012) etc.). The closest
setting to the current paper is the work in Kolar and Xing (2012), which consid-
ers.Gaussian graphical models where each node can exhibit multiple change points.
In“eontrast, this paper focuses on a single change-point impacting the global net-
worksstructure of the underlying Markov random field. In general, which setting
issmore appropriate depends on the application. In biological applications where
thefocus is on particular biomolecules (e.g. genes, proteins, metabolites), nodewise
changé-point analysis would typically be preferred, whereas is many social network
applications (such as the political network example considered below), global struc-
tural changes in the network are of primary interest. Further, note that node-level
changes detected at multiple nodes can be inconsistent, noisy and difficult to rec-
oncile to extract global structural changes.

Another key difference between these two papers is the modeling framework em-
ployed. Specifically, in Kolar and Xing (2012) the number of nodes in the Gaussian
graphical model is fixzed and smaller than the available sample size. The high-
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4 Roy, Atchadé, Michailidis

dimensional challenge comes from the possible presence of multiple change-points
per node, which leads to a large number of parameters to be estimated. To overcome
this issue, a total variation penalty is introduced, a strategy that has worked well in
regression modeling where the number of parameters is the same as the number of
observations. On the other hand, this paper assumes a high-dimensional framework
where the number of nodes (and hence the number of parameters of interest, namely
the edges) grow with the number of time points and focuses on estimating a single

change-point in a general Markov random field model.

To ayoid the intractable normalizing constant issue in estimating the network
struetures, we employ a pseudo-likelihood framework. As customary in the analysis
of change-point problems (Bai (2010); Lan, Banerjee and Michailidis (2009)), we
employ=a profile pseudo-likelihood function to obtain the estimate 7 of the true
change-point 7,. Under a sparsity assumption, and some regularity conditions that
allowsthe number of parameters p(p + 1) to be much larger than the sample size T,
wewestablish that with high probability, |(7/T) — a.| = O(log(pT)/T), as p, T — <.
Note'that in classical change-point problems with a fixed-magnitude change, it is
well-known that the maximum likelihood estimator of the change-point satisfies
[(7/T)= c.| = Op(1/T) (see e.g. Bhattacharya (1987), Bai (2010)). This suggests
that our result is rate-optimal, up to the logarithm factor log(7"). Since the appear-
anee of the initial version of this paper, we note that there is additional work on the
subgeetyof change-point estimation problem in high-dimensional settings (Soh, Y.
ang Chandrasekaran, V. (2014); Leonardi, Florencia and Buhlmann, Peter (2016)).
Bothwefsthese works focus on the linear regression case, but also consider multiple
change-points. However, the convergence rate for the change point parameters even
fol thesfase of a single change point, is slower than the rate O(log(pT")/T) derived

heres

Thelderivation of the result requires a careful handling of model misspecifica-
tiongin Markov random fields as explained in Section 3, a novel aspect not present
when estimating a single Markov random field from independent and identically
distributed observations. See also Atchadé (2014) for another example of misspec-
ification in Markov random fields. Further, to speed up the computation of the
change-point estimator 7, we discuss a sampling strategy of the available observa-

tions, coupled with a smoothing procedure of the resulting likelihood function.

Last but not least, we employ the developed methodology to analyze the US
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Change-Point Estimation in High-Dimensional Markov Random Field Models 5

Senate voting record from 1979 to 2012. In this application, each Senate seat
represents a node of the network and the voting record of these 100 Senate seats
on a given bill is viewed as a realization of an underlying Markov random field that
captures dependencies between them. The analysis strongly points to the presence
of a change-point around January, 1995, the beginning of the tenure of the 104th
Congress. This change-point comes at the footsteps of the November 1994 election
that witnessed the Republican Party capturing the US House of Representatives for
the first time since 1956. Other analyses based on more ad hoc methods, also point
o a significant change occurring after the November 1994 election (e.g. Moody and
Mugcha: (2013)).

The remainder of the paper is organized as follows. Modeling assumptions and
thesestimation framework are presented in Section 2, while Section 3 establishes
the key technical results. Section 4 discusses computational issues and Section 5
evaluates the performance of the estimation procedure using synthetic data. Section
6, illustrates the procedure on the US Senate voting record. Finally, proofs are

deferred to the Supplement.

2:w=Methodology

Let {X M 1<t< T} be a sequence of independent random vector, where X t) —
(X ft), e ,Xz(f)) is a p-dimensional Markov random field whose j-th component X ](-t)
takes yalues in a finite set X. We assume that there exists a time point (change
point) 7, € {1,...,7 — 1} and symmetric matrices 9,((1), 0 ¢ RP*P_ such that for
all x € XP,

and

]P’(X(t) :x) 29952)<x)’ fort=r.+1,...,T,

where gy is the Markov random field distribution given in (1). We assume without
any less of generality that 7, = [« T'], for some ay € (0,1), where [z] denotes the
smallest integer larger or equal to x. The likelihood function of the observations
{X® 1<t<T}is then given by

T T
Lt (T, 9(1),9(2)\X(1:T)) = TToor X T g0 (X®). (2)
t=1

t=7+1
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6 Roy, Atchadé, Michailidis

We write E to denote the expectation operator with respect to P. For a sym-
metric matrix 0 € RP*P_ we write Py to denote the probability distribution on X?
with probability mass function gy and Ey its expectation operator.

‘We are interested in estimating both the change point 7., as well as the param-

()
*

eters 6 ,99). Let M,, be the space of all p x p real symmetric matrices. We equip

M, with the Frobenius inner product (6, 9)g f >_k<j 0irVjk, and the associated
norm |||/ of \/(0,0). This is equivalent to identifying M, with the Euclidean

space RPPtD/2 and this identification prevails whenever we define gradients and

Hessians of functions f : M, — R. For § € M,, we also define ||6]; & > k<j 10kl

and |0« o supy<; |0jk|. If u € RY, for some d > 1, and A is an ordered subset of

{lgmenyd}, we define uy def (uj, j € A), and u_j; is a shortcut for ugy gy g5}

To avoid some of the computational difficulties in dealing with the normal-
izingmeonstant of gg, we take a pseudo-likelihood approach. For 6 € M, and
Jj EHL2,...,p}, define f(gj)(u]m) def Po(X; = u|X_; = z_j), for u € X, and

xz @XP«LFrom the expression of the joint distribution gg in (1), we have

; 1
fe(])(u|93) = Gy eXP 6;;Bo(u) + Zé?jkB(u,xk) ,ueX, zeXP,  (3)
Zy () k#j

where

Zé’])(m) dﬁf/exp HjjBo(Z)‘i‘ZejkB(zaxk) dz. (4)
X k#j

ReMARK 1. The normalizing constant Zg(‘j)(x) defined in (4) is actually a sum-
mation.over X, but for notational convenience we write it as an integral against the
counting measure on X. Furthermore, it is implicitly assumed that these normalizing
comstamits are available in closed form, which is the case for most commonly used
graphical models. For instance, in the case of the Ising model used below, X = {0, 1},

By(z9=' 2, B(z,y) = zy, so that Zéj)(a:) is explicitly given by

2 (@) =1+ exp ( 055+ > O
ki

Next, we introduce
P
def j
0(0,2) € — > log f37 (xj]2). (5)
j=1
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Change-Point Estimation in High-Dimensional Markov Random Field Models 7

The negative log-pseudo-likelihood of the model (divided by T) is given by

T T
of 1 1
Cr(rs61,62) < 2" 001 X+ Y7 602, X ). (6)
t=1 t=(7+1)

For 1 <7 < T, and A > 0, we define the estimators

6" < Argmin ch) 0, XD) + \[6]1,
oeM,

and
6y < Argmln— Z o(6, X D) + \[|0]];.
oem, T2,

We propose to estimate the change point 7, using a profile pseudo-likelihood ap-
proach. More precisely our estimator 7 is defined as

7 = Argmin {p(T; 5177, 9\2,7), (7)
TET

for a search domain 7 C {1,...,T} of the form {k;, k; + 1,...,T — ky}, where for
eacheg. € T, 01 = 90‘1 ") and 927- = 0()‘1 ") , for some positive penalty parameters
X1,7, A2 r. Since the network estimation errors at the boundaries of the time-line
{1,...,T} are typically large, a restriction on the search domain is needed to guar-
antee the consistency of the method. This motivates the introduction of 7. We
give more details on 7 below. The penalty parameters A; , and A2, also play an
important role in the behavior of the estimators, and we provide some guidelines

below.

3. Theoretical Results

The recovery of 7, rests upon the ability of the estimators éj,T to correctly esti-
mate 0V ), j € {1,2}. Estimators for the static version of the problem where one
has'i.i.d. observations from a single Markov Random Field have been extensively
studied; see Guo et al. (2010), Hofling and Tibshirani (2009), Meinshausen and
Biihlmann (2006), Ravikumar et al. (2010) and references therein for computational
and theoretical details. However, in the present setting one of the estimators HAj,T,
je{1,2}is derived from a misspecified model. Hence, to establish the error bound
for HQJT — oY ||2, we borrow from the approach in Atchadé (2014). For penalty

terms Aj; as in (8) and under some regularity assumptions, we derive a bound on
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8 Roy, Atchadé, Michailidis

the estimator errors ||éj,T — gV )||2, for all 7 € 7. We then use this result to show
that the profile pseudo-log-likelihood estimator 7 is an approximate minimizer of
T Op(r; 0&1), 0&2)) and this allows us to establish a bound on the distance between
7 and the true change point 7.

We assume that the penalty parameters take the following specific form.

32 log (dT 32 T — 7)log (dT
)\1,7' = = TTog( ) and )‘2,7' = 2 \/( TT) Og( )7 (8)

wherd g p(p+1)/2, and

co = sup |Bo(u) — Bo(v)|V sup |B(z,u) — B(z,v)], (9)

u,vEX z,u,veEX
which serves as (an upper bound on the) standard deviation of the random vari-
ables By(X), B(X,Y). In practice, we use A1, = a;T 1co\/7log(dT), and Ao, =

axl™ co\/ — 7)log(dT), where ay, ag are chosen from the data by an analogue of

the Bayesian Information Criterion (Schwarz (1978))
For j = 1,2, define A; {1 <k<i<p: 6 75 0}, and define s; o |A;| the

cardimality (and hence the sparsity) of the true model parameters. We also define

C;EoeM,: S0P 1<3 N 18910, 5 e (1.2, (10)
(ki) AS (ki)EA,

used next in the definition of the restricted strong convexity assumption.

H 1+ [Restricted Strong Convexity| For j € {1,2}, and X ~ g, , there eists
pj>"07such that for all A € C;,

p
Z Eo
i=1

p
Var, ) (z Aisz‘k(Xian)|Xi>] > 2p; A3, (11)

k=1

REMARK 2. Assumption HI1 is a (averaged) restricted strong convexity (RSC)
assumption on the negative log-pseudo-likelihood function ¢(0,x). This can be seen

by noting that (11) can also be written as
AE [V, XD A > 205|A]3, XD ~ gy, AeCy, je {12}

These restricted strong convexity assumptions of objective functions are more perti-

nent in high-dimensional problems and appear in one form or another in the analysis

This article is protected by copyright. All rights reserved



Change-Point Estimation in High-Dimensional Markov Random Field Models 9

of high-dimensional statistical methods (see e.g. Neghaban et al. (2010) and refer-
ences therein). Note that the RSC assumption is expressed here in expectation,
wnlike ' Neghaban et al. (2010) which uses an almost sure version. Imposing this
assumption in expectation (that is, at the population level) is more natural, and is
known to imply the almost sure version in many instances (see Rudelson and Zhou
(2013), and Lemma 4 in the Supplement).

Wesimpose the following condition on the change point and the sample size.

H2. [Sample size requirement]| We assume that there exists o, € (0,1) such that
me=afe,.T| € {1,...,T — 1}, and the sample size T satisfies

min ) > c§max : :
21 log(pT)’ 482 x 322log (dT) 0 axpt’ (1 — ay) p3

where p1, and py are as in HI.

REMARK 3. Note that the constants 211 and 48% x 322 required in H2 will typi-
cally™yield o very conservative bound on the sample size T'. We believe these large
constants are mostly artifacts of our techniques, and can be improved. The key point
of H2xwis the fact that we require the sample T to be such that T'/log(T) is a linear
function of max(s?,s3) log(p). Up to thelog(T) term, this condition is in agreement

with.recent results on high-dimensional sparse graphical model recovery.

The ability to detect the change-point requires that the change from 0&1) to 9&2)
be identifiable.

H3: [Identifiability Condition] Assume that otV #* 9&2), and

e min (B, [0, X) = 00, X)] By [6(60, X) — 06", )] ) > 0.
(12)

REMARK 4. Assumption H3 is needed for the identifiability of the change-point
Te- Since the distributions gg are discrete data analogs of Gaussian graphical distri-
butions, it is informative to look at H3 for Gaussian graphical distributions. Indeed,
if g is the density of the p-dimensional normal distribution N(0,0~") with precision

matriz 0, and if we take ¢(0,x) = —log gg(x), then it can be easily shown that

L e 1
w2 0 - o5,

This article is protected by copyright. All rights reserved



10 Roy, Atchadé, Michailidis

where L_is an upper bound on the largest eigenvalue of 99) and 9&2). Hence in this
case H3 holds. Such a general result is more difficult to establish for discrete Markov

random, fields. However, it can be easily shown that H3 holds if

(99) B 99)'1[«:99) {V(2)¢(6£2),X)} (9&1) - 09))' >0,

and (99) - 9&”)'1{-399) [v@)qs(eS),X)] (9&2) - 9&”)' >0. (13)

And wn_the particular setting where 99) and 9&2) have similar sparsity patterns (in
the sense that 9&2) — 99) € C1NCy), then (13) follows from HI1, and the discussion

inelRemark 2.
Finally, we define the search domain as the set
T=T-UT-, (14)
where T3 is defined as the set of all time-points 7 € {7, + 1,...,T} such that
cob(T — 1) < 2¢/Tlog(dT), and 64cibsi (T — 1) < p17, (15)

and”7_ is defined as the set of all time-point 7 € {1,..., 7.} such that

cob(te — 7) < 2\/ —7)log(dT), and 64cgb32(7‘* —71)<p2(T—7), (16)

where

p &t 02 _ g 17
lgggp;\ﬂk - (17)

Furthermore, for all 7 € T,
s 2
7 > max (2'1, (48 x 32)?) ¢ (1) log(dT),
P1
6\ 2
and T —7 > max (211, (48 x 32)2) ct (2) log(dT"). (18)

P2

REMARK 5. Notice that T is of the form {kj, ki + 1,..., 7w, 7 + 1,.. ., T — ky },
since for T close to T, both (15), (16), and (18) hold provided that T is large enough.

We can then establish the key result of this paper. Set

M = [ <1+co> —i—— <1+co‘52>} .
P1 P1 P2 P2
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THEOREM 1. Consider the model posited in (2), and assume HI1-H3. Let 7 be
the estimator defined in (7), with A1, 27 as in (8), and with a search domain
T that satisfies (15), (16), and (18). Then there exists a universal finite constant
@& =70, "8teh that with 6 = aMc3log(dT), we have

2
[ K
45) 1 1O <_3QC%s<||0£2>95“5>>
) < +

T ) — F K2
1 —exp (‘27casuei2>—ei”||a)

where § is the number of non-zero components of 9&2) — 99).

Theorem 1 gives a theoretical guarantee that for large p and for large enough sam-
ple size T such that (T/log(T)) = O(max(s?, s2)log(p)), |7/T —ax| = O(log(pT)/T)
with high-probability. For fixed-parameter change-point problems, the maximum
likelihood estimator of the change-point is known to satisfy |7/T — a.| = Op(1/T)
(see e.g. Bai (2010)). This shows that our result is rate-optimal, up to the log-
arithm factor log(7"). Whether one can improve the bound and remove the log(T")
termshinges on the existence of an exponential bound for the maximum of weighted
partial sums of sub-Gaussian random variables, as we explain in Remark 1 of the
Supplement. Whether such bound holds is currently an open problem, to the best
of our knowledge. However, note that the log(p) term that appears in the theorem
cannot be improve in general in the large p regime.

If the signal  introduced in H3 satisfies
k2 roll0 — 013, (20)

then the second term on right-hand side of (19) is upper bounded by

aMrg

1 ) 325 1
<dT 1—exp (-5 6 — 6)3)

72
27cts

This shows that Theorem 1 can also be used to analyze cases where ||9£2) —gV 1210,
as p — oo. In such cases, consistency is guaranteed provided that the term in (21)
converges to zero. From the right-hand side of (20), we then see that the convergence
rate of the estimator in such cases is changed to
2 log(dT)
1o —eig T

This article is protected by copyright. All rights reserved



12 Roy, Atchadé, Michailidis

Another nice feature of Theorem 1 is the fact that the constant M describes the
behavior of the change-point estimator as a function of the key parameters of the
problem: In particular, the bound in (19) shows that the change-point estimator
iniproves as si, so (the number of non-zero entries of the matrices 9&1), 0&2) resp.),

or.the noise term ¢y (the maximum fluctuation of By and B) decrease.

4. Algorithm and Implementation Issues

Given a; sequence of observed p-dimensional vectors {x(t), 1 <t < T}, we propose
the following algorithm to compute the change point 7, as well as the estimate the

estimates (élﬁ, égﬁ—) .

ALGORITHM 1 (Basic Algorithm). Input: a sequence of observed p-dimensional
vegtors{z), 1 <t < T}, and T C{1,...,T} the search domain.

(a) For each T € T, estimate 9A177, éQ’T using for instance the algorithm in Hdéfling
and Tibshirani (2009).

(b) For each 7 € T, plug-in the estimates 67177,(92,7 in (6) and obtain the profile
(negative) pseudo-log-likelihood function PL(T) & 0 (7501 1,09).

(c) Identify T that achieves the minimum of PU(T) over the grid T, and use

él’f—, égﬁ— as the estimates of 0,((1) and 0,&2), respectively.

Insour implementation of the Basic Algorithm, we choose a search domain 7 of
theform 7 = {k;, ki + 1,...,T — k;}, with k; sufficiently large to ensure reasonably
goodrestimation errors at the boundaries. Existing results (Ravikumar et al. (2010);
Guoetal. (2010)) suggest that a sample size of order O(s?log(d)) is needed, where

s is the.number of edges, for a good recovery of Markov random fields.

Note that to identify the change-point 7 the algorithm requires a full scan of all
thestime points in the set 7, which can be expensive when T is large. As a re-
sult, we propose a fast implementation that operates in two stages. In the first
stage, a coarser grid 71 C T of time points is used and steps (a) and (b) of the
Basic Algorithm are used to obtain f7(T; él,r; é277), T € T1. Subsequently, the pro-
file likelihood function ¢7 is smoothed using a Nadaraya-Watson kernel (Nadaraya

(1965)). Based on this smoothed version of the profile likelihood, an initial estimate

This article is protected by copyright. All rights reserved



Change-Point Estimation in High-Dimensional Markov Random Field Models 13
of the change-point is obtained. In the second stage, a new fine-resolution grid 75
is formed around the first stage estimate of 7. Then, the Basic Algorithm is used
for the grid points in 73 to obtain the final estimate. This leads to a more practical

algorithm' summarized next.

ATEORITHM 2 (Fast Implementation Algorithm). Input: a sequence of ob-
erved \p-dimensional vectors {x®M 1 < t < T}, and T C {1,...,T} the search

domain.
(a) Find a coarser grid T of time points.

(b) For each 7 € Ti, use steps (a) and (b) of the Basic Algorithm to obtain
Plr(r), T€T.

(c) Compute the profile negative pseudo-log-likelihood over the interval [1,T] by

Nadaraya- Watson kernel smoothing:

Ky (1,7 €T~;§T.,§T.
Plna(r) % Yorer K, (7,7:) (736017, 2,7,)’ l<r<T

27167—1 ¢ <Ti; 01,71‘? 02,’&)

The first stage change-point estimate is then obtained as

7 = Argmin Pl1s(7).

1<r<T
(d)=Form a second stage grid Ty around the first stage estimate 7 and for each

neE Tz, estimate (/9\1; and 5277 using steps (a) and (b) of the Basic Algorithm.

(€)"Construct the second stage smoothed profile pseudo-likelihood

def 2rers Kn, (1,70) 4 <7—i;é\1,naé\2,ﬂ>
Plas(T) = , min(73) < 7 < max(73).

ZﬂETz 14 (n; 91,7'1 , 92,n>

The final change-point estimate is then given by

F= Argmin Plos(T).
min(7z) <T<max(73)

5. Performance Assessment

5.1. Comparing Algorithm 1 and Algorithm 2
We start by examining the relative performance of both the Basic (Algorithm 1)
and the Fast Implementation Algorithms (Algorithm 2). We use the so called Ising
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14 Roy, Atchadé, Michailidis
model; i.e. when (1) has By (z;) = xj, B(xj,2) = zjx, and X = {0,1}. In all
simulation setting the sample size is set to T' = 700, and the true change-point is
atl 7, =350, while the network size p varies from 40-100. All the simulation results
reported below are based on 30 replications of Algorithm 1 and Algorithm 2.

The data are generated as follows. We first generate two p X p symmetric adja-
cency matrices each having density 10%; i.e. only ~10% of the entries are different

(%)
*jk’ .
[—1,—0.5] U [0.5,1] if there is an edge between nodes j and k, otherwise 9£§)k, = 0.
All the diagonal entries are set to zero. Given the two matrices 9&1) and 9&2), we
T T ii : .
generate the data {X(t)};l id gp» and {X(t)}t:n—i-l id gg» by Gibbs sampling.

Different “signal strenghts” are considered, by setting the degree of similarity
between Hil) and 0&2) to 0%, 20% and 40%. The degree of similarity is the proportion
of‘equal off-diagonal elements between 0,(3) and 9&2). Thus, the difference H9£2) -

than zero. Each off-diagonal element of 6 (i = 1,2) is drawn uniformly from

Gil)Hl becomes smaller for higher degree of similarity and as can be seen from
Assumption H3, the estimation problem becomes harder in such cases.

Theschoice of the tuning parameters A\ ; and Ay ; were made based on Bayesian
Information Criterion (BIC) where we search A; ; and Ay . over a grid A and for
€ach. penalty parameter the A value that minimizes the BIC score (defined below)
over A is selected. If we define /\?I ¢ and )\QBI C as the selected \ values for \; and
A2.by BIC we have

2 (4 j
ABIC — Argmin -7 > o (997)» X(t)> + IOg(T)HHQT)HO and
AEA t=1

T
ABIC — Argmin—= 3" ¢ (680, XY + tos(T — )18 o
xen T2 7 7
where ollo < Sie; 16,0505

Fortthe fast algorithm (Algorithm 2), the first stage grid employed had a step
sizerof 10 and ranged from 60 to 640, while the second stage grid was chosen in the
interval [7 — 30, 7 + 30] with a step-size of 3.

We present the results for Algorithm 1 in Table 1 for the case p = 40. It can
be seen that Algorithm 1 performs very well for stronger signals (0% and 20%
similarity), while there is a small degradation for the 40% similarity setting. The
results on the specificity, sensitivity and the relative error of the estimated network

structures are given in Table 2. Specificity is defined as the proportion of true
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negatives and can also be interpretated as (1-Type 1 error). On the other hand
sensitivity is the proportion of true positives and can be interpreted as the power of
the method. The results for Algorithm 2 for p = 40,60 and p = 100, for the change-
point estimates are given in Table 4, while the specificity, sensitivity and relative
error of the estimated network structures are given in Table 5. These results show
that Algorithm 2 has about 20% higher mean-squared error (MSE) compared to
Algorithm 1. However as pointed out in Section 4, Algorithm 2 is significantly
faster. In fact in this particular simulation setting, Algorithm 2 is almost 5 times
faster in a standard computing environment with 4 CPU cores. See also the results
insFable 3 which reports the ratio of the run-time of a single iteration of Algorithm
1 and Algorithm 2.

Further, selected plots of the profile smoothed pseudo-log-likelihood functions
73?1/8(7') and 75723(7') from the first and second stage of Algorithm 2 are given in
Figure'l.

Table 1: Change-point estimation results using the Basic Algorithm, for different
percentages of similarity.

p % of Similarity 7 RMSE CV

0 366 14.77  0.03
40 20 362  24.65 0.06
40 375 3849 0.08

Table 2: Specificity, sensitivity and relative error in estimating 99) and 9&2) from

the[Basic Algorithm, with different percentages of similarity.

p % of Similarity Specificity Sensitivity Relative error
99) 02 95}) 99) 1) 95})

* *

0 0.78 087 0.79 0.89 0.70 0.63
40 20 0.74 088 0.80 0.88 0.72 0.67
40 0.71 080 0.77 0.81 0.75 0.72
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Table.3: Ratio of the computing time of one iteration of Algorithm 1 and Algorithm
2.

p  Ratio of computing times

40 4.93
60 4.82
100 4.81

Table 4; Change-point Estimation Results for different values of p and different
percentages of similarity for the Fast Implementation Algorithm.(7" = 700, s; =
5y = Pt op ox — 354)

p % of Similarity 7 7 RMSE CV

0 360 360 17.89 0.04
40 20 363 361 30.07 0.08
40 375 373 4797 0.10
0 357 356 23.05 0.06
60 20 388 386 43.20 0.08
40 410 408 61.45 0.09
0 356 355 3593 0.10
100 20 408 401 62.89 0.10
40 424 421 85.04 0.12

Table 5: Specificity, sensitivity and relative error of the two parameters for differ-
ent values of p and different percentages of similarity for the Fast Implementation

Algorithm.

This article is protected by copyright. All rights reserved



Change-Point Estimation in High-Dimensional Markov Random Field Models 17

p % of Similarity — Specificity ~ Sensitivity Relative error

9>(k1) 0&2) 6’9) ‘9>(k2) 9£1) 9£2)

0 0.74 086 0.78 0.86 0.74 0.67

40 20 0.74 081 076 0.82 0.73 0.71
40 0.72 0.8 078 0.82 0.74 0.70

0 0.81 083 077 0.82 0.75 0.66

60 20 0.82 087 070 0.72 0.79 0.73
40 0.80 0.86 0.65 0.68 0.81 0.78

0 0.82 088 0.75 0.84 0.78 0.66

100 20 0.81 0.87 0.66 0.70 0.81 0.78
40 0.85 087 0.63 0.68 0.83 0.81

Fig. liaSmoothed profile pseudo-log-likelihood functions from one run of Algorithm

2. Different values of similarity (0%, 20% and 40%) in rows. Different values of p
(p =40,60 & 100) in column. The green curve is the non-smoothed profile pseudo-
log-likelihood from Stage 1 of Algorithm 2, and the black curve is its smoothed
version. The orange and the blue curve are respectively the non-smoothed and the

smoothed profile pseudo-log-likelihood functions from Stage 2 of Algorithm 2.
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5.2. A community based network structure

Nextsawe examine a setting similar to the one that emerges from the US Senate
analysis presented in the next Section. Specifically, there are two highly “connected”
communities of size p = 50 that are more sparsely connected before the change-
point, but exhibit fairly strong negative association between their members after
theschange-point. Further, the within community connections are increased for
one of them and decreased for the other after the occurrence of the change-point.
We kéep the density of the two matrices encoding the network structure before
andfafter the true change-point at 10%. In the pre change-point regime, 40% of
the non-zero entries are attributed to within group connections in community 1
(seeTable 6), and 50% to community 2 (see Table 6), while the remaining 10%
nen-zeros represent between group connections and are negative. Note that the
within"group connections are all positive. In the post change-point regime, the
community 1 within group connections slightly increase to 42% of the non-zero
enttiesy whereas those of community 2 decrease to 17% of the non-zero entries.
The between group connections increase to 41% of the non-zero entries in the post
change-point regime. As before, each off-diagonal element 9;2, 1 = 1,2 is drawn
uniformly from [—1,—0.5]U[0.5, 1] if nodes j and k are linked by an edge, otherwise
00
Givensthe two matrices Gil) and 99), we generate data using the “BMN” package
(Hoefling (2010)) as described earlier. The total sample size employed is 7" = 1500

andwthe'true change-point is at 7% = 750. We choose the first stage grid comprising of

=0, ¢ = 1,2 and the diagonals for both the matrices are assigned as zeros.

50'points with a step size of 27 and the second stage grid is chosen in a neighborhood
of thesfirst stage estimate with a step size of 3 with 20 points. We replicate the study
5 times'and find that the estimated change-point averaged over the 5 replications as
7 ="768. The relevant figure (see Figure 2) for this two community model is given
below=The analysis indicates that our proposed methodology is able to estimate the
truerchange-point sufficiently well in the presence of varying degrees of connections
between two communities over two different time periods, a reassuring feature for

the US Senate application presented next.

Table 6: Positive and negative edges before and after the true change-point for two

community model
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Edges Before After
comm 1 | comm 2 | between | comm 1 | comm 2 | between
positive 50 63 0 52 21 0
negative 0 0 10 0 0 50
Total 50 63 10 52 21 50

Negative log-likelihood

38000 40000 42000 44000 46000 48000

T T T
0 500 1000 1500

Timepoints

Fig. 2:9Change-point estimate for the two community model with p = 50, T" = 1500
ander*=754

6. _Application to Roll Call Data of the US Senate

Thesdata examined correspond to voting records of the US Senate covering the
period 1979 (96th Congress) to 2012 (112th Congress) and were obtained from the
website www . voteview. com. Specifically, for each of the 12129 votes cast during this
period, the following information is recorded: the date that the vote occurred and
the response to the bill /resolution under consideration -yes/no, or abstain- of the 100
Senatée members. Due to the length of the time period under consideration, there
was significant turnover of Senate members due to retirements, loss of re-election
bids, appointments to cabinet or other administrative positions, or physical demise.
In order to hold the number of nodes fixed to 100 (the membership size of the
US Senate at any point in time), we considered Senate seats (e.g. Michigan 1 and
Michigan 2) and carefully mapped the senators to their corresponding seats, thus
creating a continuous record of the voting pattern of each Senate seat.

Note that a significant number of the 12129 votes deal with fairly mundane
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procedural matters, thus resulting in nearly unanimous outcomes. Hence, only votes
exhibiting conformity less than 75% (yes/no) in either direction were retained, thus
resulting in an effective sample size of T' = 7949 votes. Further, missing values
die %o abstentions were imputed by the value (yes/no) of that member’s party
majority position on that particular vote. Note that other imputation methods of
missing values were employed: (i) replacing all missing values by the value (yes/no)
representing the winning majority on that bill and (ii) replacing the missing value
of a Senator by the value that the majority of the opposite party voted on that
particular bill. The results based on these two alternative imputation methods are

givensin.the Supplement.

Einally, the yes/no votes were encoded as 1/0, respectively. Under the posited
medelyvotes are considered as i.i.d. from the same underlying distribution pre
andspost any change-point. In reality, voting patterns are more complex and in all
likelihood exhibit temporal dependence within the two year period that a Congress
seryves,and probably even beyond that due to the slow turnover of Senate members.
Nevertheless, the proposed model serves as a working model that captures essential

featuresiof the evolving voting dependency structure between Senate seats over time.

The'likelihood function together with an estimate of a change-point are depicted
in Figure 5 based on the Fast Implementation Algorithm presented in Section 4. We
choeseour first stage grid with a step-size of 50 that yields 157 points excluding time
pointstelose to both boundaries. In the second stage, we choose a finer-resolution
grid. with a step size of 20 in a neighborhood of the first stage change-point esti-
mate’ ™ The vote corresponding to the change point occurred on January 17, 1995
at-thesbeginning of the tenure of the 104th Congress. This change-point comes at
thesfootsteps of the November 1994 election that witnessed the Republican Party
capturing the US House of Representatives for the first time after 1956. As dis-
cussedsin the political science literature, the 1994 election marked the end of the
“Comnservative Coalition”, a bipartisan coalition of conservative oriented Republi-
camns'and Democrats on President Roosevelt’s “New Deal” policies, which had often
managed to control Congressional outcomes since the “New Deal” era. Note that
other analyses based on fairly ad hoc methods (e.g. Moody and Mucha (2013))

also point to a significant change occurring after the November 1994 election.

Next, we examine more closely the pre and post change-point network structures,

shown in the form of heatmaps of the adjacency matrices in Figure 6. To obtain sta-
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ble estimates of the respective network structures, stability selection (Meinshausen
and Bthlmann (2010)) was employed with edges retained if they were present
in more than 90% of the 50 networks estimated from bootstrapped data. To aid
interpretation, the 100 Senate seats were assigned to three categories: Democrat
(blue), mixed (yellow) and Republican (red). Specifically, a seat was assigned to the
Democrat or Republican categories if it were held for more than 70% of the time
by thelcorresponding party within the pre or post change-point periods; otherwise,
it_was assigned to the mixed one. This means that if a seat was held for more than
5 out of the 8 Congresses in the pre change-point period and similarly 6 out of 9
Gengresses in the post period by the Democrats, then it is assigned to that category

and similarly for Republican assignments; otherwise, it is categorized as mixed.

In"the depicted heatmaps, the ordering of the Senate seats in the pre and post
change-point regimes are kept as similar as possible, since some of the seats changed
theireategory membership completely across periods. Further, the green dots rep-
resent/positive edge weights, mostly corresponding to within categories interactions,
while"black dots represent negative edge weights, mostly between category interac-
tions« It can be clearly seen an emergence of a significant number of black dots in
thespost change-point regimes, indicative of sharper disagreements between politi-
cal parties and thus increased polarization. Further, it can be seen that in the post
change-point regime the mixed group becomes more prominent, indicating that it

contributes to the emergence of a change-point.

‘Lo’ further explore the reasons behind the presence of a change-point, we pro-
vide some network statistics in Figure 3 and Figure 4. Specifically, the two figures
present the proportion of positive and negative edges, before and after the esti-
mated change-point using two different methods for selecting the penalty tuning
parameters; an analogue of the Bayesian Information Criterion and threshold 0.8
forsthe stability selection method respectively. The patterns shown across the fig-
ures for the two different methods are very similar- high proportion of positive edges
within groups and very low or almost negligible proportion of negative edges within
the “republican” or “democrat” groups in both pre and post-change-point periods.
Further, a large proportion of negative edges can be accounted for “republican”
and “democrat” group interactions, which tend to increase in the post regime. One
noticeable fact is that the proportion of positive edges within the “republican” and

“democrat” groups remain almost same from pre to post change-point regime under
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BIC and stability selection both whereas the proportion of positive edges between
the two groups decrease and the proportion of negative edges between them tend to
increase from pre to post change-point regime for both the methods. It can also be
observed that the 7 and the “democrat” groups exhibit a large proportion
of-positive edges between them in the pre regime, as gleaned from their overlap in
the corresponding heatmap.

We also present some other network statistics, such as average degree, centrality
scores.and average clustering coefficients for the three groups “republican”, “demo-

” in Table 7. We observe that in terms of centrality scores the

crat? and
“demograt” group is more influential than the “republican” one, in both the pre
and post change-point network structures, whereas in terms of clustering coefficient
valuessthe “republican” group is ahead of the “democrat” one and the gap increases
from._pre to post change-point regime, also reflected in the finding that the number
of .edges'within the “republican” group mostly remains the same from pre to post
regimes, whereas for the democrats it decreases. These results suggest that the

Republicans form a tight cluster, whereas the Democrats not to the same extent.

10
0.8 0.8
06 06
0.4 0.4
o = o
0.0 — 0.0

a = =]

'3 =

x o

x x a a = o x
= 4 s =

Fig..3: Proportion of negative edges for network structures before (left figure) and
aftero(¥ight figure) the estimated change-point for BIC and stability selection with
threshold=0.8

Table 7: Different network statistic values for stability selection with threshold=0.9
and 0.8 respectively
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after (right figure) the estimated change-point for BIC and stability selection with

threshold=0.8

Methods Network Statistic Before After
Rep | Dem | Mixed | Rep | Dem | Mixed
Stable (0.9) Centrality Score 0.004 | 0.368 | 0.054 | 0.001 | 0.483 | 0.034
Clustering Coefficient | 0.346 | 0.311 | 0.339 | 0.334 | 0.251 | 0.391
Stable (0.8) Centrality Score 0.004 | 0.378 | 0.055 | 0.001 | 0.481 | 0.078
Clustering Coefficient | 0.366 | 0.371 | 0.360 | 0.378 | 0.307 | 0.364

Negative log-likelinood
435000 440000 445000 450000

430000

T T
1980 1990

Timepoints

T
2000

T
2010

Fig. 5: Estimate of the change-point for the combined US senate data from 1979-

2012
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‘ ® Republican M Democrat O Mixed ® Republican M Democrat

Fig. 6: Heatmap of the stable network structures before and after the estimated

change-point
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