Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Small Micro

Supporting Information

for Small, DOI: 10.1002/smll.201604301

Direct Growth of High Mobility and Low-Noise Lateral MoS₂–Graphene Heterostructure Electronics

Amirhossein Behranginia, Poya Yasaei, Arnab K. Majee, Vinod K. Sangwan, Fei Long, Cameron J. Foss, Tara Foroozan, Shadi Fuladi, Mohammad Reza Hantehzadeh, Reza Shahbazian-Yassar, Mark C. Hersam, Zlatan Aksamija,* and Amin Salehi-Khojin*

SUPPORTING INFORMATION

Direct Growth of High Mobility and Low Noise Lateral MoS₂-Graphene Heterostructure Electronics

Amirhossein Behranginia¹, Poya Yasaei¹, Arnab K. Majee², Vinod K. Sangwan³, Fei Long⁴, Cameron J. Foss², Tara Foroozan⁵, Shadi Fuladi⁶, Mohammad Reza Hantehzadeh¹, Reza Shahbazian-Yassar¹, Mark C. Hersam^{3,7}, Zlatan Aksamija²*, Amin Salehi-Khojin¹*

¹Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA

²Electrical and Computer Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States

³Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA

⁴Department of Mechanical Engineering, University of Michigan Tech, Houghton, MI, 49931, USA

⁵Department of Civil and Material Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA

⁶Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA

⁷Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA

[*] Corresponding author, salehikh@uic.edu, zlatana@engin.umass.edu

Table of contents:

S1. Polycrystalline MoS₂ film next to graphene flakes

S2. AFM characterization of the MoS₂/Gr interface

S3. Source-drain current-voltage characteristic of the MoS₂/Gr & MoS₂/Metal FETs

S4. Two probe current-voltage measurements of the MoS₂/Gr and MoS₂/Metal FETs

S5. Electrical transfer characteristic for MoS₂/Gr and MoS₂/Metal FETs

S6. Extrinsic Field effect mobility of the MoS₂/Gr and MoS₂/Metal FETs

S7. Arrhenius measurements at constant V_g for different applied V_{ds}

S8. Extracted Slope of the Arrhenius graph vs. the V_{ds} for MoS₂/GR transistor

S9. Arrhenius measurements at constant V_{sd} for different applied V_g

S10. Kelvin probe force microscopy (KPFM)

S11. 1/f Noise MoS₂-graphene

- S12. 1/f Noise MoS₂-metal
- S13. Electronic band structure alignment between MoS₂ and graphene

S1. Polycrystalline MoS₂ film next to graphene flakes

By increasing the MoS_2 growth time, the polycrystalline MoS_2 film grows next to the graphene flakes and forms a lateral junction with them.

Figure S1. Optical image of the Polycrystalline MoS_2 film next to the graphene flakes (scale bar 10 μ m).

S2. AFM characterization of the MoS₂/Gr interface

Due to the relatively large (25%) mismatch between the lattice parameters in graphene and MoS_2 , we believe that covalent lateral bonding at an atomically sharp interface is not likely to happen without major crystalline distortion. Such a distortion is less significant in covalent lateral interfaces with higher lattice similarity such as MoS_2 -WS₂ or graphene-hBN. As we discussed in the manuscript, the lateral MoS_2/Gr interfaces are formed due to the self-limiting growth process (deposition selectivity) which leads to a very narrow overlapping region. The paper by Ling *et al.*^[1] has also shown that MoS_2/Gr interfaces exhibit a 2-30 nm wide overlapping region. However, no distortion is observed in the lattice parameters of graphene or MoS_2 in the overlapping region, as evidenced by high-resolution transmission electron microscopy (HRTEM) images and their corresponding Fast Fourier transform (FFT) diffractograms.

To directly evaluate the overlapping region in our samples, we also performed atomic force microscopy on the MoS2-graphene interfaces. Figure S2 shows the SEM and AFM images of the interface. Particularly, Figure S2c shows that the overlapping region is narrower than 30 nm.

Figure S2. (a) SEM image of the MoS2-graphene in-plane heterostructure. (b) AFM image of the selected area of (a). (c) Higher magnification AFM image of the MoS2-graphene interface.

S3. Source-drain current-voltage characteristic of the MoS_2/Gr and $MoS_2/Metal$ FETs

Two probe current-voltage (I_d - V_{ds}) measurements at a gate voltage of 60 V at different temperatures were carried out to investigate the output characteristics of the in-plane MoS₂/Gr (Fig. S3a) and MoS₂/Metal (Fig.S3b) field-effect transistor (FET).

Figure S3. Output characteristic at different temperatures for (a) MoS_2/Gr (b) $MoS_2/Metal$ FETs.

S4. Two-probe current-voltage measurements of the MoS₂/Gr and MoS₂/Metal FETs

The two-probe current-voltage measurements of the MoS_2/Gr and $MoS_2/Metal$ FETs under different applied gate voltages at three different temperatures (300K, 240K and 200K) show an Ohmic behavior for MoS_2/Gr FET, while they show Schottky behavior for $MoS_2/Metal$ FET.

Figure S4. (a-f) I_d - V_{ds} measurements under different applied gate voltages for MoS₂/Gr and MoS₂/Metal FETs at 300 K, 240 K, and 200 K respectively.

S5. Electrical transfer characteristic for MoS₂/Gr and MoS₂/Metal FETs

The I_d - V_g measurements at different temperatures illustrate smaller temperature dependence for MoS_2/Gr than $MoS_2/Metal$ transistor.

Figure S5. I_d - V_g measurements at different temperatures for (a) MoS₂/Gr and (b) MoS₂/Metal FETs.

S6. Extrinsic Field effect mobility of the MoS₂/Gr and MoS₂/Metal FETs

The Mobility calculation is based on the formula of $\mu = \left(\frac{dI}{dV_g}\right) \times \left(\frac{L}{WC_{ox}V_d}\right)$, where L/W is the ratio of the channel length/width, C_{ox} is capacitance between the channel and the back gate, I_d , V_d and V_g are drain current, drain-source voltage, and back gate voltage, respectively^[2].

Figure S6. Mobility vs. (a) gate voltage at T = 300 K, and (b) the temperature at $V_g = 80$ V.

S7. Arrhenius measurements at constant V_{g} for different applied V_{ds}

Figure S7a and b show Arrhenius measurements of the MoS₂/Gr and MoS₂/Metal transistors at V_g =40 V for different applied source-drain biases respectively. To study the Schottky barrier height of the devices, a 2D thermionic equation $I_d = AT^{3/2} exp\left(\frac{-q(\Phi_B - \frac{V_{ds}}{n})}{K_BT}\right)$ is used in which I_d is source-drain current, T is temperature, q is electron charge, K_B is Boltzmann constant, Φ_B is Schottky barrier height, V_{ds} is Source-drain current, n is Schottky diode non-ideality factor, and

A is Richardson's $constant^{[3,4]}$.

Figure S7. Arrhenius measurements for (a), MoS_2/Gr (b), $MoS_2/Metal$ transistors at $V_g=40V$ for different applied V_{ds} .

S8. Extracted Slope of the Arrhenius graph vs. the V_{ds} for MoS₂/Gr transistor

The slope of figure S7a $\left(\frac{-q(\Phi_B - \frac{V_{ds}}{n})}{K_BT}\right)$ at each source-drain bias for V_g =40 V is derived and plotted in Fig S8 for the MoS₂/Gr in-plane heterostructure. Finally, the Schottky barrier height (Φ_B) is calculated at the intercept of Fig. S8 with the Y axis, where the V_{ds} is zero^[3].

Figure S8. Slope of the Arrhenius graph as a function of the V_{ds} at gate 40 V.

S9. Arrhenius measurements at constant V_{sd} for different applied $V_{\rm g}$

Arrhenius graphs are also plotted at constant V_{sd} for different applied gate voltages at room temperature as shown in Figure S9. Changing the slope of the Figure S9a from minus value at V_g =50 V to about zero at V_g =60 V and positive value at V_g =70 V also confirms the absence of the Schottky barrier for the MoS₂/Gr in-plane contact at gate biases close to the 60 V and above.

Figure S9. Arrhenius measurements for (a) MoS_2/Gr (b) $MoS_2/Metal$ transistors at $V_{sd} = 1V$ for different applied V_g .

S10. Kelvin probe force microscopy (KPFM)

Figure S10. Schematic of the KPFM setup.

S11. 1/f Noise MoS₂-graphene

Figure S11. (a) Log(S_I) versus Log(I) of a MoS₂-graphene device showing S ~ I^{γ} behavior with $\gamma = 1.72$ and 1.65 at 1.95 Hz and 190 Hz. V_g was kept constant at 40 V, and V_d was varied from 0.4 V to 4.4 V. (b) Noise amplitude A and 1/I_d is plotted as a function of V_g for V_g > 0. Dashed black line shows V_g⁻¹ dependence and solid red line shows V_g⁻².

S12. 1/f Noise MoS₂-metal

Figure S12. (a) Noise spectral density (S_I) versus frequency for a MoS₂-metal device at $V_d = 2 V$ and $V_g = 0 V$ showing $1/f^{\beta}$ with $\beta = 1.17$. The black line shows $\beta = 1$. (b) S_I versus I^{γ} behavior is established with $\gamma = 1.79$ at f = 1.95 Hz. (c) Inverse of noise amplitude (1/A) and I_d versus V_g for MoS₂-metal FET at $V_d = 2 V$. Black line is least square fit. (d) 1/A and device current (I_d) plotted as a function of gate bias V_g at $V_d = 2 V$. The red line is guide to the eye. The dip in 1/A at intermediate V_g values has been modeled in MoS₂ previously^[5].

S13. Electronic band structure alignment between MoS₂ and graphene

At first, the band structures for graphene and MoS_2 are calculated separately from first principles using Density-Functional Theory. Then the bands are aligned at the interface using a semiclassical macroscopic model, often called Schottky-Mott rule, where their vacuum levels are matched at the interface and bands are aligned using their respective electron affinities and work functions. Schottky-Mott rule has been shown to reproduce band alignment quite well for 2D heterojunctions.^[6–8]

The electron affinities of MoS₂ (χ_{MoS2}) and graphene (χ_{grap}) used in our calculation are 4.2 eV^[9] and 4.55 eV^[10]respectively; since the work functions depend on the position of the Fermi level, and hence also on the gate voltage, they are given by: $\varphi = \chi + (E_c - E_F)$, where E_c represents the bottom of the conduction band and E_F is the fermi energy level. Since graphene is metallic, the barrier height φ_B , when seen from graphene towards the MoS₂, can be calculated by aligning their vacuum levels as: $\varphi_B(V_g) = \varphi_{grap}(V_g) - \chi_{MoS2}$. The amount of band-bending in MoS₂ at the interface is given by the difference in energies of the conduction band bottom at and away from the interface i.e. $\varphi_{interface}(V_g) = \varphi_{MoS2}(V_g) - \chi_{MoS2} - \varphi_B(V_g)$.

Figure S13: (a) Electronic band structure and (b) DOS of MoS_2 (solid black lines) and graphene (dashed blue lines) calculated from DFT using Quantum Espresso, showing the band alignment at the interface. There is a $\phi_B=0.35$ eV barrier height at the interface (c) in the intrinsic case.

Figure S14. Band alignment between MoS_2 and graphene, showing the barrier height at the interface and band bending in the MoS_2 , indicating an n-type Ohmic contact for (**a**) intrinsic graphene and MoS_2 . There is a small barrier height for (**b**) extrinsic graphene and MoS_2 at $V_g = 0$ V (**c**) at $V_g = 60$ V. E_C in graphene on the left indicates the energy level of the Dirac point.

These calculations further reveal that even if there is a small overlapped region (a few nanometers) at the interface of graphene and MoS_2 , the region of MoS_2 overlapping graphene is likely to be nearly-intrinsic, as dictated by band alignment at the interface. The MoS_2 in our

experiments is grown second, so the overlap region would have graphene in contact with the oxide and covered by a narrow region of MoS_2 on top of it. In the overlap region, the two materials are in contact and form an extended interface where the interface band alignment we describe above persists throughout the overlapping region. Consequently, the barrier between the gated graphene on the bottom and the MoS_2 on top of it remains significant. The carrier concentration in the MoS₂ remains relatively small, qualitatively similar to the conditions observed at $V_G = 0$, as the graphene effectively screens the electric field from reaching the MoS₂ layer. The electrons traveling from graphene to the MoS₂ on top of it in the overlapping region then experience a very large series resistance from the nearly intrinsic MoS₂ region on top of graphene, before they reach the non-overlapping gated portion of MoS₂. Based on the band alignment at the interface, we calculate the conductivity of the MoS₂ region on top of graphene using the mobility calculation described in Experimental Section. We find the resistance of the top MoS₂ region to be dependent on the specific V_G as the gate voltage also impacts the band alignment at the interface and thus also influences the carrier concentration in the overlapping MoS₂ region. Under all gate voltages we investigated, the carrier concentration of MoS₂ in the overlap was found to be much smaller than graphene or the non-overlapping portion of the MoS₂, consistent with previous studies for gated vertical stacks which found that MoS₂ transfers most of its electrons into the graphene below it,^[11] where the authors found that the metallic graphene screens out the electric field from penetrating to the MoS₂, thereby making the gating of the top layer inefficient and causing $R_{MoS2} >> R_G$. Similarly, we found the overlapping region of MoS_2 to be highly resistive, as calculated based on the procedure we described in Experimental Section. The total resistance is dependent on the width W and length L of the overlap, but for our device dimensions and assuming 10 nm overlap we find it to be more than

V _G	Φ_B	R _G	R_{MoS_2}	R _{int.}	Roverlap (10 nm L)
V	eV	ohm	ohm	ohm	ohm
0	0.2943	4e3	3.2e7	6.3e6	8e8
10	0.2369	1.4e3	6.9e6	6.1e5	1e8
20	0.1959	897	2.8e6	1.3e5	2.2e7
30	0.1619	660	1.5e6	-	5.1e6
40	0.1322	534	9.18e5	1.1e4	1.5e6
50	0.1055	457	6.13e5	-	6.3e5
60	0.0813	404	4.3e5	1.5e3	1.7e5
70	0.0588	367	3.2e5	-	5.5e4
80	0.0379	340	2.5e5	-	1.5e4

two orders of magnitude higher than the contribution of the interface R_{int} , described in the manuscript. Our calculations are summarized in the following table:

Because of the large added resistance $R_{overlap}$ of the top MoS₂ layer, it is much less likely the current would flow vertically from graphene to the highly resistive MoS₂ on top. The less resistive current path will be through the highly conductive graphene below the MoS₂ to the lateral graphene-MoS₂ interface, followed by transport through the lateral interface and into the gated (non-overlapping) portion of the MoS₂. Hence, we expect our results to be relatively independent of overlapping, as long as the MoS₂ is on top of the graphene. Note that the situation would be reversed if graphene were on top; the less resistive path would again be through graphene. The resistance of the graphene would be smaller than that of the MoS₂ below it owing to the large contrast in carrier mobility of the two materials. The least-resistance current path would again be through the graphene on top of MoS₂ and then through the graphene-MoS₂ interface and the total resistance would depend on the width of the overlapping region. This is

not the situation in our work because MoS_2 is grown second so it is always on top of graphene in the narrow region where they overlap.

References:

- X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang, A. L. Hsu, Y. Bie, Y. H. Lee, Y. Zhu, L. Wu, J. Li, P. Jarillo-Herrero, M. Dresselhaus, T. Palacios, J. Kong, *Adv. Mater.* 2016, 28, 2322.
- [2] A. Dankert, L. Langouche, M. V. Kamalakar, S. P. Dash, ACS Nano 2014, 8, 476.
- [3] J. R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo, R. K. Kawakami, *Nano Lett.* **2013**, *13*, 3106.
- [4] E. Kaxiras, J. Kong, H. Wang, *Nano Lett.* **2014**, *14*, 3055.
- [5] X. Xie, D. Sarkar, W. Liu, J. Kang, O. Marinov, M. J. Deen, K. Banerjee, ACS Nano 2014, 8, 5633.
- [6] Z. Lin, A. McCreary, N. Briggs, W. Zhang, Q. Wang, Y. Chen, A. Kumar, P. K. Ahluwalia, S. Zhu, Y. Ni, J. Liu, B. Ha Nguyen, V. Hieu Nguyen, B. Ram, A. Manjanath, A. K. Singh, J. Sophia Ponraj, Z.-Q. Xu, S. Chander Dhanabalan, Z.-K. Tang, C.-J. Tong, W. Geng, X. Qian, Y. Wang, W. Li, C. Zhang, C. Gong, Y. Nie, K.-A. Min, C. Liang, Y. Jun Oh, H. Zhang, W. Wang, S. Hong, L. Colombo, R. M. Wallace, K. Cho, *2D Mater* 2017, *4*, DOI 10.1088/2053-1583/4/1/015026.
- [7] J. Zhang, W. Xie, J. Zhao, S. Zhang, 2D Mater. 2016, 4, 15038.
- [8] H. Yu, A. Kutana, B. I. Yakobson, *Nano Lett.* **2016**, *16*, 5032.
- [9] M. S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S. H. Lee, P. Kim, J. Hone, W. J. Yoo, *Nat. Commun.* **2013**, *4*, 1624.
- [10] J.-T. Seo, J. Bong, J. Cha, T. Lim, J. Son, S. H. Park, J. Hwang, S. Hong, S. Ju, J. Appl. Phys. 2014, 116, 84312.
- [11] C. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, M. S. Strano, ACS Nano 2014, 8, 5790.